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Abstract. An obtaining of equations for double waves in case of general quasilinear system of partial differential
equations has big difficulties. They are connected with complexity and awkwardness of study of overdetermined
systems, describing solutions of this class. However there are general statements about double waves of au-
tonomous quasilinear system of equations. This article is devoted to classification of irreducible double waves of
autonomous nonhomogeneous systems.
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1. Introduction

A solution u; = ui(x1, 22, ..., 2n), (1 =1,2,...,m), of the autonomous quasilinear system of equations

> Aolu) e = (1) 1)

a=1

O(ur, Uy .oy U
8(561,562, . ,xn)
a domain G of the independent variables xi,zs,...,x,. Here A, are rectangle N x m matrixes with
elements af;(u) and f = (fi(u),..., fn(u)).

Depending on the value of 7 a multiple wave is named simple (r = 1), double (r = 2) or triple (r = 3)
wave. The value r = 0 corresponds to uniform flow with constant u;, (i = 1,2,...,m), and r = n
corresponds to a general case of nondegenerate solutions. Multiple waves of all ranks compose a class of
degenerate hodograph solutions.

The singularity of the Jacobi matrix means that the functions u;(z) (i = 1,2,...,m) are functionally
dependent (hodograph is degenerated), with m — r number of functional constraints

wi = ®;(NL N2 A, (= 1,2,...,m). (2)

is called a multiple wave of rank r if a rank of the Jacobi matrix is equal to 7 in

The variables A'(u), A?(u),...,A"(u) are called parameters of the wave. The solutions with degenerate
hodograph are a generalization of the travelling waves: the wave parameters of the travelling waves
are linear forms of independent variables. To find the r—multiple wave it is necessary to substitute the
representation ( 2) into the system ( 1). We get an overdetermined system of differential equations for the
wave parameters A’(z), (i = 1,2,...,r) which should be studied for compatibility. Review of applications
of multiple waves in gas dynamics can be found in [1].

The main problem of the theory of solutions with degenerate hodograph is getting a closed system of
equations in the space of dependent variables (hodograph), establishing the arbitrariness of the general
solution and determining flow in the physical space.

Arbitrary nonhomogeneous system ( 1) is not changed under transformations

zi=z;+b;, (i=12,...,n),

that compose a group G™. For homogeneous systems ( 1) (f = 0) there is one more scale transformation!
z, =azx; (i=1,2,...,n). With group analysis point of view an r—multiple wave is a partially invariant
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solution with respect to G™ (or G"*1) [2]. A class of partially invariant solutions of some group H is
characterized by rank o and defect §: class H(o,d)—solutions. If some class H(a,d)-solutions is a class
H, (0,61 )-solutions with less defect d; < 0, then it is said that the class H (o, d)—solutions is reduced to
the less defect. For example, if §; = 0, then such solution is reducible to invariant solution with respect
to the subgroup H;.

A practice of study of partially invariant solutions shows that classes of solutions of a given rank
with less defect are easier to get. It is connected with the property that analysis of compatibility for the
solutions with greater defect is more difficult. Therefore it is useful to clarify the structure properties of
overdetermined system a priori.

There are only some sufficient conditions of the reducibility [2] that allow to predict a reduction on
the basis of structure properties of overdetermined system. One of these conditions is a restriction on
ability to define all first derivatives of solution (otherwise the solution is reduced to invariant solution).
Others are concerned to double waves. If in the process of getting compatibility conditions for the wave
parameters of double wave we obtain N = 2n — 1 homogeneous equations of type ( 1), then this double
wave is invariant solution. In particular, plane nonisobaric double waves with the general state equation
which has defect of invariance § = 2 are isentropic [2]. Another application of these conditions to double
waves of gas dynamics equations leads to the result [3] that the class of irreducible to invariant solutions of
plane isentropic irrotational double waves is described by flows obtained in [4]. For homogeneous systems
of type (1) with N = 2n — 2 and n = 3 full classification of double waves with additional assumption
about having functional arbitrariness of the solution was done in [5].

This article is devoted to the study of nonhomogeneous systems of type ( 1) with N = 2n—1 equations
which solutions are not reducible to invariant.

2. Nonhomogeneous systems (N=2n-1)

Let a system of N = 2n — 1 independent autonomous quasilinear equations on the wave parameters A
and p of a double wave be type of (1). It can be obtained as a result of substitution of the representation
of double wave:

wi =u;(Ap), 1=1,2...,m)

into the initial system and some analysis of compatibility 2. Without loss of generality equations for the
wave parameters can be rewritten as

Ai =i A1+ filh ), g = q;(N ) + g5 (A, ), (3)
i=1,...,n; j=1,...,n).

Here A\; = OA/0x;, uj = Op/O0x; and for the sake of simplicity we accept py =1, fi = 0.

The problem is to classify systems of type (3) with irreducible to invariant solutions.

A classification is derived with respect to equivalence transformations, admitted by system (3):
(a) linear nondegenerate replacement of independent variables;
(b) replacement of wave parameters: ' = L(\, u), p' = M(\ p).

In the last case the coefficients p;, ¢; and the functions f;, g; are transformed by formulae:

,  pila+aqL, ,  piMx+q;M,

!
=1, pl="A TR
P i e, T T Lital,

fi=0, fi=filx+giL,—g1Lupi, g5 = fiMx+ g; M, — g1 L,qj,
t=2,...,n; j=1,...,n).

As a result of such transformations (as in homogeneous case [2]) it is possible to do ¢; = 0. For this
purpose it is enough to choose a function L(A, u), which satisfies to the equation Ly + ¢1 L, = 0.
If 3. q7 #0, then the coefficients of system ( 3) can be transformed to

=0, ¢2=1. (4)

2A case of homogeneous N = 2n — 1 equations was studied by L.V.Ovsiannikov [2]
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Simultaneous safe of equalities ¢ = 0, ¢ = 1 under replacement of the wave parameters is iff there is
M}\ = 07 L)\ = Mu:

ie.,
L=AM'(n) + w(p), M =M(u). (5)

Another case corresponds to system ( 3) with
¢=0({=12,...,n). (6)

There is no last case (6) for homogeneous systems, because conditions (6) contradict to the definition of
double wave for such kind of systems: rank of the Jacobi matrix is less then two.

A study of compatibility of system (3) consists of in the following. As a result of reduction of
overdetermined system ( 3) to involutive system we get equations with a structure of nonhomogeneous
quadratic forms with respect to the derivative A;. If at least one of coefficients of these forms is not
equal to zero, then it means that a solution of the system satisfies to overdetermined system of equations
from which all first derivatives can be found. By virtue of reduction theorem [2] it gives the reduction
of this solution to invariant solution. Therefore these forms are decomposed on subsystems on functions
Di, 45, fi,g;: quadratic, linear and ”"zero” terms with respect to power of the derivative A;. Further
simplifications are connected with more detail study of compatibility conditions of systems of the types
(4) and (6).

3. Systems of the type ( 4)

The value of A\;; = a\; + b, can be defined from the expression D;(us — A\ — g2) — Da(u1 — ¢1) = 0
where D; is a total derivative with respect to ;, @ = p2gix + g1, — g2x, b = fag1x + 9291, — 9192, It can
be noted that all second derivatives \;; and p;; can be found. Therefore an arbitrariness of the general
solution of system of the type ( 4) is only constant. For example, the derivatives

Ait = pix AT + Ai(api + fix + g1pin) + bpi + g1 fin, (1=2,3,...,n)

can be found from the expressions D (\; —p; A1 — f;) = 0. After substituting them into F; = Dypu;— Dy =
0, (i =2,3,...,n) we obtain nonhomogeneous quadratic forms with respect to the derivative A;. By
virtue of the prohibition of reduction of the solution of system (3) to an invariant, the coefficients of these
quadratic forms F; have to be equal to zero:

qix = 07 (7)

2i(P291x — 92x) + 919in + gix — Pig1x = 0, (8)

¢ib + 919in — figix — gig1u =0, 9)
(1=2,3,...,n).

In the same way from the quadratic forms D;\; — D;X\; = 0 we get
4jPip = 4iDjp (10)
fipix + 9iPip + @5 fin + Pig1Pip = fiPix + 9iPju + Qi fjp + Pjg1Din, (11)
fifix + 9 fip + pigi fipn = fifix + 9ifjn + pjg1 fin,

(6,7 =2,3,...,m5 i # j).
And from the equalities D;p; — Djp; = 0 we find

4 (Pix — @) = G (Pix — Gin)» (12)
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9i%in + 4i(Pja+ fix + 910ju) + Pigix + ¢jGin = (13)
9ilju + 45 (pia + fix + 910ip) + Pigix + diGjus

qi(pib+ g1 fin) + fi9ix + 99 = (14)
q;(pib + g1 fin) + figix + 9iGjps

(6,5 =2,3,...,n5 i #J).

We note that the expressions Dy \;; — D;A11 = 0 are cubic polynomials with respect to the derivative A;:
PixaA? + ... = 0. Therefore,
piax=0,(i=2,3,...,n).

With the help of equivalence transformations ( 5) that leave unchanged conditions ¢; = 0,¢2 = 1,
because of the choice of the functions w(p) and ¥ (u), we can assume that p» = 0. Then from ( 6), ( 10),
(12) we get

QiA:Oapi,u:OapiA:‘Ziua(i:2737---,n)- (15)

By using ( 15) in the expressions D1 A;; — D;jA\1 =0,(i =2,3,...,n) we find

giay = 2apix + fiar, (16)

fiax + giay + q;b, = (17)
3bpix + g1 (piay + 2fize) + 911 fin,

agi fip + oafi + giby = (18)
bfi)\ + 0 (pibu + glfiuu + glufiu):

The functions p;, ¢, fi, g; must satisfy to ( 8), (9), (11), ( 14), ( 13), ( 15) - ( 18) for the irreducibility
of solutions of system ( 3) to invariant solutions.
We note that
pi = )\Ai—l-Bi,qj = /J,Ai-FCi, (l = 2,3,...,”),

are the general solutions of equations ( 15), where
A1 = O,Bl = I,Cl = O,AQ = O,BQ = O,CQ = 1,

and A;,B;,C; (i =3,...,n) are arbitrary constants. Further simplifications of equations of system ( 3)
are connected with an application of equivalence transformations, which correspond to a replacement of
the independent variables. By virtue of the replacement:

! ! ! .
Ty = Baxa) Ty = Camon T; = l'i,(l = 3,4,...,”)

we can get B; =0,C; =0, (i = 3,4,...,n).
Further we have to consider two cases: (a) all A; =0(i = 3,4,...,n) and (b) >, A7 # 0.
In the first case (a) the system ( 3) has the form

A2 = f2, \i = fi, (19)
B = g1, H2 :>\1 +g?7ui = Gi, ZZ 37

In the second case (b), without loss of generality, we can regard As # 0. Then as a result of one more
linear transformation of the independent variables

! ! ! ! -
Ty =Ty, Ty = T2, x?):Aozmon Ti = Ty, (224)57"'7n)



Irreducible Double Waves )

system ( 3) becomes

A2 = f2, A3 = AN+ f3, N = fi, (20)
p1 = g1, 2 = AL+ g2, i3 = k2 + g3, i = i, 12> 4.
Further successive simplifications of systems (19) and (20) are connected with the analysis of the

constants C}.
3.1. System (19)

In this case equations ( 8), (19), ( 11), ( 14) are reduced to

gi = Cip+ K;, fi = C;A + Ry, (21)
Ci(Agir + g1, — 1) + Rigin + Kig1, = 0,
Ci(Agax + pg2u — 92) + Rigax + Kig2, =0,
Ci(Afar + pfop — f2) + Rifor + Kifo,, =0,
CiR; = C;Ri, CiK; = CiK, (i) = 3,4, ... ,n),

where C;, R;, K; are arbitrary constants.
3.1.1.

If at least one of the constants C; is not equal to zero, (without loss of generality, we can take C3 # 0),
then with the help of transformations

Rs K;
N=At ) =t =
+C3’ H ,U+C3,
n
T =z, Ty =1, wg:ZCama, ri=z; (i=4,...,n)
a=3
system ( 19) becomes
>\3:)\,,ug:,u,)\i:0,ui:0,(i:4,5,...,n), (22)

A2 = AF(p/A), p1 = AW (/) po = A + AWa(p/N).

The functions F, ¥, ¥» must satisfy a system of three ordinary differential equations of the second order.
This system is obtained after substitution of

fo = AF(/N), 91 = AV (p/X), g2 = A¥2(u/N),

into equations ( 16)—( 18):
\I,Ill + y\I,IQI _ y2FII — 0’
(Y°F —y¥y — U)F" =0, (y°F —y¥s — ;)T =0,
where y = p/\.

It can be noted that system ( 22) is invariant with respect to transformation: A’ = =\, ' = —p.
Therefore we can consider that A > 0. It allows one more simplification by transformation

- N /J‘I:ln (A)v mi:mz, xl2:m17 I = Tj, (223)477n)

System ( 22) is reduced to

A2 4+ A =T (N, 0, (i

A = 3,4,....n), (23)
p’l:F(A)) /~/’2:>\1+\i’2(A)) ,LL3:]., ,UZZO 4)"'7

(1= n).
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Here W1 (A) = Uy (N) + AU, (A) — A2F (), Uy(N) = —Uy(N) + AF(N).
Let us give some remarks about solutions of system (23).
A solution of (23) has the form

A=Az, 22), p=x3+G(z1,22),

where the function G(z1,x2) can be found from the totally integrable compatible system of differen-
tial equations. These solutions are invariant solutions of equations (23) with respect to algebra with
generators:

Ops +0u, Oy, (i=4,...,n). (24)
Assume that the functions A(z1,z2) and G((z1,z2) are functionally dependent, then the Jacobian
oA . .
W(x1,z2) = % = X2 4+ X\ (¥ + A\F) — F¥; = 0. This equation supplies sufficient condition for
1,42

the reducibility of the solution of system (23) to an invariant solution with respect to H C G™. There-
fore for irreducible solutions the functions A(z1,z2) and G((z1,z2) are functionally independent or
W(Zlﬁl 5 ZUQ) 75 0. .
We note that if ¥y # 0, then functions F, ¥y, W, are linear: F' = kt A + ka, Uy = ks + ky, ¥y =
ks + k¢ with arbitrary constants k; (i = 1,2,...,6). If ¥; = 0, then ¥,(A\)+ AF'(\) =0 and A = % up
2
to shifts of the independent variables and because of W = m§2(1 + 22Uy + 71 F) # 0, then the solution

is not reducible to an invariant solution of H C G™.
3.1.2.

Let us consider the case with all zero constants C; = 0.
Firstly, assume that at least one of the constants K; is not equal to zero (without loss of generality,
we can consider that K3 # 0). Then from (21) we get

g1 =g1(A = Rp), g2 =g2(A—Rp), fo= fo(A—Rp),

where R = R3/Ks. If g1 = g5 = f3 = 0, then the solution of system (23) is linear with respect to the
independent variables, i.e. it is invariant with respect to some subgroup H C G". Therefore a prohibition
of reducibility to an invariant solution leads to conditions (g})% + (g5)? + (f4)? # 0 or from (21) we have
R; = RK;. After transformation

n
I I __ ;
a:3—z Kz, z;=uz;, 1#3
i=3

we obtain: fs =R, gs =1, =0, f; =0, (i =4,5,...,n). In addition we can reckon that R = 0.
Really, if it is not so, then after one more transformation

N =X— Ry, i = Ry,
) =R 'z) —xy, abh =1y, x4 =Ras

the same system can be obtained, but with R = 0. Irreducibility conditions ( 16)—( 18) in this case
become

fo=kiA+ ks, g/fo=0, g3f2=0

with arbitrary constants ki, ks. We note that if fo = 0 (ky = 0,k2 = 0), then a solution of ( 19) is
A =p(z1), = x5+ cxs + ¥(x1), which is invariant with respect to some subalgebra H C G™. Here ¢
is a constant. Therefore for systems with irreducible to invariant solutions we have to consider only case
when fo # 0. In this case functions g; and go are linear g; = ksA + k4, g2 = ks A + kg and system ( 19) is

Ao =kiA+ks, \i=0, (1=3,4,...,n), (25)
p1 = ks + ke, p2 =M +ksA+ke, puz=1, p; =0, (j=4,5...,n).
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If k1 # 0, then by virtue of equivalence transformations we can consider that ky = 1, ko = 0. In this
case
A =p(x1)e™, p= (9" +ksp)e™ + ke + 3,

where the function ¢ = ¢(x;) satisfies the homogeneous linear ordinary differential equation
@" — k3 + ks = 0.

If k&1 = 0, but k2 # 0, then, as in previous case, by virtue of equivalence transformations it can be put
k1 =0, ks = 1. And then

k
A=z + (1), p=1w3+ w2 + 75562 + ks + ke) + 9,
where functions ¢ = ¢(x1) and ¢ = ¥ (x1) satisfy to the ordinary differential equations

(p” + ks(pl — k3 = 0, 1/1’ = k?3(p + ky.

Now let all constants K; = 0. If at least one of the constants R; is not equal to zero (without loss of
generality we can account that R3 # 0), then by transformation

N=p, p=X zy=12, 2b=m1, mi =2, (1=3,4,...,n)
the same system is obtained as was considered in previous case. If all R; = 0, then for such a solution
A= A(z1,72), p=G(x1,22)

and it is invariant with respect to subalgebra H C G™, which corresponds to subalgebra {9;,,0x,, - -, 0z, }-
3.2. System (20)

A study of compatibility of system (20) is more cumbersome. In this case the equations ( 8), ( 9), ( 11),
(14), ( 16)—( 18) can be reduced to

g3x = Agix + p1g2n — 91, (26)
s2 = pb + g193u — f3gix — 9391, = 0,
f3u = ,Uf2u - f2;

fofax + g2f3u + Ag1fop = fafor + g3 fou,

g2 + pfox + gsp = Agax + g2 + fax,

56 = pg1fop + fag3x + 9293, — (f3g2x + 9392, + Ab + g1 f3,),
fi=0, =0, (i=4,5,...,n),

au = faax, pay, = 2a + faax, (27)
faax + g2a, + by = 91(2foxn) + g1 fous
fsax + gza, + pby, = 3b+ gi(Aay + 2f3z,) + 915 f3u,
agi f2p + bxf2 + g2by = bfox + 91(91 fopp + g1 fon),
agi fau + bxfz + gsby = bfsx + 91(Aby + 91 fapu + 91 f3u)-

The problem is to find the general solution (up to equivalence transformation) of system ( 26), ( 27).
Because equations ( 26), ( 27) are not sufficient for irreducibility of a solution of system (20) to invariant
solution, then a next problem is to try to analyze a solution of (20) with found functions f;,g; and
coefficients p;, g;.

All further intermediate calculations in the study of compatibility of the system ( 26) were made on
computer in the system REDUCE [6]. Here we give way of computations and final results.
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Let us input new function G3 = g3 — pg» instead gs. From (26); and (26)5 we find Gy, G5, and from

0 o}
Gy — 2
E T
(A(g1x — 922))x = 0. Without loss of generality, last equation can be integrated:

(27)1: faxx and f3yx. After substitution found expressions into G3, =0, we get equation

gL=1¢x, g2=pu+trlogA, (28)
where ¢ = p(\, ) and 1 = 11 (p) are arbitrary functions. After substitution of (28) into expressions for
foax and fzxn we get

f __ % f _ 2¢1 — iy

227 PR h

Integration of last expressions allows to find functions

fo =ML (1—log A) + Xepa + 3, fz = A(up] — 2¢1)(1 —log A) + Xepsg + 5

with arbitrary functions v; = ¥;(n), (i =2,3,4,5). From (26)3 we have

A2 + Py — py) + s + by — papy = 0.

After splitting of this equation with respect to A, we get
Yy = s — Yo, Y5 = iy — 3
1
or if we input a new function g = 1g(u) by 14 = g + ptp2 — 11, then 1o = 5(1/}1 — g ). In this case

oG oG
6—)\3 = —pr FApr, s = —20 + Aoap + Vg

o
which can be integrated as G = —2¢ + Apy + V.
A composition of differentiated (26)¢ with respect to A subtracted by differentiated (26), with respect
to 1 and added (27)3 is:
Y1

Y1oa — Yroa + S =0

If ¢p; # 0, then we can get contradiction. Really, let ¢; # 0, then last equation can be integrated
¢ =1(G — plog A) + ¢,
where G = G()) and ¢7 = ¢7(u) are arbitrary functions. In this case equation (26)4 has the form
G(aiAlog A+ a2\ +a3) + a4)\log2 A+ aszAlog A+ agA + arlog A +ag =0 (29)

where a;, (i =1,2,...,8) are polynomials of functions 1,3, 15, ¥, 7 and their derivatives. It can be
shown that (29) is possible only if ¢, = 0. But it contradicts to original assumption about ;. Therefore,
we have to consider ¢, = 0.

Further consideration is founded on the analysis of compartibility of equations (26), and
882 886

— —— =0, which have the forms:

ET))
ouh — 20h" + gh' — s (g — 2g) + Ysihg =0, (30)

—30APup + Patg + 30uPan — earxh =0, (31)

where h = Ay — 2¢3.
Assume that h = 0, so ¥3 = 0, g = c1u + c2, where ¢; and ¢ are constants. We note that in this
case ¥f = 0. Analysis of (31) gives that we need to study two cases: (a) ¢, =0 and (b) ¢, # 0.



Irreducible Double Waves 9

Let ¢, = 0, then from (31) we get
(1A +15)an — crpa = 0.
If ¢; # 0, then without loss of generality, system (20) can be written as
A2 =0,A3 = A\ + A0 =0, (32)
1 =2cA, g2 =M, pz=pA\ +p+c, p; =0, 1> 4.
A solution of this system is

A= —$1¢($3), n= (CJE% +x2 + 026m3)¢($3),

ers
where ¢(z3) = w1

If ¢; = 0 and ¢5 # 0, then without loss of generality, system (20) can be written as

No = 0,5 = A\ + 1, A =0, (33)
pr=c¢, g2 =AM, p3 =pA —cA+c2, u; =0, >4

A solution of this system is

where ¢ is arbitrary constant.
If ¢; = 0 and ¢5 = 0, then without loss of generality, system (20) can be written as

X2 = 0,A3 = A, \; =0, (34)
pr =, gz =M, ps=ph + A — 20, 1 =0, i >4,
where ¢ = ¢()) is arbitrary function of A\. A solution of this system is

X1 o
A=——, p=—=—=—xz30(N).
I3 I3

Let ¢, # 0, then from (31) we get ¢ = F(£), where & = p + 1(A). The functions ¢(\) and F(&) are
functions of one argument (F' # 0), which have to satisfy to the equations

W (e A +1hs) =0, F"(2F — 1€ —c3) + o1 F' — (F')2 = 0.

Here, by virtue of the first equation, ¢3 = ¥'(c1 A + ¥5) — ¢1% is a constant.
If ¢; # 0, then because of equivalence transformations, we can account that ¢; = 1, ¢5 = 0, ¢ = 0,
and system (20) can be written as

A=0, 3=A\+ A, A\ =0, (35)
=0, po =M +F', p3=p\ +p+pF' —2F, p; =0, i >4,
where the function F = F'(u) satisfies to
(W —2F)F"=F'(1-F'"), (F'#0).
A solution of this system is

r1e’3

A= 1_ o3’ n= u(l‘2,1'3),

where a function u(zo,z3) satisfies to a compatible overdetermined system of equations.
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If ¢4 = 0 and 5 # 0, then without loss of generality and because of equivalence transformations,
system (20) can be written as

A =0, =AM\ +1,) =0, (36)
p =0, p2 = A1t + 2cp, p3 = pAi, pi =0, i >4,

where ¢ # 0 is a constant. The solution of this system (up to scaling z1,z2,x3 and p) is

T 1
A=—"Lgas, p=—(ye" +1),
I3 I3

where y =0 or vy = 1. If vy = 0, then the solution is invariant with respect to subalgebra 0,,,0;,, (i =
4.5 ...,n).
If ¢; = 0 and 5 = 0, then without loss of generality, system (20) can be written as

A2 - 0,)\3 - A)\l,Ai - 0, (37)
= P'F o =M+ F'y oz = pha + (p+ ' NF = 2F, p; =0, i > 4,

where ¢ = ¢()) is arbitrary function, F' = c(£ + ¢3)?, € = p+1(A) and ¢, 3 are constants (¢ # 0). With
the help of equivalence transformation this system can be simplified to

Ao = 0,5 = A, i = 0, (38)
=P (), p2 =M+ gy pz = pd + (M =)+ M), i =0, i>4,

The general solution of this system is (up to equivalence transformation)

1
_n - _(,YeIz*zaUJ +1),

A= .
I3 I3

where y =0 or vy =1. If vy = 0, then the solution is invariant with respect to subalgebra 0,,,0:,, (i =
4.5 ...,n).

Now we consider the case h = Mg — 293 # 0.

Let ¢f # 0, then system (30), (31) is compatible (up to equivalence transformations) only if the
system (20) has the form

A2 = A+ a)p, A3 = A, A = 0, (39)
p =0, p2 = A1 +p(p+B), pz = pi, pi =0, i >4,

where a, 3 are constants. A solution of this system depends on f.
If 8 # 0, then the solution is (up to equivalence transformation)
T — aye®? 14 B2vye®2

A=—pf—— 1= ;
yerz — x3 yerz — x3

where y =0 or vy =1. If y = 0, then the solution is invariant with respect to subalgebra 0,,,0;,, (i =
4,5,...,n).
If 8 =0, then the solution is (up to equivalence transformation)

T + aw% To

:—7’ u:

T3 + 23 T3 + 3

Let ¢f = 0 or ¢ = c1pt + ¢ and 93 # 0. Changing of the function ¢ on to Q(\, u) = (p — ¥6/2)/h*
simplifies equations (30) and (27)s3, even more; the equation (27)3 can be integrated:

00 Ll — W) et
ox T T

+1/}87
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where 13 = 1g(u). Then from these two equations by cross differentiating we get
AQ* + BQ +C =0,

where A = G2 (4244 — 20gutt + (1)), B = Bertha ()22, C = Gt — 36394 /16.

Further analysis depends on the value of Q. There are only two possibilities: a) A =0, B=0, C =0
and b) Qx = 0.

In the case a), because B = 0, we need to consider two cases. In the first case ¢ = 0, and then,
without loss of generality the system (20) can be reduced to

A2 =1, A3=AA1 +e1) —p+es, (40)
/},1:]6, /},2:>\1+01, /},3:/},>\1—k)\+k1,

where k and ki are constants and ¢; accepts two values: either ¢; = 1 or ¢; = 0. In the second case
¢ =0, and without loss of generality the system (20) can be reduced to

1 1
Ao = =5 (n— k), >\3=>\>\1—6(u+2k)(u—k)2, (41)
_ (k) _ 2(p — k)® _ (1= k)* (A + 3kA — 2ky pu — 2kky )
M= Gk M2 TN T 3Ry e TN 6(X — k)2 ’

where k and k; are constants.
Let us now consider the case b) @y = 0. From s = 0 we get Qu§ = 0. If ¢; = 0, then the system
(20) can be reduced to

A2 =13 Az = A\ + s, (42)
pr =0, p2 =N +ksthy, pz = phi + ksyl,
where k is a constant and 3 is an arbitrary function of one argument and function 5 is connected with
s by: i = plh — 3. If ¢ # 0, then the system (20) can be reduced to
A =1, )\3:>\(>\1+1)—/},+k‘1, (43)
p=0, po =X +1, puz=ph+Ek,
where k and k; are constants.
We can thus formulate the following theorem.
THEOREM. System (19) can have solutions irreducible to invariant solutions only if it is equivalent

to one of the systems: (23), (25), (32)—(36), (37) (or (38)).
4. Systems of the type ( 6)

Systems of the type ( 6) have the form
(i=1,...,n; j=1,...,n).

As with systems of type ( 4), we can obtain necessary irreducibility conditions from expressions D;u; —
Dj/,ti =0:
gix =pigin, Gin = figix + 9ig1u, 0jfi — Pifi)gixn + 9i9jn — 9i9in = 0, (45)

and

(Pipjp — PiPi) g1 + Pixfj + Pingi — Pixfi — Pjugi = 0, (46)
(Pifiu —pjfin)gr + fixf; + fing; — finfi — fingi =0,

from expressions D;A\j — DjA; = 0. Here ¢,j =2,3,...,n.
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Assume that g; # 0. If g;) = 0, then without loss of generality we can consider g; = 1. In this case
from (45) we can conclude that g;, (i,7 = 2,3,...,n) are constant, even up to equivalence transformations
we can regard them as g; =0, (i,7 = 2,3,...,n). Solution of such system is u = x1, which is partially
invariant with defect 6 < 1. It is possible further simplification of system (44).

If g1» # 0, then without loss of generality we can consider g; = A. Because in this case from (45) we
have

Pi = Gix, fz = )\giu, (l = 2,3,. . .,TL).

It gives that first n — 1 equations \; = p;A1 + fi, 0, (4,5 = 2,3,...,n) are consequences of the others
equations. But we assumed that equations of system (44) are not dependent.

If g4 = 0, then without loss of generality we can consider that go = 1. From (45) and changing the
independent variables, we can obtain g; = 0, (j = 3,4,...,n). Solution of such system is u = x», which
is partially invariant with defect § < 1. As earlier it is possible further simplification of system (44).

5. Conclusion

In this paper, the classification of systems of type ( 3) with N = 2n — 1 nonhomogeneous for double
waves quasilinear equations are done.
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