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Chapter 1

Introduction

1.1 Background and Objectives

Finite difference methods have long been used to approximate the solu-
tions of ordinary or partial differential equations (PDEs). These methods involve
discretizing the domain of interest into a structured mesh of grid points and ap-
proximating derivatives by difference quotients. At each grid point, the values
of the desired function or functions are treated as unknowns, and the govern-
ing differential equation or equations are approximated by a sparse system of
algebraic equations that can then be solved with an appropriate matrix solution
algorithm. This approximation process and the resulting system properties are
what distinguish one finite difference method from another.

The finite difference method is relatively straightforward process for devel-
oping numerical approximations to boundary value problems. However, it does
suffer the disadvantage of requiring a structured mesh. This is in contrast to
finite element methods, which are designed to accommodate highly unstructured
meshes, as well as irregular problem data and solutions by virtue of finding ap-
proximations to the weak, or variational from of the problem. On the other hand,
finite difference methods lend themselves quite easily to Taylor series analysis of
truncation errors, and this property is exploited in the present work to develop
rigorous high-order approximations.

The simplest finite difference scheme (FDS) for second order elliptic partial




differential equation is the central difference scheme {CDS) on a uniform struc-
tured mesh. In this method, the first and second partial derivatives at a grid
point are represented by linear combination of the three function values at, and
directly adjacent to, the grid point in the corresponding coordinate directions.
Higher derivatives require additional points. In general, derivatives of order p
can be approximated in the CDS with p + 1 symmetrically-located points if p is
even. The coefficients for this case are also symmetric. For odd p, p + 2 nodes
are required, although the coefficients are antisymmetric, meaning the center co-
efficient for odd derivatives is always zero. The CDS was named to reflect this
symmetry in the stencils and coefficients. Taylor series analysis of the truncation
errors for central difference approximations shows that the scheme asymptotically
approaches the values of the approximated derivatives at O(h?) as the mesh size
h approaches zero.

Methods with accuracy better than O(h?) are called higher-order methods.
These methods are desirable because their greater accuracy allows coarser meshes
to be used, thus lowering computational costs. The standard method for achieving
higher-order accuracy is to include additional grid points into the approximations
representing the derivatives. In general on a structured mesh, a derivative of order
p may be approximated to order m with p+m — 1 points if p is even. If p is odd,
p -+ m points are required. A general finite difference theory was developed by J.
C. Patterson (1983) for approximating first and second derivatives up to O(RN 1)
on a grid of NV nodes.

High-order methods achieved in this manner always require non-compact
stencils that utilize grid points located beyond those directly adjacent to the node
about which the differences are taken. This complicates formulations near bound-

aries, increases matrix bandwidth, and increases communication requirements for



implementation on parallel computer architectures.

In light of the problems caused by non-compact finite difference schemes,
it is desirable to develop a class of schemes that are both high-order and compact.
R. S. Hirsh (1975) conducted numerical experiments with a class of high-order
compact (HOC) schemes in which the first and second derivatives are treated
as unknowns resulting in a mixed method, unlike the schemes developed in the
present work.

High-order compact (HOC) schemes of the type studied here increase the
accuracy of the standard central difference approximation from O(h?) to O(h*) by
including compact approximations to the leading truncation error terms. They
are a spatial implementation of the temporal P. D. Lax and B. Wendroff’s (1964)
idea and were first proposed in the context of the present methodology by R.
J. Mackinnon and G. F. Carcy (1989). R. J. Mackinnon and M. A. Langerman
(1991) followed with similar research for convection diffusion problems. About
the same time, S. Abarbanel and A. Kumar (1988) independently developed HOC
schemes for the compressible Euler equations for outflow problem. These schemes
are similar to the methods proposed by J. K. Dukowicz and J. D. Ramshaw (1979),
S. C. R. Dennis and J. D. Hudson (1989) and M. M. Gupta et al. (1984), although
they are derived in a different manner. They also have the additional advantage
of suppressing or reducing numerical oscillations.

The early study of HOC methods was restricted to a single, steady 1D or 2D
equation on uniform meshes. Analysis of these methods was also limited to their
accuracy and oscillation properties. This dissertation addresses the application of
HOC methods to mathematical simulation to the incompressible ideal fluid flow
within a bounded domain.

The main results of the thesis are a follows:



1) A fourth-order compact finite difference scheme on the nine-point 2D sten-
cil was derived for the stream function-vorticity formulation of the BEuler
equations governing the ideal incompressible fluid flow through bounded

domain.

2) The new fourth-order compact schemes for the Fuler equations is tested on

exact solutions.

3) It is shown that the present scheme yields highly accurate numerical solu-

tions.

1.2  Terminology

Artificial Viscosity is the adding of non-physical viscosity to a numeri-
cal approximation to help stabilize a formulation that would otherwise result in
numerical oscillations.

Coarse Grids is a relative term describing computational meshes that
have large grid spacing and thus a small number of grid points.

Compact Stencils are mesh stencils which only utilize grid points which
lie on the mesh cells directly adjacent to the grid peint at which a numerical
approximation is being made. For structured grids, compact stencils are therefore
restricted to 3, 3 x 3 and 3 x 3 x 3 grid points in 1D, 2D, and 3D, respectively.

High-Order Compact (HOC) Schemes, in the context of my research,
are numerical approximations which achieve high-order accuracy on a compact
stencil by utilizing the governing differential equation as an auxiliary relationship
to model truncation error terms.

Matrix Bandwidth refers to the size of the portion of a matrix which

‘must be stored for certain direct solvers. Matrices whose non-zero entries all lie
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within a band around the matrix diagonal (which happens to be common in many
approximation schemes) are called banded matrices. It is possible to store only
the band and thus solve the matrix problem more efficiently. Two matrices of the
same rank but different bandwidths will solve more efficiently for the matrix with
the smaller bandwidth.

Non-Compact Stencils are stencils which utilize grid points outside of
those which lie on a compact stencil.

Numerical Oscillations are a common problem with many numerical
schemes. That is, the approximate solution will bounce” from one cell to the
next above and below the analytic solution. The causes for this are complicated,
but they are related to strong convection (first derivatives having greater influence
than second derivatives), coarse grids, and steep gradients in the solution (such
as are found in boundary layers and shock fronts).

Sparse Matrices are matrices with a large percentage of zeros. For an
iterative solver, only non-zeros need to be stored, which greatly reduces storage

and time needed to solve the matrix problem.



Chapter 11

General Considerations on the Euler Equations

2.1 Introduction

This chapter has an introductory nature, wherein we discuss the funda-
mental equation describing the motion of an incompressible nonviscous fluid and
formulate some elementary properties of these equations. In our explanation we
follow to the books Z. U. A. Warsi (1992), A. V. Kashikhov et al. (1990), A. J.
Chorin and J. E. Marsden (1997), C. Marchioro and M. Pulvirenti (1994) where

more detail available.

2.2 The Equation of Motion of an Ideal Incompressible
Fluid

In this section we establish the mathematical model of an ideal incompress-
ible fluid, deriving heuristically the equation governing its motion.

Fluid mechanics does not study the dynamics of the individual molecules
constituting the fluid. We want to investigate the gross behavior of many of
molecules. For this purpose, we assume the fluid as a continuum, a point of
which is a very small portion of the real fluid. This small volume, a point in our
mathematical description, will be called fluid particle or element of fluid.

Let I be a region in two-dimensional or three-dimensional space filled with

a fluid, Let X = (X L X% X3), X € D be the coordinates of a fluid particle at



time t = 0. Let z = (z',2%,2%) , = € D be the coordinates of the same fluid

particle at time £. Then a fluid motion is, by definition, a function ¢ : D — D
z=p(X,t) (ora’ = ¢'(X,1)), (2.1)
such that
a) @ is invertible,

b) wand ¢! are smooth enough so that the main operations of calculus may

be performed on them,
C) X = QD(X> 0): (P(X:tl +t2) = W(W(X:tl):t‘d)

If X is fixed and ¢ is changed, then equation (2.1) determines a trajectory of the
fluid particle P initially placed at point X. On the other hand side, if ¢ is fixed,
then equation (2.1) determines the transformation of the fluid domain at time
t = 0 to the fluid domain at ¢ = ¢;.

In spite of the fact that equation (2.1) determines the fluid motion, it
is also important to study the time evolution at a given point z € D of the
density field p = p(z,t), velocity field @ = @(z,t) and so on.

The derivation of the fluid motion equation is based on three conservation

principles
I) mass is neither created nor destroyed;

II) the rate of change of momentum of a portion of the fluid equals the force

applied to it (Newton’s second law);
IIT) energy is neither created nor destroyed.

A very useful concept in fluid dynamics is that of a "material volume”.

Definition (see for example Z. U. A. Warsi (1992))



A material volurne is an arbitrary collection of fluid of fixed identity and enclosed
by a surface also formed a fluid particles.

All points of material volume, including the points of its boundary, move
with the local continuum velocity. A material volume moves with the flow and
deforms in shape as the flow progresses, with the stipulation that no mass ever
fluxes in or out of the volume, viz., both the volume and its boundary are always
composed of the same fluid particles. We shall denote a material volume by V (£)
and its surface by S(¢). Note that the use of material volume in fluid dynamics
is in the form of a thought experiment in which one isolates a parcel of fluid out
of the flow field and gives it a hypothetical surface. This helps formulate the
conservation laws for fluid dynamics in a straightforward manner.

Since there can be no mass transfer to or from a material volume, the

principle of mass conservation implies that

il
= r,8)dV =0, 2.9
& Jye p(r,t) (2.2)

where £ is the total time derivative , V(£) is a material volume.

To transform equation (2.2), we use

d f DF o
— F(r,t)dV = — + Fdivit)dV,
and Euler’s formula

'a;t" = Jd’&?)'l_&‘,

“where J is the Jacobian of (2.1) and J = det(%’a{f) # 0.

‘With F = p, so that

", Dp N
— + pdivii)dV = 0. (2.3)
]V(t) (DL‘ )

The result in equation (2.3) is valid for any choice of the volume V (£), therefore

D
Fi < pdivi =0, (2.4)



which is called the differential equation for the conservation of mass, or simply
the equation of continuity. Using definition of T)I?E = ;% -+ % - grad, we can also

write equation (2.4) as

Op .
5 T div(pd) = 0. (2.5)

In the case of steady flow, the equation of continuity (2.5) takes the form
div(pit) = 0. (2.6)

Fluid flows for which the density remains constant are termed meompressible

flows. The differential form of the continuity equation then is simply
divi = 0. (2.7)

Note that equation (2.7) is applicable to both the steady and nonsteady incom-
pressible flows.

Let us define an ideal fluid as one with the following property: for any
motion of the fluid, there is a function P(z,#) called the pressure such that if S
is a surface in the fluid with a chosen unit normal 7, the force of stress exerted
across the surface S per unit area at z € S at time ¢ is P(x,t) - 1. By Newton’s
second law (force=mass ® acceleration), we obtain the differential equation of the

law of balance of momentum

.
p(;% +(8-v)@) = - v P+pf, (2.8)

where f = f(z,t) is external force per unity volume. Equation (2.8), together
with the equation (2.6) form the Euler equations for an ideal incompressible fluid.

Remarks:

1. In the present thesis, we will assume the density to be always constant (for

simplicity p = 1),
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2. When f is a potential force, ( f = — 7 U for the some scalar field U ), we

can modify equation (2.8) to

ol

a—l—(u-v)u:wvﬂﬂ (2.9)

with H replaced by P+ U.

3. Later on, we will assume the absence of external forces.

2.3 Vorticity and Stream Function

A fundamental concept of fluid motion analysis is the concept of the vor-

ticity field @(z). By definition (see for example Z. U. A. Warsi (1992))

G=curli=v x 4. (2.10)

1l

The vorticity field &(z) gives a measure of how the fluid is rotating. The vorticity
field is an important tool in studying the behavior of fluids. The Euler equations

can be expressed in terms of vorticity. Using the following vector identity
1 e V4 — — — —
5V [T|° = 4 x curl i + (@ - V), (2.11)
the Euler equations can be written as
o4 1

a‘+§v1mz—ﬁxcuﬂﬁ=—vp.

Taking the curl of both sides

Since

L]
=
2
=
X
&
Il
=
NS
£
i
&
<]
R
[
=
<
€1
-4
i
<
&
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We finally obtain

5
Mé?{ + (@ V)@= (@ v (2.12)

However, to study the Euler equations in (2.12), it is necessary to reconstruct the
velocity field 4 from the vorticity. In other words, we have to solve the following

equation in the unknown quantity %

curlt =

&l

v i = 0.

In two dimensions (2.12) becomes much simpler. Namely, in the presence of a

planar symmetry

4= (u1>u2:0) = ('U:,'U,O), Uy = ui(mlam.?):

W= (wi:w2,w3) = (9,0,&)),

only the third component of the vorticity & is present & = (0,0, w) and the right-
hand side of (2.12) vanishes. Therefore, the Euler equation for the vorticity in
two-dimensions becomes

O
— (- w={. 2.
o (&) 0 (2.13)

Notice that (2.13) implies the conservation of the vorticity along the trajectories.
For two-dimensional steady or nonsteady incompressible flow, the equation

of continuity is

du du
divd = o + =~ = 0. 2.14
20U P - By ( )
Then it is obvious that if we take an arbitrary function ¥(z,y) and derive u,v

according to the rules

o

= = —— 2.15
u=%0  v=—g 2.15)
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equation (2.14) will be satisfied identically. Such a function ¥ is call a siream

function.

2.4 Initial Boundary Value Problem for the Euler Equa-

tion

The Euler equations can be interpreted as the limit of the Navier-Stokes
equations of vanishing viscosity, and their character is hyperbolic in the unsteady
cases. The Euler equations governing the flow of an incompressible fluid of null
viscosity, called also ideal fluid, are

% @ Vyi=—-vp, (2.16)
Bt
div i = 0, (2.17)

where i = 4(Z, t) is the velocity vector, ¥ = z(z1, 22, z3) are the Cartesian coor-
dinates of a point, p(Z,t) is the pressure divided by the constant density of the

fluid. If 7 = (u1,us, us)

g a4 8., . )
= (—, — 4
Y, (5‘151 By 8333) 1s the gradient,
. 6?1;}_ a'UQ 811,3 ) .
i) = . h .
div(i) B, + 57 + 925 15 the divergence

The statement of the problem is made complete by the specification of
suitable boundary and initial conditions. A typical boundary condition consists

in prescribing the value of the normal component of velocity b, on the boundary
-0 |g= by(zs, 1), (2.18)

where 77 denotes the outward unit normal to the boundary S of domain V and
%5 € §. The tangential components of velocity on the boundary need not be

specified in the nonviscous problem.
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The initial condition consists in the specification of the velocity field #, at

the initial time, ¢ = 0, namely,
@ |imo= io(z). (2.19)

The boundary value of the normal component of velocity &, must satisfy,

for all £ > 0, the global condition

j{ badS = 0, (2.20)
5

which follows from integrating the continuity equation over V and using the diver-
gence theorem. Moreover, the initial velocity field @ is assumed to be solenoidal,

i.€.,

Finally, the boundary and initial data b, and @, are assumed to satisfy the

following compatibility condition
bn |t=0; i - ﬁﬂ{S- (222)

This compatibility condition between the boundary and initial values is necessary
to prove the existence and uniqueness of classical solutions of the problem in two
dimensions.

The boundary condition (2.18) is associated with the ”elliptic character”
of the incompressibility. If b, = 0, then no other boundary condition is requested.
On. the contrary, if b, # 0 on some part of S, then the fluid enters the volume
Viooris flowing out of it and some other boundary condition must be imposed to

comply with the "hyperbolic” character of the convective part of the problem.

-

UE PENTER FOR LIBRARY RESOURULES AND EDUCATIONAL FEDIA

FSUBRANAREE UNIVERSITY OV TUCHNOLAGY ;

|
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2.5 Euler Equations in the Cartesian Coordinate System

Let wi = ui(z,y,2,%), i = 1,2,3, p = p(z,y,2,¢) and z,y, z be Cartesian

coordinates. Equations (2.16) and (2.17) can be written in componentwise form

Oy Ouy Ouy Ouy _ Op

a—t-t-ulgg—i—uz%—-i-ua“é; = T ag (2.23)
86122 + u 831;2 + U2(?;;f + Ua%tg = —%Za (2.24)
881;3 e +u2361;3 “*‘“3?91;3 - _2_1:, (2.25)

duy n Ouy n Ous _ o (2.26)

Oz Oy Oz

Let u; = uy(z,y,t), i = 1,2, u3 = 0, p = p(z,y,t) and z,y be Cartesian

coordinates. Equations (2.16) and (2.17) can be written in componentwise form

Oy Oy Ou;  Op
ot T oz T 8y ~ oz’ (2.27)
Oug Bug Oug Op
= —— 2.2
Ouy | Oup

For a velocity field 4 = u, ¢ + usj, where 7 and 7 are unit vectors in the
and y directions, respectively, the stream function v may be defined to within an

arbitrary constant by

wp = 22 (2.31)

ox
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The definition of ) implies that the Incompressible dontinuity condition is
satisfled. The 2D scalar vorticity is defined as the‘f'sigrgédﬁ;sma,gmtude of the curl

Vgu = Yy + ’()byy = =, (232)

Differentiate equation (2.27) with respect to y and differentiate equation

(2.28) with respect to z, subtract first from the second, we obtain

The Euler equations representing the steady-state two-dimensional fcom:

pressible fluid flow given in stream function-vorticity form are equations (2.3

and (2.33) where ¢ and w represent the stream function and vorticity vector,

respectively.



Chapter II1

High-Order Compact Methodology

3.1 Introduction

to the steady convection diffusion equation. It covers 1D two-point boundary
value problems and 2D boundary value problems for the Poisson equation solved

on uniform grids.

3.2 High-Order Compact Methodology for One-

Dimensional Problem

To introduce the basic ideas, let us consider a one-dimensional two-point, -

boundary-value problem with governing equation
~ou' +bu'+cu=f, on = (0,1), (3.1)

where f is a given function, prime (') denotes differentiation with respect to z, the
coeflicients a,b and c are constant, and standard Dirichlet boundary conditions
hold at z = 0 and z = 1. We may introduce the flux ¢ = —au’ to rewrite (3.1) as

the first order system

g - 204— cu = f, (3.2)

g+au =0, (3.3)
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Central differencing this pair of equations (:3:;-2)-;;"@ﬁd;:ii'(3}_-:-3-);_:___on_;a_:_uniform grid
with mesh size h yields the discrete relations for the exact niodal:values u; and o;

at £ = x;
b h? " 4
005 — Eo-'i + cuy = fz + _6"”0-2' + O(h’ :').'7__.: (34)

2
a; + abyu; = a%u;" + O(hY),

where 0, denotes the standard central difference approximation to £ and ul’ =
at ¢ = x;
2

Zw+mw.

U1 — Uy ;

Assuming [ is sufficiently regular we can differentiate equation (3.2) with respect

to x to obtain the auxiliary relation
" ! b ! ' 3 Yy
cr“-=f+ga—cu, (3.6)
and again differentiate to get
1 I b " i
o =f"4+ -0 —cu’,
a
Then

b
Ui i i "
o; = fI -+ ;az- — Ccuy,

which can be approximated to O(h?) as
O’;” = f;' + grﬁaz - Cts;%?.bz + O(hz): (3.7)

where 62 denotes the standard central difference operator for %

Ujp1 — 2Uj -+ Ujmy

= + O(h?).

2
5:6'&5 =
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Since o in equation (3.4) is scaled by A2, the resilfing approkimation in equa-

tion (3.4) remains O(h') upon substitution of equat e also that an

alternative exact representation can be derived as tollows:

First use equations (3.2) and (3.3) in eqﬁatiqxi _

o' =+ E(f—{-éu:f-mcu) +
a a

C.o
B ¢ 1

Differentiating once more,
b b F
o = 4 _(ch + 20 cu’) + Ea.ir::
a a a
Applying equations (3.2) and (3.3) at z; again,

b b c c
oi = fi' + C—L(fi' + o Xi + 501') + X

where x; = f; + 20, — cu;. Hence we can use either equation (37)0r

(3.8} for o}” in equation (3.4) to obtain an accurate compact scheme.

A similar strategy can be developed for u" in equation (3.5). Morespe

ically, from equation (3.3), ¥’ = —£ so u" = —Z- implies

or
u' = ula’ = _}m(f + 90_ - C’LL),
a a a

5';aﬁ_nd hence the exact result is

1 b ¢
’U.;:” = —a(f; -+ aXz + Eo'i): (310)

Where Xi = f; + gai — cu;. Using the relations (3.9) or (3.10) for »™ in equation )
(3.5) yields a higher-order compact mixed approximation that is O(h*) accurate -

at the grid points. For example, the resulting discrete O(h*) approximation at
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an interior point ¢ using the relations (3.7) and (3.9

becomes

b 2 i
6,0 — —0; + cu; — E—(fi" + Eéﬁcrz- ~ ¢82u;
a 6 a Bt

h? .
a; + adyu; + gdiai =0.

Regrouping terms,

b bh? ch?
(Jﬂ,ai — Eoi - %mfl—éxai) + (Cui -+ —6—5xuz) = fi+

h2 : .':”_'.:.:.
5l

2
(O’i + %(520’,) + adzu; = 0,

where d,02 denote the respective first and second central differences. It f”ls
known analytically, it can be used directly in equation (3.11). If not, the a.ppI‘OX~
imation 62 f; is acceptable, because fI' is scaled by h?, thus the overall truncatio.r.i'_
error remains O(h?).

We remark that all three types of boundary conditions are easily accommo-
dated exactly since the values of both u and ¢ enter explicitly at the end nodes.
High-order compact expressions for non-Dirichlet boundary conditions are not
trivial for direct approximation of equation (3.1).

If the exact representations in equations (3.8) and (3.10) are used, we
again have an O(h*) scheme here. However, it is clear that this approach can now
be continued to obtain similar representations for the O(h?) terms and thereby
generate a higher-order compact scheme that is O(h®) accurate.

Example ( HOC that is O(h®) )

Central differencing of equations (3.2) and (3.3) on a uniform grid with

mesh size h yields the discrete relations for the exact nodal values u; and o; at

:C:Q',',i



20

b h’g m h4 3]
520'1' — EO}' + cu; = fz + E + 1200} + O(h ) (313)
ah? ,, _ah* 6
O + adzu; = Ui + 120“; + O(h°), (3.14)

. . . 3
where 4, denotes the standard central difference approximation to 4oyl = oy
]
and uf =%¥ at z =y
2

Ui Y h_ 1t __‘E’m 6
WIRTRES ST uj + 5t + 155 U+ O(h%).

Differentiating equation (3.2) four-times with respect to z and applying equations
(3.2) and (3.3) at z; again,
b
of ="+ (f + - (f” + o8+ o) + < )

w2+ Loy Sx),
(41 a @

(3.15)

where @; = f{ + 2x; + o, and x; = fi + Y03 — cu;. Substituting equations (3.8)
and (3.15) into equation (3.13), we obtain
h2

050; — Effz' +cu; = fi +
a 6

+ ( P ( £ %xy + gcb,-) + g_llfz) (3.16)
+O(h°),
where W; = f{' + 2®; + £x;, &; = fl+ Lxi+ fo; and xi = fi + oy — cus
;"Diiferentiating equation (3.3) four-times with respect to z and applying equations
{3.2) and (3.3) at z; again,

1 b
o = —=(f+ 2+ Say), (3.17)
a ¢4 73

where v, = f;r + %‘bi + ﬁX‘i: ®, = f; = %Xi + 50'3' and x; = fi + %cfz- — CU;.
Substituting equations (3.10) and (3.17) into equation (3.14), we obtain

h'2 h4 Hl b 6
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where ¥; = f' + %(I)_i + %, = fl+ Ly oj an

In fact, this approach can be generalized to any ord £, it is possible to

develop the scheme for more general situations such as non constant coefficients.

3.3 High-Order Compact Finite Difference Schemes for
Two-Dimensional Equation.

We consider the more interesting and practical extension to the model

elliptical partial differential equation in two dimensions.

3.3.1 Statement of the Problem.

We will be primarily concerned with second-order elliptic equations:
in two-dimensional domain. The commonly occurring elliptic equation is the

Poisson equation given by

Uz + Uyy = f(JE, y): (33, y) € Q) f1C R2> (319)

_ &%u _ 8%y
where Uy, = ST and Uyy = i

Using the operator A\ = 7?2 = 53;2 + ai;f, the Poisson equation is written
as Au = f. The operator A is called the Laplacian operator. The homogeneous
equation corresponding to equation (3.19), called the Laplace equation, is given

by
Ay =10 in Q.

In order to completely determine the solution of equation (3.19) it is necessary to

specify a boundary condition on the solution u(z,y). The boundary condition is

u(z,y) =bi(z,y), (z,y) € 89, (3.20)
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where b (z,y) is a given function. Boundary conditic alled Dirichlet

boundary condition.

Let us consider the Dirichlet problem .fﬁ)if' the

the unit square in the (z,y) plane. To be specific, &

equation

with the Dirichlet boundary condition

u(z,y) = g(z,y) on 0Q.

In other words, we wish to obtain u{z,y) for the point (z,y)

flz,y) and g(z,y). In order to solve equations (3.21) and (322)11

first impose a grid structure on §. This is accomplished as follows. For

N > 1, define

1
Qh = {(1'“ yj‘) = ('Lh,_j‘h) for 7’}3 = 0,1,,N;h = N}

Figure 3.1 shows the grid corresponding to N = 5.

¥
F A
1 ---..:......_.._........; .....

Yy T

O

t}ii"*‘l ..____-.L.......‘:, ..................
St

Ly & A 1

Figure 3.1: Grid structure for 2D Poisson equation
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3.3.2  Second-Order Compact Finite Differ

By the standard central differen.cé approXimation

x = z;, and y = y; we obtain

u’(-rEH—l) yJ) - 2?,6(182, yJ) -+ “(-'Bz—l,y]

Ti, Ys -2 iy Y7 iy '—.. et
w(Ti, Y1) u(:;bz y;) + ulz;, y; 1).__*;@(

Uy (T4, ) =

Dropping the truncation error terms in each of the equations above, and
letting v;; denote the approximation to u(%;,1;), we obtain a difference scherie

for the partial differential equation (3.21). For 1 < 4,5 < N — 1, we have

Uil = i+ Uity | Vigen — 205 + v

R

where fi; = f(2:,;)- At each interior grid point (z;,,), the PDE is discretized’

by using the five grid points

(l‘i—l: yj)r (xia yj—l)) (xi) y]): (-Ti? yj+i): (xi-i-l? yj)

These grid points are highlighted by dots in Figure 3.1. For this reason, the differ-
ence equation (3.24) is frequently referred to as five-point Laplacian discretization.

'The boundary condition (3.22) allows us to specify
w(zo, ;) and w(zw,y;) forj=0,1,.., N,
and
w(zi,yo) and u(z;,yn) fori=0,1,..,N— 1.
Multiplying throughout by 42 in equation (3.24) and simplifying results in

_ 2
Wi = Vit = Vil = Vigel — Vi = —h fig, (3.25)



for i,j = 1,2,..., N — 1. Note that equation (Z

unknowns. Thus the coefficient matrix for th

(N —1)% Figure 3.2 shows the labelling of the g

equations. At most five unknowns appear in eacl

Y
4

vl l

- X

P )

1 vee 7 oo Nl
Figure 3.2: Labelling of grid points.

very sparse linear system. In particular, with the labelling scheme we are using,
the linear system may be described by Au = f and the coefficient matrix A has
A symmetric block tridiagonal form. Example: For n = 5 the matrix A has the

Torm
/ B ~I 0 0 \
-I B —-I 0

0 -1 B -~I

\o 0 -I B

‘aniwhich each I is a 4 x 4 identity matrix and each B is a 4 x 4 tridiagonal matrix



of the form
( 4 -1 0 u \
o 1 4 =1
0 —1 4 -
\ 0 0 -1 4 J
where

) Y

U2

\ Ug1 \ Jaa

There are two approaches to the solution to Az = b. Oné is't5 B

appropriate direct method and adapt it to the linear system. In contr:
direct methods are the iterative methods. These methods generate a sequenc

approximate solution {z™}% and essentially involve the matrix A only in

context of matrix-vector multiplication.(see more details in Appendix'l'?:))"_“
For the purpose of describing the iterative methods, we rewrite equation
(3.25) as

1
Vs = Z(Ui—l,j + U1y Vo1 + Vigan — B2 i), (3.26)

where we use notations f;; = f(z;,¥;) and v;; = u(z;,y;). Then the main

iterative methods are

k I, & k k

U(,JH) - 4( z(w)lj + vz(+)lj + Uz{g) 1 + 'Uz 3+»1 - h’gfz,:r) (3-27)
k 1, (k1 b1 E)

iaﬂ) }‘:( z( ili-.z) + Uz(+)ig + 'Um(,gtl} + Ut(,_;l-}-l hzfm) (3.28)

k k k41 k )
o) = 4( E -1HJ) + U£+)1g + ”z(g+ 1) + U§J}+1 - hgfi,j) (1- w)v{ . (3.29)

;J‘
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Note that equation (3.27} is the Jacobi iter (3.28) is the

Gauss-Seidel iterative method, and eqiiatic R iterative method.

Recall that each of these methods requires an inj e unknowns.

method that can solve the boundary value problem (3.21

novelty of ”genuine compactness”, i.e. the compact schem
nine-point stencil.

To set up a compact finite difference scheme for equation (3.2
Figure 3.3 which shows the placement of the nine-points. Assuming & uniform,

grid in both z and y-directions, we number the mesh points (z,y)

(@9 +h), (= h,y), (z.y—h), (8+hy+h), (g —hy+h), @=hy
(z+h,y—h) as0,1,2,3,4,5,6,7 and 8, respectively, where h is the grid size. In
writing the F'D approximations, a single subscript ”j” denotes the correspondmg

function value at the mesh point numbered 7”57,

& ’ 5
R
e
3 [l 1
7 4 &

Figure 3.3: Computational stencil

Following (R. S. Hirsh (1975)), the second derivatives at the point (z,y)



are approximated by

52’1,& . '&3‘*2“04"&1 2
it

72 = (uxm)() + E‘Q‘(ummx:c)[) + O(h4):
and
(tasaalo = el 2 20sslo & Warht | G000 _ g2, 34 o).

h?
Substituting equation (3.31) into equation (3.30}, we obtain

2

h
‘52'“'0 = (Ugz)o + E(Sﬁ (Uzs)o + O(h4):

or
h?
52.'11,0 = (1 -+ Eﬁi) (uwz)ﬂ + O(hé):

or

h2

A similarly for (u,,)o, we obtain
h’2 2y -1 2 4
(uyy)O = ((1 + an) Jy)u’o + O(h ):

where the operators d2 and d2 are defined as

52 U — 2ug + ug 2 Un— 2uy 4 uy
_,L.Ug—_""“’""—hz‘_““’"“—; yuoh h2 )

27

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Substituting equations (3.32) and (3.33) into the left-hand side of equation (3.19)

vields

(1+h—252)'152 ug + (1+ﬁ52)“162 up = fo + O(R*)
122/ C=)70 IPACOCY A '

Applying the operator (1 + £.42) (1+242) = (1+262)(1+ 152), we get

127y 127y

h_22 2 f{iz 2 _ h’_22 h’_22 4
(1+ =62)62 Jup + (1+126x)5y uo = fo(l+ 6)(1+125$)+O(h),

127 127
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ar

Vo 4+ O(hY).

(1+h—5"’)62 ug + (1+h—262)§2' o= (
197¥ 122/ %y 0_.—'-:_5(

(3.35)

Using equation (3.34) in both sides of equation (33 ourth-order

compact finite difference scheme for the Poisson-type equatis y. equation
(3.21)
- 2’“0;'—&--15

h?
(fo+ Efﬁfo + 15 ‘ny) + O(h4)

-~ Uy + U
T y(_m?:*(’%_i)

2
5mu{_) + — 72

+52 0+%—52(

or
. 1 -
5;"11,{} + E (651@ 252U0 + 52’&1) + 52’LL0 + —((5 Up — 252’&0 + (52164) =

(f - ﬁ“éj:fo + ﬁfsf,fo) +O(n*),

or

’U;3"‘"2’ULQ+U1 _L u5~—2u3+u?_2u2-2u9+u4 u5—2u;+u3)
h? 12 h? h? h?
u2—2u0+u4 _1_(u6-2u-2+u5_2u3-2u9+u1 u7—2u4+u8):
h? 12 h? h? h?

2 1 R fo—2
i 5 (=500 + A=) oy

+

12

or

1377 “orz(12us — 24ug + 12u) + ug — 2uy + uy — 2uy + dug — 2uy + ug — 2uy + ug
+ 12up — 24up 4+ 12u4 + ug — Qug + ug — 2uz 4+ dug — 2uy + ur — 2ug + us) =

I%(lzfo +fi—2fo+fi+fa—2f +f4) + O(h4)’

1
1972 (= 40ug + Buy + Buy + Bus + 8uy + 2us + 2ug + 2u7 + 2ug) =

Sh+ fi+ fot fo+ 1) + O,
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or

gﬁ( — 20up + 4(u1 + ug + uz + u4)

1 "
E(Sfe +ht

or

6h2 20ue+4ZuJ+Z

F=1

3.36)

Using two index notation

U = Ujj , UL = UirLy , Uz = Ujgpr , U= UL

we rewrite equation (3.36) in the form

=200 + 4(Uig1,5 + Uil + Uio1y + Uig-1)

FUir1,j4+1 T Uim1 g1+ Uim1 -1 T Uspr j—1

h? SR,
= E(Sffﬁ' + firrg + Figr + ficrj + fijor + O(RY).

The fourth-order compact scheme (3.36) or (3.37) is solved eltherbySOR,
by Gauss-Seidel, or by Jacobi iterative methods { Appendix B contains description
of these method).

The Jacobi iterative method is given in the form

k1 1 & k
1(,_7 ) = 20 (4( §+)13 + ui 3)~1~1 t( )1,9 + u(:.‘f} l)
k k k
+(uz+1 g+ T UE )1 g+t ui )13 1t u§+)l,j~»~1)

—‘é‘(sz‘( +fz(—;;)1.7+fl 1+fz 1=J+f=-7 1))

The Gauss-Seidel iterative method is given in the form

k k k k41 k+1
53 +1) (4(U,E+)1J z(_';)-{-l + u,f -{-_7) + uzg,jtl))
k k k+ (k+1)
+(u§+}1 J+1 + i )1,J'+1 + 5 13) T u z+1,j—1)

- O+ 1R 1+ 10+ 1))
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The SOR iterative method is given mtheform

) = o)

(k+1)

where (u;;") ¢ is the solution by the Gauss -Seide

; s denote the ap-
proximation to u(z;,;), the superscripts (k) and (% & 1) denotes the number of

iterates. With the initial guess values (zero-th iterates) for the unknowns. the

erative expressions successively. The latest iterates, denoted by t

(k +1), are always used in the iteration whenever available.

3.4 Numerical Results for Model Problem

In this section we obtain the numerical solution of boundary value problem _'
(3.21) and (3.22) using the fourth-order compact scheme (3.36), and standard
second-order Finite Difference Schemes (3.26). The test problem used is chosen
such that the analytical solution is available, so a rigorous comparison can be

magde.

3.4.1 Test Problem

To construct a test problem with know solution we specify the func-

tion w and f in the form
w o= Y, f o= e (3.38)

‘on the unit square. We notice that the above solution is smooth. We consider

“the test problem with Dirichlet boundary condition, i.e. boundary values of u are

_Biven,
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3.4.2 Techniques to Estimate-iC_o;;yeyggg@g_

Let us remind as the main déﬁfiitipﬁ{;__a;r__id:ﬁf@c;ts_,';;qn_'jthe convergence

of FDS. Let us have a BVP (PDE with initial and boundary condition)
Lu = f, (3.39)

where L is a differential operator acting from Q@ to F, LQ——)Fand Q, F
are set of sufficiently smooth functions.
Consider the finite difference scheme which corresponds to boundary value prob-

lem (3.39)

Lhuh = fh, L (340)

where L; is a finite difference operator acting from ), to Fy, Ly : s m—> Fh,
Qg and Fj, are set of grids functions.

Definition (error) Let «" be a solution of equation (3.40) and u be a solution
of equation (3.39). The error is a grid function Z* = u* — P,(u), where P, is
projection operator acting from Q to p, Bp:Q2—Qy.

Definition {convergence with order k£ or accuracy of order k) We will say that
solution of FDS converges to a solution of the BVP with order % if the norm of

error in (), is less than or equal to ch®,
I Z% lo,=I| v* — Pa(w) [l < ch®, (3.41)

where the constants ¢ and % do not depend on h.
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Let errl and err2 be errors which correspond to grid systems with N1 x N1

nodes for mesh size h and N2 x N2 nodes for mesh size 2

5, respectively. The

definition of convergence yields
errl =|| u" — B, (u) ||< chF,
and
3 h i
err2 =|| uf — Py(w) < e(2)"
Dividing errl by err2 we obtain
errl

~ 9
err2

Taking the natural logarithm from both sides, we get an approximate value for
the rate of convergence

In(grt)

{n2

~

(3.42)

3.4.3 Computer Codes

The test problem is solved by the point-SOR, GAUSS-SEIDEL and
JACOBI iteration method. The iterative algorithms require nothing more than
the ability to determine Az for any z. In a computer program, a two-dimensional
array v is used to store the approximate values of the unknown function at the
‘grid points. The functions f(z,%) and g(z,y) are assumed given. The boundary
values are set by using g(z,y). A set of initial guesses is required to start iterative

:'__}__)'rpcess. The stopping criterion of the iterative process

]u(k-ﬂ) -

k
I<igEN—1 " ] ug ‘)I <e, (3.43)

W

‘has been included in the algorithm, where ¢ is the convergence tolerance. The

‘relaxation factor w is input as a parameter.



33
3.4.4 Choice of ¢ in the Iterative Process

It is not reasonable to stop the iterative process with tolerance less
than constant times to the error of approximation of FDS. This mean that the

choice of € in the general solution of equation (3.43) has to be
e~ Ch*, C — const,

where £ is equal 2 for the second-order FDS and 4 for the fourth-order FDS. To
find the value of C' we performed a series of numerical experiments.

Tables 3.1 and 3.2 show the norm of the absolute error between the exact
and approximation solutions and residual depending on the choice of ¢ for different
grid sizes . To estimate the error and residual the infinity norm is used . In
particular, Table 3.1 shows the value of £ for the fourth-order HOC. The stopping

criterion for the iterative process may be made according the following,
ere bt 1074 + 1070

Table 3.2 shows the value of £ for the second-order finite difference scheme. In
this case, the stopping criterion for the iterative process may be made according

the following,
e h®- 1072+ 1072

Slmﬂar results were observed if we used the Jacobi and the Gauss-Seidel iterative

Process to solve the test problem.



34

Table 3.1: Norm of absolute error and residual for fourth-order SOR iterative

method
h=0.2 h=0.1
£ error residual error residual
10~% | .1744E-04 .2248E-03 | .3546E-04 .6485E-03
1075 | .2423E-05 .2194E-04 | .3475E-05 .9378E-04
10~% | .1999E-05 .4517E-05 | .4364E-06 .9446E-05
10=7 | .1909E-05 .5006E-06 | .1323E-06 .7080E-06
1078 | .1917E-05 .2021E-07 | .1197E-06 .8936E-07
10-° | 1917E-05 .4273E-08 | .1196E-06 .7814E-08
10710 | .1917E-05 .2775E-09 | .1195E-06 .8744E-09
101 | (1917E-05 .4823E-10 | .1195E-06 .8576E-10
10712 | 1917E-05 .3444E-11 | .1195E-06 .8252E-11
1018 | .1917E-05 .5647E-12 | .1195E-06 .1051E-11
h=0.05 h=0.025
£ error residual error residual
10% | .7039E-03 .2480E-03 | .2430E-02 .2842FE-03
107% | .7443E-04 2619E-04 | .2534E-03 .2535E-04
1079 | .7871E-05 .2772E-05 | .2554E-04 .2490E-05
1077 | .7345E-06 .2604E-06 | .2567E-05 .2263E-06
108 | 7227E-07 .2753E-07 | 2677E-06 .2211E-07
107% | .3798E-08 .2589E-08 | .2560E-07 .2144E-08
10~1° | .6941E-08 .2739E-09 | .2215E-08 .2118E-09
10~ | [7417E-08 .2577E-10 | .2855E-09 .2116E-10
107'2 | [7463E-08 .2738E-11 | .4467E-09 .2145E-11
1013 | .7469E-08 .2665E-12 | 4667E-09 .2444F-12
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Table 3.2: Norm of absolute error and residual for second-order SOR. iterative

method

h=0.2 h=0.1

£ error residual error residual

1072 | .2366E-02 .2812E-02 | .8227E-03 .1699E-02
1073 | .1387E-02 .3723E-03 | .3433E-03 .4884E-03
10~% | .1380E-02 .1056E-04 | .3728E-03 .7669E-04
105 | .1380E-02 .1056E-04 | .3563E-03 .1893E-04
107 | .1381E-02 .1200E-06 | .3549E-03 .8257E-06
10~7 | .1381E-02 .1026E-07 | .3549E-03 .7303E-07
108 | .1381E-02 .1026E-07 | .3549E-03 .1605E-07
10-° | .1381E-02 .3879E-09 | .3549E-03 .7018E-09
1071% | .1381E-02 .9665E-10 | .3549E-03 .2733E-09
10~ | .1381E-02 .2812E-11 | .3549E-03 .3183E-11

h=0.05 h=0.025

£ Error residual error residual

102 | .3513E-01 .2048E-01 | .3867E-02 .6258E-02
107% | 4218E-02 .3817E-03 | .1906E-02 .1669E-02
101 | .3801E-03 .3750E-04 | .9251E-04 .2513E-03
1075 | .7219E-04 .3838E-05 | .2282FE-04 .4619E-05
1076 | 8743E-04 .3887E-06 | .2251E-04 .7685E-06
1077 | .8918E-04 .3932E-07 | .2240E-04 .1649E-06
10~% | 8938E-04 .3978E-08 | .2249E-04 .2879E-07
1077 | 8941E-04 .4024E-09 | .2248E-04 .7750E-09
10-10 | 8941E-04 .40T1E-10 | .2248E-04 .1143E-09

1071 | 8941FE-04 .4115E-11 | .2248E-04 .9861E-11
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Table 3.3: Effect of over relaxation factor on convergence. Fourth-order finite

difference scheme

h=0.2

(6 interior points)

h=0.1

(11 interior points)

h=0.05

(21 interior points)

h=0.025

(41 interior points)

¢=10"" e=10"% €= 10710 € =107
w  Numberof | w Number of | w Number of | w Number of
iterations iterations iterations iterations
1.10 27 1.10 138 1.10 o84 1.10 3021
1.20 22 1.20 115 1.20 250 1.20 2540
1.30 16 1.30 95 1.30 461 1.30 2130
1.40 22 1.40 78 1.40 383 1.40 1775
1.50 29 1.50 61 1.50 314 1.50 1464
1.60 42 1.60 57 1.60 252 1.60 1198
1.70 69 1.70 103 1.70 195 1.70 942
1.80 168 1.80 356 1.80 490 1.80 718

Wopt 15 about 1.3

Wope 18 about 1.5

Wops 15 about 1.7

Wopt is about 1.8

3.4.5 Choice of w in SOR Method

The major difficulty with the over relaxation method is the deter-

mination of the best value for the over relaxation factor w. Unfortunately, there

is not a good general method for determining the optimal value for the over

relaxation factor wp .

The optimal value depends on the size of the system of equations (the

number of equations) and the nature of the equations (characteristics such as the

strength of the diagonal dominance and the structure of the coefficient matrix). As
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Table 3.4: Effect of over relaxation factor on convergence. Second-order finite

difference scheme

h=0.2

(6 interior points)

h=0.1

(11 interior points)

h=0.05

(21 interior points)

h=0.025

(41 interior points)

€=107" e=10"1 e=10"° e=10"°
w  Numberof | w Number of | w Number of | w Number of
iterations iterations iterations iterations
1.20 13 1.20 60 1.20 265 1.20 1157
1.30 11 1.30 49 1.30 219 1.30 953
1.40 12 1.40 39 1.40 177 1.40 774
1.50 15 1.50 28 1.50 140 1.50 615
1.60 21 1.60 27 1.60 105 1.60 471
1.70 27 1.70 40 1.70 69 1.70 338
1.80 42 1.80 53 1.80 80 1.80 209
1.90 83 1.90 104 1.90 129 1.90 164

Lwopt is about 1.3

Wep 15 about 1.6

Wept 1 about 1.7

Wepe 15 about 1.9

a general rule, large values of w,y: are associated with larger systems of equations.

If w = 1, the SOR method simplifies to the Gauss-Seidel method. It is

easy to show that the SOR fails to converge if w is outside the interval (0,2).

Though technically the term underrelazation should be used when 0 < w < 1,

for convenience the term over relaxation is now used for any value of w € (0,2).

Maximum acceleration is obtained for some optimal value of w. This optimal

value will always lie between 1.0 and 2.0 for the Poisson equations.

In general, it is not possible to compute in advance the value of w that

1S optimal with respect to the rate of convergence of the SOR. Even when it is
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possible to compute the optimal value for w, the computational expense is usually
prohibitive. Frequently, some heuristic or experimental estimate is used. Tables
3.3 and 3.4 demonstrate how SOR fourth-order and second-order can speed up the
convergence by w for our test problem for A = 0.2 (6 interior points), 4 = 0.1 (11
interior points), & = 0.05 (21 interior points) and & = 0.025 (41 interior points).
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Figure 3.4: The number of iterations in the 4" order SOR method as a function

of the relaxation factor w, h = 0.2 and £ = 1075

Figure 3.4 - 3.7 demonstrate the dependence of the number of iterations versus
relaxation parameter w, and show this dependence in the case of the fourth-order

HOC.

3.4.6 Rate of Convergence

Tables 3.5 - 3.8 show the infinity norm of the absolute errors which
‘are obtained from the grid systems having N1 x N1 nodes. With these values,

the resulting rate of convergence is estimated. The rate of convergence is defined



phot graph of omega obtion 2 had) 1,epsion=16""
4001 . T

g8

I
2
e

n
2]

ra
2

n
c
]
ki
&
]
=
e~
7]
o
3
]
-
¢
_xg
E
pus |
4

150

50 ! | —t L ]
i1 12 13 14 15 18 57 18
omega relaxation

Figure 3.5: The number of iterations in the 4%* order SOR method as a function

of the relaxation factor w, A = 0.1 and & = 1078,

according to equation (3.42)

In(LtL)

ErTa

{n2

where errl and err2 are errors which correspond to grid systems with N1 x N1
and N2 x N2 nodes, respectively. It is observed that the convergence rate for
the h* scheme (3.36), is four. This confirms that the compact scheme (3.36) is of
fourth-order accuracy when the solutions of (3.19) are smooth.

The error E = {|u® — Py{u)!| is graphed in Figure 3.8 against grid size
h on log-log scale for the central difference scheme, and fourth-order compact
scheme. The rate exponent % (see equation (3.40)) is given by the asymptotic
slope of the curves. The slopes of the straight lines on the log-log plot are close

t_6'4 for HOC and close to 2 for CDS.
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Table 3.5: Absolute error and rate of convergence for test problem (3.38), using

the Fourth-Oer HOC, SOR iteration method.

h | error = [{u® — Uezaetl|oo | Rate
0.2 0.1152E-05 -
0.1 0.7229E-07 3.99

0.05 0.5411E-08 3.74
0.025 0.3590E-09 3.91

Table 3.6: Absolute error and rate of convergence for test problem (3.38), using

the Fourth-Order HOC, GAUSS-SEIDEL iteration method.

h | error = ||u* — Ueguet|loo | Rate
0.2 0.1117E-05 -
0.1 0.6299E-07 4.15
0.05 0.4520E-08 3.80

0.025 0.3384E-09 3.74

Table 3.7: Absolute error and rate of convergence for test problem (3.38), using

the Second-Order central difference scheme, SOR iteration method.

h | error = [|u" — Uegact |00 | Rate
0.2 0.7388E-03 -
0.1 0.1662E-03 2.15
0.05 0.4610E-04 1.85

0.025 0.8998E-05 2.36
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"Table 3.8: Absolute error and rate of convergence for test problem (3.38), using’

the Second-Order central difference scheme, GAUSS-SEIDEL iteration

method.
h | error = ||uP ~ Uggeer|loo | Rate
0.2 0.1325E-02 -
0.1 0.2844FE-03 2.22
0.056 0.5700E-04 2.32
0.025 0.1080E-04 2.39
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Figure 3.8: Convergence results for the 2D test problem.



Chapter 1V
High-Order Compact Finite Difference Scheme

for the Euler Equations

4.1 Introduction

In this chapter, we develop the numerical algorithm to solve the boundary
value problem in which the governing equations are the steady Euler equations
and the vorticity is given on the inflow parts of the boundary. We use the Euler

equations in terms of the stream function and vorticity.

4.2 Governing Equations

Let © be a bounded domain in R? whose boundary 42 = TP uI? ur?,
consists of three parts. The parts of the inflow are denoted by I'!, the parts of the
outflows are denoted by I'?, the parts of the impermeable boundary are denoted

by I'’, the equation of 8 is given in the following parametric form

z = z{s),
y = yls), s € s, 51,

z{s0) = z(s1), yls0) = y(s1)- (4.1)

The Euler equations governing the fluid flow within domain 2 are

aul
ot

a 0 0
+ Uy 81;1 “+ Ug 31;1 = “a—z, (4.2)
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] Ous Oy Ip

Ug

i “+ Uy Fz -+ Ug ay = "‘gy‘: (43)
BU]_ a’MQ _
5t ay =0 (4.4)

where u; = w;{z,y,t), 1 = 1,2 are the components of the velocity vector, p =
p{x,y,t) is the pressure divided by the constant density of the fluid and z,y be

are Cartesian coordinates. The boundary conditions are as follow:

—

@7 <0, @7 = giz(s),y(s)),

w = wi(z(s),y(s)), (a(s),y(s)) €T,

- =0, (z,y) €I, (2(s),us)) € I’

(4.5)

™. 4.7 >0,

=1
=)
i
]
(%]
——
2
n
M
Kot
———
V.S
N
~—
8
——
n
N
w2
——
<
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S
m
=
- 1]

where 7 is the outward normal vector to the domain boundary. The correctness
of boundary value problem (4.2) - (4.5) was studied by ( A. V. Kazhikhov et al.
(1980)). It is reasonable to reformulate the boundary value problem (4.2) - (4.5)
in terms of the vorticity vector w and stream function ¥. The Euler equations

(4.2) ~ (4.4) for the steady case take the form

d):z:m _i'" pry - '“-(.L}, iIl Q: (46)

Yywy — gy =0, in £, {4.7)

“where 1 and w represent the stream function and vorticity vector, respectively
(see section 2.5 ).
The boundary conditions for the stream function and vorticity can be de-

xived from equation (4.5). Let us assume that the boundaries I'' ,T'%, T'® consist



Figure 4.1: Sketch of domain

of several parts
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The boundary conditions for 4 and w are the following

Ds (s = b(sh) + [ (ol ule))es = (),

w = w(s); (z(s),y(s)) €T,

S € [sp,8h), 1=1,2,--+,L,

; | (49
5 () = 9(h) + [ 9a(s)y(e)ds = (),

s € [shsh], B=1,2,, K ; (2(s),4(s)) € T,
ro: 7,&(8) :Ojo; 5 € [Sglasgz]v J=4L2-
It is easy to check by direct differentiation that equation (4.7) has a general

solution in the form

w = w(t).

Here &(2)) is an arbitrary function of 1. We have

du _ 9(b(a,y) _ 8% 0B

Oz Oz Oz O’
b GE(W(zy) O% 05
dy Jy T Oy O

Substituting these formulas into equation (4.7) we get

%ﬂ.bzaga — %by'%v’:’;a = 0.
In the domain 2 we construct the finite difference grid £, = {(%;,y;)}. We denote
the grid functions at the grid points as ¥;;, wy;.
Let q,bf? and wg’) be the initial guesses. To find wg-“) and wg‘} we perform the

following steps
1. Solve

Avl) = o) k=01, K, (49)

ij ?

with boundary condition (4.8) for all inner points of €25,



2. Using the boundary condition onI‘l,w

B S, 4.10)
3. Using the boundary condition on I'* for w.

wg-c“) = wy(8%) (4.11)

We can stop the iterative process if the following conditions are satisfied,

1 g®0 —ij — ¢ < ey
k k
1™ — o e,
To find the solution of (4.9) we use the results of section 3.2. We substitute

—w(y) for f(z,y).

To find the solution of nonlinear equation (4.10) we use the secant method.

4.3 Numerical Results for the Model Problem

In this section, we obtain the numerical solution for the test problem by
using the finite difference scheme presented in section 4.2. A test problem with
analytical solution is chosen, and then a rigorous comparison of approximate and
exact solutions is performed.

To construct the test problem with known solution, we specify the stream

function and vorticity
Y o= Y, w = —2e%HY (4.12)

The boundary conditions (see Figure 4.2) to be satisfied are
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Figure 4.2: Sketch of domain for model problem

[ :g0y)=fly)=¢, 0Sy< L, 5=0,
w(0,y) =& (y)=~2e%, 0<y <1, z=0,
Lz, 1) = falz) =5, 0< 2 <1, y =1,
(4.13)
w(z,)=&(z)= -2, 0<z <1, y=1,
If:yp(Ly)=qly) = 0<y<L =1,
2 9(z,0) = gofz) =€, 0<z <1, y=0.
In Figure 4.2 the upper indices correspond to the type of the boundary and the
arrows demonstrate the direction of flow. The algorithm developed in section 4.2
is then implemented to these test problems.
These boundary value problems are solved sequentially using a procedure,

which is described by the following steps
1. Specify initial values for w and 2.

2. Iterate for new % values at all points by solving the Poisson equation using



w from the previous iteration at interior points.

3. Find the point on the boundary I'] or [} such that fi(sf;) = ;.

4. Find the new w values at all points by boundary conditions

wi; = &(sy;)

5. Return to step 2 if the solution has not converged yet.
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Table 4.1 shows the infinity norm of the absolute errors which are obtained

from the grid systems having N1 x N1 nodes. With these values, the resulting

rate of convergence is estimated. The rate of convergence is defined by equation

{3.42). It is observed that the convergence rate is approximately equal to four.

This confirms that the finite difference scheme developed in section 4.2 is of fourth-

order accuracy.

Table 4.1: Absclute errors between exact and approximate solutions for stream

function and vorticity. Rates of convergence for test problem.

Grid | err = |l" — Yegaet!|oo | Rate | err = [lwh — wepeer]leo | Rate
6 x6 0.173E-05 - 0.345E-05 -
11 x 11 0.979E-07 4.14 0.196E-06 4.13
21 x 21 0.579E-08 4.08 0.116E-07 4.08
41 x 41 0.413E-09 3.81 0.862E-09 3.81

Tables 4.2 and 4.3 show the time which is needed to find the solution of

the test problem. In column 2 we show the maximum number of iterations in the

interior iterative process to find stream function, column 3 corresponds to total

number of iterations to convergence in the last column we show CPU times. We

Efdo not need to iterate the Poisson equation for ¢ up to convergence. The best
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Figure 4.3: Flow chart of the numerical algorithm.

time corresponds to the case where the number of iterations is in the range of

50,100] iterations.

The flow of an ideal incompressible fluid corresponding to numerical solu-
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Table 4.2: CPU time. Number of iterations for convergence of 2D Euler

equations. Grid 21 x 21. e, =g, = 1071

sw | Number of Inner Iterations | Nit { Time
1 228 | 0.44
3 47 | 0.11
10 24 | 0.06
1.6 50 11 | 0.05
100 12 | 0.09
up to convergence 12 | 0.13
but < 10000
1 176 | 0.35
5 36 | 0.08
10 18 | 0.05
1.7 50 12 | 0.06
100 12 | 0.09
up to convergence 12 | 0.11
but < 10000

tion 4.12 is presented in Figure 4.4 in the form of the isolines v = const. In the

steady case the streamlines coincide with trajectories of fluid particles.



Table 4.3: CPU time.

equations. Grid 21 x 21. g, =¢, = 10713,

but < 10000

sw | Number of Inner Iterations | Nit | Time
1 300 | 2.37
5 172 ) 1.52
10 87 | 0.89
1.7 50 i7 1 0.35
100 10 { 0.31
up to convergence 13 | 1.85
but < 10000
1 300 | 2.39
5 132 | 1.18
10 66 | 0.69
1.8 a0 13 { 0.26
100 12 { 0.37
up to convergence 14 | 1.47

Number of iterations for convergence of 2D Euler



Figure 4.4: Streamlines 1 = const |



Chapter V

Conclusion and Comments on Future Work

The finite difference methods have been the primary computational tech-
niques in CFD. Nowadays, the finite difference methods still play an important
role in all branches of CFD. The present thesis provides a set of successful appli-
cation examples which demonstrate that finite difference methods can be explored
to achieve further significant results.

In recent years high-order compact schemes have received considerable at-
tention in the numerical approximation of the partial differential equations. The
higher accuracy of the scheme manifests itself as a preferable way to meet the re-
quirement for high resolution in fluid flow regions with large amounts of variation.
The compact nature of the schemes effectively reduces the overall work load in
solving the nonlinear system resulting from the numerical approximations, since
the grid points involved are clustered around the central grid of the computa-
tional stencil. In regard to boundary treatment, compact schemes do not require
unknown values of fictitious points which are outside the physical domain. This
is advantageous over the wide stencil high-order schemes with necessary extrapo-
lations for those fictitious peoints that in turn brings forth additional problems in
regard to accuracy and stability. High-order compact schemes usually have good
stability properties.

The fourth-order compact schemes proposed in Chapters IIT and IV have
satisfied these observations. The compact scheme for the steady Euler equations

allows decoupled solution procedure for the stream function equation and the



vorticity transport equation.

In spite of many existing formulations of fourth-order compact schemes
available in the literature, our scheme has the novelty that the coupling relation
between the stream function and vorticity (vorticity constant along streamlines)
is fully invoked in the derived scheme. Consequently, we have obtained higher effi-
ciency, stability and robustness when applying the scheme to a particular problem.
The numerical results in Chapters Il and IV supported these conclusions.

The ideas and techniques presented in this thesis are capable of extension
and warrant further studies. We envision some aspects which can be considered

in future work.

o The underlying strategy of deriving a high-order compact scheme can be
readily applied to more general problems of ideal incompressible fluid flow

that involve multiply connected domain.

e The high-order compact schemes may be employed with minor adaptation
to numerical simulations of ideal incompressible fluid flow within a domain

with several inflow and outflow sections.
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Appendix A

Iterative Method for the Solution of Nonlinear

Equation

A.1 Newton’s Method

Consider the sample graph of y = f(z) shown in Figure A.1. The root «
occurs where the graph crosses the z-axis. We will usnally have an estimate of
«, and it will be denoted here by zy. To improve on this estimate, consider the
straight line that is tangent to the graph at the point (zg, f(zo)). If zyp is near
@, this tangent line should be nearly coincident with the graph of y = f(z) for
points z about c. Then the root of the tangent line should nearly equal «. This
root is denoted here by z;.

To find a formula for z;, consider the slope of the tangent line. Using
the derivative f'(z), we know from calculus that the slope of the tangent line
at (zo, f{zo)) is f'(zmg). We can also calculate the slope using the fact that the
tangent line contains the two points (zg, f(zs)) and {z;,0). This leads to the

slope being equal to

flg) =0

To— T
the difference in the y-coordinates divided by the difference in the z-coordinates.

Equating the two different formulas for the slope, we obtain

f(fco)

Ty — I

fzo) =
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This can be solved to give

J/’

A

Figure A.1: Geometric interpretation of Newton's method

fzo)
Fzo)

Since z; should be and improvement over 7y as and estimate of ¢, this entire

ry = &g —

(A.1)

procedure can be repeated with z; as the initial guess. This leads to the new

estimate
f (13 1)
Te = Ty — .
Y P()
Repeating this process, we obtain a sequence of numbers z1, 9, s,... that we

hope will approach the root . These numbers are called iterates, and they are

defined recursively by the following general iteration formula

f{zn)

xﬂa'{'l Bl f,(m )
i1

n=0,1,2... (A.2)

This is Newton’s method for solving f(z) = 0.
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A.2 Secant Method

Newton’s method is based on approximating the graph y = f(z) with a
tangent line and on then using the root of this straight-line as an approximation
to the root « of f(z). From this perspective, other straight-line approximations
to y = f(z) would also leat to the secant method.

Assume that two initial guess to ¢ are known and denote them by y and
z;. They may occur on opposite side of «, as in Figure A.2, or on the same
side of @, as in Figure A.3. The two points (zy, f(zo)) and (z1, f(z;)), on the
graph of y = f(z), determine a straight-line, called a secant line. This line is an
approximation to the graph of y = f(z), and its root z, is an approximation of
cx.

To derive a formula for z,, we proceed in a manner similar to that used
to derive Newton’s method: match the slope determined by {(z,, f(z:)), (z5,0}}.

This gives

f(z1) — f(20) _ O_'f(-'ﬂl)‘

Ty — Tp To— I

Solving for z,, we get

Ty — Iy

zo = 21 — flT1) r —V—F—.
1~ i) flz1) — f(zo)
Having found z,, we can drop z and use z;, z, as a new set of approximate values

for «. This leads to an improved value z3; and this process can be continued

indefinitely. Doing so, we obtain the general iteration formula

Tp — Tp-1

Tpy1 = &p =~ f(mn) ) f(il?n) _ f(man)J n 21 (AS)

This is the secant method It is called a two point methods, since two approximate

values are needed to obtain an improved value.
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Figure A.2: Geometric interpretation of secant method



Appendix B

Iterative Methods

For many large systems of linear algebraic equations Az = b, the coefficient
matrix A is extremely sparse. That is, most of the elements of A are zero. It is
generally more efficient to solve such systems of equations by iterative methods
than by direct methods. Two iterative methods are presented in this appendix,
Jacobi iteration and Gauss-Seidel iteration.

Iterative methods begin by assuming an initial solution vector z(®. The
initial solution vector is used to generate an improved solution vector, (%, based
on some strategy for reducing the difference between z(® and the actual solution
vector z. This procedure is repeated (iterated) to convergence. The procedure is
convergent if each iteration produces approximations to the solution vector that
approach the exact solution vector as the number of iterations increases.

Iterative methods do not converge for all sets of equations. Diagonal dom-
inance is a sufficient condition for convergence of the Jacobi and the Gauss-
Seidel methods for any initial solution vector.

A matrix is diagonal dominant if the absolute value of each term on the
major diagonal is equal to, or larger than, the sum of the values of all the other
terms in that row, with the diagonal term being lager than the corresponding sum

for at least one row. Thus, diagonal dominance is defined as

n
a2 ) jeg| @=L ,n),
J=L i
with > true for at least on row. Some system that are not diagonally dominant
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may converge: for certain initial solution vectors, but convergence is not assured.
Iterative methods should generally be avoided for systems of equation that cannot
be made diagonally dominant.

When repeated application of an iterative algorithm produces insignificant
changes in the solution vector, the procedure should be terminated. In other
words, the algorithm is repeated (iterated) until some specified convergence cri-
terion is achieved. Convergence is achieved when some measure of the relative or
absolute change in the solution vector is less than a specified convergence criterion.

The number of iterations required to achieve convergence depends on
1. the dominance of the diagonal coeflicients,
2. the initial solution vector,
3. the algorithm used,
4. the convergence criterion specified.

In general, the stronger the diagonal dominance, the fewer the number of

the iterations required to satisfy the convergence criterion.
Jacobi Iteration

Consider the general system of linear algebraic equation Az = b, written

in index notation

n
Zaijmj = bz (T;Z 1, ,TL).
j=1

In Jacobi iteration, each equation of the system is solved for the component

of the solution vector associated with the diagonal element, that is, z;. Thus

1 i—1 n
C= b — T — i i =1,...,n). B.1
T; 2 (b Zajmj Z ajrcj) (4 n) (B.1)

j=1 j=itl
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An initial solution of vector 29 is chosen. The superscript in parentheses denotes
the iteration number, with zero denoting the initial solution vector. The initial
solution vector z(? is substituted in to equation (B.1) to yield the first improved
solution vector z(*), Thus,
i
0 = LS aa® - S ael?) =1 02
Qg =1 -
=i+l
This procedure is repeated (iterated) until some convergence criterion is satisfied.
The Jacobi algorithm for the general iteration step (k+ 1) is

UC_H) = (b - Zau o Z azjm(k)) (i=1,...,n) (B.3)

=i+l
An equivalent, but more convenient, form of equation (8.3) can be obtained by

(k)

adding and subtracting z;”’ from equation (B.3) to yield

;I;Ek'l_l) - {k) 4+ — (b - Zazj:c{k)) (i=1,...,n). (B.4)

Equation (B.4) is generally written as

. SR 54
mgmt) - mgh) + j(i =1,...,n), (B.5)
R =p; - Zaz‘ngk}(i =1,...,n), (B.6)

where the term ng) is called the residual. The residuals are simply the net values
of the equations evaluated for the approximate solution vector z*},

The Jacobi method is sometimes called the method of simultaneous iter-
ation, because all values of z; are iterated simultaneously. That is, all values of

:1:5’““”. The order of processing the equation is immaterial.

The Gauss-Seidel Method

(k+1)

In the Jacobi method, all values of z; are based on :I:I{-k). The Gauss-

Seidel method is similar to the Jacobi method, except that the most recently
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computed values of all z; are used in all computations. In brief, as better values of
x; are obtained, use them immediately. Like the Jacobi method, the Gauss-Seidel

method requires diagonal dominance to ensure convergence. The Gauss-Seidel

{k+1)

algorithm is obtained from the Jacobi algorithm, equation (B.3), by using «

values in the summation from j =1 to ¢ — 1 (assuming the sweeps through the

equations proceed from i =1 to n). Thus,

n

i—1
b+1) _ b (k+1) (%) .

j=i+l
Equation (B.7) can be written in terms of the residuals R; by adding and sub-
(k)

tracting z; ' and rearranging to yield
R®
D = g *Hﬁ (t=1,...,n), (B.8)
i—1 n
R b St - 3wl G=tm (B9)

The Gauss-Seidel method is sometimes called the method of successive
iteration, because the most recent values of all z; are used in all the calculations.

Gauss-Seidel iteration generally converges faster than Jacobi iteration.
Successive Over Relaxation (SOR)

The Gauss-Seidel method presented above can be modified to include over
relaxation simply by multiplying the residual ng) in equation (B.8) by the over
relaxation factor w. Thus, the Successive Over Relaxation method is given by

k
(k+1) %

B
¢ =m§’°>+w-j_~¢ (i=1,...,n), (B.10)

i

g1 7
ng) =D, — Z aijm§k+l) — Z aijmg-k) (i=1,...,n). (B.11)
= =1
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When w = 1, equation {B.10)} yields the Gauss-Seidel method. When
1 < w < 2, the system of equation is overreluzed. Over relaxation is appropriate
for systems of linear algebraic equations. When w < 1, the system of equations is
underrélamed, Under relaxation is appropriate when the Gauss-Seidel algorithm
causes the solution vector to overshoot, resulting in an oscillatory pattern. This
behavior is generally associated with the iterative solution of systems of nonlinear
algebraic equations. The iterative method diverges if w > 2. The relaxation factor
does not change the final solution, since it multiplies the residual R;, which is zero
when the final solution is reached. The major difficulty with the over relaxation
factor w, is that there is not a good general method for determining the optimum
value for the over relaxation factor, wy,. This optimum value depends on the
size of the system of equations (the number of equations) and the nature of the
equation (characteristics such as the strength of the diagonal dominance and the
structure of the coefficient matrix). As a general rule, larger values of w,, are

assoclated with larger systems of equations.
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