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CHAPTER I

INTRODUCTION

Lie group analysis is a well developed method for studying properties of or-
dinary and partial differential equations, and obtaining exact solutions of them. A
general survey of this method can be found in Ovsiannikov (1982) and Ibragimov
(1994, 1995, 1996). It involves the study of symmetries of equations, by which
one means local groups of transformations mapping solutions of a given system of
equations to solutions of the same system. Symmetries make it possible to reduce
the number of dependent and independent variables, and also to construct new so-
lutions from known solutions. Point transformations are the most commonly used
types, involving both, the independent and dependent variables in the transforma-
tions. Other types of transformations have also been applied with success, one may
for example choose to include derivatives of various orders in the transformations.

The requirement that an infinitesimal transformation maps every solution
of a system of equations to a solution of the same system gives rise to the con-
cept of an admitted Lie group for a given system. The handbooks by Ibragimov
(1994, 1995, 1996) provide excellent references on the vast collection of differen-
tial equations for which admitted Lie groups are known and solutions have been
obtained. Hydrodynamics equations were the first object of application of group
analysis in Ovsiannikov (1958). The recent PODMODELI (SUBMODELS) pro-
gram in Ovsiannikov (1994) was aimed at an exhaustive use of the group analysis
method for studying the gas dynamics equations. Results of this study are sum-

merized in Ovsiannikov (1999). The first application of the group analysis method



to the Navier-Stokes equations was done in Pukhnachov (1960). A review of exact
solutions of the Navier-Stokes equations can be found in Pukhnachov (2006).

In contrast to deterministic equations, there have been few attempts to ap-
ply symmetry techniques to stochastic ordinary and partial differential equations.
In general, the change of variables in stochastic differential equations differs from
the change of variables in ordinary differential equations, as the It6 formula takes
the place of the chain rule of differentiation. Exploiting the It6 formula and the
requirement that the solution of a stochastic differential equation is mapped into a
solution of the same equation, the determining equations of an admitted Lie group
can be obtained.

In the first attempts, the transformation of time ¢ was only a function of
time and the group parameter. This approach has been applied to stochastic
dynamical system in Misawa (1994), Albeverio and Fei (1995), Alexandrova (2005,
2006), to the Fokker-Plank equation in Gaeta and Quinter (1999), Gaeta (2004),
Unal (2003), Unal and Sun (2004) and Ibragimov (2004), to scalar second-order
stochastic ordinary differential equations in Mahomed and Wafo Soh (2001), and to
the Hamiltonian-Stratonovich dynamical control system in Unal and Sun (2004). It
has also been applied to stochastic partial differential equations in Melnick (2003).
The latter is the only known result on the application of group analysis to partial
stochastic differential equations.

Another approach in Srihirun, Meleshko, and Schulz (2006, 2007) includes

the dependent variables in the transformation of time as well,
T=op(t,z,a), t=H(txa).

In particular, the transformation of Brownian motion is defined through the trans-
formation of the dependent and independent variables. Generalizing the change

of the time formula in Oksendal (1998), it was proven in Srihirun, Meleshko, and



Schulz (2006) that the transformed Brownian motion

Bt) = / (s, X (5), a)dB(s)

(where n(t,xz,a) # 0) satisfies again the properties of Brownian motion. This
transformation of Brownian motion is a logical generalization of the time change
in the Itd integral to the case where the stochastic process is included in the
change. Exploiting the [to6 formula, this transformation of Brownian motion, and
the requirement that a solution of the stochastic differential equation is mapped
into a solution of the same equation, and finally equating the Riemann and Ito
integrands, the determining equations of an admitted Lie group were obtained. The
definition of an admitted Lie group for stochastic ordinary differential equations
was given using these determining equations.

We first extend this discussion to systems of second order stochastic partial
differential equations of the form

v (1, y) = ALty 0,0 g )t + S Bty v)dwd (8), (i =Tom, k,l=T,N).

J=1

We construct determining equations for admitted Lie groups of transformations
which involve both the independent and the dependent variables, and transform
the Wiener processes w’ as well. This should serve as a model for the correct gen-
eralization of the group analysis method to stochastic partial differential equations.
We then apply our result to some of the fundamental equations of fluid dynamics
with stochastic parts, namely the Kardar-Parisi-Zhang equation, the gas dynamics
equations and the Navier-Stokes equations, to obtain invariant solutions and more
generally, systems of stochastic differential equations of reduced complexity.

This thesis is organized as follows. Chapter II introduces some necessary
knowledge from stochastic processes. Chapter III introduces notations of group

analysis. Applications of the group analysis method to the deterministic gas and



hydro dynamics equations are considered in Chapter IV. Chapters V and VI present
the results of our investigations. Transformations for stochastic partial differen-
tial equations and the application of group analysis to constructing determining
equations for admitted Lie groups of transformations for stochastic differential
equations are studied in Chapter V. Chapter VI is devoted to developing a new
knowlege of application of group analysis to stochastic fluid dynamic differential

equations. The last Chapter is the conclusion.



CHAPTER 11

STOCHASTIC PROCESSES

This chapter is devoted to introducing the tools from the theory of stochastic
processes which are used throughout this thesis. In particular, it discusses stochas-
tic integrals with respect to Wiener processes, Wiener processes as time change
and Ito’s formula. We assume that the reader is familiar with the fundamental

measure theoretic concepts of probability, as described in standard textbooks.

2.1 Stochastic Processes and Wiener Processes

Let € be a given set of elementary events w ; F a o-algebra of
subsets of 2 and P a probability measure on F. The triple (€2, F,P) is called a
probability space. It is assumed that the o-algebra F is generated by a family of

o-algebras F; (¢t > 0) such that

FsCF CF Vs<t.

The nondecreasing family of o-algebras JF; is also called a filtration and
the o-algebra F is denoted by F = (F;)i>0. The triple (2, F = (F¢)t>0, P) is called
a filtered probability space.

A stochastic process X on (£, F,P) is a collection of random variables
{X(t) }+>0. The process {X(t)}+>0 is said to be adapted to (F)i>o if X(¢) is Fi-
measurable for each ¢. Denoting the Borel o-algebra on an interval I by B([), the
process X is called measurable if (¢,w) — X (t,w) is a B(]0, 00)) ® F-measurable

mapping. The process X is said to be continuous if the trajectories t — X (¢,w)



are continuous for almost all w € Q. It is called progressively measurable if
X :[0,t] x Q@ — R is a B([0,t]) ® Fr-measurable mapping for each 0 < ¢ < 0.

Note that a progressively measurable process is measurable and adapted.

Proposition 2.1. An adapted process that is left-continuous or right-continuous

is progressively measurable.

Proof. See Albin (2001), p.58, Theorem 8.8.

Recall that a Wiener processes, also called Brownion motion, is a real-valued

stochastic processes {W(t)};>¢ satisfying the properties

(1) continuity: the map s — W (s,w) is continuous almost surely.

(2) independent increments: if s < ¢, then W (t) — W(s) is
independent of (the past) Fs = o(W(u) : u < s).

(3) stationary increments: if s < ¢, then W (t) — W(s) and
W(t—s) — W(0) have the same distribution functions. Increments
W (t) — W (s) are normally distributed with mean zero and

variance t — s.

A Wiener processes is said to be standard if it satisfies W (0,w) = 0 almost surely.

2.1.1 The Ito Integral for Simple Processes

From now on, unless stated otherwise, we let {W(t)}:>0 be a standard
Wiener process applied to a filtration {F;}i>o. Fix T € (0,00]. A process {X;}>0
is said to be simple on [0,7] (denoted X € Sr) if it can be written as follows:

There exist a partition 0 =ty < t; < ... < t, = T of [0,7] and random variables



Yo, Y1, ..., Y,,—1 which are adapted to Fy, Fy,,..., F,_, respectively and satisfy the

n—1

conditions F{YZ}, ... , E{Y,;%2;} < oo, such that

X(t) =Yoly(t) + Y Yical,_,a(t)
i=1

for t € [0,T]. Here, I denotes the characteristic function of a set S. In the case

T = oo, there is one more requirement for a simple process: Y,,_; = 0.

Definition 2.1. Let X € Sr, say

X(t) = XOI{O} (t) + Z Xi*l](ti—hti} (t)7
i=1

where {to,11,...,t,} is partition of [0,7]. The Ito integral of {X(¢)}cor) is the

process defined by

m

/0 X($)dW(s) = X (W(t) = Wta) + 3 X (W(t) = W(ti0),  (21)

=1

where (t,,,t,n41] is the partition interval containing ¢.

2.1.2 The Ito Integral for Square Integrable Processes

A stochastic process {X(t)};>0 is said to belong to the class Er if it is

measurable and adapted to (F;)¢>o with

IX2 = EY / X2p)dr} < o,

It turns out that Sr is dense in Er in this mean square norm, and that
the Ito integral (2.1) is a linear isometry of S; into L*(§2, F;), for each 0 < ¢t < T.
Thus, it can be extended to class Er as follows.
Definition 2.2. For a process X € Erp, the Ito6 integral of {X(t)}sc(o,7] is defined

in the sense of convergence in the mean square (and hence in the mean).

/0 X ()dW(s) = lim /O X, (s)dW(s), te0,T],

n—oo



where {X,,}22 , is a sequence of simple processes on [0, 7] such that

T
lim || X, — X2 = lim / E[(X,(s) — X(5))’]ds = 0.
n—oo n—oo 0

2.1.3 The Ito Integral for Predictable Processes

A stochastic process { X () }+>0 is said to belong to the class Pr of predictable

processes on [0, 7] if it is measurable and adapted to (F;):>o with

T
73{/ X?(r)dr < oo} = 1.
0
Note that St C Ep C Pr. Every process X in Pr is the limit of a sequence

{X,}22, € Er in the sense of convergence in probability.

Definition 2.3. For a process X € Pr, the It6 integral of {X(t)}icpo,m can be

defined in the sense of convergence in probability,

/0 X (s)dW(s) = lim /O X, (s)dW(s), te0,T],

n—oo

where {X,,}2° | is a sequence of processes which belong to the class E7 such that

lim (Xn(s) — X(s))ds =0,

n—o0 0

with limit in the sense of convergence in probability.

Remark 2.1. In Albin (2001) it is proven that processes X,Y € Pr satisfy the

following;:

t
1. The It0 integral / X (1)dW(7) is well-defined for 0 <t < T,
0

2. E((/OtX(T)dW(T>)2> :/OtE(XQ(T))dT for 0 < t < T (It6 isometry

property), provided that X € Er,



t
0
provided that X € Fr,

3, E(/OtX(T)dW(T)/ Y(T)dW(T)) - /OtE(X(T)Y(T))dT for 0 < t < T,

L /0 (aX (r) + BY (1)) dW(r) = a /0 X (r)dW (r) + b /0 Y (r)dW(r) as. for

alla,b e Rand 0 <t < T,
¢
5. / X(1)dW (1) is F-measurable for 0 <t < T,
0

t
6. { / X (T)dW(T)} is continuous with probability one and progressively
0 t>0

measurable.

2.2 Stochastic Integrals as Time Change of Wiener Pro-

cesses

In this section, we prepare the mathematical tools required for defining
transformation of Wiener processes.

The constructions below are similar to (Oksendal (1998), Section 8.5) and
described in (Srihirun (2005), Section 3). Let n(t,z,a) be a sufficiently many
times continuously differentiable function and { X (¢)}+>0 a continuous and adapted
stochastic process. Since n%(t, z, a) is continuous, n*(t, X (t,w), a) is also an adapted

process. Define

B(t,w,a) :/0 n*(s, X (s,w),a)ds, t>0. (2.2)

For brevity we write 5(t) instead of 5(t,w, a). The function 5(¢) is called a random

time change with time change rate n?(t, X (t,w), a) and S(t) is an adapted process.
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Suppose now that n(t, z,a) # 0 for all (¢, z,a). Then for each w, the map ¢t — S(t)

is strictly increasing. Next define
a(t,w,a) = ir>1(f){s : B(s,w,a) > t}, (2.3)

and for brevity, write «(t) instead of «a(t,w,a). For all w, the map t — «a(t) is

nondecreasing and continuous. One easily shows that for all w, and for all ¢ > 0,
Bla(t)) =t = a((t)). (2.4)
Since ((t) is an Fi-adapted process, one has
{w:a(t) <s}={w:t<p(s)} € Fs, forallt>0ands>0.

Hence t — «(t) is an Fs-stopping time for each ¢.

Definition 2.4.(Stopping time) A nonnegative random variable 7, which is
allowed to take the value oo, is called stopping time with respect to the filtration

Fi = (Fs)s<t if for each ¢, the event {w: 7(w) <t} € F.

The following theorem will be crucial for defining the transformation of a

Wiener process.

Theorem 2.1. Let n(t, z,a) and {X (¢) }+>0 be as above and {W (t) };>0 a standard

Wiener processes. Define
t
W (t) :/ n(s, X(s,w),a)dW(s), t>0. (2.5)
0
Then (Wa(t), Far)) is a standard Wiener processes, where
Fary ={A € F:ANn{w:at) < s} € Fy,for all s > 0}.

Proof. See Srihirun (2011), p.17, Theorem 3.1.
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2.3 Ito’s Formula

Let X (t) be a stochastic process. We say that X (¢) has stochastic differen-
tial
dX(t) = f(t)dt + G(t)dW (t), (2.6)
if
t t
X(t) = X(to) +/ f(s)d8+/ G(s)dW (s),
to to
for some Wiener Process W (t). Similarly, let X (t) = (X;(t), ..., X,,(t))T be a vector
valued process, W (t) = (Wy(t), ..., W (1)) an m-dimensional Wiener Process with
independent components, f(t) = (fi(t),..., fo(t))T a measurable vector function,

and G(t) = {g¢;;(t)} a measurable n x m matrix function with components g;;. We

say that X (¢) has stochastic differential
dX(t) = f(t)dt + G(t)dW (t),
if foreachi=1,...,n

AX1) = F0dE+ 3 g (DWW ).

that is

X;(t) = X;(to) +/t fi(s)ds + Z/t Gij(s)dW;(s)

Ito’s formula is a stochastic version of the chain rule and allows us to express
F(t, X1(t),..., Xn(t)) as a stochastic differential:
or 1 0°F
(3o 3 )

zgl

(2.7)

Hence, F'is assumed to be continuously, differentiable in ¢, and twice continuously,

differentiable in x = (x4, ..., z,,).



CHAPTER III

GROUP ANALYSIS

In this Chapter, the group analysis method is discussed. A general introduc-
tion to this method can be found in common textbooks (cf. Ovsiannikov (1978),

Ibragimov (1899), Handbook of Lie Group Analysis (1994), (1995), (1996)).

3.1 Local Lie Group

We consider invertible point transformations
Z' = g'(z;a), (3.1)

where i =1,2,.... N,z € V C RY and a € A is a parameter. The set V is an open
set in RN, and A is an interval in R' symmetric w.r.t. zero.
For differential equations the variable z is separated into two parts, z =
(x,u) € V.C R*x R™, N =n+ m. Here x = (x1, %3, ...,x,) € R™ is considered as
1,2

the independent variable, u = (u', u?,...,u™) € R™ is considered as the dependent

variable. For the transformations we use

7 = ¢'(zv,ua), @ = (z,u;0), (3.2)

where i =1,2,...,n, j =1,2,....m, (z,u) € V.

3.1.1 Omne-Parameter Lie Group of Transformations

Definition 1. A set of transformations (3.1) is called a local one-parameter Lie

group if it has the following properties:



13

1. g(z;0) =z forall z e V.
2. g(g(z;a),b) = g(z;a+b) for all a,b,a+be A,z € V.
3. If for a € A we have g(z;a) = z for all z € V, then a = 0.

4. g€ C=(V,A).

Let us define the functions

i 09 (x,usa) wi O (z,u;a)
5 ('CC,U)_ 6@ a707 T/ (x,u)— aa a707
and set

The operator X is called an infinitesimal generator or the generator of the Lie
group of transformations (3.2). The coefficients £, n* are called the coefficients
of the generator.

A local Lie group of transformations (3.2) can be completely determined
by the solution of a Cauchy problem of ordinary differential equations, which are
called the Lie equations:

dz. da’ j
=), =) (3.4

with the initial data

=l (3.5)

ji|a: 0~ Li aj‘a: 0

Theorem 1 (Lie). Given a vector field ¢ = (§,7) : V — RY of class C*°(V) with
C(20) # 0 for some zg € V, then the solution of the Cauchy problem (3.4), (3.5)
generates a local Lie group with the infinitesimal generator X = &% (z,u)0,, +

n (,u)d,;. Conversely, let functions ¢'(z,u;a), i = 1,...,n and ¥ (z,u;a), j =

1, ...,m satisfy the properties of a Lie group and have the expansion

T; = (pz(xauﬂa) R X+ ém(xvu)aa

@ = (2, u0) 20 + 0¥ (z,u)a
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where
Op'(z,u; a)
Oa

_ 0P (z,u;0)

ng(x7u) = ) Wuj(%u) da

a= 0 a= 0

Then the functions ¢'(x,u;a), ¥’ (x,u;a) solve the Cauchy problem (3.4), (3.5).

Thus, Lie’s theorem establishes a one-to-one correspondence between Lie groups

of transformations and infinitesimal generators.

3.1.2 Prolongation of a Lie Group

Let Z = R"(x) x R™(u) denote the space of independent and dependent
variables. We want to ”"prolong” the group of transformations by including some

derivatives in the transformations. Let a = (a1, as, ..., @) be a multi-index, and

set o] = a1 +as+ ... + o, and 1 = (a1, g, .oy i1, @ + 1,41, ..., a,). The
variable p* will denote the derivative 8&'? defined as
h ey k B olelyk
Pa = "gpa T 9229257 0xan

The space J! of the variables

T = (xz)7u = (uk)ap = (p];)
(i=1,2,...,n; k=1,2,...m; |a| <)

is called the [-th prolongation of the space Z. This space can be provided with a

manifold structure. For convenience we agree that J° = Z.
Definition 2. The generator
I _ 79 .
X =X+ Z 30,1
j,a

with the coefficients

Moy = Dinly = > vl Di€’ (3.6)
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is called the [-th prolongation of the generator X.

Here the operators

Dy,
axk * Zpakapé

are operators of the total derivatives with respect to xj, where
k = ]'727 "'7n; .] = 1727 "’7m; |a| S l? é-z = é-xi7 776 = nuj,
and &%, n* are defined as in (3.3).

For a simple illustration of using the prolongation formulae (3.6), let us
study the first prolongation of the generator X with n = m = 1. In this case, the

generator X! induces a local Lie group of transformations in the space J*:

*/Z':(p(xau;a)a a:w<xau;a)7 ﬁ:f(x,u,p;a), (37>

with the generator

X =&z, u)0, +n"(z,u)d, + Pz, u, )0, , (3.8)
where
du dﬂ
P _ wy x _ =

Notice that the coefficients £*, n" are defined as in (3.3). Let us show in the
following why the coefficient (P must be of this form. Let a function ug(x) be

given. Substituting it into the first equation of (3.7), one obtains

T = (x,up(z);a).

Since p(z,up(z);0) = x, the Jacobian at a = 0 is
0| _ (0, De0uy
R ~ \0z  Ou Ox

a= 0
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Thus, by virtue of the inverse function theorem, in some neighborhood of a = 0

one can express x as a function of z and a,
r = ¢(T,a). (3.9)
Note that after substituting (3.9) into the first equation (3.7), one has the identities

T = (p(gb(j? CL), uo(gﬁ(f, CL)); CL).

r = ¢(p(x, uo(); a),a)

(3.10)

Substituting (3.9) into the second equation of (3.7), one obtains the transformed

function
ua(Z) = (DT, a),uo(9(Z, a)); a). (3.11)
Differentiating the function u,(z) with respect to z, one gets

, 9v 0% ) 99

~ _8ua(§;)_8_¢%+8¢8u08¢_ Lo,
T 9r Oxrdr Ouodror \odr Ou °)or’

where the derivative % can be found by differentiating equation (3.10) with respect

to T,
| Q000 0p0ud¢ _ (Op O ,\0b
T 0r0z | oudror \or ou'®) oz
Since
op, _ do, _
%(¢(x’0)7u0(¢(33’0))30> = 17 %(¢(1‘,0),u0(¢<1‘,0));0) = 07 (3'12)

one has g—;’ + %‘Eu{) 2 0 in some neighborhood of @ = 0. Thus,

9% (&0 O )

oz \oz oo
and
) o )\ (e Do N\ ,
Uz = (% + %UO) (% + %uﬂ = g('r?anuO; CL). (313>

Transformation (3.7) together with

Uz = g('x?uaur; CL)
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is called the prolongation of (3.7). Now, we define the coefficient (? as follows:

dg(x,u, p; a)

Cp('r’u7p) = aa

v Glyeo = - (3.14)

Equation (3.13) can be rewritten

g(z,u,p;a) (390(:2,;;@ _{_pa(P(?uUS a)) _ (81#(2,;;@) _l_paw(:g,uu;a)) .

Differentiating this equation with respect to the group parameter a and substitut-
ing a = 0, one finds
dg (Op Oy 0 0 e 0%
<aa <8x Pou) T\ Gwoa Pouva) )|, \Gzoa T Pouda )|,
29| (20, 0¢
da|,_, \ Ox Pou
dp Oy
(5 +5)

..

or

Pz, u,p) =

a=0

Since by (3.12)

a=0

gl Fo Py
Na=0 \ 9zoa " P'ouoa ) |,_,

CE al’
( *pai>

then

82

(

0%y
Ouda
)
Dy (€"

9
da|,_

n' = o9
07 da |,

dg

) Cp:_

0
+p$_+ ) 51.: aa

0
Dy = o-+ o

ox p%

a=0

Thus, the first prolongation of the generator (3.3) is given by
XW =X + (2, u,p)0,.

Similarly one can obtain prolongation formulae for any order prolongation of an

infinitesimal generator.
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3.1.3 Lie Groups Admitted by Differential Equations

Admitted Lie groups of transformations are related with differential equa-
tions by the following.

Consider a manifold M which is defined by a system of partial differential
equations

FF(z,u,p) =0, (k=1,2,...,5). (3.15)

Hence

M = {(z,u,p) | FF(z,u,p)=0, (k=1,..,5)}

Here x is the independent variable, u is the dependent variable and p are arbitrary

partial derivatives of u with respect x. The manifold M is assumed to be regular,

ronk (88529)) -

Definition 3. A manifold M is said to be invariant with respect to the group of

i.e.

transformations (3.2), if these transformations carry every point of the manifold

M along this manifold, i.e.
F*z,a,p) =0, (k=1,2,...,5).

Accordingly, equations (3.15) are not changed under the Lie group of transfor-
mations and we say that the Lie group of transformations (3.2) is admitted by
equations (3.15).

In order to find an infinitesimal generator of a Lie group admitted by dif-

ferential equations (3.15) one can use the following theorem.

Theorem 2. A system of equations (3.15) is not changed with respect to the Lie

group of transformations (3.2) with the infinitesimal generator
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if and only if

XPFER o =0, (k=1,...,5). (3.16)

Equations (3.16) are called determining equations.

The determining equations (3.16) can be computed. These equations are
linear homogeneous differential for the unknown coefficients & (z,u), 7/ (z,u).
Since the coefficients of a generator X do not depend on the derivatives p® the
determining equations can be split with respect to the parametric derivatives. The
split system of equations is an overdetermined system. The general solution of the
determining equations generates a principal Lie algebra of the system (3.15). The
set of transformations, which is finitely generated by one-parameter Lie groups
corresponding to the generators X is called the principal Lie group admitted by
the system (3.15). Later this approach will be applied for stochastic differential

equations for obtaining their determining equations.

Definition 4. A function J(z,u) is called an invariant of a Lie group if
J(z,u) = J(x,u).

Theorem 3. A function J(z,u) is an invariant of the Lie group with the generator
X if and only if,
XJ(x,u) =0. (3.17)

Definition 5. A vector function J(z,u) defines a relative invariant if the manifold

-

defined by the equation J(z,u) = 0 is an invariant manifold.
Using theorem 2, one obtains the following theorem.

Theorem 4. The functions J*(x,u) are relative invariant of Lie group with the
generator X if and only if|

XJ¥ |, =0,
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where J* denotes the components of J.

Let H be a Lie group of transformations, admitted by a system of differential

equations (3.15).

Definition 6. A solution u = ¢(x) of the system (3.15) is called an H-invariant
solution if the manifold v = ¢(z) is an invariant manifold with respect to any

transformation of the group H.

Invariant solutions are constructed as follows. First, one finds all the in-
dependent invariants J* = J¥(x,u), (k = 1,...,m + o). Here ¢ = n — r, is the

number of independent variables, which is called the rank of the invariant solution.
a(J, ..., JmTo)
d(ul, ..., um™)
of generality one can choose the first invariants J!, ..., J™ such that the rank of
o(J, ..., J™)
o(ut,...,um)

that the first m invariants J*, (k = 1,..m) depend on the remaining invariants

The rank of the Jacobi matrix

has to be equal to m. Without loss

the Jacobi matrix is equal to m. At the next step one supposes

JE (k=m+1,.m+ o),
JE =t ) (k=1 ..m) (3.18)

Equations (3.18) should be such that they can be solved with respect to all de-
pendent variables u’, (i = 1,...,m). After substituting the representation of the
functions 1’ into the initial system of partial differential equations, one obtains the
system of equations for the unknown functions ¥, (k = 1,...,m). This system

involves a smaller number of independent variables.



CHAPTER IV
APPLICATION OF GROUP ANALYSIS TO
THE DETERMINISTIC GAS AND HYDRO

DYNAMICS EQUATIONS

This chapter deals with the deterministic gas and hydrodynamics equations.
Hydrodynamics equations were the first object of application of group analysis
in Ovsiannikov (1958). Recently the PODMODELI (SUBMODELS) program in
Ovsiannikov (1994) aimed for an exhaustive use of the group analysis method
for studying solutions of the gas dynamics equations. Results of this study are
summarized in Ovsiannikov (1999). Group analysis was first applied to the Navier-
Stokes equations in Pukhnachov (1960). A review of exact solutions of the Navier-
Stokes equations can be found in Andreev, Kaptsov, Pukhnachov and Rodionov

(1998), and in Pukhnachov (2006).

4.1 One-Dimensional Gas Dynamics Equations

The one-dimensional gas dynamics equations have the form

pt + ups + pug =0,
p(ug + uuy) + pe =0, (4.1)
Pt + upe + A(p, p)ua = 0,
where p is the density, p is the pressure, and u is the velocity of the gas in the
direction z. The function A(p, p) is related with the state equation of the gas. For

exanple, for a polytropic gas A = vp, where 7 is constant.
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4.1.1 Admitted Lie Group

For arbitrary A(p,p), the symmetry Lie algebra is four-dimensional and

thus denoted Ly, and is spanned by the generators (Ovsiannikov(1962))

0 0

Xi==, X,=—
al % 2 A
Xg=tg Tagn XM=t +50

For a polytropic gas A = yp this algebra extends to a six-dimensional Lie algebra

Lg by the additional generators

o o _ o 9
X=t2 0yl 9,9 x=pd i, 2
5= T an T, TPy, TPy,

If v = 3 which corresponds to mono-atomic gas, then there is one more extension

to the Lie algebra L; by the generator

0 0 0 0 0
X;=1"— 4 to— — tu)=— — 3tp— — tp—.
Ty gyt v tugn = 3te s =g

In this thesis we compare our results with the class of solutions which are called
self-similar solutions. The class of self-similar solutions is used for the explanation

of many physical phenomena in continuum mechanics (Sedov (1993)).

4.1.2 Invariant Solutions

A self-similar solution is an invariant solution of an admitted Lie group,
which is related with scaling of the variables. In this section, representations of self-
similar solutions are shown. Later, similar representations of invariant solutions of
the stochastic gas dynamics equations are shown.

1. Invariants of the subalgebra spanned by the operator

9] 9, 5, 9,
X_(2+6)X6_X5__t§+u%+(2+6)pa_p+ﬂa_p

are

ut, pt(ﬂ“), ptﬁ, x.
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The representation of the corresponding invariant solution has the form
u= t_1¢1($)7 b= t_(ﬁ+2)¢2($), p= t_ﬁqSS(x)'

The reduced system of equations is obtained by substituting the representation of

the invariant solution into the original system of the gas dynamics equations

0 (¢g — B) + ¢z =0,

¢ 9y + ¢ (v, — (B+2)) =0,
1 L, 9
o~ (0'0h+75) =0
2. Invariants of the subalgebra spanned by the operator
X=02@a+1)+p)Xe+aX;—(1+a)X;

0 0 0 0 0
= t— 4+ ar— 4+ (2(a+1 - —~ 1+ au—
t t+ozx + 2@+ 1)+ B)p=—+ Bp (14+a)u -

are

ut, pxtBAD ot a0t

where & # 0 and o = 1/a.

The representation of the corresponding invariant solution has the form
u=axt7'oN (a%), p=a PG (a), p=1t"¢"(a").

The reduced system of equations is obtained by substituting the representation of

the invariant solution into the original system of the gas dynamics equations

adld’z + ¢2z(ag' + 1) + ¢* (¢ — B) =0,
adld*vz + ¢2z(adt + 1) + ¢* (=B + o'y + 20" — 2) =0,

¢ + (az2 (czﬁlcbi + g) —(¢')* + 2(72) = 0.

3. Invariants of the subalgebra spanned by the operator

0 0 0 0
X = — = r— — —_ — —
X3 — X5+ 5Xs x@x +u8u —l—ﬁpap-i—(ﬁ 2)pap
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are

ux_l, px_ﬁ, px(Q_B), t.

The representation of the corresponding invariant solution has the form
u = l’¢1 (t)a b= xﬁ¢2(t)7 p= $(5_2)¢3(t)'
The reduced system of equations is

¢ + (8- 1)9'¢" =0,
¢+ (B+3)¢'¢" =0,
¢+ (¢1)° + B6°/¢° = 0.

4.2 The Two-Dimensional Navier-Stokes Equations

The two-dimensional Navier-Stokes equations have the form

plus + uvy + vuy) = —py + f1(Uss + Uyy),
p(vy + uvy + vvy) = —py + (Ve + vyy),
Uy + vy =0,
where t is time, p is the density, p is the pressure, u is the coefficient of viscosity,
and u,v are the velocities in the direction x and y respectively.
It is useful to write the Navier-Stokes equations in a dimensionless form.

Let u,p, Z,7,t be the dimensionless variables, which are related by the formulae
uw=Vu, p=Qp, v= Lz, y= Ly, t:Ta

where V, @, L and T are velocity, pressure, length and time units, respectively.

After dropping the symbol =, and choosing appropriate units L, V, T, (), one obtains
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the equations

Ut + Uly + VUy = =Pz + Ugg 1 Uyy,
Ut + UVz + VVy = —Dy + Uzg + Uyy, (4.2)
Uy + vy = 0.

In the cylindrical coordinate system

x
r= /22 + 92, 0 = arctan —,
Y

U=wucosf+vsinb, V =wvcosf — usinf

these equations have the form

V V2 1 U

U+ UU, + — U()——Z—pr-l-(Um«-l-;Ur— 2T Ugg——‘/g)
V uv 1 1 V 1

Vit UVt Vo b === ——pp + (Vir + —Vo = 5+ 5 Vog + Ue)

U 1
U +—+-Vp=0.
roor

4.2.1 Admitted Lie Group

The symmetry Lie algebra of (4.2) is infinite dimensional and is generated by

the generators (Pukhnachev (1960) in the two-dimensional case, Buchnev (1971))

0 0 0 0
X2 —y%—kxa—y—v%—ua—, X3 a,
N 0
— (D)5, + 5, — O, K= 5

¢m>+%ma—woa Xo= g Xe=l)g,

where 11 (t), 1¥2(t) and () are arbitrary functions, and .(t), ¢/ (t) are the first

and the second-order derivatives of v (1).

4.2.2 Invariant Solutions

The group classification of the Navier-Stokes equations in the two-

dimensional case has been done in (Pukhnachev (1960)). Many invariant
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solutions of the Navier-Stokes equations are collected in the Handbook of Lie
Group Analysis of Differential Equations Vol.2 (Ibragimov (1995)). We use the
following solutions.

1. Invariants of the subalgebra spanned by the operators X, and X3 are
Ur, Vr, pr? 0.

The representation of the corresponding invariant solution has the form

The reduced system of equations is

G — *¢5 + (6)° + (67)° + 20" = 0,
209 — 5 =0, ¢ = 0.
2. Invariants under the subalgebra spanned by the generators X;, and X,

are
Ur, Vr, pr? tr2.
The representation of the corresponding invariant solution has the form
o) P2 ¢ (tr-2)

U:—7 :—7 p: 2 *
r r r

The reduced system of equations is

2207 + (¢')* + (¢)* + 2¢° = 0,

22(220%, + (¢' +4)¢2) — 92 =0, ¢.=0.



CHAPTER V
GROUP ANALYSIS APPLIED TO
STOCHASTIC PARTIAL DIFFERENTIAL

EQUATIONS

In this chapter, the transformation and group analysis method is discussed
as it applies to stochastic partial differential equations. In Melnick (2003), a cri-
terion of invariance of a scalar stochastic partial differential equation with respect
to a one-parameter group of transformations was given. We will generalize this
to systems of equations. A general of the group analysis method can be found
in textbooks (cf. Ovsiannikov (1978), Ibragimov (1899), Handbook of Lie Group

Analysis of Differential Equations (1994), (1995), (1996)).

5.1 Transformations of Stochastic Partial Differential

Equations

On a complete probability space (£, F, P) consider the stochastic Cauchy

problem
o(r,y) = v(ro,y) + / " Alr,y)dr + / " B(r.y) du(r) (5.1)

T0 0

where
A(r,y) = A(r, y, 0(r, y), Uy, (7, 9)5 Uy (1,9))

is an n-random vector,

B(r,y) = B(r,y,v(r,y))
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an n x m random matrix, w(r) a vector of m independent standard Wiener
processes, v(rg,y) = vo(y) a vector of random functions, r € [ro,T] and y =

(y1, ..., yn)T € RY. In component form,

V) =)+ [ A+ Y [ Bngdd), (=T 62

T0
where by convention, superscripts denote the vector components of a dependent
variable or the entries of a matrix, numeric subscripts the vector components of
an independent variable, and alphabetic subscripts the partial derivatives with
respect to the given variables.

Consider a change of the dependent and independent variables
r=at), y=nh(tz), v=gtzmu), (5.3)

where the functions «(t), h(t,z) and g(t,z,u) are sufficiently smooth and locally
invertible with respect to r, y and v. This means that there exist functions ¢t = a(r),

z = h(r,y) and u = §(r,y,v) such that

and

U= g(a(t)a h(t> x)g(t, Z, U))

To be precise, we are in fact considering local groups of transformations depending
on some parameter a which, as it is not required at this stage, is omitted.

The change of variables (5.3) will map a function v(r,y) to a new function

u(t,z) = g(a(t), h(t, z), v(a(t), h(t,z)). (5.4)
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Assuming that v(r,y) is a solution of the Cauchy problem (5.1), let us derive
the stochastic differential equation for the random function w(t,z). This will be
achieved in two steps: First a stochastic differential equation for the function
v(a(t), h(t, SC)) will be derived, followed by an application of Itd’s formula.

Begin by changing the time variable, using r = «(t). Introducing the nota-

tion 9(t,y) = v(a(t),y) and 0(ty,y) = v(a(ty),y), then (5.2) becomes

o'(t,y) = 0 (to,y) + /t Al(r,y) dr + Z /tt BY(r,y) dW(r) (5.5)

to

where

Ai(tv y) = Al(Oé(t)? Y, ﬁ<t7 y)? ﬁyk (tv y)’ /ﬁykyl (t7 y)) ’ O/(t)

B(t,y) = BY(a(t), y, 0(t,y)) - Vo' (1)

Here each W7(t) is a new Wiener process such that (see Melnick, 2003)

w(a(ty) — wi(a(ty)) = / C (s dW(s)

Differentiating equation (5.5) with respect to each component y;, of the independent

variable y, one obtains

Ty (ty) = By, (to,y) + / (1,y dT+Z/ B (r,y)dWi(r)  (k=T1,N).

Here we have used the property

0 t - t_i
8—% </t0 A (ﬂ?/)dT) :/to Ayk<7',y)d7' (k=T1,N),

and have assumed the property

o A BY(r.y) i) = | B (ry)dWi(r) (=T,
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Substituting y = h(t,z) into equations (5.6), multiplying each by h¥(¢,z), and

integrating with respect to ¢, they become

/hk(T 2)3 (7, h(r, x))drz/ Wi (r.2)3 (to, h(r, ) dr

to to

- /t: hf (7, x) < /t Ai (s, h(r, x))d8> 0

+2/ hE (7,2 (/ B (s, h(r, :c))de(s)> dr  (k=T1,N).

(5.7)

Summing the first terms on the right-hand side of equations (5.7) over k, we obtain

Z/ BE(r, )3 (to, h(r. ))dT:/t 4 (o, h(r, 7))

to

= 17i<t0, h(t, ZE)) — 7~}i(t0, h(to, l’))

Summing the second terms on the right-hand side of equations (5.7) over k£ and

using Fubini’s theorem gives

Z/ he (7, x) (/ Al (s, h(r, x))ds)dT

= Xl: /t (/t hy (T, 2) Al (s, h(, x))dr) ds

= / (Ai(s, h(t,z)) — Ai(s, h(s, 7)) ds.

to
Summing the third terms on the right-hand side of equations (5.7) over k and using

Fubini’s theorem for the It6 integral, (Medvedyev (2007), p. 328, Corollary 5.28)



31

we obtain
i/tt (/ B (s, h(r, x))dwj(s)) dr

</ d.B" (s, h(r, x))) AW (s)

BY(s, h(t,x)) — BY(s, h(s,x))) dW(s).

Il
\ \WEMN

Thus, from (5.7) we obtain

Z/ RE(r, )0 (1, h(r,2))dr = 0'(to, h(t, x)) — 0 (to, h(to, T))

+ (/ A'(s, h(t,r))ds + Z/t Bij(s,h(t,x))de(s)>

_ (/t Ai(s,h(s,x))derZ/t Bij(s,h(s,x))dwj(s)).

Hence, the substitution of y = h(¢,x) into equation (5.5) yields

'(t, h(t,x)) = 0'(to, h(to, /A’Tth )) dr

—I—Z/ hkT:v Th(Tl‘ dT+Z/ BY(r,h(r,x)) dW(T)
(5.8)

and shows that ¢° is an It6 process. This equation can be rewritten in differential

form as

do' = A'dt + " B dW(t),

Jj=1
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where

B'(t,z) = 0'(t, h(t, @) = v'(alt), h(t, z)),

~

Al(t,x) = At h(t, ) + Y0, (¢ h(t,x))hi(t, )

l

= A'(a(t), h(t,x)) - o' (t) + Y v, (alt), h(t, ))hf (t, @),
Bi(t,x) = BY(t,h(t,x)) = B (a(t), h(t, x)) - /(1)

In this notation, the components of (5.4) my be written as
u'(t,x) =g (t,x, 0(t,x))
where we have set
g(t,x,@(t,x)) = g(t,x,f)(t, h(t,x))) = g(a(t), h(t,x),v(a(t), h(t,z)) )

Applying 1to’s formula one obtains

i+ Zm (3 BB i

k=1 o=1 j=1

dt+> g Y BYdWi(t)
k=1 j=1

or equivalently,

‘: [agr—i_zhfg;k Xn: < /AJ+ZUJ hk) gv]
j=1
% 2 (Z B’”B‘”) e it + Var > ZB W (1)

=1 o0=1 k=1

(5.9)

One needs to express G, Jy,, Juk, Gukye, A and B in equation (5.9) in terms of the
functions «, h, g, u and their derivatives.

For this purpose, consider the identity
u' = g'(a(t),ht,2),g(t, x,u) (i =1,n). (5.10)

Differentiating equations (5.10) with respect to each u’
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a ~1 1 ~r 2 ~r 3 ~1 n
ﬁ : 9p1G,1 + G291 + 939,12 + ...+ goynGy1 =
a ~1 1 At 2 ~1 3 ~1 n
w Y9Gy T 90292 T 9392 oo GGy = 0
d ~1 1 ~f 2 ~7 3 AN
S Tiu + G290 + 939y + oo+ Gyn Gy = 1
6 ~1 1 At 2 ~t 3 ~% n
BN Jp1Gun + Gp2Gun + Gp3Gun + oo + GynGyn = 0
one obtains
Gt =det (M) " det (M) (j =T1,n), (5.11)

where M and M% have different j-th columns,

gl g gh 0 g
M = . MY =
11"]
gk . gh g, . 0 . gh

On the other hand, differentiating equations (5.10) with respect to t and xj one

has
9 ~ - Al g
Pk gro’ + g by + G hy + A g Y == Gl
a . O hl A1 h2 A7 hN o - ~r ]
8_331 : +gy1 +gy2 x1 +"'+gy1\f T _ngjgm
a 1 2
% : O+gylh +gy2h + - +gyN - ng]gﬂfz\f

§. = det (A) " det (A?),

g;k = det (A) 7! det (AFT) (k=1,N),
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where the (k + 1)-th columns of A and A**! differ,

fRL N RN

o hl . . AN a
0 h}q .. hfcvl 0 hii D L hfcvl
A = AR =
0 hi_N thVN 0 hiN D VA hiVN
and where

==Y "dhgl,  MN=-=> g.g,
j=1 j=1

Differentiating the j-th equation in (5.11) with respect to u’

0

ot

0

ou?

0

oun :

one obtains

where

~7 1 A7 2 ~7 3 ~7 n o __ ~7
Gpipt Gyt + Gpiv29y1 + Gviv3 Gyl + ...+ Goipn Gyl = _8u1 Gyi

s 1 a2 i3 i om o .,
Gviv1 Gu2 + Gviv29y2 + Gviv3Gu2 +.t GpiognGu2 = w Gui

A 1 ~i 2 Ad 3 i n 0
gvjvlgun + gijQ,gun + gvjv:sgun + ...+ g’ujv"gun = aun

s
o = det (M) " det (M), (i,k = T,n)

1 i,1 n
g1 - A . g

1 i\n n
Gy - A . G

and the entries in the k-th column are given by

AV = g’
Jue T
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The derivatives v}, (a(t), h(t,z)) are obtained from the relations
vi(a(t), ht,x)) = ¢'(t, z, u(t, ). (5.12)

Differentiating equation (5.12) with respect to ¢ and each xy, respectively,

O T e R N T S ) AL
j=1
8_:1:1‘ T Uy Ny F 00+ Uy Ry _gm1+zguj“xl
7j=1
63’;N : Uyl TN Uyz TN ,UyN TN _g.Z’N / 1guju,7;N
]_

one obtains
”U;k = det (A) " det (©%F), (5.13)

where

o hlo. 0% . RN

0o nl . 6 . AY

T 1

0 B, . 6N . R

TN

and the entries in the (k + 1)-th column are
=g +> guul, 07 =gl +> gl .
j=1 j=1
For simplicity, equations (5.9) are now rewritten as

du’ = Fi(t,-T,u, Uzkauazkxz) dt + Z Gij(ta x,u) dW](t) (Z - L_n)

j=1
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5.2 Determining Equations

According to the definition, invariance of equation (5.1) with respect to a

given group of transformations is equivalent to the equalities

% A
F (t, ‘TJ u? ul'k7 uwkx“ a) = A (tJ x? u? ka, U’{Ek.’L’l)

G"(t,x,u,a) = BY(t,x,u)

for all t, =, u, Uy, Upz,, @, and i =1,n, j=1,m, k,l =1, N.
Differentiating F' and G with respect to the parameter a one has

OF"

:)’5 Az 0

da la=0 ( )

oG ~ .. pBi t
= XB" -y B¢

8@ a=0 + 2 Q/}t Z Cuk

k=1

where

X = 9(8)0; + € (t, )y, + ¢ (¢, u) Dy,
X is the prolonged generator of X and

i - j | 1 1 - - jo o 1
Cut = Z (A]¢t + A]Cuj + 5 Z (Z B] Bk ) Cujuk>

j=1 k=1 \o=1
is substituted into X ul. We can find determining equations of the stochastic partial
differential equations by

X(A"—ul) =0

B

. . (5.14)
XBY + =t — Y BHH =0
k=1

5.3 Example : The Kardar-Parisi-Zhang Equation

The Kardar-Parisi-Zhang (KPZ) equation is

du = (ugs + %(UI)Q) dt + B(t, z,u) dW (t). (5.15)
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Infinitesimal generators of the admitted Lie group are sought in the form
X =)0 +&(t, x)0: + ¢ (t, @, u,p, p)Oy
with prolongation
X =X + ("0 + " 00, + (" Oy,

Applying the operator X to equations (5.15), one obtains the determining equa-

tions
X [Uzs + %(ux)ﬂ =0,

- B
XB+ St — BG! = 0.

Solving this system of equations, one obtains

1
Y = ¢4 + cst, E=c3+ ot + 50535, "' =c1 — cor + p(t, a:)e_“/Q,

where
8(0ua(t, ) — @u(t,x)) = B(t,x,u)p(t, ).

The generator corresponding to these coefficients is
X = ClX1 + CQXQ + 03X3 + C4X4 + C5X5 + Xoo
with

X1 = au, X2 = t@x — a:@u, X3 = Gx, X4 = 8t, X5 = 2t(9t + .Tax,

Xy = e_“/2go(t,x)8u.

We first construct the solutions which are invariant under the operator Xj.

The Lie group of transformations corresponding to this basis generator is

Xs i t=t, T=ax+a, U=u
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Invariants of this subalgebra are
u, .

The representation of the corresponding invariant solution has the form
u = ¢(t). (5.16)
To find the function B, as
B
X3B+§wt—BC}j:Bx:O

then B = p(t,u). Substituting this function B and (5.16) into the original equation

(5.15), one arrives at a simple stochastic ordinary differential equation.

o10) — ott0) = [ utt, o)W (s

to
for the solutions which are invariant under Xjs.
Next we construct the solutions which are invariant under the operator
X = aX; + Xy. The Lie group of transformations corresponding to this basis

generator is

X i t=t+a, T=u, =u+aa

|

XJ=aJ,+ J;, =0.
Invariants of this subalgebra are
u—at, .
The representation of the corresponding invariant solution has the form
u=¢(z)+ ot,
To find the function B, as

B
XB—i—Ewt—Bij:ozBu+Bt:O



then B = u(z,u — at). Substituting into (5.15) gives

T 2 -1 !
¢ww + (¢2) - Q= t—t, /to /L(I7¢)dW(T)

that is, the deterministic second order ordinary differential equation

(¢x)2 _ _:U(xa ¢)
Gz + N a = ﬁ(W(t) — W(to)).

Since the left-hand side is independent of ¢, the p(z, ¢) = 0 and ¢, + 5

(6:)° _
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CHAPTER VI
GROUP ANALYSIS OF STOCHASTIC FLUID

DYNAMICS EQUATIONS

We now apply the above techniques to the group analysis of some stochastic
fluid dynamics equations. Most of the substantial computations were performed

with the help of the REDUCE symbolic software.

6.1 One-Dimensional (Gas Dynamics Stochastic Equations

Consider the gas dynamic partial differential equations with stochastic part,

pt + upy + pugy =0,

du = —(uu, + %pc,;) dt + B(t,z,u,p, p) dW (t),
where v is constant. Infinitesimal generators are sought in the form
X =)0+ &£(t, 2)0p + C(E, 2, u, p, p)Ou + CP(E, 2,0, p, p)Op + CP(E, 7, 1, p, )0,
The prolonged generator is
X=X+ (" Oy, + ¢ 0y, + POy, + (P 0p, + (70, +("0,,,

where
1
(" = A+ 5B
and ("=, (P, (P are the usual prolonged forms. Applying the operator X to

equations (6.1) and substituting p; = —(up, + pus), pr = —(up, + ypu,), one
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obtains the determining equations of the stochastic gas dynamics equations.

X(pt + ups + pus) =0,

X (pt + upy + ypuy) =0,
(6.2)

1
X (us + vy + ;pa:) =0,
~ B

We distinguish two cases.

In case v = 3 one obtains

Y = it + (5 + c3)t + e,
& = crtx + cqt + c3T + o,
(" = —crtu — csu + crx + ¢y,
(" = p(cs — 3ert),

¢ = plce + 2c5 — cqt).
The generator corresponding to these coefficients is
X =1 X1+ caXo+ 3 Xz + ca Xy + 5 X5 + c6 X + 7 X7

with
X1=0, Xo=0,, X3=t0+x0,, Xy=10,+0, Xs5=10—u0,+2p0,,
X = pd, + p0,, X¢=10; +tx0, + (z — tu)d, — 3ptd, — ptd,.
Let us consider the class of solutions invariant under the operator X = X3 — X5+

BX¢ (Ibragimov (1994), p.258). The Lie group of transformations corresponding

to this basis generator is

a

X i t=t T=uxe" a=ue, p=pe’, p=pelfe



42

Invariants of this subalgebra are
ua:_l, pa:_’B, ,03:(2_5), t.
The representation of the corresponding invariant solution has the form
u=a¢'(t), p=2"¢"1t), p=aPPe). (6.3)
To find the function B in the It6 part, as
(X3 — X5+ 8X¢)B — B(, = xB, +uB, + fpB, + (6 —2)pB,— B =0
then B must be of the form

B = xu(t,um’l,prﬁ,px@’ﬁ)). (6.4)

Substituting (6.3) and (6.4) into (6.1), one arrives at the system of stochastic

differential equations
¢ +(B—1)¢'¢’ =0,
i+ (B+3)0'¢" =0,
do'(t) = —((¢')* + Bd?/¢°) dt + p(t, ¢', 6%, ¢°) dW ().
On the other hand,when v # 3 one obtains
Y = (c5 + c3)t + c1,
£ = cat + c3x + co,
("= —csu+ ¢y,
P = pes,
¢* = p(ee + 2c5).

The generator corresponding to these coefficients is

X = 01X1 + CQXQ + Cng + C4X4 + C5X5 + CGXG
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with
Xl :atv X2 2817 X3 :tat+xar7 X4 :tax+aua
X5 = 10y — u0, + 2p0,, Xe = pOy + p0,.

We consider the class of solutions invariant under the subalgebra spanned by X =

(2(a+1) + 6) X6 + aX3 — (& + 1) X5 and calculated by
XJ = —tJ + axJy + (& + Dudy + (2(@ + 1) + B)pJ, + BpJ, = 0.

If & = 0, then the Lie group of transformations corresponding to this basis gener-

ator is
a — (2+8)a

X i t=te”®, T=x u=ue", p=pe . p=pe

XJ=—thy+uld, + (24 B)pJ, + BpJ, = 0.
Invariants of this subalgebra are
ut, pt(ﬂ+2), ptﬁ, T.
The representation of the corresponding invariant solution has the form
w=tgl(z),  p=tFDERE),  p=tT(). (6.5)
To find the necessary form of the function B in the Ito part, as

B 3
XB+ Ewt — B(, = —tB,+uB, + (2+ 5)pB, + fpB, — 5B =0

then

B = t_%u(x,tu,pt(ﬂ+2),ptﬂ). (6.6)

Substituting (6.5) and (6.6) into (6.1), one arrives at the reduced system of stochas-
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tic partial differential equations

Oy — B) + 30" =0
¢ 97 + ¢ (vo, — (B+2)) =0
tto

(6" = (o't + j—%)) = u(r.0". 6" ") [ /t:s—?dms)].

Since the left-hand side of the third equation is independent of ¢, then

2
W, @' % 6% =0, Plgl+ % — g

If & # 0, then let & = é, and the Lie group of transformations corresponding

to the above basis generator is

Li1)a _ 2(1+1)+8)a Ba

X i t=te® ZT=uxea, u=uea™ p=rpe p = pe

XJ=—tJ, + éxe + (é + Dud, + (2(& + 1) + B)pJ, + BpJ, =0,
Invariants of this subalgebra are
utz™t,  ptPt? pt?, aot
The representation of the corresponding invariant solution has the form
u =t 1ol (2°t), p = P2 (2), p=tPp(z). (6.7)

To find the required form of the function B in the It6 part, as

XB+ gwt — B¢

=—1B, + l:ch + (l + )uB, + (2(l +1) + 8)pB, + BpB, — (l + §)B =0

« « « a 2

then

B = xt 32zt utz ™, pt?+2, ptP). (6.8)
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Substituting (6.7) and (6.8) into (6.1), one arrives at the reduced system

agi¢’z + ¢lz(ad' +1) + ¢*(¢" — §) =0
adld®yz + ¢2z(ag! + 1) + ¢* (=B + o'y + 26" —2) =0
2_1¢1(2):Z_1¢1(2)—/z -2 1.1 ¢_§ . 1\2 2¢_2 d
0 0 " S <Oé$<¢ ¢z + ¢3> (¢ ) + ¢3> s

+/3*%m¢%ﬂfmww

20
where

v(z) = — =t, z =1z

w(z):/ot L dW(T)z/Otx% AW (7) = 22V (2/2%)

v'(7)

is scaled Brownian motion W.

6.2 The Two-Dimensional Navier-Stokes Stochastic Differ-

ential Equations
We next discuss the two-dimensional Navier Stokes stochastic partial dif-

ferential equations,

du' = [ul + u;QIQ — (uluglCl + u2ui,2 +px1)] dt + B™dW,(t) + B2dW?(t),

du? = [ul , +ul,, — (u'ud +u’ul + pg,)] dt + B2 dW' (t) + BZdW?(t),

uil + uiQ =0.
(6.9)

where BY = BY(t,z,u,p), 1 <1i,j <2. The infinitesimal generator is

X = (t)0; + E°(t,2)0y, + E2(t,2)0y, + C* (t, 2, u, p)Or

(2, u, )y + CP (L, 2, u, p)D,
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and the prolonged generator is
)/Z =X+ Cuiautl + C“fﬁug + Cptapt + Cuglgl ul, + Cuilauil + Cpml 817901 + CU%Q Uk,
+ Cu?gQ au%Q + C‘pz2 apzz + CUtlta’utlt + CU%zl au%ml + CU%ZQ aU%EQ + <“%paut1p
ul ul ul ul ul
+C T1T] 8,“;111 +C xlx2a’u«;112 +C :Elpauélp +C 123628,“%212 +C 962178,“%72;)
wl u? u? u? u? u?
Oy, + MOy + Ty, + TR0+ (T + (g

2 2 2 2 2
uzle uzlp Uzoya Uz p U’PP
+¢ 2, ¢ 2, 0y (O + 0,z

where
(U =AY+ Ao + L(B11)? + (B12)?)CY . + (BiiBoy + Bi1aBao) (™,
+3((Ba)? + (B2))Cl,
¢ = ALCE + AoC + L((Bi)? + (B12))(%,, + (BiiBor + Bi2Ba) (o,
+35((B21)? + (B22)?) ffjm

and C“il, C“éz, C“il, C“gz, (Pt are the usual prolonged forms. Applying the

operator X to equation (6.9) and substituting uiQ = —uil, uzlm = —u;wl, uim =
—u} .., the determining equations of Navier Stokes stochastic differential equations
are

X (up g, + Upe, — (u'uy, +uuy, +ps,)) =0,
X (ul,, +ul,,, — (Wl + vl +p,,)) =0,
)Z'(uil + uiZ) =0,

i Bll 1 i Bl2 1 1
XB'" 4 S = BUGH = B =0, XB™® + =, = B — B2(l; =0,

v 21 B! 11 ~u? 21 ru? v 222 B* 12 ~u? 22 ~u?
XB +7wt—B w —B7(2 =0, XB +T¢t—B w — B¢z =0.
One obtains
Y = 2c1t + c3, =11y — camg + a1 (1), P2 = 1Ty + oy + Cc5a(1),
ul u?
" =—au' — U’ +agl(t), (Y =—au’ - cu' + (),

(P = —2c1p — camripy(t) — 5oy (1) + cop(t).
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The generator corresponding to these coefficients is
X = 01X1 + CQXQ + 03X3 + C4X4 + C5X5 + CGXG
with
Xy = 2t0; + 1104, + 1205, — u'0p — uPDy2 — 2p0,,
X2 = —.Tgaml + $1am2 - u28u1 + Ulau2, X3 = Gt,
Xy = ¢1(t)0, + £1(t)0ur — 103 () Dy,

X5 = 2(t)0n, + £5(t)0u2 — 20 ()0, X = pi(t)0,.

Let us continue with the form of the operators X4, X5, X as given in Pukha-
chov (1960) (see also Ibragimov (1995)), that is p1(t) = wa(t) = t and p(t) = 1.

Along with the Cartesian coordinates x1, xo, u', u?, one uses here the cylindrical

coordinates
)
r=+/(21)?+ (22)2, 0 = arctan —,
T
_ 1 2 .2 1.
U=u cosf+u”sind, V =u“cosf — u sinf.

This change of coordinates transforms equations (6.9) to

v 1 2 V V2

dU = [(UM + %Ur -

+ 0 (t,7,0,U,V,p) dW'(t) + b'*(t,r,0,U, V,p) dW?(t),

Vo1 V UVl}
dt

1 2
dV = |:(‘/;’r+;‘/r_ﬁ+ 2‘/—994‘5[]0)—([]‘44-?‘/9-{—74‘;]79)

p
+ 02 (t,7,0,U,V,p) dW'(t) + b°(t,r,0,U, V,p) dW?(t),

v 1
U +—+-Vp=0.
roor

(6.10)
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The operators with respect to (6.10) are

Xy =2t0, +1r0, — U0y — VOy — 2p0,, Xy = —0, X3 = 0,

Xo = er(t) os0, + (e1(1)cosd — 2 v snpya

r
210 Usin® — ¢/ (t)sin )y — 210 sin 60y,
r r

X5 = ¢o(t) sin 00, + (py(t) sin 6 + 210 V cos0)0y
r

(_902_(75)U cos 0 + ph(t) cos 0)dy + 210 cos 00y,
r r

+(

+

Since

X =0, + %95 + €70, + Yoy + ¢Voy + (PO,

then

wt = 2¢1t + c3,
0 p1(t)
5 r

sin @ + c; cos 6,

t
= —cs— ¢y S02r( )

T

= 17 + c401(t) cos 0 + c5p2(t) sin b,

Y = —c,U + cy(¢) () cos 6 — #1t) Vsin ) + c5(ph(t) sinf + #a(t) V cosb),
r
pa(t)

,
Y1 (t) : / : /
Usin® — ¢y (t)sinf) + c5(¢5(t) cosd + ——= U cos @),
r r

P = —2c1p + cop(t).

gV = —clV -+ C4(

We first consider the class of solutions invariant under the subalgebra
spanned by the operators X; and Xj3. The Lie group of transformations corre-

sponding to these basis generators is



so that J = J(r,0,U,V,p), and
X =rJ,—UJy —VJy—2pJ,=0.
Invariants of this subalgebra are

Ur, Vr, pr? 6.

The representation of the corresponding invariant solution has the form

To find the necessary form of the functions b” in the Ito part, since
X3b = b7 =0
then b = b (r,0,U,V,p), and
X167 4+ 267 = b7 — Ubg — Vb — 2pbd + 267 =0
so that

bij _ ¢Z](67 UT7 VT? p,r.Q)

r2

Substituting (6.11) and(6.12) into (6.10), one arrives at

%1 = ¢71 + / %(qﬁée — *Pg — 265 + (¢')" + (6°)* + 2¢°) ds
z 11 z 112
+/z0 ¢wa1(8) + /ZO wa2(s)
EoL [ L2 o) o
z 0,21 z 122
+/Z0 wwal(s) - /ZO wa2(s)

% =0

49

(6.11)

(6.12)
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that is,

— (85 — 0°0p + (¢")* + (¢°)> + 2¢°) (=2 — 20)
= P (w!(2) — w'(20)) + ¥ (w?(z) — w¥(20))
(=205 + 63) (2 — 20) = ¥ (w'(2) — w'(20)) + ¥ (w?(2) — w?(20))

where
v(z) = 2r* =1t, z=—
(6.13)

1 ‘1 1
w(z) = dWT:/—dWT:—WT2Z
@)= [ mave) = [ Lave) = wiet
is scaled Brownian motion W. Then
oo — O’ 0p+ (61)° + (6°)" +20° =0, 265 — ¢, = 0.
It is possible to show that in the case of independent Brownian motion W' and
W? the equation
AW (2) + h2dW?(2) = 0
leads to h' = h? = 0. (Communicated by Bruno Bouchard in private discussion)
Next we consider the class of solutions invariant under the subalgebra
spanned by the operators X; and X,. The Lie group of transformations corre-

sponding to these basis generators is

X :t=te*, F=re", =0, U=Ue? V=Ve? p=pe?

so that J = J(¢,7,U,V,p) and
X =2l +rd, —UJy —VJy —2pJ, =0.
Invariants of this subalgebra are

Ur, Vr, pr? tr=.
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t
Set z = —. The representation of the corresponding invariant solution has the
r
form
1 2 3
r r r

To find the required form of the functions b¥ in the It part, since
Xob = b =0
then b = b (t,r,U,V,p), and thus
Xqb7 + 267 = 2tJ, + rb — Uby — Vb — 2pbd + 267 = 0,
yields

i — VI (2, Ur, Vr, pr?)

r2

(6.15)

Substituting (6.14) and (6.15) into (6.10), one arrives at the reduced system

¢1(Z) _ ¢1(Zo)

r

s [ (sl (0 (4 26%) ds

20

—i—/z w—ndwl(s) + /z meduJQ(s)

20 r 20

ce_ s, / 2 (s2, + (6! + )67

r 20

+/Z w—gldwl(s) + /Z ngzde(s)

20 r 20

that is,

(2207 + (6% + (62) + 20°) d2 = ¥ dw' (2) + 1'% (2)

d? = 22(22¢2, + (¢ + 4)¢?)dz + VP dw' (2) + p*2dw?(2)

and where the vector w(z) of Wiener processes is determined as in (6.13).



CHAPTER VII

CONCLUSION

This thesis constitutes a study by group analysis of systems of stochastic

partial differential equations

dv'(r,y) = A'(r,y, v, Uy Uyy) dE + 27:1 BY(r,y,v) dw (t), (7.1)
(i =T, k1 =T,N),
by employing invertible transformations of the independent and dependent vari-

ables of the form

r=a(t), y = hit,x), v=g(t z,u). (7.2)

The main goals of the thesis were to construct determining equations for
such stochastic differential equations, and to apply the developed theory to stochas-
tic fluid dynamics equations.

For solving the problem of the thesis the following steps were used.

1. Transform a system of stochastic partial differential equations (7.1) using a

local one-parameter group of transformations of type (7.2).

2. Differentiating with respect to the group parameter, construct determining
equations for admitted Lie groups of transformations for the stochastic dif-

ferential equations (7.1).

3. Apply the developed theory for constructing determining equations of ad-

mitted Lie groups for stochastic fluid dynamics equations.

The found admitted Lie groups of the stochastic fluid dynamics equations

were applied for constructing their invariant solutions. This present thesis demon-



53

strates a first experience in the application of the group analysis method for con-
structing invariant solutions of stochastic differential equations of gas and hydro-
dynamics. Our results show that the stochastic part of the reduced system depends
on how the variable t is included in the collection of invariant independent vari-

ables, as summarized in Table 7.1.

Table 7.1 The stochastic part in the reduced system, depending on ¢

[nvariant Solution = Reduced system

Has no t Deterministic
Include ¢ Deterministic 4+ Ito part
Has ¢ only Deterministic 4+ [to part

Another feature of obtaining the reduced system is that the integrand in
the Ito integral has to have a particular form which is related with the admitted

Lie group.
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