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CHAPTER I

INTRODUCTION

1.1 Introduction

The characteristic that all stock markets have in common is uncertainty,

which is related with their short and long-term future states. This feature is

undesirable for investors but it is also unavoidable whenever the stock market

is selected as an investment tool. The best that one can do is to reduce this

uncertainty by forecasting. Stock market forecasting (or prediction) is one of the

instruments for this process.

The financial market forecasting task divides researchers and academics

into two groups: those who believe that we can devise mechanisms to predict

the market and those who believe that the market is efficient and whenever new

information comes up, the market absorbs it by correcting itself, leaving no space

for prediction. Furthermore the latter group believes that the financial market

follows a random walk, which implies that the best prediction you can have about

tomorrow’s value is today’s value.

There are two main methods of forecasting: qualitative and quantitative.

Qualitative forecasting techniques are subjective and based on appropriate opinion

and judgment when past data is not available, usually applied to intermediate

and long range decisions, such as informed opinion and judgment, Delphi method,

Market research, and historical life-cycle analogy. Quantitative forecasting models,

on the other hand, are used to estimate future demands as a function of past data,

and so are appropriate when past data is available. They are usually applied to

 

 

 

 

 

 

 

 



2

short-intermediate range decisions, for example, time series methods and causal

econometric forecasting methods.

Most financial returns depend concurrently and dynamically on many eco-

nomic and financial variables. The fact that the return has a statistically significant

autocorrelation indicates that lagged returns might be useful in predicting future

returns (Tsay, 2005).

This thesis assumes that returns follow a simple time series model such as

a stationary ARMA(p, q) model with some explanatory variables. Nevertheless

two serious problems arise with this approach as follows:

1. Heteroskedasticity: the variances of the residuals are not constant and pos-

sibly time-dependent, so that we construct models to forecast the returns

volatility such as GARCH with Markov Regime Switching (MRS) and com-

pare their performance with GARCH, EGARCH, GJR-GARCH models.

2. Multicolinearity: when the explanatory variables are correlated with each

other or there is high correlation between the explanatory variables in a

regression equation. We thus use Principal Component Analysis (PCA) to

remove possible complications caused by such multicollinearity.
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1.2 Research Objectives

The objectives of the research in this thesis are the following:

1. To forecast return with varying mean equations as follows:

1.1 Constant mean equation.

1.2 Day of the week effect and ARMA process.

1.3 Multiple regression based on PCA and ARMA process.

2. To forecast volatility of return with GARCH, EGARCH, GJR-GARCH,

and MRS-GARCH models.

3. To compare models from loss function in forecasting financial return and

volatility of return.
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1.3 Literature Review

We now review past research related to forecasting.

Mehmet (2008) and Marcucci (2005) assumed that the mean equation of

return is constant, while Easton and Faff (1994), and Kyimaz and Berument (2001)

considered a mean equation of return with a one week delay into the regression

model. Supoj (2003) considered a mean equation of return with an autoregressive

process. Later Tsay (2005) proposed that the constant mean equation could not be

forecasted due to inaccuracy of the financial data, since financial returns depend

concurrently and dynamically on many economic and financial variables. The fact

that returns have a statistically significant autocorrelation themselves indicates

that the lagged returns might be useful in predicting future returns. Hence Tsay

added some explanatory variables and stationary Autoregressive Moving-average

of order p and q (ARMA (p, q)) to replace constant mean equation.

Mehmet (2008) stated that financial returns have three characteristics. The

first is volatility clustering, implying that large changes tend to be followed by

large changes and small changes tend to be followed by small changes. Second is

fat tailedness (excess kurtosis) which means that financial returns often display a

fatter tail than a standard normal distribution and the third is the leverage effect

i.e. negative returns result in higher volatility than positive returns of the same

size.

The generalized autoregressive conditional heteroskedasticity (GARCH)

models mainly capture three characteristics of financial returns. The develop-

ment of GARCH type models was started by Engle (1982). Engle introduced to

ARCH model to model the heteroskedasticity by relating the conditional variance

of the disturbance term to the linear combination of the squared disturbances

in the recent past. Bollerslev (1986) generalized the ARCH (GARCH) model by
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modeling the conditional variance to depend on its lagged values as well as squared

lagged values of disturbance.

The volatility of financial returns is usually affected asymmetrically by pos-

itive and negative shocks. The exponential GARCH (EGARCH) of Nelson (1991),

the GJR-GARCH model of Glosten, Jagannathan, and Runkle (1993) and Thresh-

old GARCH model of Zakoian (1994) were introduced to account for asymmetric

effects of positive and negative shocks on volatility.

In addition, unconditional distribution of financial returns usually have

fatter tails than the normal distribution, and standard GARCH or EGARCH

models can not often fully capture the excess kurtosis in financial returns with

assumption of normality (Pagan, 1996). For that reason, the generalized error

distribution (Nelson, 1991) and the student-t distribution (Engle and Bollerslev,

1986) were proposed to overcome the excess kurtosis feature.

There are many extensions and modifications of GARCH type models in

the literature. Some of them are long memory GARCH of Ding et al. (1993),

Quadratic GARCH of Sentana (1995) and absolute GARCH of Hentschel (1995).

Several surveys on those models are available in Bollerslev, Chou and Kroner

(1992), Bera, Bollerslev and Higgins (1993), Engle and Nelson (1994), Franses

and van Dijk (2000) and Granger and Poon (2003). Although the GARCH type

models have proved to be successful in characterizing many features of volatility,

they are not problem-free. In empirical studies, parameters of GARCH models

are generally assumed to be stable over time. However, conditional distribution

of financial returns differs between recession and expansion periods (Perez-Quiros

and Timmermann, 2000). Moreover, GARCH models often imply a high volatility

persistence of individual shocks. Lamoureux and Lastrapes (1990) argued that

high persistence in volatility may be caused by structural changes in the variance
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process.

Following these ideas, Cai (1994) and Hamilton and Susmel (1994) have

independently introduced the Markov Regime Switching ARCH model (MRS-

ARCH) which combines the Markov Switching model of Hamilton (1989, 1990)

with the ARCH specification. The MRS-ARCH model was designed to capture

regime changes in volatility with the unobservable state variable following a first

order Markov Chain process. That is, parameters in the ARCH process are allowed

to be changed in different states. Although it has been shown that the GARCH

specification is better to fit financial data, Cai (1994) and Hamilton and Sus-

mel (1994) used the ARCH specification to overcome the infinite path dependence

problem arising in the Markov Regime Switching GARCH model (MRS-GARCH).

On the other hand, Gray (1996) proposed a new approach that allows

tractable estimation of the MRS-GARCH model and eliminates the infinite path

dependence problem. Also, Dueker (1997) took the same approach as Gray (1996)

to overcome the infinite path dependence problem and introduced various alter-

native MRS-GARCH models. Klaassen (1998) modified Gray’s MRS-GARCH

model and argued that his specification improves the forecasting performance of

the MRS-GARCH models. Recently, Haas, Mittnik, and Paolella (2004) proposed

a new method different from Gray’s (1996) approach and claimed that analytical

tractability of their new model allows derivation of stationarity conditions and

dynamic properties.

Hamilton and Susmel (1994) used weekly returns on the New York Stock

Exchange Index over the period 1962 to 1987 to test their MRS-ARCH model

with two to four regimes. They suggested that the MRS-ARCH specification

better fits the data, to forecast volatility and to reduce volatility persistence than

the uni-regime GARCH type models. Leon Li and William Lin (1994) and Wai
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Mun Fong (1996) applied the MRS-ARCH model of Hamilton and Susmel (1994)

to examine regime shifts and volatility persistence respectively in the weekly the

Taiwan Stock Index (TAIEX) and the weekly Japanese Stock Index (TOPIX).

They concluded that the MRS-ARCH model provides a better description of the

data and a much lower degree of volatility persistence than uni-regime GARCH

type models. Moreover, the MRS-ARCH model has been applied to international

stock markets by Fornari and Mele (1997), Schaller and Norden (1997), Susmel

(1998a, 2000), Bautista (2003), Leon Li (2007) and to exchange rate by Fong

(1998).

As an alternative estimation technique, Kaufmann and Schnatter (2002) de-

veloped Bayesian estimation techniques using Markov Chain Monte Carlo methods

(MCMC) for MRS-ARCH models. Also, Kaufmann and Scheicher (2006) applied

the MRS-ARCH model performed within the Bayesian framework to describe the

daily German Stock Index (DAX). Gray (1996) extended the MRS-ARCH model

to the MRS-GARCH case by developing a recombining method that merges condi-

tional variances in different regimes into a single conditional variance. This makes

the MRS-GARCH model path independent and allows for constructing a tractable

likelihood function. Moreover, a MRS-GARCH model with time varying transition

probabilities is proposed in the same study.

To implement his model, Gray (1996) used weekly one-month U.S. Trea-

sury bill rates for the period of 1970 to 1994. He concluded that the MRS-GARCH

model outperforms simple uni-regime models in forecasting performance and re-

duces persistence in volatility more than the MRS-ARCH model of Cai (1994)

and Hamilton and Susmel (1994). Dueker (1997) introduced a collapsing proce-

dure based on Kim’s (1994) algorithm for the MRS-GARCH and applied it to the

daily SP500 index. A modification of Gray’s model, which allows multi-step ahead
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volatility forecasting, was suggested by Klaassen (1998). In addition to the normal

distribution, he adopted the student-t distribution for error terms and estimated

his MRS-GARCH specification with two regimes using daily U.S. dollar exchange

rates. The results show that Klaassen’s model improves volatility forecasts and

that volatility persistence is time-varying.

Recently, Marcucci (2005) compared a set of GARCH, EGARCH and GJR-

GARCH models with a group of MRS-GARCH in terms of their ability to forecast

SP100 volatility from one day to one month. Also, he assumed normal, student-

t and generalized error distributions for the error terms. The main finding of

Marcucci (2005) is that forecasting performance of MRS-GARCH models is sig-

nificantly better than that of uni-regime GARCH type models at shorter horizons

while standard asymmetric GARCH is found better at longer horizon. Daouk and

Guo (2004) extended the SWARCH model to Markov Switching Regime Asym-

metric GARCH (MRS-Asymmetric GARCH) which allows both regime switch-

ing in volatility and asymmetry. Ane and Ureche-Rangau (2006) introduced a

Regime Switching Asymmetric Power GARCH model to analyze Asian stock in-

dices. Other studies on the MRS-GARCH model comprise Fong and See (2001,

2002), Yu (2001), Francq and Zakoian (2005), Lee and Yoder (2007), Abramson

and Cohen (2007a, 2007b), Brunetti, Mariano, Scotti, and Tan (2007).

This thesis is organized as follows: preliminaries in forecasting the financial

market are presented in Chapter II. In Chapter III, we develop Markov Regime

Switching GARCH models and discuss them in detail. Moreover, we forecast the

price and volatility of two financial assets: the SET50 Index and gold. Afterwards,

we apply these models to trading in the futures market. The mean equation model

with day of the week effect and ARMA processes are given in Chapter IV. In

Chapter V, we use multiple regression based on the PCA and ARMA processes
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for forecasting the mean equation. Our conclusions are in Chapter VI.

 

 

 

 

 

 

 

 



CHAPTER II

PRELIMINARIES ON FORECASTING

FINANCIAL MARKETS

2.1 Financial Returns and Their Characteristics

Financial time series analysis is concerned with the theory and practice

of asset valuation over time. Even though a highly empirical discipline, as in

other scientific fields, theory forms the foundation for making inferences. There is,

however, a key feature that distinguishes financial time series analysis from other

time series analyses. Both, financial theory and its empirical time series contain an

element of uncertainty. For example, there are several definitions of asset volatility,

and for a stock return series, the volatility is not directly observable. As a result

of the added uncertainty, statistical theory and methods play an important role in

financial time series analysis.

2.1.1 Financial Returns

Most financial studies involve returns, instead of prices, of assets. There

are several definitions of an asset return. Let Pt be the price of an asset at time

index t. We discuss some definitions of returns. In this thesis, the term return

mean the continuously compounded return (in percent) with definition as follows.
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Definition 2.1. Continuously Compounded Return

The natural logarithm of the simple gross return of an asset is called the contin-

uously compounded return or log return (in percent) as follows [Tsay (2005)]:

rt = 100 · ln(
Pt
Pt−1

). (2.1)

2.1.2 Properties of Financial Returns

A financial return series, be it stock index returns or exchange rates,

often exhibits the following well known properties [Rama, 2001]:

1. The sample mean of the series is close to zero.

2. The maginal distribution is roughly symmetric (or only slightly skewed), has

a peak at zero, and is heavy-tailed.

3. • The sample autocorrelations of the series are ”small” at almost all lags.

• The sample autocorrelations of the absolute values and squares of the

series are significant for a large number of lags.

4. Volatility is ”clustered”, i.e. days of either large or small movements are

followed by days of similar characteristics.

2.1.3 Distribution Properties of Returns

To study financial returns, it is best to begin with their distributional

properties. The objective here is to understand the behavior of the returns across

assets and over time. Consider a collection of N assets held for T time periods,

say, t = 1, ..., T . For each asset i, let rit be its return at time t. The returns under

study are rit; i = 1, ..., N ; t = 1, ..., T [Tsay, 2005].
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Review of Statistical Distributions and Their Moments

We briefly review some basic properties of statistical distributions as well as

moment equations of a random variable. Let Rk be the k-dimensional Euclidean

space. A point in Rk is denoted by x ∈ Rk. Consider two random vectors

X = (X1, ..., Xk)
′ and Y = (Y1, ..., Yq)

′. Let P (X ∈ A, Y ∈ B) be the probability

that X is in the subspace A ⊂ Rk and Y is in the subspace B ⊂ Rq .

• The Joint Distribution

The function

FX,Y (x, y; θ) = P (X ≤ x, Y ≤ y; θ),

where x ∈ Rk, y ∈ Rq and the inequality ” ≤ ” is a component-by-component

operation, is a joint distribution function of X and Y with parameter θ.

Behavior of X and Y is characterized by FX,Y (x, y; θ). If the joint probability

density function fX,Y (x, y; θ) of X and Y exists, then

FX,Y (x, y; θ) =

∫ x

−∞

∫ y

−∞
fX,Y (x, y; θ)dydx.

In this case, X and Y are continuous random vectors.

• Maginal Distribution

The marginal distribution of X is given by

FX(x; θ) =

∫ x

−∞

∫ ∞
−∞

fX,Y (x, y; θ)dydx.

Thus, the marginal distribution of X is obtained by integrating with respect

to y. A similar definition applies to the marginal distribution of Y .

If k = 1, X is a scalar random variable and the distribution function becomes

FX(x) = P (X ≤ x; θ),
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which is known as the cumulative distribution function (CDF) of X. The

CDF of a random variable is nondecreasing (i.e., FX(x1) ≤ FX(x2) if x1 ≤ x2)

and satisfies FX(−∞) = 0 and FX(∞) = 1. We use the CDF to compute

the p-value for a test statistic in this thesis.

• Conditional Distribution

The conditional distribution of X given Y ≤ y is given by

FX|Y≤y(x; θ) =
P (X ≤ x, Y ≤ y; θ)

P (Y ≤ y; θ)
.

If the probability density functions involved do exist, then the conditional

density of X given Y = y can be formulated as follows:

fX|Y (x; θ) =
fX,Y (x, y; θ)

fY (y; θ)
, (2.2)

where the marginal density function fy(y; θ) is obtained by

fY (y; θ) =

∫ ∞
−∞

fX,Y (x, y; θ)dx.

From Eq. (2.2), the relation among joint, marginal, and conditional distri-

butions is

fX,Y (x, y; θ) = fX|Y (x; θ)× fY (y; θ). (2.3)

This identity is used extensively in time series analysis (e.g., in maximum

likelihood estimation). Finally, X and Y are independent random vectors if

and only if fX|Y (x; θ) = fX(x; θ). In this case,

fX,Y (x, y; θ) = fX(x; θ)fY (y; θ). (2.4)

• Moments of a Random Variable

The lth moment of a continuous random variable X is defined as:

ml = E(X l) =

∫ ∞
−∞

xlf(x)dx,
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where E stands for expectation and f(x) is the probability density function

of X. The first moment is called the mean or expectation of X. It measures

the central location of the distribution. We denote the mean of X by µX .

The lth central moment of X is defined as:

m̄l = E[(X − µX)l] =

∫ ∞
−∞

(x− µX)lf(x)dx,

provided that the integral exists. The second central moment, denoted by

σ2
X , measures the variability of X and is called the variance of X. The

positive square root, σX , of variance is called the standard deviation of X.

For other distributions, higher order moments are of interest. The third cen-

tral moment measures the symmetry of X with respect to its mean, whereas

the fourth central moment measures the tail behaviour of X. In statistics,

skewness and kurtosis, which are the normalized third and fourth central

moments of X, are often used to summarize the extent of asymmetry and

tail thickness. In particular, the skewness (S(X)) and kurtosis (K(X)) of X

are defined respectively as:

S(X) = E[
(X − µX)3

σ3
X

], (2.5)

and

K(X) = E[
(X − µX)4

σ4
X

]. (2.6)

The quantity K(X)− 3 is called the excess kurtosis because K(X) = 3 for a

normal distribution. Thus, the excess kurtosis of a normal random variable is

zero. A distribution with positive excess kurtosis is said to have heavy tails,

implying that the distribution puts more mass on the tails of its support

than a normal distribution does. In practice, this means that a random

sample from such a distribution tends to contain more extreme values. Such
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a distribution is said to be leptokurtic. On the other hand, a distribution

with negative excess kurtosis has short tails (e.g., a uniform distribution over

a finite interval). Such a distribution is said to be platykurtic.

In application, skewness and kurtosis can be estimated by their sample coun-

terparts. Let x1, ..., xT be a random sample of X with T observations. The

sample mean is

µ̂X =
1

T

T∑
i=1

xi. (2.7)

The sample variance is

σ̂2
X =

1

T − 1

T∑
i=1

(xi − µ̂X)2, (2.8)

while the sample skewness is

Ŝ(X) =
1

(T − 1)σ̂3
X

T∑
i=1

(xi − µ̂X)3, (2.9)

and the sample kurtosis is

K̂(X) =
1

(T − 1)σ̂4
x

T∑
i=1

(xi − µ̂X)4. (2.10)

Under the normality assumption, Ŝ(X) and K̂(X)−3 are distributed asymp-

totically as normal with zero mean and variances 6/T and 24/T , respec-

tively (Snedecor, and Cochran, 1980). These asymptotic properties can be

used to test the normality of asset returns. Given an asset return series

{r1, ..., rT}, to test the skewness of the returns, we consider the null hypoth-

esis H0 : S(r) = 0 versus the alternative hypothesis Ha : S(r) 6= 0. The

t-ratio statistic of the sample skewness is

t =
Ŝ(r)√

6/T
.

The decision rule is as follows. Reject the null hypothesis at the α signifi-

cance level if |t| > Zα/2, where Zα/2 is the upper 100(α/2)th quantile of the
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standard normal distribution. Alternatively, one can compute the p-value

of the test statistic t and reject H0 if and only if the p-value is less than

α. Similarly, one can test the excess kurtosis of the return series using the

hypotheses H0 : K(r)− 3 = 0 versus Ha : K(r)− 3 6= 0. The test statistic is

t =
K̂(r)− 3√

24/T
.

which is asymptotically a standard normal random variable. The decision

rule is to reject H0 if and only if the p-value of the test statistic is less than

the significance level α. Jarque and Bera (1987) combine the two prior tests

and use the test statistic

JB =
Ŝ2(r)

6/T
+

(K̂(r)− 3)2

24/T
,

which is asymptotically distributed as a chi-squared random variable with

2 degrees of freedom, to test for the normality of rt . One rejects H0 of

normality if the p-value of the JB statistic is less than the significance level.

2.2 Financial Volatility and Its Characteristics

Volatility plays a key role in empirical finance so that good forecasts of

volatility are crucial for the implementation of derivative pricing, risk manage-

ment and portfolio selection decisions. Even if any given model outperforms the

alternative models in-sample evaluation, it may fail to forecast volatility accu-

rately.

2.2.1 Realized Volatility

In order to assess the forecasting performance of various models, we

have first to define a proxy for actual volatility. Since volatility is not directly
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observable from the market, unlike financial returns, it must be estimated. In the

literature, the general approach is to use squared daily (mean adjusted) returns

as the measure of actual volatility, that is,

ht = (rt − r̄)2, (2.11)

where r̄ is the average daily return at out-of-sample evaluation period.

The squared daily return is an unbiased estimator of actual volatility, but

it produces very noisy estimates of unobserved volatility. Andersen and Bollerslev

(1998) introduced an alternative volatility measure called Realized Volatility. This

measure has recently attracted the attention of many researchers as an accurate

measure of volatility. If returns are uncorrelated and have zero mean, realized

volatility is an unbiased and consistent estimator for actual volatility (Andersen,

Bollerslev, Diebold, and Labys, 2003). Realized volatility is obtained by summing

the squared intraday returns and the higher frequency intraday data, hence the

noise reduction in the volatility estimate. Realized volatility at day t can be

formulated as follows

ht =
D∑
d=1

(rt,d)
2, (2.12)

where D is the number of intraday returns, such as D = 24 for hourly data.

However several assets are not traded in the whole day and so any changes

during the off-trading hours must be considered. Thus, if this method is applied

to the stock market data, realized volatility is defined as sum of squared intraday

returns and squared overnight return (Koopman, Jungbacker, and Hol, 2004).

That is:

ht = R2
t,0 +

D∑
d=1

(rt,d)
2, (2.13)

where Rt,0 is the overnight return at day t. Hansen, and Lunde (2005) stated

that overnight returns relatively large compared to the intraday return lead to a
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noisy measure and suggested a scaling estimator to obtain a measure for whole

day volatility. So,

ht = ĉ
D∑
d=1

(rt,d)
2, (2.14)

where

ĉ =
T−1

∑T
t=1

T−1
∑T

t=1

∑D
d=1 r

2
t,d

.

Other studies on realized volatility include Martens (2002), Barucci and Reno

(2002), Areal and Taylor (2002).

Since intraday data of financial market data was not available to this thesis,

we used squared daily returns as actual volatility for the forecast horizon one. In

order to calculate volatility over the k days, following Klaassen (2002), we sum

squared daily returns over the relevant (5, 10 and 22 days) horizons. This method

is unbiased and more accurate than the traditional method which is the squared

return of the forecast horizon. We can define the actual volatility over the k days

t, ..., t+ k − 1 as

ht,k =
t+k−1∑
i=t

(ri − r̄)2, (2.15)

where r̄ is the average daily return from an out-of-sample evaluation period. In

practice, an investor, who has a one month investment horizon, generally is con-

cerned with the volatility forecast over the next 22 days rather than volatility

forecast for day t+ 22 made on day t. So, we focus on the volatility forecast over

the next k days instead of the k− step−ahead forecasts. In order to compute the

volatility forecast over the next k days, we aggregate k − step − ahead forecasts.

The ht,k denoting the volatility forecast over next k days, can be formulated as

follows:

ht,k =
k∑
i=1

ht+i, (2.16)

where ht+i denotes the i− step− ahead forecast made at time t.
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2.2.2 Stylized Facts about Volatility in Financial Time Se-

ries

Financial time series such as stock returns, exchange rates etc. exhibit

certain patterns which are crucial for correct model specification, estimation and

forecasting. The stylized facts about volatility follow:

• Fat tails: When the distribution of financial time series such as stock returns

are compared with the normal distribution, fatter tails are observed. This

observation is also referred to as excess kurtosis. The standardized fourth

moment for a normal distribution is 3 whereas for many financial time series,

a value well above 3 is observed (Mandelbrot, 1963 and Fama, 1963; 1965)

are the first studies to report this feature. For modeling excess kurtosis,

distributions that have fatter tails than normal are proposed in the literature

such as Paretian and Levy.

• Volatility clustering: The second stylized fact is the periods of volatility

clustering which refers to the observation of large movements being followed

by large movements. This is an indication of the persistence in shocks.

Correlograms and corresponding Box-Ljung statistics show significant corre-

lations which exist at extended lag lengths.

• Leverage effects: This refers to the idea that price movements are neg-

atively correlated with volatility, first suggested by Black (1976) for stock

returns. Black argued, however, that the measured effect of stock price

changes on volatility was too large to be explained solely by leverage effects.

Empirical evidence on leverage effects can be found in Nelson (1991), Gal-

lant, Rossi, and Tauchen (1992, 1993), Campbell and Kyle (1993) and Engle

and Ng (1993).
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• Long memory: Especially for high-frequency data, volatility is highly per-

sistent and there exists evidence of near unit root behavior of the conditional

variance process. This observation led to two propositions for modeling per-

sistence: unit root and the long memory process. The Autoregressive Condi-

tional Heteroscedasticitiy (ARCH) models use the second idea for modeling

persistence.

• Co-movement in volatility: When we look at financial time series across

different markets, such as looking at exchange rate returns for different cur-

rencies, we observe big movements in one currency being matched by big

movements in another. This suggests the importance of multivariate models

in modeling cross-correlations in difference markets.

These observations about volatility led many researchers to focus on the

cause of these stylized facts. The fact of information arrivals was a prominent one

in the literature as many studies link asset returns to the information flow. Asset

returns are observed and measured at fixed time intervals such as daily, weekly or

monthly. Much more frequent observations such as tick-by-tick data are also avail-

able. The rate of information arrival is non-uniform and not directly observable.

Mandelbrot and Taylor (1967) use the idea of time deformation to explain the

observed fat tails in the data. The same idea is used by Clark (1973) to explain

volatility. Easley and O’Hara (1992) try to link market volatility with trading

volume; quote arrivals, forecastable events such as dividend announcements, and

market closures.

To get reliable forecasts of future volatilities, it is crucial to account for

the stylized facts. There are various approaches in the literature for volatility

modeling that try to capture these stylized facts which we will discuss in the

following sections.
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2.3 Stationarity

The foundation of time series analysis is the concept of stationarity. There

are two definitions as follow:

Definition 2.2. A time series {rt} is said to be strictly stationary if the joint

distribution of (rt1 , ..., rtk) is identical to that of (rt1+t, ..., rtk+t) for all t, where k

is an arbitrary positive integer and (t1, ..., tk) is a collection of k positive integers.

In other words, strict stationarity requires that the joint distribution of (rt1 , ..., rtk)

is invariant under time shift.

This is a very strong condition that is hard to verify empirically, hence a

weaker version of stationarity is often assumed:

Definition 2.3. A time series {rt} is weakly stationary if both the mean of rt

and the covariance between rt and rt−l are time-invariant, where l is an arbitrary

integer. More specifically, {rt} is weakly stationary if E(rt) = µ, a constant, and

Cov(rt, rt−l) = γl.

In practice, suppose that we have observed T data points {rt|t = 1, ..., T}.

The weak stationarity implies that the time plot of the data would show that the

T values fluctuate with constant variation around a fixed level. In applications,

weak stationarity enables one to make inferences concerning future observations

(e.g., predictions).

Implicitly, in the condition of weak stationarity, we assume that the first

two moments of rt are finite. From the definitions, if rt is strictly stationary and

its first two moments are finite, then rt is also weakly stationary. The converse

is not true in general. However, if the time series rt is normally distributed, then

weak stationarity is equivalent to strict stationarity.

 

 

 

 

 

 

 

 



22

In this thesis, we are mainly concerned with weakly stationary series. The

covariance γl = Cov(rt, rt−l) is called the lag-l autocovariance of rt . It has two

important properties: γ0 = V ar(rt) and γ−l = γl.

The second property holds because

Cov(rt, rt−(−l)) = Cov(rt−(−l), rt) (2.17)

= Cov(rt+l, rt)

= Cov(rt1 , rt1−l),

where t1 = t+ l.

In the finance literature, it is common to assume that an asset return series

is weakly stationary. This assumption can be checked empirically provided that a

sufficient number of historical returns are available. For example, one can divide

the data into subsamples and check the consistency of the results obtained across

the subsamples.

2.3.1 Correlation and Autocorrelation Function

The correlation coefficient between two random variables X and Y is

defined as:

ρX,Y =
Cov(X, Y )√
V ar(X)V ar(Y )

=
E[(X − µX)(Y − µY )]√
E(X − µX)2E(Y − µY )2

,

where µX and µY are the means of X and Y , respectively, and it is assumed that

the variances exist. This coefficient measures the strength of linear dependence

between X and Y , and it can be shown that −1 ≤ ρX,Y ≤ 1 and ρX,Y = ρY,X .

The two random variables are uncorrelated if ρX,Y = 0. In addition, if both

X and Y are normal random variables, then ρX,Y = 0 if and only if X and Y

are independent. When the sample(Xt, Yt)
T
t=1 is available, the correlation can be
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consistently estimated by its sample counterpart

ρ̂X,Y =

∑T
t=1(Xt − X̄)(Yt − Ȳ )√∑T
t=1(Xt − X̄)2(Yt − Ȳ )2

.

• Autocorrelation Function (ACF)

Consider a weakly stationary return series rt . When the linear dependence

between rt and its past values rt−l is of interest, the concept of correlation is

generalized to autocorrelation. The correlation coefficient between rt and rt−l is

called the lag-l autocorrelation of rt and is commonly denoted by ρl, which under

the weak stationarity assumption is a function of l only. Specifically, we define as:

ρl =
Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

=
Cov(rt, rt−l)

V ar(rt)
=
γl
γ0

, (2.18)

where the property V ar(rt) = V ar(rt−l) for a weakly stationary series is used.

From the definition, we have ρ0 = 1, ρl = ρ−l, and −1 ≤ ρl ≤ 1. In addition,

a weakly stationary series rt is not serially correlated if and only if ρl = 0 for all

l > 0.

In general, the lag-l sample autocorrelation of rt is defined as:

ρ̂l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
, 0 ≤ l ≤ T − 1. (2.19)

If rt is an i.i.d. sequence satisfying E(r2
t ) < ∞, then ρ̂l is asymptotically

normal with mean zero and variance 1/T for any fixed positive integer l. More

generally, if rt is a weakly stationary time series satisfying rt = µ + Σq
i=0ψiat−i,

where ψ0 = 1, q is a non-negative integer, and aj is a Gaussian white noise series,

then ρ̂l is asymptotically normal with mean zero and variance (1 + 2Σq
i=1ρ

2
i )/T for

l > q. This is referred to as Bartletts formula in the time series.
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• Testing Individual ACF

For a given positive integer l, the previous result can be used to test H0 :

ρl = 0 versus Ha : ρl 6= 0. The test statistic is

t− ratio =
ρ̂l√

(1 + 2
∑l−1

i=1 ρ̂
2
i )/T

.

If rt is a stationary Gaussian series satisfying ρj = 0 for j > l, the t-ratio

is asymptotically distributed as a standard normal random variable. Hence, the

decision rule of the test is to reject H0 if |t − ratio| > Zα/2, where Zα/2 is the

100(1− α/2)th percentile of the standard normal distribution.

In finite samples, ρ̂l is a biased estimator of ρl. The bias is on the order of

1/T , which can be substantial when the sample size T is small. In most financial

applications, T is relatively large so that the bias is not serious.

• Portmanteau Test

Financial applications often require us to test jointly that several autocor-

relations of rt are zero. Box and Pierce (1970) propose the Portmanteau statistic

Q∗(m) = T
m∑
l=1

ρ̂2
l ,

as a test statistic for the null hypothesis H0 : ρ1 = . . . = ρm = 0 against the

alternative hypothesis Ha : ρi 6= 0 for some i ∈ [1, . . . ,m]. Under the assumption

that rt is an i.i.d. sequence with certain moment conditions, Q∗(m) is asymptot-

ically a chi-squared random variable with m degrees of freedom. Ljung and Box

(1978) modify the Q∗(m) statistic as below to increase the power of the test in

finite samples:

Q(m) = T (T + 2)
m∑
l=1

ρ̂2
l

T − l
. (2.20)
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The decision rule is to reject H0 if Q(m) > χ2
α, where χ2

α denotes the

100(1 − α)th percentile of a chi-squared distribution with m degrees of freedom.

Most software packages will provide the p-value of Q(m). The decision rule is then

to reject H0 if the p-value is less than or equal to α, the significance level.

2.4 General Autoregressive Moving-average (ARMA)

Models

Basically, an ARMA model combines the ideas of AR (autoregressive) and

MA (moving-average) models into a compact form so that the number of param-

eters used is kept small. For the return series in finance, the chance of using

ARMA models is low. However, the concept of ARMA models is highly relevant

in volatility modeling. As a matter of fact, the generalized autoregressive con-

ditional heteroscedastic (GARCH) model can be regarded as an ARMA model,

albeit nonstandard, for the εt.

A general ARMA(p, q) model is in the form:

rt = φ0 +

p∑
i=1

φirt−i + εt −
q∑
i=1

θiεt−i, (2.21)

where εt is a white noise series, and p and q are non-negative integers. The AR

and MA models are special cases of the ARMA(p, q) model. Using the back-shift

operator, the model can be written as

(1− φ1B − ...− φpBp)rt = φ0 + (1− θ1B − ...− θqBq)εt. (2.22)

The polynomial 1 − φ1B − ... − φpBp is the AR polynomial of the model.

Similarly, 1 − θ1B − ... − θqBq is the MA polynomial. We require that there are

no common factors between the AR and MA polynomials; otherwise the order

(p, q) of the model would be reducible. Like a pure AR model, the AR polynomial
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introduces the characteristic equation of an ARMA model. If all of the solutions

of the characteristic equation are less than 1 in absolute value, then the ARMA

model is weakly stationary.

2.4.1 Identifying ARMA Models

The techniques of model identification which are most commonly used

were propounded originally by Box and Jenkins (1994). Their basic tools were the

sample autocorrelation function and the partial autocorrelation function. We shall

describe these functions and their use separately from the spectral density function

which ought, perhaps, to be used more often in selecting models. The fact that

spectral density function is often overlooked is probably due to an unfamiliarity

with frequency-domain analysis on the part of many model builders.

Identifying the order of differencing and the constant:

• Rule 1: If the series has positive autocorrelations out to a high number of

lags, then it probably needs a higher order of differencing.

• Rule 2: If the lag-1 autocorrelation is zero or negative, or the autocorrelations

are all small and patternless, then the series does not need a higher order of

differencing. If the lag-1 autocorrelation is -0.5 or more negative, the series

may be overdifferenced.

• Rule 3: The optimal order of differencing is often the order of differencing

at which the standard deviation is lowest.

• Rule 4: A model with no orders of differencing assumes that the original

series is stationary (among other things, mean-reverting). A model with one

order of differencing assumes that the original series has a constant average

trend (e.g. a random walk). A model with two orders of total differencing
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assumes that the original series has a time-varying trend (e.g. a random

trend).

• Rule 5: A model with no orders of differencing normally includes a constant

term (which represents the mean of the series). A model with two orders

of total differencing normally does not include a constant term. In a model

with one order of total differencing, a constant term should be included if

the series has a non-zero average trend.

Identifying the numbers of AR and MA terms:

• Rule 6: If the partial autocorrelation function (PACF) of the differenced

series displays a sharp cutoff and/or the lag-1 autocorrelation is positive i.e.,

if the series appears slightly underdifferenced then consider adding one or

more AR terms to the model. The lag beyond which the PACF cuts off is

the indicated number of AR terms.

• Rule 7: If the autocorrelation function (ACF) of the differenced series dis-

plays a sharp cutoff and/or the lag-1 autocorrelation is negative i.e., if the

series appears slightly overdifferenced then consider adding an MA term to

the model. The lag beyond which the ACF cuts off is the indicated number

of MA terms.

• Rule 8: It is possible for an AR term and an MA term to cancel each other’s

effects, so if a mixed ARMA model seems to fit the data, also try a model

with one fewer AR term and one fewer MA term particularly if the parameter

estimates in the original model require more than 10 iterations to converge.

• Rule 9: If there is a unit root in the AR part of the model i.e., if the sum of

the AR coefficients is almost exactly 1 you should reduce the number of AR

terms by one and increase the order of differencing by one.
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• Rule 10: If there is a unit root in the MA part of the model i.e., if the sum

of the MA coefficients is almost exactly 1 you should reduce the number of

MA terms by one and reduce the order of differencing by one.

• Rule 11: If the long-term forecasts appear erratic or unstable, there may be

a unit root in the AR or MA coefficients.

2.4.2 Forecasting Using an ARMA Model

Forecasts of an ARMA(p, q) model have characteristics similar to those

of an AR(p) model after adjusting for the impacts of the MA(q) component on

the lower horizon forecasts. Denote the forecast origin by h and the available

information by Fh. The 1-step ahead forecast of rh+1 can easily be obtained from

the model as

r̂h(1) = E(rh+1|Fh)

= φ̂0 +

p∑
i=1

φ̂irh+1−i −
q∑
i=1

θ̂iεh+1−i,

and the associated forecast error is εh+1 = rh+1 − r̂h(1). The variance of 1-step

ahead forecast error is V ar[εh+1] = ht. For the `-step ahead forecast, we have

r̂h(`) = E(rh+`|Fh)

= φ̂0 +

p∑
i=1

φ̂ir̂h(`− i)−
q∑
i=1

θ̂iεh(`− i),

where it is understood that r̂h(` − i) = rh+`−i if ` − i 6 0 and εh(` − i) = 0 if

`− i > 0 and εh(`− i) = εh+`−i if `− i 6 0.

Thus, the multistep ahead forecasts of an ARMA model can be computed

recursively. The associated forecast error is εh+` = rh+` − r̂h(`) which can be

computed easily.
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2.5 The Multiple Regression Model

Multiple Linear Regression (MLR) attempts to model the relationship be-

tween two or more explanatory variables and a response variable, by fitting a linear

equation to the observed data. The dependent variable (Y ) is given by:

Y = β0 +

p∑
i=1

βiXi + ε, (2.23)

where Xi, i = 1, . . . , p are the explanatory independent variables, βi, i = 1, . . . , p

are the regression coefficients, and ε is the error associated with the regression and

assumed to be normally distributed with both expectation value zero and constant

variance (J.C.M Pires et al. (2007)).

2.5.1 Assumptions in Multiple Regression Model

Not surprisingly, the assumptions for a multiple regression analysis are

very similar to those required for a simple linear regression.

• Linearity: Because of the multiple X variables, the assumption of linearity

is not as straightforward as for simple linear regression. Multiple regression

analysis assumes that the relationship between Y and each X is linear. This

means that if all other X variables are held constant, then changes in the

particular X variable lead to a linear change in the Y variable. Because this

is a relation, simple plots of Y versus each X variable may not be linear,

since pairwise plots can not hold the other variables fixed.

• Correct sampling scheme: The Y must be a random sample from the

population of Y values for every set of X value in the sample. Fortunately,

it is not necessary to have a completely random sample from the population

as the regression line is valid even if the X values are deliberately chosen.
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However, for a given set of X, the values from the population must be a

simple random sample.

• No outliers or influential points: All the points must belong to the

relationship and there should be no unusual points. The residual plot of the

residual against the row number or against the predicted value should be

investigated to see if there are indeed any unusual points.

• Equal variation along the line: The variability about the regression

plane requirement is similar for all sets of X, i.e. the scatter of the points

above and below the fitted surface should be roughly constant over the entire

line. This is assessed by looking at the plots of the residuals against each X

variable to see if the scatter is roughly uniformly scattered around zero with

no increase and no decrease in spread over the entire line.

• Independence: Each value of Y is independent of any other value of Y .

The most common cases where this fails are time series data.

• Normality of errors: The difference between the value of Y and the ex-

pected value of Y is assumed to be normally distributed. This is one of the

most misunderstood assumptions. Many people erroneously assume that the

distribution of Y over all X values must be normally distributed, i.e. they

look simply at the distribution of the Y s ignoring the Xs. The assumption

states that only the residuals, the difference between the value of Y and the

point on the line must be normally distributed.

• X variables measured without error:It sometimes turns out that the X

variables are not known precisely.
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The predicted value given by the regression model (Ŷ ) is calculated by:

Ŷ = β̂0 +

p∑
i=1

β̂iXi. (2.24)

The most common method to estimate the regression parameters β̂i, i = 1, . . . , p

is use of the Ordinary Least square Estimator (OLS).

MLR is one of the most frequently used methods for forecasting, to fit ob-

served data and to create models that can be used for prediction in many research

fields such as biology, medicine, psychology, economic and environment.

Definition 2.4. Multicollinearity is a statistical phenomenon in which two or

more explanatory (or predictor) variables in a multiple regression model are highly

correlated.

In this situation the coefficient estimates may change erratically in response

to small changes in the model or the data. Multicollinearity does not reduce the

predictive power or reliability of the model as a whole, at least within the sample

data themselves; it only affects calculations regarding individual predictors. That

is, a multiple regression model with correlated predictors can indicate how well the

entire bundle of predictors predicts the outcome variable, but it may not give valid

results about any individual predictor, or about which predictors are redundant

with respect to others.

A high degree of multicollinearity can also prevent computer software pack-

ages from performing the matrix inversion required for computing the regression

coefficients, or it may render inaccuarate the results of that inversion.

Detection of multicollinearity

Indicators of the possible presence of multicollinearity in a model:
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• Large changes in the estimated regression coefficients when a predictor vari-

able is added or deleted.

• Insignificant regression coefficients for the affected variables in the multiple

regression, but a rejection of the joint hypothesis that those coefficients are

all zero (using an F-test).

• Some have suggested a formal detection-tolerance or the variance inflation

factor (VIF) for multicollinearity: the variance inflation factor (VIF) quan-

tifies the severity of multicollinearity in an ordinary least squares regres-

sion analysis, providing an index that measures how much the variance (the

square of the estimate’s standard deviation) of an estimated regression coef-

ficient is increased because of collinearity.

Calculation and analysis

The VIF can be calculated and analyzed in three steps:

Step one: Calculate k different VIFs, one for each Xi by first running an

ordinary least square regression that has Xi as a function of all the other

explanatory variables in the first equation.

If i = 1, for example, the equation would be

X1 = α2X2 + α3X3 + ...+ αkXk + c0 + e,

where c0 is a constant and e is the error term.

Step two: Then, calculate the VIF factor for β̂i in equation 2.24 with the

following formula:

V IF =
1

1−R2
i

,

where R2
i is the coefficient of determination of the regression equation in step

one, but with Xi on the left hand side, and all other predictor variables (all
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the other X variables) on the right hand side.

Step three: Analyze the magnitude of multicollinearity by considering the

size of the VIF. A common rule of thumb is that if V IF > 5 then multi-

collinearity is high. Also 10 has been proposed as a cut off value.

• Condition Number Test: The standard measure of ill-conditioning in a

matrix is the condition index. It will indicate that the inversion of the matrix

is numerically unstable with finite-precision numbers (standard computer

floats and doubles). This indicates the potential sensitivity of the computed

inverse to small changes in the original matrix. The Condition Number

is computed by finding the square root of the quotient of the maximum

eigenvalue divided by the minimum eigenvalue. If the Condition Number is

above 30, the regression is said to have significant multicollinearity.

• Farrar-Glauber Test: If the variables are found to be orthogonal, there is

no multicollinearity; if the variables are not orthogonal, then multicollinear-

ity is present.

• Construction of a pair-wise correlation matrix will yield indications as to

the likelihood that any given couplet of right-hand-side variables are multi-

collinear.

In this thesis, we use VIF as the indicator for multicollinearity.

2.6 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a mathematical procedure that uses

an orthogonal transformation to convert a set of observations of possibly correlated

variables into a set of values of linearly uncorrelated variables called principal
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components. The number of principal components is less than or equal to the

number of original variables. This transformation is defined in such a way that

the first principal component has the largest possible variance (that is, accounts for

as much of the variability in the data as possible), and each succeeding component

in turn has the highest variance possible under the constraint that it be orthogonal

to (i.e., uncorrelated with) the preceding components.

PCA can be mathematically defined as an orthogonal linear transformation

that transforms the data to a new coordinate system such that the greatest vari-

ance by any projection of the data comes to lie on the first coordinate (called the

first principal component), the second greatest variance on the second coordinate,

and so on.

Consider a random variable X = (X1, . . . , Xp)
′ with mean µ = (µ1, . . . , µp)

′,

(.)′ denoting its transpose, µi <∞; i = 1, . . . , p and the random variables X having

a known variance matrix Σ = (σij);σij < ∞; i, j = 1, . . . , p . The more realistic

case, where Σ is unknown, follows by replacing Σ by a sample covariance matrix

S. Assume that the rank of Σ is p and

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, (2.25)

are the p eigenvalues of Σ .

With PCA we desire an uncorrelated linear function of X1, . . . , Xp, say,

Z1, . . . , Zm,m ≤ p, such that the variances V (Z1), . . . , V (Zm) account for most of

the total variances among X1, . . . , Xp. Also, we require

V (Z1) > V (Z2) > . . . > V (Zm). Algebraically, principal components are par-

ticular linear combinations of X1, . . . , Xp. Geometrically, the principal compo-

nents represent a new coordinate system obtained by rotating the original axes

X1, . . . , Xp. The new axes represent the directs with maximum variability.

Let αi = (αi1, . . . , αip)
′, i = 1, . . . , p be p × 1 a vector of weights for the
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respective components of X. Consider the linear function

Z1 = α′1X =

p∑
i=1

αi1Xi. (2.26)

Our aim is to find α1 such that V (Z1) is maximum subject to the condition α′1α1 =

1. It is clear that V (Z1) can be increased by multiplying α1 by some constant. To

eliminate this arbitrariness we restrict our attention to coefficient vectors of unit

lengths.

Now, V (Z1) = α′1Σα1. Hence, we are required to find a vector α1 such that

α′1Σα1, (2.27)

is maximum subject condition α′1α1 = 1 .

To maximize α′1Σα1 subject to α′1α1 = 1 , the standard approach is to use

the technique of Lagrange multipliers. Maximize α′1Σα1 − λ(α′1α1 − 1) , where λ

is a Lagrange multiplier.

Differentiation with respect to α1 gives

Σα1 − λα1 = 0,

(Σ− λI)α1 = 0, (2.28)

where I is the p× p identity matrix.

Since, α1 6= 0 , there can be a solution only if Σ − λI is singular, i.e.

if |Σ − λI| = 0 such that if λ is a eigenvalue of Σ and α1 is its corresponding

normalized eigenvector of Σ.

Thus, λ is an eigenvalue of Σ and α1 is the corresponding eigenvector. To

decide which of the p eigenvectors gives α′1X with maximum variance, note that

the quantity to be maximized is

α′1Σα1 = α′1λα1 = λα′1α1 = λ
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so λ must be as large as possible. Thus, α1 is the eigenvector corresponding to the

largest eigenvalue of Σ, and V ar[Z1] = V ar[α′1X] = α′1Σα1 = λ = λ1 , the largest

eigenvalue.

The second principal component is given by the linear function

Z2 = α′2X

where α2 is such that V ar[Z2] is maximum subject to the condition α′2α2 = 1 and

Z2 is orthogonal to Z1 (i.e. α′2α1 = 0, since we require Z1, Z2 to be stochastically

independent). It is known from matrix algebra that

max(α2:α′2α2=1,α′2α1=0)α
′
2Σα2 = λ2, (2.29)

and the maximum is attained, the normalized eigenvector corresponding to λ2

Alternatively, consider the Lagrangian

φ = α′2Σα2 − θ1(α′2α2 − 1)− θ2(α′2α1 − 0)

where θ1, θ2 are Lagrange multipliers. Differentiating both sides with respect to

α2 and equating the result to zero,

∂φ

∂α2

= 2(Σ− θ1I)α2 − θ2α1 = 0. (2.30)

Premultiplying by α′1

2α′1Σα2 − θ2 = 0. (2.31)

Again, premultiplying the relation

(Σ− λ1I)α1 = 0

by α′2 ,

α′2Σα1 = 0.
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Hence, from Eq. (2.31), θ2 = 0. Therefore, by Eq. (2.30),

(Σ− θ1I)α2 = 0, (2.32)

and it follows similarly (as in Eq. (2.28) and subsequent statements ) that θ1 = λ2,

the corresponding eigenvector. The second principal component is, therefore,

Z2 = α′2X

with

V ar(Z2) = λ2 (2.33)

Clearly,

Cov(Z1, Z2) = Cov(α′1X,α
′
2X)

= α′1Σα2

= α′1λ2α2

= 0.

We continue by induction to find the kth principal component, Zk = α′kX,

we are to find α such that V ar(Zk) is maximum subject to the conditions

α′kαk = 1

α′kαi = 0 (i = 1, . . . , k − 1).

We thus obtain p random variables Zk, (k = 1, ..., p),

Zk = α′kX

with

V ar(Zk) = λk, (2.34)
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where αk is the normalized eigenvector corresponding to λk. Clearly,

Cov(Zk, Zk′) = Cov(α′kX,α
′
k′X)

= α′kΣαk′

= α′kλk′αk′

= 0 (k 6= k′). (2.35)

Theorem 2.1. Let Σ be a variance matrix. Σ has the eigenvalue-eigenvector pair

(λ1, α1), . . . , (λp, αp) where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. The kth principal component

of X is given by

Zk = α′kX

for k = 1, 2, ..., p with

V ar(Zk) = λk.

Also, Cov(Zk, Zk′) = 0(k 6= k′). If some λ′ks are equal, the corresponding principal

components may not be uniquely chosen.

Proof: see Jolliffe (2002).

Theorem 2.2. Spectral Decomposition (or Jordan Decomposition)

If A = A′, there exists an orthogonal matrix Γ such that

A = ΓΛΓ′ (2.36)

where Λ = Diag(λ1, . . . , λp) and λ′s are latent roots of A (some of which may be

zero and some of which may be identical). Here Γ = (α1, . . . , αp) where αi (p× 1)

is the normalized eigenvector corresponding to λi, α
′
iαj = δi,j where δi,j is Dirac

function. Hence

A = Σp
i=1λiαiα

′
i. (2.37)

The matrix γiγ
′
i is called the i− th spectral decomposition of A and the decompo-

sition Eq. (2.37) the spectral decomposition (or Jordan Decomposition) of A.
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Proof: see Jolliffe (2002). The following result holds:

• (a) If A is a non-singular symmetric matrix, then for any integer k, positive

or negative,

Ak =

p∑
i=1

λki γiγ
′
i = ΓΛkΓ′ (2.38)

where Λk = Diag(λk1, . . . , λ
k
p).

• (b) If all the eigenvalues of (a symmetric matrix) A are positive, we can

define the rational powers

Ar/s = ΓΛr/sΓ′ (2.39)

for any s > 0 and r are integers, where Λr/s = Diag(λ
r/s
1 , . . . , λ

r/s
p ).

• (c) If A is a symmetric singular matrix (at least one eigenvalue of A is zero).

then Eq. (2.38) and (2.39) hold if the exponents (k or r/s) are restricted to

be non-negative.

The result (2.38) follows easily, since

A2 = A · A = (ΓΛΓ′) · (ΓΛΓ′) = (ΓΛ2Γ),

and the proof follows by induction. Thus ,

A−2 = ΓΛ−2Γ′. (2.40)

If λi > 0, ∀i,

A−1/2 = ΓΛ−1/2Γ′. (2.41)

If λi ≥ 0, ∀i,

A1/2 = ΓΛ1/2Γ′. (2.42)

The decomposition (2.42) is called the symmetric square root decomposition

of A.
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By the Spectral Decomposition Theorem, we can write

Σ = AΛA′

where A = (α1, . . . , αp),Λ = Diag.(λ1, . . . , λp).

Note that some of the λi’s may be zero. Therefore, the total population

variance among X1, . . . , Xp is

p∑
i=1

V ar(Xi) = tr(Σ)

= tr(AΛA′)

= tr(ΛAA′)

= tr(Λ)

=

p∑
i=1

λi

=

p∑
i=1

V ar(Zi) (2.43)

2.7 Statistical Loss Functions

After making forecasts and choosing a proxy for actual data, the researchers

should choose a statistical loss function to see how close the forecasts are to their

target and compare forecasting performance of challenging models. In the litera-

ture, various loss functions have been used to evaluate forecast errors.

Let yt+k be actual data and ŷt+k be forecasting data. Popular measures for

forecasting performance are given by the Mean Square Error (MSE), Mean Ab-

solute Percentage Error (MAPE), QLIKE Loss Function, R2LOG Loss Function,

Mean Absolute Deviation (MAD) and Heteroscedasticity-adjusted Mean Square
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Error (HMSE);

MSE =
1

n

n∑
t=1

(yt+K − ŷt+K)2,

QLIKE =
1

n

n∑
t=1

(ln(ŷt+K)− yt+K
ŷt+K

),

R2LOG =
1

n

n∑
t=1

[ln(
yt+K
ŷt+K

)]2,

MAD =
1

n

n∑
t=1

|yt+K − ŷt+K |,

HMSE =
1

n

n∑
t=1

(
yt+K
ŷt+K

− 1)2. (2.44)

Since there is no unique criterion indicating the best forecasting model, we have

used all of them rather than choosing a single loss function, following Marcucci

(2005), as this should provide more comprehensive forecast evolution.

The MSE is the most widely used measure in forecast accuracy. The main

drawback of these loss functions is that they penalize both over forecasting and

under forecasting equally. Bollerslev and Ghysels (1996) argued that MSE may

be unreliable in the presence of heteroscedasticity and proposed HMSE. Moreover,

Bollerslev et al. (1994) introduced QLIKE loss function which corresponds to the

loss implied by a Gaussian likelihood. The loss function R2LOG is similar to

the R2 of logarithmic version of Mincer-Zarnowitz (1969) (MZ) regression, where

log(σ2
t,K) is regressed on log(ht,K) and a constant. More detailed analysis of all

these loss functions are provided in Patton and Sheppard (2007). The lower the

loss function values, the better forecasting performance.

As well as forecasting volatility accurately, predicting the direction of

volatility may be helpful for practitioners while constructing their investment

strategies. For this purpose, we also evaluate out-of-sample forecasts by com-

paring the fractions of the volatility forecast that have same sign of change as the
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actual volatility. We consider the Success Ratio (SR) as follows:

SR =
1

n

n∑
j=1

Iσ̂2
t+j,k·ĥt+j,k>0, (2.45)

where I is indicator function ; k = 1, 2, · · · , 22 ; σ̂2
t+j,k = σ2

t+j,k − σ̄2
t,k and

ĥt+j,k = ht+j,k − h̄t,k.

2.8 Forecasting Financial Returns

2.8.1 Forecasting Financial Returns Using Mean Equation

Assumption 2.1. The financial return series are (weakly) stationary processes.

This assumption can be checked empirically provided that a sufficient num-

ber of historical returns are available. For example, one can divide the data into

subsamples and check the consistency of the results obtained across the subsam-

ples.

In time series, let Pt denote the series of the financial price at time t on a

probability space (Ω, F, P ) and rt be the log return of an asset at time index t (in

percent), i.e.

rt = 100 · ln(
Pt
Pt−1

)

= µt + εt,

εt = ηt
√
ht, (2.46)

where µt is mean equation, ht is conditional variance of errors εt, ηt is i.i.d. with

D(0, 1). The distribution D is generally assumed to be normal, student-t or GED

distribution.

The basic idea behind volatility study is that the series {rt} is either serially

uncorrelated or with minor lower order serial correlations, but it is a dependent

series.
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To put the volatility models in proper perspective, it is informative to

consider the conditional mean and variance of rt given Ft−1; that is,

µt = E(rt|Ft−1),

ht = V ar(rt|Ft−1) = E[(rt − µt)2|Ft−1], (2.47)

where Ft−1 is sigma algebra. As shown, serial dependence of a stock return series rt

is weak if it exists at all. Therefore, the equation for µt in (2.46) should be simple,

and we assume that rt follows a simple time series model such as a stationary

ARMA(p, q) model with some explanatory variables. In other words, we entertain

the model

rt = µt + εt,

µt = µ0 +
n∑
i=1

βiXit +

p∑
s=1

φsrt−s −
q∑

m=1

θmεt−m, (2.48)

where µ0, βi, for i = 1, ..., n, φs, for s = 1, ..., p, θm, for m = 1, ..., q are constants,

n, p, and q are non-negative integers, and Xit are explanatory variables.

2.9 Forecasting Volatility of Financial Returns

In time-series, a financial price is transformed to log return series for sta-

tionary processes which look like white noise. Mehmet (2008) said financial returns

have three characteristics. First is volatility clustering: large changes tend to be

followed by large changes and small changes tend to be followed by small changes.

Second is fat tailedness (excess kurtosis): financial returns often display a fat-

ter tail than a standard normal distribution and the third is the leverage effect

which means that negative returns result in higher volatility than positive returns

of the same size. The generalized autoregressive conditional heteroskedasticity

(GARCH) models mainly capture these three characteristics of financial returns.
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2.9.1 Model Building

Building a volatility model for an asset return series consists of four steps:

1. Specify a mean equation by testing for serial dependence in the data and,

if necessary, building an econometric model (e.g., an ARMA model) for the

return series to remove any linear dependence.

2. Use the residuals of the mean equation to test for ARCH effects.

3. Specify a volatility model if ARCH effects are statistically significant and

perform a joint estimation of the mean and volatility equations.

4. Check the fitted model carefully and refine it if necessary.

For most asset return series, the serial correlations are weak, if any. Thus,

building a mean equation involves removing the sample mean from the data if the

sample mean is significantly different from zero. For some daily return series, a

simple AR model might be needed. In some cases, the mean equation may employ

some explanatory variables.

Testing for ARCH Effect

For ease in notation, let εt = rt−µt be the residuals of the mean equation.

The squared series ε2
t is then used to check for conditional heteroscedasticity, which

is also known as the ARCH effects. Two tests are available. The first test is to

apply the usual Ljung-Box statistics Q(m) to the {ε2
t} series; see McLeod and Li

(1983). The null hypothesis is that the first m lags of ACF of the ε2
t series are

zero. The second test for conditional heteroscedasticity is the Lagrange multiplier

test of Engle (1982). This test is equivalent to the usual F statistic for testing
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αi = 0(i = 1, ...,m) in the linear regression

ε2
t = α0 + α1ε

2
t−1 + ...+ αmε

2
t−m + et, t = m+ 1, ..., T,

where et denotes the error term, m is a prespecified positive integer, and T is the

sample size.

Specifically, the null hypothesis is H0 : α1 = ... = αm = 0. Let

SSR0 =
∑T

t=m+1(ε2
t − ω̄)2 where ω̄ = (1/T )

∑T
t=1 ε

2
t is the sample mean of ε2

t

and SSR1 =
∑T

t=m+1 ê
2
t , where êt is the least squares residual of the prior linear

regression. Then we have

F =
(SSR0 − SSR1)/m

SSR1/(T − 2m− 1)
,

which is asymptotically distributed as a chi-squared distribution with m degrees of

freedom under the null hypothesis. The decision rule is to reject the null hypothesis

if F > χ2
m(α), where χ2

m(α) is the upper 100(1 − α)th percentile of χ2
m, or the

p− value of F is less than α.

2.9.2 The ARCH Model

The first model that provides a systematic framework for volatility mod-

eling is the ARCH model of Engle (1982). The basic idea of ARCH models is that

(a) the shock εt of an asset return is serially uncorrelated, but dependent, and (b)

the dependence of εt can be described by a simple quadratic function of its lagged

values. Specifically, an ARCH(m) model assumes that

εt = ηt
√
ht,

ht = α0 + α1ε
2
t−1 + ...+ αmε

2
t−m, (2.49)

where {ηt} is a sequence of independent and identically distributed (i.i.d.) random

variables with mean zero and variance equal to one, α0 > 0, and αi ≥ 0 for
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i > 0. The coefficients αi must satisfy some regularity conditions to ensure that

the unconditional variance of εt is finite. In practice, ηt is often assumed to follow

the standard normal or a standardized Student-t distribution or a generalized error

distribution.

2.9.3 The GARCH Model

Although the ARCH model is simple, it often requires many parameters

to adequately describe the volatility process of an asset return. For instance, an

ARCH model is needed for the volatility process. Some alternative models must

be sought. Bollerslev (1986) proposes a useful extension known as the generalized

ARCH (GARCH) model. For a log return series rt, let εt = rt−µt be the innovation

at time t . Then εt follows a GARCH(p, q) model if

εt = ηt
√
ht,

ht = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjht−j, (2.50)

where again ηt is a sequence of i.i.d. random variables with mean zero and variance

equal to one, α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(p,q)

i=1 (αi + βi) < 1. Here it is

understood that αi = 0 for i > p and βj = 0 for j > q. The latter constraint on

αi+βi implies that the unconditional variance of εt is finite, whereas its conditional

variance σ2
t evolves over time. As before, ηt is often assumed to be a standard

normal or standardized student-t distribution or generalized error distribution.

Equation (2.50) reduces to a pure ARCH(p) model if q = 0. The αi and βj are

referred to as ARCH and GARCH parameters, respectively.

The strengths and weaknesses of GARCH models can easily be seen by

focusing on the simplest GARCH(1,1) model with

ht = α0 + α1ε
2
t−1 + β1ht−1, (2.51)

 

 

 

 

 

 

 

 



47

where 0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1.

First, a large ε2
t−1 or ht−1 gives rise to a large ht . This means that a large

ε2
t−1 tends to be followed by another large ε2

t , generating, again, the well-known

behavior of volatility clustering in financial time series.

Second, it can be shown that if 1− 2α2
1 − (α1 + β1)2 > 0, then

E(ε4
t )

[E(ε2
t )]

2
=

3[1− (α1 + β1)2]

1− (α1 + β1)2 − 2α2
1

> 3. (2.52)

Consequently, similar to ARCH models, the tail distribution of a GARCH(1,1)

process is heavier than that of a normal distribution.

Third, the model provides a simple parametric function that can be used

to describe the volatility evolution.

For one-step-ahead, volatility forecasting from GARCH(1,1) model is shown

in equation (2.50),

ĥt+1 = α0 + α1ε
2
t + β1ht. (2.53)

In order to forecast volatility for 2−step−ahead, the fact E
[
ε2
t+1|Ft

]
= ĥt+1

Then,

ĥt+2 = α0 + α1ε
2
t+1 + β1ĥt+1,

= α0 + {α1 + β1} ĥt+1. (2.54)

Therefore, the forecasting formula can be generalized for k-step-ahead fore-

cast as follows,

ĥt+k = α0Σk−1
i=1 (α1 + β1)i−1 + (α1 + β1)k−1 ĥt+1. (2.55)

2.9.4 The EGARCH(1,1) Model

The main problem of the standard GARCH model is that positive and

negative shocks have the same effects on volatility. However, impacts of positive
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and negative shocks on the volatility may be asymmetric (Black, 1976). Several

alternative GARCH models have been proposed to capture the asymmetric nature

of volatility responses. One of them is the exponential GARCH (EGARCH) model

of Nelson (1991). In this specification, conditional variance is modeled in logarith-

mic form, which means that there is no restriction on parameters in the model to

avoid negative variances. The conditional variance equation of EGARCH(1,1) is

defined as

ln(ht) = α0 + α1|
εt−1√
ht−1

|+ β1ln(ht−1) + ξ
εt−1√
ht−1

, (2.56)

where ξ is the asymmetry parameter to capture the leverage effect. The EGARCH

process is covariance stationary if the condition β1 < 1 is satisfied.

One-step-ahead volatility forecast is computed as

ln(ĥt+1) = α0 + α1|
εt√
ht
|+ β1ln(ht) + ξ

εt√
ht
. (2.57)

Then, the multi-step-ahead volatility forecast is computed as

ln(ĥt+k) = α0 + β1ln(ĥt+k−1). (2.58)

2.9.5 GJR-GARCH(1,1) Model

Another model that allows for different impacts of positive and nega-

tive shocks on volatility is the GJR-GARCH model of Glosten, Jagannathan and

Runkle (1993). The GJR-GARCH(1,1) model takes the following form,

ht = α0 + α1ε
2
t−1(1− I{εt−1>0}) + β1ht−1 + ξε2t−1(I{εt−1>0}), (2.59)

where I{εt−1>0} is equal to one when εt−1 is greater than zero. The conditions

α0 > 0, (α1 + ξ)/2 > 0 and β1 > 0 must be satisfied to ensure positive conditional

variance. Also, the process is covariance-stationary if [(α1 + ξ)/2] +β1 < 1. Then,
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unconditional variance is defined as

σ2 =
α0

1− (α1 + ξ)/2 + β1

. (2.60)

One-step-ahead volatility forecast is computed as

ĥt+1 = α0 + α1ε
2
t (1− I{εt>0}) + β1ht + ξε2t (I{εt>0}). (2.61)

Then, multi-step-ahead volatility forecast is computed as

ĥt+k = α0 +

(
α1 + ξ

2
+ β1

)
ĥt+k−1. (2.62)

2.9.6 Distributions for Standardized Errors

The standard normal distribution sometimes may not be enough to

describe the fat-tail feature of the financial returns. In order to capture the fat-tail

feature in the data, Bollerslev (1987) and Nelson (1991) proposed the student-

t and generalized error distributions (GED), respectively. Although these two

distributions are also symmetric, they have fatter tails than the normal distribution

captures. In this study, we assume that standardized errors follow the student-t

and GED distributions as well as the normal distribution.

In the case of normal distribution, the conditional probability density func-

tion of errors is defined as:

f(εt |εt−1, εt−2, ...) =
1√

2πht
exp(−1

2
· ε

2
t

ht
). (2.63)

When errors are assumed to follow student-t distribution, the conditional

probability density function of errors is defined as:

f(εt |εt−1, εt−2, ...) =
Γ[(ν + 1)/2]√
π(ν − 2)Γ(ν/2)

1√
ht

[1 +
ε2
t

ht(ν − 2)
]

−(ν+1)
2

, (2.64)

where Γ(.) is the Gamma function, and ν is the degree of freedom which must

be greater than 2. When ν → ∞, the student-t distribution becomes the normal

distribution. So, lower values of ν imply fatter tails.
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If GED is considered as a distribution assumption, the conditional proba-

bility density function of errors is defined as:

f(εt |εt−1, εt−2, ...) =
ν exp

[(−1
2

) ∣∣∣ εt
δ
√
ht

∣∣∣ν]
δ2( ν+1

ν )Γ(1/ν)
√
ht

, (2.65)

where δ =

√(
2(−2/ν)Γ(1/ν)

Γ(3/ν)

)
, Γ is the Gamma function and ν is the tail thickness

parameter. When ν = 2, GED becomes a standard normal distribution. It has

fatter tails than the normal distribution in the case of ν < 2, whereas the normal

distribution has fatter tails than GED in the case of ν > 2.

The parameters in GARCH type models are generally estimated by the

Maximum Likelihood Estimation (MLE) method. The idea behind this method

is to determine the set of parameters that maximize the likelihood (probability)

function of the sample data under assumption about standardized residuals. This

is done by forming the likelihood function. Since the maximum of likelihood

function can not be obtained analytically for GARCH type models, numerical

optimization techniques are used to find the set of parameters that maximize

likelihood function.

The log-likelihood functions for a sample with T observations are as follows.

For the normal distribution,

L = −1

2

T∑
t=1

[
ln(2π) + ln(ht) +

ε2
t

ht

]
. (2.66)

For the student-t distribution,

L = T · ln[Γ((ν + 1)/2)]− ln[Γ(ν/2)]− 1

2
ln[π(ν − 2)]

− 1

2

T∑
t=1

[ln(h2
t ) + (ν + 1) ln(1 +

ε2
t

h2
t (ν − 2)

)]. (2.67)

For the GED distribution,

L =
T∑
t=1

[
ln(ν/δ)− 1

2

∣∣∣∣ εt

δ
√
ht

∣∣∣∣ν − (ν + 1

ν

)
ln(2)− ln [Γ(1/ν)]− 1

2
ln(ht)

]
. (2.68)
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2.10 Markov Regime Switching

The Markov switching model of Hamilton (1989), also known as the

regime switching model, is one of the most popular nonlinear time series models

in the literature. This model involves multiple structures (equations) that can

characterize the time series behaviors in different regimes. By permitting switching

between these structures, this model is able to capture more complex dynamic

patterns.

A novel feature of the Markov switching model is that the switching mech-

anism is controlled by an unobservable state variable that follows a first-order

Markov chain. In particular, the Markovian property regulates that the current

value of the state variable depends on its immediate past value. As such, a struc-

ture may prevail for a random period of time, and it will be replaced by another

structure when a switching takes place. This is in sharp contrast with the random

switching model of Quandt (1972) in which the events of switching are independent

over time.

The Markov switching model is also different from the models of structural

changes. While the former allows for frequent changes at random time points, the

latter admits only occasion and exogenous changes. The Markov switching model

is therefore suitable for describing correlated data that exhibit distinct dynamic

patterns during different time periods.

Numerous empirical evidences suggest that the time series behaviours of

economic and financial variables may exhibit different patterns over time. Instead

of using one model for the conditional mean of a variable, it is natural to em-

ploy several models to represent these patterns. A Markov switching model is

constructed by combining two or more dynamic models via a Markovian switch-

ing mechanism. Following Hamilton (1989, 1994), we shall focus on the Markov
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switching AR model. In this section, we first illustrate the features of Markovian

switching using a simple model and then discuss more general model specifications.

2.10.1 A Simple Model

Let St denote an unobservable state variable assuming the value one or

zero. A simple switching model for the variable zt involves two AR specifications:

zt =


α0 + βzt−1 + εt, St = 0 ,

α0 + α1 + βzt−1 + εt, St = 1.

(2.69)

where |β| < 1 and εt are i.i.d. random variables with mean zero and variance σ2
ε .

This is a stationary AR(1) process with mean α0/(1 − β) when St = 0,

and it switches to another stationary AR(1) process with mean (α0 + α1)/(1− β)

when St changes from 0 to 1. Then provided that α1 6= 0, this model admits two

dynamic structures at different levels, depending on the value of the state variable

St. In this case, zt are governed by two distributions with distinct means, and St

determines the switching between these two distributions (regimes).

When St = 0 for t = 1, ..., τ0 and St = 1 for t = τ0 + 1, .., T , the model

(2.69) is the model with a single structural change in which the model parameter

experiences one (and only one) abrupt change after t = τ0. When St are inde-

pendent Bernoulli random variables, it is the random switching model of Quandt

(1972). In the random switching model, the realization of St is independent of the

previous and future states so that zt may jump (switching back and forth between

different states). If St is postulated as the indicator variable 1λt6c such that St = 0

or 1 depending on whether the value of λt is greater than the cut-off (threshold)

value c, equation (2.69) becomes a threshold model. It is quite common to choose

a lagged dependent variable (say, zt−d) as the variable t.
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While these models are all capable of characterizing the time series be-

haviours in two regimes, each of them has its own limitations. For the model with

a single structural change, it is very restrictive because only one change is admitted.

Although extending this model to allow for multiple changes is straightforward,

the resulting model estimation and hypothesis testing are typically cumbersome;

see e.g., Bai and Perron (1998) and Bai (1999). Moreover, changes in such mod-

els are solely determined by time which is exogenous to the model. The random

switching model, by contrast, permits multiple changes, yet its state variables are

still exogenous to the dynamic structures in the model. This model also suffers

from the drawback that the state variables are independent over time and hence

may not be applicable to time series data. On the other hand, switching in the

threshold model is dependent and endogenous and results in multiple changes.

Choosing a suitable variable λt and the threshold value c for this model is usually

a difficult task, however.

One approach to circumventing the aforementioned problems is to consider

a different specification for St. In particular, suppose that St follows a first order

Markov chain with the following transition matrix:

P =

Pr(St = 0|St−1 = 0) Pr(St = 1|St−1 = 0)

Pr(St = 0|St−1 = 1) Pr(St = 1|St−1 = 1)

 =

p00 p01

p10 p11

 ,

where pij(i, j = 0, 1) denote the transition probabilities of St = j given that

St−1 = i. Clearly, the transition probabilities satisfy pi0 + pi1 = 1. The transition

matrix governs the random behavior of the state variable, and it contains only

two parameters (p00 and p11). The model (2.69) with the Markovian state variable

is known as a Markov switching model. The Markovian switching mechanism

was first considered by Goldfeld and Quandt (1973). Hamilton (1989) presents a

thorough analysis of the Markov switching model and its estimation method; see
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also Hamilton (1994) and Kim and Nelson (1999).

In the Markov switching model, the properties of zt are jointly determined

by the random characteristics of the driving innovations εt and the state vari-

able St. In particular, the Markovian state variable yields random and frequent

changes of model structures, and its transition probabilities determine the persis-

tence of each regime. While the threshold model also possesses similar features,

the Markov switching model is relatively easy to implement because it does not

require choosing a priori the threshold variable λt. Instead, the regime classifica-

tion in this model is probabilistic and determined by data. A difficultly with the

Markov switching model is that it may not be easy to interpret because the state

variables are unobservable.

 

 

 

 

 

 

 

 



CHAPTER III

FORECASTING WITH CONSTANT MEAN

EQUATION AND VOLATILITY MODELS

In this chapter, we use the mean equation with constant. We consider two

types of equations; the first constant mean equation employ the same constant

for all regimes. In the second constant mean equation, the constant depends on

the regime. Nevertheless, we forecast the volatility of the financial return with

heteroskedasticity i.e. GARCH, EGARCH, GJR-GARCH. Next we describe mod-

els for forecasting financial return with constant mean equations. After that we

use the Markov Regime Switching include GARCH model, called Markov Regime

Switching GARCH (MRS-GARCH). Finally, we apply these models to some fi-

nancial instruments i.e. the gold price and the SET50 Index.

3.1 Forecasting Financial Returns with Constant Mean

Equation

In time series, let Pt denote the series of the financial price at time t on a

probability space (Ω, F, P ) and rt be the log return of an asset at time index t (in

percent) in (2.46), i.e.

rt = 100 · ln(
Pt
Pt−1

)

= µt + εt.

We use the two type of constant mean equations in (2.46).
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The first constant mean equation uses the same constant for all regimes,

i.e.

rt = δ + εt. (3.1)

The second constant mean equation uses a constant depending on the

regime, i.e.

rt = δSt + εt, (3.2)

where St is a regime, as defined before in chapter 2.

3.2 Markov Regime Switching GARCH Models

An important technique for analyzing structural breaks in financial returns

is the Markov Switching model of Hamilton (1989, 1990). In his study, Hamilton

extended the Markov switching regression model of Goldfeld and Quandt (1973)

to the time series framework and analyzed the growth rate of U.S. real GNP. In

Hamilton’s model, the process is allowed to switch stochastically between different

regimes. Also, regimes are usually governed by a first order Markov Chain process.

In our study, for simplicity, we assume that there are two unobservable regimes.

Let {Pt} denote the series of the financial price at time t and {rt}t>0 be a

sequence of random variables on a probability space (Ω, F, P ) . The index t denotes

the daily closing observations and t = −R + 1, ..., n . The sample period consist

of an estimation (or in-sample) period with R observations (t = −R + 1, ..., 0)

, and an evolution (or out-of-sample) period with n observations (t = 1, ..., n);

rt denotes the logarithmic return (in percent) on the financial price at time t in

equation (2.46)
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The GARCH(1,1) model for the series of the returns can be written as:

rt = δ + εt

= δ + ηt
√
ht,

ht = α0 + α1ε
2
t−1 + β1ht−1, (3.3)

where α0 > 0, α1 ≥ 0 and β1 ≥ 0 are assumed to be non-negative real constants,

to ensure that ht ≥ 0. We assume ηt is an i.i.d. process with zero mean and unit

variance.

The parameters of the GARCH model are generally considered as constants.

But the movement of financial returns between recession and expansion is different,

and may result in differences in volatility. Gray (1996) extended the GARCH

model to the MRS-GARCH model in order to capture regime changes in volatility

with unobservable state variables. It was assumed that those unobservable state

variables satisfy the first order Markov Chain process.

The MRS-GARCH model with only two regimes can be represented as

follows:

rt = δSt + εt

= δSt + ηt
√
ht,St , (3.4)

and

ht,St = α0,St + α1,Stε
2
t−1 + β1,Stht−1, (3.5)

where St = 1 or 2 , δSt is the mean and ht,St is the volatility under regime St on Ft−1,

both are measurable function of Ft−τ for τ ≤ t − 1. In order to ensure easily the

positivity of the conditional variance, we impose the restrictions α0,St > 0, α1,St ≥ 0

and β1,St ≥ 0. The sum α1,St + β1,St measures the persistence of a shock to the

conditional variance.
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The unobserved regime variable St is governed by a first order Markov

Chain with constant transition probabilities given by

Pr(St = i|St−1 = j) = pji, (3.6)

for i, j = 1, 2.

In matrix notation

P =

 p11 p21

p12 p22

 =

 p 1− q

1− p q

 , (3.7)

for p = p11 and q = p22.

3.2.1 Forecasting Volatility of Financial Returns with

MRS-GARCH

In the MRS-GARCH model with two regimes, Klaassen (2002) fore-

cast volatility for k-step-ahead by using the recursive method as in the standard

GARCH model where k = 1, 2, ..., n. In order to compute the multi-step-ahead

volatility forecasts, we firstly compute a weighted average of the multi-step-ahead

volatility forecasts in each regime where the weights are the prediction probability

(Pr(St+τ = i|Ft−1)) for i = 1, 2.

Since there is no serial correlation in the returns, the k-step-ahead volatility

forecast at time t depends on the information at time t− 1. Let ĥt,t+k denotes the

time t aggregated volatility forecasts for the next k steps. It can be calculated as

follows: (See, for example Marcucci (2005) page 8)

ĥt,t+k =
k∑
τ=1

ĥt,t+τ (3.8)

=
k∑
τ=1

[
2∑
i=1

Pr(St+τ = i|Ft−1)ĥt,t+τ,St+τ=i],
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where ĥt,t+τ,St+τ=i indicates the τ − step − ahead volatility forecast in regime i

made at time t and can be calculated recursively as follows:

ĥt,t+τ,St+τ=i = Et−1[ht+τ |St+τ = i]

= Et−1[α0 + α1ε
2
t+τ−1 + β1ht+τ−1|St+τ = i]

= α0,St+τ=i + α1,St+τ=iEt−1[ε2
t+τ−1|St+τ = i] + β1,St+τ=iEt−1[ht+τ−1|St+τ = i]

= α0,St+τ=i + α1,St+τ=iEt−1[Et−1[ε2
t+τ−1|St+τ−1 = j]|St+τ = i]

+ β1,St+τ=iEt−1[ht+τ−1|St+τ = i]

= α0,St+τ=i + (α1,St+τ=i + β1,St+τ=i)Et−1[ht+τ−1|St+τ = i]. (3.9)

Also, in generally the prediction probability in (3.8) is computed as: Pr(St+τ = 1|Ft−1)

Pr(St+τ = 2|Ft−1)

 = P τ+1

 Pr(St−1 = 1|Ft−1)

Pr(St−1 = 2|Ft−1)

 ,

where P defined in (3.7) and Pr(St−1 = i|Ft−1) will be discussed in (3.14).

Lastly, we compute the expectation part Et−1[ht+τ−1|St+τ = i] in (3.9) as

follows:

Et−1[ht+τ−1|St+τ = i] = Et−1[[Et−1[r2
t+τ−1|St+τ−1 = j]

−[Et−1[rt+τ−1|St+τ−1 = j]]2]|St+τ = i]

= Et−1[Et−1[r2
t+τ−1|St+τ−1 = j]|St+τ = i]

−Et−1[[Et−1[rt+τ−1|St+τ−1 = j]]2|St+τ = i] (3.10)
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where

Et−1[Et−1[r2
t+τ−1|St+τ−1 = j]|St+τ = i]

=
2∑
j=1

Et−1[r2
t+τ−1|St+τ−1]Pr(St+τ−1 = j|St+τ = i, Ft−1)

=
2∑
j=1

Et−1[(δ + εt+τ−1)2|St+τ−1]Pr(St+τ−1 = j|St+τ = i, Ft−1)

=
2∑
j=1

Et−1[δ2 + 2δεt+τ−1 + ε2
t+τ−1|St+τ−1]Pr(St+τ−1 = j|St+τ = i, Ft−1)

=
2∑
j=1

p̃ji,t−1[δ2
St+τ−1=j + ht+τ−1,St+τ−1=j], (3.11)

and

p̃ji,t−1 = Pr (St+τ−1|St+τ , Ft−1)

=
pjiPr (St+τ−1 = j|Ft−1)

Pr (St+τ = i) |Ft−1)
.

Similarly , we compute the second term of the right hand side in (3.10) by

Et−1[[Et−1[rt+τ−1|St+τ−1 = j]]2|St+τ = i] =
2∑
j=1

p̃ji,t−1[δSt+τ−1=j]
2. (3.12)

Substituting both (3.11) and (3.12) into (3.10) we obtain

Et−1[ht+τ−1|St+τ = i]

=
2∑
j=1

p̃ji,t−1[δ2
St+τ−1=j + ht+τ−1,St+τ−1=j]−

2∑
j=1

p̃ji,t−1[δSt+τ−1=j]
2. (3.13)

In the next step, we will compute those regime probabilities

pit = Pr(St = i|Ft−1),

for i = 1, 2. Note that when the regime probabilities are based on information up

to time t, we describe this as filtered probability (Pr(St = i|Ft).

In order to compute the regime probabilities, we denote

f1t := f(rt|St = 1, Ft−1),
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f2t := f(rt|St = 2, Ft−1).

Then, the conditional distribution of the return series rt becomes a mixture-

of-distribution model in which the mixing variable is regime probability pit. That is

rt|Ft−1 ∼


f(rt|St = 1, Ft−1) with probability p1t,

f(rt|St = 2, Ft−1) with probability p2t = 1− p1t,

where f(rt|St, Ft−1) denotes one of the assumed conditional distributions for errors:

Normal distribution (N), Student-t distribution with only single degree of freedom

(t) or double degree of freedom (2t) and Generalized error distributions (GED).

We shall compute regime probabilities recursively by following two steps

(Kim, and Nelson (1999), page 63):

Step 1: Given Pr(St−1 = j|Ft−1) at the end of the time t − 1 the regime

probabilities pit = Pr(St = i|Ft−1) are computed as:

Pr(St = i|Ft−1) =
2∑
j=1

Pr(St = i, St−1 = j|Ft−1).

Since the current regime (St ) only depends on the regime one period ago (St−1 ),

then

Pr(St = i|Ft−1) =
2∑
j=1

Pr(St = i, St−1 = j|Ft−1)

=
2∑
j=1

Pr(St = i|St−1 = j)Pr(St−1 = j|Ft−1)

=
2∑
j=1

pjiPr(St−1 = j|Ft−1).

Step 2: At the end of the time t, when observed return at time t (rt) the

information at time t set Ft = {Ft−1, rt} , the Pr(St = i|Ft) is calculated as follows:

Pr(St = i|Ft) = Pr(St = i|rt, Ft−1)

=
f(rt, St = i|Ft−1)

f(rt|Ft−1)
,
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where f(rt, St = i|Ft−1) is the joint density of returns, and the unobserved regime

at state i for i = 1, 2 variables which can be written as follows:

f(rt, St = i|Ft−1) = f(rt|St = i, Ft−1)f(St = i|Ft−1)

= f(rt|St = i, Ft−1)Pr(St = i|Ft−1),

and f(rt|Ft−1) is the marginal density function of returns which can be constructed

as follows:

f(rt|Ft−1) =
2∑
i=1

f(rt, St = i|Ft−1)

=
2∑
i=1

f(rt|St = i, Ft−1)Pr(St = i|Ft−1).

We use Bayesian arguments

Pr(St = i|Ft) =
f(rt, St = i|Ft−1)

f(rt|Ft−1)

=
f(rt|St = i, Ft−1)Pr(St = i|Ft−1)∑2
j=1 f(rt|St = i, Ft−1)Pr(St = i|Ft−1)

=
fitpit∑2
i=1 fitpit

. (3.14)

Then, all regime probabilities pit can be computed by iterating these two steps.

However, at the beginning of iteration, Pr(S0 = i|F0) for i = 1, 2 are necessary

to start the iteration. Hamilton (1989, 1990) suggest we should use unconditional

regime probabilities of St, i.e.

π1 = Pr(S0 = 1|F0)

=
1− q

2− p− q
,

and

π2 = Pr(S0 = 2|F0)

=
1− p

2− p− q
.
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Given initial values for regime probabilities, conditional mean and conditional vari-

ance in each regime, the parameters of the MRS-GARCH model can be obtained

by maximizing numerically the log-likelihood function. The log-likelihood function

is constructed recursively similar to that in GARCH models.

3.2.2 Forecasting Price with MRS-GARCH

We forecast financial price at k-step-ahead with MRS-GARCH models.

Denote by r̂t,t+k the k-step-ahead forecasting logarithm return of the financial price

at time t depending on Ft−1.

We compute as:

r̂t,t+k = Et−1[rt+k]

=
2∑
i=1

Pr(St+k = i|Ft−1)r̂t,t+k,St+k=i, (3.15)

where

r̂t,t+k,St+k=i = Et−1[rt+k|St+k = i]

= Et−1[δ + εt+k|St+k = i]

= Et−1[δ|St+k = i] + Et−1[εt+k|St+k = i]

=
2∑
j=1

Pr(St+k−1 = j|St+k = i, Ft−1)δSt+k=i

=
2∑
j=1

p̃ji,t−1δSt+k=i.

Applied to forecasting financial price one-step-ahead, we combine the log returns

(3.15) and (2.46) of the financial price to obtain;

P̂t+1 = Pt · exp

[∑2
i=1 Pr(St+1 = i|Ft−1)

∑2
j=1 p̃ji,t−1δSt+k=i

100

]
. (3.16)
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3.3 Forecasting Volatility of Gold Price using Markov

Regime Switching and Trading Strategy

Gold is a precious metal which is also classed as a commodity and a mone-

tary asset. Gold has acted as a multifaceted metal through the centuries, possess-

ing similar characteristics to money in that it acts as a store of wealth, a medium

of exchange and a unit of value. Gold has also played an important role as a

precious metal with significant portfolio diversification properties. Gold is used

in industrial components, jewellery and as an investment asset. The quantity of

gold required is determined by the quantity demanded for industry investment and

jewellery use. Therefore an increase in the quantity demanded by the industry will

lead to an increase in the price of the metal.

The changing price of gold can also be the result of a change in the Central

Banks holding of these precious metals. In addition, changes in the rate of inflation,

currency markets, political harmony, equity markets, and producer and supplier

hedging, all affect the price equilibrium.

Gold futures are an alternative investment tool which rely on the gold price

movement. The investors can benefit from the gold futures investment by making

profit from both directions, either up or down, which is like stock index futures

trading. In addition, gold futures can also hedge against gold price fluctuations or

stock market volatility due to the negative correlation to the stock market. This

will provide a greater opportunity to make profit when the stock market declines

during an economic downturn.

Gold futures is a futures contract with gold (96.5 percent purity) as an un-

derlying asset. Gold is the oldest precious metal known to man and for thousands

of years it has been valued as a global currency, a commodity, an investment and
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simply an object of beauty. The characteristic of gold price movement that do

not correlate with the equity market makes gold futures a very interesting invest-

ment option. Holding precious metals such as gold in a portfolio can give appar-

ent benefits in the form of speculative gains, investment gains, hedging against

macroeconomic and geopolitical risk and or wealth preservation.

Edel Tully et al., (2005) have investigated how the Asymmetric power

GARCH model can capture the dynamics of the gold market. Results suggest

that the APGARCH model provides the most adequate description for the gold

price.

In this chapter, we use GARCH, EGARCH, GJR-GARCH and MRS-

GARCH models to forecast the volatility of gold prices and to compare their

performance. Moreover we shall use this estimated volatility to forecast the clos-

ing price of gold. Finally, we apply the forecasting price of gold to trading in gold

future contracts with a maturity date of August 2011 (GF10Q11).

3.3.1 Empirical Methodology and Model Estimation Re-

sults of Gold Price

The data set used in this study are the daily closing prices Pt over the

period 4/01/2007 through 31/08/2011 (t = 1, . . . , 1, 213 observations). The data

set was obtained from the basis of the London Gold Market Fixing Limited on day

and the foreign exchange rate for Baht to US dollars announced by TFEX (The

Thailand Futures Exchange) on day, after conversion for weight and fineness. The

data set is divided into in-sample (R =1,192 observations) and out-of-sample (

n =21 observations). The plot of Pt and log returns series (rt) are given in Figure

3.1. Plot Pt and rt displays usual properties of financial data series. As expected,

volatility is not constant over time and exhibits volatility clustering with large
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Figure 3.1 Graph of (a) closing gold price and (b) log returns series for the period

4/01/2007 through 30/08/2011.

changes in the indices often followed by large changes, and small changes often

followed by small changes.

Descriptive statistics of rt are presented in Table 3.1. As Table 3.1 shows,

rt has a positive average return of 0.074 percent. The daily standard deviation

is 1.537 percent. The series also displays a negative skewness of −0.102 and an

excess kurtosis of 9.457. These values indicate that the returns are not normally

distributed, namely they have fatter tails because skewness does not equal zero and

kurtosis is greater than 3. Also, the Jarque-Bera test statistic of 2,107.620 con-

firms the non-normality of rt . And the Augmented Dickey-Fuller test of −35.873

indicates that rt is stationary. The autocorrelation functions (ACF) tests the sig-

nificance level of autocorrelation in Table 3.2, when we apply Ljung and Box
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Table 3.1 Summary statistics of gold price log returns series(rt).

Statistic Return

Min -10.823

Max 10.71

Mean 0.074

Standard deviation 1.537

Skewness -0.102

Kurtosis 9.457

Jarque-Bera Normality test 2,107.620 (P-value= 0.000)

Augmented Dickey-Fuller test -35.873 (P-value= 0.000)

Q-test. The null hypothesis of the test is that there is no serial correlation in the

return series up to the specified lag. Serial correlation in the Pt is confirmed as

non-stationary but rt is stationary. Because the serial correlation in the squared

returns is non-stationary this suggests conditional heteroskedasticity. Therefore,

we analyze the significance of autocorrelation in the squared mean adjusted return

(rt − δ)2 series by Ljung-Box Q-test and apply Engle’s ARCH test.

3.3.2 Empirical Methodology of Gold Price

This empirical part adopts GARCH type and MRS-GARCH(1,1) models

to estimate the volatility of the Pt. The GARCH type models considered are

GARCH (1,1), EGARCH (1,1) and GJR-GARCH (1,1). In order to account for

the fat tail feature of financial returns, we consider three different distributions for

the innovations: Normal (N), Student-t (t) and Generalized Error Distributions

(GED).
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Table 3.2 ACF of gold closing price, log returns series, square return and results

for Engle’s ARCH Test.

Lags 1 5 10 22

ACF 0.99 0.97 0.94 0.89

ACF of Gold Price LBQ Test 1202.13 5885.60 11458.61 23713.86

P-value 0.00 0.00 0.00 0.00

ACF −0.04 0.02 0.01 −0.05

ACF of Gold return LBQ Test 1.47 6.95 19.03 34.41

P-value 0.23 0.23 0.04 0.05

ACF 0.24 0.03 0.01 0.06

ACF of Gold square return LBQ Test 67.59 77.34 90.10 178.44

P-value 0.00 0.00 0.00 0.00

ARCH test 67.68 70.70 79.01 126.93

Result for Engle test P-value 0.00 0.00 0.00 0.00

GARCH type Models

Table 3.3 presents an estimation of the results for GARCH type models. It

is clear from the table that almost all parameter estimates including δ in GARCH

type models are highly significant at α = 0.01. However, the asymmetry effect

term ξ in the EGARCH models is significantly different from zero, which indicates

unexpected negative returns implying higher conditional variance as compared to

same size positive returns. All models display strong persistence in volatility rang-

ing from 0.9654 to 0.9741 unless EGARCH models are very low, that is, volatility

is likely to remain high over several price periods once it increases.

Markov Regime Switching GARCH Models

Estimation results and summary statistics of MRS-GARCH models are pre-

sented in Table 3.4. Most parameter estimates in MRS-GARCH are significantly
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different from zero at least 95 percent confidence level. But α0 and β1 are insignif-

icant in some states. All models display strong persistence in volatility, that is,

volatility is likely to remain high over several price periods, once it increases.

3.3.3 In-Sample Evaluation of Gold Price

We use various goodness-of-fit statistics to compare volatility models.

These statistics are Akaike Information Criteria (AIC) Schwarz Bayesian Infor-

mation Criteria (SBIC) and Log-likelihood (LOGL) values. In Table 3.5, the

results of goodness-of- fit statistics and loss functions for all volatility models are

presented. According to AIC, MRS-GARCH-GED is the best. GARCH-t is the

best in SBIC, MRS-GARCH-2t is the best in LOGL, EGARCH -N is the best in

MSE1 and MSE2. MRS-GARCH-t is the best in QLIKE. EGARCH-GED is the

best in MAD2 and EGARCH-t is the best in MAD1 and HMSE. We found that

different models were suitable for various loss functions.

3.3.4 Forecasting Volatility in Out-of-Sample of Gold Price

In this section, we investigate the ability of MRS-GARCH and GARCH

type models to forecast volatility of Gold prices from out-of-sample. In Table 3.6,

we present the result of loss function of out-of-sample with forecasting volatility

for one day ahead, and we found the EGARCH and MRS-GARCH models perform

best.
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3.3.5 Trading Future Contract with Forecast Volatility and

Forecast Price

The aim of this study is to evaluate the profitability of applying different

models to the volatility of gold prices. We assume that the market is a perfect

market, and the positions in our strategy are not longer than one day as described

below. We applied the Bollinger band indicator and we used samples of 21 days

from 1 to 30 August 2011 (We trade one contract in GF10Q11 series is future

contract in gold price with maturity date at August 2011) to trade in one contract

with day by day and we did not include settlement, return do not include cost

price i.e. margins, fees charged. The net daily rate of return for long position is

computed as follows:

Rt+1 = Ct+1 − (Ot+1 −m
√
ht+1),

where Rt+1, Ct+1, Ot+1 are the return, close, open price, ht+1is forecasting volatility

at next day (t+ 1) and m ∈ Z+ is constants.

The net daily rate of return on close position is computed as follows:

Rt+1 = (Ot+1 +m
√
ht+1)− Ct+1.

Table 3.7 shows that the cumulative return with Markov Regime Switching in the

GARCH-N model and the GJR-N model give higher cumulative return than the

other models when we use m = 30.

3.4 Forecasting Volatility and Price of the SET50 Index

using the Markov Regime Switching

In this section, we use GARCH, EGARCH, GJR-GARCH and MRS-

GARCH models to forecast the volatility and price of the SET50 Index (The
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Figure 3.2 Forecasting closed gold price with MRS-GARCH-N (Dot line is closed

price and line is forecast price).

stock prices of the top 50 listed companies on the SET (Stock Exchange of Thai-

land) in terms of large market capitalization) and to compare their performance

with loss function.

3.4.1 Empirical Methodology and Model Estimation Re-

sults of the SET50 Index

The data set used in this study is the daily closing prices of the SET50

Index (Pt ) over the period 3/01/2007 through 30/03/2011 (t = 1, ..., 1, 038 ob-

servations). The data set is obtained from the Stock Exchange of Thailand. The

data set was divided into in-sample (R = 1, 016 observations) and out-of-sample

(n = 22 observations). The plot of Pt and its log returns series rt are given in Fig.

3.3. Pt and rt displays the usual properties of financial data series.

As expected, volatility is not constant over that period of the time and

exhibits volatility clustered with large changes in the index often followed by large

changes, and small changes often followed by small changes.

Descriptive statistics of rt are presented in Table 3.8. As Table 3.8 shows, rt

has a quite small positive average return (about 0.04 percent). Standard deviation
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Figure 3.3 The left: Price of the SET50 Index , The right: Log returns series for

the period 3/01/2007 through 31/03/2011.

of rt is 2.09 percent. Moreover, we tested for the normality of rt by using the

Jarque-Bera test under null hypothesis rt is normal distribution and we find that

the test statistic value is 1,142.19 which confirms of rejecting null hypothesis. So

rt is not normally distribution.

Also, the skewness and kurtosis of rt are 0.29 (not equal zero) and 8.11

(greater than 3) respectively. These values indicate that the returns are not nor-

mally distributed, namely, have fatter tails. Moreover, we test for stationarity of

rt by the Augmented Dickey-Fuller test. The test statistic value is −34.06 which

indicates the stationarity of rt .

The autocorrelation functions (ACF) are presented in Table 3.9, when we

apply Ljung and Box (1978) to test serial correlation in Pt and rt. We use the

specified lag from the first to the tenth lags and the twenty-second lag. Serial

correlation in Pt confirmed as non-stationary but rt is stationary because of the

ACF values decrease very fast when lag increase and is confirmed by Augmented

Dickey-Fuller test in Table 3.9. We analyze the significance of autocorrelation in

the squared mean adjusted return (rt − µt)2 series by the Ljung-Box Q-test and

apply the Engles ARCH (Auto Regressive Conditional Heteroskedasticity) test

(1982) to test the ARCH effects. Therefore, the squared mean adjusted return is

non-stationary which suggests the conditional heteroskedasticity.
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3.4.2 Estimator Parameters of the SET50 Index

This empirical part adopts the GARCH type and the MRS-GARCH (1,1)

models to estimate the volatility of the Pt . The GARCH type models considered

are GARCH (1,1), EGARCH (1,1) and GJR-GARCH (1,1). In order to account

for the fat tails feature of financial returns, we consider three different distributions

for the innovations: Normal (N), Student-t (t) and Generalized Error Distributions

(GED).

• GARCH type Models in SET50 Index

Table 3.10 presents an estimation of the results for the GARCH type mod-

els. It is clear from the table that almost all parameter estimates, including δ, in

the GARCH type models are highly significant at 1 percent. Only the leverage

effect of the EGARCH and the GJR-GARCH models with the normal distribu-

tion, the δ are significant at 5 percent. However, the asymmetry effect term ξ

in the EGARCH models is significantly different from zero, which indicates unex-

pected negative returns implying higher conditional variance as compared to same

size positive returns. All models display strong persistence in volatility ranging

from 0.9319 to 0.9655, that is, volatility is likely to remain high over several price

periods once it increases.

• Markov Regime Switching GARCH Models of the SET50 Index

Estimation results and summary statistics of the MRS-GARCH models

are presented in Table 3.11. Most parameter estimates in the MRS-GARCH are

significant different from zero at least at 95 percent confidence level. But δ and α1

are insignificantly different in some state. All models display strong persistence in

volatility ranging from 0.6972 to 0.9646, that is, volatility is likely to remain high

over several price periods once it increases.
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3.4.3 In-Sample Evaluation of the SET50 Index

We use various goodness-of-fit statistics to compare volatility models.

These statistics are Akaike Information Criteria (AIC) Schwarz Bayesian Informa-

tion Criteria (SBIC) and Log-likelihood (LOGL) values. In Table 3.12, the results

of goodness-of- fit statistics and loss functions for all volatility models are pre-

sented. According to the AIC and the SBIC, the EGARCH model with the GED

distribution performs best in modeling the SET50 Index Price volatility. However,

in contrast the AIC and SBIC, the results suggest that the EGARCH with normal

performs best in the QLIKE, and HMSE with t-distribution performs best in the

MSE1 and MAD2, the GJR performs best in the MSE2. The MRS-GARCH with

normal distribution performs best in the MAD1, with t-distribution (two degree

of freedoms) in the LOGL.

3.4.4 Forecasting Volatility in Out-of-sample of the SET50

Index

In this section, we investigate the ability of the MRS-GARCH and

GARCH type models to forecast volatility of the SET50 Index in out-of-sample. In

Table 3.13, we present the results of loss function of out-ofsample with forecasting

volatility for one day ahead, and we found that the MRS-GARCH-GED model

performs best.

3.4.5 Forecasting Price in Out-of-sample of the SET50 In-

dex

In this section, we investigate the ability of the MRS-GARCH, the

GARCH type and random walk models to forecast the price of the SET50 In-
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dex in out-of-sample with one day ahead. In Table 3.14, we present the result of

the loss function of out-of-sample with forecasting price for one day ahead, and

we found that the MRS-GARCH-2t model performs best.

3.5 Conclusion

In this chapter, we forecast the volatility of gold prices using Markov Regime

Switching GARCH (MRS-GARCH) models. These models allow volatility to have

different dynamics according to unobserved regime variables. The main purpose

was to find out whether MRS-GARCH models are an improvement on the GARCH

type models which include GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) in

terms of modeling and forecasting gold price closed price volatility. We compared

MRS-GARCH(1,1) models with GARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1)

models. All models were estimated under three distributional assumptions which

are Normal, Student-t and GED. Moreover, Student-t distribution which takes dif-

ferent degrees of freedom in each regime was considered for MRS-GARCH models.

We first analyzed in-sample performance of various volatility models to de-

termine the best form of the volatility model over the period 4/01/2007 through

30/08/2011. As expected, volatility is not constant over time and exhibits volatil-

ity clustering showing large changes in the price of an asset often followed by large

changes, and small changes often followed by small changes.

Descriptive statistics of return series are represented by returns with fatter

tails. The Augmented Dickey-Fuller test indicates gold price log returns are sta-

tionary. Serial correlation in the gold price confirms it is non-stationary but serial

log returns of gold price are stationary. Serial correlation in the squared returns

suggests conditional heteroskedasticity. This empirical part adopts GARCH type

and MRS-GARCH models to estimate the volatility of the gold price.
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In order to account for fat tailed features of financial returns, we considerd

three different distributions for the innovations. Almost all parameter estimates in

GARCH type models are highly significant at 1 percent. Most parameter estimates

in MRS-GARCH are significantly different from zero at least at 95percents con-

fidence level. However, the results of goodness-of- fit statistics and loss functions

for all volatility models show different results.

The trading details we have used describe forecasts of the closing gold prices

between 1/08/2011-30/08/2011 and trading in gold future contract (GF10Q11).

We found the cumulative returns with the Markov Regime Switching GARCH-N

model and the GJR-N model give us higher cumulative returns than the other

models when we use m = 30.

For further study, three or four volatility regimes settings can be considered

rather than two-volatility regimes. One way also combine Markov Regime Switch-

ing with other volatility models e.g. EGARCH, GJR. In addition, the performance

of MRS-GARCH models can be hedged in future for long and short positions.

Finally, we forecast volatility of the SET50 Index using the Markov Regime

Switching GARCH (MRS-GARCH) models. These models allow volatility to have

different dynamics according to unobserved regime variables. The main purpose

was to find out whether the MRS-GARCH models are an improvement on the

GARCH type models in terms of modeling and forecasting the SET50 Index closing

price volatility. We compared the MRS-GARCH (1,1) models with GARCH(1,1),

EGARCH(1,1) and GJR-GARCH(1,1) models. All models are estimated under

three distributional assumptions that are Normal, Student-t and GED. Moreover,

Student-t distribution which takes different degrees of freedom in each regime was

considered for the MRS-GARCH models.

The loss function of out-of-sample with forecasting volatility for one day
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ahead, we found the MRS-GARCH with GED distribution model performs best.

The loss function of out-of-sample with forecasting price for one day ahead, we

found the MRS-GARCH with t-distribution (two degrees of freedoms) model per-

forms best.

For further study, three or four volatility regimes setting can be considered

rather than two-volatility regimes. One way also combine the Markov Regime

Switching with other volatility models e.g. the EGARCH, the GJR. In addition,

the performance of MRS-GARCH models can be compared in terms of their ability

to forecast Value at Risk (VaR) for long and short positions.
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Table 3.3 Summary results for estimation parameters of GARCH type models of

gold price.

Parameter GARCH EGARCH GJR

N t GED N t GED N t GED

δ 0.101a 0.123a 0.116a 0.134a 0.137a 0.131a 0.108a 0.126a 0.119a

Std. 0.035 0.034 0.032 0.036 0.034 0.032 0.037 0.034 0.032

α0 0.057a 0.069a 0.063a −0.097a −0.073a −0.084a 0.055a 0.064a 0.060a

Std. 0.010 0.017 0.017 0.010 0.018 0.018 0.010 0.016 0.016

α1 0.082a 0.076a 0.078a 0.143a 0.109a 0.124a 0.061a 0.056a 0.058a

Std. 0.009 0.018 0.017 0.014 0.026 0.025 0.012 0.020 0.021

β1 0.891a 0.890a 0.889a 0.046a 0.049a 0.046a 0.894a 0.895a 0.893a

Std. 0.009 0.018 0.018 0.011 0.017 0.017 0.009 0.018 0.017

ξ na na na 0.718a 0.432a 0.624a 0.099a 0.091a 0.091a

Std. na na na 0.004 0.005 0.006 0.013 0.025 0.024

ν na 5.188a 1.235a na 5.414a 1.269a na 5.287a 1.241a

Std. na 0.761 0.053 na 0.808 0.057 na 0.777 0.053

L. −2087 −2033 −2038 −2370 −2160 −2185 −2086 −2033 −2037

P. 0.972 0.965 0.967 0.046 0.049 0.046 0.974 0.968 0.970

LB 32.64 32.64 32.64 32.64 32.64 32.64 32.64 32.64 32.64

LB2 189.92 190.07 189.83 189.68 189.66 189.72 189.88 189.76 189.81

a,b refer to significance at 99 percent, 95 percent confidence respectively

L. refers to loglikelihood. P. refers to persistence. LB is Ljung-Box test of innovation at lag 22.

LB2 is Ljung-Box test of squared innovation at lag 22 and Std. is standard error.
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Table 3.4 Summary results for estimation parameters of MRS-GARCH models

of gold price.

Parameter MRS-GARCH

N t 2t GED

State i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

δ(i) 0.083b 0.180b 0.114a 0.170b 0.114a 0.170b 0.171b 0.109a

Std. 0.040 0.093 0.039 0.077 0.039 0.077 0.078 0.037

α
(i)
0 0.014c 2.179a 0.011 1.616a 0.011 1.615a 1.842a 0.013

Std. 0.008 0.335 0.009 0.513 0.009 0.531 0.487 0.010

α
(i)
1 0.046a 0.365a 0.038b 0.317a 0.038b 0.317a 0.324a 0.042b

Std. 0.013 0.103 0.016 0.115 0.016 0.117 0.126 0.018

β
(i)
1 0.944a 0.000 0.954a 0.184 0.954a 0.186 0.102 0.949a

Std. 0.015 0.112 0.018 0.177 0.018 0.180 0.140 0.020

p 0.9975a 0.9981a 0.9983a 0.9981a

Std. 0.002 0.002 0.002 0.002

q 0.9976a 0.9983a 0.9981a 0.9983a

Std. 0.002 0.002 0.002 0.002

ν(i) na na 6.058a 6.079a 6.013a 1.323a

Std. na na 0.954 1.673 1.412 0.060

L. −2050 −2013 −2017 −2013

σ2 1.356 3.433 1.306 3.242 1.306 3.249 3.209 1.300

π 0.510 0.490 0.472 0.528 0.472 0.528 0.528 0.472

P. 0.990 0.365 0.992 0.501 0.992 0.503 0.426 0.990

LB. 34.996 34.996 34.996 34.996

LB2. 178.73a 178.69a 178.77a 178.71a

a,b refer to significance at 99 percent, 95 percent confidence respectively

L. refers to loglikelihood. P. refers to persistence. LB is Ljung-Box test of innovation at lag 22.

LB2 is Ljung-Box test of squared innovation at lag 22 and Std. is standard error.
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Table 3.5 In-sample evaluation results for loss function.

Models AIC SBIC MSE QLIKE MAD HMSE

GARCH-N 3.509 3.526 1.381 1.665 2.738 0.870

GARCH-t 3.421 3.442 1.330 1.666 2.661 0.861

GARCH-GED 3.428 3.450 1.334 1.665 2.665 0.859

EGARCH-N 3.985 4.006 1.156 2.136 2.195 0.739

EGARCH-t 3.635 3.661 1.158 2.132 2.194 0.738

EGARCH-GED 3.676 3.702 1.161 2.156 2.195 0.739

GJR-N 3.510 3.531 1.390 1.664 2.752 0.871

GJR-t 3.422 3.448 1.333 1.665 2.666 0.860

GJR-GED 3.429 3.455 1.338 1.664 2.673 0.859

MRS-GARCH-N 3.457 3.500 1.300 1.615 2.655 0.843

MRS-GARCH-t 3.404 3.451 1.305 1.615 2.660 0.841

MRS-GARCH-2t 3.398 3.449 1.325 1.615 2.691 0.847

MRS-GARCH-GED 3.396 3.443 1.327 1.616 2.692 0.846
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Table 3.6 Result for loss function of out-of-sample with forecasting volatility for

one day ahead.

Models MSE QLIKE MAD HMSE

GARCH-N 0.063 1.554 0.179 0.185

GARCH-t 0.055 1.538 0.17 0.181

GARCH-GED 0.056 1.539 0.167 0.182

EGARCH-N 0.057 1.537 0.217 0.240

EGARCH-t 0.047 1.525 0.183 0.218

EGARCH-GED 0.049 1.529 0.201 0.220

GJR-N 0.124 1.532 0.298 0.129

GJR-t 0.105 1.523 0.275 0.117

GJR-GED 0.109 1.525 0.279 0.12

MRS-GARCH-N 0.156 1.491 0.326 0.08

MRS-GARCH-t 0.133 1.487 0.25 0.071

MRS-GARCH-2t 0.132 1.487 0.25 0.079

MRS-GARCH-GED 0.086 1.492 0.213 0.073
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Table 3.7 Cumulative return of trading future contract of gold price with m =30

between 1 to 30 August 2011.

Date of treding GARCH-GED EGARCH-t MRS-GARCH-t MRS-GARCH-2t

1/8/2011 −40 −40 −50 −50

2/8/2011 −90 −90 −110 −110

3/8/2011 630 630 600 600

4/8/2011 710 710 670 670

5/8/2011 750 750 700 700

8/8/2011 1480 1490 1420 1420

9/8/2011 2540 2530 2460 2460

10/8/2011 2520 2500 2430 2430

11/8/2011 2200 2170 2120 2120

15/8/2011 1750 1700 1670 1670

16/8/2011 1440 1360 1350 1350

17/8/2011 1660 1560 1570 1570

18/8/2011 1760 1640 1670 1670

19/8/2011 2660 2520 2570 2570

22/8/2011 3500 3360 3410 3410

23/8/2011 3820 3670 3740 3740

24/8/2011 2850 2680 2800 2800

25/8/2011 5200 5000 5220 5220

26/8/2011 4370 4080 4450 4450

29/8/2011 5210 4870 5270 5270

30/8/2011 4890 4470 4960 4960
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Table 3.8 Descriptive statistics of the SET50 Index log returns series (rt).

Statistic Return

Min -14.19

Max 11.46

Mean 0.04

Standard deviation 2.09

Skewness -0.29

Kurtosis 8.11

Jarque-Bera Normality test 1,142.19 (P-value= 0.000)

Augmented Dickey-Fuller test -34.06 (P-value= 0.000)

Table 3.9 ACF of the SET50 Index closing price, log returns series, square return

and results for Engle’s ARCH test.

Lags 1 5 10 22

ACF 0.99 0.98 0.96 0.90

ACF of SET50 LBQ Test 1031.85 5073.77 9956.85 20882.11

P-value 0.00 0.00 0.00 0.00

ACF 0.05 −0.03 0.08 −0.02

ACF of return SET50 LBQ Test 2.26 8.05 31.28 66.24

P-value 0.13 0.15 0.00 0.00

ACF 0.31 0.23 0.27 0.03

ACF of square return SET50 LBQ Test 100.23 350.28 520.07 822.00

P-value 0.00 0.00 0.00 0.00

ARCH test 22.93 55.68 205.40 251.42

Result for Engle test P-value 0.00 0.00 0.00 0.00
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Table 3.10 Summary results for estimation parameters of GARCH type models

for forecasting volatility of the SET50 Index.

Parameter GARCH EGARCH GJR

N t GED N t GED N t GED

δ 0.136a 0.141a 0.134a 0.096a 0.112a 0.105a 0.102a 0.116a 0.109a

Std. 0.044 0.042 0.041 0.044 0.042 0.042 0.045 0.043 0.042

α0 0.126a 0.149a 0.139a −0.151a −0.152a −0.152a 0.148a 0.172a 0.162a

Std. 0.027 0.044 0.041 0.022 0.031 0.030 0.030 0.046 0.045

α1 0.142a 0.152a 0.147a 0.234a 0.241a 0.237a 0.196a 0.215a 0.206a

Std. 0.020 0.032 0.030 0.028 0.042 0.040 0.030 0.046 0.044

β1 0.81a 0.792a 0.80a 0.976a 0.959a 0.962a 0.805a 0.786a 0.794a

Std. 0.018 0.034 0.031 0.008 0.013 0.012 0.020 0.035 0.033

ξ na na na −0.061a −0.072a −0.067a 0.076a 0.077a 0.076a

Std. na na na 0.016 0.024 0.022 0.021 0.033 0.031

ν na 8.298a 1.445a na 8.981a 1.491a na 8.614a 1.463a

Std. na 1.972 0.083 na 2.414 0.091 na 2.075 0.084

L. −1886 −1873 −1872 −1876 −1865 −1865 −1880 −1867 −1867

P. 0.952 0.943 0.946 0.966 0.959 0.962 0.941 0.932 0.935

LB 32.64 32.64 32.64 32.64 32.64 32.64 32.64 32.64 32.64

LB2 189.92 190.07 189.83 189.68 189.66 189.72 189.88 189.76 189.81

a,b refer to significance at 99 percent, 95 percent confidence respectively

L. refers to loglikelihood. P. refers to persistence. LB is Ljung-Box test of innovation at lag 22.

LB2 is Ljung-Box test of squared innovation at lag 22 and Std. is standard error.
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Table 3.11 Summary results for estimation parameters of MRS-GARCH models

for forecasting volatility of the SET50 Index.

Parameter MRS-GARCH

N t 2t GED

State i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

δ(i) 0.240a −0.027 0.242a 0− .023 0.238 −0.024a 0.236a −0.028

Std. 0.054 0.082 0.056 0.082 0.081 0.057 0.059 0.083

α
(i)
0 0.214a 0.209a 0.206b 0.222b 0.214b 0.234b 0.209b 0.209b

Std. 0.076 0.081 0.068 0.108 0.112 0.066 0.094 0.105

α
(i)
1 0.000 0.070a 0.000 0.071a 0.000 0.072 0.000 0.072a

Std. 0.051 0.018 0.000 0.025 0.027 0.000 0.058 0.023

β
(i)
1 0.694a 0.895a 0.713a 0.887a 0.699a 0.884a 0.708a 0.889a

Std. 0.085 0.030 0.079 0.045 0.047 0.079 0.105 0.040

p 0.965a 0.978a 0.967a 0.978a

Std. 0.016 0.012 0.012 0.011

q 0.976a 0.966a 0.979a 0.967a

Std. 0.010 0.018 0.017 0.018

ν(i) na na 14.211a 161.39a 11.079a 1.647a

Std. na na 0.121 4.948 4.932 0.122

L. −1865 −1861 −1861 −1861

σ2 0.699 5.912 0.717 5.224 0.708 5.205 0.715 5.367

π 0.404 0.596 0.398 0.602 0.396 0.604 0.396 0.604

P. 0.694 0.965 0.713 0.958 0.699 0.955 0.708 0.961

a,b refer to significance at 99 percent, 95 percent confidence respectively

L. refers to loglikelihood. P. refers to persistence. LB is Ljung-Box test of innovation at lag 22.
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Table 3.12 Results for evaluation in-sample with forecasting volatility of the

SET50 Index.

Models AIC SBIC MSE QLIKE MAD HMSE

GARCH-N 3.721 3.74 1.513 1.876 0.947 3.277

GARCH-t 3.696 3.72 1.498 1.876 0.944 3.326

GARCH-GED 3.695 3.72 1.502 1.876 0.944 3.322

EGARCH-N 3.702 3.726 1.443 1.856 0.932 2.958

EGARCH-t 3.683 3.712 1.433 1.857 0.931 3.023

EGARCH-GED 3.682 3.711 1.436 1.856 0.93 3.007

GJR-GARCH-N 3.711 3.735 1.47 1.864 0.938 3.212

GJR-GARCH-t 3.688 3.717 1.459 1.865 0.935 3.269

GJR-GARCH-GED 3.688 3.717 1.462 1.865 0.935 3.258

MRS-GARCH-N 3.691 3.739 1.477 1.861 0.929 3.333

MRS-GARCH-2t 3.687 3.745 1.473 1.859 0.932 3.166

MRS-GARCH-t 3.685 3.739 1.477 1.861 0.931 3.273

MRS-GARCH-GED 3.686 3.739 1.472 1.861 0.931 3.224
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Table 3.13 Result for loss function of out-of-sample with forecasting volatility of

the SET50 Index for one day ahead.

Models MSE QLIKE MAD HMSE

GARCH-N 38.3879 14.1567 28.9676 21.9001

GARCH-t 38.4522 14.1545 28.9786 21.9

GARCH-GED 38.4204 14.1536 28.9724 21.9

EGARCH-N 43.5463 16.6204 30.7887 21.9105

EGARCH-t 44.1814 16.851 30.9848 21.9112

EGARCH-GED 43.6013 16.5907 30.7871 21.9102

GJR-GARCH-N 41.5379 15.6615 30.0785 21.9068

GJR-GARCH-t 41.8758 15.7649 30.1754 21.9071

GJR-GARCH-GED 41.6276 15.6497 30.0894 21.9066

MRS-GARCH-N 42.7165 15.6962 30.3001 21.9053

MRS-GARCH-2t 46.8062 18.1511 31.9257 21.9168

MRS-GARCH-t 47.8918 18.5713 32.2734 21.918

MRS-GARCH-GED 37.5699 13.7146 28.6605 21.8982
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Table 3.14 Result for loss function of out-of-sample with forecasting price of

SET50 Index for one day ahead.

Models MSE MAE MAPE

GARCH-N 66.7153 6.608 0.9335

GARCH-t 66.8143 6.6195 0.9351

GARCH-GED 66.9819 6.6376 0.9377

EGARCH-N 67.6716 6.6999 0.9463

EGARCH-t 67.3822 6.6756 0.943

EGARCH-GED 67.5379 6.689 0.9448

GJR-GARCH-N 67.1641 6.6557 0.9402

GJR-GARCH-t 67.1693 6.6562 0.9402

GJR-GARCH-GED 67.2598 6.6646 0.9414

MRS-GARCH-N 66.023 6.5078 0.9196

MRS-GARCH-2t 65.9811 6.5046 0.9192

MRS-GARCH-t 66.0597 6.5109 0.92

MRS-GARCH-GED 66.3461 6.5557 0.9262

Random Walk 69.6096 6.8264 0.964

 

 

 

 

 

 

 

 



CHAPTER IV

FORECASTING THE STOCK EXCHANGE

OF THAILAND USING DAY OF THE WEEK

EFFECT AND MARKOV REGIME

SWITCHING GARCH.

In the time series, the stock price is transformed to return series for sta-

tionary process which looked like white noise and forecasting was possible using

the mean equation. The forecasting of daily returns has led to additional research

in financial literature, specifically extending the analysis of the seasonal behavior

to include the day of the week effect. This seasonality has been the subject of

different studies which detected empirical evidence of abnormal yield distributions

based upon the day of the week. The pioneering work was carried out as used

in the analysis of seasonality and can be specifically seen in Miralles and Quiros

(2000), they included five dummy variables, one for each day of the week.

Nevertheless two serious problems arise with this approach. The first prob-

lem is that the residuals obtained from the regression model can be autocorrelated,

thus creating errors in the inference. The second problem is that the variances of

the residuals are not constant and possibly time-dependent.

A solution to the first type of problem can be solved by introducing the

returns with a one week delay into the regression model, as used in the works by

Easton and Faff (1994) and Kyimaz and Berument (2001).

Moreover, Apolinario et al. (2006) and Ulussever et al. (2011) try to solve

 

 

 

 

 

 

 

 



90

the second problem by modeling the residuals with the ARCH model in order to

correct the variability in the variance of the residuals.

In this study, we reconsidered the two problems again. For the first problem,

we modelled the SET Index returns by the mean equation with the day of the week

effect and the autoregressive moving-average order p and q (ARMA (p, q)). For the

second problem, we model the residuals by the GARCH, EGARCH, GJR-GARCH

and MRS-GARCH models. Finally, we compare their performance by one day, one

week, two weeks and one month.

In next section, we shall model the mean equation of the financial returns.

In section 4.2, we describe the data. We estimate the parameters of the model and

forecast volatility of returns and estimate the parameters with in-sample evaluation

results in section 4.3. Moreover, statistical loss functions are described and out-of-

sample forecasting performance of various models is discussed in section 4.4. The

conclusion is presented in section 4.5.

4.1 Modelling Mean Equation of Financial Returns

In time series, let Pt denote the series of the financial price at time t on a

probability space (Ω, F, P ) and rt be the log return of an asset at time index t (in

percent) in (2.46), i.e.

rt = 100 · ln(
Pt
Pt−1

)

= µt + εt.

To put the volatility models in proper perspective, it is informative to
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consider the conditional mean and variance of rt given Ft−1 ; that is,

µt = E(rt|Ft−1),

ht = V ar(rt|Ft−1)

= E
[
(rt − µt)2|Ft−1

]
, (4.1)

where Ft−1 refers to information up to time t−1. Therefore, the equation for µt in

(4.1) should be simple, and we assume that rt follows a simple time series model

such as a stationary ARMA(p, q) model which includes five dummy variables, one

for each day of the week, such that

rt = µt + εt,

µt = β1D1t + β2D2t + β3D3t + β4D4t + β5D5t +

p∑
j=1

φjrt−j −
q∑
l=1

θlεt−l,(4.2)

where Dit : i = 1, . . . , 5 : are dummy variables which take on the value of 1 if

the corresponding return for day t is a Monday, Tuesday, Wednesday, Thursday

or Friday, respectively and 0 otherwise.

βi : i = 1, . . . , 5 : are coefficients which represent the average return for each day

of the week.

φj : j = 1, . . . , p, θl : l = 1, . . . , q : are coefficients which represent the ARMA(p,q).

4.2 Empirical Methodology and Model Estimation Results

of the SET Index

4.2.1 Data

The data set that was used in this study is the daily closing prices of the

SET Index Pt over the period 3/01/2007 through 30/03/2011 (t = 1, . . . , 1, 038

observations). The data set was obtained from the Stock Exchange of Thailand.
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Figure 4.1 Graph of (a) SET Index closing prices and (b) log returns series for

the period 3/01/2007 through 31/03/2011.

The data set is divided into in-sample (R =977 observations) and out-of-sample

(n = 61 observations). The plot of Pt and its log returns series rt (see equation

(4.1)) are given in Figure 4.1. Plot Pt and rt display the usual properties of

financial data series. As expected, volatility is not constant over that period of

time and exhibits volatility clustered with large changes in the index often followed

by large changes, and small changes often followed by small changes.

Descriptive statistics of rt are presented in Table 4.1. As Table 4.1 shows,

overall, rt has a quite small positive average return (about 0.0436 percent). Stan-

dard deviation of rt is 1.5525 percent. The lowest average return is observed on

Monday and the highest average return occurs on Friday.

Moreover, we tested for the normality of rt by using the Jarque-Bera test
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(The Jarque-Bera Normality test is a goodness-of-fit measure of departure from

normality and can be used to test which the Jarque-Bera test has a χ2 distribu-

tion with 2 degrees of freedom under the null hypothesis that the data is from

a normal distribution. The 5 percent critical value is, therefore, 5.99) under the

null hypothesis rt is normally distributed and we find that the test statistic value

is 1,758.1080 which leads us to reject the null hypothesis. So rt is not normally

distributed. Also, the skewness and kurtosis of rt are −0.7189 (not equal zero)

and 6.2605 (greater than 3) respectively. These values confirm that the returns

are not normally distributed, namely, have fatter tails.

Moreover, we test for the stationarity of rt by using the Augmented Dickey-

Fuller test (The Augmented Dickey-Fuller test is a test for a unit root in a time

series sample, the null hypothesis of ADF test is that the series is non-stationary.

The 1, 5 and 10 percent critical value are −3.44, −2.86 and −2.57 respectively).

The test statistic value is −30.0801 which indicates the stationarity of rt.

Table 4.1 Descriptive statistics of the SET Index log returns series (rt).

Statistic All days Monday Tuesday Wednesday Thursday Friday

Mean 0.04 -0.04 -0.02 0.03 0.03 0.22

SD. 1.55 1.98 1.46 1.37 1.43 1.48

Min -11.09 -11.09 -4.28 -7.13 -5.44 -10.10

Max 7.55 7.55 5.29 3.28 6.10 4.19

Skewness -0.7189 -0.5511 0.2214 -1.0215 -0.2429 -1.9876

Kurtosis 6.2605 5.8511 1.7362 3.2096 2.7026 13.75

JB-test 1,758.11 (P-value= 0.000)

ADF-test -30.08 (P-value= 0.000)

Table 4.2 reports the day of the week effects and ARMA(p,q) for returns.
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Figure 4.2 Graph of the SET Index closing prices and forecasting with day of

the week effect and ARMA(3,3).

Panel A of Table 4.2 displays the first estimated coefficients of the day of the week

effect (βi : i = 1, . . . , 5). From Table 4.2 (Panel A), we found the estimated coeffi-

cients are almost zero. Then we test under the null hypothesis that each coefficient

βi : i = 1, . . . , 5 is zero. We find that the coefficient of Fridays’ dummy variable is

not zero significant at the 95 percent level and other days are insignificant. These

observations suggest that only Friday is the day of effect of the SET Index. Panel

B displays the estimated coefficients of the ARMA process and P-values. By using

t-test under the null hypothesis that each coefficient AR(p) and MA(q) is zero, we

found that the P-values are all zero then each coefficient is not zero significant at

the 99 percent level. Hence the SET Index return can be modeled by the ARMA

(3,3) process. Figure 4.2 showns the SET Index and forecasting with day of the

week effect and ARMA(3,3).

The autocorrelation functions (ACF) are presented in Table 4.3, when we

apply Ljung and Box (1978) to test serial correlation in Pt and rt. We use the

specified lag from the first to the tenth lags and the twenty-second lag. Serial

correlation in is Pt confirmed as non-stationary but rt is stationary because of
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Table 4.2 Day of the week effect and ARMA(p,q) in mean equation of the SET

Index.

Panel A: Day of the week effect in mean equation of return

Monday Tuesday Wednesday Thursday Friday

β -0.064 -0.038 0.02 0.014 0.221b

Std. 0.109 0.106 0.105 0.106 0.107

Panel B: ARMA models parametric estimates in mean equation of return

Variable Coefficient Std. Error t-Statistic P-value

AR(1) 2.5855 0.0579 44.6244 0.0000a

AR(2) -2.4248 0.1121 -21.6289 0.0000a

AR(3) 0.8289 0.0617 13.4318 0.0000a

MA(1) 2.5059 0.0732 34.2502 0.0000a

MA(2) -2.2667 0.1436 -15.7891 0.0000a

MA(3) 0.7459 0.0799 9.3413 0.0000a

a,b refer to significance at 99 percent, 95 percent confidence respectively.

ACF values decrease very fast when the lag increases and is confirmed by the

Augmented Dickey-Fuller test in Table 4.1. We analyse the significance of au-

tocorrelation in the squared mean adjusted return (rt − µt)2 series by using the

Ljung-Box Q-test. Since the p-value is equal to zero then the squared mean ad-

justed return is non-stationary. Next, we apply Engle’s ARCH test (1982) to

test ARCH effects of the squared mean adjusted return. The p-value suggests

conditional heteroskedasticity.
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Table 4.3 ACF of the SET Index closing price, log returns series, squared mean

adjusted return and results for Engle’s ARCH test.

Lags 1 5 10 22

ACF 0.9962 0.9798 0.9621 0.9113

ACF of Pt LBQ Test 0.1033 0.5091 1.1011 2.1086

P-value 0.0000 0.0000 0.0000 0.0000

ACF 0.0672 -0.0261 0.0870 -0.0038

ACF of rt LBQ Test 4.6938 10.0980 31.8949 64.5758

P-value 0.0303 0.0725 0.0004 0.0000

ACF 0.2872 0.2031 0.2701 0.0168

ACF of (rt − µt)2 LBQ Test 85.7126 306.58 456.47 726.43

P-value 0.0000 0.0000 0.0000 0.0000

ARCH test 85.4839 162.18 217.02 256.93

Result for Engle test P-value 0.0000 0.0000 0.0000 0.0000

4.3 Empirical Methodology of the SET Index

This empirical part adopts the GARCH type and MRS-GARCH(1,1) mod-

els to estimate the volatility of the Pt . The GARCH type models considered are

GARCH (1,1), EGARCH (1,1) and GJR-GARCH (1,1). In order to account for

the fat tails feature of financial returns, we consider three different distributions for

the innovations: Normal (N), Student-t (t) and Generalized Error Distributions

(GED).
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4.3.1 GARCH Type Models of the SET Index

Table 4.4 presents an estimation of the results for GARCH type models.

It is clear from the table that almost all parameter estimates are highly significant

at 1 percent. However, the asymmetry effect term ξ in EGARCH models is signif-

icantly different from zero, which indicates unexpected negative returns implying

higher conditional variance as compared to the same size positive returns. All

models display strong persistence in volatility ranging from 0.8950 to 0.9521, that

is, volatility is likely to remain high over several price periods once it increases.

Table 4.4 Summary results of GARCH type models of the SET Index.

Parameter GARCH EGARCH GJR

N t GED N t GED N t GED

α0 0.132a 0.159a 0.148a −0.161a −0.161a −0.163a 0.158a 0.183a 0.172a

Std. 0.027 0.044 0.043 0.022 0.033 0.032 0.031 0.047 0.047

α1 0.153a 0.166a 0.161a 0.248a 0.254a 0.251a 0.217a 0.242a 0.232a

Std. 0.021 0.036 0.034 0.030 0.046 0.044 0.032 0.053 0.051

β1 0.785a 0.761a 0.770a 0.952a 0.945a 0.949a 0.776a 0.751a 0.760a

Std. 0.021 0.039 0.036 0.010 0.015 0.015 0.024 0.041 0.039

ξ na na na −0.076a −0.089a −0.082a −0.075a 0.076a 0.076a

Std. na na na 0.016 0.026 0.024 0.022 0.036 0.034

ν na 7.338a 1.381a na 7.852a 1.435a na 7.696a 1.407a

Std. na 1.634 0.081 na 1.948 0.087 na 1.745 0.081

L. -1683 -1668 -1667 -1673 -1660 -1660 -1677 -1663 -1663

P. 0.938 0.926 0.931 0.952 0.945 0.949 0.895 0.910 0.914

LB 63.325 63.325 63.325 63.325 63.325 63.325 63.325 63.325 63.325

LB2 673.30 673.62 673.66 671.90 672.94 672.87 672.08 672.94 672.91

a,b refer to the significance at 99 percent, 95 percent confidence respective.

L. refers to loglikelihood. P. refers to persistence. LB is Ljung-Box test of innovation at lag 22

LB2 is Ljung-Box test of squared innovation at lag 22 and Std. is standard error.
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4.3.2 Markov Regime Switching GARCH Models of the

SET Index

Estimation results and summary statistics of MRS-GARCH models are

presented in Table 4.5. Most parameter estimates in MRS-GARCH are signifi-

cantly different from zero at least at the 95 percent confidence level. But α0, α1

and β1 are insignificantly different in some states. All models display strong per-

sistence in volatility ranging from 0.5842 to 0.9619, that is, volatility is likely to

remain high over several price periods once it increases.

4.3.3 In-Sample Evaluation of the SET Index

We use various goodness-of-fit statistics to compare volatility models.

These statistics are Akaike Information Criteria (AIC), Schwarz Bayesian Informa-

tion Criteria (SBIC) and Log-likelihood (LOGL) values. In Table 4.6, the results

of goodness-of-fit statistics and loss functions for all volatility models are pre-

sented. According to SBIC, the EGARCH model with GED-distribution performs

best in modeling the SET Index volatility. However, the MSE1 and MSE2 suggest

that the EGARCH with t-distribution performs best in the SET Index volatility.

Also AIC and LOGL suggest that the MRS-GARCH with 2t-distribution per-

forms best in the SET Index volatility. MAD1, MAD2 and HMSE suggest that

the MRS-GARCH with t-distribution performs best in the SET Index volatility

and in QLIKE the MRS-GARCH with GED-distribution performs best in the SET

Index volatility.
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4.4 Forecasting Volatility in Out-of-Sample of the SET In-

dex

In this section, we investigate the ability of MRS-GARCH and GARCH

type models to forecast volatility of the SET Index in out-of-sample. In Table 4.7,

we present the results of loss function of out-of-sample with forecasting volatility

for one day ahead, five days ahead (a week), ten days ahead (two weeks) and

twenty-two days ahead (a month). We found the GARCH-type models perform

best in the short term (one day and a week) for forecasting volatility of the SET

Index. Additionally, we have reported a particular sign-test, the Success Ratio

(SR). The SR test is simply the fraction of volatility forecasts that have the same

sign as volatility realizations. From the table we can see that the GARCH-type

models do a great job in correctly predicting the sign of the future volatility in the

short term. On the other hand, we found that the MRS-GARCH models perform

best in the long term (two weeks and a month) for forecasting the volatility of the

SET Index. Also, the SR test MRS-GARCH models do a great job in correctly

predicting the future volatility in the long term.

4.5 Conclusion

In this study, we modelled the returns of the SET Index by mean equation

with the day of the week effect and the autoregressive moving-average order p and

q (ARMA(p, q)) and forecasted the volatility of the SET Index by the GARCH,

EGARCH, GJR-GARCH and MRS-GARCH models. Moreover we compared their

volatility forecast performance with one day, one week, two weeks and one month

returns.

Friday is the day with the largest effect on the SET Index. The estimate of
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return equation perform with ARMA (3, 3). The GARCH-type models perform

best in the short term (one day and a week). On the other hand, the MRS-

GARCH models perform best in the long term (two weeks and a month) for

forecasting volatility of the SET Index.

For further study, three or four volatility regime settings can be considered

rather than two-volatility regimes or using Markov Regime Switching with other

volatility models e.g. EGARCH, GJR. In addition, the performance of the MRS-

GARCH models can be compared in terms of their ability to forecast Value at

Risk (VaR) for long and short positions.
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Table 4.5 Summary results of MRS-GARCH models of the SET Index.

Parameter MRS-GARCH

N t 2t GED

State i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

α
(i)
0 0.216a 0.185a 0.235b 0.190b 0.000 0.183b 0.000 0.176a

Std. 0.084 0.065 0.089 0.114 0.093 0.109 0.109 0.047

α
(i)
1 0.000 0.075a 0.000 0.076 0.903a 0.075 0.962a 0.068b

Std. 0.056 0.018 0.026 69.205 0.027 50.228 0.355 0.035

β
(i)
1 0.605a 0.885a 0.584a 0.875a 0.000 0.761a 0.000 0.776a

Std. 0.121 0.030 0.046 0.178 0.047 0.177 0.021 0.039

p 0.9582a 0.9603a 0.9785a 0.9822a

Std. 0.018 0.011 0.020 0.007

q 0.9737a 0.9776a 0.4409a 0.5696a

Std. 0.010 0.020 0.011 0.109

ν(i) na na 11.252a 9.141a 8.375 1.4692a

Std. na na 0.445 4.297 29.679 0.095

L. −1658.07 −1652.69 −1651.18 −1654.06

σ2 0.548 1.713 0.565 3.897 0.000 1.123 0.000 0.996

π 0.386 0.614 0.361 0.639 0.037 0.963 0.040 0.960

Pers. 0.605 0.892 0.584 0.951 0.903 0.836 0.962 0.823

LB. 62.669 57.659 62.297 55.898

LB2. 678.936a 725.076a 677.794a 720.355a

a,b refer to significance at 99 percent, 95 percent confidence respectively.

L. refers to loglikelihood. P. refers to persistence. LB is Ljung-Box test of innovation at lag 22.

LB2 is Ljung-Box test of squared innovation at lag 22 and Std. is standard error.
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Table 4.6 In-sample evaluation results of the SET Index.

Models AIC SBIC MSE QLIKE MAD HMSE

GARCH-N 3.453 3.473 1.194 1.608 7.414 0.836

GARCH-t 3.424 3.449 1.179 1.608 7.420 0.833

GARCH-GED 3.423 3.448 1.183 1.608 7.405 0.833

EGARCH-N 3.435 3.460 1.129 1.589 7.383 0.824

EGARCH-t 3.411 3.441 1.123 1.590 7.385 0.824

EGARCH-GED 3.410 3.440 1.124 1.589 7.371 0.823

GJR-N 3.444 3.469 1.164 1.597 7.369 0.830

GJR-t 3.416 3.446 1.154 1.598 7.373 0.829

GJR-GED 3.416 3.446 1.156 1.598 7.359 0.829

MRS-GARCH-N 3.415 3.465 1.152 1.588 7.251 0.817

MRS-GARCH-t 3.406 3.461 1.126 1.607 7.102 0.804

MRS-GARCH-2t 3.405 3.465 1.137 1.604 7.159 0.810

MRS-GARCH-GED 3.409 3.464 1.147 1.588 7.296 0.819
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Table 4.7 Results for loss function of out-of-sample with forecasting volatility for

one day ahead of the SET Index.

Models MSE QLIKE MAD HMSE SR

GARCH-N 0.931 2.332 1.026 14.994 0.533

GARCH-t 0.939 2.329 1.027 14.714 0.533

GARCH-GED 0.931 2.332 1.025 14.892 0.533

EGARCH-N 1.284 2.048 1.104 3.808 0.567

EGARCH-t 1.339 2.039 1.112 3.413 0.583

EGARCH-GED 1.307 2.042 1.107 3.608 0.583

GJR-N 1.340 2.045 1.113 3.928 0.567

GJR-t 1.384 2.033 1.120 3.570 0.550

GJR-GED 1.363 2.036 1.116 3.700 0.550

MRS-GARCH-N 1.238 2.102 1.105 4.432 0.500

MRS-GARCH-t 1.280 2.099 1.118 4.207 0.483

MRS-GARCH-2t 1.283 2.162 1.075 8.219 0.567

MRS-GARCH-GED 1.244 2.164 1.076 8.350 0.567
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Table 4.8 Results for loss function of out-of-sample with forecasting volatility for

five days ahead of the SET Index (A week).

Models MSE QLIKE MAD HMSE SR

GARCH-N 1.361 4.325 1.110 1.517 0.767

GARCH-t 1.365 4.327 1.123 1.444 0.767

GARCH-GED 1.361 4.324 1.114 1.476 0.767

EGARCH-N 0.983 4.134 0.864 0.580 0.883

EGARCH-t 0.977 4.124 0.849 0.529 0.917

EGARCH-GED 0.975 4.127 0.853 0.555 0.900

GJR-N 1.041 4.231 1.110 0.429 0.850

GJR-t 1.037 4.239 1.138 0.423 0.850

GJR-GED 1.034 4.233 1.120 0.423 0.850

MRS-GARCH-N 1.221 4.218 1.206 0.488 0.833

MRS-GARCH-t 1.264 4.251 1.277 0.513 0.850

MRS-GARCH-2t 1.277 4.218 0.994 0.658 0.833

MRS-GARCH-GED 1.278 4.214 0.982 0.642 0.800
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Table 4.9 Results for loss function of out-of-sample with forecasting volatility for

ten days ahead (two weeks) of the SET Index.

Models MSE QLIKE MAD HMSE SR

GARCH-N 1.910 5.285 1.628 0.560 0.767

GARCH-t 2.001 5.306 1.703 0.552 0.750

GARCH-GED 1.951 5.296 1.665 0.555 0.783

EGARCH-N 1.410 5.212 1.535 0.887 0.833

EGARCH-t 1.396 5.211 1.524 0.856 0.833

EGARCH-GED 1.400 5.214 1.537 0.886 0.833

GJR-N 2.083 5.316 1.803 0.404 0.783

GJR-t 2.217 5.338 1.875 0.413 0.800

GJR-GED 2.143 5.326 1.834 0.408 0.800

MRS-GARCH-N 1.906 5.264 1.694 0.378 0.850

MRS-GARCH-t 2.065 5.289 1.808 0.407 0.833

MRS-GARCH-2t 1.656 5.239 1.396 0.435 0.783

MRS-GARCH-GED 1.643 5.234 1.401 0.421 0.783
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Table 4.10 Results for loss function of out-of-sample with forecasting volatility

for twenty-two days ahead (a month) of the SET Index.

Models MSE QLIKE MAD HMSE SR

GARCH-N 14.177 6.314 4.117 0.651 0.550

GARCH-t 14.890 6.346 4.246 0.660 0.550

GARCH-GED 14.509 6.329 4.182 0.657 0.550

EGARCH-N 9.560 6.553 4.087 4.965 0.550

EGARCH-t 9.697 6.554 4.096 4.901 0.550

EGARCH-GED 9.658 6.573 4.104 5.082 0.550

GJR-N 17.960 6.429 4.509 0.651 0.517

GJR-t 18.656 6.453 4.611 0.659 0.500

GJR-GED 18.237 6.438 4.552 0.655 0.500

MRS-GARCH-N 16.716 6.401 4.300 0.628 0.550

MRS-GARCH-t 16.687 6.403 4.363 0.640 0.633

MRS-GARCH-2t 12.290 6.223 3.689 0.737 0.500

MRS-GARCH-GED 12.586 6.230 3.713 0.723 0.500

 

 

 

 

 

 

 

 



CHAPTER V

FORECASTING FINANCIAL MARKET

WITH PRINCIPAL COMPONENT ANALYSIS

AND MARKOV REGIME SWITHCING

The aim of this study was to forecast the returns for the Stock Exchange

of Thailand (SET) Index by adding some explanatory variables and stationary

Autoregressive Moving-average order p and q (ARMA (p,q)) in the mean equation

of returns. In addition, we used the Principal Component Analysis (PCA) to

remove possible complications caused by multicollinearity.

In order to forecast the return rt for their specifid purposes, many re-

searchers have made different assumptions for µt appearing in equation (2.48).

For example, Kyimaz et al. (2001) assume µt to be a regression model with a

one week delay, Supoj (2003) assumes µt to be an autoregressive process, Mehmet

(2008) assumes to be a constant, and Sattayatham et al. (2012) assume µt to be

an ARMA process with a one week delay.

The financial returns rt (rt := 100 · ln(Pt/Pt−1)) for t = 1, 2, ..., T − 1, Pt

denoting the financial price at time t depend concurrently and dynamically on

many economic and financial variables. Since the returns have a statistically sig-

nificant autocorrelation themselves, lagged returns might be useful in predicting

future returns. In order to model these financial returns, Tsay (2005) assume that

rt follows a simple time series model such as a stationary ARMA (p,q) model with

some explanatory variables Xit . In other words, rt satisfies the following equation

 

 

 

 

 

 

 

 



108

(2.48) as:

rt = µt + εt,

µt = µ0 +
n∑
i=1

βiXit +

p∑
s=1

φsrt−s −
q∑

m=1

θmεt−m, (5.1)

where

Xit = 100 · ln(
Pit

Pi(t−1)

).

Here Pit denotes the financial price asset i for i = 1, 2, ..., n at time t, rt−s,

s = 1, 2, ..., p is the returns at the sth lag, εt represents errors assumed to be a white

noise series with an i.i.d. mean of zero and a constant variance σ2
ε , µ0, βi, φs, θm

are constants and n, p, q are positive integers.

Note that the variance of errors εt in the model 5.1 is assumed to be

a constant; some authors use this assumption in the modeling of ground-level

ozone (Agirre-Basurko et al., 2006; Pires et al., 2007). In this chapter, we con-

sider the case where the variance of εt is not constant. That is, we introduce

the heteroskedasticity model to forecast the volatility of returns using GARCH,

EGARCH, GJR-GARCH and Markov Regime Switching GARCH (MRS-GARCH)

with distribution normal, student-t and general error distribution (GED).

The objective of this chapter is to forecast returns for the Stock Exchange

of Thailand (SET) Index by using model 5.1. We vary the process µt using four

different types and compare the performance of the different types. Moreover, we

forecast the volatility of returns with heteroskedasticity models.

In the next section, we present the basics of principal component analysis

to remove possible complications caused by the multicollinearity of explanatory

variables. The empirical methodology and formulae for model estimation are given

in section 5.2. Forecasting of the returns is discussed in section 5.3. Forecasting

the volatility of returns is described in section 5.4 and the conclusions are presented
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in section 5.5.

5.1 Principal Component Analysis : PCA

Given an n-dimensional random variable Xt = (X1t, X2t, ..., Xnt)
′ with co-

variance matrix, ΣX , (.)′ denotes the transposed matrix. Principal component

analysis (PCA) is concerned with using fewer linear combinations of Xt to explain

the structure of ΣX . If Xit denotes returns as appears in equation (2.48) for

i = 1, 2, ..., n , then PCA can be used to study the source of variations of these n

returns.

Let (λ1, e1), ..., (λn, en) be the eigenvalue-eigenvector pairs of ΣX , with the

eigenvalues λi set up in decreasing order λ1 > λ2 > ... > λn > 0 . Then the i− th

principal component of Xt is given by Zit = e′iXt = Σn
j=1eijXjt for i = 1, ..., n.

We note that

V ar(Zit) = e′iΣXei = λi,

Cov(Zit, Zjt) = e′iΣXej = 0, (5.2)

for i 6= j, i, j = 1, 2, ..., n and e′i = (ei1, ..., ein) are orthonormal vectors.

In order to cope with the problem of multicollinearity, we transform the

explanatory variables in model in equation (2.48) into the principal components.

Then the new model for forecasting rt is

rt = µ0 +
n∑
i=1

βiZit +

p∑
s=1

φsrt−s −
q∑

m=1

θmεt−m + εt, (5.3)

where Zit are i−th principal component of explanatory variables at time t. We fol-

lows Tsay (2005) by assuming that the asset return series rt is a weakly stationary

process.
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5.2 Empirical Studies and Methodology.

Naturally, the Thai stock market has a unique characteristic, so the factors

influencing the prices of stocks traded in this market are different from the factors

influencing other stock markets (Chaigusin et al., 2008). Examples of factors that

influence the Thai stock market and the statistics used by researchers who have

studied these factors in forecasting the SET Index are shown in Table 5.2.

5.2.1 Data

The data sets used in this study are the daily return closing prices for

the SET Index at time t (dependent variables) and the daily return closing prices

for twelve factors (explanatory independent variables). These twelve factors are

the following:

1. The Dow Jones Index at time t− 1 (DJIA).

2. The Financial Time 100 Index at time t− 1 (FSTE).

3. The SP 500 Index at time t− 1 (SP ).

4. The Nikkei225 Index at time t (NIX).

5. The Hang Seng Index at time t (HSKI).

6. The Singapore Straits Time Industrial Index at time t (SES009).

7. The Taiwan Stock Weighted Indes at time t (TWII).

8. The South Korea Stock Exchange Index at time t (KOSPI).

9. The Oil Price in NYMEX (New York Mercantile Exchange) at time t (OIL).

10. The Gold Price in NYMEX at time t (GOLD).
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11. The Currency Exchange Rate in Thai Baht to one US dollar at time t

(THB/USD).

12. The Currency Exchange Rate in Thai Baht to one Hong Kong dollar at time

t (THB/HKD).

The actual closing prices for these twelve factors were obtained from

http://www.efinancethai.com. We used data sets from April 5, 2000 to July 5,

2012. We divided these data into two disjoint sets. The first set, from April 5,

2000 to December 30, 2011 was used as a sample (2,873 observations). The second

set, from January 3,2012 to July 5, 2012 was used as out-of-sample (125 observa-

tions). The plot for the SET Index closing prices and returns is given in Figure

5.1.

Descriptive statistics and the correlations matrix are given in Tables 5.2 and

5.3. As can be seen from Table 5.3, there are highly significant correlations [we

mean when test significant (p < 0.01)] between the dependent variables and the

explanatory variables. Therefore, these explanatory variables were used to predict

the SET Index. Also, there are highly significant correlations (p < 0.01) among

the explanatory variables. These correlations provide a measure for the linear

relations between two variables and also indicate the existence of multicollinearity

between the explanatory variables. However, multiple regression analysis based

on this dataset also shows that there was a multicollinearity problem with the

variance inflation factor (V IF >= 5.0) as shown in Table 5.2. One approaches to

avoid this problem is PCA. Hence, we used twelve explanatory variables to find

the principal components, and overall descriptive statistics for selected principal

components (PCs) as shown in Tables 5.4 and 5.5, respectively.
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Figure 5.1 Graph of (a) SET Index closing prices and (b) log returns series for

the period 5/04/2000 through 5/07/2012.
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5.2.2 Results of Principal Component Analysis

The Bartletts sphericity test for testing the null hypothesis where the

correlation matrix is an identity matrix was used to verify the applicability of PCA.

The value of the Bartletts sphericity test for the SET Index was 18,167.07, which

implies that the PCA is applicable to our datasets (Table 5.2). Moreover, Kaiser’s

measure of sampling adequacy was also computed as 0.788, which indicates that

the sample sizes were sufficient for us to apply the PCA. The results for PCA

(Table 5.4) indicate that there are twelve principal components (PCs) for multiple

regression analysis.

5.3 Forecasting the Returns the SET Index by Mean Equa-

tions

In this section, we forecast the returns for the SET Index (rt = µt + εt)

using four mean equations (µt): constant, ARMA (1,1), multiple regression based

on PCA, and ARMA (1,1), which includes multiple regression based on PCA.

Afterwards, we compare the errors using two loss functions, i.e. mean square er-

ror (MSE) and mean absolute error (MAE). The parameters for mean equations

for forecasting the SET Index and the value of loss functions are shown in Table

5.5. We found that the mean equation ARMA (1,1) that includes multiple regres-

sion based on PCAs (Table 5.5, No. 4) has the best performance (MSE=0.5393,

MAE=0.5947). So, we use this mean equation for forecasting the returns for the

SET Index.
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Figure 5.2 Forecasting SET Index with various models.

5.4 Forecasting the Volatility of Returns for the SET Index

We applied Ljung and Box (1978) to test serial correlation for returns (rt)

and squared mean returns adjusted ((rt−µt)2) where is the mean equation in Table

5.5 (No. 4). We used a specified lag from the first to the tenth lags and we used

the twenty-second lag. Serial correlation for returns is confirmed as stationary

because the autocorrelation function (ACF) values decrease very fast when lags

increase and this is confirmed by the Augmented Dickey-Fuller Test (−52.76 ∗ ∗)

as in Table 5.2. We analyzed the significance of autocorrelation in the squared

mean adjusted returns series with the Ljung-Box Q-test and used Engles ARCH

test to test the ARCH effects. Therefore, the squared mean for the adjusted return

is non-stationary, which suggests conditional heteroskedasticity.
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5.4.1 Empirical Methodology

This empirical section adopts the GARCH type and the MRS-GARCH

(1,1) models to estimate the volatility of the returns on the SET Index. The

GARCH type models considered are the GARCH (1,1), EGARCH (1,1) and GJR-

GARCH (1,1). In order to account for the fat-tailed feature of financial returns, we

considered three different distributions for the innovations: Normal (N), Student-t

(t) and Generalized Error Distributions (GED).

GARCH Type Models

Panel A of Table 5.7 presents an estimation of the results for the GARCH

type models. It is clear from the table that almost all parameter estimates in the

GARCH type models are highly significant at 1 percent. However, the asymmetry

effect term ξ in the EGARCH models is significantly different from zero which

indicates unexpected negative returns, implying higher conditional variance as

compared to the same-sized positive returns. All models display strong persistence

in volatility ranging from 0.8895 to 0.9572, that is, volatility is likely to remain

high over several price periods once it increases.

Markov Regime Switching GARCH Models.

The estimated results and summary statistics for the MRS-GARCH models

are presented in Panel B of Table 5.7. Most parameter estimates in the MRS-

GARCH are significantly different from zero at least at the 95 percent confidence

level. But α1, β1 are not significantly different in some areas. All models display

strong persistence in volatility ranging from 0.6650 to 0.9892, that is, volatility is

likely to remain high over several price periods once it increases.
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5.4.2 In-Sample Evaluation

We used various goodness-of-fit statistics to compare volatility models.

These statistics are the Akaike Information Criteria (AIC), the Schwarz Bayesian

Information Criteria (BIC), and the Log-likelihood (LOGL) values. Table 5.8

presents the results for the goodness-of-fit statistics and loss functions for all

volatility models. According to the BIC, the MSE2, and the QLIKE, the GJR

model performs best in modelling SET Index volatility. However, the contrast in

the AIC, the LOGL, the MSE1, the R2LOG, the MAD2 and the MAD1 suggests

that the MRS-GARCH performs best.

5.4.3 Forecasting Volatility for the Out-of-sample in SET

Index

In this section, we investigate the ability of the GARCH, EGARCH,

GJR-GARCH, and MRS-GARCH models to forecast volatility for the SET Index

out-of-sample set. In Table 5.10, we present the results for loss function for out-of-

samples in forecasting volatility for one day ahead, five days ahead (short term),

ten days ahead, and twenty-two days ahead (long term). We found the GARCH

model performs best for one day ahead; the EGARCH model performs best for

five days, ten days, and twenty-two days ahead.

5.5 Conclusions

We considered the problem of forecasting returns for the SET Index by

using a stationary Autoregressive Moving-average order p and q (ARMA (p,q))

with some explanatory variables. After considering four types of mean equations,

we found that ARMA (1,1), which includes multiple regressions based on PCA, has
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the best performance (MSE=0.5393, MAE=0.5947). In forecasting the volatility

of the returns for the SET Index, GARCH type models such as GARCH (1,1),

EGARCH (1,1), GJR-GARCH (1,1) and MRS-GARCH (1,1) were considered.

We found that the GARCH (1,1) model performs best for one day ahead, and the

EGARCH (1,1) model performs best for five days, ten days and twenty-two days

ahead respectively.
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Table 5.2 Descriptive statistics for the SET Index and return explanatory vari-

ables.

Explanatory Mean S.D. Skewness Kurtosis Correlation VIF

SET 0.0373 1.4644 -0.69 9.194 1 na

DJIA 0.0047 1.2792 -0.017 7.626 0.219a 14.581

FSTE -0.0043 1.328 -0.169 5.718 0.166a 1.527

SP -0.0031 1.3647 -0.128 7.764 0.239a 15.197

NIX -0.0273 1.5986 -0.499 7.609 0.369a 2.01

HSKI 0.0053 1.6593 -0.067 8.96 0.495a 2.405

SES900 0.0122 1.3011 -0.337 7.674 0.507a 2.15

TWII -0.0096 1.5716 -0.202 3.348 0.351a 1.618

KOSPI 0.0272 1.7733 -0.867 9.737 0.410a 2.152

OIL 0.0413 2.5662 0.087 7.578 0.119a 1.057

GOLD 0.0581 1.1831 0.137 6.383 0.077a 1.068

THB/USD -0.0063 0.4258 0.511 20.223 −0.152a 2.197

THB/HKD -0.0059 0.5304 0.57 32.596 −0.107a 2.175

JB-test 10,741.72 (P-value= 0.000)

ADF-test -52.76 (P-value= 0.000)

KMO 0.79

Bartlett’s Test 18,167.07,df=66, (P-value= 0.000)
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Table 5.6 The ACF of the SET Index returns series, squared mean adjusted

return and results for Engles ARCH test.

Lags ACF of return ACF of (rt − µt)2 Engles ARCH test

ACF LBQ P ACF LBQ P ARCH Test P

1 0.036 3.925 0.048 0.316 300.283 0.000 262.048 0.000

2 0.073 19.764 0.000 0.057 310.008 0.000 273.691 0.000

3 0.007 19.890 0.000 0.037 314.078 0.000 274.194 0.000

4 -0.018 20.862 0.000 0.017 314.974 0.000 274.183 0.000

5 -0.004 20.911 0.001 0.037 319.091 0.000 274.155 0.000

6 -0.048 27.860 0.000 0.023 320.727 0.000 274.116 0.000

7 0.006 27.970 0.000 0.006 320.841 0.000 274.074 0.000

8 -0.016 28.781 0.000 0.036 324.781 0.000 274.036 0.000

9 0.034 32.321 0.000 0.049 332.100 0.000 274.037 0.000

10 0.043 37.820 0.000 0.316 300.283 0.000 262.048 0.000

22 -0.005 62.147 0.000 0.010 358.620 0.000 273.467 0.000
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Table 5.7 Summary of results for estimation parameters of the GARCH type

models.

Parameter GARCH EGARCH GJR

N t GED N t GED N t GED

α0 0.188a 0.090a 0.113a −0.110a −0.139a −0.131a 0.226a 0.105a 0.135a

Std. 0.017 0.018 0.022 0.013 0.018 0.019 0.019 0.019 0.024

α1 0.113a 0.118a 0.118a 0.227a 0.214a 0.219a 0.198a 0.168a 0.180a

Std. 0.012 0.016 0.019 0.021 0.025 0.029 0.023 0.024 0.026

β1 0.792a 0.835a 0.825a −0.011a −0.056a −0.073a 0.762a 0.821a 0.807a

Std. 0.018 0.019 0.023 0.010 0.014 0.015 0.021 0.021 0.025

ξ na na na 0.890a 0.946a 0.932a 0.044a 0.075a 0.067a

Std. na na na 0.010 0.010 0.013 0.011 0.019 0.020

ν na 7.194a 1.307a na 7.515a 1.331a na 7.485a 1.328a

Std. na 0.599 0.025 na 0.642 0.026 na 0.635 0.025

L. -4982 -4832 -4863 -4957 -4824 -4853 -4957 -4822 -4852

P. 0.908 0.957 0.946 0.890 0.946 0.931 0.891 0.946 0.932

LB 63.325 63.325 63.325 63.325 63.325 63.325 63.325 63.325 63.325

LB2 673.30 673.62 673.66 671.90 672.94 672.87 672.08 672.94 672.91

a,b refer to significance at 99 percent, 95 percent confidence respectively.

L. refers to loglikelihood. P. refers to persistence. LB is Ljung-Box test of innovation at lag 22.

LB2 is Ljung-Box test of squared innovation at lag 22 and Std. is standard error.
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Table 5.8 Summary of results for estimation parameters of MRS-GARCH models.

Parameter MRS-GARCH

N t 2t GED

State i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

α
(i)
0 6.061a 0.077a 0.046a 1.197a 0.046a 1.448a 0.073a 1.259a

Std. 1.057 0.021 0.018 0.468 0.020 0.808 0.021 1.017

α
(i)
1 0.189 0.060a 0.067 0.296 0.069a 0.417b 0.068a 0.041

Std. 0.117 0.018 0.020 0.107 0.018 0.193 0.018 0.134

β
(i)
1 0.000 0.835a 0.883a 0.359a 0.873a 0.300 0.846a 0.948a

Std. 0.365 0.019 0.022 0.175 0.021 0.254 0.020 0.453

p 0.571a 0.983a 0.980a 0.990a

Std. 0.144 0.008 0.009 0.005

q 0.983a 0.907a 0.823a 0.447a

Std. 0.004 0.040 0.069 0.219

ν(i) na na 8.259a 11.112a 3.694a 1.524a

Std. na na 0.968 2.692 0.818 0.061

L. −4847.87 −4808.71 −4815.98 −4812.81

σ2 7.472 0.742 0.924 3.469 0.775 5.121 0.854 6.556

π 0.491 0.509 0.157 0.843 0.103 0.898 0.017 0.983

Pers. na 0.895 0.950 0.655 0.941 0.717 0.914 0.989
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Table 5.10 Result of loss function for out-of-sample with forecasting volatil-

ity.

Panel A: Result loss function of out-of-sample with forecasting volatility for one day ahead.

Model MSE1 MSE2 QLIKE MAD1 MAD2 HMSE SR

GARCH-N 0.742 1.264 0.116 0.651 0.791 0.598 0.273

GARCH-t 0.745 1.277 0.119 0.653 0.794 0.598 0.273

GARCH-GED 0.741 1.263 0.115 0.651 0.790 0.598 0.273

EGARCH-N 0.930 1.958 0.245 0.728 0.984 0.598 0.240

EGARCH-t 0.957 2.104 0.258 0.737 1.011 0.598 0.248

EGARCH-GED 0.941 2.026 0.249 0.732 0.995 0.598 0.248

GJR-GARCH-N 0.955 2.212 0.250 0.734 1.008 0.598 0.273

GJR-GARCH-t 0.975 2.347 0.259 0.740 1.029 0.598 0.265

GJR-GARCH-GED 0.965 2.287 0.254 0.737 1.019 0.598 0.265

MRS-GARCH-N 0.908 1.853 0.221 0.718 0.961 0.598 0.240

MRS-GARCH-2t 0.882 1.987 0.198 0.703 0.934 0.598 0.273

MRS-GARCH-t 0.936 1.913 0.249 0.732 0.990 0.598 0.231

MRS-GARCH-GED 0.881 2.051 0.193 0.701 0.933 0.598 0.273
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Table 5.11 Result of loss function for out-of-sample with forecasting volatil-

ity (Cont.).

Panel B: Result loss function of out-of-sample with forecasting volatility for five days ahead.

Model MSE1 MSE2 QLIKE MAD1 MAD2 HMSE SR

GARCH-N 3.884 33.761 1.129 1.499 4.184 0.598 0.248

GARCH-t 3.947 34.597 1.140 1.513 4.250 0.598 0.248

GARCH-GED 3.904 33.960 1.133 1.504 4.205 0.598 0.248

EGARCH-N 3.274 24.855 1.022 1.371 3.547 0.598 0.240

EGARCH-t 3.335 26.017 1.030 1.382 3.609 0.598 0.256

EGARCH-GED 3.288 25.268 1.023 1.373 3.561 0.598 0.248

GJR-GARCH-N 4.828 54.530 1.244 1.663 5.159 0.598 0.240

GJR-GARCH-t 4.938 57.343 1.257 1.681 5.273 0.598 0.240

GJR-GARCH-GED 4.877 55.893 1.249 1.671 5.209 0.598 0.240

MRS-GARCH-N 4.659 48.704 1.216 1.632 4.985 0.598 0.248

MRS-GARCH-2t 3.990 37.690 1.138 1.513 4.291 0.598 0.248

MRS-GARCH-t 4.799 50.266 1.243 1.663 5.131 0.598 0.240

MRS-GARCH-GED 4.030 39.615 1.138 1.517 4.331 0.598 0.231
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Table 5.12 Result of loss function for out-of-sample with forecasting volatil-

ity (Cont.).

Panel C: Result loss function of out-of-sample with forecasting volatility for ten days ahead.

Model MSE1 MSE2 QLIKE MAD1 MAD2 HMSE SR

GARCH-N 8.219 145.378 1.589 2.192 8.856 0.598 0.198

GARCH-t 8.428 150.989 1.607 2.223 9.075 0.598 0.223

GARCH-GED 8.299 147.145 1.597 2.204 8.940 0.598 0.207

EGARCH-N 4.667 51.194 1.251 1.640 5.141 0.597 0.182

EGARCH-t 4.737 53.020 1.259 1.652 5.214 0.597 0.182

EGARCH-GED 4.669 51.557 1.250 1.640 5.143 0.597 0.182

GJR-GARCH-N 9.863 216.313 1.686 2.391 10.555 0.598 0.190

GJR-GARCH-t 10.091 225.828 1.701 2.419 10.790 0.598 0.182

GJR-GARCH-GED 9.949 219.959 1.692 2.402 10.643 0.598 0.182

MRS-GARCH-N 9.671 204.750 1.664 2.360 10.353 0.598 0.174

MRS-GARCH-2t 7.391 120.506 1.528 2.077 7.994 0.598 0.207

MRS-GARCH-t 9.930 210.715 1.688 2.400 10.625 0.598 0.182

MRS-GARCH-GED 7.514 127.357 1.534 2.090 8.120 0.598 0.190
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Table 5.13 Result of loss function for out-of-sample with forecasting volatil-

ity (Cont.).

Panel D: Result loss function of out-of-sample with forecasting volatility for twenty two days ahead.

Model MSE1 MSE2 QLIKE MAD1 MAD2 HMSE SR

GARCH-N 19.886 808.025 2.132 3.431 21.418 0.598 0.231

GARCH-t 20.559 852.974 2.154 3.493 22.119 0.598 0.248

GARCH-GED 20.152 823.431 2.141 3.456 21.695 0.598 0.248

EGARCH-N 5.801 82.676 1.412 1.834 6.616 0.594 0.198

EGARCH-t 5.928 86.247 1.424 1.854 6.751 0.594 0.198

EGARCH-GED 5.803 83.054 1.412 1.834 6.618 0.594 0.198

GJR-GARCH-N 22.451 1046.189 2.198 3.637 24.070 0.598 0.215

GJR-GARCH-t 22.920 1082.107 2.211 3.678 24.558 0.598 0.207

GJR-GARCH-GED 22.559 1051.835 2.201 3.647 24.183 0.598 0.207

MRS-GARCH-N 22.658 1072.927 2.193 3.640 24.278 0.598 0.182

MRS-GARCH-2t 14.815 453.499 1.967 2.966 16.135 0.598 0.223

MRS-GARCH-t 23.064 1093.953 2.208 3.681 24.703 0.598 0.174

MRS-GARCH-GED 15.129 477.250 1.977 2.994 16.461 0.598 0.207

 

 

 

 

 

 

 

 



CHAPTER VI

CONCLUSION

In the time series, the stock price was transformed to return series for

stationary process. For the purpose of forecasting, one normally uses the mean

equation. However, the constant mean equation cannot be used for forecasting

due to inaccuracy of the financial data, since the financial returns depend con-

currently and dynamically on many economic and financial variables. The return

has a statistically significant autocorrelation which indicates that the lagged re-

turns might be useful in predicting of returns. Thus, we considered to choose

some explanatory variables and stationary Autoregressive Moving-average order

p and q (ARMA (p,q)) by adding them into the mean equation for increased ac-

curacy. During the process approach, we found two problems. The first problem

is that some explanatory variables occur multicollinearity, and there is high cor-

relation in a regression model. We use Principal Component Analysis (PCA) to

remove possible complications caused by multicollinearity. The other problem is

that the variances of the residuals are not constant and possibly time-dependent

(Heteroskedasticity). We used the volatility models to forecast volatility of this

approach, considering the models of volatility such as GARCH, EGARCH, GJR-

GARCH and MRS-GARCH (Markov Regime Switching GARCH) models.

In Chapter III, we forecasted volatility of the SET50 Index by using the

Markov Regime Switching GARCH (MRS-GARCH) models. These models allow

volatility to have different dynamics according to unobserved regime variables. The

main purpose of this chapter was to find out whether the MRS-GARCH models are
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an improvement on the GARCH type models in terms of modelling and forecasting

the SET50 Index closing price volatility. We compared the MRS-GARCH (1,1)

models with GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) models. All

models were estimated under three distributional assumptions that are Normal,

Student-t and GED. Moreover, Student-t distribution which takes different degrees

of freedom in each regime is considered for the MRS-GARCH models. We first

analyzed in-sample performance of various volatility models to determine the best

form of the volatility model over the period 4/01/2007 through 30/08/ 2011. As

expected, volatility is not constant over time and exhibits volatility clustering

showing large changes in the price of an asset often followed by large changes, and

small changes often followed by small changes.

This empirical part adopts GARCH type and MRS-GARCH models to

estimate the volatility of the gold price. In order to account for fat tailed features

of financial returns, we considered three different distributions for the innovations.

Almost all parameter estimates in GARCH type models are highly significant.

Most parameter estimates in MRS-GARCH are significantly different from zero.

However, the results of goodness-of-fit statistics and loss functions for all volatility

models show different results. The trading details we have used describe forecasts

of closed price of gold price between 1/08/2011-30/08/2011 and trading in gold

future contract (GF10Q11). We found the cumulative returns with the Markov

Regime Switching GARCH-N (MRS-GARCH-N) model and the GJR-N model

give us higher cumulative returns than the other models.

In Chapter IV, we modelled the returns of the SET Index by mean equation

with the day of the week effect and the autoregressive moving-average order p and

q (ARMA(p, q)) and forecasted the volatility of the SET Index by the GARCH,

EGARCH, GJR-GARCH and MRS-GARCH models. Moreover we compared their
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volatility forecast performance with one day, one week, two weeks and one month

returns. We found that Friday is the day which effect on the SET Index and ARMA

(3, 3) the best process for forecasting in the mean equation. The GARCH-type

models perform best in the short term (one day and a week). On the other hand,

the MRS- GARCH models perform best in the long term (two weeks and a month)

for forecasting volatility of the SET Index.

In Chapter V, we considerd the problem of forecasting returns of the SET

Index using a stationary Autoregressive Moving-average order p and q (ARMA

(p,q)) with some explanatory variables. By considering the four types of mean

equations, we found that ARMA (1,1) which includes multiple regression based

on PCA has best performance (MSE=0.5393, MAE=0.5947). For the forecasting

volatility of the returns SET Index, and the GARCH type models such as GARCH

(1,1), EGARCH (1,1), GJR-GARCH (1,1) and MRS-GARCH (1,1) have been

considered. We found that the GARCH (1,1) model was the best performed for

one day ahead, the EGARCH (1,1) model was the best performed for five days,

ten days and twenty-two days ahead respectively.

For further study, three or four volatility regimes settings can be consid-

ered rather than two-volatility regimes. Also, one may use the Markov Regime

Switching with other volatility models e.g. the EGARCH, the GJR. In addition,

the performance of the MRS-GARCH model can be compared in terms of their

ability to forecast Value at Risk (VaR) for long and short positions.
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