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CHAPTER I

INTRODUCTION

1.1 An Introduction to Option Pricing Problem

An option is a contract in which the writer (seller) promises that the con-

tract buyer has the right, but not the obligation, to buy or sell a certain security

at a certain price (the exercise price or strike price) K on or before a certain expi-

ration date T . The asset in the contract is referred to as the underlying asset. An

option giving the buyer the right to buy at a certain price is called a call option

call option, while one that gives the buyer the right to sell is called a put option.

The price of the option is the premium. When the option trades on an

organized market, the premium is quoted by the market. Otherwise, the problem

is to price the option. Also, even if the option is traded in an organized market,

it can be instructive to detect some possible abnormalities in the market.

The style of an option is a general term denoting the class in which the

option belongs, which in turn is defined by the dates on which the option may be

exercised. The two major option styles are the European and the American style,

with the difference being the time when the holder can exercise the option. The

European style allows the holder to exercise only on the expiration date, while the

American style allows exercise at any time before the expiration date.

The writer of an option needs to specify:

• the type of option: i.e., call and put option,

• the underlying asset : typically, it can be a stock, a bond, a currency, an
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index and so on,

• the exercise price: the price at which the transaction is done if the option is

exercised,

• the amount of an underlying asset to be purchased or sold, and

• the expiration date.

Let us consider the case of a European call option on a stock price, where

the stock price at time t is denoted by St. If K ≥ ST , then the holder has no

interest whatsoever in exercising the option. But if K < ST , the holder stands to

make a profit ST − K by exercising the option by purchasing the stock at price

K and selling for prices ST on the market. Hence, the price of the European call

option at expiration date is given by

(ST −K)+ = max(ST −K, 0).

The case of European put option is similar.

When an option is exercised, the writer must be able to deliver the stock

price at price K, implying that the amount max(ST −K, 0) is generated at expira-

tion date. At the time of writing the option (as the origin of time), ST is unknown,

provoking two questions:

1. How do we model the underlying asset specific on stock price?

2. How should we price the stock option at time t = 0 with an asset worth

max(ST −K, 0) at time t = T ?

This is the option pricing problem.
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1.2 The Behavior of Asset Prices

In the certainty case, the stock price at the expiration date T equals the

future value of the stock price when continuously compounded at the risk-free

interest rate r:

ST = S0e
rT ,

where S0 is the stock price at the present time. One way to think about this is that

the future value is the end result of a dynamic process: the stock price starts at the

present time and evolves through time to its future value. The formal expression

that describes how the stock price moves through time in the certainty case can

be obtained by employing the differential equation

dSt
dt

= rSt,

which describes the dynamic stock price process in a world with certainty. Multi-

plying both sides by dt and rearranging, we can rewrite the above equation as:

dSt = rStdt.

In this form, r denotes instantaneous rate of return on the stock.

In the uncertainty case, Fisher Black, Robert Merton and Myron Scholes

(1973) determined the prices of the European and American options. They as-

sumed that the behaviour of the stock price is determined by the following stochas-

tic differential equation :

dSt = St (µdt+ σdWt) , (1.1)

where (Wt)t≥0 is a standard Brownian motion, µ ∈ R is the instantaneous ex-

pected return of the stock (possibly adjusted by a dividend yield), and σ > 0 is

the volatility of stock price returns. The equation (1.1) is known as Black - Scholes
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model. However, the Black-Scholes model fails to reflect the following three em-

pirical phenomena. First, the distribution of the stock price return is non-normal

with a higher peak and heavier tail, but in the Black-Scholes model the distribu-

tion is normal. Secondly, volatility is not constant as assumed in Black-Scholes

model and thirdly, stock prices show large and sudden movements and are not

always continuous as depicted in the Black-Scholes model.

To improve upon the pricing option of the Black-Scholes model, the stock

price has been modeled as diffusion with stochastic volatility (Heston, 1993): as

jump diffusion (Merton, 1976; Kou and Wang , 2004): or both (Bates, 1996 or

Yan and Hanson, 2006).

The option pricing in Black-Scholes model follows these assumptions:

1. We have frictionless markets with continuous trading.

2. There are no transaction costs or taxes and no dividends during the life of

the option.

3. There are no arbitrage opportunities.

4. The risk free interest rate is deterministic and equal to r > 0.

5. Under the real-world measure the stock price process follows equation (1.1).

Assumption (4) is harmless in most situations since interest rate variability

is usually negligible compared to the variability observed in the market. When

pricing an option with a long expiration date, however, the stochastic feature of

the interest rate has a stronger impact on the option price. In such cases it is

advisable to relax the assumption of deterministic rates. This is the topic of our

research.
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1.3 Outline of This Thesis

We now provide a brief outline of how we intend to proceed and what each

chapter contains . The thesis is organized as follows:

In Chapter II, we introduce notation, terminology and some mathematical

tools to be used in subsequent chapters.

Chapter III presents an option pricing when the stock price follows a

stochastic volatility Lévy model with stochastic interest rate. We introduce the

stock price dynamics under the T-forward measure, and then in the next section,

derive an explicit formula for European call option by using a technique based

on characteristic functions of an underlying asset. These models and formulas

for option price requires values for fixed parameters to be discussed in the next

chapter.

In chapter IV, we study the techniques of parameter estimation in the spe-

cial case of the stock price model in Chapter III, namely stochastic volatility jump

diffusion model with stochastic interest rate (SVJSI). We employ the technique

of Generalized Method of Moment (GMM) in this research. By using the un-

conditional characteristic function, we obtain the moment of the underlying asset

forming the SVJSI model. Next we use the data from observations SET50 index

and 3 month Treasury Bills of Thailand to estimate the parameter and demon-

strate a simulation example. Finally, in application to a financial problem, the

option prices are presented by using the closed form formula and the Monte Carlo

simulation for a fixed parameter.

The conclusion of the thesis and suggestions for the further work are con-

tained in the last chapter.



 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we introduce some notation, terminology and some math-

ematical tools for the further use.

2.1 Pricing Options in the Black-Scholes Model

In 1997 Black and Scholes considered the problem of pricing and hedging a

European option (call or put) on a non-dividend paying stock. In this section we

briefly explain the main results and the assumptions of the Black- Scholes model

as listed in Section 1.2.

We note that an arbitrage opportunity is the opportunity to buy an asset

at a low price, then immediately selling it on a different market for higher price.

Less rigorously, an arbitrage opportunity is a free lunch that allows investors to

make a gain with no risk.

Suppose that the above assumptions hold. Standard derivative pricing the-

ory offers two ways for computing the fair value C(t, St) of a European call option

at time t ≤ T. Under the partial differential equation (PDE) approach the function

C(t, s) is computed by solving the PDE,

∂C

∂t
+

1

2
σ2s2∂

2C

∂s2
+ rs

∂C

∂s
− rC = 0, for t ∈ [0, T ] . (2.1)

This is the famous Black-Scholes PDE of European call option.

In order to obtain a unique solution for the Black-Scholes PDE we must con-

sider final and boundary conditions. We will restrict our attention to a European
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call option, C(t, s). At maturity, t = T , a call option is worth:

C(T, s) = max(sT −K, 0),

where K is the exercise price. So this will serve as the final condition.

The asset price boundary conditions are applied at s = 0 and also as s→∞.

If s = 0 then ds is also zero and therefore s can never change. This implies

that when s = 0 we have:

C(t, 0) = 0.

Obviously, if the asset price increases without bound as s→∞ , the value of the

option becomes that of the asset:

C(t, s) ≈ s, s→∞.

The European call option C(t, St) is computed by solving the final boundary value

problem: 
∂C
∂t

+ 1
2
σ2s2 ∂2C

∂s2
+ rs∂C

∂s
−rC = 0, for t ∈ [0, T ]

C(t, 0) = 0; C(t, s) ≈ s, s→∞

C(T, s) = max(sT−K, 0).

(2.2)

Alternatively, the value C(t, St) can be computed as the expectation of the dis-

counted pay-off under the risk-neutral measure Q, the so-called risk-neutral pric-

ing approach. Under Q, the process St satisfies the stochastic differential equation

(SDE)

dSt = St

(
rdt+ σdW̃t

)
, (2.3)

for a standard Brownian motion W̃t. In particular, the drift µ in equation (1.1)

has been replaced by risk-free interest rate r. The risk-neutral pricing rule now

states that

C(t, St) = EQ
[
e−r(T−t) max (ST −K, 0) |Ft,

]
(2.4)
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where EQ denotes expectation with respect to Q.

To obtain the analytical formula for the option price, we compute this

expectation which is in fact the computation of an integral.

C(t, St) = EQ
[
e−r(T−t) max (ST −K, 0) |Ft

]
= e−r(T−t)

∞∫
K

(ST −K)fST (s)ds, (2.5)

where fST (·) is the probability density function of ST under the risk-neutral prob-

ability.

The solution of PDE (2.2), or the risk-neutral value of stock price obtained

from equation (2.5), is given by

C(t, St; r, σ, T,K) := StΦ(dt,1)−Ke−r(T−t)Φ(dt,2), (2.6)

where

dt,1 =
lnSt− lnK +

(
r + 1

2
σ2
)

(T−t)
σ
√
T−t

dt,2 = dt,1−σ
√
T−t

and Φ is the cumulative distribution function for the standard normal distribution.

The equation (2.6) is known as Black-Scholes formula for a European call option.

Similarly, the price for a European put option is:

P (t, St; r, σ, T,K) := −StΦ(−dt,1)+Ke−r(T−t)Φ(−dt,2).

2.2 Historical Volatility and Implied Volatility

In theory, volatility should not depend on the method of measurement.

However, in practice this is not the case. Volatility σ can be empirically measured

by two methods: historical volatility and implied volatility. Historical volatility

reflects the past price movement of the underlying asset, while implied volatility

is a measure of market expectations regrading the asset’s future volatility.
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2.2.1 Historical Volatility

Historical volatility is calculated from empirical asset price data

S1, S2, ..., SN . Historical volatility is also referred to as the asset’s actual or real-

ized volatility. To estimate the historical volatility σ̂ we calculate the annualized

standard deviation for log return Ri = ln(Si+1/Si) observed on a given time, for

N days :

σ̂ =

√√√√ 252

N − 1

N∑
i=1

(
Ri − R̄

)
, (2.7)

where the sample mean R̄ =
N∑
i=1

Ri/N . The factor 252 is based on the supposition

that there are approximately 252 business days in a year.

2.2.2 Implied Volatility

Implied Volatility of an asset price is computed using an option pricing

model such Black-Scholes. In contrast to historical volatility being a measure of

price return in the past, implied volatility reflects expectations regarding the asset

or future volatility of the markets. It can also help to evaluate whether the options

are cheap or expensive. Rising implied volatility causes option prices to rise or

become more expensive; falling implied volatility results in lower option premiums.

Therefore, with everything else being equal, when implied volatility on an option

is high, it is better to sell that option. If implied volatility is low, the option is

more suitable for buying.

More precisely, using Black-Scholes option pricing, the call option C is a

function C(t, S; r, σ, T,K) where t is the time at which C is being priced, T is

the expiration date, r is the risk-free rate of return, and K is the exercise price.

Note that all the independent variables are indeed observable except σ. Since

the quoted option price Cobs itself is observable, using the Black-Scholes formula
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we can therefore compute the volatility that is consistent with the quoted option

prices and observed variables. We can therefore define implied volatility V by:

C(t, S; r, V, T,K) = Cobs,

where C is the option price calculated by the Black-Scholes equation (2.6).

2.3 An Extension of Black-Scholes Model

It is well known that the Black-Scholes models of asset prices fails to reflect

the following three empirical phenomena:

• non normal features, that is the return distribution is skewed negative and

leptokurtic (higher peak and heavy tail),

• the volatility smile: implied volatility not constant as assumed in Black-

Scholes model,

• large and sudden movement in prices such as crashes and rallies.

Therefore, many financial engineering studies have been undertaken to mod-

ify and improve the Black-Scholes formula to explain some or all of the above three

empirical phenomena.

Definition 2.1. (Brownian motion). A stochastic process W = (Wt)t≥0 is a

Brownian motion (or Wiener process) on some probability space (Ω,F ,P), if

• the process has stationary increments,

• the process has independent increments,

• for 0 ≤ s < t the random variable Wt −Ws follows a Normal distribution

N(0, t− s).
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Proposition 2.2. (Property of Brownian motion)

(i) Martingale property: Brownian motion is one of the simplest example of a

martingale. We have, for all 0 ≤ s ≤ t,

E[Wt|Fs] = E[Wt|Ws] = Ws.

(ii) Path property: Brownian motion has continuous paths, i.e.W = (Wt)t≥0 is

a continuous function of t. However, the paths of Brownian motion are very

erratic. Moreover, the paths of Brownian motion are of infinite variation, i.e.

their variation is infinite on every interval. Another property , we have that

P

(
sup
t≥0

Wt = +∞ and inf
t≥0

Wt = −∞
)

= 1.

This mean that the Brownian path will keep oscillating between positive and nega-

tive values.

(iii) Scaling Property: for every c 6= 0, W̃ =
(
W̃t = cWt/c2

)
t≥0

is also Brownian

motion.

Definition 2.3. (Poisson Process) Let (τi)i≥1 be a sequence of exponential random

variables with parameter λ > 0 and let Tn =
∑n

i=1 τi. The process

Nt =
∑
n≥1

1t≥Tn , (2.8)

is called the Poisson process with parameter (or intensity) λ.

Proposition 2.4. (Properties of the Poisson process)

1. For all t ≥ 0, the sum in equation (2.8) is finite a.s.

2. The trajectories of N are piecewise constant with jumps of size 1 only.

3. The trajectories are cadlag, i.e., right continuous with left limits.

4. For all t ≥ 0, Nt− = Nt with probability 1.
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5. For all t ≥ 0, Nt follows the Poisson law with parameter λt :

P (Nt = n) =
(λt)n e−λt

n!
.

6. The characteristic function of the Poisson process is

E
[
eiuNt

]
= exp

[
λt
(
eiu − 1

)]
.

2.3.1 Jump-Diffusion Model

In addition to the volatilities smile, there is evidence that the assumption

of the pure normal distribution (also called pure diffusion) for the stock return

is not accurate. Some authors attempt try to explain the volatility smile and

the leptokurticity by changing the underlying stock distribution from a diffusion

process to a jump-diffusion process.

For jump-diffusion models, the normal evolution of price is given by a diffu-

sion process, punctuated by jumps on random intervals, representing rare events,

crashes and large drawdowns. Merton (1976) was first to actually introduce jumps

in a stock distribution:

St = S0 exp

(
µt+ σWt +

Nt∑
n=1

Yn

)
(2.9)

where (Nt)t∈[0,T ] is Poisson process with intensity λ, with independent jumps nor-

mally distributed with mean m and variance δ2. Further, he assumed that the

Poisson process and the jumps are independent of the Brownian Motion Wt. This

model is called the Merton jumps diffusion model with Gaussian jumps (known as

an exponential Lévy model).

Recently, Kou (2002) proposed double exponential jump-diffusion models

by using the same idea to explain both the existence of fat tails and the volatility

smile.
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In analogy to the Black-Scholes model, the parameter µ in the Merton

model stands for the expected asset return with σ, the volatility of regular shocks

to the stock return. The jump component can be interpreted as a model for

crashes, with the parameter λ denoting the expected number of crashes per year

and m and δ2 determining the distribution of a single jump.

2.3.2 A Stochastic Volatility Model

Asset price models with stochastic volatility are useful because they explain

in a self consistent way why it is that options with different strikes and expira-

tions have different Black-Scholes implied volatilities - the volatility smile. Several

different stochastic processes have been suggested for the volatility, i.e.,

• Ornstein-Uhlenbeck (OU) process:

dvt = (−θvt)dt+ ξdW̃t (2.10)

• Cox-Integersoll-Ross (CIR) process:

dvt = (ω − θvt)dt+ ξ
√
vtdW̃t (2.11)

• GARCH process :

dvt = (ω − θvt)dt+ ξvtdW̃t (2.12)

• the 3/2 process :

dvt = (ωvt
2 − θvt)dt+ ξvt

3/2dW̃t (2.13)

where ω, θ and ξ are parameters and W̃t is standard Brownian motion.

Heston (1993) and Stein and Stein (1991) were among those who suggested

using the stochastic volatility process. Using Ito’s formula, we can see that the
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asset price model with variance vt = σt
2 satisfying a CIR process is given by

dSt = µStdt+
√
vtStdWt,

dvt = (ω − θvt)dt+ ξvtdW̃t,
(2.14)

where dWtdW̃t = ρdt with ω = β2, θ = 2α and ξ = 2β.

In general, the stochastic volatility models generalize to

dSt = µStdt+
√
vtStdWt,

dvt = f(vt, t)dt+ g(vt, t)dW̃t,
(2.15)

where f(vt, t)and g(vt, t) are some functions of vt while dW̃t is another standard

Brownian motion that is correlated with dWt with constant correlation ρ.

In order to incorporate a volatility effect to cause the volatility parameter

of the Black-Scholes model to be stochastic in a suitable way, the new model

called the stochastic volatility model as mentioned above has been implemented

by Scott (1987), Hull and White (1987) and Heston (1993). Another variation is

to use time change stochastic process as proposed by Carr et al. (2003) which we

will introduce in Section 2.3.4.

2.3.3 A Stochastic Volatility Model with Jumps

Bates (1996) introduced the jump diffusion stochastic volatility model by

adding proportional log normal jumps to the Heston model (equation (2.14)) as

follows. In the original formulation the model is:

dSt = µStdt+
√
vtStdWt + StdJt,

dvt = (ω − θvt)dt+ ξvtdW̃t,
(2.16)

where Wt and W̃t are Brownian motions with correlation ρ, driving price and

volatility, and Jt is a compound Poisson process with intensity λ and log-normal

distribution of jumps size such that if k is its jumps size then ln(1+k) ∼ N(ln(1+

k̄)− 1

2
δ2, δ2).
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2.3.4 A Stochastic Time-Change Process

A stochastic time change process was first studied in Bochner (1949) and

was later introduced to the finance literature in Clark (1973) who modelled the

asset price as a geometric Brownian motion subordinated by an independent Lévy

subordinator. Today, it can be regarded as one of the standard tools for building

financial models (see also Geman (2005)).

Let X = (Xt)t≥0 denote a stochastic process and let T = (Ts)s≥0 denote a

non negative, non decreasing stochastic process not necessarily independent of X.

The time changed process is then defined as Y = (Ys)s≥0, where

Ys = XTs . (2.17)

The process X is said to evolve in operational time. The process T is referred to

as time change, stochastic clock or business time. It reflects the varying speed of

Y .

The use of time change stochastic process in finance is closely linked to

the concept of stochastic volatility model for asset price. Numerous empirical

studies have shown that asset price volatility tends to be time varying and tends

to display clustering effects. The concept of stochastic volatility in continuous

time asset price models can be introduced by two ways.

One is to use the time-change stochastic process as in equation (2.17). The

other way is to use a stochastic integral of the form

Yt =

∫ t

0

σsdXs, (2.18)

where σ = (σt)t≥0 is a stochastic volatility process. The models in equation (2.17)

and (2.18) lead to equivalent models.

We now provide an overview of a stochastic process which can serve to

model the rate of time change. Since time needs to increase, the process modeling
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the rate time of time change needs to be positive, as for example, the Integrated

Cox-Ingersoll-Ross (CIR) time change. Carr et al. (2003) uses as the rate of time

change as the classical example of a mean reverting positive stochastic process:

the CIR process (vt)t≥0 that solves the SDE,

dvt = (ω − θvt)dt+ ξ
√
vtdW̃t, (2.19)

where (Wt)t≥0 is standard Brownian motion with ω = κη, θ = κ and ξ = λ. The

parameter η is interpreted as the long run rate of time change, κ is the rate of

mean reversion, and λ governs the volatility of the time change.

The mean and variance of vt given v0 are given by

E [vt|v0] = v0 exp(−κt) + η (1− exp(−κt)) ,

V ar [vt|v0] = v0
λ2

κ
(exp (−κt)− exp (−2κt)) + ηλ2

2κ
(1− exp(−κt))2 .

The economic time elapsed in t units of calendar time is then given by the

integrated CIR process, (Tt)t≥0 , where

Tt =

∫ t

0

vsds. (2.20)

Since (vt)t≥0 is a positive process, (Tt)t≥0 is an increasing process. The character-

istic function of Tt (given v0) is explicitly known (see Cox et al., 1985 or Elliot and

Kopp, 1999, Theorem 9.6.3):

ϕ(u, t;κ, η, λ, v0) = exp

(
κ2ηt

λ2
+

2v0iu

κ coth (γt/2)

)(
cosh (γt/2) +

κ

γ
sinh (γt/2)

)−2κη/λ2

,

(2.21)

where γ =
√
κ2 − 2λ2iu.

From this the mean of Tt given v0 is given by

E [Tt|v0] = ηt+ κ−1 (v0 − η) (1− exp(−κt)) .
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2.3.5 Lévy Process

Lévy processes are a class of stochastic processes with discontinuous paths

which are at the same time simple enough to study and rich enough for applica-

tions, or at least to be used as building blocks of more realistic models.

2.3.5.1 Stochastic Calculus for Lévy Process

In this section, we shall review the notation of the Lévy process and some

properties. For more details see Cont and Tankov (2004) and Oksendal and Sulem

(2009).

Definition 2.5. (Lévy process) A stochastic processX = (Xt)t≥0 is a Lévy process

on some probability space (Ω,F ,P) if it is cadlag (i.e. right continuous with left

limits), satisfies X0 = 0 and pocesseses the following properties:

• The process has stationary increments i.e. the distribution of the increment

Xt+s−Xt over interval [t, t+s] does not depend on t, but only on the length

s of the interval.

• The process has independent increments, i.e. if r < s ≤ t < u,Xu −Xt and

Xs −Xr are independent random variables.

The jump of Lévy process Xt at time t ≥ 0 is defined by

4Xt = Xt −Xt−.

Let B0 be the family of Borel sets U ⊂ R which closure Ū ⊂ R0 ≡ R \ {0}. For

U ∈ B0. we define

N ([0, t] , U) = N(t, U) =
∑

s:0<s≤t

1U (∆Xs). (2.22)
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In other words , N(t, U) is the number of jumps of size ∆Xs ∈ U which occur before

or at time t. N(t, U) is called the Poisson random measure (or jump measure) of

X(·).

Remark 2.6. Note that N(t, U) is finite for all U ∈ B0.

Theorem 2.7. • The set function U → N(t, U, ω) defines a σ-finite measure

on B0 for each fixed t. The differential form of this measure is written

N(t, dz).

• The set function [a, b)×U → N(b, U, ω)−N(a, U, ω) with [a, b) ⊂ [0,∞), U ∈

B0 defines a σ-finite measure for each fixed ω. The differential form of this

measure is written N(dt, dz) .

• The set function v(U) = E[N([0, 1], U)] where E is expectation under prob-

ability measure P, also defines a σ-finite measure on B0, called the Lévy

measure of Xt.

For example, the compound Poisson process Z = (Zt)t≥0 is defined by

Zt =
Nt∑
i=1

Yi,

where (Yi)i≥1 is a sequence of i.i.d random variables with distribution µY = µY1

and (Nt)t≥0 is a Poisson process with intensity λ independent from (Yi)i≥1. An

increment of this process is given by

Zs − Zt =

NS∑
i=Nt+1

Yi, s > t.

This is independent of Y1, Y2, ..., YNt : Its distribution depends only on the difference

(s− t) and on the distribution of Y1. Thus Zt is a Lévy process.

To find the Lévy measure of Zt note that if U ∈ B0 then

v(U) = E [N ([0, 1] , U)] = E

[ ∑
0<s≤1

1U(∆Zs)

]
= E [N11U(∆Zs)] = E [N11U(Zs − Zs−)] = E [N11U (Y1)] .
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By the fact that Nt and Yi are independent, we get

v(U) = E [N1]E [1U (Y1)] = λµY1(U) = λµY (U).

We conclude that v(·) = λµY (·).

Definition 2.8. (Infinitely Divisible). A probability distribution F on Rd is said

to be infinitely divisible if for any integer n ≥ 2, there exist n i.i.d. random

variables Y1, Y2, ..., Yn such that Y1 + Y2 + ...+ Yn has distribution F .

Thorem 2.9. (Infinite divisibility and Lévy process).

Let X = (Xt)t≥0 be a Lévy process. Then for every t, Xt has an infinitely

divisible distribution F . Conversely, if F is an infinitely divisible distribution, then

there exists a Lévy process such that the distribution of X1 is given by F .

Further, we can write the characteristic function of a Lévy process by

φXt(u) = E [exp (iuXt)] = exp (tψ(u))

where ψ(u) = log(φ(u)) is the characteristic exponent. The characteristic expo-

nent of a Lévy process satisfies the following Lévy Khinchine formula:

Theorem 2.10. (The Lévy-Khintchine formula). Let (Xt)t≥0 be a Lévy process

with Lévy measure v. Then
∫∞
−∞min {1, x2} v(dx) <∞ and

E(eiuXt) = exp(tψ(u)), u ∈ R, (2.23)

where

ψ(u) = iau− b2u2

2
+

∫ ∞
−∞

(
eiux − 1− iux1|x|<1

)
v(dx), (2.24)

Conversely, given constants a, b2, and a measure v on B0 such that∫ ∞
−∞

min
{

1, x2
}
v(dx) <∞,

there exists a Lévy process Xt such that (2.23) and (2.24) hold.
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From the Lévy-Khinchine formula, one sees that generally a Lévy process

consists of three independent parts: a linear deterministic part, a Brownian part,

and a pure jump part. We will call the characteristic (a, b2, v(dx)) in the above rep-

resentation the triplet of Xt. From equation (2.24), we can see that the Brownian

motion such that the characteristic function is given by

φXt(u) = exp

(
iµtu− σ2u2t

2

)
,

is a Lévy process such that the triplet is (µ, σ2, 0).

Under the assumption above the Itô-Lévy decomposition theorem states

that any Lévy process has the form

Xt = at+ bWt +

∫ t

0

∫
R
zÑ(dt, dz),

where Wt is a Brownian motion, Ñ(dt, dz) = N(dt, dz) − v(dz)dt, and a, b are

constants. More generally, we study the Ito-Lévy process, which is a process of

the form

Xt = X0 +

∫ t

0

a(s, ω)ds+

∫ t

0

b(s, ω)dWs +

∫ t

0

∫
R
c(s, z, ω)Ñ(ds, dz), (2.25)

where
∫ t

0
|a(s)| ds+

∫ t
0
b2(s)dWs+

∫ t
0

∫
R c(s, z)v(dz)ds <∞ and a(t), b(t) and c(t, z)

are predictable processes (predictable with respect to the filtration Ft generated

by Xs for t ).

The differential form of equation (2.25) is

dXt = a(t)dt+ b(t)dWt +

∫
R
c(t, z)Ñ(dt, dz).

The financial models with jumps fall into two categories: jump diffusion

and infinite activity Lévy processes. In jump diffusion process, jumps are con-

sidered rare events, and in any given finite interval there are only finitely many

jumps. Examples of jump diffusion models in finance include Merton’s model as
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in equation (2.8) in which the jump sizes haves normal distribution. For infinite

activity Lévy processes, there are infinitely many jumps in any finite time interval.

Moreover, we can construct new Lévy processes by using three basic types

of transformations, under which the class of Lévy processes is invariant: linear

transformations, subordination (time change of a Lévy process with another in-

creasing Lévy process) and exponential tilting of the Lévy measure.

2.3.5.2 The Itô Formula and its Extensions

We now review Itô’s formula and its extensions.

Lemma 2.11. (Îto’s formula)

Assume that the process X = (Xt)t ≥ 0 has stochastic differential given by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

where µ(t,Xt) and σ(t,Xt) are adapted processes, and let f be a C1,2- function.

Define the process Yt = f(t,Xt). Then Y has a stochastic differential given by

df(t,Xt) =

{
∂f

∂t
+ µ

∂f

∂x
+
σ2

2

∂2f

∂x2

}
dt+ σ

∂f

∂x
dWt. (2.26)

Note that the term µ∂f
∂x

, for example, is shorthand notation for

µ (t,Xt)
∂f

∂x
(t,Xt) ,

and correspondingly for the other terms.

In fact Itô’s formula provides a derivative chain rule for stochastic func-

tions, clarifying the relationship between a stochastic process and a function of

that stochastic process. Itô’s formula has many extensions. The following Itô’s

formulas are the key step in establishing the main theorem of our thesis (for the

proof see Cont and Tankov (2004), pages 275-277).
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Lemma 2.12. (Itô’s formula for jump-diffusion processes)

Let X = (Xt)t ≥ 0 be a diffusion process with jumps, defined as the sum of a drift

term, a Brownian stochastic integral and a compound Poisson process given by

Xt = X0 +

∫ t

0

µ (s,Xs)ds+

∫ t

0

σ (s,Xs)dWs +
Nt∑
i=1

∆Xi,

where µ(s,Xs) and σ(s,Xs) are continuous non anticipating processes with

E

[∫ T

0

σ2 (t,Xt) dt

]
<∞.

Then, for any C1,2- function f : [0, T ] × R → R, the process Yt = f(t,Xt).can be

represented as:

df(t,Xt) =
{
∂f
∂t

(t,Xt) + µ(t,Xt)
∂f
∂x

(t,Xt) + σ2(t,Xt)
2

∂2f
∂x2

(t,Xt)
}
dt

+σ(t,Xt)
∂f
∂x

(t,Xt)dWt + f(t,Xt− + ∆Xt)− f(t,Xt−).

Lamma 2.13. (Itô’s formula for Lévy process)

Let X = (Xt)t ≥ 0 be a d-dimensional Lévy process with the generating triplet

(A, γ, v). Then, for any C1,2 function f : [0, T ]×Rd → R , the process Yt = f(t,Xt)

can be represented as:

f (t,Xt) = f (t,X0) +
∫ t

0
∂f
∂s

(s,Xs) ds+
∫ t

0

d∑
i=1

∂f
∂xi

(s,Xs) dX
i
s

+ 1
2

∫ t
0

d∑
i,j=1

Aij
∂2f

∂xi∂xj
(s,Xs) ds

+
∫ t

0

∫
d

[
f (s,Xs + z)− f (s,Xs)−

d∑
i=1

zi
∂f
∂xi

(s,Xs)

]
N(dz, ds)

(2.27)

where N(dz, ds) is the Poisson random measure associated with X = (Xt)t≥0 .

2.3.6 A Time Change Lévy Model

Let (Ω,F ,Q) be a probability space and Q a risk neutral probability mea-

sure. We consider the asset price process before time change with non dividend

payment as the following Lévy process,

St = S0 exp(rt+ (σWt −
1

2
σ2t) + (Jt − ξt)). (2.28)
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Equation (2.28) decomposes the asset price St into three components. The first

component, rt, forms the instantaneous drift, which is determined by no arbitrage.

The second component, (σWt − 1
2
σ2t), comes from the diffusion, with the 1

2
σ2t as

the concavity adjustment, The last term, (Jt − ξt), represents the contribution

from the jump component, with ξ as the analogous concavity adjustment for Jt .

The stochastic volatility in Lévy model as equation (2.28) comes from ap-

plying a stochastic time change to the diffusion component or the jump component,

or both.

• Stochastic volatility from diffusion: If we apply a stochastic time change only

to the diffusion component of the model (2.28), that is , (σWt − 1
2
σ2t) →

(σWTt− 1
2
σ2Tt), and leave the jump component (Jt−ξt) unchanged, stochas-

tic volatility aries solely from the diffusion component. The time change Lévy

model is given by

St = S0 exp(rt+ (σWTt −
1

2
σ2Tt) + (Jt − ξt)). (2.29)

Examples using this specification include Bakshi et al. (1997) and Bates

(1996). Under this specification, whenever the asset price movement becomes

more volatile, it is due to an increase in the diffusive movement in the asset

price. The frequency of large events remains constant. Thus, the relative

weight of the diffusion and jump components in the return process varies

over time. The relative weight of the jump component declines as the total

volatility of the return process increase.

• Stochastic volatility from jump: Alternatively, if we apply a stochastic

time change only to the jump component of the model (2.28), that is

(Jt − ξt) → (JTt − ξTt) , but leave the diffusion component unchanged,

stochastic volatility comes solely from the time variation in the arrival rate
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of jumps. The time change Lévy model is given by

St = S0 exp(rt+ (σWTt −
1

2
σ2Tt) + (JTt − ξTt)). (2.30)

Under this specification, an increase in the return volatility is due solely to

an increase in the discontinuous movements in the asset price. Hence the

relative weight of the jump component increases with the return volatility.

The models proposed in Carr et al. (2003) are degenerate examples of this

stochastic volatility from jump category because they apply stochastic time

changes to pure jump Lévy process.

• Joint contribution form jump and diffusion: To model the situation in which

stochastic volatility comes simultaneously from both the diffusion and jump

components of the model (2.28), we can apply the same stochastic time

change Tt to both (σWt− 1
2
σ2t) and (Jt− ξt). The time change Lévy model

is now given by

St = S0 exp

(
rt+ (σWTt −

1

2
σ2Tt) + (JTt − ξTt)

)
. (2.31)

In this case, the instantaneous variance of the diffusion and the arrival rate

of jumps vary synchronously over time. Under joint contribution from jump

and diffusion, the relative proportions of the diffusion and jump component

are constant, even though the return volatility varies over time. The recent

affine models in Bates (2000) and Pan (2002) are variations of this category.

In these models, both the arrival rate of the Poisson jump and instantaneous

variance of the diffusion component are driven by one stochastic process.
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2.4 The Girsanov Theorem and The Risk-Neutral Proba-

bility

Thorem 2.14. (Girsanov theorem). Let (Wt)t∈[0,T ] be a Brownian motion on prob-

ability space (Ω,F ,P), and let F(t), 0 ≤ t ≤ T, be a filtration for this Brownian

motion. Let (qt)t∈[0,T ], be an adapted process. Define

M(t) = exp

(
−
∫ t

0

qudWu −
1

2

∫ t

0

q2
udu

)
, (2.32)

and

W̃t = Wt +

∫ t

0

qudu, (2.33)

and assume that

E

[∫ T

0

q2
uM

2(u)du

]
<∞. (2.34)

Set M = M(T ). Then E[M ] = 1 and under probability measure Q given by

dQ = MdP, (2.35)

the process (W̃t)0≤t≤T is a Brownian motion.

By virtue of this theorem, let S be a diffusion process defined by equation

(1.1). If we make the assumption that the risk-free interest rate r is constant, we

can choose

q =
r − µ
σ

. (2.36)

In this case, we can easily show that the process

Mq(t) = exp

 t∫
0

qdWs −
1

2

t∫
0

q2ds

 , (2.37)

is a martingale. From Girsanov’s Theorem 1.1 above, the process

dW̃t = dWt − qdt

= dWt −
(
r − µ
σ

)
dt, (2.38)
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is a Wiener process under the probability measure Q. The process S is thus

dSt = St

(
µ+ σ

(
r − µ
σ

))
dt+ σStdW̃t

= St

(
rdt+ σdW̃t

)
. (2.39)

The probability Q is called the risk-neutral probability. Under this measure, the

asset has expected rate of return equivalent to the risk-free rate. More generally,

in a risk-neutralized world, the expected return of any asset is the risk-free rate r.

2.5 Interest Rate Models

Interest rate models can be used to model the dynamics of the yield curve,

which is vital in pricing and hedging of fixed-income securities and also of great

importance from a macro economical point of view as we have stated earlier. Tradi-

tionally these models specify a stochastic process for the term structure dynamics

in a continuous time setting. A stochastic process means that the outcome de-

pends both on a deterministic component and a random component and thus has

the form

drt = f(t, rt)dt+ g(t, rt)dWt, (2.40)

where f(t, rt) and g(t, rt) are suitably chosen drift and diffusion coefficients, and

Wt is the Brownian motion. Models of this type are referred to as one-factor

models, as there is only one stochastic driver. Models with multiple stochastic

drivers are called multi-factor models.

Interest rate models can be divided into equilibrium models and no-

arbitrage models. Equilibrium models are also referred to as endogenous term

structure models because the term structure of interest rate is an output of, rather

than an input to, these models. If we have the initial zero coupon bond curve

from the market, the parameters of the equilibrium models are chosen such that
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the model produces a zero coupon bond curve as close as possible to the one ob-

served in the market. Since the equilibrium models cannot reproduce exactly the

initial yield curve, most traders have very little confidence in using these models

to price complex interest rate derivatives. Hence, no-arbitrage models designed to

exactly match the current term structure of interest rate are more popular. It is

not possible to arbitrage using simple interest rate instruments in this type of no

arbitrage models. Two most important no-arbitrage models are the Hull-White

process (1990) and the Black-Karasinski (1991) model.

In this section we present four classical interest rate process models: the

Vasicek (1977), the Dothan (1978), the Cox, Ingersoll and Ross (1985) and Hull-

White (1990) models. The Vasicek model used in this thesis is one of the first term

structure models appearing on the market in 1977. For more details see Brigo and

Mercurio (2001), pp. 52-135.

2.5.1 The Vasicek Model

In the Vasicek (1977) model, the model formulation under the risk-neutral

measure Q is

drt = (α− βrt) dt+ σrdWt, (2.41)

where r0, α, β and σr are positive constants. This model is an Ornstein Uhlen-

beck process, the first interest rate model that incorporates mean reversion. The

parameter σr determines the overall level of volatility and the mean reversion pa-

rameter, β, the relative volatility of long and short rates. A high value of β causes

short term rate movements to damp out quickly, so long term volatility is reduced.

The probability distribution of all rates at all time is normal. However, with the

normal distribution, short rates can be negative with positive probability, which

is a major drawback of the Vasieck model. Nevertheless, the analytic tractabil-
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ity resulting from the Gaussian distribution is this model’s nicest feature. The

rate under the real world measure evolves as an Ornstein Uhlenbeck process with

constant coefficients.

Letting Xt = rte
βt and using Itô’s formula (2.26) and isometry, we derive

by integrating equation (2.41):

rt = rse
−β(t−s) +

α

β

(
1− e−β(t−s))+ σr

∫ t

s

e−β(t−u)dWu, (2.42)

for s ≤ t. Whereas the distribution of the short rate is Gaussian with mean and

variance,

E [rt] = rse
−β(t−s) +

α

β

(
1− e−β(t−s)) , (2.43)

V ar [rt] =
σ2
r

2β

(
1− e−2β(t−s)) . (2.44)

From equation (2.43), we can see that as t → ∞, E[rt] →
α

β
. Hence the interest

rate is mean reverting and
α

β
can be regarded as the long term level of the interest

rate.

2.5.2 The Dothan Model

Dothan (1978) started from driftless geometric Brownian motion as the

interest rate process under the risk neutral measure Q as follows:

drt = βrtdt+ σrrtdWt, (2.45)

where r0, β and σr are positive constants. The dynamics are easily integrated as

follows

rt = rs exp

{(
β − σ2

r

2

)
(t− s) + σr (Wt −Ws)

}
, (2.46)

for s ≤ t. Hence, rt is log-normal distributed with mean and variance

E [rt] = rse
β(t−s),

V ar [rt] = r2
se

2β(t−s)
(
eσ

2
r(t−s) − 1

)
.
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2.5.3 The Cox-Ingersoll and Ross (CIR) Model

The general equilibrium approach developed by Cox, Ingersoll and Ross

(1985) led to the introduction of a square root term in the diffusion coefficient of

the instantaneous interest rate dynamic proposed by Vasieck (1977). The resulting

model has since been a benchmark because of its analytical tractability and the

fact that, contrary to the Vasicek model, the instantaneous interest rate is always

positive.

The model formulation under the risk-neutral measure Q is

drt = γ (κ− rt) dt+ σr
√
rtdWt, (2.47)

where r0, γ, κ and σr are positive constants. The condition 2κγ > σ2
r has to be

imposed to ensure that the origin is inaccessible to the process (2.47), so that we

can be sure that r remains positive. The mean and variance of rt are given by

E [rt] = rse
−γ(t−s) + κe−γ(t−s),

V ar [rt] = rs
σ2
r

γ

(
e−γ(t−s) − e−2γ(t−s))+ κσ2

r

2γ

(
1− e−γ(t−s))2

.

2.5.4 The Hull-White Model

The Hull-White model (1990) is one of the no-arbitrage models that is

designed to be exactly consistent with the observed bond prices or the term struc-

ture of interest rate. According to the Hull-White model, also referred to as the

extended-Vasicek model, the interest rate process evolves under the risk neutral

measure as follows:

drt = (α(t)− βrt) dt+ σrdWt, (2.48)

where β and σr are positive constants. The time deterministic function α(t) is

chosen so that the model fits the initial term structure of interest rate. Hence,

the Hull-White (1990) model can be characterized as Vasieck model with a time
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dependent reversion level. As in the Vasicek model, The Hull-White model as

equation (2.48) can be integrated to give

rt = rse
−β(t−s) + ξt − ξse−β(t−s) + σr

∫ t

s

e−β(t−u)dWu,

where ξt = f0,t + σ2
r

2β2

(
1− e−βt

)2
. Hence, rt is normally distributed with mean and

variance, for s ≤ t

E [rt] = rse
−β(t−s) + ξt − ξse−β(t−s),

V ar [rt] = σ2
r

2β

(
1− e−2β(t−s)) .

2.6 Pricing of Zero Coupon Bond

In this section we shall describe the zero coupon bond and some of its

properties. For more details see Privault (2008) and Brigo and Mercurio (2001).

Definition 2.15. (Zero-coupon bond). A zero-coupon bond with maturity T > 0

is a contract that guarantees the holder a cash payment of one unit on the date

T . The price at time t ∈ [0, T ] of a zero-coupon bond with maturity T is denoted

by P (t, T ). At time t, the time to maturity is T − t.

The computation of the arbitrage price of a zero coupon bond based on an

underlying interest rate process rt is a fundamental issue in interest rate modelling.

We may distinguish three different situations:

• The interest rate is a deterministic constant r > 0. In this case P (t, T )

should satisfy the equation

er(T−t)P (t, T ) = P (T, T ) = 1,

which leads to P (t, T ) = e−r(T−t), 0 ≤ t ≤ T.
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• The interest rate is a time dependent and deterministic function r(t). In this

case, an argument similar to the above show that

P (t, T ) = exp

(
−
∫ T

t

r (s)ds)

)
, 0 ≤ t ≤ T. (2.49)

• The interest rate is a stochastic process rt.

We focus now on the stochastic interest rate and the pricing of the zero

coupon bond P (t, T ) with the following steps.

2.6.1 Absence of Arbitrage and the Markov Property

Given previous experience with Black Scholes pricing (see Privault (2008)

proposition 2.2), it seems natural to write P (t, T ) as a conditional expectation

under martingale measure. On the other hand and with respect to interest rate

as a stochastic process, the use of conditional expectation appears natural in this

framework since it can help us filter out the future information past time t con-

tained in equation (2.49). Thus we assume that

P (t, T ) = EQ

[
exp

(
−
∫ T

t

rsds

)
|Ft
]
. (2.50)

Under some martingale (also called risk-neutral measure) measure Q yet to be

determined, Equation (2.50) makes sense as the best possible estimate of the future

quantity exp
(
−
∫ T
t
rsds

)
given information known up to time t.

From now on, we assume that the underlying interest rate process is the

solution to the SDE

drt = f(t, rt)dt+ g(t, rt)dWt, (2.51)

where Wt is a standard Brownian motion under probability measure P. Consider

a probability measure Q equivalent to P and given by its density

dQ
dP

= exp

 ∞∫
0

KsdWs −
1

2

∞∫
0

|Ks|2ds


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where Ks is a sufficiently integrable adapted process. By the Girsanov’s theorem

it is known that

Ŵt := Wt +

t∫
0

Ksds

is a standard Brownian motion under Q , thus equation (2.51) can be written as

drt = f̃(t, rt)dt+ g(t, rt)dŴt, (2.52)

where f̃(t, rt) := f(t, rt)−g(t, rt)Kt. The process Kt is called the market price risk

and it needs to be specified, usually via statistical estimation based on market

data.

In the sequel we will assume for simplicity that K = 0: in other words, we

assume P is the martingale used by the market.

The Markov property states that the future after time t of a Markov process

Xt depends only on its present state t and not on the whole history of the process

up to time t. It can be stated as follows using conditional expectations:

E [f(Xt1 , ..., Xtn)|Ft] = E [f(Xt1 , ..., Xtn)|Xt] ,

for all times t1, t2, ..., tn greater than t and all sufficiently integrable function f on

Rn, see Privault (2008), pp. 138-139.

Proposition 2.16. All solutions of stochastic differential equation (2.51) have the

Markov property.

As a consequence, the arbitrage price P (t, T ) satisfies

P (t, T ) = EQ

exp

− T∫
t

rsds

 |Ft
 = EQ

exp

− T∫
t

rsds

 |rt
 ,

and depends on rt only instead of depending on all information available in Ft up

to time t. As such, it becomes a function F (t, rt) of rt:

P (t, T ) = F (t, rt).
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Thus the pricing problem can now be formulated as a search for the function

F (t, r).

2.6.2 Absence of Arbitrage and the Martingale Property

Our objective is now to apply Itô calculus to P (t, T ) = F (t, rt) in order to

derive a PDE satisfied by F (t, r). From Itô’s formula, we have

d

[
exp

(
−

t∫
0

rsds

)
P (t, T )

]
= e(t, rt) [−rtP (t, T )dt+ dP (t, T )]

= e(t, rt) [−rtF (t, rt)dt+ dF (t, rt)]

= e(t, rt)
[
−rtF (t, rt)dt+

(
∂F
∂t

(t, rt)dt+ ∂
∂r
F (t, rt)drt + 1

2
∂2F
∂r2

(t, rt) (drt)
2
)]

= e(t, rt)

 −rtF (t, rt)dt+ ∂F
∂t

(t, rt)dt+ ∂F
∂r

(t, rt)
(
f̃(rt, t)dt+ g(rt, t)dŴt

)
+1

2
∂2F
∂r2

(t, rt)
(
f̃(rt, t)dt+ g(rt, t)dŴt

)2


= e(t, rt)

 −rtF (t, rt)dt+ ∂F
∂t

(t, rt)dt+ ∂F
∂r

(t, rt)
(
f̃(rt, t)dt+ g(rt, t)dŴt

)
+1

2
∂2F
∂r2

(t, rt)g
2(rt, t)dt


= e(t, rt)


(
−rtF (t, rt) + ∂F

∂t
(t, rt) + f̃(t, rt)

∂F
∂r

(t, rt) + 1
2
g2(t, rt)

∂2F
∂r2

(t, rt)
)
dt

+∂F
∂r

(t, rt)g(rt, t)dŴt

 .
(2.53)

where e(t, rt) = exp

(
−

t∫
0

rsds

)
. Note that we have

exp

(
−

t∫
0

rsds

)
P (t, T ) = exp

(
−

t∫
0

rsds

)
EQ

[
exp

(
−

T∫
t

rsdst

)
|Ft
]

= EQ

[
exp

(
−

t∫
0

rsds

)
exp

(
−

T∫
t

rsdst

)
|Ft
]

= EQ

[
exp

(
−

T∫
0

rsdst

)
|Ft
]
.
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Hence t 7→ exp

(
−

t∫
0

rsds

)
P (t, T ) is martingale since for any 0 < u < t we have

EQ

[
exp

(
−

t∫
0

rsdst

)
P (t, T )|Fu

]
= EQ

[
EQ

[
exp

(
−

T∫
0

rsdst

)
P (t, T )|Ft

]
|Fu

]
= EQ

[
exp

(
−

T∫
0

rsdst

)
|Fu
]

= EQ

[
exp

(
−

u∫
0

rsdst

)
exp

(
−

T∫
u

rsdst

)
|Fu
]

= exp

(
−

u∫
0

rsdst

)
EQ

[
exp

(
−

T∫
u

rsdst

)
|Fu
]

= exp

(
−

u∫
0

rsdst

)
P (u, T ).

As a consequence the above expression of d

[
exp

(
−

t∫
0

rsds

)
P (t, T )

]
should con-

tain terms in dŴt only, meaning that all terms in dt should vanish inside equation

(2.53). This leads to the identity

−rtF (t, rt) +
∂F

∂t
(t, rt) + f̃(t, rt)

∂F

∂r
(t, rt) +

1

2
g2(t, rt)

∂2F

∂r2
(t, rt) = 0,

which can be rewritten as in the next proposition.

Proposition 2.17. The bond pricing PDE for P (t, T ) = F (t, rt) is written as

−rtF (t, rt) +
∂F

∂t
(t, rt) + f̃(t, rt)

∂F

∂r
(t, rt) +

1

2
g2(t, rt)

∂2F

∂r2
(t, rt) = 0,

subject to terminal condition F (T, rT ) = 1.

2.7 Forward Measure and Option Pricing

In a standard Black-Scholes framework with a riskless account yielding

interest at the interest rate rt, the call option price at time t of a contingent claim

with payoff F = max(ST−K, 0) at maturity time T , is the conditional expectation

EQ

exp

− T∫
t

rsds

max(ST −K, 0)|Ft

 , (2.54)
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under a risk neutral probability measure Q. When the interest rate process rt is a

deterministic function of time, the expression becomes

exp

− T∫
t

rsds

EQ [max(ST −K, 0)|Ft] .

And when rt equals a deterministic constant r, we get

exp (−r(T − t))EQ [max(ST −K, 0)|Ft] .

In most interest rate models the interest rate rt is a random process forbidding

the above manipulation so that we will have to evaluate expression of the form

(2.54) where rt is a random process, compounding another level of complexity in

comparison with the standard Black-Schole model as in section 2.1.

Definition 2.18. The T-forward measure is the probability measure QT defined

as

dQT

dQ
=

exp
(
−
∫ T

0
rsds

)
P (0, T )

. (2.55)

The expectation under QT will be denoted by ET
Q .

The following proposition will allow us to price call option under the T-

forward measure QT .

Proposition 2.19. For all sufficiently integrable random variables F we have

EQ

[
exp

(
−
∫ T

t

rsds

)
F |Ft

]
= P (t, T )EQT [F |Ft] , 0 ≤ t ≤ T. (2.56)

Proof. See Privault (2008) page 74.

As consequence of this proposition the computation of

EQT
[
exp

(
−
∫ T
t
rsds

)
F |Ft

]
can be replaced by that of P (t, T )EQT [F |Ft]

under T-forward measure QT .



 

 

 

 

 

 

 

 

CHAPTER III

OPTION PRICING FOR A STOCHASTIC

VOLATILITY LEVY MODEL WITH

STOCHASTIC INTEREST RATE

3.1 Introduction

Let us assume that a risk-neutral probability measure Q exists so that we

will consider all processes in section 3.1 and 3.2 under risk-neutral measure Q.

In the Black-Scholes model, the price of a risky asset St under a risk-neutral

measure Q and with non dividend payment as follows

St = S0 exp(L̃t) = S0 exp

(
rt+

(
σWt −

1

2
σ2t

))
, (3.1)

where r ∈ R is risk-free interest rate and σ ∈ R is the volatility coefficient of the

asset price.

Instead of modelling the log returns L̃t = rt + σWt − 1
2
σ2t, with a normal

distribution, we now replace it with a more sophisticated process Lt, a Lévy process

of the form

Lt = rt+

(
σWt −

1

2
σ2t

)
+ (Jt − ξt) , (3.2)

where Jt denotes a pure Lévy jump component, (i.e. a Lévy process with no

Brownian motion part), and ξ the concavity adjustment. We assume that the

processes Wt and Jt are independent.

To incorporate the volatility effect to the model (3.2), we follow the tech-

nique of Carr and Wu (2004) by subordinating a part of diffusion, (σWt−σ2

2
t) and



 

 

 

 

 

 

 

 

37

a part of jump (Jt−ξt) to the time integral of a mean reverting Cox Ingersoll Ross

(CIR) process

Tt =

t∫
0

vsds,

where vt follows the CIR process

dvt = γ(κ− vt)dt+ σv
√
vtdW

v
t . (3.3)

Here W v
t is a standard Brownian motion which corresponds to the process vt . The

constant γ ∈ R is the rate at which the process vt reverts toward its long term

mean, κ is the long term variance, and σv > 0 is the volatility coefficient of the

process vt .

Hence, the model (3.2) becomes

Lt = rt+

(
σWTt −

1

2
σ2Tt

)
+ (JTt − ξTt) , (3.4)

and this new process is called a stochastic volatility Lévy process. One can interpret

Tt as the stochastic clock process with activity rate process vt. By replacing L̃t

in (3.2) with Lt, we obtain a model of an underlying asset under the risk-neutral

measure Q with stochastic volatility as follows:

St = S0 exp(Lt) = S0 exp

[
rt+

(
σWTt −

1

2
σ2Tt

)
+ (JTt − ξTt)

]
. (3.5)

In this chapter, we shall consider the problem of finding a formula for European call

options based on the underlying asset model (3.5) for which the constant interest

rate r is replaced by the stochastic interest rate rt, so that the model under our

consideration is given by

St = S0 exp

[
rtt+

(
σWTt −

1

2
σ2Tt

)
+ (JTt − ξTt)

]
. (3.6)

Here, we assume that rt follows the Vasicek process

drt = (α− βrt)dt+ σrdW
r
t , (3.7)
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where W r
t is a standard Brownian motion with respect to the process rt and

dW r
t dWt = 0. The constant β ∈ R is the rate at which the interest rate reverts

toward its long term mean: σr > 0 is the volatility coefficient of the interest rate

process (3.7): the constant α > 0 is a speed reversion. We also assume that the

interest rate process rt and the activity rate process vt are independent.

The problem of option pricing under stochastic interest rate has been in-

vestigated for quite a while. Kim (2001) constructed the option pricing formula

based on the Black-Scholes model under several stochastic interest rate processes,

i.e., Vasicek, CIR, Ho-Lee type. He found that incorporating stochastic interest

rate into the Black-Scholes model for a short maturity option does not improve the

performance of the original Black-Scholes’ pricing formula. Brigo and Mercurio

(2001, pp. 883) mention that the stochastic feature of interest rate has a stronger

impact on the option price when pricing for a long maturity option. Carr and

Wu (2004) continued this study by giving an option pricing formula based on a

time-changed Lévy process, with constant interest rate remaining in the model.

In this chapter, we give an analysis of the option pricing model based on a

time change Lévy process with stochastic interest rates.

The dynamics under the forward measure is described in Section 3.2, with

the option pricing formula given in Section 3.3. Finally, the closed form solution

for a European call option in term of the characteristic function is in Section 3.4.

3.2 The Dynamics under the Forward Measure

We begin by briefly reviewing the definition of correlated Brownian motion

and some of its properties (for more details see Brummelhuis (2009), pp. 70). A

standard Brownian motion in Rn is a stochastic process (~Zt)t≥0 whose value at
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time t is simply a vector of n independent Brownian motions at t :

~Zt = (Z1,t, ...Zn,t).

We use Z instead of W , since we would like to reserve the latter for the

more general case of correlated Brownian motion, which will be defined as follows:

Let ρ = (ρij)1≤i,j≤n be a (constant) positive symmetric matrix satisfying

ρii = 1 and −1 ≤ ρij ≤ 1. By Cholesky’s decomposition theorem, one can find an

upper triangular n× n matrix H = (hij) such that

ρ = HHt,

where Ht is the transpose of the matrix H. Letting ~Zt = (Z1,t, ...Zn,t) be a standard

Brownian motion as introduced above, we define a new vector-valued process ~Wt =

(W1,t, ...,Wn,t) by

~Wt = H~Zt,

or, in term of components,

Wi,t =
n∑
j=1

hijZj,t, i = 1, ..., n.

The process ( ~Wt)t≥0 is called a correlated Brownian motion with a (constant) cor-

relation matrix ρ. Each component-process (Wi,t)t≥0 is itself a standard Brownian

motion. Note that if ρ = Id (the identity matrix) then ~Wt is a standard Brownian

motion. For example, if we consider a symmetric matrix

ρ =


1 ρv 0

ρv 1 0

0 0 1.

 , (3.8)

then ρ has a Cholesky decomposition of the form ρ = HHT , where H is an upper



 

 

 

 

 

 

 

 

40

triangular matrix of the form

H =


√

1− ρ2
v ρv 0

0 1 0

0 0 1

 .

Let ~Zt = (Zt, Z
r
t , Z

v
t ) be three independent Brownian motions, then ~Wt =

(Wt,W
r
t ,W

ν
t ) defined by ~Wt = H~Zt, is a correlated Brownian motion with cor-

relation matrix ρ as given in (3.8), or in terms,

Wt = (
√

1− ρ2
v)Zt + ρvZ

ν
t ,

W ν
t = Zν

t ,

W r
t = Zr

t .

(3.9)

Now let us turn to equation (3.6). Note that, by Ito’s formula, the model (3.6)

has the dynamic given by

dSt = rtStdt+ σStdWTt + St−dJ
∗
Tt
,

drt = (α− βrt)dt+ σrdW
r
t ,

dvt = γ(κ− vt)dt+ σv
√
vtdW

v
t ,

(3.10)

where dJ∗Tt = dJTt +
(
e∆JTt − 1−∆JTt

)
, dWtdW

r
t = dW r

t dW
v
t = 0, and

dWtdW
v
t = ρvdt.

We can re-write the system (3.10) in terms of three independent Brownian motions

(Zt, Z
ν
t , Z

r
t ) as follows:

dSt = rtStdt+ σSt

(
ρvdZ

v
Tt +

√
1− ρ2

vdZTt

)
+ St−dJ

∗
Tt , (3.11)

drt = (α− βrt)dt+ σrdZ
r
t , (3.12)

dvt = γ(κ− vt)dt+ σv
√
vtdZ

v
t . (3.13)

This decomposition makes it easier to perform a measure transformation. In fact,

for any fixed maturity T , let us denote by QT the T-forward measure, i.e. the
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probability measure that is defined by the Radon-Nikodym derivative,

dQT

dQ
=

exp

(
−

T∫
0

rudu

)
P (0, T )

. (3.14)

Here, P (t, T ) is the price at time t of a zero-coupon bond with maturity T and is

defined as

P (t, T ) = EQ

[
e−

∫ T
t rsds|Ft

]
. (3.15)

Lemma 3.1. The process rt following the dynamics in (3.12) can be written in

the form

rt = xt + w(t), 0 ≤ t ≤ T, (3.16)

where the process xt satisfies

dxt = −βxtdt+ σrdZ
r
t , x0 = 0. (3.17)

Moreover, the function w is deterministic and well defined in the time interval

[0, T ] which satisfied

w(t) = r0e
−βt +

α

β

(
1− e−βt

)
. (3.18)

In particular, w(0) = r0.

Proof. To solve the solution of SDE (3.12), let g(t, r) = eβtr, by using Itô’s formula,

we have

dg =
∂g

∂t
dt+

∂g

∂r
dr +

1

2

∂2g

∂r2
(dr)2 .

Then

deβtr = βeβtrdt+ eβt ((α− βr)dt+ σrdZ
r)

= βeβtrdt+ αeβtdt− βeβtrdt+ σre
βtdZr

= αeβtdt+ σre
βtdZr. (3.19)
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Integrating on both side the above equation from 0 to t where 0 < t 6 T and

simplifying, we obtain

t∫
0

deβuru = α

t∫
0

eβudu+ σr

t∫
0

eβudZr
u

rt = r0e
−βt +

α

β

(
1− e−βt

)
+ σr

t∫
0

e−β(t−u)dZr
u.

By using the definition of w(t) form equation (3.18),we get

rt = w(t) + σr

t∫
0

e−β(t−u)dZr
u.

Note that the solution of equation (3.17) is

xt = x0e
−βt + σr

t∫
0

e−β(t−u)dZr
u = σr

t∫
0

e−β(t−u)dZr
u. (3.20)

Hence, rt = w(t) + xt, for each t. The proof is now complete.

Now we are ready to calculate the Radon-Nikodym derivative as it appears

in equation (3.14). By virtue of Lemma 3.1, rt = xt + w(t) and the price of zero

coupon bond at time t = 0 with maturity time T in Vasicek model which satisfy

(see, Privault (2008) pages. 38-39)

P (t, T ) = exp [A(t, T ) + rtB(t, T )] ,

where B(t, T ) = e−β(T−t)−1
β

and A(t, T ) =
(
α
β
− σ2

r

2β2

)
(B(t, T )− T + t)+σ2

r

4β
B2(t, T ).

Substituting rt and P (0, t) into equation (3.14), we have

dQT

dQ
=

exp

(
−

T∫
0

xu + w(u) du

)
exp(a(0, T ) + b(0, T )r0)

= exp

− T∫
0

xudu−
σ2

2β2

T∫
0

(
1− e−β(T−u)

)2
du

 . (3.21)
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Stochastic integration by parts implies

T∫
0

xudu = TxT −
T∫

0

udxu =

T∫
0

(T − u) dxu. (3.22)

By substituting the expression for dxu from equation (3.17),

T∫
0

(T − u) dxu = −β
T∫

0

(T − u)xudu+ σr

T∫
0

(T − u)dZr
u. (3.23)

Moreover by substituting the expression for xu from equation (3.20), the first

integral on the right hand side of equation (3.23) becomes

−β
T∫

0

(T − u)xudu = −βσr

T∫
0

((T − u)

u∫
0

e−β(u−s)dZr
u)du. (3.24)

Using integration by parts, we have

−βσr
T∫
0

(
(T − u)

u∫
0

e−β(u−s)dZr
u

)
du = −βσr

T∫
0

(
u∫
0

eβsdZr
s

)
(T − u)e−βudu

= −βσr
T∫
0

(
u∫
0

eβsdZr
s

)
d

(
u∫
0

(T − v)e−βvdv

)
= −βσr

[(
T∫
0

eβudZr
u

)(
T∫
0

(T − v)e−βvdv

)
−

T∫
0

(
u∫
0

(T − v)e−βvdv

)
eβudZr

u

]
= −βσr

[
T∫
0

eβu
(
T∫
u

(T − v)e−βvdv

)
dZr

u

]
= −σr

β

[
T∫
0

(
e−β(T−u) − 1

)
dZr

u

]
− σr

T∫
0

(T − u)dZr
u.

(3.25)

Substituting equation (3.25) into equation (3.23), we obtain

T∫
0

(T − u) dxu = −σr
β

 T∫
0

(
e−β(T−u) − 1

)
dZr

u

 .
Hence,

T∫
0

xudu = −σr
β

 T∫
0

(
e−β(T−u) − 1

)
dZr

u

 . (3.26)

Substituting equation (3.26) into equation (3.21), we obtain

dQT

dQ
= exp

−σr
β

T∫
0

(
1− e−β(T−u)

)
dZr

u −
σ2
r

2β2

T∫
0

(
1− e−β(T−u)

)2
du

 . (3.27)



 

 

 

 

 

 

 

 

44

Hence, by Girsanov’s theorem, three processes ZrT
t , ZvT

t and ZT
t defined by

dZrT
t = dZr

t + σr
β

(
1− e−β(T−t)) dt,

dZvT
t = dZv

t ,

dZT
t = dZt,

(3.28)

are three independent Brownian motions under the measure QT . Therefore, the

dynamics of rt, vt and St under QT are given by

dSt = rtStdt+ σSt

(
ρvdZ

vT
Tt +

√
1− ρ2

vdZ
T
Tt

)
+ St−dJ

∗
Tt , (3.29)

drt =

(
α− βrt −

σ2
r

β

(
1− e−β(T−t))) dt+ σrdZ

rT
t , (3.30)

dvt = γ(κ− vt)dt+ σv
√
vtdZ

vT
t . (3.31)

From now on, this system will be called the stochastic volatility Lévy model with

stochastic interest rate (SVLSI) and the equation (3.30) is TF-Vasieck model.

3.3 The Pricing of European Call Option on a Given Asset

Let (St)t∈[0,T ] be the price of a financial asset modeled as a stochastic process

on a filtered probability space
(
Ω,F ,Ft,QT

)
, where Ft is usually the price history

up to time t. All processes in this section will be defined on this space. We denote

by C the price at time t of a European call option on the current price of an

underlying asset St with strike price K and expiration time T .

The terminal payoff of a European option on the underlying stock St with

strike price K is

max(ST −K, 0). (3.32)

This means the holder will exercise his right only if ST > K and then his gain

would be ST −K. Otherwise, if ST ≤ K then the holder will buy the underlying

asset from the market and the value of the option is zero.
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We would like to find a formula for pricing a European call option with

strike price K and maturity T based on the model (3.29)-(3.31). Consider a

continuous-time economy where interest rate are stochastic and the price of the

European call option at time t under the forward measure QT is

C(t, St, rt, vt;T,K) = P ∗(t, T )EQT (max (ST −K, 0) |St, rt, vt)

= P ∗(t, T )

∞∫
0

max (ST −K, 0) pQT (ST |St, rt, vt)dST

where EQT is the expectation with respect to the T-forward probability measure,

pQT is the corresponding conditional density given (St, vt, rt) and P ∗ is a zero

coupon bond defined by

P ∗(t, T ) := EQT

exp

− T∫
t

rsds

 |Ft
 . (3.33)

Changing variable, Xt = lnSt,

C(t, St, rt, vt;T,K) = P ∗(t, T )
∞∫
−∞

max
(
eXT −K, 0

)
pQT (XT |Xt, rt, vt,) dXT

= P ∗(t, T )
∞∫

lnK

(
eXT −K

)
1XT≥lnKpQT (XT |Xt, rt, vt) dXT

=P ∗(t, T )
∞∫

lnK

eXT pQT (XT |Xt, rt, vt) dXT −KP ∗(t, T )
∞∫

lnK

pQT (XT |Xt, rt, vt) dXT

= eXt
(

1
E
QT

(eXT |St,rt,vt)

∞∫
lnK

eXT pQT (XT |Xt, rt, vt) dXT

)
−KP ∗(t, T )

∞∫
lnK

pQT (XT |Xt, rt, vt) dXT

= eXt
( ∞∫

lnK

eXT
p
QT

(XT |Xt,rt,vt)
E
QT

(eXT |St,rt,vt)
dXT

)
−KP ∗(t, T )

∞∫
lnK

pQT (XT |Xt, rt, vt) dXT .

(3.34)

With the first integral in equation (3.34) being positive and integrating up to one,

it therefore defines a new probability measure that we denote by qQT below

C(t, St, rt, vt;T,K)

= eXt
∞∫

lnK

qQT (XT |Xt, rt, vt)dXT −KP ∗(t, T )
∞∫

lnK

pQT (XT |Xt, rt, vt) dXT

:= eXtP1 (t,Xt, rt, vt;T,K)−KP ∗(t, T )P2 (t,Xt, rt, vt;T,K)

= eXt Pr (XT > lnK|Xt, rt, vt)−KP ∗(t, T ) Pr (XT > lnK|Xt, rt, vt)

(3.35)
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where those probabilities in equation (3.35) are calculated under the probability

measure QT .

The European call option for log asset price Xt = lnSt will be denoted by

Ĉ(t,Xt, rt, vt;T, κ
∗) = eXtP̃1(t,Xt, rt, vt;T, κ

∗)− eκ∗P ∗(t, T )P̃2(t,Xt, rt, vt;T, κ
∗),

(3.36)

where κ∗ = lnK and P̃j (t,Xt, rt, vt;T, κ) := Pj (t,Xt, rt, vt;T,K) , j = 1, 2.

Note that we do not have a closed form solution for these probabilities. However,

these probabilities are related to characteristic functions which have closed form

solutions as will be seen in Lemma 3.4.

Next let us consider a continuous-time economy where interest rates are

stochastic and satisfy equation (3.30). Since the SDE in equation (3.30) satisfies

all the necessary conditions of Theorem 32, see Protter (2005) pp. 238, the solution

of equation (3.30) has the Markov property. As a consequence, the zero coupon

bond price at time t under the forward measure QT in equation (3.33) satisfies

P ∗(t, T ) = EQT

exp

− T∫
t

rsds

 |rt
 . (3.37)

Note that since P ∗(t, T ) depends on rt, it becomes a function F (t, rt) of rt, i.e.

P ∗(t, T ) = F (t, rt). This means that the calculation of P ∗(t, T ) can now be for-

mulated as a search for the function F (t, rt).

Lemma 3.2. The price of a zero coupon bond can be derived by computing the

expectation (3.37). We obtain

P ∗(t, T ) = exp (a(t, T ) + b(t, T )rt) , (3.38)

where b(t, T ) = 1
β

(
e−β(T−t) − 1

)
and

a(t, T ) =
(

3σ2
r

2β4 − α
β

)
(b(t, T ) + (T − t))− 3σ2

r

4β4 b
2(t, T ).
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Proof. Under the T-forward measure QT , the interest rate is given by the following

stochastic differential equation (SDE):

drt =

(
α− σ2

r

β

(
1− e−β(T−t))− βrt) dt+ σrdZ

rT
t . (3.39)

The specification of the interest rate means that the model (3.39) belong to the

affine class of interest rate models. Thus the bond price at time t with maturity

T is of the form

P ∗(t, T ) = exp (a(t, T ) + b(t, T )rt) , (3.40)

where a(t, T ) and b(t, T ) are functions to be determined under the condition

a(T, T ) = 0 and b(T, T ) = 0. We will now find explicit formulas for the func-

tions a(t, T ) and b(t, T ) in equation (3.38).

By Proposition 2.18, the zero coupon bond price PDE satisfies

∂F (t,rt)
∂t

+
(
α− σ2

r

β

(
1− e−β(T−t))− βrt) ∂F (t,rt)

∂rt

+1
2
∂2F (t,rt)

∂r2t
σ2
r − rtF (t, rt) = 0.

(3.41)

Note that F (t, rt) = P ∗(t, T ). We substitute the value F (t, rt) from equation (3.40)

into the above equation and after canceling some common factors, we have(
∂a(t,T )
∂t

+ rt
∂b(t,T )
∂t

)
+
(
α− σ2

r

β

(
1− e−β(T−t))− βrt) b(t, T )

+1
2
b2(t, T )σ2

r − rt = 0,

so that we can reduce it to two ordinary differential equations

∂a(t, T )

∂t
+
σ2
r

2
b2(t, T ) +

(
α− σ2

r

β

(
1− e−β(T−t))) b(t, T ) = 0, (3.42)

∂b(t, T )

∂t
− βb(t, T )− 1 = 0, (3.43)

with boundary conditions a(T, T ) = 0 and b(T, T ) = 0.

Firstly, we note that the solution of (3.43) satisfying the boundary conditions

b(T, T ) = 0 is

b(t, T ) =
1

β

(
e−β(T−t) − 1

)
. (3.44)
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Secondly, we try to solve equation (3.42). Note that

T∫
t

∂a(u, T )

∂u
du = [a(u, T )]u=T

u=t = a(T, T )− a(t, T ) = −a(t, T ).

Thus

a(t, T ) = σ2
r

2

T∫
t

b2(u, T )du+
T∫
t

b(u, T )
(
α− σ2

r

β

(
1− e−β(T−u)

))
du

= σ2
r

2

T∫
t

b2(u, T )du+
T∫
t

αb(u, T )du− σ2
r

T∫
t

b(u, T ) 1
β

(
1− e−β(T−u)

)
du

= σ2
r

2

T∫
t

b2(u, T )du+
T∫
t

αb(u, T )du+ σ2
r

T∫
t

b2(u, T )du

= 3σ2
r

2

T∫
t

b2(u, T )du+
T∫
t

αb(u, T )du.

(3.45)

Note that the first integral on the right hand side of equation (3.45) is equal to

3σ2
r

2

T∫
t

b(u, T )2du = 3σ2
r

2β2

T∫
t

(
e−β(T−u) − 1

)2
du

= −3σ2
r

2β2

[
3

2β3 + e−2β(T−t)

2β3 − 2e−2β(T−t)

β3 − (T−t)
β2

]
= −3σ2

r

2β2

[
1

2β3

(
3 + e−2β(T−t) − 2e−β(T−t))− e−β(T−t)

β3 − (T−t)
β2

]
= −3σ2

r

2β2

[
1

2β

(
e−β(T−t)−1

β

)2

+ 1
β2

(
1−e−β(T−t)

β

)
− (T−t)

β2

]
= −3σ2

r

2β4

[
1
2
b2(t, T )− b(t, T )− (T − t)

]
.

(3.46)

The second integral on the right hand side of equation (3.45) is equal to

α
T∫
t

b(u, T )du = α
β

T∫
t

(
e−β(T−u) − 1

)
du

= α
β

(
1−e−β(T−t)

β
− (T − t)

)
= −α

β
(b(t, T ) + (T − t)) .

(3.47)

Summing up the two expressions on the right hand side of equation (3.46) and

(3.47) and simplifying them, we get

a(t, T ) = −3σ2
r

2β4

[
1

2
b2(t, T )− b(t, T )− (T − t)

]
− α

β
(b(t, T ) + (T − t))

= −3σ2
r

2β4

[
1

2
b2(t, T )

]
+

[
3σ2

r

2β4
− α

β

]
[b(t, T ) + (T − t)] .

The proof is now complete.
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The following Lemma shows the relationship between P̃1 and P̃2 in the

option value of equation (3.36).

Lemma 3.3. Assume the Lévy density exists. The functions P̃1 and P̃2 in the

option values of the equation (3.36) satisfy the PIDEs:

0 = ∂P̃1

∂t
+ A[P̃1] + (ρvσvσv)

∂P̃1

∂v

+v
∞∫
−∞

(ey − 1)
(
P̃1(x+ y, t, r, v;T, κ∗)− P̃1(x, t.r, v;T, κ∗)

)
k(y)dy,

(3.48)

subject to the boundary condition at expiration t = T :

P̃1(T, x, r, v;T, κ∗) = 1x>κ∗ . (3.49)

Moreover, P̃2 satisfies the equation

0 = ∂P̃2

∂t
+ A[P̃2] + P̃2

[
b(t, T )

(
α− βr − σ2

r

β

(
1− e−β(T−t)))]

+ σ2
rb(t, T )∂P̃2

∂r
− σ2v ∂P̃2

∂x
+ P̃2

[
∂
∂t

(a(t, T ) + b(t, T )r)− r + σ2
r

2
b2(t, T )

]
,

(3.50)

subject to the boundary condition at expiration t = T :

P̃2(T, x, r, v;T, κ∗) = 1x>κ∗ . (3.51)

Here

A[P̃i] =
(
r + 1

2
σ2v
)
∂P̃i
∂x

+ γ(κ− v)∂P̃i
∂v

+ σ2v
2

∂2P̃i
∂x2

+ σ2
r

2
∂2P̃i
∂r2

+ σ2
vv
2

∂2P̃i
∂v2

+
(
α− βr − σ2

r

β

(
1− e−β(T−t))) ∂P̃i

∂r
+ (vσσvρv)

∂P̃i
∂v∂x

+v
∞∫
−∞

((
P̃i(t, x+ y, r, v;T, κ∗)− P̃i(t, x, r, v;T, κ∗)

)
− (ey − 1)∂P̃i

∂x

)
k(y)dy.

(3.52)

Note that 1x>κ∗ = 1 if x > κ∗ and otherwise 1x>κ∗ = 0 .

Proof. By Ito’s formula for Lévy process (Lemma 2.13), Ĉ(t, x, r, v) follows the

partial integro - differential equation (PIDE)

∂Ĉ

∂t
+ LDt Ĉ + LJt Ĉ = 0, (3.53)
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where

LDt Ĉ =
(
r − 1

2
σ2v
)
∂Ĉ
∂xt

+
(
α− βr − σ2

r

β

(
1− e−β(T−t))) ∂Ĉ

∂r
+ γ(κ− v)∂Ĉ

∂v

+σ2
vv
2

∂2Ĉ
∂v2

+ σ2v
2

∂2Ĉ
∂x2

+ σ2
r

2
∂2Ĉ
∂r2

+ (ρvσvσv)
∂2Ĉ
∂x∂v
− rĈ

and

LJt Ĉ = v

∞∫
−∞

(
Ĉ(t, x+ y, r, v)− Ĉ(t, x, r, v)− ∂Ĉ

∂x
(ey − 1)

)
k(y)dy,

where k(y) is the Lévy density.

We plan to substitute equation (3.36) into equation (3.10). Firstly, we compute

∂Ĉ
∂t

= ex ∂P̃1

∂t
− eκP ∗(t, T )

[
∂P̃2

∂t
+ P̃2

∂
∂t

(a(t, T ) + b(t, T )r)
]
,

∂Ĉ
∂x

= ex
(
∂P̃1

∂x
+ P̃1

)
− eκP ∗(t, T )∂P̃2

∂x
,

∂Ĉ
∂v

= ex ∂P̃1

∂v
− eκP ∗(t, T )∂P̃2

∂v
,

∂Ĉ
∂r

= ex ∂P̃1

∂r
− eκP ∗(t, T )

(
∂P̃2

∂r
+ P̃2b(t, T )

)
,

∂2Ĉ
∂x2

= ex
(
∂2P̃1

∂x2
+ 2∂P̃1

∂x
+ P̃1

)
− eκP ∗(t, T )∂

2P̃2

∂x2
,

∂2Ĉ
∂v2

= ex ∂
2P̃1

∂v2
− eκP ∗(t, T )∂

2P̃2

∂v2
,

∂2Ĉ
∂r2

= ex ∂
2P̃1

∂r2
− eκP ∗(t, T )

(
∂2P̃2

∂r2
+ 2b(t, T )∂P̃2

∂r
+ P̃2b

2(t, T )
)
,

∂2Ĉ
∂v∂x

= ex
(
∂P̃1

∂v∂x
+ ∂P̃1

∂v

)
− eκP ∗(t, T ) ∂P̃2

∂v∂x
,
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C(t, x+ y, r, v;T, κ∗)− C(t, x, r, v;T, κ∗)

=
[
ex+yP̃1(t, x+ y, r, v;T, κ∗)− eκ∗P ∗(t, T )P̃1(x+ y, t, r, v;T, κ∗)

]
−
[
exP̃2(t, x, r, v;T, κ∗)− eκ∗P ∗(t, T )P̃2(t, x, r, v;T, κ∗)

]
=ex+yP̃1(t, x+ y, r, v;T, κ∗)− exP̃2(t, x, r, v;T, κ∗)

+eκ∗P ∗(t, T )P̃2(t, x, r, v;T, κ∗)− eκ∗P ∗(t, T )P̃1(x+ y, t, r, v;T, κ∗)

=ex
[
eyP̃1(t, x+ y, r, v;T, κ∗)− P̃2(t, x, r, v;T, κ∗)

]
−eκ∗P ∗(t, T )

[
P̃2(t, x+ y, r, v;T, κ∗)− P̃1(x, t, r, v;T, κ∗)

]
=ex

 eyP̃1(t, x+ y, r, v;T, κ∗)− P̃2(t, x+ y, r, v;T, κ∗)

+P̃2(t, x+ y, r, v;T, κ∗)− P̃2(t, x, r, v;T, κ∗)


−eκ∗P ∗(t, T )

[
P̃2(t, x+ y, r, v;T, κ∗)− P̃1(x, t, r, v;T, κ∗)

]
=ex

 (ey − 1) P̃1(t, x+ y, r, v;T, κ∗) + P̃2(t, x+ y, r, v;T, κ∗)

−P̃2(t, x, r, v;T, κ∗)


−eκ∗P ∗(t, T )

[
P̃2(t, x+ y, r, v;T, κ∗)− P̃1(t, x, r, v;T, κ∗)

]
.

Substitute all terms above into equation (3.53) and separate it by assumed inde-

pendent terms of P̃1 and P̃2. This gives two PIDEs for the forward probability for

P̃j(t, x, r, v;T, κ), j = 1, 2 :

0 = ∂P̃1

∂t
+
(
r + 1

2
σ2v
)
∂P̃1

∂x
+ (γ(κ− v) + (ρvσvσv))

∂P̃1

∂v
+ σ2

r

2
∂2P̃1

∂r2
+ σ2

vv
2

∂2P̃1

∂v2

+
(
α− βr − σ2

r

β

(
1− e−β(T−t))) ∂P̃1

∂r
+ σ2vt

2
∂2P̃1

∂x2
+ (vσσvρv)

∂2P̃1

∂x∂v

+v
∞∫
−∞

((
P̃1(t, x+ y, r, v)− P̃1(t, x, r, v)

)
− ∂P̃1

∂x
(ey − 1)

)
k(y)dy

+v
∞∫
−∞

(
(ey − 1)

(
P̃1(t, x+ y, r, v)− P̃1(t, x, r, v)

))
k(y)dy,

(3.54)

and subject to the boundary condition at the expiration time t = T according to

equation (3.49).
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By using the notation in (3.52), equation (3.54) becomes

0 = ∂P̃1

∂t
+ A[P̃1] + (ρvσvσv)

∂P̃1

∂v

+v
∞∫
−∞

(ey − 1)
(
P̃1(x+ y, t, r, v;T,K)− P̃1(x, t.r, v;T,K)

)
k(y)dy

:= ∂P̃1

∂t
+ A1[P̃1].

(3.55)

For P̃2(t, x, r, v;T, κ) :

0 = ∂P̃2

∂t
+
(
r − 1

2
σ2v
)
∂P̃2

∂x
+ γ(κ− v)∂P̃2

∂v
+ (ρvσvσv)

∂P̃2

∂v∂x
+ σ2v

2
∂2P̃2

∂x2

+
(
α− βr − σ2

r

β

(
1− e−β(T−t))+ 2b(t, T )σ

2
r

2

)(
∂P̃2

∂r

)
+ σ2

vv
2

∂2P̃2

∂v2
+ σ2

r

2
∂2P̃2

∂r2

+P̃2

(
∂a(t,T )
∂t

+ r ∂b(t,T )
∂t

+
(
α− βr − σ2

r

β

(
1− e−β(T−t))) b(t, T ) + σ2

r

2
b2(t, T )− r

)
+v

∞∫
−∞

(
P̃2(t, x+ y, r, v;T, κ)− P̃2(t, x, r, v;T, κ)− ∂P̃2

∂x
(ey − 1)

)
k(y)dy,

(3.56)

subject to the boundary condition at expiration time t = T according to equation

(3.51). Again, by using the notation (3.52), equation(3.56) becomes

0 = ∂P̃2

∂t
+ A[P̃2] + P̃2

[
b(t, T )

(
α(t)− βr − σ2

r

β

(
1− e−β(T−t)))+ σ2

r

2
b2(t, T )

]
+ σ2

rb(t, T )∂P̃2

∂r
− σ2v ∂P̃2

∂x
P̃2

[
∂
∂t

(a(t, T ) + b(t, T )r)− r
]

:= ∂P̃2

∂t
+ A2[P̃2].

(3.57)

The proof is now complete.

3.4 The Closed-Form Solution for European Call Option

For j = 1, 2, the characteristic functions for P̃j(t, x, r, v;T, κ∗) , with respect

to the variable κ∗, are defined by

fj(t, x, r, v;T, u) := −
∞∫

−∞

e−iuκ
∗
dP̃j(t, x, r, v;T, κ∗), (3.58)

with a minus sign to account for the negativity of the measure dP̃j . Note that fj

also satisfies similar PIDEs

∂fj
∂t

+ Aj [fj] (t, x, r, v;T, κ∗) = 0, (3.59)
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with the respective boundary conditions

fj(T, x, r, v;T, u) = −
∞∫

−∞

eiuκ
∗
dP̃j(t, x, r, v;T, κ∗)

= −
∞∫

−∞

eiuκ
∗
(−δ(κ∗ − x))dκ∗ = eiux,

since dP̃j(t, x, r, v;T, κ∗) = d1x>κ∗ = −δ(κ∗ − x)dκ∗.

The following lemma shows how to calculate the characteristic functions

for P̃1 and P̃2 as they appeared in Lemma 3.3.

Lemma 3.4. The functions P̃1 and P̃2 can be calculated by the inverse Fourier

transformations of the characteristic function, i.e.

P̃j(t, x, r, v;T, κ) =
1

2
+

1

π

∞∫
0+

Re

[
e−iuκfj(t, x, r, v;T, u)

iu

]
du,

for j = 1, 2 with Re[.] denoting the real component of a complex number. By

letting τ = T − t , the characteristic function fj becomes

fj(t, x, r, v; t+τ, u) = exp (iux+Bj(τ) + rCj(τ) + vEj(τ)− (j − 1) lnP ∗(t, t+ τ)) ,

where

Bj(τ) =
[
γκζj
b1

ln
(

(b2j+ζj)e
τζ−(b2j−ζj)
2ζj

)
− τζjγκ(b2j+ζj)

2b1

]
+ (iu−j+1)α

β2

(
e−βτ − 1 + τβ

)
+ σ2

r

2β3

(
(iu−j+1)2

2
− (iu− j + 1)

)((
e−βτ − 2

)2 − 7− 2βτ
)
,

Cj(τ) = iu−(j−1)
β

(1− e−βτ ), Ej(τ) =
(b22j−ζ2j )(eζτ−1)

2b1((b2j−ζj)−(b2j+ζj)eζτ)
,

b0j = σ2

2
(iu− u2) +

∞∫
−∞

(
e(iu+2−j)y − (2− j)ey − iu(ey − 1)

)
k(y)dy,

b1 = σ2
v

2
, b2j = (σσvρv(iu+ 2− j)− γ) , ςj =

√
b2

2j − 4b0jb1.

Proof. To solve the characteristic function explicitly, letting τ = T − t be the

time-to-go, we conjecture that the function f1 is given by

f1(t, x, r, v; t+ τ, u) = exp (iux+B1(τ) + rC1(τ) + vE1(τ), ) (3.60)
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with the boundary conditions B1(0) = C1(0) = E1(0) = 0. This conjecture

exploits the linearity of the coefficients in PIDEs (3.59).

Note that the characteristic function of f1 always exists. In order to sub-

stitute equation (3.60) into equation (3.59), firstly, we compute

∂f1
∂t

= − (B′1(τ) + rC ′1(τ) + vE ′1(τ)) f1,
∂f1
∂x

= iuf1,
∂f1
∂r

= C1(τ)f1,
∂f1
∂v

= E1(τ)f1,

∂2f1
∂x2

= −u2f1,
∂2f1
∂v2

= E2
1(τ)f1,

∂2f1
∂r2

= C2
1(τ)f1,

∂2f1
∂v∂x

= iuE1(τ)f1,

f1(t, x+ y, r, v; t+ τ, u)− f1(t, x, r, v; t+ τ, u) = (eiuy − 1)f1(t, x, r, v; t+ τ, u).

Substituting all the above terms into equation (3.59), after canceling the common

factor of f1, we get a simplified form as follows:

0 = − (B′1(τ) + rC ′1(τ) + vE ′1(τ)) +
(
r + σ2v

2

)
iu+ (γ(κ− v) + (vσσvρv))E1(τ)

+σ2
r

2
C2

1(τ) +
(
α− βr − σ2

r

β

(
1− e−β(T−t)))C1(τ) + vσ2

v

2
E2

1(τ)− vu2σ2

2

+iuvσσvρvE1(τ) + v
∞∫
−∞

(
e(iu+1)y − ey − iu(ey − 1)

)
k(y)dy.

By separating the order r, v and ordering the remaining terms, we can reduce it

to three ordinary differential equations (ODEs) as follows:

C ′1(τ) = −βC1(τ) + iu, (3.61)

E ′1(τ) =
σ2
v

2
E2

1(τ) + (ρvσσv (1 + iu)− γ)E1(τ)

+
σ2

2

(
iu− u2

)
+

∞∫
−∞

(
eiuy+y − ey − iu(ey − 1)

)
k(y)dy (3.62)

B′1(τ) =

(
α− σ2

r

β

(
1− e−β(T−t)))C1(τ) + γκE1(τ) +

σ2
r

2
C2

1(τ). (3.63)

It is clear from equation (3.61) and C(0) = 0 that

C1(τ) =
iu

β
(1− e−βτ ). (3.64)

Let b0 = σ2

2
(iu− u2) +

∞∫
−∞

(
e(iu+1)y − ey − iu(ey − 1)

)
k(y)dy, b1 = σ2

v

2
, and b2 =

ρvσσv(1 + iu)− γ.



 

 

 

 

 

 

 

 

55

Substitute these constants into equation (3.62), one gets

E ′1(τ) = b1E
2
1(τ) + b2E1(τ) + b0

= b1

(
E1(τ)− −b2+

√
b22−4b0b1

2b1

)(
E1(τ)− −b2−

√
b22−4b0b1

2b1

)
.

(3.65)

By method of variable separation, we have

dE1(τ)(
E1(τ)− −b2+

√
b22−4b0b1

2b1

)(
E1(τ)− −b2−

√
b22−4b0b1

2b1

) = b1dτ.

Let ς =
√
b2

2 − 4b0b1 and using partial fraction on the left hand side, one obtains 1(
E1(τ) + b2+ζ

2b1

) − 1(
E1(τ) + b2−ζ

2b1

)
 dE1(τ) = ζdτ.

Integrating both sides and simplify, we have∫
1(

E1(τ)+
b2+ζ
2b1

) − 1(
E1(τ)+

b2−ζ
2b1

)dE1(τ) =
∫
ζdτ

ln
(
E1(τ) + b2+ζ

2b1

)
− ln

(
E1(τ) + b2−ζ

2b1

)
= ζτ + E0

ln

(
E1(τ)+

b2+ζ
2b1

E1(τ)+
b2−ζ
2b1

)
= ζτ + E0.

Using boundary condition E1(τ = 0) = 0, we get

E0 = ln

(
b2 + ζ

b2 − ζ

)
.

Solving of E1(τ), we obtain

E1(τ) =
(b2

2 − ζ2)
(
eζτ − 1

)
2b1 ((b2 − ζ)− (b2 + ζ) eζτ )

. (3.66)

In order to solve B1(τ) explicitly, we substitute C1(τ) and E1(τ) in equation (3.64)

and (3.66) into equation (3.63) to get

B′1(τ) =
γκ(b2

2 − ζ2)
(
eζτ − 1

)
2b1 ((b2 − ζ)− (b2 + ζ) eζτ )

+

(
α− σ2

r

β

(
1− e−βτ)

)) iu

β
(1− e−βτ )

+
σ2
r

2

(
iu

β
(1− e−βτ )

)2

=
γκ (b2

2 − ζ2)

2b1

(
eζτ − 1

)
((b2 − ζ)− (b2 + ζ) eζτ )

− σ2
r

β2

(
u2

2
− iu

)(
1− e−βτ

)2

+
iuα

β
(1− e−βτ ). (3.67)
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Note that∫ (eζτ−1)
((b2−ζ)−(b2+ζ)eζτ)

dτ

=
[
− τζ

(b2−ζ) +
(

1
(b2−ζ) −

1
(b2+ζ)

)
ln
(
(b2 + ζ) eτζ − (b2 − ζ)

)]
+ ζ0.

And∫ (
1− e−βτ

)2
dτ =

∫ (
1− 2e−βτ + e−2βτ

)
dτ =

(
τ +

2e−βτ

β
− e−2βτ

2β

)
+ ζ1.

Integrating both side of equation (3.67), we get

B1(τ) =
γκ(b22−ζ2)

2b1

[
− τζ

(b2−ζ) +
(

1
(b2−ζ) −

1
(b2+ζ)

)
ln
(
(b2 + ζ) eτζ − (b2 − ζ)

)]
−σ2

r

β2

(
u
2
− iu

) (
τ + 2e−βτ

β
− e−2βτ

2β

)
+ iuα

β

(
τ + e−βτ

β

)
+B0.

Using boundary condition B1(0) = 0, we get

B0 = −γκ (b2
2 − ζ2)

2b1

[(
1

(b2 − ζ)
− 1

(b2 + ζ)

)
ln (2ζ)

]
+

3σ2
r

2β3

(u
2
− iu

)
− iuα

β2
.

Hence,

B1(τ) =
[
γκζ
b1

ln
(

(b2+ζ)eτζ−(b2−ζ)
2ζ

)
− τζγκ(b2+ζ)

2b1

]
+ iuα

β2

(
e−βτ − 1 + τβ

)
+ σ2

r

2β3

(
u
2
− iu

) ((
e−βτ − 2

)2 − 7− 2βτ
)
.

The details of proof for the characteristic function f2 are similar to f1. Hence, we

have

f2(t, x, r, v;T − τ, u) = exp [iux+B2(τ) + rC2(τ) + vE2(τ)− lnP ∗(t, t+ τ)] ,

where B2(τ), C2(τ) and E2(τ) are as given in the lemma and P ∗(t, t+ τ) is given

in Lemma 3.2.

We can thus evaluate the characteristic function in closed form. However,

we are more interested in the probability, which can be obtained by investing the

characteristic functions by performing the following integration

P̃j(x, r, v, t;κ
∗, T ) =

1

2
+

1

π

∞∫
0+

Re

(
e−iuκ

∗
fj(t, x, v.r;T, u)

iu

)
du, (3.68)
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for j = 1, 2. where Xt = lnSt and κ∗ = lnK. To verify equation (3.68), first we

note that

E
[
eiu(lnSt−lnK)| lnSt = Xt, rt = r, vt = v

]
= E

[
eiu(x−κ∗)| lnSt = Xt, rt = r, vt = v

]
=
∞∫
−∞

eiu(x−κ∗)dPj(t, x, v, r;T, κ
∗)

= e−iuκ
∗
∞∫
−∞

eiuxdPj(t, x, v, r;T, κ
∗)

= −e−iuκ∗
∞∫
−∞

eiuxδ (x− κ∗) dκ∗

= −e−iuκ∗
∞∫
−∞

eiuK
∗
δ (x− κ) dκ∗ = e−iuκ

∗
fj(t, x, r, v;T, u).

Then

1
2

+ 1
π

∞∫
0

Re
[
e−iuκ

∗
fj(t,x,r,v;T,u)

iu

]
du

= 1
2

+ 1
π

∞∫
0

Re

[
E[eiu(x−κ

∗)| lnSt=Xt,rt=r,vt=v]
iu

]
du

= E

[
1
2

+ 1
π

∞∫
0

Re
[
eiu(x−κ

∗)

iu

]
du| lnSt = Xt, rt = r, vt = v

]
= E

[
1
2

+ 1
π

∞∫
0

sin(u(x−κ∗))
u

du| lnSt = Xt, rt = r, vt = v

]
= E

[
1
2

+ sgn(x− κ∗) 1
π

∞∫
0

sin(u)
u
du| lnSt = Xt, rt = r, vt = v

]
= E

[
1
2

+ sgn(x− κ∗)| lnSt = Xt, rt = r, vt = v
]

= E [1x≥lnK | lnSt = Xt, rt = r, vt = v] ,

where we have used the wellknown Dirichlet formula
∫∞
−∞

sinx
x
dx = 1 and the

signum (sgn) function, defined as sgn(x) = 1 if x > 0, 0 if x = 0 and −1 if x < 0.

The proof is now complete.

Thus we have proved the following main theorem.

Thorem 3.5. The value of a European call option of SDE (3.29) is

C(t, St, rt, vt;T,K) = StP̃1 (t,Xt, rt, vt;T, κ
∗)−KP ∗(t, T )P̃2 (t,Xt, rt, vt;T, κ

∗)

where P̃1 and P̃2 are given in Lemma 3.4 and P ∗(t, T ) is given in Lemma 3.2.



 

 

 

 

 

 

 

 

CHAPTER IV

PARAMETER ESTIMATION AND

APPLICATIONS IN FINANCE

4.1 Introduction

This chapter estimates a model which is a special case of SVLSI model as

described in Chapter III, i.e., pure jump Lévy process being compound Poisson

process with normal jump, so that we apply a stochastic time change only to the

diffusion component:

St = S0 exp

(
rtt+

(
σWTt −

1

2
σ2Tt

)
+ (Jt − ξt)

)
, (4.1)

since Jt is compound Poisson process
Ni∑
i=1

Yi where Nt is Poisson process with in-

tensity λ and Yi are i.i.d. random variable with normal density with parameters

(µJ , σ
2
J). Since the concavity adjustment ξ is equal to λE[eY − 1] := λm, model

(4.1) becomes

St = S0 exp

(
rtt+

(
σWTt −

1

2
σ2Tt

)
+ (Jt − λmt)

)
, (4.2)

where rt satisfies TF-Vasicek process as in equation (3.30) and Tt the integrated

CIR process as in section 3.2. By Itô’s formula for jump diffusion process, the

model (4.2) has the dynamic

dSt = St

(
(rt − λm) dt+ ρvσdZ

v
Tt + σ

√
1− ρ2

vdZTt

)
+St−

(
eY − 1

)
dNt, (4.3)
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where

drt =

(
α− βrt −

σ2
r

β

(
1− e−β(T−t))) dt+ σrdZ

r
t , (4.4)

dvt = γ(κ− vt)dt+ σv
√
vtdZ

v
t . (4.5)

We name this the SVJSI model for stochastic volatility jump diffusion model

with stochastic interest rate and assumed dNt is statistically independent of

Yt, dZ
v
t , dZ

r
t , dZt and dZv

t , dZ
r
t , dZt are uncorrelated.

Our model requires values for the fixed parameters which determine the

variation of interest rate and stock price volatility. In this thesis, we are interested

in using the Generalized Method of Moments (GMM) technique to estimates pa-

rameters, so we set the parameter values so that selected moment from the model

are close to sample moments computed from the interest rate and log return.

Chapter IV is structured as follows. The GMM technique is described in

section 4.2 and the underlying model of asset return and interest rate is specified

with the statistic properties in section 4.3. Section 4.4 contains the GMM estima-

tor of asset prices and interest rate. In section 4.5, we use the data of daily price

observation for SET50 index and daily observations for rates on 3 month Trea-

sury Bills of Thailand to calibrates the SVJSI model and apply results to finance

problems.

4.2 Parameter Estimation Method

4.2.1 Moment

Definition 4.1. Let X be a random variable with probability density function

f(x). The rth moment about the mean of a random variable X, denote by mr, is
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the expected value of (X − µ)r:

mr = E [(X − µ)r] =
∑
x

(x− µ)rf(x), (4.6)

for r = 1, 2, 3, . . . when X is discrete and

mr = E [(X − µ)r] =

∞∫
−∞

(x− µ)rf(x)dx (4.7)

when X is continuous, provided that the finiteness conditions hold.

Note that the second moment of a random variable about the mean is

the variance of the random variable. We can express by simply writing out the

binomial expansion of (X − µ)r:

mr = E [(X − µ)r] =
r∑
j=0

 r

j

E [Xj
]

(−µ)r−j . (4.8)

4.2.2 The Generalized Method of Moments

Almost all economic models contain unknown parameters, which need to

be estimated before we can use them. Typically, this estimation is done by taking

a random sample of observations and using those observations to estimates the

unknown parameters. In the estimation, an important idea is the choice of sample

representing the population from which it has been drawn. For the same param-

eter of a population we can apply different methods of estimation, for example,

the methods of maximum likelihood (ML), moments (MM) and the generalized

method of moments (GMM).

In this thesis, we focus on the technique of GMM as described by Hansen

(1982). The GMM is historically one of the oldest methods with the big advantage

that its use does not require the knowledge of the distribution of xt. GMM has been

used by Heston (1988), Longstaff and Schwartz (1992) for estimating parameters
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of one and two factor CIR process and Vetzal (1998) has used GMM to estimate

the Chan-Karolyi-Longstaff-Sanders (CKLS) process.

Suppose we have a set of observations {xt}t=1,...,N , whose evolution depends

upon a set of parameters δ = (δ1, δ2, ..., δk) ∈ Θ ⊂ Rk. The estimation problem is

to find the true value of this parameter, δ0, or at least a reasonably close estimate.

In order to apply GMM there should exist functions fi(xt, δ), i = 1, 2, ...,m, called

condition functions such that

E [fi(xt, δ0)] = 0. (4.9)

The functions E [fi(xt, δ)] , i = 1, ...,m are called moment condition functions.

Given such a set of such functions one may compute the sample estimate of

E[fi(xt, δ)], i = 1, ...,m. This sample estimate is defined by 1
N

N∑
t=1

fi(xt, δ̂), i =

1, ...,m. The GMM estimates δ̂ of δ are those values of the set of sample estimates

as close to zero as possible.

In the classic Method of Moments (MM), the number of parameters are

equal to the number of moment condition functions when m = k so that it should

be possible to set fi(xt, δ) exactly to zero. Hence, one can find the GMM estimates

δ̂ of δ by solving the following equation:

1

N

N∑
t=1

fi(xt, δ̂) = 0, i = 1, ...,m. (4.10)

Let us relax the assumption that m = k. Set f = (f1(xt, δ), ..., fm(xt, δ))
′ and

define δ̂ to be

δ̂ = arg min
δ∈Θ

(
f̂ ′Wf̂

)
, (4.11)

where f̂ =: 1
N

N∑
t=1

f(xt, δ) is the sample moment condition function, and W is a

positive definite weighting matrix. This is GMM estimate of δ, contingent upon

W and f . To obtain an optimal choice of W , in the sense that the variance of the
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estimator δ̂ is minimum, we set

W = Ŝ−1, (4.12)

where Ŝ is an estimate of the spectral density matrix of moment condition function.

This important result is due to Hansen (1982).

The spectral density or long run covariance matrix is defined

S = lim
N→∞

E

[
1

N

N∑
t=1

N∑
s=1

ftf
′
s

]
. (4.13)

The spectral density matrix allows for serial correlation and heteroscedasticity in

the observations of the moment function. A popular consistent estimate of the

spectral density matrix is the Newey-West estimator (Newey and West (1987)):

Ŝ = Ŝ0 +

q∑
j=1

(
1− j

q + 1

)(
Ŝj + Ŝ ′j

)
, (4.14)

where

Ŝj =
1

N

N∑
t=j+1

ftf
′
t−j,

and ft = (ft,1, ft,2, ..., ft,m), ft,i = fi (xt|δ) .

A disadvantage of the GMM is that δ̂ depend on the chosen functions

fi(xt, δ) and when the number of the moment condition functions is greater than

the number of parameters, the model is said to be over identified. Over identifi-

cation allows us to check whether the model’s moment conditions match the data

or not. Conceptually we can check whether f̂(xi, δ̂) is sufficiently close to zero to

suggest that the model fits the data well. Since the GMM technique has then re-

placed the problem of solving f̂(xt, δ) = 0, which choose δ to match the restriction

exactly by minimization calculation. The minimization can always be conducted

even when no δ0 exists such that f(xt, δ0) = 0. This is what J-test does.
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We consider two hypothesis

H0 : f(xt, δ0) = 0

H1 : f(xt, δ) 6= 0 , ∀δ ∈ Θ.

Under hypothesis H0, the following so called J− statistic is asymptotically χ2 with

with m− k degrees of freedom. Define J as

J = Nf̂ ′(xt, δ̂)Wf̂(xt, δ̂), (4.15)

where δ̂ is the GMM estimator of δ0 and W the optimal weighting matrix. If the

test statistic shows rejection, then the underlying model that generated the system

of moment conditions is declared invalid.

We will next discuss the statistical properties of the log return and interest

rate to derive the moment condition function to find the GMM estimator.

4.3 Statistical Properties

In this section, the model concerned is described following the SDE (4.3)

- (4.5). For the statistical properties for this model, we rely on the Kolmogorov

backward equation to solve for the conditional characteristic functions of the log

return and to derive the moment conditions.

Lemma 4.2. Given the interest rate process rt defined in equation (4.4), the char-

acteristic function is given by

φ(u; rt) = exp

[
iu

β

[
α− σ2

r

2β

]
− u2σ2

r

4β

]
.

Sometimes called the unconditional characteristic function (UCF).

Proof. We consider the interest rate process

drt =

(
α− βrt −

σ2
r

β

(
1− e−β(T−t))) dt+ σrdZ

rT
t .
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We specialize the definition of the conditional characteristic function (CCF) for

the process rt as follows

f(rt, t) := E
[
eiurT |rt

]
. (4.16)

Applying Itô’s formula to Yt = f(rt, t) yields

dY =
∂f

∂t
dt+

∂f

∂r
dr +

1

2

∂2f

∂r2
(dr)2 .

Substituting equation (4.4) into above equation and simplifying, we get

dY =
∂f

∂t
dt+

∂f

∂r

((
α− βrt −

σ2
r

β

(
1− e−β(T−t))) dt+ σrdZ

rT
t

)
+

1

2

∂2f

∂r2

((
α− βrt −

σ2
r

β

(
1− e−β(T−t))) dt+ σrdZ

rT
t

)2

=
∂f

∂t
dt+

(
α− βrt −

σ2
r

β

(
1− e−β(T−t))) ∂f

∂r
dt+ σr

∂f

∂r
dZrT

t

+
1

2

∂2f

∂r2

(
σ2
rdZ

rT
t dZrT

t

)
=

[
∂f

∂t
+

(
α− βrt −

σ2
r

β

(
1− e−β(T−t))) ∂f

∂r
+
σ2
r

2

∂2f

∂r2

]
dt+ σr

∂f

∂r
dZrT

t .

Since f(rt, t) is a martingale, by setting the drift term to zero, we obtain

∂f

∂t
+

(
α− βr − σ2

r

β

(
1− e−β(T−t))) ∂f

∂r
+
σ2
r

2

∂2f

∂r2
= 0. (4.17)

We guess that the solution to equation (4.17) is also a linear function of the form

f(u; r, τ) = exp(A(u, τ) +B(u, τ)r), (4.18)

where τ = T − t and the solution satisfies the boundary condition

f(u; r, T ) = exp(iur)

implies that as τ → 0, A(u, 0) = 0 and B(u, 0) = iu .

Next, we compute

∂f

∂t
= −f (A′(τ) + rB′(τ)) ,

∂f

∂r
= fB,

∂2f

∂r2
= fB2. (4.19)
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Substituting all the terms above into equation (4.17), understanding that

f(u; r, τ) 6= 0, we obtain:

−f (A′(τ) + rB′(τ)) +

(
α− βr − σ2

r

β
(1− e−βτ )

)
fB +

σ2
r

2
fB2 = 0.

After canceling the common factor of f , we obtain:

− (A′(τ) + rB′(τ)) +

(
α− βr − σ2

r

β
(1− e−βτ )

)
B +

σ2
r

2
B2 = 0. (4.20)

Equations (4.20) must be true for all r. So by setting r = 1 and r = 0 respectively,

we see the following equations must be true

A′(τ) =

(
α− σ2

r

β
(1− e−βτ )

)
B +

σ2
r

2
B2, (4.21)

B′(τ) = −βB, (4.22)

with boundary condition, A(u, 0) = 0 and B(u, 0) = iu.

Consider equation (4.22) with boundary condition B(u, 0) = iu, it is clear that

B(u, τ) = iu exp(−βτ). (4.23)

Substituting B(u, τ) into equation (4.21), we have

A′(τ) = iu

(
α− σ2

r

β
(1− e−βτ )

)
exp(−βτ)− σ2

r

2
u2 exp(−2βτ).

By the method of separation of variables, we have

dA =

(
iu

(
α− σ2

r

β
(1− e−βτ )

)
exp(−βτ)− σ2

r

2
u2 exp(−2βτ)

)
dτ.

Integrating both sides and simplifying, we obtain

A(u, τ) =

∫ (
iuαe−βτ − iuσ

2
r

β
e−βτ + iu

σ2
r

β
e−2βτ − σ2

r

2
u2e−2βτ

)
dτ

=

[
iuα− iuσ

2
r

β

] ∫ (
e−βτ

)
dτ +

[
iu
σ2
r

β
− σ2

r

2
u2

] ∫ (
e−2βτ )

)
dτ

= −iu
β

[
α− σ2

r

β

]
e−βτ −

[
iu

β
− u2

2

]
σ2
r

2β
e−2βτ ) + A0.
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With the boundary condition A(u, 0) = 0, we have

A0 =
iu

β

[
α− σ2

r

β

]
+

[
iu

β
− u2

2

]
σ2
r

2β
.

Therefore

A(u, τ) =
iu

β

[
α− σ2

r

β

]
(1− e−βτ ) +

[
iu

β
− u2

2

]
σ2
r

2β

(
1− e−2βτ

)
.

Finally, the conditional characteristic function of the interest rate process is

f(u; rt) = exp

[
iu

β

[
α− σ2

r

β

]
(1− e−βτ ) +

[
iu

β
− u2

2

]
σ2
r

2β

(
1− e−2βτ

)
+ iue−βτrt)

]
.

In the case that rt is stationary, the characteristic function of the process can be

derived from conditional characteristic function, namely through

φ(u; rt) =: lim
τ→∞

f(u, rt).

Hence, the characteristic function of rt is given by

φ(u; rt) = exp

[
iu

β

[
α− σ2

r

2β

]
− u2σ2

r

4β

]
. (4.24)

Therefore, rt is a normal probability distribution process with mean 1
β

[
α− σ2

r

2β

]
and variance σ2

r

2β
. The proof is now complete.

Next, we consider the given stochastic process as defined in equation (4.3).

Applying Itô’s formula for jump diffusion, the log asset price process is given by

dXt =

(
rt − λm−

1

2
σ2vt

)
dt+ σρvdZ

vT
Tt + σ

√
1− ρ2

vdZ
T
Tt + Y dNt. (4.25)

The following lemma shows the joint characteristic function of the log return

process Rt+τ = Xt+τ −Xt and interest rate process by using the joint conditional

characteristic function.



 

 

 

 

 

 

 

 

67

Lemma 4.3. Given the stochastic process defined in equation (4.25), (4.4) and

(4.5), the joint characteristic function of log return Rt+τ = Xt+τ −Xt and interest

rate rt+τ can be derived as

φ(u1, u2, u3;Rt+τ , rt+τ ) = exp


A(τ, u1, 0, u3)− 2γκ

σ2
r

ln
(

1− B(τ,u1,0,u3)σ2
r

2γ

)
+C(τ,u1,0,u3)+iu3

β

(
α− σ2

r

2β

)
− (−iC(τ,u1,0,u3)+u3)2σ2

r

4β
+ ϕ(u1,∆Jt)

 ,

where

A(τ, u1, u2, u3) = − 1
β

{
u3σ

2
r

(
u1
β
− u3

)} (
1− e−βτ

)
+ 1

2β
i
(
u1
β
− u3

)
σ2
r

β

+ 1
β

{(
iu1
β
− iu3

)(
α− σ2

r

β

)
− σ2

r

β

(
iu1
β
− 2iu3

)
+ σ2

r

(
u1
β
− u3

)2
}(

1− e−βτ
)

−
(
u1
β
− u3

)2
σ2
r

2

(
1− e−2βτ

)
−
((

α− σ2
r

β

)(
iu1
β
− 2iu3

)
σ2
r

2

(
u1
β
− u3

)2
)
τ

+u3σ
2
rτ

2
(
u1
β
− u3

)
+ (u2

1σ
2 − u2

3σ
2
r)

τ
2
− (λµJ iu1 − γκiu2) τ

− 2κγn3

(n2−∇)2
ln
[
4∇2

(
eτ∇ (n2 −∇)− (n2 +∇)

)2
]
− 2κγn3τ

(n2−∇)
,

B(τ, u1, u2, u3) =
2n3

[
eτ∇ − 1

]
(n2 +∇)− eτ∇ (n2 −∇)

, n2 = iu1σσvρv + σ2
viu2 − γ,

C(τ, u1, u2, u3) =

(
iu1

β
− iu3

)(
e−βτ − 1

)
, ϕ(u1,∆Jt) = λ∆

(
eiu1µJ−

1
2
u21σ

2
J − 1

)
,

n3 = −u1u2σσvρv − γiu2 −
iu1σ

2

2
− σ2

v

2
u2

2, ∇ =
√
n2

2 − 2n3σ2
v .

Proof. We specialize the definition of the joint conditional characteristic function

of the continuous component for the process Xt, rt and vt following Jiang and

Knight (2002), as

φ(u1, u2, u3 : Xt+τ , vt+τ , rt+τ |Xt, vt, rt) = E
[
eiu1Xt+τ+iuvt+τ+iurt+τ |Xt, rt, vt

]
,

(4.26)

so that we apply Itô’s formula to Yt = ϕ(Xt, rt, vt, t):

dY = ∂ϕ
∂t
dt+ ∂ϕ

∂x
d+ ∂ϕ

∂r
dr + ∂ϕ

∂v
dv + 1

2
∂2ϕ
∂x2

(dx)2 + 1
2
∂2ϕ
∂r2

(dr)2 + 1
2
∂2ϕ
∂v2

(dv)2

+ ∂2ϕ
∂x∂r

(dxdr) + ∂2ϕ
∂x∂v

(dxdv) + ∂2ϕ
∂v∂r

(dvdr) .
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Substitute equation (4.25), (4.4) and (4.5) into above equation and simplifying,

we get

dY =

 ∂ϕ
∂t

+
(
r − λm− 1

2
σ2v
)
∂ϕ
∂x

+
(
α− βr − σ2

r

β

(
1− e−βτ

))
∂ϕ
∂r

+γ(κ− v)∂ϕ
∂v

+ 1
2
σ2v ∂

2ϕ
∂x2

+ 1
2
σ2
r
∂2ϕ
∂r2

+ 1
2
σ2
vv

∂2ϕ
∂v2

+ σσvρvv
∂2ϕ
∂x∂v

 dt
+
∂ϕ

∂x

[
σρv
√
vdZvT + σ

√
v(1− ρ2

v)dZ
T
]

+
∂ϕ

∂r

[
σrdZ

rT
]

+
∂ϕ

∂v

[
σv
√
vdZvT

]
.

Using its martingale property, we can derive the Kolmogorov backward equation:

0 =
∂ϕ

∂t
+

(
r − λm− 1

2
σ2v

)
∂ϕ

∂x
+

(
α− βr − σ2

r

β

(
1− e−βτ

)) ∂ϕ

∂r

+γ(κ− v)
∂ϕ

∂v
+
σ2v

2

∂2ϕ

∂x2
+
σ2
r

2

∂2ϕ

∂r2
+
σ2
vv

2

∂2ϕ

∂v2
+ σσvρvv

∂2ϕ

∂x∂v
. (4.27)

The joint conditional characteristic function should satisfy the following PDE

(4.27). The usual practice in solving this kind of PDE (4.27) is to guess the

general form of the solution. Inspired by work of Heston (1993) and Duffie as well

as Pan and Singleton (2000), we guess the solution is following structure

ϕ(
⇀
u;x, v, , r, t) = exp(A(τ,

⇀
u) +B(τ,

⇀
u)v +C(τ,

⇀
u)r + iu1x+ iu2v + iu3r), (4.28)

where
⇀
u = (u1, u2, u3) , τ = T − t. the solution satisfies the boundary condition

ϕ(
⇀
u;x, v, , r, T ) = exp(iu1xT + iu2vT + iu3rT ),

which implies that A(0,
⇀
u) = B(0,

⇀
u) = C(0,

⇀
u) = 0.

Firstly, we compute

∂ϕ
∂t

= ϕ
(
−∂A

∂τ
− v ∂B

∂τ
− r ∂C

∂τ

)
, ∂ϕ

∂x
= iu1ϕ,

∂ϕ
∂v

= ϕ (B + iu2) ,

∂ϕ
∂r

= ϕ (C + iu3) , ∂2ϕ
∂x2

= −u2
1ϕ,

∂2ϕ
∂v2

= ϕ (B + iu2)2

∂2ϕ
∂r2

= ϕ (C + iu3)2 , ∂2ϕ
∂x∂v

= iu1(B + iu2)ϕ.

Then substitute all term above into equation (4.27), understanding that
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ϕ(
⇀
u;x, v, , r, t) 6= 0:

0 = (−A′(τ)− vB′(τ)− rC ′(τ)) +
(
r − λm− 1

2
σ2v
)
iu1 + γ(κ− v) (B + iu2)

+
(
α− βr − σ2

r
(
1− e−βτ

))
(C + iu3)− σ2v

2
u2

1 + σ2
r

2
(C + iu3)2

+σ2
vv
2

(B + iu2)2 + σσvρvviu1(B + iu2).

(4.29)

Equation (4.29) must be true for all rt, vt, so we can transform it to three ordinary

differential equations as follows:

A′(τ) =

(
α− σ2

r

β

(
1− e−βτ

))
(C + iu3)

+γκB +
σ2
r

2
(C + iu3)2 − λmiu1 + γκiu2, (4.30)

C ′(τ) = −βC + i(u1 − βu3) (4.31)

B′(τ) =
σ2
v

2
B2 +

(
σ2
viu2 + σσvρviu1 − γ

)
B − u1u2σσvρv − γiu2

−σ
2
vu

2
2

2
− σ2

2

(
iu1 + u2

1

)
. (4.32)

Under the conditions A(0,
⇀
u) = B(0,

⇀
u) = C(0,

⇀
u) = 0.

Considering equation (4.31) with initial condition C(0,
⇀
u), it is clear that

C(τ,
⇀
u) =

(
iu1

β
− iu3

)(
e−βτ − 1

)
. (4.33)

Let n1 = σ2
v

2
, n2 = iu1σσvρv + σ2

viu2 − γ, and n3 = −u1u2σσvρv − γiu2 −

σ2

2
(iu1 + u2

1)− σ2
v

2
u2

2.

Substituting them into equation (4.32), we get

B′(τ) = n1

(
B +

n2 −
√
n2

2 − 4n3n1

2n1

)(
B +

n2 +
√
n2

2 − 4n3n1

2n1

)
.

Separating variable yeilds:

dB(
B +

n2−
√
n2
2−4n3n1

2n1

)(
B +

n2+
√
n2
2−4n3n1

2n1

) = n1dτ. (4.34)
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Using the partial fraction decomposition, equation (4.34) becomes 1(
B +

n2−
√
n2
2−4n3n1

2n1

) − 1(
B +

n2+
√
n2
2−4n3n1

2n1

)
 dB =

√
n2

2 − 4n3n1dτ.

Integrating both sides, we obtain:

ln

B +
n2−
√
n2
2−4n3n1

2n1

B +
n2+
√
n2
2−4n3n1

2n1

 = τ
√
n2

2 − 4n3n1 +B0. (4.35)

Using the boundary condition B(0,
⇀
u) = 0, we obtain

B0 = ln

(
n2 −

√
n2

2 − 4n3n1

n2 +
√
n2

2 − 4n3n1

)

.

Letting ∇ =
√
n2

2 − 4n3n1 and substituting B0 into equation (4.35), we get

B(τ, ~u) =
2n3

[
eτ∇ − 1

]
(n2 +∇)− eτ∇ (n2 −∇)

.

To Solve for A(τ, ~u), we substitute the value of B(τ, ~u) and C(τ, ~u) into equation

(4.31)

A′(τ) =

{(
iu1
β
− iu3

)(
α− σ2

r

β

)
− σ2

r

β

(
iu1
β
− 2iu3

)
+ σ2

r

2

(
u1
β
− u3

)2

2

}
e−βτ

−u3σ
2
r

(
u1
β
− u3

)
e−βτ +

{
i
(
u1
β
− u3

)
σ2
r

β
−
(
u1
β
− u3

)2
σ2
r

2

}
e−2βτ

+
2κγn3[eτ∇−1]

(n2+∇)−eτ∇(n2−∇)
− λµJ iu1 + u3σ

2
r

(
u1
β
− u3

)
+ iγκu2 − u21σ

2

2
− u23σ

2
r

2

−
(
α− σ2

r

β

)(
iu1
β
− 2iu3

)
− σ2

r

2

(
u1
β
− u3

)2

.

Again separating variables, we obtain

dA =



{(
iu1
β
− iu3

)(
α− σ2

r

β

)
− σ2

r

β

(
iu1
β
− 2iu3

)}
e−βτ + u3σ

2
r

(
u1
β
− u3

){
σ2
r

(
u1
β
− u3

)2

− u3σ
2
r

(
u1
β
− u3

)}
e−βτ + iγκu2 − u21σ

2

2
− u23σ

2
r

2

+

{
i
(
u1
β
− u3

)
σ2
r

β
−
(
u1
β
− u3

)2
σ2
r

2

}
e−2βτ − σ2

r

2

(
u1
β
− u3

)2

+
2κγn3[eτ∇−1]

(n2+∇)−eτ∇(n2−∇)
− λµJ iu1 −

(
α− σ2

r

β

)(
iu1
β
− 2iu3

)


dτ.

(4.36)
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Let us note that∫ 2κγn3[eτ∇−1]
(n2+∇)−eτ∇(n2−∇)

dτ = 2κγn3

∫ [eτ∇−1]
(n2+∇)−eτ∇(n2−∇)

dτ

= − 2κγn3

(n2−∇)

(
2 ln(eτ∇(n2−∇)−(n2+∇))

(n2−∇)
+ τ

)
+H0.

Integrating both sides of equation (4.36), we obtain

A (τ, ~u) = − 1
β

{(
iu1
β
− iu3

)(
α− σ2

r

β

)
− σ2

r

β

(
iu1
β
− 2iu3

)}
e−βτ

− 1
β

{
+σ2

r

(
u1
β
− u3

)2

− u3σ
2
r

(
u1
β
− u3

)}
e−βτ + u3σ

2
rτ

2
(
u1
β
− u3

)
− 1

2β

{
i
(
u1
β
− u3

)
σ2
r

β
−
(
u1
β
− u3

)2
σ2
r

2

}
e−2βτ − (λmiu1 − γκiu2) τ

−
(
u21σ

2

2
+

u23σ
2
r

2
+
(
α− σ2

r

β

)(
iu1
β
− 2iu3

)
+ σ2

r

2

(
u1
β
− u3

)2
)
τ

− 2κγn3

(n2−∇)

(
2 ln(eτ∇(n2−∇)−(n2+∇))

(n2−∇)
+ τ

)
+ A0.

Using the boundary condition A(0, ~u) = 0:

A0 = 1
β

{(
iu1
β
− iu3

)(
α− σ2

r

β

)
− σ2

r

β

(
iu1
β
− 2iu3

)
+ σ2

r

(
u1
β
− u3

)2
}

+ 1
2β

{
i
(
u1
β
− u3

)
σ2
r

β
−
(
u1
β
− u3

)2
σ2
r

2

}
+2κγn3 ln(2∇)2

(n2−∇)2
− u3σ2

r

β

(
u1
β
− u3

)
.

Hence

A(τ, ~u) = 1
β

{(
iu1
β
− iu3

)(
α− σ2

r

β

)
− σ2

r

β

(
iu1
β
− 2iu3

)} (
1− e−βτ

)
+ 1
β

{
σ2
r

(
u1
β
− u3

)2

− u3σ
2
r

(
u1
β
− u3

)}(
1− e−βτ

)
+ u3σ

2
rτ

2
(
u1
β
− u3

)
+ 1

2β

{
i
(
u1
β
− u3

)
σ2
r

β
−
(
u1
β
− u3

)2
σ2
r

2

}(
1− e−2βτ

)
− (λmiu1 − γκiu2) τ

−
(
u21σ

2

2
+

u23σ
2
r

2
+
(
α− σ2

r

β

)(
iu1
β
− 2iu3

)
+ σ2

r

2

(
u1
β
− u3

)2
)
τ

− 2κγn3

(n2−∇)2
ln
[
4∇2

(
eτ∇ (n2 −∇)− (n2 +∇)

)2
]
− 2κγn3τ

(n2−∇)
.

(4.37)

Now, if we define Rt+τ = Xt+τ − Xt as a log return, then the joint CCF can be
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derived as

ϕ(u1, u2, u3;Rt+τ , vt+τ , rt+τ ) = E
[
eiu1Rt+τ+iu2vt+τ+iu3rt+τ |Xt, rt, vt

]
= E

[
eiu1(Xt+τ−Xt)+iu2vt+τ+iu3rt+τ |Xt, rt, vt

]
= e−iu1(Xt)E

[
eiu1(Xt+τ )+iu2vt+τ+iu3rt+τ |Xt, rt, vt

]
= e−iu1(Xt)eA(u1,u2,u3,τ)+B(u1,u2,u3,τ)vt+C(u1,u2,u3,τ)rt+iu1Xt+iu2vt+iu3rt

= eA(u1,u2,u3,τ)+B(u1,u2,u3,τ)vt+C(u1,u2,u3,τ)rt+iu2vt+iu3rt

(4.38)

and furthermore, the joint CCF of Rt+τ , rt can be derived as

ϕ(u1, u3;Rt+τ , rt+τ |Xt, vt, rt) = ϕ(u1, 0, u3;Rt+τ , vt+τ , rt+τ |Xt, vt, rt)

= E (exp(iu1Rt+τ + iu3rt+τ )|Xt, vt, rt)

= exp(A(τ, u1, 0, u3) +B(τ, u1, 0, u3)vt + C(τ, u1, 0, u3)rt + iu3rt).

(4.39)

Next, the joint characteristic function of the continuous component for the process

Rt and rt is given by

φ(u1, u3;Rt+τ , rt+τ ) = φ(u1, 0, u3;Rt+τ , vt+τ , rt+τ )

= E [exp(iu1Rt+τ + iu3rt+τ )]

= E [E [exp(iu1Rt+τ + iu3rt+τ )|Xt, rt, vt]]

= E [exp(A(τ, u1, 0, u3) +B(τ, u1, 0, u3)vt + C(τ, u1, 0, u3)rt + iu3rt)]

= exp(A(τ, u1, 0, u3))E [exp(B(τ, u1, 0, u3)vt + (C(τ, u1, 0, u3) + iu3) rt)]

= exp(A(τ, u1, 0, u3))E [exp(i(−iB(τ, u1, 0, u3))vt)]

E [exp (i (−iC(τ, u1, 0, u3) + u3) rt)]

= exp(A(τ, u1, 0, u3))φ(−iB(τ, u1, 0, u3), vt)φ (−iC(τ, u1, 0, u3) + u3, rt) .

(4.40)

Now using the fact that vt follows a Gamma distribution with f(vt) = θω

Γ(ω)
vω−1
t e−θvt

where θ = 2γ
σ2
v

and ω = 2κγ
σ2
v

. Since the characterisitc function of vt in turn is given

by
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φ (u; vt) =

(
1− iuσ2

v

2γ

)− 2γκ

σ2v

= exp

(
−2γκ

σ2
v

ln

(
1− iuσ2

v

2γ

))
, (4.41)

Using the Characteristic function of rt from Lemma 4.1, we obtain

φ(u1, u2, u3;Rt+τ , rt+τ ) = exp

 A(τ, u1, 0, u3)− 2γκ
σ2
r

ln
(

1− B(τ,u1,0,u3)σ2
r

2γ

)
+C(τ,u1,0,u3)+iu3

β

(
α− σ2

r

2β

)
− (−iC(τ,u1,0,u3)+u3)2σ2

r

4β


(4.42)

To incorporate the jump term, since jumps are homogeneous and independent for

the continuous part, we need only to multiply the characteristic function that we

have obtained by the characteristic function of the jumps as follows.

The characteristic function of compound Poisson process is explicitly given

by

φ(u, Jt)= exp [λt (φ(u, Y ))− 1] , (4.43)

where φ(u, Y ) is the characteristic function of jump size random variable, i.e.

φ(u, Y ) = exp

[
iuµJ −

1

2
u2σ2

J

]
. (4.44)

Since the compound Poisson process is stationary incremental, then

φ(u,∆Jt)= exp [λ∆ (φ(u, Y ))− 1] = exp

[
λ∆

(
exp

[
iuµJ −

1

2
u2σ2

J

]
− 1

)]
.

(4.45)

Finally, the joint characteristic function of the log return and the interest rate is

given by

φ(u1, u2, u3;Rt+τ , rt+τ ) = exp


A(τ, u1, 0, u3)− 2γκ

σ2
r

ln
(

1− B(τ,u1,0,u3)σ2
r

2γ

)
+C(τ,u1,0,u3)+iu3

β

(
α− σ2

r

2β

)
− (−iC(τ,u1,0,u3)+u3)2σ2

r

4β

+λ∆
(
exp

[
iu1µJ − 1

2
u2

1σ
2
J

]
− 1
)
.


The proof is now complete.
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Lemma 4.4. The log asset price Xt defined in equation (4.13) are stationary

processes with the log return Rt+τ = Xt+τ −Xt, with the following two moments

E [Rt+τ ] = 3σ2
r

2β3

(
1− e−βτ

)
− σ2

r

2β3 (1− e−2βτ )− κσ2 (eτγ + 1− γτ)

− τ
β

(
α− σ2

r

β

)
− κσ2

2γ
(1− e−γτ )

V [Rt+τ ] = σ2
r

2β3

(
(e−βτ − 2)2 − 1

)
−
(
σ2 + σ2

r

β2

)
τ − σ2

r

2β2

(
e−βτ − 1

)2

−σ3σvρκ
γ2

(1− (1 + τγ)e−γτ )− λτ (σ2
J + µ2

J)

+κσ4σ2
v

4γ3
(1− σe−2γτ − 2τγe−γτ )− κσ2

vσ
4

8γ3
(1− e−τγ)2

+$0

where

$0 = σ4σ2
v

2γ4

(
1− ln (2γ) + 1

4
γ
)

+
(
2 ln (2γ)− 1 + γ

2
(τ − 1)

)
σ3σvρ
γ3

.

Proof. The moment of the log return Rt+τ can be derived form the marginal

characteristic function as given in Lemma 4.3. Suppose E
[
|Rt|k

]
<∞, then

E
[
Rk
t+τ

]
= i−k

dk

duk1
φ(u1;Rt+τ )

∣∣∣∣
u1=0

, (4.46)

where φ(u1;Rt+τ ) = φ(u1, 0, 0;Rt+τ , rt+τ ) , that is

φ(u1, 0, 0;Rt+τ , rt+τ ) = exp


A(τ, u1) + C(τ, u1)

(
α
β
− σ2

r

2β2

)
+ (C(τ,u1))2σ2

r

4β

−2γκ
σ2
v

ln
(

1− B(τ,u1)σ2
v

2γ

)
+λ∆

(
exp

[
iu1µJ − 1

2
u2

1σ
2
J

]
− 1
)

 ,

(4.47)

A(τ, u1) = 1
β

{(
α− σ2

r

β

)(
iu1
β

)
− σ2

r

β2 (iu1 + u2
1)
}(

1− e−βτ
)
− λµJ iu1τ

+ σ2
r

2β3

{
iu1 − u21

2

}(
1− e−2βτ

)
+
(
−u21σ

2

2
−
(
α− σ2

r

β

)(
iu1
β

)
− σ2

ru
2
1

2β2

)
τ

− 2κγn3

(n2−∇)2
ln
[
4∇2

(
eτ∇ (n2 −∇)− (n2 +∇)

)2
]
− 2κγn3τ

(n2−∇)
,

B(τ, u1) =
2n3[eτ∇−1]

(n2+∇)−eτ∇(n2−∇)
, C(τ, u1) =

(
iu1
β

) (
e−βτ − 1

)
,

∇ =
√
n2

2 − 2n3σ2
v , n2 = iu1σσvρv − γ, n3 = − iu1σ2

2
.

Now, the first moment will be found by using equation (4.47) with k =1:

E [Rt+τ ] = i−1 d

du1

φ(u1;Rt+τ )

∣∣∣∣
u1=0

, (4.48)
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where

d
du1
φ(u1;Rt+τ )|u1=0

= φ(0;Rt+τ )
d
du1


A(τ, u1) + C(τ, u1)

(
α
β
− σ2

r

2β2

)
+ (C(τ,u1))2σ2

r

4β
− 2γκ

σ2
v

ln
(

1− B(τ,u1)σ2
v

2γ

)
+λτ

(
exp

[
iu1µJ − 1

2
u2

1σ
2
J

]
− 1
)


u1=0

.
(4.49)

Note that, we calculate the following the first derivative at u1 = 0:

d
du1
A(τ, u1)

∣∣∣
u1=0

= i
β2

(
1− e−βτ

) (
α− 2σ2

r

β

)
+ σ2

r i
2β3

(
1− e−2βτ

)
− iτ

β

(
α− σ2

r

β

)
−λmiτ − iσ2κ

2γ
(τγ + 2 ln(2γ))− 2iκτσ2γ2,

d
du1
C(τ, u1)

∣∣∣
u1=0

= i
β

(
e−βτ − 1

)
, d

du1
C2(τ, u1)

∣∣∣
u1=0

= 0,

d
du1
λτ
(
exp

[
iu1m− 1

2
u2

1σ
2
J

]
− 1
)∣∣∣
u1=0

= imλτ,

−2γκ
σ2
v

d
du1

ln
[
1− B(τ,u1,0,0)σ2

v

2γ

]∣∣∣
u1=0

= − iκσ2

2γ
(1− e−γτ ).

Substitute all term above into equation (4.49) we obtain

d
du1
φ(u1;Rt+τ )

∣∣∣
u1=0

= i
(

1
β2

(
1− e−βτ

) (
2α− 3σ2

r

2β

)
− τ

β

(
α− σ2

r

β

))
−i
(
σ2κ
2γ

(2 ln (2γ) + τ∇+ e−γτ − 1))− 2κτσ2γ
)
.

Therefore

E [Rt+τ ] = 1
β2

(
1− e−βτ

) (
2α− 3σ2

r

2β

)
− τ

β

(
α− σ2

r

β

)
− 2κτσ2γ

−σ2κ
2γ

(2 ln (2γ) + τ∇+ e−γτ − 1)) .

Next, we will compute the variance of Rt+τ by using the relation between the

cumulant function η(u) and the characteristic function, i.e., η(u) = lnφ(u) such

that the variance of Rt+τ can be derived by

V [Rt+τ ] = d2

du21
ln [φ(u1;Rt+τ )]

∣∣∣
u1=0

= d2

du21

 A(τ, u1) + C(τ, u1)
(
α
β
− σ2

r

2β2

)
+ (C(τ,u1))2σ2

r

4β

−2γκ
σ2
v

ln
(

1− B(τ,u1)σ2
v

2γ

)
+ λτ

(
exp

[
iu1µJ − 1

2
u2

1σ
2
J

]
− 1
)

∣∣∣∣∣∣∣
u1=0

.

(4.50)
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We calculate the derivative as follows:

d2

du21
C(τ, u1)

∣∣∣
u1=0

= 0, d2

du21
C2(τ, u1)

∣∣∣
u1=0

= − 2
β

(
e−βτ − 1

)2
,

d2

du21
B(τ, u1)

∣∣∣
u1=0

= ρσvσ3

γ2
(1− e−γτ − τγe−γτ )− σ4σ2

v

4γ3
(1− σe−2γτ − 2τγe−γτ ) ,

d2

du21
λτ
(
exp

[
iu1µJ − 1

2
u2

1σ
2
J

]
− 1
)∣∣∣
u1=0

= −λτ (σ2
J + µ2

J) ,

d2

du21
A((τ, u1))

∣∣∣
u1=0

= σ2
r

2β3

(
(e−βτ − 2)2 − 1

)
−
(
σ2 + σ2

r

β2

)
τ+σ4σ2

v

2γ4

(
1− ln (2γ) + 1

4
γ
)

+
(
2 ln (2γ)− 1 + γ

2
(τ − 1)

)
σ3σvρ
γ3

,

−2γκ
σ2
v

d2

du21
ln
[
1− B(τ,u1)σ2

v

2γ

]
u1=0

= −κρσvσ3

γ2
(1− e−γτ − τγe−γτ )

+κσ4σ2
v

4γ3
(1− σe−2γτ − 2τγe−γτ )− κσ2

vσ
4

8γ3
(1− e−τγ)2

.

Substituting all the terms above into equation (4.50), we get

V [Rt+τ ] = σ2
r

2β3

(
(e−βτ − 2)2 − 1

)
−
(
σ2 + σ2

r

β2

)
τ+σ4σ2

v

2γ4

(
1− ln (2γ) + 1

4
γ
)

+
(
2 ln (2γ)− 1 + γ

2
(τ − 1)

)
σ3σvρ
γ3
− σ2

r

2β2

(
e−βτ − 1

)2 − κσ2
vσ

4

8γ3
(1− e−τγ)2

−σ3σvρκ
γ2

(1− (1 + τγ)e−γτ ) + κσ4σ2
v

4γ3
(1− σe−2γτ − 2τγe−γτ )− λτ (σ2

J + µ2
J) .

The proof is now complete.

4.4 The GMM Estimator for Stochastic Volatility Jump

Diffusion Model with Stochastic Interest Rate

In this section, we shall estimate the parameters for the SVJSI model as

in equation (4.3)-(4.5) using the GMM technique. The GMM estimates δ̂ of δ

depend on the chosen condition function f(xt, δ). So, we shall present the moment

selection for the interest rate process in section 4.4.1 and for asset price in the next

section.

4.4.1 The Process of Selecting Moments for Interest Rate

In this section, we concentrate on the GMM estimator of the interest rate

model satisfying the TF-Vasicek process as in equation (4.4), by using the same
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idea of Chan, Karolyi, Longstaff and Sanders (1992).

Firstly, we have to apply the Euler discretization scheme to discretize the

model as follows:

rt+1 − rt = (α− βrt − ψ) + εt+1, εt+1 ≡ σrN(0, 1), (4.51)

where ψ = −σ2
r

β

(
1− e−β(T−t)) and N(0, 1) is normal variable with zero mean and

unit variance.

The parameter set is δ = (α, β, σr)
′ and set εt+1 = rt+1 + (β − 1)rt + ψ− α

with εt+1 ∼ N(0, σ2
r), giving us an abundance of moment conditions:

E [εt+1] = 0, E
[
ε2
t+1 − σ2

r

]
= 0, E

[(
ε2
t+1 − σ2

r

)
rt
]

= 0, E [εt+1rt] = 0,

that is

f(rt, δ) =



εt+1

ε2
t+1 − σ2

r

εt+1rt(
ε2
t+1 − σ2

r

)
rt


. (4.52)

Given a value for δ, we can compute the sample moments condition function. For

instance, sample moments as in equation (4.52) are

f̂ (rt, δ) =



1
N

N∑
t=1

εt+1

1
N

T∑
t=1

(
ε2
t+1 − σ2

r

)
1
N

T∑
t=1

εt+1rt

1
N

T∑
t=1

(
ε2
t+1 − σ2

r

)
rt


. (4.53)

We will use the moment function as in equation (4.52) and the sample moment

condition function as in (4.53) in the GMM procedure which discussed in section

4.2 to estimate parameters α, β and σr.
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4.4.2 Selecting Moment for Asset Price Process

In the previous section, we discuss the moment selection to estimate param-

eter α, β and σr . These fixed parameters will be used in model (4.3)-(4.5) where

the set of parameters δ = (σ, ρ, γ, κ, σv, µJ , σJ , λ) has not yet been estimated. As

shown in section 4.3, moments can be derived from the joint characteristics func-

tion to derive the GMM estimates δ̂ for δ .

Let Zt = Rt+1 − E [Rt+1] , t = 1, 2, 3, ..., N be the demeaned log return process,

with expectation of Zt calculated as in Lemma 4.4. Furthermore, we define

f(Rt, δ) =


Zn
t − E [Zn

t ]

ZtZt+1 − E [ZtZt+1]

Z2
t Z

2
t+k − E

[
Z2
t Z

2
t+k

]

 (4.54)

as a vector of various chosen moment conditions function with n = 1, 2, 3, 4, 5 and

k = 1, 2, 3 such that E[f(Rt, δ)] = 0.

The moment condition functions f(Rt, δ) are chosen with further consider-

ations to estimation efficiency of the model. First, the jump component is only

reflected in the moments. Also, the stochastic volatility and random jump both

allow for skewness and kurtosis, so that the first group of moment condition func-

tion, i.e. fn(Rt, δ) = Zn
t − E[Zn

t ] for n = 1, 2, 3, 4, 5, is important for estimation

the parameter. Secondly, since the autocorrelation of log return and squared log

return is determined by the activity rate process vt and its correlation with asset

price, the joint moments of log return and squared log returns (second and third

group in equation (4.54)) are important for the identification of the SVJSI process.

As autocorrelation varies over time, we can use these moment condition functions

with different lags, namely k = 1, 2, 3.
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4.5 The Estimation Results

The data for sample moment conditions functions include the daily

price observations for the SET50 index and daily observations for rates on

three month Treasury bill of Thailand from January 4, 2010 to October 26,

2011. The data set for these stock price and Treasury bill rate were ob-

tained from http://www.set.or.th. and http://www.thaibma.or.th. Figure 4.1

shows the daily asset price and the log return of the asset in this period, and

the daily rate of 3 month Treasury bills in the same period is shown in Figure 4.2.

Figure 4.1 The daily price of SET50 index (up) and the log return on SET50

index (down) between January 4, 2010 and October 26, 2011.
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Figure 4.2 The daily rate of 3 month Treasury bill of Thailand between January

4, 2010 and October 26, 2011.

The summary of the statistical properties of the daily SET50 index, log

return and 3-month Treasury bill rate are reported in Panel A of Table 4.1. We

can see that the log return of daily SET50 index is skewed and possesses positive

excess kurtosis, with its dynamic properties displayed in Panel B of Table 4.1,

where we can see that the autocorrelation for the SET50 log returns and squared

SET50 log returns with lag equal to 1 are -0.1341 and 0.3624, which is statistically

significant (95%) in the sample of 439 observations.

Figure 4.3 shows the historical volatility, that is the annualized standard

derivation of the log return as in equation (2.7), indicating that the historical

volatility of the log return on SET50 index is not constant over time.
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Table 4.1 The statistic and dynamic property of data set.

(a) Statistical property

Asset price Log return Treasury bill

Sample size 440 439 440

Mean 649.497 2.160 ×10−4 2.0566

Std 90.872 7.751×10−3 0.7794

Skewness -0.3384 -1.3920 0.5223

Kurtosis 1.7357 27.8365 1.9097

Maximum 801.440 0.0513 3.487

Minimum 480.600 -0.0754 1.097

(b) The dynamics property

Asset price Log return Square log return

Sample size 440 439 440

ACF with lag k

ρ(1) 0.9893* -0.1341* 0.3624*

ρ(2) 0.983* -0.0218 0.0037

ρ(3) 0.9774* -0.1363* 0.1050*

ρ(4) 0.9736* 0.1550* 0.0683*

ρ(5) 0.9377* -0.1554* 0.1003*

ρ(10) 0.9497* 0.0022 0.0093

ρ(20) 0.8917* -0.0149 -0.0110
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Figure 4.3 The 50 day historical volatility of the log return on SET50 index be-

tween January 4, 2010 and October 26, 2011.

For comparative purposes, we compute the Average Relative Percentage

Error (ARPE), which is by definition

ARPE =
1

N

N∑
i=1

∣∣∣∣wi − ŵiwi

∣∣∣∣× 100,

where N is the number of data, w = (wi)i≥1 is the empirical data and ŵ = (ŵi)i≥1

is the model price.

We used MATLAB to obtain the results of GMM parameter estimation (see

code in www.risklabbkk.com). The estimation routine was executed by running

the RunEstimation.m (uses GMMestimation.m, GMMobjective.m, GMMweight-

sNW.m and MomentsJacobia.m).

First, the parameter estimates for δ = (α, β, σr) are shown in table 4.2. The

statistic J-test shows it accept the hypothesis at 95 % confidence level, that means

the model is valid. After working 500 simulations with these fixed parameters with

initial value r0 = 1.110, we choose a sample path with the smallest ARPE, i.e.,

ARPE = 5.187%. Figure 4.4 shows that the empirical data of 3 month Treasury

bill closing price compared to the price simulated by the TF-Vasicek model:
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Table 4.2 GMM estimation results of interest rate model.

Parameter α β σr ARPE J-test

TF Vasieck 1.0764 0.0706 0.4673 5.187 0.8098

Figure 4.4 The rate behavior of 3 month Treasury bills of Thailand, between Jan-

uary 4, 2010 and October 26, 2011, as compared with a scenario simu-

lated from TF Vasicek model (solid line:= empirical data, dash line:=

simulation data) with N = 440 and ARPE = 5.187%.

Second, the SVJSI model parameters are σ = −0.381, σv = 0.801, ρ =

0.347, µJ = 0.0002, σJ = 0.030, κ = 2.218, γ = 0.525, α = 1.0764, β = 0.7543, λ =

2.949 and σr = 0.4673. After working 500 simulations with initial values

S0 = 518.54, v0 = 0.149, r0 = 1.110 and N = 440, we choose the smallest ARPE’s

sample path and show the price simulation as compared to the empirical data of

SET50 index closing price in Figure 4.5.
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Figure 4.5 The index behavior of SET50, between January 4, 2010 and Octo-

ber 26, 2011, as compared to a scenario simulated from SVJSI model

(solid line:= empirical data, dash line:= simulation data) with N =

440 and ARPE = 4.912%.

4.6 Application to a Financial Problem

In this section we use the SVJSI model as shown in equation (4.3)-(4.5) and

the parameter estimates as in section 4.4 to analyze the valuation of stock options

on SET50 index. The initial stock price was taken to be equal to 681.44, the

interest rate, 3.4386%, and the option’s maturity, 44 days. For our consideration,

the option price is presented by using the closed form solution and Monte Carlo

simulation. The closed form solution for SVJSI model referring to the closed form

solution in Chapter III is given by

C(t, St, rt, vt;T, κ) = StP1(t, x, r, v;T,K)−KP ∗(t, T )P2(t, x, r, v;T,K) (4.55)

where

Pj(t, x, r, v;T,K) =
1

2
+

1

π

∞∫
0

Re

[
e−iu lnKfj(t, x, r, v;T, u)

iu

]
du, (4.56)
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fj(t, x, r, v;T, u) = exp [iux+Bj(τ) + rCj(τ) + vEj(τ)− (j − 1) lnP ∗(t, t+ τ)] ,

P ∗(t, T ) = exp (a(t, T ) + b(t, T )rt) , b(t, T ) = 1
β

(
e−β(T−t) − 1

)
,

a(t, T ) =
(

3σ2
r

2β4 − α
β

)
(b(t, T ) + (T − t))− 3σ2

r

4β4 b
2(t, T ),

Bj(τ) =
[
γκζj
b1

ln
(

(b2j+ζj)e
τζ−(b2j−ζj)
2ζj

)
− τζjγκ(b2j+ζj)

2b1

]
+ (iu−j+1)α

β2

(
e−βτ − 1 + τβ

)
+ σ2

r

2β3

(
(iu−j+1)2

2
− (iu− j + 1)

)((
e−βτ − 2

)2 − 7− 2βτ
)

+ B̃j(τ),

Cj(τ) = iu−(j−1)
β

(1− e−βτ ), Ej(τ) =
(b22j−ζ2j )(eζτ−1)

2b1((b2j−ζj)−(b2j+ζj)eζτ)
,

B̃j(τ) = τ

(
e(iu+2−j)µJ+

(iu+2−j)2σ2J
2 − (2− j + iu)eµJ+

σ2J
2 + iu

)
, ςj =

√
b2

2j − 4b0b1

b0 = σ2

2
(iu− u2) , b1 = σ2

v

2
, b2j = (σσvρv(iu+ 2− j)− γ) .

The proof for this closed form solution is similar to Theorem 3.5. Even though

the formula looks complicated, it is really quite explicit and easy to evaluate in

MATLAB. The slight difficulty lies in the limits of the integral in equation (4.59),

so that the integral cannot be evaluated exactly, but can be approximated with

reasonable accuracy by using some numerical integration technique e.g., Gauss

Lagendre of Gauss Labatto integration. (see MATLAB code in Appendix A1).

For the same options, we now estimates the call option by using Monte

Carlo Simulation technique(see MATLAB code in Appendix A2):

C(t, St, rt, vt;T, κ) = P ∗(t, T )E [max(ST −K, 0)|St, vt, rt] .

Table 4.3 shows the market price and the estimate prices by using both

technique with a comparison of the speed of both. The estimated zero coupon

bond price is displayed in Table 4.4 .
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Table 4.3 Computing time of alternative numerical techniques for SVJSI model with S = 681.44, r = 3.4386

% and trading day: 27 Oct, 2011 and contract month: Dec, 2011. Numbers in parentheses are

standard errors for the estimates of the option price.

Exercise price Market price
Closed form Monte Carlo simulation for call option with N simulation

solution N = 50 N = 500 N = 2000 N = 10000

660 45.00 46.76 41.67 (4.989) 39.23 (1.529) 41.14 (0.873) 41.23 (0.156)

670 39.00 42.76 35.74 (3.867) 32.34 (1.245) 33.45 (0.645) 34.89 (0.233)

680 35.50 38.78 30.19 (3.921) 31.34 (1.233) 31.15 (0.648) 31.23 (0.189)

690 30.00 36.70 24.83 (3.459) 26.35 (1.259) 25.39 (0.523) 25.41 (0.197)

700 26.00 32.10 20.56 (2.336) 22.48 (0.829) 21.95 (0.528) 21.87 (0.198)

710 22.40 28.32 18.10 (2.381) 21.79 (0.821) 19.83 (0.643) 20.02 (0.197)

Computing time (sec) 0.07 0.19 2.59 32.45 852.47
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Table 4.4 Computing time of alternative numerical techniques for TF-Vasicek model with initial rate

r = 3.4386 %. Numbers in parentheses are standard errors for the estimates of bond price.

Closed form Monte Carlo simulation for zero coupon bond price with N simulation

solution N = 50 N = 500 N = 2000 N = 10000

0.985 0.987 (1.83×10−4) 0.975 (6.3×10−5) 0.981 (2.9 ×10−5) 0.983 (1.7 ×10−5)

Computing time (sec) 2 ×10−5 0.23 2.47 30.85 729.45



 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION AND RESEARCH

POSSIBILITY

5.1 Conclusion

This thesis has proposed the use of asset price dynamics to accommodate

the stochastic volatility Lévy model with the stochastic interest rate as driven by

Vasicek process. To incorporate the volatility effect to the model, we applied the

stochastic time change process, i.e., the Integrated CIR process, to the diffusion

part and jump part. In pricing an option when the interest rate is a stochastic

process, we have to consider the asset price dynamic under the T-forward measure,

i.e., the probability measure that is defined by the Radon-Nikodym derivative.

Using the Girsanov’s Theorem, we obtained the dynamic under the T-forward

measure.

Under T-forward measure, the formula of European call options was formu-

lated by inverting the characteristic function of the model. In order to solve the

characteristic function explicitly, we proved the lemma that established relation-

ship between stochastic volatility, stochastic interest rate and partial differential

equations. We then derived the explicit formula of characteristic function and the

probability distribution function by inverting the characteristic function. More-

over, the formula of the European option can be expressed in term of the probabil-

ity function. Hence by using the technique based on the characteristic function of

an underlying asset, an approximate formula of a European call options is derived
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explicitly.

To apply our work to finance, first of all we need to estimate the parameters

of the SVJSI model, a special case of SVLSI model, by using the GMM technique.

Since the GMM technique required a moment condition function, we constructed

a moment condition function by deriving a formula for the joint characteristic

function of log return and interest rate. Consequently, we compute the moment

of log return and interest rate by using the joint characteristic function to get the

moment condition functions used in GMM procedure. Here, MATLAB is used to

obtain the result of GMM estimator.

With the obtained estimates parameters, we simulated the SVLSI model

and TF-Vasicek models to display the sample path against the actual data. More-

over, we calculated the European call option by using the closed form solution and

Monte Carlo simulation.

5.2 Research Possibility

In this section, we provide possible extension of the stochastic volatility

Lévy model with stochastic interest rate. for further exploration.

1. The stochastic interest rate in this research satisfies Vasicek process under

T-forward measure, however in practice, the behavior of interest rate may

better be modeled by other processes such as the CIR process, Hull-White

process, or Ho-Lee process under T-forward measure. Thus it may be possi-

ble to change the interest rate process to more general processes.

2. In order to study the numerical solution of a European option, we may

be able to apply the Discrete Fourier transform (DFT) or the fast Fourier

transform (FFT) for higher accuracy.
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3. In this thesis, the fixed parameter, used to find the option prices, are es-

timated by using the information from the asset price. Moreover, we may

discover the parameters by using market option prices; this is the inverse

problem. This approach is very popular so it is the next problem for a

future research.
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APPENDIX A

COMPUTER PROGRAMS

This appendix contains a copy of the programs written in MATLAB to

implement the approximation in Chapter IV.

A.1 European Call Option using Numerical Integration

function c a l l = cal lSVJSI (S ,X, tau , r , v , sigma , sigmar , sigmav , sigmaJ , rho , . . .

,gamma, alpha , beta , lambda ,muJ, kappa ,P)

% S= Asset p r i c e ,X = s t r i k e , % tau = time to mat

% P=zero coupon bond pr i c e

% Ca l l p r i c e c a l c u l a t e

vP1 = 0 .5 + 1/pi ∗ quadl (@P1f , 0 , 2 0 0 , [ ] , [ ] , S ,X, tau , r , v , sigma , sigmar , . . .

sigmav , sigmaJ , rho ,gamma, alpha , beta , lambda ,muJ, kappa ,P) ;

vP2 = 0 .5 + 1/pi ∗ quadl (@P2f , 0 , 2 0 0 , [ ] , [ ] , S ,X, tau , r , v , sigma , sigmar , . . .

sigmav , sigmaJ , rho ,gamma, alpha , beta , lambda ,muJ, kappa ,P) ;

c a l l = S ∗ vP1 − X ∗ P ∗vP2 ;

end

%fou r i e r transform fo r f1

function p = P1f (om, S ,X, tau , r , v , sigma , sigmar , sigmav , sigmaJ , rho , . . .

gamma, alpha , beta , lambda ,muJ, kappa ,P)

i=1 i ;

p = real (exp(− i ∗ log (X)∗om) . ∗ c f55 (om, S ,X, tau , r , v , sigma , sigmar , . . .

sigmav , sigmaJ , rho ,gamma, alpha , beta , lambda ,muJ, kappa ,P ) . / . . .

( i ∗ om ) ) ;

end

% fou r i e r transform fo r f2
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function p = P2f (om, S ,X, tau , r , v , sigma , sigmar , sigmav , sigmaJ , . . .

rho ,gamma, alpha , beta , lambda ,muJ, kappa ,P)

i=1 i ;

p = real (exp(− i ∗ log (X)∗om) .∗ c f56 (om, S ,X, tau , r , v , sigma , sigmar , . . .

sigmav , sigmaJ , rho ,gamma, alpha , beta , lambda ,muJ, kappa ,P ) . / . . .

( i ∗ om) ) ;

end

%ch a r a c t e r i s t i c f unc t i on f o r f1

function c f = c f55 (om, S ,X, tau , r , v , sigma , sigmar , sigmav , sigmaJ , rho , . . .

gamma, alpha , beta , lambda ,muJ, kappa ,P)

b1=sigmav . ˆ 2 / 2 ; b2=rho .∗ sigma .∗ sigmav .∗ ( 1 i ∗om)−gamma;

b3=(−1 i ∗om−om) . ˆ2∗ sigma ˆ2/2 ;

d=sqrt ( b2 .ˆ2−4.∗b3 .∗ b1 ) ; b11=b2+d ; b12=b2−d ; e0=exp( tau∗d ) ;

e00=exp(−tau∗d ) ;C = 1 i ∗(om) .∗ (1−exp(−beta∗ tau ) ) . / beta ;

B= 2 .∗ ( b2.ˆ2−d . ˆ 2 ) . ∗ ( e0−1)./2∗b1 ∗( b2+d−e0 . ∗ ( b2−d ) ) ;

A1=gamma∗kappa∗d∗ ln ( ( ( b2+d)∗ e0−b2+d ) )/ (2∗d ) ) / . . .

b1−tau∗d∗gamma∗kappa ∗( b2+d)/(2∗ b1 ) ;

A2=(1 i ∗om)∗ alpha ∗( e00−1+tau∗beta )/beta ˆ2 ;

A3=sigmar ˆ2∗ ( (1 i ∗om)ˆ2/2−1 i ∗om)/(2∗beta ˆ3 )∗ ( ( e00−2)ˆ2−7−2∗beta∗ tau )

j1=lambda∗exp(1 i ∗om∗muj+(1 i ∗om+1)ˆ2∗ s igmaj ˆ2/2)

j2=lambda∗exp( tau∗(1+1 i ∗om)∗exp(muj+sigmaj ˆ2/2)+1 i ∗om) ;

A4=J1−J2 ;

A=A1+A2+A3+A4 ;

J=lambda .∗ tau . ∗ ( exp(1 i .∗om.∗muJ−(om.ˆ2∗ sigmaJ . ˆ2 ) . /2 ) −1 ) ;

c f = exp(1 i .∗om ∗ log (S)+ r .∗C + v .∗B+A+J ) ;

end

% ch a r a c t e r i s t i c f unc t i on f o r f2

function c f = c f56 (om, S ,X, tau , r , v , sigma , sigmar , sigmav , sigmaJ , rho , . . .

gamma, alpha , beta , lambda ,muJ, kappa ,P)

b1=sigmav . ˆ 2 / 2 ; b2=rho .∗ sigma .∗ sigmav .∗ ( 1 i ∗om)−gamma;

b3= (−1 i ∗om−om) . ˆ2∗ sigma ˆ2/2 ; d=sqrt ( b2 .ˆ2−4.∗b3 .∗ b1 ) ;
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b11=b2+d ; b12=b2−d ; e0=exp( tau∗d ) ;

e00=exp(−tau∗d ) ; C =(1 i ∗(om)−1) .∗ (1−exp(−beta∗ tau ) ) . / beta ;

B= 2 .∗ ( b2.ˆ2−d . ˆ 2 ) . ∗ ( e0−1)./2∗b1 ∗( b2+d−e0 . ∗ ( b2−d ) ) ;

A1=gamma∗kappa∗d∗ ln ( ( ( b2+d)∗ e0−b2+d ) )/ (2∗d ) ) / . . .

b1−tau∗d∗gamma∗kappa ∗( b2+d)/(2∗ b1 ) ;

A2=(1 i ∗om−1)∗alpha ∗( e00−1+tau∗beta )/beta ˆ2 ;

A3=sigmar ˆ2∗ ( (1 i ∗om−1)ˆ2/2−1 i ∗om−1)/(2∗beta ˆ 3 ) ∗ . . .

( ( e00−2)ˆ2−7−2∗beta∗ tau )

j1=exp(1 i ∗om∗muj+(1 i ∗om+1)ˆ2∗ s igmaj ˆ2/2)

j2=exp( tau ∗(1 i ∗om∗exp(muj+sigmaj ˆ2/2)+1 i ∗om) ;

A4=lambda ∗( J1−J2 ) ;

A1=( i ∗om.∗ alpha . /betaˆ2).∗(1− e00−tau ) ;

A=A1+A2+A3+A4 ;

c f = exp(1 i .∗om ∗ log (S)+ r .∗C + v .∗B+A+J−ln (P ) ) ;

end

A.2 European Call Option using Monte Carlo Simulation

function M=Monte [ S0 , r0 , v0 ,K,NS, tau , alpha , beta , sigmar , s i g , lambda , . . .

muj , s igmaj , kappa , rhov ,gamma, s i g v ]

% NS= number o f s imula t ion , tau= time to martur i ty .

% I n i t a i l va lue = S0 , r0 , v0 .

% K= ex e r c i s e p r i c e .

% parameter =alpha , beta , sigmar , s i g , lambda ,muj , sigmaj , kappa , rhov , . . .

gamma, s i g v .

clc ;

% Simulat ion o f Stock p r i c e and i n t e r e s t rate ,

N=tau ; numean = exp(muj−s igmaj ˆ2/2)−1;

gammar=0; T=N/252 ; dt=1/tau ; TimeStep=dt ;

sq r td t = sqrt ( dt ) ;

for j =1:NS

fdata4 (1 , j )=r0 ; fdata5 (1 , j )=r0 ;
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S (1 , j )=S0 ; V(1 , j )=v0 ;

DU = rand (N, 1 ) ; l d t = lambda∗dt ;

u l = (1− l d t ) / 2 ; ur = (1+ ld t ) / 2 ;

for i =2:N

fdata4 ( i , j )=alpha ∗TimeStep + (1+beta∗TimeStep )∗ fdata4 ( i −1, j )+ . . .

sqrt ( sigmar2 ∗ fdata4 ( i −1, j )ˆ(2∗gammar ) ∗ . . .

TimeStep )∗randn ( 1 ) ;

a ( i )=sigmarT2/betaT∗(1−exp(−betaT∗(1− i /N) ) ) ;

fdata5 ( i , j )=alphaT∗dt + (1−betaT∗dt )∗ fdata5 ( i −1, j )+dt∗a ( i −1)+. . .

sqrt ( sigmarT2∗ fdata5 ( i −1, j )ˆ(2∗gamma)∗ dt )∗randn ( 1 ) ;

fdata51 ( i , j )= fdata5 ( i , j ) /365 ;

V1( i , j )=V( i −1, j )+(gamma∗kappa−gamma∗V( i −1, j ) )∗ dt+sigV ∗ . . .

sqrt (V( i −1, j ) )∗ sq r td t ∗randn ( 1 ) ;

V( i , j )=(V1( i , j ) ) ˆ 2 ;

k ( i , j )=fdata51 ( i , j )−0.5∗ s i g ˆ2∗ sqrt (V( i , j ))− lambda∗numean ;

d( i , j )=rhov∗ sq r td t ∗randn(1)+ sqrt(1−rhov ˆ2)∗ sq r td t ∗randn ( 1 ) ;

S ( i , j )= S( i −1, j )∗(1+(k ( i , j )∗ dt)+ s i g ∗sqrt (V( i , j ) )∗d( i , j ) ) ;

nu ( i , j )=exp( s igmaj ∗randn(1)+muj)−1;

i f DU( i ) <= ur && DU( i ) >= ul % Get jump i f prob . in [ ul , ur ] :

S( i , j ) = S( i , j ) + nu( i , j )∗S( i −1, j ) ;

end %i f

end %i

P1( j )=sum( fdata51 ( 1 :N, j )∗ dt ) ;

P2( j )=exp(P1( j ) ) ;

MXS( j )=max(S(N, j )−K, 0 ) ;

end%j

% Monte Carlo Simulat ion f o r Bond pr i c e and Ca l l op t ion

Bond=mean(P2 ) ;

C=Bond∗MXS;

Ca l l=Bond∗mean(MXS) ;

% ca l c u l a t e Standard d e v i a t i on and standard error
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for i =1:NS

CCall ( i )=Cal l ;

BBond( i )=Bond ;

end

d i f fB=P2−BBond ; d i f fB2=d i f fB . ˆ 2 ;

d i f fC=C−CCall ; d i f fC2=d i f fC . ˆ 2 ;

StdMSC=sqrt (sum( d i f fC2 )/ (NS−1)) ;

StdMSCB=sqrt (sum( d i f fB2 )/ (NS−1)) ;

ErrorB=StdMSCB/sqrt (NS ) ; Error=StdMSC/sqrt (NS ) ;

toc

% summary r e s u l t

fpr intf ( ’ \n=====================================================’ ) ;

fpr intf ( ’ \n EUROPEAN CALL OPTION WITH SVJSI MODEL ’ ) ;

fpr intf ( ’ \n==== ================================================’ ) ;

fpr intf ( ’ \n Asset p r i c e at time 0 = %3.2 f , . . . i n t e r e s t r a t e = %3.4 f \n ’ , . . .

S0 , r0 ) ;

fpr intf ( ’ \n Exerc i s e p r i c e = %3.1 f , number o f s imu la t i on = %3.0 f \n ’ , . . .

K, NS) ;

fpr intf ( ’ \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;

fpr intf ( ’ \n Monte Carlo Standard dev i a t i on standard e r r o r \n ’ ) ;

fpr intf ( ’ \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;

fpr intf ( ’ \n Bond Pr i ce %f %f %f %f \n ’ ,Bond ,StdMSCB, ErrorB ) ;

fpr intf ( ’ \n opt ion Pr i ce %f %f %f %f \n ’ , Cal l , StdMSC, Error ) ;

fpr intf ( ’ \n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;

toc
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