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 วิทยานิพนธ์น้ีมุ่งเน้นการวินิจฉัยการจัดเรียงตัวของอิพิแทกเซียลกราฟฟีน (Epitaxial 
graphene) บนซิลิกอนคาร์ไบดช์นิด 6H-SiC(0001) ดว้ยวิธีสลายตวัเน่ืองจากความร้อน (Thermal 
decomposition) โดยในส่วนแรกของวิทยานิพนธ์จะประกอบดว้ยการพฒันาเคร่ืองมืออุปกรณ์ท่ี
จาํเป็นสาํหรับการก่อเกิดและใชส้าํหรับวิเคราะห์ ณ ขณะท่ีเกิดจากจดัเรียงตวัของเอพิแทกซีกราฟีน 
(in situ analyze) เคร่ืองมืออุปกรณ์ท่ีพฒันาข้ึนน้ีคือสถานีทดลองของระบบลาํเลียงแสงซินโคร 
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อิเลก็ตรอนท่ีหลุดจากผวิตวัอยา่งเพื่อทาํใหเ้กิดภาพ (Photoemission electron microscopy, PEEM) 
ทั้งน้ีไดด้าํเนินการตั้งแต่เร่ิมติดตั้งสถานีทดลองตลอดจนทดสอบการใชง้านของระบบลาํเลียงแสง 
ในส่วนของการจดัเรียงตวัใหม่ของอะตอมบนผิวและการก่อเกิดกราฟีนไดท้าํการตรวจสอบดว้ย
เทคนิคการศึกษาความเป็นผลึกของสารตวัอยา่ง โดยเทคนิคการแทรกสอดของอิเลก็ตรอนพลงังาน
ตํ่า (LEED) ซ่ึงเป็นส่วนหน่ึงของการประยุกตใ์ชข้องกลอ้งจุลทรรศน์อิเล็กตรอนชนิดน้ี อีกทั้งได้
บันทึกภาพถ่ายจากเทคนิคกล้องจุลทรรศน์น้ีทั้ งจากการกระตุ ้นด้วยอิเล็กตรอนและโฟตอน 
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MICROSCOPY/SUBSTRATE SCRATCH 

 

                       This thesis focuses on the investigations of epitaxial graphene formed by 

thermal decomposition of 6H-SiC(0001). The first part of the thesis was the 

instrument development, which is the construction of the PEEM experimental station 

of the BL3.2a beamline of Synchrotron Light Research Institute (SLRI). The 

experimental station utilizes light produced from a planar undulator for materials 

analyses based on photoemission electron microscopy. The construction of the 

experimental station was completed and the commissioning of the system was 

successful. The experimental station was then used for the formation and in-situ 

analysis of the epitaxial graphene. Surface reconstruction and the formation of 

graphene was monitored by in-situ low-energy electron diffraction using the available 

electron microscope. The images of SiC before and after surface decomposition were 

observed and recorded by low-energy electron microscopy (LEEM). Intensity-

Voltage LEEM (IV-LEEM) curves were used for determination of number of the 

graphene layers. It was the first time to find that there is influence of scratch on the 

SiC surface on the formation of the graphene and that there is a spatial variation of the 
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number of graphene layers on the SiC surface. A  model to explain the finding has 

been proposed. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

Graphene is one of the most recent interesting carbon-based materials. It is a 

monolayer of carbon atoms arranging in a two-dimensional honeycomb lattice which 

is a basic building block for graphitic materials i.e., fullerenes, nanotubes or graphite. 

It was first pointed out by theoretical study based on the properties of graphite by 

Wallace (1947) and Charlier et al. (2008). In Wallace (1947), the 2D structure of 

graphene was believed to be unstable. Nevertheless, there have been several attempts 

to extract single graphene sheets with the first successful attempt by May et al. (1969) 

as a “disorder structure” on platinum surfaces heated in ultra-high vacuum, indicating 

the first deposition of a single graphitic sheet. In 1999, The Ruoff group at 

Washington University initiated the route of single-layer graphene sheet fabrication 

by micromechanical exfoliation of graphite (Lu et al., 1999). However, in 2004 the 

first graphene monolayer device was presented by a Manchester group as reported by 

Novoselov et al. (2004). Thereafter, many novel properties of graphene obtained from 

different research groups have been reported, such as the room-temperature quantum 

Hall effect (QHE) by Novoselov et al. (2004), extremely-high mobility by Geim and 

Novoselov (2007), half-metallic nanoribbon by Son et al. (2006), Raman study by 

Faugeras et al. (2008), plasmons by Bostwick et al. (2008), x-ray absorption by Gao et 

al. (2008), as summarized in Table 1.1. 
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Table 1.1 The summary of graphene properties. 

Properties Graphene Remark 

Atomic properties 

 

ripple flat sheet with density 

less than 1g/cm3 

Linear dispersion 

(Geim and Novoselov 

(2007)) 

Electronic properties 

Zero gap semiconductor. 

Zero effective mass for 

electron and hole. 

Charlier et al. (2008) 

Electronic transport 

mobility = 15,000 cm2/Vs at 

room temp. 

(Geim and Novoselov 

(2007)) 

 

Resistivity of EG =1 0-6 

Ωm. Less than Ag @ room 

temp. 

Optical properties Absorbs 2.3% of white light (Nair et al., 2008) 

Spin transport 

Spintronic (small spin-orbit  

interaction) ( Nikolaos et al 

(2007)) 

Absence of nuclear  

magnetic moment 

Anomalous QHE 

σ = ± 4(N+½) e2/h 

(Geim and Novoselov 

(2007)) 

Normally σ = N( e2/h) 

Nanostripes: Spin-

polarized edge current 

Zigzag graphene show spin-

polarized metallic edge 

current-> spin field 

electronic  (Neto et al. 

(2009)) 

Armchair graphene show 

spin-polarized 

semiconducting edge 

current 

Graphene oxides 

By oxidizing and chemically 

processing graphene and 

floating them in water 

 

Tensile modulus ~32 GPa. 

Daniel et al. (2010) 
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Table 1.1 The summary of graphene properties (Continued). 

Properties Graphene Remark 

Mechanical properties 

Strongest material ever 

tested (Lee et al. (2008)) 

By Atomic Force 

Microscopy  

 Y≈ 0.5 TPa 

Thermal properties  5.3×103 W/mK Shanshan et al. (2012) 

 

There are various methods for graphene synthesis. Table 1.2 shows some 

graphene fabrication techniques with advantages and disadvantages in terms of ease-

of-use, quality and scalability for each technique. 

 

 

 

Figure 1.1 Graphene as it appears to an optical microscope examination (Nair et al., 

2008). 
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Table 1.2 Advantage and disadvantage of different graphene fabrication techniques.  

Technique Process Advantage Disadvantage 

Chemical 

Exfoliation 

(Michael, 2009) 

Inserting molecules 

into bulk graphite to 

separate the crystalline 

planes in to individual 

graphene layer 

Its facile chemical 

approach 

After the intercalating 

molecules are removed 

from the mixture, the 

resultant C compounds 

is “sludge” (contains 

restacked and scrolled 

graphene sheets) 

Micromechanical 

cleavage 

(Geim and 

MacDonald, 2007) 

Peel off individual 

layers of graphene from 

bulk graphite i.e. 

rubbing a piece of 

graphite by adhesive 

tape 

Single-layer 

graphene (flake) 

up to 100 µm  in 

size 

Difficult to locating 

individual graphene 

flakes produce on 

substrate. 

Epitaxial growth 

-Chemical Vapor 

deposition 

(Obraztsov, 2009) 

 

-Thermal 

decomposition on 

SiC (Sutter, 2009) 

 

CVD of hydrocarbons 

deposited on metal 

substrate 

Heated over 1200 ºC 

 

Graphene can 

mounted on SiC 

for device 

integration 

- FLG exhibit 

high mobile 

charge transfer 

Large scale integration. 

Residue of the metal 

substrate might not be 

compatible with 

electronic fabrication. 

Need high-temperature 

vacuum processing. 

Hydrazine 

reduction 

Placing graphene oxide 

paper in Sol of pure 

hydrazine (Ni+H) 

Reduce graphene 

oxide paper into 

Single-G 

 

From nanotubes 

(Jiao et al., 2009) 

1. Cutting MW-CNT in 

sol. by action of 

Potassium 

permanganate and 

sulfuric acid. 

2. Plasma etching 

of nanotubes 

partly embed in a 

polymer film 
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Due to the salient properties of graphene, it becomes a promising material to be 

used in various applications. The brief overviews of the more recent main 

applications of graphene are summarized as following: 

a. Polymer nanocomposite materials: Graphene in polymer nanocomposite 

materials show an extraordinary improvement of several important properties i.e. 

electrical conductivity, thermal stability, elastic modulus and tensile strength.  The 

manufacturing of such composites requires not only that graphene sheets be produced 

on a sufficient scale but also be incorporated, and homogeneously distributed into 

various matrices. A nanocomposite formed by molecular-level graphene dispersion of 

individual, chemically modified graphene sheets within polystyrene host has been 

proved by Stankovich et al. (2006) that it exhibits a percolation threshold of 0.1 

volume percent and a conductivity of 0.1 S/m, sufficient for many electrical 

applications. 

b. Electronic devices: Graphene applications on electronic devices are given as 

follows: 

- Field effect transistor (FET) Graphene‘s ballistic transport across sub-

micron distances enables super-fast switching and computation. The achievement of 

FETs fabricated on a 2-inch graphene wafer with a cut-off frequency in the radio 

frequency range as high as 100 GHz was reported by Xia et al. (2010). They also 

achieved a dual-gate bilayer graphene FETs with an on/off current ratio of around 

100 and 2000 at room temperature and 20 K, respectively. 

- Single electron transistor (SET) Graphene can be carved into ribbons and 

islands to form quantum nanostructures-using a combination of e-beam lithography 
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and dry etching called graphene nanoribbons (GNRs). Unlike other SETs, the all-

graphene SET is capable of room-temperature operation. 

c. Magneto-electronic devices: (Cai et al., 2010) Narrow GNRs should have 

large bandgaps, and show tunable properties that depend on the direction of the 

ribbon relative to the graphene lattice. However, it has been difficult to achieve the 

atomic-scale control necessary to fabricate GNRs of precise width and direction. That 

has changed with a recent report in 2010 by Cai and colleagues who demonstrated the 

assembly of atomically-precise GNRs from molecular precursors on metallic 

substrates. Zigzag graphene shows spin-polarized metallic edge current, i.e. 

negligible spin-orbit coupling. Therefore, graphene-based devices have spin-injection 

and spin-valve effects at room temperature (in spin injection,spin-polarized electrons 

were injected, resulting in a 10% change in resistance of graphene when interfaced 

electrodes were switched from the parallel to the antiparallel state). 

Furthermore, high electrical conductivity and high optical transparency of 

graphene make it a promising candidate for transparent conducting electrodes as 

examined by Li et al. (2008). Employing also its mechanical properties, the 

macroscopic use of graphene has been demonstrated in the fabrication of flexible, 

stretchable and foldable electronics by Kim et al. (2009). The fabrication of clean 

energy devices from graphene-based materials are exploited as electrodes for 

rechargeable lithium ion batteries and ultra capacitors by Yoo et al. (2008), and Yu 

and Dai (2010). At last, due to a surface-volume ratio very favorable, graphene 

demonstrates step-like increase of resistance when a gas molecule attaches to or 

detaches from its surface, making it suitable to detect single molecules for 

applications in chemical sensors (Robinson et al., 2008). 
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1.2  Purpose of this thesis work 

One of the main goals of this thesis work is to be able to synthesize graphene by 

thermal decomposition of a single-crystal SiC, which is a promising technique for 

large-scale fabrication of few layers graphene (FLG). It is well-known that the 

properties of graphene are largely dependent on the number of layers such as bandgap 

opening (Castro et al., 2007, and Ohta et al., 2005) and plasmaron coupling (Bostwick 

et al., 2010), but the method to pattern the graphene with different numbers of layers 

is still under development. So far, the in-plane size of uniform graphene obtained by 

thermal decomposition method is limited to about 3 μm × 5 μm as reported by 

Emtsev et al. (2009), and 50 μm × 50 μm as reported by Virojanadara et al. (2009). 

The main problem for thermal-decomposition graphene on SiC is that the FLG 

obtained so far has had a thickness distribution through the substrate surface due to 

the roughness of or scratches on the SiC a surface which is one of the factors limiting 

growth process. To better understand the formation and shape of epitaxially grown 

graphene, in this study the effects of substrate scratches (∼0.2 μm in width) on the 

spatial variation of graphene layers formed on a 6H–SiC(0001) surface were 

investigated. The number of graphene layers over selected surface areas were 

extracted and analyzed by using low-energy electron microscopy (LEEM) using the 

method called IV-LEEM (Intensity–Voltage LEEM images) analysis.  

A large part of this thesis work involved the development of the PEEM 

experimental station, which is the main instrument used for fabrication and in-situ 

characterizations of graphene. The PEEM experimental station is connected to the 

beamline 3.2b of the Synchrotron Light Research Institute (Public Organization), 

SLRI. Participation in the design, construction and commissioning of the PEEM 
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experimental station provided me to be trained on advanced instrumentation and 

many engineering technologies such as vacuum technology and control/data 

acquisition technology, as well as beamline technology.  
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CHAPTER II 

THEORETICAL BACKGROUND  

 
Fundamental physics of graphene such as two dimensional lattices, electronic 

band structure and its substrate, silicon carbide (SiC), are described. According to 

assembly growth method for synthesized graphene in this study, the purpose of study 

about surface and thin film growth, the theoretical approaches is very important. 

Physics of surface science and thin film growth are also demonstrated. Furthermore, it 

is also important to understand surface characterization techniques which help us to 

choose appropriate methods of sufficient sensitivity for graphene research. The 

inception of study surface mechanism is based on vacuum technology, the 

development of surface analytical techniques. Most of my thesis was carried out in the 

LEEM system which is the electron microscope based technique. Therefore, the 

principle reveal with electron microcopy for surface science,  the theory about 

electron in solid as well as the description about electron microscope such as electron 

source and electron analyzer are mentioned in this chapter. 

 
2.1 Structural properties of graphene 

2.1.1 Monolayer graphene 

Graphene has a honey comb lattice structure which arises from the sp2 

hybridization with three σ in-planes, each containing one electron. Another one orbital 

is pz orbital which is perpendicular to the hexagonal plane and forms π bonds with 
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other carbon atoms. This is called half-filled system which determines the unusual 

electronic properties of graphene. The Brillouin zone of graphene is also a hexagonal 

lattice which has a bipartite symmetry, sublattices A and B, as shown in Figure 1. The 

wave functions of graphene in the plane are indicated by Wallace (1947) as   

 ( )1 (2 ) 2 ( 2 ) ( 1, 2, 3),
3 C C is p iψ ψ σ+ =  (2.1) 

where ψC(2s) is the carbon 2s wave function and ψC(σi 2p) are the 2p wave functions 

whose axes are in the direction joining the three neighbor carbon atom in a plane. The 

hexagonal spacing in the layer is 1.42 A≈
o

while the lattice constant of graphene is 

1.42 3 2.46 Aa = × =
o

 and the reciprocal lattice vectors have magnitude ( )2 / 3 a  as 

demonstrated in Figure 2.1. The lattice vectors 1av , 2av   and the corresponding 

reciprocal vectors are determined by  

 ( )3 1, , 0,
2 2

a a a
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

1 2a a  (2.2) 

 
4 2 2,0 , ,

33 3 aa a
π π π⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
1 2b b . (2.3)  

According to the two graphene sublattices, the six corners of FBZ can be divided 

into two groups called K and K’ points. The electronic structure for graphene was 

developed by Wallace in 1947 by considering the nearest and next-nearest-neighbor 

interaction for π bonds (pz -orbital). The study, however, ignored the overlapping σ 

bonds. In 1998, Saito, Dresselhaus, and Dresselhaus (1999) includes this interaction, 
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but only nearest neighbors in the plane of graphene, to obtain the two-dimensional 

energy dispersion between the  π bonding and π* anti-boding as follows, 

 ( ) 2
0

3, 2 1 4cos cos 4cos
2 2 2

y yx
x y

k a k ak aE k k γ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

Δ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

, (2.4) 

where 0 3.03γ ≈  eV is the nearest neighbor overlay integral in tight-binding 

calculation. By using Taylor expansion, Equation (2.4) becomes 

( ) 03 KE k a k kγΔ = −
v v v

 which expresses itself as a linear dispersion near the six 

corner of graphene FBZ, where the π and π* bands meet each other at the Fermi 

energy as demonstrated in Figure 2.2. This crossing point is called Dirac point (ED) 

because the electron dynamic in graphene corresponds to the 2D Dirac equation, 

which describes the behavior of a ½ spin particle in the relativistic regime. For a more 

accurate description, the ab-initio calculations must include the third nearest  

 

 

Figure 2.1 (a)  Two-dimensional hexagonal lattice of graphene with one unit cell 

consisting of two interpenetrating triangular sublattices: A and B, corresponding the 

unit vector  1av  and 2av . (b) First Brillouin zone (FBZ) in reciprocal space of graphene. 
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Figure 2.2 (a) The  3D electronic structure of graphene from Novoselov et al. 

(2009) which expresses the linear energy dispersion at the six corner first Brillouin 

where the  π and π* bands meet each other at Fermi energy and (b) the tight-binding 

approach for  π and σ bands of graphene  calculated by Saito et al. (1999). 

 

neighbors for tight-binding descriptions by Reich, Maultzsch, Thomsen and Ordejón 

(2002). Monolayer graphene exhibits no gap, hence it can be seen as a zero-gap 

semiconductor or semimetal. 

 

2.1.2 Bilayer graphene  

Unlike monolayer graphene, bilayer or few-layer graphene have different 

electronics structures in the vicinity of the K, K’ point. However, only a 10 layers 

stack of graphene can be regard as graphene according to examinations by  Geim and 

Novoselov (2007) and Ni et al. (2007). Figure 2.3 (c)-(d) depicts the conical bands 

with linear dispersion that touch at Dirac point for single graphene and hyperbolic 

bands for bilayer graphene. For bilayer graphene, the two valence and two conduction 

bands meet at the Fermi level without overlap or gap formation, thus the band are not 

π 
   Valence band 

Conduction 
 Band    π* 

K 

K’ 

ED 
π* 

π 

σ 

σ 
σ* 

σ* 

(a) (b) 
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linearly dispersion but rather of parabolic shape. It is quoted by Riedk et al. (2010) 

that increasing the number of graphene layers results in complicated band structure. 

Since for multilayer graphene, the stacking between the layer does not need to be of 

Bernal type as in graphite, it can be other types e. g. rhombohedra (ABCABC). 

Moreover, it is noted that the slight rotations between the layers result in a decoupling 

of the layer the so called turbostatic stacking which multilayer graphene can exhibit 

linear bands as monolayer graphene (Shallcross et al., 2008). Latil and Henrard 

(2006) report the tight-binding calculation for AB stacking or bilayer graphene that 

the interlayer interaction alters the band near the K, K’ point as shown in Figure 2.3 

(e) and (f). For electronics applications, it is important to alter the gap of graphene by 

making narrow strips of graphene, called graphene nanoribbons as reported by 

Nakada, Fujita, Dresselhaus, and Dresslhaus in (1996) and Son, Cohen and Louie 

(2006). One of the main challenges for graphene-based electronic devices is its 

doping method. Currently hetero atom doping, and chemical modification which can 

both open the band gap and also tune the Fermi level of graphene have been proved 

by several experimental studies by Zhou et al. (2008, 2010), Gierz et al. (2008, 2010), 

Ohta et al. (2006), Zhang et al. (2009), and theoretical studies by Yu et al. (2010), 

Giovannetti et al. (2008), etc. 
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Figure 2.3 (a) The unit cell of single layer graphene with A and B atom. (b) Bilayer 

graphene consists of two single graphene layers shifted with respect to each other so 

that the B atoms of one are situated directly above the A atoms of the other. Ohta et al. 

(2009) presented the conical bands with linear dispersion that touch at Dirac point for 

single graphene in (c) and for bilayer, this generates an electronic structure that 

consists of hyperbolic bands in (d). The corresponding electronic band structure 

calculated by Latil and Henrard (2006) for single and bilayer is indicated in (e) and (f), 

respectively. 

  (a)     (b) 

  (c)     (d) 

  (e)     (f) 
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2.2 Electrical properties of graphene 

One of the major interesting properties of graphene is the linear energy band 

spectrum. Graphene is a semi-metal with zero bandgap near six K-points of its 

Brilloin zone as shown in Figure 2.2 (Wallace, 1947). A linear dispersion relationship 

of the energy bands of graphene results in zero effective masses for electrons and 

holes. Consequently, the graphene charge carriers behave like relativistic particles 

which are described by Dirac equation rather than the usual Schrödinger equation 

(Geim and Novoselov, 2007). Although the electron moving around carbon atoms of 

graphene sheet do not really reach relativistic speed, their interactions with the 

periodic lattice potential make them into quasiparticles, i.e., electrons which have lost 

their rest mass m0, or “Dirac massless fermions.” The energy of the particle having 

linear dispersion is given by (Novoselov et al., 2005). 

 
2 F
h

E v
π

=
k

, (2.5) 

where vF is the Fermi velocity, which is of the order of 106 m/s. The dispersion 

relation of charge carriers in an ordinary conductor is given by 

 
2 2

2
h kE

mπ
= . (2.6) 

This equation refers that the effective mass of the charge carriers in graphene 

vanishes at Dirac points (the six K-points of its Brilloin zone) and they travel at the 

effective speed of light. Moreover, from its linearly dispersive band structure, there is 

a consequence of electrical and optical properties as described below (Polichetti et al., 

2010): 
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Figure 2.4 Low energy band diagram of single layer graphene at six K points. 

 

Ambipolar Ballistic Transpot: Novoselov et al. (2004) first observed the 

ambipolar effect of graphene, consisting in the inversion of carrier type with the sign 

of applied voltage. He and his group at Manchester University measured the carrier 

mobility values by a multi-terminal Hall bar device using graphene flakes placed on 

top of an oxidized Si wafer. The results showed mobility values ranging between 

3000 and 10000 cm2/Vs, improvable up to 105 cm2/Vs after an accurate control of 

impurities as shown in Figure 2.5 (Novoselov, Geim et al., 2005). These mobility 

values were also stable even at high carrier concentration (> 1012 cm-2), leading to a 

ballistic transport on the submicron scale (currently up to ≅ 0.3 μm at 300 K). 

Dirac cone 

FE= hv k  
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Figure 2.5 (a) Ambipolar effect: the Hall coefficient RH, at zero gate voltage, 

exhibiting a sharp reversal of its sign indicating a transition between electrons and 

holes from the Geim paper showing how gate voltage dopes graphene p-type (as 

shown by the positive Hall coefficient RH, through zero, to n-type. Both RH and 

electrical conductivity σ extrapolate to zero when the Fermi level passes through the 

Dirac points. Interestingly, σ is actually pinned at a minimum value near 4e2/h, and 

seems not to actually go to zero.  (b) the plateaus appear at half-interger filling factors 

for the quantum hall effect in graphene while in the inset graph is a quantum hall 

effect for two-layer graphene which is similar to ordinary 2D conductor at B =14 T 

and T = 4K. (Novoselov et al., 2005). 

 

Anomalous Quantum Hall effect: (Zhang et al., 2005) Normally, in a magnetic 

field the electrons have circular cyclotron orbits ωC= (eB/mc), because when orbits 

are treated in quantum mechanics, they have discrete energy levels called Landau 

Levels (LL) which were given by Landau (1937), 

 (a)         (b) 
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 1
2 2n C
hE nω
π

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 . (2.7) 

At certain values of field, energy levels are filled up to N and there is no electron 

scattering as well as the conductivity σ will have discrete steps  2 /sg e h  where gs is 

the degeneracy factor (spin and sublevels). Therefore, 

 
2eN

h
σ ≈ . (2.8) 

The corresponding Hall current (J) is presented by Jx = σxyEy and Jy = σyyEy. The 

Hall effect is the occurrence of an electric potential difference between the edges of a 

conducting material, crossed by an electric current, when a magnetic field is applied 

perpendicular to the current direction. QHE is observed in 2D conductor with high 

mobility and low disorder.  

In classical Hall effect, ρxy depends monotonically on H and the concentration of 

carrier n:  

 xy
H
ne

ρ = . (2.9) 

In quantum Hall effect, ρxy is quantized as expressed by the relation  

 2
2

xy ve
πρ =
h , (2.10) 

where v are integer or fraction numbers refer to “integral” or “fractional” quantum 

Hall effect. 

From this QHE investigation, the material resistance expresses integer quantized 

values as a function of the applied magnetic field as shown in the inset graph in 

Figure 2.5 (b). Graphene displays this behavior even at room temperature but with the 

half integer of LL. Normally, LLs refer to the quantization of electron energy under a 
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magnetic filed. The Hall conductivity in graphene had an addition ½ term compare to 

ordinary 2D conductor which is given by 

 
24 1

2xy
e N
h

σ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (2.11) 

where σxy is the Hall conductivity. Figure 2.5 shows the plot of 1/RH expressing the 

ambipolar behavior (a) and anomalous quantum Hall Effect (b) for graphene which 

displays the quantized values of the transversal conductivity σxy and longitudinal 

resistively ρxx as a function of their concentration at B = 14 tesla and T = 4 K. Note 

that the half-integer QHE is preferred in ideal graphene. 

Zero Field Conductivity at zero gate voltage: Another interesting phenomenon 

in graphene is the existence of minimum conductivity even in the absence of charge 

carriers. Based on theoretical approach, when the Fermi level is pinned at the Dirac 

point, the carrier concentration is assumed to vanish, and hence the conductivity 

should be zero, the so called “minimum metallic conductivity”. However for 

graphene, the conductance does not vanish even at temperatures as low as 4 K. From 

equation 2.8, graphene minimum conductivity is always equal to 4e2/h (graphene is 

four-fold degenerate, consisting of two-spin and two valley degeneracy). 

Visual Transparency and Optical Saturation: Nair et al. (2008) reported that 

the optical transmittance of single layer graphene was around 98 percent, and it was 

almost constant in all the visible photon-energy range. Despite being an atom thick, 

graphene can absorb a significant fraction of incident white light equal to πα = 2.3 

percent, so it can be visible even to a simple optical microscope investigation.  α is 

the fine structure constant describes coupling between light and relativistic electron 
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which is traditionally associated with quantum electrodynamics describe by the 

equation 

 
2 1

137
e
c

α = ≈
h

. (2.12) 

The optical absorption of graphene saturates when the input optical intensity is 

above a threshold value is called non-linear optical saturable absorption. This 

behavior is according to the zero band gap of graphene as explained by Bao et al. 

(2009). As shown in Figure 1.1 of Chapter I, which is the conventional optical 

microscope observation displays monolayer/bi-layer and multilayer graphene. 

Tunable bandgap: When graphene is patterned into a narrow strip called 

graphene nanoribbon, the carriers are confined to a quasi-one-dimensional system, 

this results in band-gap opening. The energy gap dimension can be tuned during 

fabrication with the appropriate choice of ribbon width.  

 

2.3 Silicon Carbide Substrate 

      2.3.1 Silicon carbide (SiC)  structure 

SiC is a wide band gap semiconductor with the gap energy varying between 2.4 

and 3.3 eV  depending on its polymorphs. Not only that it is hard and inert material, it 

also  has electronic properties which are the basis for electronic device performances 

i.e., high breakdown field and thermal conductivity reported by Morkoc (1994) which 

allows high power and high frequency applications in regimes that are out of reach for 

Si or GaAs based deviece. SiC consists of carbon and Si covalently bound to four 

atoms of the other chemical species in tetrahedral coordination (Figure 2.6). The Si-C 

bonds are arranged in a hexagonal bilayer with carbon and silicon in different 
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stacking. The tetrahedral arrangement of Si-C bonds can be continued in two 

orientations differing by a 60° rotation. The different stacking sequence produces SiC 

crystals with various structures called polytypes which can be distinguished by the 

periodicity along the stacking. From Starke, Bernhardt, Schardt, and Heinz (1999), 

there are two extreme cases of the various possibilities as follows:  

• Zincblend structure (β-SiC) is obtained with all bilayers oriented in the 

same direction that correspond to the cubic SiC modification. It also can 

be described by a planar hexagonal unit cell with a periodicity of three 

bilayers along the c-axis forming an ABC sequence i.e., 3C-SiC (C is 

denoted cubic unit cell symmetry). 

• Wursite structure (α-SiC) is obtained when the stacking for every bilayer 

is rotated by 60° resulting in hexagonal structure. It has an AB sequence 

and is called 2H-SiC (H is denoted hexagonal unit cell symmetry). 

 

Figure 2.7 illustrate the different stacking for the most popular substrate for 

electronic applications, i.e., 3C, 4H and 6H polytypes. The 4H-SiC has two bilayers 

of identical orientation followed by two bilayers with the opposite orientation, with an 

ABCB sequence, while the 6H-SiC has an ABCACB sequence and up to the third 

bilayer has the same sequence as the 3C-polytyes. 
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Figure 2.6 SiC crystal atom consist of one chemical species (C or Si atom) 

covalently bond to four other chemical species in a tetrahedral coordination. 

 

 

Side view 

Top view 
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Figure 2.7 Crystal structure of SiC in the side view along ( )1120  direction.  (a) 3C-

SiC present Zincblend structure with ABC stacking. (b) and (c) present wurtzite 

structure in 4H-SiC with ABCB stacking,  and 6H-SiC with ABCACB stacking, 

respectively. The images are adapted from Starke et al. (1999). 

 

      2.3.2 Charge transfer and surface termination in SiC 

      SiC has a tetrahedral structure with a convalent bond length of 1.89 A
o

. However it 

also has ionic nature due to the large difference in covalent radii of Si ( 1.17 ASir =
o

 ) 

and C ( 0.77 ACr =
o

) that comes from the  different strength of the Si and C potentials. 

Charge transfer from Si to C atoms is arise the large difference of electro negativity of 

the Si-C elements, i. e.,  eSi = 1.7; eC = 2.5 (“Chapter 3 SiC(0001) cleaved surface 

reconstruction”, www). The ionicity of SiC leading to an ionic gap, while the Si 

atoms act as cations and the C atoms as anions. The ionicity is taking into account the 

asymmetry of the charge density along the bounds. It resulted in the different in 

angular forces which is one of the reasons for the distinctively different reconstruction 

behaviors of the Si- and C- terminated surfaces. The angular forces are much larger at 
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the C than at Si atoms, so that changes of the tetrahedral configuration around the C 

atoms involve much more energy than for Si atoms. This is also one of the reasons for 

the distinguished growth mechanism in graphene form on SiC which will be described 

later. The SiC surface parallel to the hexagonal bilayers is identified as the basal plane 

which is the hexagonal lattice symmetry orientation. Different surface terminating 

stacking sequences can be performed in Figure 2.8 for 4H-SiC. The four different 

surface stacking are indicated by the depth of the bilayer orientation change, i.e. S1, 

S2, S1* and S2* (S1*, S2* are identically to S1, S2 except for a 60° rotation of the 

whole semi –infinite crystal). 

 

 

Figure 2.8 4H-SiC(0001) surface stacking possibilities. S1 and S2 indicated the 

number of identically orientated bilayer directly at the surface, but rotated 60° for S1* 

and S2* configurations. This stacking sequence is in the (1120)  direction plane. The 

image was taken from Starke et al. (1999) 
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2.3.3 6H-SiC(0001) reconstruction 

In this thesis, the graphene is formed on 6H-SiC(0001), so the description in this 

polytype of SiC is focused on in this chapter. Due to the reconstruction being strongly 

dependent on the surface preparation procedure and on the surface termination, a 

single polytype may exhibit different surface termination, depending on the postion of 

the topmost bilayer in the stacking sequence of the bulk unit cell. For a 6H-SiC, six 

different bulk truncations are distinguished by the depth of the bilayer orientation 

change and by the orientation of the topmost layer. It is distinguished between the two 

possible polarities of the 6H-SiC crystal, i.e. (0001) is denoted for Si terminated and 

( )0001 is denoted for C terminated as illustrated in Figure 2.9. The surface 

reconstruction and relaxation in semiconductor is created by the breakings of bonds 

between atoms on the surface  intodangling bonds), producing a strong increase in the 

surface free energy. Another driving force for surface reconstruction in SiC arises 

from the large difference in the lattice constants of the two elements: for C, 

3.57 ACa =
o

, and for Si, 5.43ASia =
o

. For SiC, it has an intermediate 

value SiC 4.36 Aa =
o

. After chemical cleaning, well ordered SiC surfaces can be 

prepared by thermal treatment. A surface reconstruction of SiC due to the heat 

treatment is given in Table 2.1 as reported by Starke (1997).  

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

29

 

 

Figure 2.9 6H-SiC in both Si-terminated (Si-face) denoted by 6H-SiC(0001) and C-

terminated (C-face) denoted by 6H-SiC(0001)  stacking in the (1120)plane. 
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Table 2.1 Surface reconstructions due to heat treatment for both Si- and C- 

orientation of 6H-SiC(0001) from Starke (1997). 

Method Si-orientation 

(0001), (1111) 

C orientation 

( ) ( )0001 , 1111  

Reference 

Heating ( )
( )

3 3 30 ,

6 6 30 ,

R

R

× −

× −

o

o
graphite

(2×2), (3×3) Van Bommel et 

al. (1975) 

Heating ( )3 3 30R× − o  (3×3) Nakanishi et al. 

(1989) 

Annealing in Ga 

flux further 

annealing 

(3×3) (1×1), 

( )3 3 30R× − o  

Kaplan and 

Parrill  (1986)] 

Annealing in Si 

flux further 

annealing 

(3×3)-R30° 

(1×1) 

 Kaplan (1989) 

Annealing in Si 

flux further 

annealing 

(3×3), ( )3 3 30R× − o  , 

(1×1) 

(1×1), (3×3) Bermudez 

(1996) 

Annealing in Si 

flux further 

annealing 

(3×3), ( )3 3 30R× − o   (3×3), 

( )3 3 30R× − o  

Li and Tsong 

(1996) 

Heating ( )3 3 30R× − o , 

Mixed phased producing 

apparent 

( )6 6 30R× − o  

LEED pattern 

 Owman and 

Martensson 

(1996) 

Heating Graphitic over layer with 

(6×6) honey comb 

structure 

 STM work. 

Owman and 

Martensson 

(1996) 
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2.4 Epitaxial growth of graphene by thermal decomposition of SiC 

      2.4.1 Procedures for epitaxial graphene growth on 6H-SiC(0001) 

The standard procedures to synthesize epitaxial graphene from SiC by Bostwick et 

al. (2008) are as follows: firstly, a SiC wafer/substrate is chemically cleaned by 

acetone, ethanol and then etched by 5% HF (there are many procedures for the 

chemical cleaning process). After that the substrate is introduced to a UHV sample 

preparation system. The base pressure of the system is in the order of 10-10 Torrs or 

below. To removes O, the sample is annealed under Si flux at 950 °C to form the Si-

rich (3×3) surface reconstruction. Then the sample temperature is increased up to 

1050 °C without Si flux to obtain the ( ) o3033 R×  surface reconstruction and 

further to 1150 °C until the C-rich ( ) o303636 R× surface reconstruction is observed.  

Finally, the sample is annealed until graphene layers with the (1×1) structure of 

graphite forms on the surface. The surface reconstruction at each stage can be 

observed directly from the low energy electron diffraction (LEED) pattern as shown 

in Figure 2.10. Ohta et al (2006) describe the graphene growth process on SiC as 

follows: the first layer of graphene on SiC is designated as a buffer layer which does 

not exhibit graphitic properties.  Therefore, the next graphene layer above this buffer 

layer will induce the gap. However, as the sample becomes thicker, the gap decreases 

rapidly and shifts from -0.4 to -0.29 to -0.2 at the 2nd, 3rd and 4th layer of graphene, 

respectively, as illustrated in Figure 2.11. 
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Figure 2.10 Typical LEED patterns observed during various stages of themal 

decomposition epitaxial graphene growth on SiC(0001) reported by Bostwick et al. 

(2008). 

 

 

Figure 2.11 The energy band structure of epitaxial graphene with different numbers 

of layers on SiC from Ohta et al. (2007). 

 

      2.4.2 Graphene growth mechanism 

For large-scale few layers of graphene (FLG) fabrication, the growth mechanism 

must be clarified because electronic properties of FLG strongly depend on its 

thickness. Many theoretical studies express the stable structures of SiC(0001) surface, 

i.e., Kageshima, Hibino, Nagase and Yamaguchi (2009). Here, the experimental study 

to model the growth mechanism is demonstrated. In 2008, Poon, Chen, Tok and Wee 



 

 

 

 

 

 

 

 

 
 

33

probed epitaxial growth of graphene on SiC with in situ scanning tunneling 

microscope. From the result they proposed the growth mechanism process as 

demonstrated in Figure 2.12 with the description as follows:   

State I: The 6 3 reconstruction is the early stage to form graphene which is the C-

rich layer are covalently bounded to Si-atom of the substrate below. 

State II: When heating at 1200-1300 °C, Si-atoms desorb, leaving C-rich interface 

(reactive C* occurs). 

State III: The highly reactive C* adatoms diffuse to another terrace to form new 

C-rich 6 3 phase beneath. New 6 3  interface layer is believed to provide extra 

stability to the graphene by buffering it from direct interaction with the underlying 

SiC by the psedo-van der Waals force. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 (Top) Growth mechanism model from Poon et al. (2008) and schematic 

illustration of thermal decomposition method (Below). 



 

 

 

 

 

 

 

 

 
 

34

      2.4.3 Evaluation of number of graphene layers 

According to the fact that graphene electronic properties are thickness dependent, 

it is necessary to evaluate the umber of graphene layer. From an experiment in which 

graphene is exposed to a low-energy electron beam, and the relection of electron is 

detected, the number of graphene layer can determined from the quantized oscillations 

of the electron reflectivity as demonstrated by Hibino et al. (2008).  Due to electron’s 

wave-like properties with their wavelength determined by the kinetic energy, 

electrons reflected from the graphene surface and from graphene/SiC interface can 

interfere with each other, resulting in the electron reflectivity that changes 

periodically as a function of the electron energy. The oscillation period has been 

found to be closely related with FLG thickness (Hibino et al., 2008). Therefore, the 

graphene thickness can be determined from the reflectivity oscillation as shown in 

Figure 2.13. The simplest way to model the effect of quantum confinement on the 

energy of an electron is to consider it as a "particle-in-a-box" problem. For an electron 

inside a potential well of width l, the spacing between the lowest two quantum energy 

levels is: ( Limit kT ≈ 25 for thermal excitations) 

  
2

QM 2
3

8
hE

ml
= . (2.13) 

If one require EQM > 25 meV to prevent thermal excitations, the width of the well 

must be l < 7 nm (Petrovkh, n.d.).  

 

 

 

 



 

 

 

 

 

 

 

 

 
 

35

 
 
Figure 2.13 Schematic for quantum confinement of electron reflected from varying 

thickness distributed to the contrast mechanism in LEEM image depicted from 

Hibino, Kageshima and Nagase. (2010), which is based on the interference of electron 

in the potential well or “particle in the box”. 

 
 
2.5 Electron microscopy for surface science 

Electron microscopy served as a surface sensitive technique owing to the small 

free path of electrons in the solid at certain energies. Moreover, electron can probed 

the whole surface Brillouin zone of materials and are easy to generate and handle. 

2.5.1 Electrons in solids 

Considering the scattering of an electron beam escaping from the surface of the 

solid. The reason provide electron based technique is very surface sensitive will be 

simply described. First, for elastic scattering, the energy is conserved corresponding 

with the equation: 

    0sE E=  (2.14) 
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where E0 is the energy of the incoming electrons and Es is for the scattered electrons. 

The momentum parallel to the surface is also conserved apart from a surface 

reciprocal lattice vector g and is expressed by 

    0s = +k k g� � . (2.15) 

Therefore, elastic scattering provides information about the surface reciprocal 

lattice and the surface geometry. The measurement of the crystal’s k vectors can be 

done using LEED technique which will be discussed in chapter III. Secondly, only 

small fraction of emitted electrons can escape from the sample surface due to loss of 

energy as it travels through the solid. Therefore, the closer the electron is to the 

surface the greater the fraction of electrons is detected by the detector. This process 

give significant for the electron mean free path and hence surface sensitivity. 

 

2.5.2 Electron mean free path 

 The superior of electrons in surface science is the electron mean free path λ (or 

inelastic mean free path, IMFP) which is the average distance traveled by electron 

through a solid as indicated by  

 ( ) ( )kin kin
kE v E

m
λ τ τ= =

h  (2.16) 

where v is the velocity and τ is the collision time. Since, τ in the Drude model is the 

mean time between two scattering events whereas in a quasi-particle aspect τ is 

determine the lifetime of the quasi-particle. Typically, the minimum mean free path of 

electron is restricted to about 50-100 eV since, at lower energies the electron has 

insufficient energy and other scattering mechanisms will dominate such as phonons 

scattering.  Figure 2.14 is the inelastic of electron mean free path (IMFP) in a solid as 
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a function of its kinetic energy. The dashed line exhibited a calculation mean free path 

independent of the material while the data point is the result from the experimental 

data of many elemental solids. The universality of this curve is that the inelastic 

scattering of electrons in this energy rage is generally involving excitation of 

conduction electrons, which is mostly the same for all elements. The IMFP in metals 

is corresponding only a few atomic layers, typically less than 10 A
o

 for electron 

energies about 70 eV. 

 

  

 

Figure 2.14 The inelastic mean free path of electron in solid. The dashed line is from 

calculation whereas the data points are from experimental data.  
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 2.5.3 Electron source  

 Electrons are easy to produce by passing a current through a hot filament. 

Generally, to stimulate the thermally excited electrons, an anode was added by 

placing it in front of the filament. The electron beam is focused by a Wehnelt cylinder 

placing between the anode and the filament which is at a negative potential with 

respect to the filament. The basic principle of electron source or electron gun is 

demonstrated in Figure 2.15. The drawbacks from direct heat filament are the voltage 

drop over the length of the filament (0.5 V) which is also reflected in the kinetic 

energy of the electron, and  the thermal broadening due to the high temperature 

needed to emit the electron.  

 

 

 

Figure 2.15 Basic principle for electron gun (Elmitech, Manual). 
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 2.5.4 Electron analyzers 

 An electron beam can be detected and amplified by a channeltron, which is a 

glass tube coated by a resistive film inside. In principle, a high voltage is applied 

between the front and the end of a channeltron in order to accelerate the incoming 

electron to the wall where it kicks out more electron signals in order to provide 

measurable current pulse. The electron analyzer is designed to probe the 

monochromatic beam and selected energy distribution of scatter or emitter electrons, 

i.e., high count rates and high angular/energy resolution. The common design is 

cylindrical mirror analyzer (CMA) which consists of two co-axial cylinders in from of 

the sample. The inner cylinder is held at a positive potential while the outer cylinder is 

negative. Only the electron with the right energy, the so called “pass energy”’ can 

pass through this set-up and be detected eventually. A disadvantage for CMA is poor 

resolution both in energy and angle. A better design is a hemisphere analyzer which 

provides higher energy resolution. As illustrated in Figure 2.16, it consists of two con-

centric hemispheres held a different potential in order to bias for select the desire 

electron energy. The additional electrostatic lens-system can be placed to focus the 

electron before the entrance slit and also to change the angular acceptance. 
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Figure 2.16 Schematics of a hemispherical electron analyzer with a focused lens 

system (Center for advanced friction studies, 2005). 

 

2.6 Ultra-high vacuum 

For the purpose of study about surface and thin film growth, the theoretical 

approach is very important in order to understand the physics of surface property and 

thin film growth mechanism. When referring to surface, we mean the topmost few 

atomic layer of the crystal about 10 A
o

thick. Therefore, those atomic arrangement and 

electronic structures differ from those in the crystal bulk. To characterize solid surface 

on an atomic level, the surface composition is essentially unchanged through the 

experiment. This requires control of the rate of gas flow environment that should be 



 

 

 

 

 

 

 

 

 
 

41

low, or the experiment should be done in vacuum. The definition of vacuum is related 

to molecular density, mean free path and the time constant to form a monolayer. 

According to kinetic theory concept (Dushman, 1992), the arrival rate R of atoms at a 

surface (sometime call deposition flux,  I (Oura, 2003) in a vacuum chamber is 

defined by 

 
( )1 24( ) 2

nv pI
unit area mkTπ

= = . (2.17) 

Here n is the molecular density, m is the mass of the molecule, v  is the mean speed 

of the molecules (sometime written v, c or c )  and p is the pressure. Since, 

( )1 28 /v kT mπ= (Hudson, 1992),  kB is Boltzmann’s constant  and T is the 

temperature, thus one obtains 

 Molecular density: 
B

pn
k T

= .  (2.18) 

The mean free path between molecular collisions in the gas phase can be defined in 

Equation 2.19, where the proportionality constant f was solved by Maxell in 1860 

(Garber, 1986), 

 Mean free path: 2
f

n
λ

σ
= . (2.19) 

Therefore, at low pressure n = Ap with n per cm3 and p in mbar, thus the 

constant 6(100) /( 10 )BA k T= × . This gives n = p/kBT = 187.2464 10 /T× (Altman, 

2005). For example of CO at room temperature (25Co ) with the pressure in the range 

of 10-6 mbar, there are  the molecule density in the range of 102.42 10× molecule/cm3. 

As there are lots of molecules even in vacuum, the UHV (Ultra-High Vacuum, below 

10-9 mbar) condition is appropriate for surface science experiments, since at this range 
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of UHV pressure the gas molecules (mean free path) will travel from wall to wall of 

the UHV chamber without intermediate collisions. Table 2.2 is the example case of 

nitrogen molecule at room temperature (T = 293 K) to illustrate how their values vary 

with the pressure. It is remarkable that a time constant to form a monolayer as shown 

in Table 2.2 express that why doing experiment in UHV conditions is necessary 

because only low pressure can maintain a clean surface long enough to do the 

experiment related τ  is greater than 1 hour for p < 10-9 mbar. 

 Time constant to form a monolayer: 00 2 Bn mk Tn
I p

π
τ = =  (2.20) 

where 2σ  denotes the molecular cross-section and n0 is is the number of atoms in a 

monolayer. There are several units used for measuring vacuum pressure. The 

conversion from the most common unit, Torr (or millimeters of mercury, mmHg) and 

others units, i.e., Pascal (SI unit, 1 Pa = 1N/m2) and mbar (1 mbar = 100 Pa) is  

 

   1 mbar    = 100   Pa, 

   1 mbar  = 1   Torr 

   1 Pa  = 37.5 10−×   Torr, 

   1 Torr  = 1.33   mbar,  

= 133  Pa. 
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Table 2.2 Molecular density n, arrival rate I, mean free path λ , and the time 

constant τ ,to form a monolayer for N2 at room temperature by assumed the sticking 

coefficient  to be unity. Defined the density of one monatomic layer n0 = 1015 cm-2. 

(Oura, 2003) 

Pressure 

(Torr) 

Molecular 

density, n (cm-3) 

Arrival rate 

I (cm-2s-1) 

Mean free 

path, λ  

Monolayer 

arrival time, τ

760 192 10×  233 10×  700 A
o

 3 ns 

1 163 10×  204 10×  50 mμ  2 sμ  

10-3 133 10×  174 10×  5 cm 2 ms 

10-6 103 10×  144 10×  50 m 2 s 

10-9 73 10×  114 10×  50 km 1 hour 
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CHAPTER III 

EXPERIMENTAL TECHNIQUES 

 
In this chapter, the experimental procedures and measurement techniques 

employed during the course of this thesis work are described. This work was carried 

at the BL3.2b beamline of the Synchrotron Light Research Institute (SLRI). The main 

instrument of this beamline is the Elmitec LEEM III system. The system was used for 

both synthesization and characterization of graphene. In this work, graphene was 

synthesized by thermal decomposition of a SiC single crystal. LEEM and LEED (low-

energy electron diffraction) measurement techniques were employed with an electron 

gun equipped with the LEEM system. By using synchrotron light as the excitation, the 

microscope can be used for PEEM (photoemission electron microscopy). The 

combination of LEEM and the ability to select any photon energy of synchrotron light 

allows that X-ray absorption spectroscopy (XAS) can be performed with sub-micron 

spatial resolution. The above-mentioned measurement techniques were carried out in 

situ, in the LEEM system. Ex situ measurements using photoemission spectroscopy 

(PES) were also attempted at the PES experimental station of the BL3.2a beamline.    

 

3.1 Preparation of SiC substrate  

Graphene was synthesized from SiC single crystal samples by thermal 

decomposition. One-side polished n-type doped 6H-SiC (0001) samples were 

supplied by the MTI Corporation. The surface of the substrate is parallel to the (0001) 
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crystallographic plane. The dimension of the substrate is 5×5×0.3 mm3. The 

procedures for surface treatment before thermal decomposition maybe summarized as 

the followings: 

• The samples were first chemically cleaned in the mixture of NH4OH, 

H2O2, and de-ionized water with a ratio of 1:1:5 as well as heated at 70 °C 

for 10 minutes; 

• Then, the samples were chemically etched by dipping in the 5% HF acid. 

• The last chemical cleaning process was by leaving the samples in the 

mixture of HCL, H2O2, and de-ionized water with a ratio of 1:1:5 at 70 °C 

for 10 minutes;  

• Surface topography of some samples was studied by using an atomic force 

microscope (AFM) after chemical cleaning processes; 

• After that the samples were introduced into the load-lock chamber of the 

LEEM-PEEM experimental station of BL3.2b. The samples were then 

degassed in the load-lock chamber;  

• After sample transfer to the LEEM system, further degassed at elevated 

temperature in the LEEM system was also essential.   

 

Thermal decomposition of the SiC samples was carried out in the LEEM system. 

Heating of the samples was by using an electron-electron beam bombardment. heating 

system. The heating system of LEEM allows the temperature of the sample to be 

raised up to approximately 1700 °C maximum. The advantage of this sample 

preparation was that the surface reconstruction of SiC leading to the formation of the 

graphene could be followed in situ by observing LEED patterns in the LEEM system. 
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More importantly, the number of graphene can easily be deduced from the “Intensity 

versus Bias Voltage of the Sample”, or I-V LEEM curve, as demonstrated by Hibino, 

Kageshima, Maeda, Nagase, Kobayashi and Yamaguchi (2008). 

 

3.2 Atomic Force Microscopy (AFM) 

 

 

Figure 3.1 Schematic of AFM component and the shape of the tip. 

 

       In this work, AFM was used to study the surface topography of the SiC substrate 

before the thermal decomposition process. AFM is a very useful and powerful 

technique for studying surface topography and very easy to operate since the 

measurements can be carried out in ambient condition for both insulating and 

conducting surface. The schematic diagram of AFM is given in Figure 3.1. It shows 

the main components of AFM, i.e. the cantilever, the laser source and the 

photodetector (Hubbard, 1995). The principle of AFM is based on the measurement of 

the force applied between the tip and the sample surface held in close proximity to 

each other. The spring displacement of the cantilever is proportional to the force and 

is governed by the Hooke’s law 

 F = - kx, (3.1) 
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where F is the force, k is the spring constant and x is the spring displacement. The 

distance between the tip and the surface atom is crucial in determining the mode of 

operation of AFM. As the matter of fact, the nature and the magnitude of the force 

between the tip and the surface, and thus the AFM modes of operation, between the 

tip and the surface are governed by the interatomic potential as illustrated in Figure 

3.2.  The three different modes of operations of AFM are described below. 

 

 

Figure 3.2 Surface force in the regime of tip-sample interaction or AFM mode. 

 

 (1) Non-contact AFM mode: In this operational mode, the tip does not contact 

the sample surface. Typical distance between the tip and the surface is in the range 

10-100 A
o

, this is the range where van der Waals forces are the strongest. This mode 

is good for soft or elastic surface since the measurement will cause least 

contamination and least destructive on the sample surface. The forces measured are 

very weak, typically in the range of ∼10-12 N. Such small forces are difficult to 

measure, thus the measurement is in dynamic mode by oscillating the cantilever at a 
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frequency slightly above its resonant frequency where the amplitude of the oscillation 

is a few tens A
o

. The resonant frequency of the cantilever is reduced by van der Waals 

force. The resonant frequency is given by 

 

 1
2

kf
mπ

= . (3.2) 

 

where k varies with external force gradient (dF(x)/dx) and the resonant frequency 

changes with external force. The feedback system is used in a combination with the 

reduction of the resonant frequency of the cantilever to maintain a constant frequency 

or amplitude. Construction of a topographical image of the sample surface can be 

obtained by measuring the tip-to-surface distance at each (x,y) data point. 

 (2) Contact Mode: In this mode of operation, the deflection of the cantilever is 

used as a feedback signal. The spring constant of cantilever is, thus, less than surface 

force so that the cantilever is bended when the tip is experienced with the overall 

repulsive force as illustrated in Figure 3.3. If the spring constant of the cantilever were 

greater than surface force, the surface or the tip would be mechanically damaged. The 

deflection of the tip is normally measured by ‘beam bounce’ method as show in 

Figure 3.4, or use of piezoelectric cantilever (resistance change with deformation). 

There are two modes of operation, i.e. 

(a) Constant force mode: In this mode of operation, the piezoelectric 

cantilever moves sample in z direction in order to keep a constant tip 

deflection. This method provides accurate topography, but takes time 

(slow) which is limited by the time constant of the cantilever. 
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(b) Constant height mode: In this mode of operation, the piezoelectric 

cantilever will keep z-piezo fixed and deflection of the cantilever is 

directly measured. This mode provides fast measurement, but it limits 

only to rather flat sample. 

 

 

Figure 3.3 The cantilever bends in contact mode due to the spring constant of the 

cantilever being less than the surface force. 

 

 

Figure 3.4  Beam bounce method to measure the deflecting of the tip. 
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(3) Intermittent contact or tapping mode: This mode of operation was invented 

to enhance the detection sensitivity. The tip is kept close enough to detect the close-

range force while the tip is prevented to stick tip the surface. This mode of operation 

is sometime called “AC Mode”. The above technical requirements can be achieved by 

oscillating the cantilever near its resonant frequency the same way as in the non-

contact mode. However, the amplitude of the oscillation is greater than 100 A
o

.  

It should be noted that AFM measurements performed during the course of this 

thesis work were carried out at the Kasetsart University, Bangkok, using the Asylum 

Research MFP-3D-Bio AFM. 

 

3.3 Synchrotron light beamline: BL3.2 

Synchrotron light is the radiation emitted from a relativistic charge particle 

travelling in a curved motion. Note that an electron will be referred to, instead of a 

charged particle, since nearly all synchrotron light sources use electrons. Due to its 

unique properties, synchrotron light is an essential probe for investigation of various 

materials at the atomic and molecular scales. The unique properties of synchrotron 

light may be summarized as the followings (Winick, 1994): 

 Continuous spectrum and tunability: The spectrum of synchrotron light from 

bending magnet and wiggler is continuous. The spectrum covers from infrared to X-

rays, depending on the electron energy and the magnetic field. Undulator light 

exhibits a strong interference peak at certain photon energies. However, the position 

of the peak can be adjusted by changing the gap of the undulator, therefore the 

synchrotron light becomes a tunable light source.  



 

 

 

 

 

 

 

 

 54

Low emittance and high collimation: Synchrotron light is emitted from a bunch 

of electrons in the electron beam. The beam size and the properties of the electron 

bunch are well controlled. The electron beam in modern light source can now be 

controlled down to micron size with low emittance, and thus becomes a very small 

light source with low emittance producing synchrotron light with a small beam size 

and high collimation.  

High flux and high brilliance: The photon flux of synchrotron light is very high 

and many order of magnitudes compared with conventional X-ray source. Due to its’ 

very small beam size and very low divergence, the brightness or brilliance is greatly 

enhanced.  

Polarization: The synchrotron light from a bending magnet has linear 

polarization only in the plane of the storage ring. Light emitted off this plane is 

elliptically polarized. Polarization of the light may be used for studying dichrois 

properties of materials.  

Pulse Light: Synchrotron light has a pulse structure since the electron beam also 

has pulse structure arising from the nature of rf acceleration. This property may be 

used for dynamics study of materials. 
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3.3.1 The Siam Photon Source: Source of BL3.2 

 

 

 

Figure 3.5 The Siam Photon Source of SLRI, Nakhon-ratchasima, Thailand (SLRI, 

2012).  

The Siam Photon Source is the first and only synchrotron light source of Thailand. 

The Siam Photon Source consists of a 40 MeV electron linear accelerator (LINAC), a 

1 GeV booster synchrotron and a 1.2 GeV storage ring (STR), as illustrated in Figure 

3.5. The characteristic of synchrotron light is governed by the beam properties in the 

storage ring. The ring consists of a magnetic lattice with four-fold structure. There are 

totally bending magnets. Four long straight sections provides space for installing 

insertion devices. A planar undulator (U60), which is the source for BL3.2, is 

installed upstream of the BM3 bending magnet. The parameters of U60 are given in 

Table 3.1. The spectra of synchrotron light produced from U60 are shown in Figure 
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3.6 in comparison with light generated from the bending magnet and the 6.4 Tesla 

wavelength shifter.      

 

 

Figure 3.6 Calculated spectra of synchrotron light of SPS generated from Bending 

Magnet of the storage ring, the U60 planar undulator and the 6.4 tesla 

superconducting magnet wavelength shifter (Tong-on, 2010). 
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Table 3.1 The main parameters of the U60 undulator. 

Parameter Data 

Configuration  Pure Permanent Magnet  

(PPM) symmetric 

Magnet material   VACODUM 

Period length (λu) 60 mm 

Minimum & maximum gap  26 & ≥ 200 mm 

Operated minimum & maximum gap  26.5 & 100 mm 

Total length of magnetic assemblies (L) 2510 mm 

Number of full size poles 81 

Number of periods (N) 41 

Peak magnetic field (B0) 0.54674 T 

Peak magnetic field strength (K) 3.06306 

Minimum photon energy ∼ 40 eV 

(Gap 26.5 mm, Electron beam 1.2 Gev)  

 

3.3.2 Optical layout of BL3.2 

Optical layout of BL3.2 is in Figure 3.7. The optical beamline consists of a 

focusing mirror (M0), a monochromator and two post-focusing mirror systems. The 

beamline employs a varied line-spacing plane grating (VLSPG) monochromator with 

two constant included angles (167.5° and 172.5°). There are three gratings with the 

groove density at the center of grating No = 600, 1200 and 2400 lines/mm. The 
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beamline delivers light generated from the U60 undulator with photon energy 

between 40-160 eV and 220-1040 eV.   

The focusing mirror M0 is a toroidal mirror. In the dispersive plane, light is 

focused by M0 onto the entrance slit of the VLSPG monochromator. The included 

angle of the monochromator is selected by selecting either M1/1 or M1/2 for the high 

or low photon energy range, respectively. Grating with No = 600 is used for the low 

photon energy region while the other two are for the high photon energy region. 

Downstream of the monochromator, there are two branchlines operating in a time 

sharing mode, i.e. BL3.2a and BL3.2b. BL3.2a is dedicated for photoemission 

spectroscopy while BL3.2b is designed for photoemission electron microscopy. 

Figure 3.8 is the photon flux measurement at sample position in XPS station of 

BL3.2a compare with the simulation results. 
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Figure 3.7 The BL3 optical element layout. The M2Cy is used for selecting 

between the PES and PEEM branchlines. 

BL3.2b PEEM 

BL3.2a PES 
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Figure 3.8 The measured and simulated photon flux at the sample position of 

BL3.2 (Tong-on, 2010). 

 

3.3.3 Experimental stations of BL3.2 

As mentioned above, BL3.2 has two branchlines. The BL3.2a branchline is 

designed for photoemission spectroscopic experiments and (soft) X-ray absorption 

spectroscopy (XAS). The experimental station of BL3.2a is schematically shown in 

Figure 3.9. There are four experimental chambers. Two small chambers are dedicated 

for XAS in electron-yield mode. The main chamber (ARPES) is for angle-resolved 

and angle-integrated photoemission spectroscopy for surface and interface science 

research. There is also a dedicated photoemission spectroscopy dedicated for general 



 

 

 

 

 

 

 

 

 

61

chemical analysis, knows as XPS. The advantage of this experimental station is that 

there are simple transfer systems allowing samples to be transferred from the 

preparation chamber to the ARPES system without exposing to air. 

 

Figure 3.9 The schematic diagram of the experimental station of BL3.2a. 

 

The design and construction of the experimental station of BL3.2b is part of 

this thesis work. It is for PEEM, as well as LEEM, experiments. The principles of 

LEEM and PEEM will be given in a separate section. 
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3.4 Low Energy Electron Microscopy (LEEM) and Photo Emission 

Electron Microscopy (PEEM) 

3.4.1 Basic principle of LEEM  

LEEM is basically an electron microscopic technique. The main difference from 

other electron microscopes such as SEM (scanning electron microscopy) and TEM 

(transmission electron microscopy) is the origin and characteristic of electrons, 

resulting in a difference in electron optics. LEEM was first successfully demonstrated 

in 1985 by Bauer and Telieps. The main goal for the development of LEEM was to 

observe nano-scale processes on surfaces in real-time surface dynamics at nanometer 

scale i.e. adsorption, phase transition, chemical reactions, thin film growth etc., as 

described by Heun, Schmidt, Ressel, Bauer and Prince (1999), Heun and Salviati 

(2000). LEEM technique has some limitations for uses in characterization of materials. 

The limitation is that the specimen must be a conducting material, and its surface 

must be flat relative to the required spatial resolution. Typically, the electron energy 

used in LEEM is much lower, compared with 5-40 keV for SEM. Not only the 

electron analyzer equipped with LEEM, but also another dominant part of LEEM that 

differs from other conventional electron microscopes is the cathode lens which is used 

as the objective lens (resulting in the specimen being one of the electrodes).  LEEM is 

usually combined with the LEED technique, since both use electron gun as a source, 

to provides a superior tool for surface studies. A more advanced LEEM system 

consist of several electron optical components and can only be found in synchrotron 

research facilities. Such a LEEM system is equipped with an imaging energy analyzer 

to provide imaging spectroscopic mode of measurement (LEEM III). Thus the 
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principle of operation for LEEM given below will refer to this type of the LEEM III 

system. 

      3.4.2 Basic principle of PEEM 

      Kordesch (2006) had given an explanation about Photoemission microscopy and 

Photoelectron emission microscopy as follows: i) Photoemission microscopy is a 

high-contrast method used in surface science because of its versatility and surface 

selectivity, ii) the photoelectron emission microscope (PEEM) is a microscope type 

that uses photons for illumination; it is a direct or “parallel” imaging technique, and it 

uses a cathode lens as part of the microscope objective lens. At synchrotron research 

facilities, LEEM systems are attached to a synchrotron light beamline. Thus, the 

LEEM system may be used in (imaging) PEEM mode of measurement. In this mode, 

synchrotron light, instead of low energy electrons, is used to excite atoms in the 

sample to emit electrons, called photoelectrons which described by photoelectric 

effect. The photoelectron emitted from surface with the maximum kinetic energy 

given by 

 kin b sampleE h Eν φ= − − , (3.3) 

where hv is the photon energy, Eb is the binding energy of the electron and  φsample is 

the sample work function. However, this process is measured inside the analyzer as 

demonstrated in Figure 3.10, so the kinetic energy of the electron in the analyzer 

( k
analyzerE ) can be express by 

 k
analyzer b analyzerE h Eν φ= − − . (3.4) 

With tunable synchrotron light, one may select appropriate photon energy for the 

excitation or one can scan excitation photon energy measure absorption spectrum, 
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which is known as imaging XAS. In the imaging PEEM mode, the contrast 

mechanism may be due to the spatial variation of topology, work function, elements 

and magnetic domains, as illustrated in Figure 3.13. The spatial resolution for PEEM 

is about 20-50 nm, depending on the excitation photon energy. An imaging energy 

analyzer provides a possibility for imaging XPS. 

 

 

Figure 3.10 Schematic diagram demonstrating the sample-analyzer work function in 

photoemission technique. 

 

3.4.3 LEEM electron optic 

The electron optics in any LEEM system is designed and optimized for electrons 

with a fixed narrow energy range, that is the energy range about the energy of 

electrons extracted from the electron gun, typically 20 keV. The condenser lenses and 

deflectors are used to condition the electron beam coming from the electron gun. As 

the sample has to be perpendicular to beam direction, a sector magnet (or separator) is 

employed to provide a common optical axis between the objective lens and the 
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sample for the incident and reflected electron beams. The electron beam from the 

sample is successively magnified by the objective lens, transfer lens, field lens and 

then projected to mid-plane of the imaging analyzer. After the exit of the analyzer, the 

energy-analyzed beam is projected on the multi-channel plate (MCP), which is a 2-

dimentional electron multiplier. The electrons from MPC are accelerated to collide 

with a phosphor screen. Thus the image of the sample is formed on the phosphor 

screen and is recorded with a CCD camera connecting to a computer. The description 

for electron optics mechanism will be described later in the mode of operations. The 

abbreviation for electron optics lens in Figure 3.11 are denote as following: 

Illumination column is composed of collimating 1, 2, 3 (CL1, CL2, CL3) use to 

collimated the electron beam. 

Imaging column is composed of transfer lens (TL), field lens (FL), illumination 

len (IL) and projector lens (P1)  

Projector column is composed of projector lens (P2 and P3).  
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Figure 3.11 The schematic of electron optics for LEEM III equipped with an 

imaging energy analyzer. 

 

3.4.4 Imaging mechanism in LEEM 

The principle of LEEM is the interaction between electron and the surface of the 

specimen at low energy which provides elastic and inelastic scattering. Whether the 

energy of electrons is higher than several hundred electron volts, the electrons will 

travel fast enough to dominate the forward elastic scattering compared with the 

inelastic scattering. In this case, the first Born Approximation is used to estimate the 

behavior of interactions. In contrast with the low energy electron, ranging 1-100 eV, 

some scatter electrons may dramatically change their momentum in the opposite 

direction of the incoming beam which is called backscattering process. According to 

the backscattering cross sections between the light and heavy atoms (substrate) are 

quite different, hence those back scattered electrons can be collected for imaging. 
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Moreover, diffraction patterns of wave properties of electron can be observed in 

LEED mode of LEEM. Since these diffraction patterns arise from low energy electron 

diffract from the periodic of lattice of atom. The center spot of LEED pattern is the 

direct reflected beam while other spots are caused from the diffraction process. The 

advantage of LEED mode in LEEM is choosing one of the diffraction spots by using 

contrast aperture for imaging. The image by select the center spot is called “bright 

field” image while other spots called “dark field” image which give in detailed in the 

mode of operation later. 

 

      3.4.5 Mode of operations 

Schemidt et al. (1998) give an explanation for electron optics of LEEM III in 

different mode of operations to produce image, diffraction spot, and photoemission 

microscope as shown in Figure 3.12 as well as, the description of the mode of 

operations is given from Microscope procedure manuals at Nanospectroscopy 

Beamline at Elettra synchrotron, Italy, as follows: 

           3.4.5.1 LEEM imaging mode 

As electron gun as a source, the sample is illuminated with electrons. From 

Figure 3.12, IL and P1 located the specimen image produced by the objective. The 

final image is projected onto the detector by the action of P2 and P3. For 

improvement the image contrast, insert the contrast aperture in the diffraction plane to 

restrict the angular acceptance for optimum lateral resolution.  
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Figure 3.12 Electron optics for (a) imaging mode, (b) diffraction mode, and (c) 

spectromicroscope mode (Schemidt et al., 1998). 

 

3.4.5.2 PEEM imaging mode 

The sample is illuminated with x-rays or UV radiation, to excite 

photoemission. It is also the same optics operation as in LEEM imaging. A slit is 

inserted in the dispersive plane of the analyzer, in order to select the desired energy of 

the photoelectrons. The final image is projected onto the detector by the action of P2 

and P3. The contrast aperture in the diffraction plane limits the angular acceptance for 

optimum lateral resolution. The contrast mechanism for PEEM arises from electric 

field distortion at surface topography features and the different in local work function 

as shown in Figure 3.13 (a) as well as described following: 

(a) Imaging 

(b) Diffraction 

(c) Spectroscopy 
      

LEEM 
PEEM 
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• The topological contrast appears on rough samples and is caused by the 

distortion of the electric field around topographic features of the surface. 

The field distribution distortions disturb the electron trajectory leading to 

an image contrast. Figure 3.13 (b) illustrates the surface topography and 

their corresponding PEEM images; 

• Work function contrast illustrated using UV illumination with energy 

close to the work function of the surface. It demonstrated the intensity 

modulation of the photoemission intensity due to the different emission of 

local work function; 

• Elemental contrast is an element-selective imaging arising from tuning 

the synchrotrons radiation form infrared (meV) to hard x-ray (keV). Many 

light elements give strong absorption edges, thus will appear contrast in 

the final image; 

• Magnetic contrast exhibit magnetic domains, which can be visualized by 

PEEM imaging using polarized X-ray i.e. X-ray Magnetic Circular 

Dichroism (XMCD) or X-ray Magnetic Linear Dichroism (XMLD) so the 

different contrast of specimen due to the polarization of the incoming 

synchrotron light can be investigated to monitor studied magnetization 

area of specimen. 
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Figure 3.13 Imaging mode for PEEM (a) the surface sensitivity of contrast 

mechanism for PEEM and (b) the topography surface features and their corresponding 

PEEM images (Stohr and Anders, 2000). 

 

3.4.5.3 Diffraction mode  

The sample is illuminated with low energy electrons for LEED mode, or soft 

x-rays or UV radiation for photoelectron emission angular distribution (PEEAD). IL 

topographic   elemental/    work     magnetic 
  chemical   function     domains 

Topographical surface features 

Electron 
trajectories 

Corresponding PEEM images 
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and P1 image the diffraction pattern produced in the back focal plane of the objective 

lens. Inserting the analyzer exit slit allows angle resolved photoemission and x-ray 

photo-electron diffraction measurements. The probed area is selected by inserting the 

field-limiting aperture in the image plane after the objective lens, the contrast aperture 

is removed. The schematic for imaging and diffraction plans is shown in Figure 3.14, 

since there are two mode of diffraction for e-gun source as follows: 

• Lateral diffraction, dark field imaging is the choosing of one of LEED 

spots except the center beam. All areas on the surface that correspond to 

these spots appear bright in the image, while the other areas appear dark. 

While varying electron energy at the same time recording the LEEM 

images, this is also measuring the intensity of the specula beam at very low 

energies the so called “LEEM/IV” (by recording the current absorbed by 

the sample analogous to LEED/IV study);  

• Vertical diffraction, phase contrast is useful to investigate the steps on 

the surface of the specimen. The basic principle is the interference of the 

wave nature of the incoming electron beam. The destructive interference 

occurs between the adjacent terraces present steps separating of the 

terraces as the dark line in the image. In contrast with all terraces will 

appear as the same gray level in the microscopic image. 
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Figure 3.14 Schematic of the plane for image and diffraction (Locatelli and Bauer, 

2008). 

 

3.4.5.4 Micro- XPS or dispersive plane operation  

The last two projectors of the imaging column, P2 and P3, are used to image 

the dispersive plane of the analyzer. The dispersive plane appears as a thin line, and 

its intensity profile represents the photoemission spectrum. The probed area is 

selected by the field limiting aperture inserted in the image plane after the objective 

lens. This operation mode allows imaging an energy window of about 12 eV. It is 

used to acquire local XPS spectra from an area of 2 µm diameter.  

3.4.5.5 Micro- XAS mode 

The utilities for tunable synchrotron light are used for scan energy by choosing 

the energy near the edge of the element that is required to be measured. Therefore, the 
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stack of images that measure will be converting to spectrum by Image-J. Figure 3.15 

is an example for XAS measurement of Ag-3d5/2 edge by Winkler (2009). 

 

3.5 Theory Concerned with PEEM Function 

3.5.1 Principles of operation 

Remperf and Griffith (1987) describe the electron optics used in PEEM as 

follows: According to PEEM is based on the cathode lens which is shown in Figure 

3.16.  A flat specimen is in the position separate from the aperture lens by a distance l. 

The uniform accelerating electric field applied between the specimen (“cathode”) and 

the anode is VA.  Figure 3.17 (a) demonstrate the electron trajectories from a specimen 

point on the axis. The electron paths are parabolic arcs which diverge after passing 

through the aperture lens.  

 

 

Figure 3.15 The PEEM integrated with Energy Analyzer data analysis of Ag 

evaporated on Ta in miro-XAS mode. (Winkler, 2009) 
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Figure 3.17 (b) show the tangent to the parabolic electron trajectories have been 

extended backward to the intersection point resulted in a virtual image at distance l 

*=2 l from the anode. Thus l * is now the object of the aperture lens, with a focal 

length f = -4l which is shown in Figure 3.17 (b). Therefore, the virtual specimen 

distance is 4/3 l from the anode minified by 2/3. The virtual image shown in Figure 

3.17 (b) is now the object for the objective lens. 

 

 

 

Figure 3.16 Trajectories of electron emitted from a specimen point on the axis 

showing the curved paths in the accelerating region and the diverging action of the 

aperture lens. (the beam size in the figure is exaggerated) 
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Figure 3.17 (a) Detail of the accelerating region showing a trajectory and a tangent 

ray defining the position of the virtual specimen at a distance l* from the anode. The 

components of the emission velocity ve are er&  and ez&  while the components of the 

velocity va after acceleration are  ar&  and az& . The initial and final tangents make angles 

αe and αa respectively, with the axis. (b) Electron optical equivalent for the case of a 

uniform accelerating field combined with the diverging aperture lens. The focal length 

of the aperture lens for low emission energies is fA=-4l. The virtual specimen is at a 

distance of 2l from the aperture lens. The aperture forms a virtual image of the virtual 

specimen at a distance of 4/3l and a magnification MA = 2/3. 

(a) 

(b) 
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3.5.2 Image composition 

            3.5.2.1 Resolution 

Consideration of the effect of electron emission velocity accelerated by the 

electron ejection voltage Ve , yields 21/ 2e eeV mv=  . Thus the position of the virtual 

specimen formed by the accelerating field using the first approximation is given by 

 
1 2

2* 2 1 cos
(1 / )

e
e

e a a

l Vl l
z z V

α
⎛ ⎞⎛ ⎞
⎜ ⎟= = − ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠& &

. (3.5) 

The subscript “e” refers to values at electron emission and the “a” to values 

after acceleration. Therefore, the chromatic and spherical aberrations of the 

accelerating field are proportional to ( )1 2
e aV V and are due to the variation in l *. The 

parameters that are affecting resolution are the average electron emission energy, the 

width of emission energy distribution, and the aperture size. From Figure 3.17, the 

emission angle, αe  is related to tangent angle, αa  to the first order by 

 
1 2

sine
a e

a

V
V

α α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (3.6) 

Rempfer (1992), Rempfer and Griffith (1992), Rempfer and Mauch (1992) 

and Rempfer, Nadakavukaren and Griffith (1980), numerically studied the 

electrostatic objective lens for PEEM by including aberration of the accelerating field, 

aperture and diffraction limit. Except for the microscope designer, the resolution of 

emission microscope is usually calculated from the Recknagel formula which simply 

expresses the resolution for an axial point as Ve/E. Since E=Va/l resulting the 

resolution is 

 /e alV Vρ =  (3.7) 
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when l = 3mm, Ve = 0.25 V and Va = 30 kV, so the resolution will be 25 nm. The 

resolution calculation for the radius of least confusion for αe = 90° and at the correct 

location, for the plane of least confusion 0.6 /le e ar lV V=  will be 15 nm. For 

experimental measurement the resolution for PEEM has been realized about 7 nm 

examined by Rempfer, Nadakavukaren and Griffith (1991). 

3.5.2.2 Depth of field 

Rempfer, Nadakavukaren and Griffith (1980) also calculated the depth of field 

in PEEM by a simple description of the concept as follows: Smooth, flat specimens 

are preferred in PEEM, because uniform illumination is difficult on a specimen with 

large surface relief. Topographical relief causes variation in the accelerating field at 

the surface. The difference in cathode-to-anode distance from the top to the base of a 

surface feature can affect the image due to emitted electron traveling slowly in the 

initial stages of acceleration. Hence, trough, depressions and bumps on surface appear 

to be several times deeper or higher in the image than their actual size. The “dept 

magnification”, denoted by M*, of surface relief by the accelerating field is 

proportional to ( )1 2/l δ , where δ is the depth of the surface feature as shown in 

Figure 3.18. Generally, the δ is on the order of um, and l is usually several mm, the 

depth magnification can be large. 

The dept magnification of planar region of the specimen is just 2, in virtual 

specimen space. The distance from the anode to the virtual specimen surface l *, is 2l, 

the distance to the bottom of the step of height is l *+ δ *= 2 l + 2δ  . Therefore, 

yielding 

 2p Mδ δ δ∗ ∗= = . (3.8) 
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As mentioned before that, if there is topographical relief, then ( )1 2/l δ  must be 

included, yielding *
reliefδ  can be much larger than the depth of field as expressed by 

 ( ) ( )1 2 1 2* /relief l lδ δ δ δ= = . (3.9) 

 

3.5.2.3 Depth of information 

The depth of information in PEEM is determined by the escape depth of the 

photoelectrons. If the electron escapes from the finite depth in a material according to 

the low energy of photoemitted electron, the “bloom” area is usually less than in TEM 

or SEM. Since, PEEM forms a Gaussian image of the surface, so that electrons are 

collected from a specific depth while in SEM the total photoemitted electron at the 

illuminated area is collected. Thus, the depth of information is determined by the full 

escape depth of a wide energy range of secondary electrons both in the bloom area on 

surface and from the volume beneath the electron-beam probe. Veneklasen (1991) 

described that the photoemission processes contributing to the total electron yield 

usually divide in to four stops as follows: 

i) The absorption of the photon is determined by the probability that a photon 

of energy hv is absorbed at a depth z in a thickness dz and is given by 

 exp( )abdP z dzβ β= − , (3.10) 

where β is the wavelength-dependent optical absorption coefficient. 

ii) Photoinoization at a depth z in the specimen which depends on the quantum 

yield and is independent of z. 
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Figure 3.18 Rempfer, Nadakavukaren and Griffith (1980) demonstrated the diagram 

for a single-step sample and the qualitative representation of the virtual specimen 

surface (dotted line). The surface step height is δ. The virtual specimen surface shows 

the nature of the depth magnification, *
reliefδ , arise from the field perturbation in the 

vicinity of the step. The depth of surface feature far away from the step is * 2planaδ δ= . 

Hence, the depth of field in virtual specimen space is DF* = 2ΔZ*.  
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iii) Transport of the electron at the surface z = 0 which is a scattering process 

limited by an energy dependent mean free path, Ptrans is given by 

 [ ]exp / ( )transP z L E= − . (3.11) 

It also can be approximated by an energy-independent attenuation length, L. 

 iv) Escape into the vacuum. The escape probability at the surface does not 

depend on z.  

Integration of all four probabilities from z = d to z = 0, including the second 

and fourth process steps, in a constant prefactor C give the result that the total 

electrons yield can be written as 

 ( ) ( ){ }1 exp 1/Y d C L dβ= − − +⎡ ⎤⎣ ⎦ . (3.12) 

 

3.5.2.4 Intensity 

Illumination intensity is a major limitation of the PEEM technique due to the 

ability to focus the image at the magnification chosen.  The kinetic energy of 

photoelectron is given by the photoelectric effect equation as 

                kineticE hv φ= − , (3.13) 

where φ is the work function defied as the potential energy barrier between the 

highest occupied electron state in the solid and the vacuum outside of the solid. It 

usually depends on the surface termination or adsorbate.  

The electron yield (photocurrent density, j(v)) is determined by the number of 

electrons ejected per photon which is proportional to the intensity of the illumination 

source above some threshold  value, vt =  φ/h. The photocurrent density is the result 
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from a photon flux B(v) of wavelength between v + dv and an electron yield  ε(v) , is 

( ) ( )( )j v dv v B vε= ; thus the integrated current is given by 

 ( ) ( )
max

/

v

h

J v B v dv
φ

ε= ∫ . (3.14) 

This shows that the photocurrent directly depends on the work function? From 

the assumptions explained by Rempfer (1992),  Rempfer and Griffith (1992), it can be 

shown that small changes in the work function are directly proportional to small 

changes in the integrated photocurrent; yielding 

 J φΔ = −Δ . (3.15) 

From this relationship, it can be sued to calibrated thickness- or coverage-

dependent contrast/image brightness effect. 

 

3.5.2.5 Contrast 

As mentioned before, the contrast mechanism in PEEM can have various 

origins i. e., 1) variation in the electron yield, 2) deflection or focusing of electron into 

or out of the collection volume of the objective lens/aperture, most usually 

topographical relief, and 3) shadows cast by surface features. The contrast 

mechanisms are demonstrated in Figure 3.19.  
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Figure 3.19 Diagram for contrast mechanism in PEEM for composite surface 

(denoted by equipotential lines) with the work function φ  and illuminated by photon 

energy hv. The circle below represents the image obtained in PEEM where the dark 

area for φ > hv, bright for φ < hv. The topography contrast arises from a step and a 

depression in the surface as shown on the left half on the image (Kordesch, 2006). 
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3.6 Low Energy Electron Diffraction (LEED) 

Conventional LEEM is a powerful technique for observing the atomic 

arrangement at the surfaces of crystalline materials. The basic principle of LEED may 

be explained by the wave nature of a collimated beam of low energy electron (20-200 

eV) incident on crystalline materials. The electron wave reflected from the periodic 

structure at the surface from the diffraction pattern on a fluorescent screen as 

illustrated in Figure 3.20. 

The wavelength of the corresponding de Broglie wave for an electron is given by 

mE
h

2
=λ  , or it can easily be rewritten as a function of electron energy as 

 150[A]
[ ]E eV

λ =
o

. (3.16) 

The corresponding wavelength of 20 eV electrons and 200 eV electrons are as 

follows:    

20 eV - electrons: 150[A] 2.74 A
20

λ = =
o o

. (3.17) 

200 eV - electrons:  150[A] 0.87 A
200

λ = =
o o

. (3.18) 

It is obvious that the corresponding wavelength of the electrons used in the 

LEED technique is comparable to the repeat distance in the surface structure. LEED 

patterns provide information of crystalline structures from the surface to the depth of 

about 10 
o

A  , depending on materials and the energy of the electron beam. This is 

because of the short inelastic mean free path of low-energy electrons in matters. It is 

always convenient to treat the diffraction of the low-energy electron beam of crystals 
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in the reciprocal space. In 3 dimensions, the real primitive vector {a, b, c} is used to 

describe the real 3D lattice. In the reciprocal lattice, the primitive reciprocal vector are 

relayed to the real primitive vector as following 

( )
( )cba

cba
×⋅
×

=
π2* , ( )

( )cba
acb

×⋅
×

=
π2* , ( )

( )cba
bac

×⋅
×

=
π2*  . (3.19) 

The reciprocal vector G is given by 

Ghkl = ha* + kb* +lc* ,   (3.20) 

where h, k , l are a set of integer numbers. The incident and scattered electrons can 

conveniently be described as plan waves with wave vectors k0 = 2π/λ0 and k = 2π/λ. 

The condition for constructive interference of scattered electron waves is governed by 

the Laue condition, i.e., 

k − k0 = Ghkl,    (3.21) 

 

 

 

Figure 3.20 A typical LEED experimental set-up. 
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Figure 3.21 Ewald’s sphere construction for the case of a normal incidence of the 

primary electron. The allowed diffraction spot on the LEED screen are the points 

where the Ewald’s sphere intersects with the reciprocal lattice rods. 

 

A simple graphical illustration of the diffraction can be visualized by using the 

Ewarld’s sphere construction as shown in Figure 3.21. Since the elastic scattering is 

considered, the magnitudes of the incident and outgoing wave vectors are equal. As 

the inelastic electron men free path is only a few atomic layers, the scattering 

electrons considered are from the surface. Thus it is the diffraction from a 2 

dimensional surface structure, and Equation (3.21) can be reduced as 

 0 hk * *h l− = = +k k G a b� � , (3.22) 

where 0k�  and k�  refer to the components of incident and scattered wave vectors 

parallel to the sample surface respectively, *a  and b*are the primitive translation 

vectors of the 2D reciprocal lattice of the surface. Equation (3.22) is the 2D Laue 
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condition and is demonstrated in Figure 3.21. The complete constructive interference 

occurs at every intersection between a reciprocal rod and the Ewald’s sphere of radius 

k0 with its center at the origin. 

It should also be emphasized that LEED is a very surface sensitive technique. 

LEED patterns provide information on the arrangement of atoms at the surface 

vicinity, from the surface down to a few monolayers, depending on the atomic 

composition of the crystals. To obtain a LEED pattern with good signal-to-noise ratio, 

the surface of the sample must be clean and well-ordered. In actual LEED experiment, 

an ultra-high vacuum environment is essential to prevent any surface contaminations.   
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CHAPTER IV 

DEVELOPMENT OF PEEM EXPERIMENTAL STATION 

 
This chapter provides the description for the design considerations and the 

design of the PEEM experimental station for the BL3.2b beamline of SLRI, which 

was developed along the course of this thesis work. The PEEM experimental station is 

one of the ideal systems that provide possibilities to synthesize and in-situ 

characterize epitaxial graphene by thermal decomposition of SiC (Bertolo, 2003).  

 

4.1 Design considerations  

The main goal for setting up a PEEM experimental station at BL3.2b is for 

spectroscopic studies of solid materials with nanometer spatial resolution. The 

primary excitation source is synchrotron light produced from a planar undulator. The 

photon energy ranges available at BL3.2, 40-160eV and 220-1040 eV, cover the K 

energy level of light elements such as C, N, O and F and the L energy level of the 

transition metals. The required measurement techniques that are available at the 

experimental station are the followings:  

• PEEM: This mode of operation of the experimental station is to provide 

images of samples with resolution of less than 100 nm (Wichtendahl, 

1998). The excitation source are both, a Hg UV lamp and the synchrotron 

light source. The advantage of using synchrotron light is the possibility to 

tune photon energy to required values; 
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• Nano/imaging XAS: With the tuneability of photon energy of synchrotron 

light, PEEM images shall be obtained with series of excitation photon 

energy and thus imaging XAS. The XAS measurement shall be able to 

obtained from deduction of an area of interest with dimension of less than 

100 nm from the energy-scan PEEM images;  

• Micro/imaging XPS: This mode of measurement can easily be obtained if 

an electron energy analyzer is employed. Expected energy resolution of 

250 meV is required. The spatial resolution shall be in sub-micron range; 

• LEEM: The microscope is equipped with an electron gun to provide 

possibility to use the microscope for LEEM imaging, as well as VLEED 

observation. 

In addition to various measurement techniques mentioned above, the 

experimental station is equipped with sample preparation system(s). A sample transfer 

system to transport samples between the sample preparation system(s) and the 

microscope is necessary to allow in-situ experiment, preventing surface 

contaminations. Certainly, a load-lock system is necessary to prevent breaking a UHV 

environment during the introduction of the sample into the experimental station. The 

sample holder is also be equipped with a heating system to allow the sample to be 

heated up to about 1700 °C.  

More importantly, one need to keep in mind that the experimental station is be 

connected to the BL3.2 beamline. This put a constraint for designing the support or 

the table for the experimental station that shall be able to move the whole 

experimental station so that the synchrotron light beam hits the field-of-view of the 

microscope. The field-of-view for PEEMs is normally between a few microns to 
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hundreds microns. Thus the movements of the manipulator of the support is was 

required of micron accuracy. 

 

4.2 Design of the PEEM experimental station  

There are two types of commercially available PEEM systems, i.e. electrostatic 

and electromagnetic type (Rempfer, 1997). During the design of the PEEM 

experimental station, well-established technology to integrate PEEM with electron 

illumination column only existed in an electromagnetic PEEM system. Thus an 

electromagnetic LEEM-PEEM system was selected as a microscope for the 

experimental station.  

 

Figure 4.1 The schematic drawing of the ELMITEC LEEM III microscope.  
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An ELMITEC LEEM III system was chosen as an electron microscope of the 

experimental station of BL3.2b. The microscope is equipped also with an electron 

energy analyzer. Figure 4.1 shows the schematic drawing of the ELMITEC LEEM III, 

illustrating only the main components. The sample is held on a sample holder which 

is attached to the sample manipulator, allowing the sample to be oriented in required 

orientations. With a sector magnet, two electron optical axes originating from the 

sample are possible. One is for the electrons from the illuminating column. The 

illuminating column provides an electron beam for LEEM and LEED observations. 

The other electron optical line is for the imaging column. This column consists of the 

condenser and projection lenses. The energy analyzer is also inserted between the two 

lenses to select electrons with required kinetic energies. A combination of an MCD 

(multi channel plate) and a fluorescence screen is used to form the image. The 

electrons projected from the projection lens on the MCD are multiplied thru the 

micro-channels of MCD. An image is formed when the multiplied electrons hit on the 

fluorescence screen. A low-noise optical VDO camera is used to record the image on 

the fluorescence screen. The technical and performance specifications of the 

ELMITEC LEEM III with the energy analyzer are given in Table 4.1.  

Only the microscope was purchased from ELMITEC. Thus, the main task of this 

thesis work was to design and integrate the sample preparation system, load-lock 

system, sample transfer system and the support to be a PEEM experimental station, 

and then connected to the BL3.2b beamline.  
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Table 4.1 Technical and performance specifications of the PEEM experimental 

station of BL3.2b. 

Excitation sources: Synchrotron light:  

40-160eV & 220-1040eV 

Hg UV discharged lamp 

LaB6 electron gun 

Measurement techniques:  UV & Synchrotron light PEEM 

Bright/Dark field LEEM 

MEM (mirror electron microscopy) 

Imaging/micro XPS 

Nano XAS 

Micro LEED 

Spatial resolution in PEEM mode: <20 nm 

Spatial resolution in LEEM mode: <10 nm  (16% / 84% criteria) 

Electron energy at the sample: -5 to 1000 eV 

Illumination area: up to 80 micron in LEEM mode 

up to 150 micron in PEEM mode 

Energy resolution 250 meV 

Isochromatism in spectroscopic imaging mode <0.5 eV/10 micron 

Width of the energy dispersive plane >10 eV 

Deviation from linearity of energy dispersive 

curve 

<5% 

Sample temperature between room temp. & 1700 °C 
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In a normal set up of the ELMITEC LEEM III system, the imaging column and 

the electron column of the LEEM III are laid on the horizontal plane, i.e. the electron 

optical axis of both columns is on the horizontal plane. Such orientation provides 

good stability for the LEEM system, and thus it is less sensitive to mechanical 

vibrations that might degrade the performance of the LEEM system. There is a 

stringent constrain for using the LEEM for PEEM observations because of the very 

short distance between the objective lens and the sample, which is about 2 mm. Thus, 

UV light or Synchrotron light used for excitation is designed for grazing geometry. 

The angle between the optical axis of the exciting light and the sample surface is only 

17°. There is no difficulty to use a UV lamp for PEEM observation when the electron 

optical axes of the LEEM III system are on the horizontal plane since UV light from 

the lamp can be well-focused on the sample. Alignment of the lamp can be manually 

adjusted easily.  

When the LEEM III has to be connected to a synchrotron light beamline, there 

are a few considerations that must be kept in mind. Firstly, the beamline cannot be 

moved and thus the microscope shall be able to move to allow the field-of-view of the 

microscope to be illuminated with synchrotron light. Secondly, the dimension of the 

synchrotron light beam on the sample is defined by the electron beam dimension and 

the optical system of the beamline. Normally, the vertical beam size is smaller than 

the horizontal beam size, and thus the light beam is elliptical with the a minor axis in 

the vertical direction. That is also true for the Siam Photon Source of SLRI. As 

already mentioned above, the synchrotron light beam impinges on the sample with an 

angle of 17° with respect to the surface of the sample. In order to maximize the 

number of photons in the field-of-view of the microscope, or minimum beam size 
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projected ontothe sample surface, the plane of incidence for the synchrotron light 

must be in the vertical plane. This constraint results in the design of the microscope 

installed as illustrated in Figure 4.2. It is noted that the synchrotron light delivered by 

the BL3 beamline is in the horizontal axis. Thus, the microscope is installed with the 

optical axis the electron column, the imaging column and the axis of the synchrotron 

light are in the vertical plane, as shown in Figure 4.2. The optical axis of the objective 

lens of the microscope is tilted 17° with respect to vertical angle.       

 

 
 

 

Figure 4.2 The set up of the ELIMTEC LEEM III showing the orientation of the 

microscope with respect to synchrotron light beam (red arrow).  

#1.Electron     
          gun 

#2. UV-lamp 

#3.  Synchrotron 
 light 
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The main chamber of the microscope, where the sample is located, is connected 

to two sample preparation systems and the beamline. The vacuum condition of the 

microscope is isolated from the beamline and the two sample preparation chambers by 

three gate valves, one for each connection. The imaging column, electron column and 

the energy analyzer of the microscope are evacuated by a combined 300 l/s and 

titanium sublimation pump and a 4000 l/s NEG (non-evaporated getter) pump. The 

main chamber, however, is evacuated thru the preparation chamber 

The main chamber of the microscope is sandwiched by the two sample 

preparation chambers with vacuum-isolated gate valves. Viewing along the 

synchrotron light, the preparation system on the right side is currently in used. The 

preparation system is attached with a sample load-load system to prevent breaking of 

a UHV condition during the introduction of the sample. A magnetic linear drive is 

used to transfer the sample from the load-lock chamber to the parathion chamber. The 

sample carousal in the preparation chamber can accept up to three samples. Out 

gassing of the sample by electron bombardment heating can be carried out in the 

preparation chamber. In the future, an ion gun bombardment will be installed to 

provide a possibility for cleaning the surface of the sample. A magnetic linear drive is 

also used for transferring the sample from the preparation chamber to the sample 

holder in the main chamber of microscope. Since the chamber of the preparation 

chamber is rather small, a 20 l/s ion pump is sufficient to maintain a UHV condition 

in this chamber.   

The preparation on the left side of the main chamber of the microscope is 

designed for future uses. This chamber is evacuated by a combined 500 l/s ion pump 

and titanium sublimation pump. This section is currently used as the vacuum reservoir 
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for the main chamber of the microscope. The gate valve between this preparation 

chamber and the main chamber of the microscope is normally kept open since the 

main chamber is pumped by the same pumping system. In the future, evaporation 

sources, and ion sputter gun, a sample manipulator and transfer system will be 

equipped to this preparation system.  

The isometric and top views of the PEEM experimental station are shown in 

Figures 4.3 and 4.4, respectively. All mechanical components of the experimental 

station are installed on a table with 10-cm aluminum top. The top is quite heavy, 

providing a stable foundation of the microscope. In addition, this aluminum top is 

sitting on an anti-vibration system. The table is, in principle, an optical table allowing 

the experimental station to be rotated and translated to provide a maximum intensity 

of the synchrotron light beam in the field-of-view of the sample. 
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Figure 4.3 The 3D drawing of the PEEM experimental station of BL3.2b. 

Synchrotron light beam is indicated by the red arrow.  
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Figure 4.4 Top view of the PEEM experimental station of BL3.2b. 
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4.3 Commissioning results  

Figures 4.5 and 4.6 show the photos of the PEEM experimental station before 

and after installing at the BL3.2b. A flexible tube, a 40DN corrugated bellow, is used 

at the connection between the beamline and the PEEM experimental station. This 

allows the experimental station to be moved to align the microscope in a correct 

orientation with respect to the synchrotron light beam. This is not the case when a UV 

lamp is used since it is easier to do the alignment by moving the UV lamp.  

 

 

 

Figure 4.5 Photo of the PEEM experimental station before connecting to the 

beamline. 
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Figure 4.6 Photo of the PEEM experimental beamline installed at BL3.2b. 

 

The base pressure in the main chamber of the microscope is less than 2×10-10 

Torr. During PEEM observation, when the sample is biased with high voltage of -20 

kV, the pressure is raised to about 1×10-10 Torr for the sample with low outgassing 

rate. Higher pressure is expected for samples with high outgassing rate. Normally, the 

gate valve between the main chamber of the microscope and the big preparation 

chamber is kept opened so the main chamber can be evacuated. The base pressure in 

the small preparation system is typically 1×10-8 Torr. It can be higher during 

degassing samples.  

The introduction of the sample thru the load-lock system has been tested. The 

sample can be transferred from the load-lock chamber to the sample preparation 

chamber without breaking a UHV condition in the preparation chamber. Since the 

pressure in the preparation is already low, typically 1×10-8 Torr, transferring the 
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sample into the main chamber can be done without worrying about breaking the UHV 

conditions in the main chamber. 

Figure 4.7 shows the drain current measured by a gold mesh located in front of 

the PEEM experimental station. The drain current is proportional to the photon flux 

delivered by BL3.2. The photon flux for the low energy region of the BL3.2 

monochromator, 40-160 eV, is about 2-5 orders of magnitude higher that the high 

energy region of the BL3.2 monochromator. This is mainly due to the fact that this 

low energy region is from the 1st order radiation of the U60 planar undulator. For the 

high energy region, it is necessary to employ higher harmonic light.   

The drain current measurements also show that, obviously, there are 

contaminations on the optical elements of the beamline. The structures near the 

photon energy of 570 eV correspond to Cr L2 and L3-edges (583.8 and 574.1 eV). 

These chromium atoms are widely known to be present in the coating of the optical 

elements. Carbon contamination in beamlines is found in all beamlines. This is also 

true for BL3.2, in which the contamination can be seen clearly as a big dip in the 

drain current measurements at about 285 eV. Carbon contamination on the gold mesh 

is also expected, and that might lead to an inaccurate value of the drain current. To get 

accurate value photon flux of this beamline, extensive work is still required.  

The support of the PEEM experimental station was found to be very station. 

Because of a solid foundation of the experimental hall of the Siam Photon Laboratory, 

mechanical vibration noises, e.g. vibration from surrounding pumps, were not 

observed during PEEM and LEEM measurements. The anti-vibration system of the 

table was found to be not necessary. The moments of the table for aligning the 

microscope to the synchrotron light beam works as designed. 
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Figure 4.7 The drain current measured from a gold mesh located in front of the 

PEEM experimental station. It is used for monitoring the monochromatic light beam 

entering into the microscope.  
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CHAPTER V 

EXPERIMENTAL RSULTS AND DISCUSSIONS 

 
This chapter presents the first experimental results from the PEEM experimental 

station of BL3.2b. Epitaxial graphene was synthesized by thermal decomposition of a 

single crystalline SiC in the PEEM experimental station. The experimental station was 

an ideal for such study since the sample annealing at high temperatures could be 

achieved in this system. In addition, surface reconstruction of SiC and the graphene 

could also be monitored by electron diffraction pattern. IV-LEEM also provides a 

method to determine the number of graphene layers easily. Detailed experimental 

results and discussions are given below. 

 

5.1 Surface topography of SiC: AFM observation  

In this work, single crystalline SiC(0001) samples were used as starting material 

for synthesizing expitaxial graphene. The surface topography of the SiC samples was 

examined by AFM. Figure 5.1 shows AMF images of the as-received 6H-SiC(0001) 

taken in a tapping mode illustrated in four differenct types of imaging techniques 

(Height, Phase, Ampliture, and Zsensor imaging). The area of the scanning is 1×1 

μm2. The images were taken with a scanning rate of 1 kHz. The scratches on the SiC 

surface are clearly visible in all four types of imaging techniques. 
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Figure 5.1 AFM topography of a SiC(0001) sigle crystal taken in a tapping mode. 

The area of the images is 1×1 μm2. 

 

From a larger scanning area, the grooves and the roughness of the as-received 

SiC sample were analyzed. Figure 5.2 shows the line scan of the SiC sample with an 

area of 10×10 μm2. The mximum depth of the grooves was found to be as deep as 5 

nm. The RMS roughness over the entire image was estimated to be about 1.3 nm.  
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Figure 5.2 The line scan of 10×10 μm2 measurement indicates the surface grooves 

with a maxumum depth of 5 nm. The RMS roughness over the entire image was about 

1.3 nm. 

 

5.2 Thermal decomposition of SiC  

After chemical cleaning procedures, a single-crystalline 6H-SiC(0001) sample 

was introduced into the PEEM experimental station through the load-lock system. The 

sample was then degassed at 500 °C overnight. The temperature during the heat 

treatment was monitored by the infrared pyrometer together with the WRe 

thermocouple (C-type) welded to the sample cartridge. Removing of oxide layer was 
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carried out by flashing the sample at flashing temperature above 1000 °C. It should be 

noted that flashing introduced large amount of gas molecules giving rise to the 

increase of vacuum pressure in the microscope. Thus to actually obtain flashing at 

1200 °C to remove oxide layer, several flashings were required. LEEM images of the 

sample were taken after flashing, and shown in Figure 5.3. These LEEM images in 

Figure 5.3 were capture by apply the current 1388.8 mA to the objective lens for the 

appropriated focus images and bias the objective lens and the sample with the start 

voltage 2.03, 1.53, 1.73, 1.73, 1.85 and 1.48 V for 77, 50, 25, 15, 10 and 7.5 μm 

FOVs, respectively. LEEM images in a mirror mode are also illustrated at the second 

row in Figure 5.3. 
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Figure 5.3 The two top rows show LEEM images of SiC(0001) surface at different 

field-of-views (FOV) after flashing SiC(0001) at 1200 °C. The two bottom rows are 

examples for LEEM images in a mirror mode obtained by setting the start voltage to 

be a negative value close to zero V. 

 

 



 

 

 

 

 

 

 

 

 111

After removing the oxide overlayer, thermal decomposition of SiC to form 

graphene were carried out done by annealing the substrate around 1300 °C for 1 

minute. As mentioned before in Chapter II, the surface reconstruction of SiC in the 

early stage for graphitization can be monitored by observing LEED pattern (Bostwick, 

2008), thus LEED pattern observations were carried out after each heat treatment. 

Figure 5.4 (a)-(d) shows the LEED patterns taken from the SiC sample after a sequent 

flashing at 1000 °C, 1200 °C, 1300 °C and 1400 °C, respectively. 

 

Figure 5.4 LEED images of the SiC sample in a sequent flashing process: (a) after 

flashing at 1000 °C (b) followed by flashing at 1200 °C (c) followed by flashing at 

1300 °C (d) followed by flashing at 1400 °C, respectively. 

(a) (b) 

(c) (d) 

20 eV 

20 eV 19 eV 

19 eV 
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Early LEED study on the path way to from graphite by thermal decomposition 

of 6H-SiC(0001) by Bostwick, et al. (2008) suggested the evolution of the LEED 

pattern caused by surface reconstruction/decomposition upon thermal treatment as 

described following; for the clean surface of 6H-SiC(0001), the LEED pattern 

exhibits a Si-rich (3×3) structure. Further annealing around 1050 °C, Si atoms are 

removed and thus the (√3×√3) R30° structure is formed. Before the epitaxial 

graphene growth, the LEED pattern observed the carbon rich (6√3×6√3) R30° 

structure at 1150 °C (so-called ‘the buffer layer’) which is the precursor to graphene 

growth. Further annealing leads to growth of graphene and few layers graphene 

(FLG) with (1×1) periodicity of graphite. When the annealing temperature is above 

1400°C, the graphite is formed. 

In this work, a clean and well-ordered surface structure of the 6H-SiC(0001) 

sample was obtained after flashing at 1000C, indicating the LEED pattern of Si-rich 

(√3×√3) R30° structure, as shown in Figure 5. 4(a). The early stage (buffer layer) 

before first graphene layer was grown on the substrate could be observed after 

flashing the SiC sample to 1200 °C, as shown in Figure 5.4 (b). The graphene was 

expected after flashing at 1300 °C. Further flashing at 1400 °C would lead to the 

increase of the number of graphene layers and thereby the formation of graphite as 

shown in Figures 5.4 (c) and (d).   

LEEM images of the SiC sample were taken after flashing at 1300°C. The 

images with different FOVs are shown in Figure 5.5. The LEEM images were 

captured with the current for the objective lens of 1602 mA and with the start voltages 

of 0.39, 0.03, 0.08, 0.36, 0.50 and 0.77 for the 75, 50, 25, 15, 10 and 7.5 μm FOVs, 
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respectively. Figure 5.6 shows also the LEEM images of the SiC after flashing at 

1400 °C. The scratches are clearly visible in both heat-treated conditions. It should be 

noted that flashing of the sample was performed with care, so that the pressure rise 

did not exceed 5×10-8 Torr . 

 

 

Figure 5.5 LEEM images after annealing 6H-SiC(0001) at 1300 °C for 1 min (FOV 

= 75, 50, 25, 15, 10 and 7.5 μm). 
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Figure 5.6 LEEM images of 6H-SiC(0001) after flashing at 1400 °C exhibiting 

more contrast between the scratch lines and other non-scratch areas (FOV = 50, 25, 15 

and 3 μm). 

 

5.3 Determination of number of graphene layer by IV-LEEM  

The oscillations in the LEEM reflectivity at low electron energies can be used to 

identify the number layers of graphene as reported by several groups i.e., Chung et al. 

(2003), Hibino et al. (2008), and Ohta et al. (2008). The information on the number of 

graphene layers is contained in the oscillating intensity of reflecting electron as a 

function of the bias voltage of the sample, or known as IV LEEM analysis. The 

electrons with certain discrete energy levels are allowed inside the quantum well 

potential as describe by Hibino et al. (2008) and Virojanadara et al. (2008, 2010). 

According to these discrete energy levels, incident electrons with various energies 
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will get reflected differently, creating an oscillating I-V spectrum related with the 

particular graphene thickness. Hibino et al. point out that the conduction band of 

graphite along the Γ-A direction is continuous though a few layer graphene should 

have discrete states related from the reflectivity oscillation of electron structure of the 

thin films provided the quantized conduction band states. A supporting theory is given 

by Mathieu et al. (2011) based on a tight-binding calculation of the resonant energies 

analogous with the experimental minima positions.  

In this work, a series of LEEM images were taken with a variation of electron 

energies to determine the number of graphene layers. It is noted that the electron 

energy can be varied by changing the bias voltage of the sample in the LEEM system. 

Figure 5.7 (a) shows a 10-μm-FOV LEEM image of the SiC sample after flashing at 

1400 °C. The intensity of regions of interest (ROI) indicated by the labels S1, S2, 

L211, White and Dark deduced from the series of the images was plotted against the 

electron energy in Figure 5.7 (b). The numbers of dips in the IV-LEEM curves in 

Figure 5.7 (b) are the number of graphene layer. It was found that the numbers of 

graphene layers formed varied from 2 to 4 layers. 
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Figure 5.7 (a) The 10-μm-FOV LEEM image of graphene/6H-SiC(0001) and, (b) 

the IV-LEEM curves showing the oscillation dip of the intensity deduced from 

different regions on the sample surface, as indicated by.S1, S2, L211, White and Dark. 

 

 It is interesting to point out that there is a variation of the number of graphene 

form on a SiC sample. Figure 5.8 (a) shows that the number of graphene layers was 

found to be 2 in the dark regions of the LEEM image. In the bright regions of the 

LEEM image, the number of graphene layer was found to be either 3 or 4 layers, as 

shown in Figure 5.8 (b).  

It is interesting to find out the variation of the number of graphene layers and its 

cause. To carry out more detailed investigations, IV LEEM curves were carefully 

extracted from various regions of interest. It was found out that the scratch on the 

sample surface might be the cause for the variation. Careful analysis of LEEM images 

was carried out. Figures 5.9 (a)-(f) show the LEEM images of graphene formed on the 

SiC substrate after the thermal decomposition at 1400 °C. By varying the “start 

voltage” or the energy of the electrons arriving at the sample surface, LEEM images 
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exhibited the contrast between the scratch surfaces represented as the bright/white 

area while the other represented as the dark area (flat surface).  

 

 

 

Figure 5.8 (a) LEEM image and LEEM-IV curves deduced from the dark regions 

indicated by letter a, b, c, d and e in the LEEM image (b) LEEM image and LEEM-IV 

curves deduced from the white regions indicated by letter A, B, D and E in the LEEM 

image. 
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Figure 5.9 25-μm-FOV LEEM images of the graphene grown on the scratched SiC 

substrate at bias voltages varying from 1.0 - 7.0 eV for Figures (a)-(f), respectively. 

The corresponding LEEM-IV curves for the region of interested indicated by a square 

symbols marked with blue and red color are shown in Figure (g).  
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However, these high and low intensities of the LEEM images do not originate 

from the topography contrast, as to the LEEM technique also picks up the contrast 

from the electronic structure at the surface. Figure 5.9 (b) show that the scratch marks 

are mostly visible along high-intensity lines and the flat regions are mostly in low-

intensity areas. As the electron energy is varied, the contrast of the LEEM image 

changes dramatically; at some energy i.e., 3 eV in Figure 5.9 (c), some of the scratch 

marks are barely visible. This can be explained by the quantum well states of 

graphene layer on SiC substrate since the change of the image intensity as a function 

of bias voltage is set by the electronic structure as mentioned above. Figure 5.9 (g) is 

the intensity oscillations when the bias voltages vary in the same range with Hibino, 

et al. (2008) collect from the two selected spots (blue and red squares in panel (a) – 

(f)). The number of dip in this oscillation indicated the number of graphene layers at 

that spot. The scratch line, blue spot, has s 4 dips oscillations, while the flat area, red 

spot, indicating the 2 dips regarding with the 4(2) layers of graphene on the selected 

blue(red) spot. Therefore, the smooth areas are mostly covered with two layers of 

graphene as demonstrated by the IV-LEEM express mostly only two dips. This is 

confirmed by a good agreement with Norimatsu and Kusunoki (2010), Choi, Lee and 

Kim (2010) and Tanaka et al. (2010) that scratches on the SiC surface can promote 

the enhanced growth of graphene and these studies also demonstrated that the 

graphitization process usually starts near the step of a surface rather than flat terraces. 

Moreover, Tanaka, Morita and Hibino (2010) also describe “step” on substrates as the 

kicker of graphene nucleation by providing Carbon atoms. It is note that although this 

study, the IV-LEEM analysis, can not tell whether the additional layers are on top or 

underneath the buffer layer, but it is speculated that the additional layers are 
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underneath based on the model described by Norimatsu et al. (2010). From this reason, 

the AFM is performed to measure the width of the scratches on the as received SiC 

substrate as well as the graphene width from along the scratch line will be 

investigated in detailed. 

 

5.4 Effect of surface scratch on graphene width  

 
In order to investigate the effect that substrate scratch have on the spatial 

variation of graphene layers form on 6H-SiC(0001) surface, the native scratch width 

are examined by AFM. Figure 5.10 shows the selected regions on the surface where 

the width of the scratches were analyzed by Igor Pro software. An example for the 

scratch width analysis by Igor Pro software is demonstrated in Figure 5.10 (a). It is 

noted that the image is rotated so that the scratch line is in the vertical direction as 

shown in Figure 5.10 (b). There are 8 regions of interest marked by “afm1”, “afm2”, 

“afm3”, …., “afm8”. These regions of interest are selected for surface width analysis 

by Igor Pro software as illustrated in Figure 5.10 (a). Before analyzing the scratch 

width, the images are magnified as shown in the small panel between (a) and (b). 

Figure 5.10 (c) is an example for scratch width measurement by pick up 4 lines 

selected from the region marked by “afm2” in Figure 5.1 0(a), and the corresponding 

width of the scratch are presented in Figure 5.10 (d). Both the depth profiles along the 

perpendicular direction of the scratch line and the full width of these profiles are 

measured. In addition, the Gwyddion software also used to measure the scratch width 

as demonstrated in Figure 5.11 (a)-(d). Figure 5.11 (a) shows the scratch line and the 

corresponding line profile obtained from by using the Gwyddion software as indicated 
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by 1-13. Figure 5.11 (b) presents the step height fit function used for fitting the 

scratch width. Figure 5.11 (c)-(d) are examples for the scratch width for line profile 4, 

and 11, respectively. The corresponding widths analyzed by Gwyddion software are 

0.1017 μm, 0.1632 μm. The results from both software analysis indicated that the 

scratch width collected in many lines is about 0.20 ± 0.05 μm.  

 

Figure 5.10 AFM image of a single crystalline SiC (as-received, before any chemical 

and heat treatment) showing the scratches and their width. (a) selected areas analyzed 

by Igor Pro software (b) enlarged image from the area of interested showing 

measurement of the width (c) enlarged image from area “afm8” (d) the scratch width 

taken from area “afm8” at different locations 
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Figure 5.11 Scratch width measurement from Gwyddion software (a) the selected 

scratch line, (b) function to fit the scratch width, (c) and (d) the examples for scratch 

width profile and the related step height fit. 

 

From the analysis of AFM images using Igor Pro and Gwyddion software 

implies that the scratch lines have a wedge shape as illustrated in Figures 5.10 and 

5.11. The same software and procedures were used for the analysis of LEEM images 

after the thermal decomposition. In LEEM observation, maximum image contrast 

between the graphene domains in the vicinity of the scratches and the flat area was 
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obtained when the bias voltage was about 1.6 V as shown in Figures 5.12 (a) and 5.13 

(a). These graphene layers were already examined with the IV-LEEM and found to be 

3-4 layers along the scratch direction. Figure 5.12 (a) and Figure 5.13 show the widths 

of the graphene extracted from the contrast profile analyzed by using Gwyddion and 

Igor Pro software. Figure 5.12 (a) shows the LEEM image and the selected profile 

line for Gwyddion measurement indicated by number 1-10. The step height function 

fit for graphene width measurement is presented in Figure 5.12 (b) that provided the 

graphene width of 0. 4593 μm for the line profile 9, and graphene width for the line 

profiles 8 and 5 are 0.4420 and 0.7963 μm are shown in Figure 5.12 (c) and (d), 

respectively. The results obtained from Igor Pro software are also presented in Figure 

5.13. The average value of this width is 0.52±0.07 μm, which is approximately 2.6 

times larger than the average scratch width from Figures 5.10 and 5.11. By comparing 

these extracted widths between the scratch lines and the graphene formed along its 

scratch, it is obvious that the enhanced growth of graphene can extend much further 

from the edge of a scratch, which is simply shown by the schematic picture in Figure 

5.14. 
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Figure 5.12 Graphene width measurements by using Gwyddion software, (a) LEEM 

image of graphene formed along the scratch line, (b) the step height function for fit 

the graphene width, (c) and (d) the line profiles 5 and 8 as shown in (a).  

line profile 5

line profile 8 
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Figure 5.13 The LEEM image and corresponding graphene width analysis by Igor 

Pro software, (a) the 4 lines graphene width extract from blue square mark in (d) and 

the corresponding width in (b), (c) and (d) the LEEM images for graphene showing 

the lines of interest for analysis. 
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Figure 5.14  Schematics for a wedge shape of the surface scratch of the substrate in 

(a), and the graphene layers formed on substrate surface in (b). 

 

5.5 Chemical analysis at PEEM experimental station 

5.5.1 XPS measurements 

This section describes an attempt to chemically analyze the epitaxial graphene 

prepared by thermal decomposition, as elaborated above. There are two possible 

chemical analytical techniques at the PEEM experimental station of BL3.2b, i.e. XAS 

and XPS. Synchrotron light from the U60 undulator was used for the excitation for 

both techniques. The ability to tune photon energy covering the absorption edge of 

carbon 1s allows carbon K-edge absorption spectra to be taken. The electron energy 

analyzer can be used for imaging/micro XPS measurements. 
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Figure 5.15 PEEM images illuminated with photon energy of 100, 270 and 290 eV. 

(FOV =  75 μm) 

 

Figure 5.15 shows PEEM images of the SiC sample after thermal decomposition 

at 1400 °C. The images were taken with three different excitation energies. The 

photon energy was chosen far below, near and above the absorption K-edge of carbon 

(i.e. at 100eV, 270eV and 290eV). The results are only for demonstrating the 

technical capability of the experimental station. It should be noted also that there is 

still problems associated with carbon contaminations in the beamline. The photon flux 

around the C K-edge is reduced due to the absorption by carbon atoms on the optical 

elements of the beamline. Even the gold mesh used for measuring the drain current 

might also suffer from carbon contamination on the mesh. This gives additional 

reduction of the measured photon flux. 
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Figure 5.16 Micro-XPS spectra of epitaxial graphene prepared by thermal 

decomposition (a) this work and (b) reported by Virojanadara et al. (2008) 

 

Imaging–XPS or micro-XPS can be carried out at the PEEM experimental 

station. However, one shall keep in mind that the energy resolution is not comparable 

to dedicated high resolution photoemission system. Figure 5.16 shows XPS spectrum 

taken from the SiC after flashing at 1400 °C (this work) and the high-energy 

resolution XPS spectrum of graphene reported by Virojanadara et al. (2008). The 

excitation energy for both experiments is given in the Figure; 420eV in this work and 

450eV in Virojanadara’s work. The carbon 1s peak in the XPS spectrum obtained in 

this work is rather broad, arising from overlapping of 2 or 3 peaks. There are 2 main 

peaks (A and B) located around 284.3 and 282.6 eV. It was reported by Virojanadara 
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that carbon 1s peak originated from bulk SiC, graphite/graphene, and the interface 

buffer layers can be found at binding energy of 283.4, 284.4, and 284.9 eV, 

respectively. The broadening of the carbon 1s peak obtained in this work may be 

caused by surface contamination and/or the variation of number of graphene layer. As 

observed from LEEM measurements, the number of graphene layer on the SiC sample 

was varied from 2 to 4 layers. The XPS spectrum was average spectrum of different 

number of graphene layer. 

5.5.2 XAS measurements  

A series of PEEM images were taken with a scan of photon energy around the 

absorption edge of C 1s. By doing so, absorption spectra on various areas of the 

sample are obtained. The elemental sensitivity of XANES is due to the characteristic 

binding energies of core electrons giving rise to X-ray absorption thresholds. The 

XANES spectra exhibit resonant electronic transitions from core levels into unfilled 

valence states, governed by well established selection rules. Figure 5.17 illustrated the 

sequence of X-ray micrographs taken at different photon energies across the carbon 

K-edge by aligning the image sequence in a photon energy stack and extracting the 

spectrum from a region of interest. The XANES spectrum in the absorption edge of 

the graphene prepared in this work is similar to those reported earlier. It was found 

that the optical elements of the BL3.2 are severely suffering from carbon 

contamination. This certainly affects measurement of absorption spectra of C 1s. The 

method to reduced carbon contamination on the optical elements shall be 

implemented in the future. Although there is the difficulty in obtaining absorption 

spectra of C 1s, it is possible to measure XANES spectra to distinguish between 

carbon atoms in SiC and in graphene, as shown in Figure 5.18.  
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Figure 5.17 (a) The sequence of X-ray micrographs taken at different photon 

energies across the Carbon K-edge by aligning the image sequence in a photon energy 

stack and extracting the spectrum from a region of interest. (b) The corresponding 

Carbon K-edge of 2 area of interest in the PEEM image (c) NEXAFS of FLG grown 

by micromechanical cleavage of Highly Ordered Pyrolytic Graphite (HOPG) from 

Pacile et al. (2008).  
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Figure 5.18 Absorption spectra of C K-edge taken from the 6H-SiC(0001) sample 

before (dash line) and after thermal decomposition to form graphene (solid line).  



 

 

 

 

 

 

 

 

 132

5.6 References 

Bostwick, A., Emtsev, K. V., Horn, K., Huwald, E., Ley, L., McChesney, J. L., Ohta, 

T., Riley, J., Rotenberg, E., Speck, F. and Seyller. Th. (2008). Photoemission 

studies of graphene on SiC: Growth, Interface, and Electronic Structure. Adv. in 

Solid State Phys. 47: 159-170. 

Choi, J., Lee, H. and Kim, S. (2010). Atomic-scale investigation of epitaxial graphene 

grown on 6H-SiC(0001) using scanning tunneling microscopy and spectroscopy. J. 

Phys. Chem. C 114: 13344-13348. 

Chung, W. F., Feng, Y. J., Poon, H. C., Chan, C. T., Tong, S. Y. and Altman, M. S., 

(2003). Layer Spacings in coherently strained epitaxial metal films. Phys. Rev. 

Lett. 90: 216105 1-4. 

Hibino, H., Kageshima, H., Maeda, F., Nagase, M., Kobayashi Y. and Yamaguchi, H.  

(2008). Microscopic thickness determination of thin graphite films formed on SiC 

from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 

77: 075413 1-7. 

Mathieu, C., Barrett, N., Rault, J., Mi,  Y. Y., Zhang, B., de Heer, W. A., Berger, C.,  

Conrad, E. H. and Renault, O. (2011). Microscopic correlation between chemical 

and electronic states in epitaxial graphene on SiC ( )0001 . Phys. Rev. B 83: 

235436   1-11. 

Norimatsu, W. and Kusunoki, M. (2010). Formation process of graphene on 

SiC(0001). Physica E 42: 691-694. 

Ohta, T., Gabaly, F. E., Bostwick, A., McChesney, J. L., Emtsev, K, V., Schmid, A. 

K., Seyller, Th., Horn, K. and Rotenberg, E. (2008). Morphology of graphene thin 

film growth on SiC(0001). New J. of Phys. 10: 023034 1-8. 



 

 

 

 

 

 

 

 

 133

Pacile, D., Papagno, M., Rodriguez, A. F., Grioni, M., Papagno, L., Girit, C. O., 

Meyer, J. C., Begtrup, G. E. and Zettl, A. (2008). Near edge x-ray absorption fine 

structure investigation of graphene. Phys. Rev. Lett. 101(6): 066806 1-4. 

Tanaka, S., Morita, K. and Hibino, H. (2010). Anisotropic layer-by-layer growth of 

graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 81: 041406 (R). 

Virojanadara, C., Syvajarvi, M., Yakimova, R. and Johansson, L. I. (2008). 

Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B 

78: 245403 1-6. 

Virojanadara, C., Yakimova, R., Zakharo, A. A. and Johansson, L. I. (2010). Large 

homogeneous mono-/bi-labyer graphene on 6H-SiC(0001) and buffer layer 

elimination. J. Phys. D: Appl. Phys. 43: 374010 1-13. 

 



 

 

 

 

 

 

 

 

CHAPTER VI 

CONCLUSION 

  

The thesis is divided into two parts, i.e. the construction and commissioning of 

the PEEM experimental station of BL3.2b and the experiments on the formation of 

expitaxial graphene by thermal decomposition of SiC. The first part of the thesis 

involved the design, development and commissioning the PEEM experimental station 

of BL3.2b in which I participated in a development team of SLRI. The PEEM 

experimental station combines both spectroscopy and imaging that will be a very 

useful research facility for investigations of materials with nano/micro spatial 

resolution. The ability to tune photon energy of synchrotron light greatly enhances the 

capability of the experimental station.  

From PEEM and LEEM observation, there was no observable effect of 

floor/mechanical vibrations on the image quality. The microscope can be positioned 

with respect to the synchrotron light beam, i.e. the whole FOV of the microscope can 

be illuminated with synchrotron light. The whole PEEM experimental station weights 

about 1,500 kg and requires an accuracy of a few microns in translation. More 

importantly, the microscope shall not be vibrating from the surroundings.  

It has been demonstrated that PEEM images using synchrotron light could be 

obtained. Imaging XAS, a series of PEEM with series of photon energy, can be 

carried out at the experimental station. However, it was found that carbon 
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contamination on the optical elements of the beamline was significant. The method to  
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reduce the carbon contamination shall be developed and implemented at the beamline 

so that useful information can be extracted from carbon-containing materials. 

Imaging XPS technique has also been demonstrated. The imaging XPS spectrum 

could be obtained by taking a series of PEEM images with different sample bias 

voltage, or electron energy. Additional data manipulation using image-processing 

software is required to generate XPS spectra at areas of interest. The practical spatial 

resolution is of hundred nanometers. An alternative XPS mode is micro-XPS in which 

an area of interest on the sample is selected by an area selection aperture, which is a 

physical aperture in the electron microscope column. The dimension of the area to be 

analyzed is defined by the dimension of the aperture. There are three area apertures 

with diameter of 1250, 400 and 100 microns.  

The second part of the thesis is the investigation of epitaxial graphene 

synthesized by thermal decomposition of single crystalline SiC samples at high 

temperature. The experiments were ideal for this PEEM experimental station. 

Thermal decomposition of SiC was carried out in the microscope. The sample 

manipulator allows the sample to be heated up to 1700 °C. It was found that 

synthesizing epitaxial graphene from SiC requires temperature only upto 1400 °C. 

The experimental station provides various in situ techniques such as LEED, LEEM, 

PEEM including imaging/micro XPS and imaging XAS. The scientific part of this 

thesis work focused on observations of the spatial variation of number of graphene 

layer thermally decomposed from SiC. The numbers of graphene layers observed 

varied from 2 to 4 layers. Careful analysis of LEEM images found that there might be 

effects of scratches on the formation of graphene. It was pointed out that the number 

of graphene layers is usually greater near scratched areas of the SiC substrate. These 
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thicker areas of graphene occur not only within the scratch itself but also extend 

significantly outwards from the edges of a scratch.  
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APPENDIX A 

HYDROGEN PLASMA ETCHING STSTEM 
 
 

Along the course of this thesis work, a simple hydrogen plasma etching system 

was designed, constructed and tested. The system employed an existing vacuum 

chamber with additional new components fabricated at the SLRI machine shop. The 

system is planned to be for getting rid of scratches on the surface of single crystalline 

SiC samples. The plasma etching system is illustrated in Figure. A.1. The system is 

evacuated by a molecular pump backed by an oil-free scroll pump. The base pressure 

of this chamber is around 1×10-7 mbar. The sample can also be heated up to 1000 °C 

by a resistive 0.3-mm-thick tantalum foil boat. Water cooling is necessary to maintain 

the vacuum condition of the system. Hydrogen flow is controlled by a manual leak 

valve. A DC power supply is operated at 300 watt at maximum, which is sufficient for 

generating DC hydrogen plasma. The boat of the sample was heated by direct current 

with a current of 26.25 Amperes at 3.34 Volts. Detailed descriptions of the system are 

given in the caption of the Figures A.2-A.4. The engineering drawings of the 

components are also given in Figures A.5-A.12. Further improvement can simply be 

done by replacing the main chamber with bigger size to keep the distance between the 

wall of the chamber and the electrodes larger than the spacing between the electrodes.  
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Figure A.1 Schematic of hydrogen plasma etching chamber. 

 

 

Figure A.2 The electrodes and the main chamber of the plasma etching system. (a) 

(a) the cathode with two holes for the boated heater, (b) the anode and (c) the 

chamber. 
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Figure A.3 Photos of the whole plasma etching system showing various part of the 

system: (a) the electrical cables connected to the plasma generator and power supply 

for the heater, (b) a DC plasma generator, (c) a power supply for the heater, (d)-(e) 

connector for the heater and plasma generator, (f) cooling tank connect to the (top) 

anode of the plasma chamber, (below) heater,  (g) the four-way connector  for the leak 

valve to control the inlet gas.   
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Figure A.4 Photos illustrate the procedures to remove the scratch on the SiC sample 

by plasma etching: (a) heating the sample up about 1000 °C, (b) flow pure hydrogen 

gas through the leak valve, while the DC power supply for the electrodes are on at 

300W, until the plasma is formed as shown in (c). The operating pressure is ∼2×10-2 

Torr. 
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Figure A.5 Exploded view drawing of the hydrogen plasma etching chamber. 
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Figure A.6 Exploded view drawing of the Assembly 1: the cathode part of the plasma 

etching system. 
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Figure A.7 Drawing of the water cooling tube for cathode (item 1 of assembly 1).  
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Figure A.8 Drawing of the cathode of the plasma etching system. 
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Figure A.9 Drawing of the cover cap for the cathode connector. 
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Figure A.10 Exploded view drawing of Assembly 3: the heater for heating sample 

around 1200 °C in vacuum system.  
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Figure A.11 Drawing of the water-cooled electrical feedthru of the boat heater (item 

1 of Assembly 3). 
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Figure A.12 Drawing of the electrode plates (item 6 of Assembly 3),  
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