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Abstract. In this manuscript we study the Navier-Stokes equations and viscous gas
dynamics equations. These equations play a central role in much of the research within
applied mathematics, physics and engineering. One of the questions that we study here is
the existence of solutions of special vortex type for the Navier-Stokes equations and viscous
gas dynamics equations. This type of solution for the inviscid gas and fluid dynamics
equations was introduced by L.V.Ovsiannikov [1]. Note that this solution is partially
invariant with respect to group of rotations O(3). Another part of our study is devoted
to the group classification of spherically symmetric viscous gas dynamics equations. The
approach used is classical group analysis. We use the notions of invariant and partially
invariant solutions.
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1 Introduction

The mathematical models of many real world phenomena are formulated in the form
of differential equations. One of the methods for studying the properties of differen-
tial equations is group analysis. Differential equations usually contain parameters
or functions that are determined experimentally and hence are not strictly fixed.
Group analysis not only helps to construct exact solutions, but also to classify the
differential equations with respect to these arbitrary elements.

Many of the invariant solutions of the Navier-Stokes equations have been known
for a long time; however their systematic analysis became possible only with the
development! of the modern methods for the group analysis of differential equa-
tions [4]. The first group classification of the Navier-Stokes equations in the three-
dimensional case was done in [5]. It was shown that the Lie group admitted by
the Navier-Stokes equations is infinite-dimensional. There is still no classification of

LA historical review of a group analysis develpoment can be found in [2]. Many results of the
group analysis are collected in [3]



this group. Several papers [6-11]% are devoted to invariant solutions of the Navier-
Stokes equations. Partially invariant solutions of the Navier—Stokes equations have
been less studied [6, 15]. At the same time there has been progress in studying
such classes of solutions of inviscid gas dynamics equations [4, 16, 17]. Recently,
L.V.Ovsiannikov [1] found one class of partially invariant solutions, called a special
vortex. This solution is based on the group of rotations O(3). An ideal fluid and an
inviscid gas have the same class of solutions. Therefore, it is natural to investigate
the existence of special vortex type solutions for the Navier-Stokes equations and
viscous gas dynamics equations.

As is well-known, the main difficulty in the study of partially invariant solu-
tions is the analysis of the compatibility [18, 19] of the appearing overdetermined
systems. The analysis of compatibility can be reduced to the consecutive perfor-
mance of algebraic operations of symbolic nature. These operations are connected
with a prolongation of the system, substitution of composite expressions (transition
onto manifold), and finding ranks of matrices. Typically, the compatibility study of
systems of partial differential equations requires a large amount of analytical calcu-
lations, and it is necessary to use a computer system for these calculations. Here we
used the system REDUCE [20].

Another part of our study is devoted to the group classification of spherically
symmetric viscous gas dynamics equations. The group classification problem con-
sists of searching for admitted groups of transformations admitted by the system for
all arbitrary elements and all specifications of arbitrary elements. By special choice
of the arbitrary elements one can extend the admitted group.

After finding the admitted group one can try to construct exact solutions: every
subgroup of the admitted group can be a source of invariant or partially invariant
solutions. There is an infinite number of subgroups®, even in cases where the ad-
mitted groups are finite-dimensional. But if two subgroups are similar, i.e., they are
connected with each other by a symmetry transformation, then their corresponding
invariant solutions are connected with each other by the same transformation. Since
the set of subgroups can be divided into classes of similar subgroups, therefore, it
is sufficient to find only one representative solution from each similar class of sub-
groups. A set of representatives of equivalent subgroup classes is called an optimal
system of subgroups. In this manuscript we give representations of all invariant so-
lutions with respect to subgroups of two-dimensional admitted groups of spherically
symmetric viscous gas dynamics equations.

We should also note here that, as for the Navier-Stokes equations, many of
the invariant solutions of the viscous gas dynamics equations have been obtained by
other methods [21-29]. The group classification of the viscous gas equations (in case
when the first A and the second p coefficients of viscosity are related by the equation
A = —24/3) was done in [30]. For some models of viscous gas dynamics equations,
group analysis was used in [31, 32]. There also exist other similar approaches for

2Short reviews devoted to invariant solutions of the Navier-Stokes equations can be found in
[6, 12, 13, 14].

3Because there is a one-to-one correspondence between groups and Lie algebras one can study
the Lie algebra of the admitted group.



constructing exact solutions of the Navier-Stokes equations. We note here two of
them: nonclassical symmetry reductions [33, 14] and linear profile of velocity [34].

2 Viscous Gas Equations

2.1 Coordinateless form of viscous gas equations

In this manuscript we study unsteady viscous gas dynamics equations. These equa-
tions govern a three-dimensional motion of a compressible, thermal conductive, New-
tonian viscous gas flow

dv dr
— =r1dww(P), — — tdiv(v) =0,
o (P), — (v)
d
d_i =7P:D+1div(kVT).
Here 7 = 1/p is a specific volume, p is a density, v is a velocity, P is a stress
tensor, D = % (% + (g—;)*) is a rate-of-strain tensor, € is an internal energy, T is

a temperature, k is a coefficient of a heat conductivity. The Stokes axioms for a
viscous gas give
P = (—p+ Miv(v))I + 2uD,

where p is a pressure, A and p are the first and the second coefficients of viscosity,
respectively. A viscous gas is a two parametric media. As the main thermodynamic
variables we choose the pressure p and specific volume 7: the entropy 7, the internal
energy ¢ and the temperature T are functions of the pressure and specific volume

n= 77(1% 7—)7 €= 6(]?, T)v T= T(p, T)'

The first and the second thermodynamic laws require for these functions to satisfy
the equations

Ep  _ & tp

= = T, BA 20, p >0, k> 0.

For the simplicity of classification we study case, which corresponds to an essentially
viscous and heat conductive gas

uw#0, k#0.
Thus, the studying viscous gas dynamics equations are
d
d—z 7V =7 (N + p)V(div(v)) + (div(v))VA + pAv +2D(V)), (1)
d
d_7t- — rdiv(v) =0,

D 1 Alp, )div(v) = Blp, 1) (M div(v))” + 24D : D+ (VK)(VT) + KAT)



with the functions

_ T(er +p) B T
N ep _61,'

A

Note that the internal energy and entropy can be expressed through the functions
A= A(p,7), B= B(p, 1) by formulae

T A T A
£, = — —

6p:§7 B panp:ﬁan‘r:ﬁ'

The conditions e,; = €75, 77 = 7p lead to the restrictions

7B, + BA, — AB, = B* + B, )
7T, = AT, — TB.

In the case of an ideal gas (i.e., the gas that obeys the Clapeyron equation 7" =
R~'pr) there are B = B(rp), A = p(1 + B(7p)) with an arbitrary function B(7p).
For a polytropic gas ¢ = (v — 1) "17p and this one more simplifies the functions A
and B: B = (y—1), A = vp. Here R is the gas constant and v is a polytropic
exponent. Note also that the Navier-Stokes equations are obtained from the viscous
gas equations by assuming that the second coefficient of viscosity i and the density
p (or the specific volume 7) are constants.

Remark. In the case of constant 7 and p system (1) is split on two systems:
the Navier-Stokes equations and the energy equation.

2.2 Spherical coordinate system

Equations (1) are written in coordinateless form. For applications one needs to write
them in some coordinate system. Because our goal is to study solutions of viscous
gas equations connected with the group of rotations, then it is convenient to use a
spherical coordinate system.

The spherical coordinates (r,f, ¢) and the Cartesian coordinates (x,y, z) of the
point x € R? are introduced by the formulae

x=rsinfcosp, y=rsinfsiny, z=rcosf

Corresponding physical components of the velocity vector v in the spherical coordi-
nate system (U, V,W) and (u,v,w) in the Cartesian coordinate system are related
by the expressions

u=Usin#cosp + V cosfcosp — W sin ¢,

v="Usinfsinp + V cosfsinp — W cos @,
w="Usinf — Vsinf.
Note that the vector (V; W) can be described by its modules H and by the angle w:

V =Hcosw, W = Hsinw. (3)



For the spherical coordinate system the fundamental tensor is diagonal:

1 0 0 - 1 0 0
(g”) - 0 ’[“2 0 ; (g”) = O T% 0 ; |g| = d€t(g”) = 7"4 Sin2 9
0 0 r2sin’f 0 0 ==y

The Christoffel’s symbols

ij_2g

I 1 Is 09is +39js 8gz'j
0KJ  0K' OKs

are (we write down only nonvanishing symbols)
1
[, =05 =T, =15 = - 3y = —r, Ty = T3, = cot 0,
I3, = —r sin® 0, I'3; = —sin 6 cos 6.

Here K' = r; K? = 0; K® = ¢ and there is a summation with respect to a repeat
index.
Tensor components of the vector v are

@2 = (U &,

"7’ rsin f

), (v1,v9,v3) = (U, rV,r sin § W).

Coordinates of a gradient of any scalar function F' are

o oy O o LOF
(VF)I_(VF)_8T7 (VF)Z_GH,(VF)_T‘Qag,
_oF . 1 oF
(VF)?’_%’ (VF) C r2sin? 0 0p’

A matrix of the covariant derivatives is (here i is a number of a row, j is a number
of a column)

ou ou U _
Nl B PR ey
vy 10V 1oV g oV _ cosb
(U,j) - r or r 00 + r r oy r 44
1w oW L oW U cotbys
rsind Or rsinf 00 rsinf Oy r r

. . 3 3
Coordinates of the rate-of-strain tensor D = § (% + (%)*) are
2Djz = U,yz + U,Cégiagjﬂ-

Hence,
2D : D = vfivfj + Ufjv%gmgjﬂ.

For the divergency there is

0 ; 1 9(r*U) 1 JsinfV 1 oW
—( 9] ): : T T .
r2  or rsinf 060 rsinf Op



The Laplace operator of a scalar function is
1 0 . OF
AF = ——— [ /|9|¢""=—— | =
NPELS ( 919 am)

10 (,0F N 1 0 (. 0 OF N 1 0*F
= —=—|r‘— ———— | sinf — — .
r2 or or r2 sin 6 00 00 r2 sin? § D2
The Laplace operator Av of the vector v has coordinates
o Ov® (oIt
I l ijl j p sl sl D
(Av) =4 (v) +2¢ Floage T 9 (—8Kj + 30 rijrps> P,

which for the spherical coordinate system are

20V 2 OW 2U 2cotf

Av) = A - __- - _ == _
(Av) ) r 00  r?sinf dp r? 72 v,
Vv 20V 20U 2cotf OW Vv
o= (0] 200200 tetoar
(Av) T r2 Or +7"3 90  1r3sinf dp  r3sin®f’
w 2 o0 (W 2cotf 0 /W
3 _ g (x il
(Av) _A<rsin9>+rsin98r<r>+ r3 00 (sinH)

2 8_U+ 2cotf 8_\/
r3sin?6 0o  r3sin?6 0y’

dv
The acceleration vector T has the components

dv\" W24+V2  [dv)® 1 UV — cot 0 W2
) =poy - 2 (22} =Zp
(dt) () r ’ (dt) r (V) + r2 ’

v’ 1 UW +cot WV
(a) _ L pw

b

7 sin 0 r2 sin 6

where of _of Vaf W of
D(f)=—4+U——+——+——-—.

ot or  r 00 rsinfdyp
A substitution of the presented coordinates of the tensors and the vectors into
system (1) gives equations of a viscous thermoconductive gas in the spherical coor-

dinate system. These equations are very cumbersome?.

4All symbolic calculations for the coordinates of the tensors and the vectors were made on
computer with the help of the system REDUCE [20)].



3 Partially Invariant Solution

In the space of variables t,7,0,p, U, H yw, T,p the group of rotations O(3) has the
generators [1]

X = —sinpdy — cos pcot B, + cos ¢(sin ) 19,
Y = cos pdy — sin ¢ cot 09, + sin p(sin §) 79,
Z = 0,.
Invariants of this group are t,r,U, H, T, p.
The rank of the Jacobi matrix of the invariants with respect to the dependent
functions is equal to four. Therefore, according to [4] there are no nonsingular
invariant solutions that are invariant with respect to group of rotations O(3). A

minimal possible defect of a partially invariant with respect to O(3) solution is
equal to one. In this case a representation of the partially invariant solution is

r=1(t,r), U=U(t,r), H=H(t,r), p=p(t,r), w=w(trb, ¢). (4)

The function w(t,r, 0, ¢) is "superfluous”: it depends on all independent variables.
Note that if H = 0, then by virtue of (3) the tangent component of the velocity
vector is equal to zero and it corresponds to spherically symmetric flows that are
considered in the next section. In this section it is assumed that H # 0.

All analytic calculations for the viscous gas dynamics and the Navier-Stokes
equations are done in the REDUCE system [20]. The result of these calculation
is: class of solutions that is partially invariant with respect to O(3) is confined by
spherically symmetric solutions.

3.1 Analysis of compatibility of partially invariant solutions

For the sake of simplicity we present here analysis of compatibility of partially
invariant solution for the Navier-Stokes equations, i.e., when 7 and p are constants.
Analysis of compatibility for the viscous gas dynamics equations is similar, but it
needs more cumbersome symbolic calculations.

After substituting the representation of the partially invariant solution (4) into
the Navier-Stokes equations® and some combinations of the second and the third
equations the initial system can be split on two subsystems: the invariant system

DoU + p, = r " H? 4+ (Upy + 47U, + 2r~2U) (5)
with the operator Dy = 0; + U0, and the supplementary system
Do(rH) = (rH),, — (rsin?0) ' H — r H(w? + r 2w} + (6)

+(rsin @) w? +2(r?sin0) ' cot fuw,,),
Dow + (rsin8) ™" H (sin 0 cos wwy + sin ww,, + cos @ sin w) =
= Wyr + 2(rH) N (rH)wy + 1 %wpg + 172 cot By + (rsin0) *w,,,

sin 0 sin wwy — cos ww,, = cos f cosw + sin O(rH) " (r*U),.

SHere we use dimensionless representation of the Navier-Stokes equations in which one can
account that y =1 and 7 = 1.



For the analysis of compatibility of system (5),(6) it is convenient to use implicit
representation for the function w = w(t,r, 0, @) in the form

F(w7t7 T‘, 97 80) = 07 (FU.’ % 0)'

All derivatives of the function w(t,r, 6, p) can be calculated through the deriva-
tives of the function F'(w,t,r, 0, ¢). For example, for the first derivatives we have

wy=—F,/F,, w,=—F,/F,, wg=—-F/F,, w,=—F,/F,.
Then the last equation of (6) becomes
sinf sinwFy — coswF, + F,(cosf cosw + ksinf) = 0,

where the function k¥ = (rH)™'(r?U), only depends on ¢t and r. Note that for
a viscous gas dynamics equations there is the same equation with the function
k(t,r) = (Hrt)"'(—=rDo7r + 7(r*U),. The general solution of the last equation is

sin w

F:(I><<,0+arctcm( ),sianosw—kcosH,t,r) .

ksin 6 + cos 6 cos w
Here the function ® = ®(y;,ys,t,7) is an arbitrary function of the arguments ¢, r

and )
sin w

y1 = ¢ + arctan( ), Y2 = sinf cosw — kcos 0.

k sin 6 4 cos 6 cos w
All further intermediate calculations in studying the compatibility of overdeter-
mined system ( 5), ( 6) were made on computer in the system REDUCE [20]. Here
we give the way of computing and the final results.
Note that the Jacobian % # 0, therefore one can choose (yi,¥9,0,t,7)
as the new independent variables. All derivatives of the function w(t,r, 8, ¢) can be
written through the derivatives of the function ®(y;, ys,t,7). After that the second

equation of (8) accepts the form
Sinwal (yla Y2, t, 1, 9) + G2 (yla Y2, 1,1, 9) = 07

where the functions Gy (y1,y2,t,7,60) and Gy(y1,ys,t,7,0) do not include w and its
derivatives. In the last equation sinw can be excluded by using the trigonometry
identity:

G3(1 — (yo + kcos0)?) — G3(1 — cos* #) = 0,

where the equality cosw = sin ' 0(y, + k cos ) found from the representation of y,
was applied.

Further calculations show that the last equation depends on # as the polynomial
of the degree 8 with respect to cos6:

8
P8:Zakcosk9:0.

k=0



The coefficients ay, (kK =0,1,...,8) only depend on y1, y, ¢, r and do not depend on
6. This allows splitting the equation with respect to cosf: ar, =0, (k=1,2,...,8).
The equality ag = 0 gives

Doh = hy + h(k* +1)"'h,, (7)
where h = rH. Substituting h; found from (7) into ag = 0, we obtain
Fe (K 4+ 1)@, + kkyya®y, ) = 0. (8)

If (k* 4+ 1)@, + kk,ys®,, = 0, then the equation a; = 0 gives the equation
ys — (k*+1)=0or
(sinfcosw — kcosf)? = k* + 1.

Note that substituting the representation of the function w(t, r,, ¢) found from this
equation into ( 5), ( 6) and splitting them with respect to cos # gives the expression
H = 0 that contradicts the assumption about H.

For the second case in (8), when k. = 0 we will obtain a contradiction with the
help of the first equation of (6). Really, the same study of the first equation of (6)
as for the second equation leads to the polynomial of the degree 10 with respect to

cos 0:
10

Py = Z by cos® 0 = 0,
k=0
where the coefficients bg, (kK =0,1,...,10) only depend on yi,ys,¢,r. The equality
bip = 0 gives
k= r2h(k* +1). (9)

By virtue of k. = 0, ( 9) and the definition of k = (r?U),/h one can obtain that
h(t,r) = 3c(t)r?, r*U(t,r) = k(t)e(t)r® + \(t),

where ¢(t) = (k*(t) + 1) 'k'(¢)/3. Substitution of this representation into ( 7) and
splitting it with respect to r gives ¢(t) = 0 that contradicts the assumption H # 0.

Similar calculations have been done for the viscous gas dynamics equations.

The analysis that has been done proves that the partially invariant solutions
of the studied class for the both types of equations (the Navier-Stokes equations
and the full viscous gas dynamics equations), in contrast to inviscid gas and ideal
incompressible inviscid fluid dynamics equations, are only spherically symmetric
solutions.

4 Spherically Symmetric Flows of a Viscous Gas

The case H = 0 corresponds to a spherically symmetric flow of a viscous gas.
According to the definitions of the group analysis it is a singular invariant solution



with respect to group of rotations O(3). The viscous gas dynamics equations in this
case are

Dyt — 7(U, +2r 'U) = 0, (10)
DoU + 7p, = (A + 21) (Upy + 207U, — 2r72U) + 67 (10,77 + pppr) +
+7(Uy + 2r 'U) (A7 + Appy),
Dop + A(U, + 2r'U) = BA(U, + 2r'U)* + 2u(U? + 2r2U?) +
+5(Tpr 72 + 2Ty Topr + Tppp? + Ty (T + 2070 7) +
T (prr + 277 pr) + (Kppr + 173) (Te T + Ty ),

where Dy = 0; + U0,. In this section we study a group classification of equations
(10) with respect to the arbitrary elements A , B, A, u, k, T.

4.1 Equivalence transformations

The first stage of group classification requires determining a group of equivalence
transformations of equations (10). An equivalence transformation is a nondegener-
ate change of dependent and independent variables and arbitrary elements, which
transforms any system of differential equations of a given class to the system of
equations of the same class. It allows using the simplest representation of given
equations. Here we give a construction of the group of equivalence transformations
without restrictions on the representation of equivalence transformations [4]. We
follow the approach for the calculation of equivalence transformations developed in
[35].

Since arbitrary elements satisfy restrictions (2) and A = A(p, 1), B = B(p,7),A =
Ap, 1)y = p(p,7),k = k(p,7),T = T(p,7), then for calculating an equivalence
group of transformations we have to append the equations

Ar:O,AtZO,AUZO,B,«:O,BtZO,BUZO,
)\r:O,AtZO,AUZO,,U/,«:O,MtZO,MUZO,
kr =0,k =0,k0=0,T, =0,T, =0, Ty =0

to equations (10). All coefficients of the infinitesimal generator of the equivalence
group

X = (0,4 ("0 + Y0y + (0, + (PO, + (104 + (P05 + PO\ + ("0, + ("0, + (T Or
are dependent on all independent, dependent variables and arbitrary elements
r,t, U, 7, p, A, B, A\, p, K, T.
With the following notation:
u'=U v=1, v =p a' =4 a>=B,a*=)\a"'=pu, a>=k,d* =T

and



the coefficients of the prolonged operator
> 7 7 k
XO= X+ 300y +C110,) + D¢ 0+
i k.j :

can be constructed with the prolongation formulae:
¢" = D¢ = up D" = uiDr¢!, (M = DM — D¢ — upDi’
CU;T = l)rcui - uf«rDrcr - uf«tDrct'

5 5
k k k o« k k k «
Caﬁ — DﬁﬂCa - E : aaDEBCZ , C“JB = DEBC% _ E ajaDzeﬂcz .
a=1 a=1

Here the operators D,, D, denote the total derivative operators with respect to r
and t, respectively. For example,

Dy =0, +Y ulOye +> (al +> alul)0u + ...
e i j

When we use the operator D¢; we consider z', ..., z° as independent variables and

a', ...,a% as dependent variables, we obtain:

D=0+ ali0u+....
2

All necessary calculations here as in the previous sections were carried on a
computer using the symbolic manipulation program REDUCE [20].

The calculations showed that the group of equivalence transformations of equa-
tions (10) corresponds to Lie algebra with generators

X7 =0, X§ =0, X§=1r0,+1t0, + N0\ + po, + K0,
X{ =710, +u0, + 270; + 2K0,, X{ = —70; +p0, + A04 + A0\ + 10, + KO,.

Remark. If instead of the functions A(p,7), B(p, 7) one considers the internal
energy £(p, 7), then the operators X§, X¢, and X¢ are changed to

X; =0, —10., X] =710, +u0, + 270; + 2K0,, + 2¢0:,
X: = =70, + pOy + A0\ + 10, + KO-

and there is one more generator X¢ = 0..
Remark. By a direct checking one can obtain that in the general case® (equa-
tions (1)) the equivalence group includes the transformations with the generators

Xy =0, X§ =0,
X§ = x0x + 10y + A\Ox + 10, + KOy,
X§ = x0x + u0y + 270; + 2K0,,
XE= —70, —|—p8p + A0s + N0\ + /Lau + KOy

There are also other generators, for example, that correspond to the Galilei trans-
formations and to the rotations in the three-dimensional case.

6Group classification of three-dimensional viscous gas dynamics equations with A\ = —2u/3 was
studied in [30].

11



4.2 Admitted group

Finding an admitted group consists of seeking solutions of determining equations
[4]. We are looking for the generator

X =0, + 0+ Y0y + (70, + (9,

with the coefficients depending on r,¢,U, 7,p. Calculations lead to the following
result.
The kernel of the fundamental Lie algebra is made up of the generator

X:at.

Extension of the kernel of the main Lie algebra occurs by specializing the functions
A= A(p,7),B = B(p,7),A = AMp,7), b = p(p,7), 6 = (p,7), T = T(p, 7). Note
that the functions A = A(p,7),B = B(p,7),T = T(p,7) have to satisfy equations
(2). There are three types of the generators admitted by system (10). Further «, /3
and 0 are arbitrary constants.

Type (a). If the functions A(r,p), B(7,p), A(1,p), u(7, p), k(7,p), T (7, p) satisfy
the equations

atA, + A, =0, arB, + B, =0,
aTp; + pp = B, ot + A, = A, (11)
arT, + T, =0T, atk,; + ky, = (=0 + a+ B)k,

then there is one more admitted generator:
Y, = aU0dy + 2a70; + 20, + (o + 23)r0, + 2(t0,.
The general solution of equations (11) is

A= A(re=), B = B(te™®), p =P M(re ), X\ = ePA(Te=P),
T = ePO(re ), K = el 0T thP K (re0P),

where the functions A(z), B(z) and ©(z) satisfy the equations (z = Te~*?)
—azBA' +2B'(1 +aA)= B>+ B, (1+aA):0'=(JA— B)®. (12)
The internal energy is represented by the formula
e =e"(p(2) — 2p) + ¥(p), ¥'(p) = Ce™,

where the function ¢(z) and the constant C' can be accounted as arbitrary and they
are related with the functions A(z) and B(z) by the formulae

¢'(2) = gz)), C=z+ % + azy'(2) — ap(z).

In this case the function ©(z) has to satisfy the equation
(C =2+ ap(2)) ©'(2) = (0¢'(2) = 1)O(2).

12



Type (b). If the functions A(7, p), B(7, p), A7, p), u(7, p), £(7, p), T (7, p) satisty
the equations

atA; +pA, =A, atB; +pB, =0,
atpr + ppp = (B + D, aths +pAy = (B + 1A, (13)
arT, +pT, =0T, ark, +pI, = (=0 + 2+ a+ )k,

then there is an extension by the generator
Y, = (1+ «)Udy + 2010, + 2p0, + (o + 23 + 1)10, + 25t0,.
The general solution of equations (13) is

A=pA(rp™), B=B(rp™), p=p "' M(rp~®), A = p* T A(rp™),
T =p'O(rp ), k=p "THIRK (rp),

~

where the functions A(z), B(z) and ©(z) satisfy the equations (z = 7p~%)
—zBA' + 2B'(1+ad) = B2+ B—BA, (1+ad)z0' = (§A—B)O. (14)
The internal energy is represented by the formula
e =p " (p(2) = 2) + ¥(p), ¥'(p) = Cp",

where the function ¢(z) and the constant C' are arbitrary and they are related with

~

the functions A(z) and B(z) by the formulae

+az¢'(2) — (@ +1)p(2)

The function O(z) is represented through the function ¢(z) by the formula
(C =z + (a+1)p(2) O'(2) = (6¢'(2) —1)O(2)

Note that an ideal gas belongs to this type in case of 6 = o+ 1 and the function
©(2) satisfies the equation

0(2¢" — ) = C.

Type (c). If the functions A(r,p), B(7,p), A(1,p), u(7,p), k(7,p), T (7, p) satisfy
the equations
A, =0, B, =0, Tu, = B, 7Ar = B, (15)
T, =0T, Tk, = (=0 + 1+ f)k,

then there is one more admitted generator:
Y. = U0y + 270; + (1 + 28)r0, + 25t0;.
The general solution of equations (15) is

A= A(p), B=B(p), p=7"M(p), A\ =1°A(p),
T=10(p), =1 "HK(p),
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where the functions A(p), B(p) and ©(p) satisfy the equations
BA'— AB'= B>+ B, A© = (§+ B)6. (16)
The internal energy is represented by the formula

e =T19(p) — TP,

where the function ¢(p) is an arbitrary function and it is related with the functions
A(p) and B(p) by the formula
A(p)

o(p) = %

In this case the function ©(p) is related with the function ¢(z) by the formula

@(p)O'(p) = (1 =5+ ¢ (p))O(p).

Note that if 6 = 1 and ¢ = Cp, then the gas is ideal.

The final results of the group classification are presented in Table I. In this table
the first column means the type of the extension of the algebra {X}: the types a,
b, or ¢, respectively. The last column means conditions for the state functions.

Therefore, there are three kinds of admitted by equations (10) groups, which de-
pend on the specifications of the functions A = A(p,7), B = B(p,7), A = X(p,7), p =
w(p,7),k = k(p,7),T = T(p, 7). These groups are one-dimensional, two-dimensional
and three-dimensional.

The two-dimensional admitted groups are groups with the generators either
{X,Y,} or {X,Y,} or {X,Y.}. The three-dimensional admitted groups are the
groups with the generators either {X,Y,, Y3} or {X,Y,, Y.} or {X, Y}, Y.}

The group with the generators {X,Y,,Y;} is admitted by equations (10) if

A=Apm® B=—1, p= ot X = N7 k= kot T =Tyr, a # 0.

In this case the internal energy is ¢ = —(7p + Ao [ 7* d7). Instead the operators Y,
and Y} one can use their linear combinations:

Y, =8, Vo= (1+a)Udy + 270, + (a + 26 + 1)rd, + 26t8,.
The algebra of the type {X,Y,, Y.} is admitted by equations (10) if
A=Ay, B=—1, = pur?e®, X\ = X\7?e, k = gor?A0%el0=P T = Tyrl+Aooeop,

In this case the internal energy is ¢ = —(7p+ Ay7) and by taking linear combinations
of the operators Y, and Y, one obtains another basis of the generators:

Y, =0, + a(rd, +t9,), Y. = Udy + 270, + (26 + 1)rd, + 25t?,.
The third type of the algebras {X, Y}, Y.} is admitted by (10) if

A=1p, B=~v—1, p=per’p't®, X = N\rPpte,
K = KOTq(lfa)Jr,@pafJJrZ, T — T0T7(671)+1p6, v 7£ 1.
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The internal the energy in this case is
p
=5

and linear combinations of the operators Y;, and Y, are:

Yy, = Udy + 2pd, + (20 + 1)1, + 200, Y, = Udy + 270, + (26 + 1)rd, + 2010,

Note that a polytropic gas belongs to the last case of gases, where «y is a polytropic
exponent.

In the formulas above Ag, 1o, Ao, ko, 1o, @, 3,7, 6,0 are arbitrary constants; the
commutators

A~ o~

V., V3] =0, [Y,,Y.] =0, [V,, Y] =0.

4.3 Optimal systems of subalgebras

Here we study subalgebras of the two-dimensional admitted algebras { X, Y, }, { X, Y, },
{X, Yo}
The commutator [X, Y] of the generators X and Y is

[X,V] = 2X.

Here either Y =Y, or Y =Y, or Y =Y, and z = 2. Automorphisms are recovered
by the table of commutators and consists of the automorphisms

!

Ay 7' =o+zyar, Y =y,
A2 e efzan, yl =Y,

where x and y are coordinates of the operator Z = X +yY, 2’ and ¢’ are coordinates
of the operator Z' after actions of the automorphisms, and a,, a, are parameters of
the automorphisms. There is also one involution

E - ZU,:—QT, y’:y,

which corresponds to the change of the variables ¢ — —t and U — —U without
changes of equations (10). Note that if z = 0, then the automorphisms are identical
transformations. This leads to two optimal systems of subalgebras.
If z=0 (or 3 = 0), then the optimal system of subalgebras consists of the
subalgebras
{X} {Y + X}, {XY},

where h is an arbitrary positive constant.
If 2 # 0 (or B # 0), then the optimal system of subalgebras consists of the
subalgebras

{X}, {Y} {X, Y}
Therefore, one can summarize: optimal systems of subalgebras for the two-dimensional
algebras are described by the following system of subalgebras

(X}, {Y +hX}, {X,Y}, Bh=0. (17)
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4.4 Representations of invariant solutions

A next step in the construction of representations of invariant solutions is a finding
universal invariants. Note that invariant solutions corresponding to the case of the
subalgebra {X} are the well-known stationary solutions. The universal invariants
for the other subalgebras of the optimal system (17) of the algebras {X,Y,}, {X,Y;}
and {X, Y.} are presented in Tables II, IIT and TY, respectively.

According to the theory of the group analysis [4] on the next step in constructing
of invariant solutions one needs to separate the universal invariant on two parts: one
part has to be solvable with respect to the dependent variables U, 7, p. After that the
representations of invariant solutions are obtained by supposing that the first part
of the universal invariant depends on the second part. Because of this requirement
there are no invariant solutions in the cases: a.1 if h =0, a.3, b.1, b.5 and ¢.3. The
cases a.b, 0.6 and c.4 correspond to the special cases of stationary solutions, which
we also exclude from our consideration”.

All possible representations of invariant solutions of equations (10) are presented
in Table Y, where the functions f*“, f7, f? are functions of one independent variable
presented in the last column. These functions must satisfy ordinary differential
equations, which are obtained after substituting the representation of solution into
system (10).

Remark. Invariant solutions a.3, 0.2, 0.4, ¢.2 are self-similar solutions.

Remark. One of the well-known solutions of the Boltzmann equation (the
BKW-solution®) has the representation [36, 37]

f = o(lule”),

where f is a distribution function, |u| is a modulus of the velocity. The invariant
solution of the viscous gas equations, which corresponds to the case b.3 gives

|u|67t(a+1)/h — qu(Q),

with ¢ = re~“@t1)/h  Therefore this solution can correspond to the BKW-solution
and generalize it on molecules with an exponent intermolecular potentials. For the
molecules with an exponent intermolecular potentials the coefficients of viscosity
and conductivity are [38]

p=poT*, k= KT",

where T' = Typr, k = (n — 1)/m + 1/2, n is dimension of the problem, m is the
exponent of intermolecular potentials. In this case o = 1/k —1 = (m + 2n —
2)7'(m — 2n + 2). For the Maxwell molecules, for which the BKW-solution was
constructed, the exponent of intermolecular potentials is m = 4, and hence, in the
three-dimensional case o« = 0 and £ = 1.

"If an universal invariant is three-dimensional (consists of three invariants), such as in the cases
of a.5, .6, c.4, then the representation of the invariant solution is obtained by supposing that all
invariants of the universal invariant are constants.

8This solution is constructed for the Maxwell molecules.
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5 Spherically Symmetric Flows of the Navier-Stokes
Equations

For the complete consideration of solutions connected with the group of rotations
O(3) we present solutions of the Navier-Stokes equations with spherical symmetry®.
Substituting the value of V' =0, W = 0 in the last equation of (6) one obtains that
r2U = h(t, 0, ¢). From the remained equations of (5),(6) all space derivatives of the
pressure can be found

pr = r~4(cot Ohg + sin~? Oh,, + hgg — r2hy + 2r~'h?),
po = 2r"3hg, py, = 2r"3h,,

where ¢(t) and h(t) are arbitrary functions.

Using symmetry property of the mixed derivatives pg, = Dro, Dor = Dry, Dps =
po,, and spliting these equalities with respect to r one can get that h = h(t) and the
general solution of the Navier-Stokes equations in this case is

p=7rh(t) —r*R*(t)/2 + g(t), U =r"2h(t), V=0, W = 0.

6 Conclusion

The analysis that has been done proves that the partially invariant solutions of
the studied class for the both types of equations (the Navier-Stokes equations and
the full viscous gas dynamics equations), in contrast to inviscid gas and ideal fluid
dynamics equations, are spherically symmetric solutions. For the completeness of
consideration of partially invariant solutions that are connected with the group of
rotations O(3) the group classification of the full viscous gas dynamics equations
with spherical symmetry has been done.
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Table 1. Group classification.

A 1 T K A B z Cond.
a ePA(z)  ePM(z) ePO(z) eTHFIPK(2) A(z)  B(z) Te? (12)
pTIN(z) pPTIM(2) pPO(2) pTTOIRK(2) pA(2) Blz) TtpT (14)
’Ap)  T'M(p)  mO(p) THK(p)  Alp) Bp) p (16)

Table II. Universial invariants of subalgebras of the algebra {X,Y,}.

N Subalgebra consts Universal invariant

al Y,+hX f=0,aa=0 Ur,t—nhp/2,7

a2 Bh=0 B=0,a#0 Urt,7r2,p—2a~'lnr,t —hallnr

a.3 B#0 Ut=(@tD)/@B) ry=alB pp=1/8 py—(a+26+1)/(26)
ad XY, a+28=0 Ue *? re

a.b a+28#0 Ur o/(@t28) rp=2a/(a+28) 4y _ 9(q +28) tInr

Table III: Universial invariants of subalgebras of the algebra { X, Y} (k = a+26+1).

N Subalgebra consts Universal invariant
b.1 Y, +hX f=0,a=—-1,h=0 U,p/T,rt
b2 Bh=0 B=0,a# —1,h=0 Ur™", rr2e/(atl) pp=2/(a+1) ¢
b.3 B=0,h 7& 0 Ue—t(a—i—l)/h, Te—Zta/h,pe—%/h, re—tla+1)/h
b.4 B#0 Ut—(atD)/@28) rp=afB p=1/5 pp=k/(26)
b5 XY, k=0 Up~@tD/2 rp=a
b.6 k#0 Ur—(etD/k pp=2a/k 4yp=2/k

Table IV. Universial invariants of subalgebras of the algebra {X,Y.}.
N Subalgebra consts Universal invariant
cl Y. +hX g=0 Ur Y mr 2 pt—~hlnr
c2 Bh=0 B#0 Ut—Y/@8) rt=1/B p pt—(26+1)/(26)
c3 XY, 204+1=0 Ur~'2 pr
c.4 204+ 1#0 Upr~YE+D 7p=2/C8+1) o

Table V. Representations of invariant solutions.

N Representation of invariant solution Ind. variable Model
1 U=f17=f",p=2th '+ fP r a.l
2 U=rfi,7=7r2f",p=2a" lnr+ fP t—hatlnr a.2
3 U =t@t)/@) fu 7 — /B fr = l/Bfp  pp(at26+1)/(26) 3
4 U=rfu r=r2/lath)fr =2/t b.2
5 U= 6t(a+1)/hfu, T = 62t0¢/hf7',p _ 62t/hfp, re—tla+1)/h b.3
6 U =¢tD)/@0) fu o —qo/Bpr gy — 1B fp  py=(at2641)/(26) 4
7T U=rfe,7=r%fT,p=f? t—hlnr c.l
8§ U = 1/(26) fer= tl/ﬁff,p = fP rt—(28+1)/(28) c.2
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