THE PERFORMANCE OF UPDATING XML IN TRADI-
TIONAL DATABASES

Pensri Amornsinlaphachai® and Kwanjai Degring
Received: Oct 4, 2007; Revised: Dec 3, 2007; Accepted: Dec 26, 2007

Abstract

Most researchesin the XML area have concentrated on storing, querying and publishing XML, while
not many have paid attention to updating XML ; thusthe XML updateareaisnot fully developed. This
work providesthe overview of a solution for the update of XML documents via ORDB (Object-Rela-
tional Database) to advance the techniques in this area through preserving constraints, maintaining
performancein the presence of data redundancy, per mitting joins of documentsin updatesand allowing
the updates of documents whose structureis known partially or whose structureisrecursive. The main
contribution isto compar e the performance of the solution and the existing ones. Thus experimental
study to evaluate the performance of XML update processing has been conducted. The experimental
results show that updating multiple XML documents storing non-redundant data yields a better
performance than updating a single XML document storing redundant data; an ORDB can take
advantage of this by caching data to a greater extent than a native XML database.

Keywords: XML updates, ORDB, traditional databases, XML constraints

Introduction

XML (eXtensible Markup Language) has becomwork does not pay much attention to modifying
an effective standard for representing semkML or does not mention it at all.

structured data on thé&eb since it provides a Nowadays, there are two dominant
natural data structuring mechanism for hierarchigpproaches for managing XML repositories. The
cal and recursive data; moreover it is flexible ifirst approach is to use native XML databases
that it allows the authors to define their own tag® handle the datdhe second approach maps
and structure for documents and can handle da&IL onto a traditional database (e.g., relational
whose occurrence is optional. Many researchettatabase (RDB), object-relational database
in the XML area have focused on storing, pulfORDB) and object-oriented database (OODB)).
lishing, and querying XML documents. XML Two possible reasons behind the immaturity of
consequently provides most of the featureabe XML update area are as follows. Firstly
normally expected for a database model. HovikQuery has not provided update features
ever there is an omission in that most existingecause the W3C Consortium wanted to release

Computer Department, Faculty of Science and Technol ogy, Nakhon Ratchasima Rajabhat University, Thailand
30000. Tel: 086-1003876; E-mail: kokkoy@hotmail.com
* Corresponding author

Suranaree J. Sci. Technol. 15(2):149-158

150 The Performance of Updating XML in Traditional Databases

the standard of XQuery as soon as possib@®ur Solution for Updating XML
(Chamberlin, 2003). Secondlgxisting work is

focused on updating XML by employing aXML updating has been relatively well-
native XML database. Thus a host of work suctesearched in the area of native XML database,
as preserving constraints must be created fromhereas in the area of applying traditional data-
scratch which can take a long time. Researchliases to manage XML, only one worki{@rinov
the XML update area is not fully-fledged. Ouet al., 2001) has presented an XML language
work has identified five main problems ador updating XML data. This work employed a
follows: RDB but only the syntax and semantics of the
 The work published presently can updatianguage are presented. In our solution, the more
XML documents but only without checkingadvanced technology of ORDB is exploited to
constraints. Even commercial products cannapdate XML documents.
guarantee the integrity in the database when The purpose of using a traditional data-
XML data is updated (Babcock, 2002). base, ORDB, in this research is different from
* Normally, all XML data is kept in one that of other work. The previous work uses OODB
document; thus data redundancy may occyZwol etal., 1999), RDB (&tarinovet al., 2002;
This can lead to data inconsistency and low andYan, 2006) and ORDB (Pardedeal .,
performance when updates are performe2D06) as the database management systems
(Arenas and Libkin, 2004). (DBMS) of XML documents to store and query
» No XML update language supports joins<ML data, but our approach uses ORDB to
of XML documents (Obasanjo and Navathepreserve constraints during updating and to
2002; Luet al., 2003). indicate the target-elements in XML documents
» Regular path expressions are used tghich should be updated. The updates are
guery/update XML whose structure is unknowperformed on XML documents; thus it is not
or only partially known. Using regular pathnecessary to maintain the order of elements
expressions, especially a descendent pathORDB and users can query data from XML
expression (‘/I'), can slow the process oflocuments instead of ORDB. This reduces the
guerying/updating data (&g and Liu, 2003) cost of data conversion, since nowadays, the
because the query engine must traverse afljor expense of exchanging messages between
possible paths in XML. Web Services comes from converting data such
« In XQuery there is no specific facility as between a database and Xfdimat (\Watson,
to query data whose structure is recursiv@005). The overview of our approach is illustrated
however the effect can be achieved by creatirigFigure 1.
a recursive user-defined function. Until now no In the solution, Documeiiype Definitions
technique is proposed to translate this recursi{@TDs) are used in our mapping since most XML
feature into Structured Query Language (SQLldocuments still stick to DTDs (Mignet al.,
(Krishnamurthyet al., 2004; Prakasét al., 2006). 2003). Not only the XML structure but also XML
Our work presents a solution for the updateonstraints are mapped to ORDB since a DTD
of XML documents via ORDB to solve theseadefines the constraints on the logical structure
problems and evaluates the performance of XML documents (Ltet al., 2005).
XML update processing. Non-redundant data is kept in separate
The rest of this paper is organized amultiple XML documents so avoiding the
follows. The next section presents the goal storage of redundant data in one single XML
our work, to devise a more effective solutiomocument; then the separate documents are
for updating XML data and solve the operinked togetherTo update XMLdata, an XML
problems as mentioned previoudie follow- update language, as an extension to XQusry
ing section shows the results of experimentdesigned and this language is translated into SQL
study including performance aspeddsconclu- to update XML data stored in ORDB. Then the
sion is provided in the final section. changes in ORDB are propagated to the XML

Suranaree J. Sdiechnol.Vol. 15 No. 2April - June 2008 151

documents. which a diverse range of 17 update queries were
With this solution, the problems mentioneaxecuted and the results carefully inspected to
in the previous section can be solved as followsheck that they were as expected. In addition, to
Firstly, the preservation of XMlconstraints gain an insight into the performance of the
is handled by the ORDB engine. Secondlypdate techniques, runs were repeated with
non-redundant data is stored in linked XMlvariable database size, cache state, degree of
documents; thus the problem of data inconsisedundancy and methods for linking XML
tency and low performance caused by dasdructures.
redundancy are solvedhirdly, joins of XML
documents are converted to joins of tables in SQ
Fourthly fields or tables involved in regular path In the experiments, three types of data-
expressions can be tackled in a short time ases are used. The first is X-Hive, a trial
the use of mapping data. Finally recursive version of a commercial native XML database
function is translated into SQL commandg$nxd), used to keep redundant data of a single
equipped with a programming capability XML document. The second is Oracle ORDB
The detail of mapping XML to ORDB is employed to keep redundant data of a single
presented irAmornsinlaphachaét al., 2006a XML document (sxd). The third is Oracle ORDB
whereas the detail of translating the XMLutilised to keep non-redundant data of linked
update language into SQL is proposed iXML documents (Ixd). The XML update
Amornsinlaphachait al., 2006b. The techniques language for X-Hive is XUpdate (XMLDB, 2002).
of propagating the change from XML to ORDBAIl experiments are conducted on a 1.3 GHz
and the implementation for the solution can bentium M machine with 768 MB main memory
found inAmornsinlaphachast al., 2005. and 20 GB disk runningVindows XP The
experiments are designed to evaluate the perfor-
mance for updating: (a) native XML database
storing redundant data, (b) ORDB storing redun-
Itis important to verify the method for updatingdant XML data and (c) ORDB keeping non-
XML, developed in the previous section. Thisedundant XMLdata.Varying sizes of the data-
was done through an experimental study ibases ranging from 5, 10, 20 to 40 MB are used.

Experiment Platform and M ethodology

Results and Discussion

<authors» For $a in docCauthors xmi)ifauthor
<author aid ="a11"> where $aname ="Mick Rossiter”
<name> replace $aiame with

<books>
<book isbn = "12-396" >
<title>RDBMS <ititle>

% <author rlink-href = Midk Roistet <name»
“ffauthor@aid = 11> <iname> ; ;
Q </author» <address>,.. </addrass> Nick Rossiter
< <ftelephone> siname=
- <fbook>
@ .. ¢ <ftelephone> | _ _ _ _ _ l _____________
= <books> | | e :
o H | Language Translator
<jauthors> :
__________________________ g
g Update({name, "Nick Rossiter'}, target) Updateiauinoss:a
=} el . 0 . 1arge Set a.author.name = "Nick Rossiter"
g Where a.author.name = "Mick Rossiter*
3 | Change Propagator | y
§ author
(=3] address telephone
O | target=jauthorsfauthor{@aid = "a117name aid |namef T Zincode | place | teino
O | update-data="Nick Rossiter"
(=]
@
@
| Updated-Position Extractor]

Figurel. Overview of thesolution toupdating XM L documents

152 The Performance of Updating XML in Traditional Databases

The number of redundant records for the 5 MBommands for the native XML database is less
data size varies from 10, 20, 40 to 80 recordhan for ORDB since XUpdate does not support
while the number of redundant records forecursion (C17) and navigation by reference
the 10, 20, and 40 MB data sizes is two, fouraversal (C11). In the XML update commands,
and eight times respectively the number afome commands contain two features since some
redundant records for the 5 MB data size. THeatures are simple or always appear along with
size of linked XML documents is smaller than ather features. The feature C11 appears along
single XML document since such documents dwmith the feature C17, while the feature C2
not contain redundant records. In updating th@pdate without join) appears in the various
linked XML documents, each update commandommands updating a particular document
affects 10 records. Thus the number of recordgthout a join to other documents.
in a single document affected by a command Each experiment is executed five times and
varies according to the proportion of redundatnibe longest and the shortest elapsed times are
records. ignored; thus only an average of three elapsed
To study the déct of data caching on thetimes is reported.
performance of updating XML, the experiment
are conducted in cold cache, warm cache a
hot cache. In cold cache, the database is restarted The graphs and tables, to evaluate the
for each individual update command. Irperformance of XML update processing accord-
warm cache, the database is restarted for edanf to the purposes of the experimental study
individual command as well; however beforare produced as follows.
running the command, five unrelated comman
will be run first. In hot cache, the same command. .
is run twice in succession and the performan@gd Data Caching
measured for the second run. Figure 3 contains four graphs, one for each
Another objective is to compare thesize of the database. Each graph plots average
performance of update featurd&¥e designed elapsed time for replace, delete and insert opera-
two sets of 44 update commands for two ORDBEons against the number of redundant records
Each set of commands consists of 14 replace, itdthe three possible cache states: cold, warm
delete and 16 insert commands covering the &nd hot. In cold cache all required data is on the
features shown in Figure 2. For the native XMUdisk, whereas in warm cache most of the required
database, 41 update commands, a subset of dag¢a is in memory and in hot cache all required
44 commands of ORDB, are used. The numberdéta is in the memory

ﬁascussi on of the Experimental Results

formancewith Different Data Redundancy

C1 Exact Match C10 Join documents in update

C2 Update without join of documents| C11 Navigation by reference traversal
C3 Change selectivity C12 Handling missing elements

C4 Allow condition on text C13 Element ordering

C5 Support aggregation C14 Using regular path expression

C6 Support quantifiers C15 Mix between data-centric and

C7 Joins based on values document-centric

C8 Joins based on pointer C16 Hierarchical and sequence update
C9 Casting C17 Recursion and reference traversal

Figure2. The17 updatefeaturesfor theexperimental study

Suranaree J. Sdiechnol.Vol. 15 No. 2April - June 2008 153

The times for the operations individuallynot contain redundant data; thus, although the
are available ilAmornsinlaphachai, 2007. number of updated records will be constant for
Note that the update time in the graphs and tlegery degree of redundandye data size will be
tables excludes serialization time since, usuallgmaller when nxd has more redundant data.
serialization can be performed only once after allherefore the performance of Ixd is better when
updates finish. the degree of redundant data in nxd is greater

The commands C14 (regular path expres- For warm and hot caches, Ixd has the best
sion) and C17 (recursion) are excluded from thgerformance in all cases while nxd has the worst
average time of nxd since X-Hive does ngberformance when the data size is smaller than
support C17 while the elapsed time of C14 run &0 MB. When the data size is 20 and 40 MB, then
X-Hive is so long that it can affect the overalhxd can outperform sxd. This is because the
performance of the systems. The command Qdate time in sxd consists of SQL-time and
(change selectivity) is also not included in th®OM-time (time for updating DOM of XML) and
average time of sxd because it takes a relativelshen the data size is doubled, DOM-time is
long elapsed time. The performance of eadhcreased about twice whereas the update time
command will be discussed in the next sectiorof nxd is increased to a lesser extéfgo when

From the graphs in Figure 3, in cold cachthe data size is increased, there are more records
sxd (single XML document database) has the be updated; thus it means that for ORDB with
worst performance for every data size, whereagd, there are more data to be preserved for the
nxd (native XML database) has the best perforellback purpose, whereas we have not found
mance. Howevemwhen the data size is 40 MBthat nxd has a mechanism to preserve data for
and there is considerable data redundalxcy the rollback purpose. The latter reason is also
can outperform nxd. This is because Ixd doghe reason why the performance for sxd is

Average time of three databases (5 MB.) Average time of three datebases (10 MB.)
™~ 4.00 6.00
= P
8 350 123 500
B , o T
» 250 o *
t 4 —#—nxd Y - m\ ——nxd
2 200 2 3.00 {4
3 150 ——sxd = —a—sxd
B P B 200 |
g 1.00 F—a—a | |—h—Ixd § _— —h—Ixd
£ os0 &1 1
0.00 0.00
10 Izo |ao Iao 10 I20 |40|en 10 lzo [40[30 10 lzu Iaolso 10 |20 Iqo Iao 10]20 |4ulau
cold warm hat cold warm hat
Redundancy (records * 10 - 10) Redundancy (records * 10 - 10)
(@ o)
Average time of three databases (20 MB.) Average time of three databases (40 MB.)
8.00 1200 |
g 70 8]
g el £ 1000 I
8 500 A\ § 800 |
E 4.00 B E 6.00 I —e—nxd
* 300 { |—m—sxd £ —m—sxd
§ 2.00 —a—Ixd ﬁ 40 | ——Ixal
£ 1o D o & 200 !
i 1 1 W |
0.00 1 000 1
10 |20 [4n|au 10 Izo lwlso 10 Izu |4o| 80 10 |20 |40 |ao 10 |20 |4OISU 1o|20 |40|80
cold wvarm hot cold warm hat
Redundancy (records * 10 - 10) Redundancy (records * 10 - 10)
© @

Figure 3. Averagetimeof nxd, sxd,and Ixd in cold, warm, and hot cachesnxd: native XML database;
sxd: sngleXML document database; Ixd: linked XM L document database

154 The Performance of Updating XML in Traditional Databases

affected by redundant data more than that ftess than in Ixd.
E;;dd:rstﬁ:;] gi/ls;en clearly when the data Slzei'hse Performance of the Seventeen Update

The time in cold cache for Ixd is about fOUIFeatur&s
or five times that in warm cache and the time in We present here only some important data,
cold cache for sxd is double that in the warrwhich can be used as representative for the
cache. By contrast, the times in cold and warperformance against the update features. The
caches for nxd are similashowing that Ixd and representative data consists of insert and delete
sxd gain more benefit from caching data thacommands performed in hot cache with data
nxd. The difference in time between the cold arglze 40 MB, which is the biggest size of data
warm caches for Ixd is more than that for sxdested. Only the results for 40 MB data size with
This is because caching data has only a littB0O redundant records are presented since the
effect on DOM-time but a much greater effect odifference in performance between the update
SQL-time. For Ixd the DOM-time is small whenfeatures is similar for each size of redundant data.
compared to the SQL-time; thus when the cacte practice both cold and hot caches can be used
state is changed from cold to warm, most of the capture actual performance. However in the
difference in time is derived from the change ireal world, applications are run more in warm
SQL-time, causing significant difference in ther hot cache than in cold cache; therefore we
times for cold and warm caches. On the othehoose one of these, hot cache, to show the
hand for sxd, the DOM-time is nearly equal tperformance against each update feature. The
the SQL-time in cold cache and the DOM-time iseplace commands are not presented here since
changed only a little when the cache state ixd does not directly support replacing a
changed from cold to warm. Thus the differenceomplex element: several update commands are
in time between cold and warm caches in sxd éxecuted on simple elements instead of one

Tablel. Insert timeof threedatabasesin hot cache (40 M B, 800 redundant recor ds)

nxd sxd Ixd
C17 - C12 4,95 C12 1.38
C5 3.75 Ci15 5.14 C17 141
Ci15 3.94 (07! 5.15 Ci15 144
(07! 419 (0] 517 07! 147
C10 432 C6 5.19 C14 1.48
C3 433 Cl4 521 C9 151
C1 457 C132 532 C8 1.76
C12 4.65 Ci131 534 C1 181
C8 4,72 C8 542 C3 1.82
Ci131 475 Cc7 5.58 C6 1.82
C132 475 C10 559 C132 191
C7 485 C5 572 Ci131 192
(0] 494 C3 5.84 C10 2.03
C6 5.62 C1 593 Cc7 2.06
Ci16 9.37 Ci16 9.26 C5 2.26
Cl4 85.32 C17 9.74 C16 334

A/G 491 A/G 5.91 A/G 184
(@) (b) (©

Suranaree J. Sdiechnol.Vol. 15 No. 2April - June 2008 155

update command on the complex element. expression are solved in a short time.

The representative data is summarized in ~ Command Cl6h{erarchical and sequence
Tables 1 and Zlable 1 shows the performancaipdate) comprises a sequence of update
difference between the update features of ins@@mmands; thus its elapsed time is longer than
commands for the three types of databader one single update command. If C14 and C16
nxd, sxd and Ixd. The commands are given e not taken into account, the command C6
ascending order of elapsed time. testing a quantifier takes the longest elapsed time

FromTable 1(a), the command C14 testingpecause not only is the tree searched to match
regular path expression (//) produces an unac-the condition but also the grouping of data is
ceptable performance. This indicates that nxzhlculated. The elapsed times of the rest of the
has a weak point in handlingragular path commands are close to each othethis group,
expression because all possible paths in XMLthe command C9 takes the longest elapsed time
documents must be navigated. On the othsince the content of XML is text; thus it takes
hand, from th&ables 1(b) and (c), sxd and Ixdtime to cast the text type to a numeric type to
can handle this type of command well since themalculate the data.

XML update language is translated into SQL; For sxd fronTable 1(b), the command C17
thus the real path expression is not genuinelgstingrecursion takes the longest elapsed time
involved in executing the update commandecause in translating the XML update language,
Additionally the path in the regular path expreswe repeat the deletion and insertion of data from
sion can be determined by using mappingnd into the temp table. The elapsed time of the
information; thus fields or tables involved in thecommand C16 is the second longest since C16

Table2. Comparison of insert timeand deletetime

Cmd. nxd sxd Ixd

Insert Delete Insert Delete Insert Delete
C1 457 453 593 591 181 1.84
C3 433 4.25 5.84 12.38 1.82 2.00
07! 419 4,07 5.15 5.19 147 144
C5 3.75 3.69 572 5.74 2.26 221
C6 5.62 553 5.19 5.20 1.82 181
Cc7 485 477 5.58 5.69 2.06 197
C8 4,72 4.68 542 559 1.76 174
C9 494 4.86 517 5.20 151 1.46
C10 432 4.26 559 5.59 2.03 2.03
C12 4.65 4.63 4,95 5.16 1.38 141
Ci131 475 - 534 - 192 -
C132 475 - 5.32 - 191 -
C14 85.32 85.44 521 521 148 142
Ci5 3.94 3.83 5.14 5.16 144 1.39
Ci6 9.37 9.28 9.26 947 334 3.36
C17 - - 9.74 9.75 141 141
AVG 491 4.86 591 6.07 1.84 1.82
STDEV 1.36 1.84 143 159 0.48 0.53
%RSD 27.78 30.34 24.22 26.19 26.20 29.12

@) (b) (©)

156 The Performance of Updating XML in Traditional Databases

performs a sequence of update operations; thnsTable 2, the performance féifence between
more than one subcommand is executed. most update features for nxd. sxd and Ixd are not
The elapsed times of the rest of the consignificant. However the performance for Ixd is,
mands are close to each oth@s takes a longer on the whole, much better than for sxd and nxd;
time than C6 since, in our language translationjradeed with Ixd all features are handled better
quantifier is translated into the count() functiothan with nxdA particularly weak point of nxd is
along with the conditions of the quantifier; thuandlingregular path expressions. In deletions
before grouping and counting the data in eaahith sxd, the capability for handlinghange
group, the conditions can eliminate unwantestlectivity is inadequate.
data to decrease the size of data. The command
C8 testingoinsbased on pointerstakes a shorter Conclusions
time than C7 since C8 uses a foreign key and a
primary key to join data. Meanwhile a standard for updating XML
For Ixd fromTable 1(c), the sequence ofdocuments has not been proposed. The existing
elapsed time of Ixd is different from sxd since th&ML databases and XML update languages
number and the structure of tables in sdx and IXdve limitations in their capability for updating
are not the same. The Ixd has more layers d#ta. In our technique, the technology of ORDB
objects inside tables than sxd. is exploited to increase the capability of existing
The command C16 takes the longestML update approaches in the aspect of
elapsed time because C16 is a sequencecohtrolling constraints during updating XML
update operations. The command C5 takes tHata, making it easier to join XML documents in
second longest elapsed time because C5 involwgidating, allowing the updates of documents
three tables with the need to both group amghose structure is known partially or whose
count data. The command C7 takes the thiglructure is recursive, and improving the perfor-
longest elapsed timalthough C7 involves only mance of the updates by using regular path
two tables, it does not use the key for joiningxpressiona/ith this approach, there is no need
data. The command C10 takes the fourth longdstmaintain the order of elements in ORDB and
elapsed time because it involves four tables. Thige cost of converting ORDB data back to XML
elapsed times of the rest of the commands d@mat is eliminated since the change in ORDB
not much different. Similar to sxd, C7 takes & propagated to XMlalready Our approach
longer time than C8 and C5 takes a longer tinteakes it possible to query XML data from XML
than C6. documents instead of just ORDB. For example,
Table 2 compares the performance betweeising Kweelt (Sahuguet, 2001) which is an imple-
insert and delete commands for the three typasentation of XQuery for querying XML docu-
of database. From this table, there is not muchents directly the result from querying is
difference between the performance of insereturned in XML format without any conversion.
and delete commands except for @Bafige Although DOM has to be serialized back to an
selectivity) with sxd inTable 2(b). Here, the XML document, serialization is performed only
delete command takes much more time than thace after all updates finish.
insert command because two conditions, ‘>=’ We have conducted the experimental study
and ‘<=", need to be satisfied in the scan of &he experimental result shows that overall
full-table. The deletion of the data requires thepdating non-redundant data outperforms
DBMS to preserve the previous version ofipdating redundant data. Caching data affects
the data for rollback purposes, an operatidihe performance of updating. The native XML
performed for each target record found. For Ixdlatabase has a weakness for handling regular
there are no redundant records so the numberpsith expressions.
operations is much fewer than in sxd. There are many interesting avenues
From the values of the standard deviatiorfor further work in the XML update area since

Suranaree J. Sdiechnol.Vol. 15 No. 2April - June 2008 157

XML update is still in its infancyrhe possible
extensions to our research include updating the ICDE 2004; March 30April 2, 2004;
XML structure, transaction processing, Boston, MA, USA, p. 42-53.
concurrency control, security for accessingu, L., Liu, M., andNVang, G(2003)A declarative
XML data and query optimisation through XML-RL update language. Proceedings of
using the results obtained as parameters for a 22" International Conference on Concep-

national Conference on Data Engineering,

cost model. tual Modeling (ER 2003); October 13-16,
2003; Chicago, lll, USA, Springaferlag,

Lu, S., SunyY.,Atay, M., and Fotouhi, K2005).
Amornsinlaphachai, .§2007). Updating semi- On the consistency of XML DTDs. Data
structured data, [Ph.D. thesis]. School of & Knowledge Engineering, 52:231-247.
Computing, Engineering and InformatiorLv, T. andyan, P(2006). Mapping DTDs to rela-

Science, Northumbria UniversjtyK,
p. 314.

Amornsinlaphachai,. FRossiterN., andAli, M.A.

tional schema with semantic constraints.
Information and Softwar&echnology
48:245-252.

(2005). Updating XML using object-rela-Mignet, L., Barbosa, D., andeltri, P (2003).

tional database. Proceedings of British

National Conference; July 5-7, 2005;
Sunderland UniversityUK. Springef
Verlag, Berlin, p. 155-160.

(2006a). Storing linked XML documents
in object-relational DBMS. Journal of
Computing and Informatiofiechnology
14(3):225-241.

Amornsinlaphachai,. FRossiterN., andAli, M.A.

(2006b). Translating XML update language
into SQL. CIT 14(2):81-100.

Arenas, M. and Libkin, L. (2004 normal form

The XML web: a first studyThe 12"
InternationalWorld WideWeb Conference
(WWW2003); May 20-24, 2003; Budapest,
Hungaryp. 500-510.

Amornsinlaphachai, FRossiterN., andAli, M.A. Obasanjo, D. and Navathe, S.B. (2008R).

proposal for an XML data definition and
manipulation language. Proceedings of
VLDB 2002Workshop EEXTT and CAISE
2002Workshop DTVeb on Eficiency and
Effectiveness of XMLTools andTech-
nigues and Data Integration over YNeb-
Revised Paperéugust 20-23, 2003; Hong
Kong China, p. 1-21.

for XML documentsACM Transactions Pardede, E., Rahayu, J,\&hdTaniar D. (2006).

on Database Systems (TODS), 29(1):195-

232.

Babcock, C. (2002). Internet insight: XML users

Object-relational complex structures for
XML storage. Information and Software
Technology48:370-384.

consider nonstandard third-party softwar@rakash, S., Bhowmick, S.S., and Madria, S.

to ease update process (appears in Ziff

Davis’eW\eek 1L Feb. 2002Available from:
http://www.charlesbabcock.com/xquery
htm.Accessed daté&ugust 25, 2005.

ExpertsA Guide to th&Vv3C XML Query
Language. $ed.Addison-Wesley Profes-
sional, Boston, 484p.

KrishnamurthyR., Chakaravarthy.T., Kaushik,

R., and Naughton, J.2004). Recursive
XML schema, recursive XML queries, and

(2006). Efficient recursive XML query
processing using relational database
systems. Data & Knowledge Engineering,
58(3):207-242.

Chamberlin, D. (2003). XQuery from theSahugueti. (2001). Kweelt: more than just “yet

another framework to query XML!"
Proceedings of 200Association for
Computing Machinery (ACM) Special
Interest Group on Management of Data
(SIGMOD) Conference; May 21-24, 2001;
Santa Barbara, CA., p. 602.

relational storage: XML-to-SQL query Tatarinov ., Ives, Z., HalevyA.Y., and Daniel,

translation. Proceedings of the"2@iter-

S.W (2001). Updating XML. Proceedings

158

The Performance of Updating XML in Traditional Databases

of 2001 Association for Computing Watson, P(2005). Databases in grid applications:

Machinery (ACM) Special Interest group
on Management of Data (SIGMOD)
Conference; May 21-24, 2001; Santa
Barbara, CA., USA, p. 413-424.

Tatarinov ., Viglas, S.D., BeyeK., Shanmuga-

sundaram, J., Shekita, E., and Zhang, C.

locality and distribution. Proceedings of
the Database: Enterprise, Skills and
Innovation. 22° British National Confer-
ence on Databases, BNCOD 22; July 5-7,
2005; Sunderland, UK, Spring¥erlag,
Berlin, p. 1-16.

(2002). Storing and querying ordered XMLXMLDB. (2002). XUpdateAvailable from: http:/

using a relational database system.
Proceedings of the 20@2CM SIGMOD

/www.xmldb.og/xupdate/xupdate-wd.
html.Accessed datépril 19, 2004.

International Conference on Managemerdwol, R.V,, Apers, PM.G,, andWilschut,A.N.

of Data; June 3-6, 2002; Madison, WI, USA,
p. 204-215.

Wang, Gand Liu, M. (2003). Query processing

and optimization for regular path expres-
sions. Proceedings Aflvanced Informa-
tion Systems Engineering, 19nterna-
tional Conference; June 16-20, 2003;
Klagenfurt Austria, p. 30-45.

(1999). Modeling and querying
semistructured data with MOA. Proceed-
ings of Workshop on Query Processing
for Semistructured Data and Non-standard
Data Formats; October 31, 1999; Jerusa-
lem, Israel, p. 1-5.

