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 โครงขายตัวตรวจรูไรสายไดถูกพัฒนา และนํามาใชงานเพื่อการเฝาระวังเชิงการเกษตรอยาง
กวางขวาง โดยโครงขายตัวตรวจรูไรสายมีความสามารถในการเฝาระวัง และเก็บขอมูลทางกายภาพ
ภายในพื้นที่เฉพาะ หรือส่ิงแวดลอมที่สนใจ ดังนั้นโครงขายตัวตรวจรูไรสายจึงเปรียบเสมือน
ฐานขอมูลขนาดใหญ ซ่ึงขอมูลที่เก็บมานั้นอาจจะเกิดความผิดปกติอันเนื่องมาจากความผิดปกติของ
ตัวตรวจรู หรือปรากฏการณทางธรรมชาติที่ผิดปกติ หากสงขอมูลทั้งหมดซึ่งมีปริมาณมาก จะทําให
สูญเสียพลังงานเปนอยางมาก ดังนั้นในการที่จะลดปริมาณการใชพลังงานในการสงขอมูล ควรมีการ
จัดการขอมูลกอนการสงขอมูลดังกลาว โดยยังคงความแมนยําในการตรวจจับความผิดปกติ 
 วัตถุประสงคของงานวิจัย คือการนําเสนอกระบวนการการตรวจจับความผิดปกติที่แมนยํา 
ในขณะที่สามารถลดการใชพลังงานในการสงขอมูล ณ สถานีฐาน งานวิจัยนี้ไดนําเสนอกระบวนการ
ตรวจจับความผิดปกติ โดยใช  Self-Organizing Map (SOM) และ  Discrete Wavelet Transform 
(DWT) ในการลดขนาดของขอมูลกอนทําการสง ซ่ึงขอมูลดังกลาวไดมาจากการสังเคราะห และจาก
เครือขายตัวตรวจรูไรสายในสภาพแวดลอมจริง 
 การทดลองแบงออกเปน 3 การทดลอง ประกอบดวย การทดลองที่ 1 ซ่ึงแทรกความผิดปกติ
ที่จําลองขึ้น เขาไปในขอมูลจําลอง และขอมูลจากสิ่งแวดลอมจริง ซ่ึงกระบวนการที่นําไดเสนอ 
(SOMDWT) สามารถตรวจจับความผิดปกติที่ เ กิ ดขึ้นจริ งได  65% และ  69% ในกรณีของ
ขอมูลสงั เคราะหที่ ถูกแทรกดวยความผิดปกติแบบสปารส  (Sparse faults) และแบบเบิรสต 
(Bursty faults) และ 67% และ 80% สําหรับขอมูลจากสิ่งแวดลอมจริง ที่ถูกแทรกความผิดปกติ
แบบสปารส  และแบบเบิรสต  ตามลําดับ  การทดลองที่  2 ซ่ึ งตรวจจับความผิดปกติจาก 
ขอมูลจริงที่ไดมาจากโครงขายตัวตรวจรูไรสายในสถานที่ตาง ๆ กัน ประกอบดวย NAMOS 
INTEL  SensorScope weather station no.39 และ SensorScope pdg-2008 จากผลการทดลองพบวา
กระบวนการตรวจจับความผิดปกติที่ไดนําเสนอสามารถตรวจจับความผิดปกติที่เกิดขึ้นจริงได 99% 
สําหรับชุดขอมูล NAMOS 100% สําหรับชุดขอมูล INTEL 83% สําหรับชุดขอมูล SensorScope 
weather station no.39 และ 100% สําหรับชุดขอมูล SensorScope pdg-2008 ตามลําดับ การทดลอง
สุดทายคือ การตรวจจับความผิดปกติจากชุดขอมูลที่บันทึกมาจากโรงงานตนแบบผลิตปุยอินทรีย
ชีวภาพที่ฟารมมหาวิทยาลัยเทคโนโลยีสุรนารี  โดยผลการตรวจจับความผิดปกติที่ไดจาก 
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กระบวนการที่นําเสนอมีประสิทธิภาพใกลเคียงกับ SOM และมีประสิทธิภาพสูงกวา DWT ถึง 75%
จากผลการทดลองพบวา กระบวนการที่ไดนําเสนอสามารถคงประสิทธิภาพในการตรวจจับความ
ผิดปกติในขณะที่ใชขอมูลเพียงครึ่งหนึ่งของปริมาณขอมูลทั้งหมด (โดย DWT อันดับที่ 1) 
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 Wireless Sensor Networks (WSNs) have been developed and extensively 

applied in agriculture monitoring. WSNs can be used to monitor and collect various 

physical attributes within a specific area or environment of interest. Therefore, WSNs 

can be viewed as a large database whose data readings from the sensors may be 

abnormal due to faulty sensors or unusual phenomenon in the monitored domain. 

However, with huge amount data, much energy is wasted in transmitting all of the 

measured data to the base station. Hence, in order to reduce energy consumption of 

transmitting all data, the data should be preprocessed prior to transmission while still 

maintaining the acceptable anomaly detection rate.  

The underlying aim of this research is therefore to propose an anomaly 

detection algorithm which is able to detect anomalies accurately by means of reducing 

wasted energy caused by transmitting all measurement data for anomaly detection at 

the base station. The contribution of this research centers on the anomaly detection 

using Self-Organizing Map and Discrete Wavelet Transform in order to reduce the size 

of transmitted data without losing the significant features of the data obtained from 
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both random number generator and collected from wireless sensor networks in a real 

environment.  

 In the experiments, the data were tested in 3 scenarios. Firstly, synthetic faults 

were added into synthetic and real data. The results showed that our SOMDWT 

algorithm can achieve true alarm rate up to 65% and 69% in case of synthetic data, 

and 67% and 80% in real data for the bursty and sparse faults, respectively. Note that 

most results had low false alarm rates, i.e., less than 1 % except in the case of sparse 

faults due to the increased detection difficulty. Secondly, the real faults obtained from 

four separate real-world datasets, namely, NAMOS, INTEL, and 2 datasets from 

SensorScope (pdg2008 file and SensorScope weather station no.39) were tested. The 

results showed that our algorithm can attain up to 99%, 100%, 83%, and 100% of true 

alarm rates in the NAMOS, INTEL, and SensorScope (pdg2008 file and SensorScope 

weather station no.39) dataset, respectively. All of the results suggested that their false 

alarm rates were negligible. Finally, we developed a prototype of a WSN and 

deployed it in a biororganic fertilizer (BOF) plant, located at the SUT university farm. 

The proposed SOMDWT algorithm was then tested with the real faults from the 

dataset acquired from the prototype. The results showed that our algorithm also 

performed as well as the SOM algorithm and outperformed the DWT algorithm by up 

to 75%. All of the results demonstrated that our proposed algorithm can maintain 

acceptable anomaly detection accuracy while using just half of the input data (using 

level 1 DWT). 
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CHAPTER I 

INTRODUCTION 

 

1.1 Significance of the Problem 

Agriculture faces many challenges, for example, environmental problems such 

as climate changes, and water shortage; human problems such as labor shortage and 

usage of chemical substances, and social problems such as animal welfare and food 

safety. To prevent and alleviate such problems and even increase yield, condition 

monitoring is crucial for agriculture, particularly for crop production and farming 

industry. Agriculture monitoring can be applied in livestock and dairy productions to 

constantly monitor human food supply chain (Kwong et al., 2009). Such application 

allows us to monitor animal health and explore their behaviors, which is much needed 

to understand how the environmental condition affects animal health (Guo et al., 

2006). For crops, agriculture monitoring can be applied in several stages of crop 

growth. In each stage, different parameters can be monitored. Effective monitoring  

at different stages can help save cost by reducing usage of resources such as water, 

pesticides, and fertilizer (Goh, Sim, and Ewe., 2007). Precision agriculture such as  

a hydroponics greenhouse requires precise proportion of nutrient solutions and 

environment conditions to achieve a suitable ecosystem which accelerate crop growth 

and yield. The hydroponics plants are highly sensitive to nutrient changes in the 

system. To achieve an efficient control in a greenhouse environment, an adaptive, 

accurate, cost effective control and monitoring system is needed (Li, Deng, and  

Ding, 2008). 
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Agriculture monitoring can also be applied in bioorganic fertilizer (BOF) 

production plants. A prototype of such plants has been constructed in Suranaree 

University of Technology (SUT), Thailand, to reduce production time and enhance 

quality control in the composting process. However, the prototype plant itself still 

relies mainly on manually measuring and controlling the composting parameters such 

as moisture, homogeneity, temperature, pH, oxygen, soil nutrients, etc., which is both 

time consuming and laborious. Autonomous monitoring devices such as wireless 

sensor networks therefore warrant potential use in the composting process. 

A wireless sensor network (WSN) is a wireless network that consists of 

distributed autonomous sensoring devices which cooperatively monitor or collect 

environmental conditions such as temperature, sound, vibration, pressure, motion,  

or pollutants at different locations. The development of wireless sensor networks was 

originally motivated by military applications such as battlefield surveillance. 

However, WSNs are now used in many civilian application areas such as environment 

and habitat monitoring, healthcare monitoring applications, and traffic control. 

There are several measurements which can be collected from a WSN deployed 

in BOF plants. These measurements are vital to the BOF production. In other words, 

these measurements can be viewed as key performance indicators (KPIs) in the 

fertilizer plant. A good choice of a set of KPIs to monitor and analyze the collected 

data is crucial to understanding the reasons for the various operational states of the 

WSN, noticing abnormal incidents, analyzing them and providing a suitable course  

of action. With the huge amount of data continually collected from the WSN,  

it becomes increasingly difficult to detect anomalies in the data measurements. 
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Therefore, anomaly detection techniques are necessary to automatically detect actual 

faults and alert the system controller to take a suitable action.  

Research emphasizing on anomaly detection in communication networks has 

progressed in recent years. These works include a statistical analysis approach in IP 

networks that focused on load anomaly detection in segments of IP networks that 

carry (almost) exclusively voice traffic (Thottan and Chuanyi, 2003); (Hajji, 2003); 

(Ho et al., 2000). proposed a service anomaly detection algorithm in wide area 

networks (WANs) which generated alarms upon detecting exceptional states such as  

a router interface being “down” or the utilization of a network segment exceeding  

a predefined threshold. Ref. (Laiho et al., 2005, 2002); (Barreto et al., 2000). 

investigated anomaly detection in cellular mobile networks which required monitoring 

hundreds of adjustable variables in each cell consisting of parameters within the base 

stations (BS) and quality information of the calls. Ref. (Feather, Siewiorek, and 

Maxion, 1993); (Maxion and Feather, 1990). studied anomaly detection for two types 

of failures in Ethernet segments, namely, hard failures which are characterized by the 

inability to deliver packets, and soft failures which are characterized by a partial loss 

of network bandwidth. Possible causes of a hard failure include power failure, cut 

cable, or failure of major network equipment. Causes  

of soft failures include inappropriate use of the network, temporary congestion 

causing delayed transmission, failed host hardware, failure of higher level protocols, 

or mischievous users. Ref. (Hood and Ji, 1997); (Hood and Ji, 1997).  proposed 

anomaly and performance change detection algorithms in small networks that 

improved network reliability and management in high-speed communication 

networks. In particular, they proposed an intelligent system using adaptive statistical 
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approaches to learn the normal behavior of the network. Deviations from the norm 

were detected and the information was combined in the probabilistic framework  

of Bayes network. Their method can thereby detect unknown or unseen faults.  

As demonstrated on real network data, their method can detect abnormal behavior 

before a fault actually occurs, giving the network management system the ability to 

avoid a potentially serious problem. Ref. Sukkhawatchani, P., and Usaha, W. (2008). 

also investigated anomaly detection with real network data. They applied  

a competitive learning algorithm called self-organizing map (SOM) to detect traffic 

measurement anomalies from an actual cellular network service provider. 

There are also works on fault and anomaly detection in wireless sensor 

networks (WSNs). In general, anomaly detection in WSNs refers to the problem  

of finding patterns in data that do not conform to expected behavior (Kaur, Saxena, 

and Gupta, 2010). Abnormal data patterns can be caused by faulty sensors in the 

network or unusual phenomena in the monitored domain. 

Anomalies caused by faulty sensor communications were presented in  

(Lee and Choi, 2008). They proposed a distributed algorithm for detecting and 

isolating faulty sensor nodes in WSNs. Each sensor node identified its own status 

based on local comparisons of sensed data with thresholds. Ref. (Sharma, Golubchik, 

and Govindan, 2010). applied 4 different anomaly detection techniques, e.g., the rule-

based method, the linear least-squares estimation (LLSE) method, the autoregressive 

integrated moving average (ARIMA) method, and the learning-based hidden Markov 

model (HMM) method, for different types of faults obtained in the real–world 

datasets, namely, NAMOS (NAMOS, 2006).  INTEL (INTEL, 2006).  and 

SensorScope (SensorScope, 2006). They classified these faults into 3 types, i.e., noise 
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faults, short faults, and constant faults. Their research suggested that there is presently 

no known anomaly detection method suitable for every type of fault. 

Another application of anomaly detection is to detect an unusual phenomenon 

in the monitored domain. Erroneous measurements may occur as a result  

of transducers, or from faults introduced by harsh environmental conditions. In a large 

network, it is extremely difficult and time consuming to detect these erroneous 

measurements manually. In addition, energy is wasted in the network when 

forwarding the unwanted erroneous measurements to the base station for analysis. One 

solution to alleviate network energy consumption is to reduce the amount of data that 

needs to be communicated through the network. As energy expenditure is critical in 

WSNs, anomaly detection methods in WSN must not only perform well but also 

demand low energy consumption. Distributed in-network processing can reduce 

transmission energy and eventually help prolong the overall network lifetime of the 

WSN (Rajasegarar, Leckie, and Palaniswami, 2008); (Cordina and Debono, 2008). 

focused on increasing the lifetime of a WSN using an approach that relies on cluster-

based routing algorithms. The lifetime of the sensor network was improved through 

the use of a number of mechanisms that minimized energy dissipation and improved 

energy balancing between the nodes. These mechanisms included cluster head 

separation, cluster head election, cluster head rotation, and load balancing cost 

functions. Our work was motivated by the concept of prolonging the network lifetime. 

In particular, we focused on finding means to reduce the amount of transmitted data in 

the network for anomaly detection at the base station, while still maintaining 

acceptable accuracy and reliability in detecting abnormal data. 
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  This thesis considered anomalies caused by unusual phenomenon and faulty 

sensors. To detect these anomalies, a dynamic data classification scheme such as data 

mining method could be useful. ta mining is an expanding area of research in artificial 

neural network and information management whose objective is to extract relevant 

information from large databases. Typical data mining and analysis tasks include 

classification, regression, and clustering of data, aiming at determining parameter/data 

dependencies and finding various anomalies from the data. One particular method, 

called the self-organizing map (SOM), has several beneficial features which make it  

a useful tool in data mining. In particular, it follows the probability density function  

of the data and is, thus, an efficient clustering and quantization algorithm. The most 

important feature of the SOM in data mining is the visualization property  

(Laiho et al., 2005) 

SOM has been applied for anomaly detection in communication networks 

(Barreto et al., 2006); (Sukkhawatchani, P., and Usaha, W. (2008)); (Zheng and Hu, 

2005). as well as WSNs (Paladina, Paone, Jellamo, and Puliafito, 2007). focused on 

evaluating the position of sensors in a WSN, or the localization problem. Their 

localization technique was based on a simple SOM, implemented on each sensor node. 

The main advantages of their solution were the limited storage and computing costs. 

However, SOM requires processing time which increases with the size of input data. 

To reduce the input data size, features of the data can be extracted without losing the 

significant data which can be used for anomaly detection. This can be achieved by the 

Discrete Wavelet Transform (DWT).  

Wavelets have been extensively employed for anomaly (Aquino and Barria, 

2001). and fault detection (Yadaiah and Ravi, 2007). DWT had also been integrated 
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with SOM for several applications. Ref. (Doshi, King, and Lawrence, 2007).  used 

DWT and SOM for feature extraction for nematode species identification. 

Hyperspectral data, which typically has high dimensions, was used for species 

identification. DWT and SOM provided the necessary dimensionality reduction 

without losing vital information. In (Xu and Zhao, 2002). DWT and SOM were 

employed for fault detection and isolation (FDI) to control a tank system. In order  

to detect the faults that reflected themselves as fault-induced frequency changes  

at certain time instants in the measured signal, DWT was applied to capture such 

changes and extract fault features online and in real-time. An improved SOM was then 

used to isolate the fault. In Ref (Postalcıoglu, Erkan, and Bolat, 2007). multiplicative 

and additive types of sensor faults had been examined and disturbance had been 

applied to create faults in temperature sensors. In particular, feature vectors of the 

sensor faults had been constructed using DWT, sliding window, and a statistical 

analysis. Classification of the feature vectors was obtained by using SOM.  

To the best of our knowledge, the integration of DWT and SOM has not yet 

been applied for anomaly detection in WSNs. Therefore, the underlying aim of this 

paper was to propose an anomaly detection algorithm which determined the discrete 

wavelet transform, and detects the abnormality of the sensor readings by training the 

SOM using the wavelet coefficients. Our proposed algorithm, the integrated SOM and 

DWT algorithm could help reduce wasted energy caused by transmitting all 

measurement data to the base station by applying DWT algorithm onto the sensor 

modes in order to reduce size of transmitted data without losing the significant feature 

of the data. 
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1.2  Research Objectives 

The objectives of this thesis are as follows: 

 1.2.1  To obtain the anomaly detection algorithm for a wireless sensor 

network which can reduce the energy consumption required for transmitting data 

packets back to the base station. 

 1.2.2  To obtain a wireless sensor network prototype for a BOF production 

plant. 

 

1.3 Assumptions 

 1.3.1  Abnormal data which occur in a wireless sensor network can be 

detected by changing signal levels collected from the sensors. 

 1.3.2  Faults can be caused by faulty sensors in the network or unusual 

phenomena in the monitored domain. 

 

1.4 Scope of the Research 

1.4.1.  A wireless sensor network prototype was designed for agriculture 

monitoring. 

1.4.2.  Anomaly detection methods for WSNs were studied. 

1.4.3.  Discrete wavelet transform (DWT) and self-organizing map (SOM) were 

studied to detect abnormal data collected from a wireless sensor network in an agriculture 

field. 

1.4.4.  The simulation and experimental findings were analyzed and 

concluded. 
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1.5 Expected Usefulness 

 1.5.1  To obtain an algorithm implemented at the base station or gateway 

which detects abnormal data collected from a wireless sensor network. 

1.5.2  To obtain a wireless sensor network prototype for a BOF production 

plant. 

 

 1.6 Synopsis of Thesis 

 The remainder of this thesis is organized as follows. Chapter 2 introduces the 

theoretical background which is the foundation of the contributions of this thesis. 

Firstly, the concept of the general anomaly detection and related works are presented. 

This is followed by the self-organizing map (SOM) algorithm, the discrete wavelet 

transform (DWT) algorithm and the proposed algorithm, the integrated SOM and 

DWT. 

 Chapter 3 presents the experiments conducted to evaluate the performance of 

the proposed integration of SOM and DWT algorithm. The experiments evaluated the 

anomaly detection methods described in the previous chapter with series of synthetic 

data and actual data collected from a wireless sensor network injected by various 

synthetic faults. Furthermore, its performance against real-world datasets which 

included real faults from various sensor networks were also evaluated. 

 Finally, Chapter 4 summarizes all the findings and the original contribution in 

this thesis and points out possible future research directions. 

 

 



 
 

CHAPTER II 

BACKGROUND THEORY 

 

2.1 Related works 

In anomaly detection scenarios, several methods have been presented. For 

example, Rule-based methods such as the histogram method (Ramanathan et al., 

2006) require domain knowledge about sensor readings to develop heuristic rules or 

constraints that the sensor readings must satisfy. Although  methods belonging to this 

group can be highly accurate, the choice of parameters is critical to their accuracy; 

Estimation-based methods such as the linear least square estimation (LLSE) Kailath 

(1977) define “normal” sensor behavior by using spatial correlation from 

measurements at different sensors. This method is accurate, but cannot classify faults; 

Time series analysis-based methods such as the autoregressive integrated moving 

average (ARIMA) (Box, Jenkins, and Reinsen, 1994) are commonly used for 

analyzing periodically and temporally correlated data collected by the same sensor. 

However, such methods are more effective for detecting short duration faults than 

long duration ones, and incur more false alarm than the other methods; Learning-

based methods such as the Hidden Markov model (HMM) Bengio and Frasconi 

(1996) or neural networks model the normal and faulty sensor readings using training 

data and are therefore suitable for phenomena that may not be spatio-temporally 

correlated. Learning methods can be cumbersome to train, but can accurately detect 

anomalies (Sharma, Golubchik, and Govindan, 2010). The proposed algorithm in this 

thesis is based on a learning method using self- organizing map (SOM). SOM has
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several beneficial features which make it a useful tool in data mining. In particular, it 

follows the probability density function of the data and is, thus, an efficient clustering 

and quantization algorithm. The most important feature of the SOM in data mining is 

the visualization property (Laiho et al., 2005) 

This chapter serves as an introduction to related anomaly detection methods 

which were used to improve our algorithm, the integrated SOM and DWT, and 

compared with our algorithm. These methods include the single threshold (univariate 

and multivariate) methods (Barreto et al., 2006) the self-organizing map (SOM) 

algorithm and the discrete wavelet transform (DWT).  

Data acquisition in wireless sensor networks (WSNs) involves intensive 

collection of input data from sensor nodes.  Algorithms based on data mining had 

proved to be especially suitable in highly complex and data intensive applications 

(Laiho et al., 2005).The self-organizing map (SOM) is one of the most popular neural 

algorithms due to its efficient visualization properties. It has been used for anomaly 

detection in various scenarios. Ref. (Sukkhawatchani, P., and Usaha, W., 2008) used 

the SOM algorithm to analyze and monitor traffic anomalies in a cellular mobile 

network. Their results showed that SOM outperformed the multivariate method. 

Furthermore, the SOM can be able to handle a larger number of the interested or 

collected data.  

Apart from cellular networks, (Ramadas, Ostermann, and Tjaden, 2003)  

proposed an anomaly detection system based on SOM algorithm at level of network 

connection, where each connection was defined with six features: duration of the 

connection, type of protocol, type of service, state of the connection, source bytes and 

destination bytes. Ref. (Lichodzijewski, Heywood, and Heywood, 2002) described the 
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use of SOM in the intrusion detection system (IDS) to detect anomalies in the network 

connections by characterizing each connection with six statistical features. However, 

both works used a different set of the features. Another difference between these two 

works was that in the first work SOM was applied to all the network traffic, whereas 

the latter constructed a neural network by each network service. 

Anomaly detection in WSNs, however, requires careful consideration than 

other applications because energy expenditure is critical in such networks. Therefore, 

anomaly detection methods in WSN must not only perform well but also demand low 

energy consumption. One solution to alleviate network energy consumption is to 

reduce the amount of data that needs to be communicated through the network. 

Wavelet analysis technique was considered for dimensionality reduction.  Processing 

of the wavelet coefficients may allow signal representation with a lower number  

of bits than needed for representing the original signal (Brechet, Lucas, Doncarli, and 

Farina, 2007). 

The wavelet analysis technique has also been widely used for network anomaly 

detection recently due to its inherent time-frequency property that allows splitting 

signals into different components at several frequencies. In the work (Barford, Kline, 

Plonka, and Ron, 2002)  wavelet transform was applied for analyzing and 

characterizing the flow-based traffic behaviors. Based on different frequency 

components, a deviation algorithm was presented to identify anomalies by setting  

a threshold for the signal composed from the wavelet coefficients at different 

frequency levels. Ref. (Kim, Reddy, and Vannucci, 2004) proposed a technique for 

traffic anomaly detection through analyzing correlation of destination IP addresses  

in outgoing traffic at a router. They applied discrete wavelet transform on the address 
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and port number correlation data over several time scales. Any deviation from 

historical regular norms would alert the network administrator of the potential 

anomalies in the traffic. 

Wavelet was not only applied for detecting specific network anomalies 

directly, it was also widely used in network measurement from the perspectives  

of traffic performance analysis (Huang, Feldmann, and Willinger, 2001) traffic 

anomalies diagnosing and mining (Lakhina, Crovella, and Diot, 2004)  traffic 

congestion detection (Kim et al., 2004) and dimensionality reduction (Bruce, 

Cheriyadat, and Burns, 2003); (Bruce, Koger, and Li, 2002); (Ciancio, Pattem, Otega, 

and Krishnamachari, 2006) addressed the problem of energy consumption reduction in 

wireless sensor networks by means of data compression using lifting factorization 

wavelet transform. In particular, they reconstructed a version of the data 

measurements at the central node, with the sensors spending as little energy as 

possible, for a given data reconstruction accuracy. Ref (Li, Zhang, and Fang, 2009) 

also proposed a data compression algorithm in WSN based on lifting wavelet 

transform. Their algorithm distributed the computing quantity which the lifting 

wavelet transform required to all nodes, eliminated extra computing and data 

transmission, thereby reduced the information redundancy of network, and 

consequently saved the energy of wireless transmission and prolonged network 

lifetime. 

The anomaly detection of SOM and the data reduction ability in wavelets 

therefore motivated us to integrate these two methods to achieve efficient and 

effective anomaly detection methods for condition monitoring. To the best of our 

knowledge, there is no prior work applying such combination for anomaly detection  
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in WSNs. In a similar work such as (Xu and Zhao, 2002). DWT and SOM were 

employed for fault detection and isolation (FDI) in the control system (tank system). 

There were existing works combining SOM and DWT for classification application as 

in a fault tolerant control system (Postalcıoglu, Erkan, and Bolat, 2007) where the 

feature vectors of the sensor faults have been constructed using DWT, sliding window 

and a statistical analysis. Classification of the feature vectors was obtained by using 

SOM, clustering application. In (Cheng, Zhang, Hu, and Li, 2007) they proposed the 

combination of the DWT and SOM algorithm to cluster the urban traffic flow 

network. Discrete wavelet transform was adopted for flow feature extraction, because 

it is insensitive to disturbance/scaling, and zooms in multiple finer granularities. The 

self-organizing map (SOM) algorithm was then used to cluster road links into groups, 

for which different feature sets were considered for different purposes. 

 

2.2 Anomaly Detection 

Network anomaly refers to circumstances when network operations deviate 

from normal network behavior. Abnormal data patterns can be caused by faulty 

sensors in the network or unusual phenomena in the monitored domain. This thesis, 

we are interested in monitoring anomaly detection in the data gathered from WSNs. 

The first step of anomaly detection involves selecting the data parameters to be 

monitored and grouping them together in a pattern vector ℜ∈µx , N,,1…=µ ,   
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where µ  is the observation index, n  is the number of parameter types or key 

performance indices (KPIs) chosen to monitor the environmental condition. 

The second step involves identifying the methodology used to classify a new 

state vector xnew as normal or abnormal. Single threshold methods, such as the 

univariate and the multivariate anomaly detection tests are currently deployed by 

means of one of the following statistical methods. 

2.2.1  Univariate Anomaly Detection Test 

  A component-wise analysis is performed on xnew to verify if the 

components xnew
j are within their normal ranges of variation. The anomaly detection 

test is given by 

 

x x
IF 

new
j j

jσ
−

 < K 

THEN xnew
j  is a NORMAL component 

ELSE  xnew
j  is an ABNORMAL component (2.2) 

 

where the decision threshold K > 0, and the normal range interval of xnew
j   is 

[ x j - K jσ , x j  + K jσ ]. Typically, the value of K relies on the Gaussian distributed xj, 

e.g., K = 1.96 for confidence interval 95% or K = 2.57 for confidence interval 99%. 

2.2.2 Multivariate Anomaly Detection Test 

  The analysis is performed on xnew as a whole, by taking into 

consideration the joint influence of all the components xnew
j , j = 1,…,n. The anomaly 

detection test is given by 
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( ) ( ){ }
1
21IF x x x x

Tnew new
xC−− −  < K 

THEN xnew  is a NORMAL vector 

ELSE  xnew   is an ABNORMAL vector (2.3) 

 

where ( )( )µ µ

1

1 x - x x - x
N T

xC
N µ=

⎛ ⎞=⎜ ⎟
⎝ ⎠

∑ is the sample covariance matrix of the data, and K 

is the critical value 2
,1nX α− of the chi-square distribution with n degrees of freedom and 

significance level α . 

These methods are based on the assumption that the components of x 

are Gaussian distributed. Their drawbacks are that different detection results are 

obtained when outliers are present in the data set. This is because outlier distorts the 

estimates of x  and C. Therefore, anomalies with slight departures from normal state 

or base line are difficult to detect.  

 

2.3 Self-Organizing Map 

Competitive neural models such as the self-organizing map (SOM) (Laiho, 

Kylvaja, and Hoglund, 2002) are able to extract statistical regularities from the input 

data vectors and encode them in the weights without supervision. It maps a high-

dimensional data manifold onto a low-dimensional, usually two-dimensional, grid or 

display. 

The basic SOM consists of a regular grid of map units or neurons as shown in 

Figure 2.1(a). Each neuron, denoted by i  (depicted by the black dot), has a set  

of layered neighboring neurons (depicted by the white dots) as shown in Figure 2.1(a). 
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 Neuron i maintains a weight vector im . In order to follow the properties of the 

input data, such vector is updated during the training process. For example, Figure 2.1 

(b) shows a SOM represented by a 2-dimensional grid of 4×4 neurons. The dimension 

of each vector is equal to the dimension of the input data. In the figure, a vector of 

input data (marked by x) is used to train the SOM weight vectors (the black dots). The 

winning neuron (marked by BMU) as well as its 1-neighborhood neurons, adjusts their 

corresponding vectors to the new values (marked by the gray dots). 

The SOM is trained iteratively. In each training step, one sample vector x  

from the input data set is chosen.  

The distances between the sample data and all of weight vectors in the SOM 

are calculated using some distance measure. Suppose that at iteration t, neuron i whose 

weight vector ( )i tm  is the closest to the input vector ( )tx . We denote such weight 

vector by ( )c tm  and refer to it as the Best-Matching Unit (BMU), which is 

 

( ) ( ) arg m in ( ) ( )c ii
x t m t t t

∀
− = −x m  (2.4) 

 

where ⋅ is the Euclidian distance. 
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Figure 2.1  An illustration of the SOM (a) with rectangular lattice neighbors  

    belonging to the innermost neuron (black dot) corresponding  

to 1, 2 and 3 neighborhoods, (b) SOM updates the BMU  

with 1- neighborhood. 

 

Suppose neuron i is to be updated, the SOM updating rule for the weight 

vector of neuron i  is given by 

 

( 1) ( ) ( , )[ ( ) ( )]t ci i im t m t h i t t tη+ = + −x m  (2.5) 

 

where t is the iteration index, )(tx is an input vector, tη  is the learning rate, ),( tihc is 

the neighborhood function of the algorithm. The Gaussian neighborhood function may 

be used, that is 

 

2

2

( ) ( )
( , ) exp

2 ( )
c i

c
r t r t

h i t
tσ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
= −  (2.6) 

 



19 
 

where )(tri and )(trc are the positions of neurons i and the BMU c respectively, and 

)(tσ is the radius of the neighborhood function at time t . Note that ),( tihc  defines the 

width of the neighborhood. It is necessary that lim ( , ) 0ct
h i t

→∞
=  and lim 0tt

η
→∞

= for the 

algorithm to converge (Barreto et al., 2006). 

SOM has been applied for anomaly detection in communication networks 

(Barreto et al., 2006); (Sukkhawatchani, P., and Usaha, W., 2008); (Zheng and Hu, 

2005) as well as WSNs (Paladina, Paone, Jellamo, and Puliafito, 2007)  focused on 

evaluating the position of sensors in a WSN, or the localization problem. Their 

localization technique was based on a simple SOM, implemented on each sensor node. 

The main advantages of their solution were the limited storage and computing costs. 

However, SOM requires processing time which increases with the size of input data. 

To reduce the input data size, features of the data can be extracted without losing the 

significant data can be used for anomaly detection. This can be achieved by the 

discrete wavelet transform (DWT).  

 

2.4 Discrete Wavelet Transform 

Wavelet is a small wave which has its energy concentrated in time to give  

a tool for the analysis of transient, non-stationary, or time-varying phenomena. The 

goal of the wavelet analysis is to create a set of basis functions and transforms that 

will give an informative, efficient, and useful description of a function or signal. If the 

signal is represented as a function of time, wavelets provide efficient localization in 

both time and frequency or scale. If signal or function f(t) often be better analyzed, 

described, or processed if expressed as a linear decomposition by 
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( ) ( )f t a tψ=∑ A A
A

  (2.7) 

 

where ℓ is an integer index for the finite sum, aA are the real-valued expansion 

coefficients, and ( )tψ A are a set of real-valued functions of t called the expansion set. 

For the wavelet expansion, a two-parameter system is constructed such that (2.7) 

becomes 

 

, ,( ) ( )j k j k
k j

f t a tψ=∑∑     (2.8) 

 

where both j and k are integer indices and the , ( )j k tψ  are the wavelet expansion 

functions or mother wavelet, i.e., Haar mother wavelet, Daubechies mother wavelet or 

Mexican Hat mother wavelet. The set of expansion coefficients ,j ka  are called the 

discrete wavelet transform (DWT) of f(t) and (2.8) is the inverse transform. 

 DWT is a mathematical transform that separates the data signal into fine-scale 

information known as detail coefficients, and rough-scale information known as 

approximate coefficients. Its major advantage is the multi-resolution representation 

and time-frequency localization property for signals. Usually, the sketch of the 

original time series can be recovered using only the low-pass-cut off decomposition 

coefficients; the details can be modeled from the middle-level decomposition 

coefficients; the rest is usually regarded as noises or irregularities. The following 

equations describe the computation of the DWT decomposition process: 

 

1 0( ) ( 2 ) ( )DWT DWT
jj

n
a k h n k a k+ = −∑  (2.9) 
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1 0( ) ( 2 ) ( )DWT DWT
jj

n
d k g n k a k+ = −∑ , (2.10) 

 

where the rough-scale (or approximation) coefficients DWT
ja  are convolved separately 

with 0h and 0g , the  wavelet function and scaling function, respectively,  n is the time 

scaling index, k is the frequency translation index for wavelet level j.  The resulting 

coefficient is down-sampled by 2. This process splits  DWT
ja  roughly in half, 

partitioning it into a set of fine-scale (or detail) coefficients 1
DWT
jd + and a coarser set  

of approximation coefficients 1
DWT
ja +  (Postalcıoglu, Erkan, and Bolat, 2007). 

DWT has the capability to encode the finer resolution of the original time 

series with its hierarchical coefficients. Furthermore, DWT can be computed 

efficiently in linear time, which is important while dealing with large datasets. That is 

the DWT can reduce amount of the input data without losing significant feature of the 

data by replacing the data with its hierarchical coefficients, low pass and high pass 

coefficients. 

In our experiment, the Haar and Daubechies4 wavelet were used as a mother 

wavelet in order to reduce the size of the data before performing the anomaly 

detection with the SOM algorithm. The reason for using these two types of wavelets is 

because they are relatively easy to cross-check by hand with computed coefficients 

from MATLAB program. 

2.4.1  Haar Wavelet 

Haar wavelet is the simplest type of wavelet with its unit width, unit 

length, unit height pulse function as shown in Figure 2.2 Like all wavelet transforms, 
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the Haar transform decomposes a discrete signal into 2 subsignals of half its length 

Walker (1999). 

 

 

Figure 2.2 Haar scaling (a) and wavelet (b) function from 

http://cnx.org/content/m11150/latest 

 

One subsignal is an averaging or trend; the other subsignal is a difference or 

fluctuation. Let’s begin with the 1-level Haar wavelet. These wavelets are defined as 

 

1
1

1 1W , ,0,0,...,0
2 2

−⎛ ⎞=⎜ ⎟
⎝ ⎠

 

1
2

1 1W 0,0, , ,0,0,...,0
2 2

−⎛ ⎞=⎜ ⎟
⎝ ⎠

 (2.11) 
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They all are very similar to each other in that they are each a translation 

in time by an even number of time-unit of the first Haar wavelet 1
1W . The second Haar 

wavelet 1
2W  is a translation forward in time by 2 units of 1

1W , and 1
3W  is a translation 

forward in time by four units of 
1
1W , and so on. 

They can also express the 1-level trend values as scalar products with 

certain elementary signals. These elementary signals are called 1-level Haar scaling 

signals, and they are defined as 

 

1
1

1 1V , ,0,0,...,0
2 2

⎛ ⎞=⎜ ⎟
⎝ ⎠

 

1
2

1 1V 0,0, , ,0,0,...,0
2 2

⎛ ⎞=⎜ ⎟
⎝ ⎠

 (2.12) 

#  

1
N/2

1 1V 0,0,...,0, ,
2 2

⎛ ⎞=⎜ ⎟
⎝ ⎠

  

 

Using these Haar wavelet, the detail coefficients for the first fluctuation 

subsignal d1 are expressed as scalar products, 1
mf Wmd = ⋅  and also using the Haar 

scaling signals, the approximate coefficients a1 for the first trend are expressed  

as scalar products  1
mf Vma = ⋅ for m = 1, 2,…, N/2, where f is the signal and N is the 

signal length. 

2.4.2  Daubechies Wavelet 

The Daubechies wavelet transforms are defined in the same way as the 

Haar wavelet transform by computing averages and differences via scalar products 

with scaling signals and wavelets. The only difference between them consists in how 
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these scaling signals and wavelets are defined. Let the wavelet numbers 1 2 3 4, , ,β β β β  

be defined by 

 

1 2 3 4
1 3 3 3 3 3 1 3, , ,
4 2 4 2 4 2 4 2

β β β β− − + − −
= = = =  (2.13) 
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Figure 2.3 Daubechies4 scaling (a) and wavelet (b) function from 

 http://cnx.org/content/m11150/latest 

 

Using these wavelet numbers, the 1-level Daubechies4  wavelets are defined by 

 

( )1
1 1 2 3 4W , , , ,0,0,...,0β β β β=  

( )1
2 1 2 3 4W 0,0, , , , ,0,0,...,0β β β β=  

( )1
3 1 2 3 4W 0,0,0,0, , , , ,0,0,...,0β β β β=  (2.14) 

#  

( )1
N/2-1 1 2 3 4W 0,0,...,0, , , ,β β β β=  

( )1
N/2 3 4 1 2W , ,0,0,...,0, ,β β β β=   
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These are all translates of 1
1W . Each wavelet has a support of just 4 units, 

corresponding to the four non-zero wavelet numbers used to define them. The 1-level 

Daubechies4 wavelet satisfy 

 

1 0 0 0 0
m 1 2m-1 2 2m 3 2m+1 4 2m+2W V V V Vβ β β β= + + +  (2.15) 

 

We now turn to a discussion of the Daubechies4 scaling signals. Let the 

scaling numbers 1 2 3 4, , ,α α α α  be defined by 

 

1 2 3 4
1 3 3 3 3 3 1 3, , ,
4 2 4 2 4 2 4 2

α α α α+ + − −
= = = =  (2.16) 

 

Using these scaling numbers, the 1-level Daubechies4 scaling signals are defined by 

 

( )1
1 1 2 3 4V , , , ,0,0,...,0α α α α=  

( )1
2 1 2 3 4V 0,0, , , , ,0,0,...,0α α α α=  

( )1
3 1 2 3 4V 0,0,0,0, , , , ,0,0,...,0α α α α=  (2.17) 

#  

( )1
N/2-1 1 2 3 4V 0,0,...,0, , , ,α α α α=  

( )1
N/2 3 4 1 2V , ,0,0,...,0, ,α α α α=   

 

As same as the Daubechies4 wavelet, the first level Daubechies4 scaling 

signals satisfy 

 

1 0 0 0 0
m 1 2m-1 2 2m 3 2m+1 4 2m+2V V V V Vα α α α= + + +  (2.18) 
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2.5  Integration of SOM and DWT 

In our proposed algorithm in this thesis, the integration of SOM and DWT, the 

DWT algorithm was used as an input data preprocessor of the SOM algorithm in order 

to reduce the size of input data without losing any significant feature of the data. This 

can enable the implementation of in-network processing which can help to reduce the 

radio communication energy and eventually prolong the lifetime of the WSN 

(Rajasegarar, Leckie, and Palaniswami, 2008). The input data were padded with zero 

if its length was odd. After obtaining the wavelet coefficients, these coefficients were 

fed to the SOM algorithm which can be divided into 2 sets. Each set contained both 

approximate and detail coefficients. The first set which was obtained from noiseless 

data, was used to train the SOM algorithm. The second set which was obtained from 

the faulty data would be used to test the SOM algorithm. Then to reduce the false 

alarms the detected results were double checked by using the univariate method 

(Barreto et al., 2006); (Sukkhawatchani, P., and Usaha, W. (2008). 

 

2.6 Anomaly Detection 

A new observation data set can be considered abnormal if the distance between 

the weight vector of the winning neuron and the new state vector, given by 

 

new
ceµ µ= −x m    (2.19) 

 

is greater than a certain percentage α−= 1p  of the distances in the distance 

distribution profile. That is, 
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IF   ,p pe e eµ − +⎡ ⎤
⎣ ⎦∈ ,   

THEN newx   is  NORMAL vector 

ELSE  newx    is ABNORMAL vector (2.20) 

 

Equation (2.20) is referred to as the global decision. Once abnormal behavior has been 

detected by the procedure in (2.20), it is necessary to investigate which of KPIs of the 

problematic state vector are the most relevant ones. That is called the local decision. 

We require instead a kind of decision rule that points out the KPIs (if any) that 

contribute most to the supposed abnormal state vector. For this purpose, we evaluate 

the absolute values of each component of the error vector Eµ  

 

1 1 1

2 2 2

i

i

n n i n

E x w

E x w
E

E x w

µ µ µ

µ µ µ
µ

µ µ µ

∗

∗

∗

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

# #
 (2.21) 

 

Thus, for each of the resulting n sample distributions { } , 1,...,jE Nµ µ =  we 

compute the interval of normality - ,j jE E+⎡ ⎤⎣ ⎦ of the jth KPI. 

Whenever an incoming state vector xnew is considered abnormal by the fault 

detection stage, we take the absolute values of each component new
jE of the 

corresponding quantization error vector and execute the following test: 
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IF new
j ,j jE E E− +⎡ ⎤∈⎣ ⎦  

THEN  jx  is a NORMAL KPI 

ELSE jx  is an ABNORMAL KPI (2.22) 

 

That is, if the quantization error due to the KPI jx  is within the range defined 

by the interval - ,j jE E+⎡ ⎤⎣ ⎦ , then it does not contribute to the abnormal state previously 

detected; otherwise it will be indicated as an abnormal KPI. In Lee and Choi (2008)  

an addition of local decisions of each KPI is presented.  
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Figure 2.4 The integration of the SOM and DWT algorithm diagram. 

 

2.7 Summary 

 In this chapter, we introduced the anomaly detection methods including the 

univariate anomaly detection, multivariate anomaly detection, the self-organizing map 

or SOM, the discrete wavelet transform or DWT algorithm, and the proposed 

integrated SOMDWT algorithm. However, the SOM algorithm requires processing 

time which increases with the size of input data [49]. Hence, the DWT algorithm can 

be used to reduce the input data size in order to reduce transmission energy and 
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eventually help prolong the overall network lifetime of the WSN without losing the 

significant data. The performances of the aforementioned algorithms were then 

evaluated by means of synthetic and real data injected with synthetic faults and also 

the real-world dataset. These experiments are shown in the next chapter. 



 
 

CHAPTER III 

EXPERIMENTS AND RESULTS 
 

In this section, we evaluated the performance of the proposed integration of 

SOM and DWT algorithm by detecting anomalies in series of synthetic data and actual 

data collected from a wireless sensor network injected by various combinations of 

synthetic faults. We then conducted experiments to evaluate its performance by testing 

the proposed algorithm on real-world datasets with real-world faults obtained from 

various environmental, and microclimate sensor networks, and the dataset obtained 

from the WSN deployed at the SUT BOF plant. 

 

3.1 Evaluation on detecting synthetic faults 

In the experiment, we generated the synthetic input data from a normal 

distribution N(0,1) and synthetic faults by additive White Gaussian noise (AWGN) 

with power 25 dBW generated from MATLAB. We used such fault because its 

statistical similarity to the synthetic input data thus, it is more difficult to be detected. 

Therefore, we can evaluate the performance of the algorithms under ambiguous faults. 

The amount of faults was represented by the notation n/s, where “n” is the amount  

of faults per series and “s” is the amount of series of faults, resulting in the total 

amount of n×s faults. The generated faults added to the input data ranged from bursty 

which was 20/10, then 10/10, 2/10, and finally to sparse which was 1/10. The exact 

positions of the faults injected in the input data were predetermined and was later used 

to detect true and false alarms.  
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In the experiment using real data collected from wireless sensor nodes, we had 

chosen 2 parameters, namely soil temperature and soil moisture, as KPIs collected 

from samples of compost in the SUT bioorganic fertilizer plant. In this experiment, the 

data of the 2 KPIs at the WSNs were collected every 5 minutes for 3 days. We 

compared 3 anomaly detection methods: SOM algorithm, DWT algorithm, and 

integration of SOM and DWT algorithm. 

We measured 2 performance metrics:  

1) The true alarm rate which is defined by the number of detected true 

anomalies over the total number of true anomalies in the data set as shown below 

 

Total detected true alarmsTrue alarm rate = ×100
Total true anomalies

 (3.1) 

 

2) The false alarm rate which is defined by the number of detected false 

alarms over the total number of detected anomalies as shown below  

 

Total detected false alarmsFalse alarm rate = ×100
Total normal data

 (3.2) 

 

In the DWT algorithm, we used the threshold given by (3.3) and (3.4) in order 

to decide whether the data is normal or abnormal [50] 

 

1 1( )w median d dσ = −  (3.3) 

 

2 log ( )w w eT Nσ= , (3.4) 

 

where N is the size of data and 1d  is the median of the level 1 detail coefficients. 
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This threshold was calculated from the low pass and high pass coefficients 

from the assumed normal data by using Haar and Daubechies4 mother wavelets. The 

Haar and Daubechies4 wavelets were used because they are relatively easy to cross-

check by hand with computed coefficients from MATLAB program. Hence, we can 

compare the position of each coefficient with the actual fault position. After the 

threshold calculation, the set of coefficients which were obtained from the DWT  

of the noisy data were compared with the threshold, coefficient by coefficient. For the 

real data scenario, the data was normalized by equation (3.5) before being processed 

by the DWT to eliminate potential outliers:  

 

variance(Data)
(Data) -mean(Data)Norm(Data)=  (3.5) 

 

If the absolute value of the coefficient was greater than the computed 

threshold, an anomaly was said to be detected. 

In the SOM algorithm and the proposed integrated SOM and DWT algorithm, 

the initial value for learning rate in the SOM part was set to η0 = 0.9, and gradually 

reduced to ηT = 10-5, in order to guarantee convergence. The number of training 

epochs was set to 50 because longer training epochs tend to over train the SOM 

Barreto et al. (2006). The required percentage of distance in (2.8) was set to 99%.  

We used a Gaussian neighborhood function because the distribution of the collected 

data after the normalization fits well to the Gaussian distribution.  

Figures 3.2 and 3.3 demonstrated that the anomaly detection in SOM algorithm 

and the integrated SOM and DWT algorithms improved as the number of neurons was 

increased. This suggests that the more neurons used, the “finer” SOM’s classification 
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becomes resulting in enhanced detection performance.  

However, at neuron size 50×50, the SOM required much longer training time 

with a marginal improvement in the detection performance. Therefore, the 30×30 size 

of neurons was selected to train and test the SOM. We also improved the SOM 

algorithm by double checking with the univariate method in order to reduce the false 

alarm rate Barreto et al. (2006); Sukkhawatchani, P., and Usaha, W. (2008). To obtain 

accurate results, the performance metric was averaged over 70 runs, which gave the best 

accuracy as shown in Table 3.1. 

 

Table 3.1 Accuracy results obtained by feeding synthetic input data to the 30×30  

neuron SOM algorithm. 
 

Runs True alarm rate (%) Deviation from previous runs 
1 62.00 - 
10 59.50 0.040 
20 57.65 0.031 
30 58.17 0.009 
40 57.68 0.008 
50 57.82 0.002 
60 57.88 0.004 
70 58.14 0.001 
80 58.06 0.001 
90 58.17 0.001 
100 58.27 0.001 
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To evaluate the performance of all algorithms, the results of each algorithm 

were compared to the (known) fault positions which were injected into the input data.  

In particular, when an anomaly was detected then its position was compared with the 

(known) fault position. If this position existed, then the anomaly detected was a true 

alarm; otherwise, it was a miss. On the other hand, if an anomaly was detected but the 

(known) fault position did not exist, then the anomaly was a false alarm.  

Figures 3.4 and 3.5 showed the percentage of true alarm rate averaged over  

70 runs, as a function of the amount of faults added into the input data. Note that the 

proposed integrated SOM and DWT algorithm which used Haar as a mother wavelet 

gave the best performance over other algorithms. This is because the DWT with Haar 

wavelet can detect changing points. In particular, the Haar wavelet uses 2 adjacent 

input data to compute a coefficient whereas the Daubechies4 uses 4 adjacent input 

data to compute a coefficient. However, Daubechies4 gave a lower performance than 

Haar because each coefficient was computed from an average over 4 input data. If  

a fault occurred in 1 of these 4 data, such fault would be averaged with the remaining 

3 normal data resulting in a coefficient with an absolute value possibly lower than the 

decision threshold. Consequently, the true alarm rate was reduced. On the other hand, 

the Haar wavelet only used 2 adjacent data to compute 1 coefficient. Thus, the true 

alarm rate was significantly higher than that of Daubechies4 (db4). The integrated 

SOM and DWT algorithm using Haar also outperformed the SOM algorithm. This is 

because in the Haar case, the coefficients obtained were transformed from two 

adjacent data. Therefore, if some data were faulty or differed greatly from the data 

nearby, this coefficient can detect such anomaly. On the other hand, the SOM 

algorithm directly checked the data one by one to detect an anomaly. If the data were 
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Since the gain in the true alarm rate was more significant, such tradeoff was 

therefore considered acceptable.  

Figures 3.8 and 3.9 illustrated the effect of the decreasing of AWGN noise 

power from 25dBW to 10dBW in both synthetic and real data scenarios. Only the 

Haar wavelet was used in the proposed algorithm and the DWT algorithm. The 

Daubechies4 was not included due to its weak performance. Though the anomaly 

detection was more difficult, the proposed integrated SOM and DWT still consistently 

outperformed the other two methods in terms of true alarm rate but with marginal 

increased in the false alarm rate as tradeoff. 

The proposed integration of SOM and DWT algorithm with Haar wavelet 

outperformed the SOM algorithm and the DWT algorithm alone. Our results 

demonstrated that the proposed integrated SOM and DWT anomaly detection scheme 

can be deployed in a resource-constrained network such as a WSN. In particular, the 

DWT using Haar wavelet can be implemented at the sensor nodes as a data 

preprocessor to reduce the amount of data to be transmitted by at least half (for one 

level DWT). Since energy consumption is critical in WSNs, such distributed in 

network processing can reduce transmission energy and eventually help prolong the 

overall network lifetime of the WSN (Rajasegarar, Leckie, and Palaniswami, 2008). 

while still maintaining acceptable anomaly detection accuracy.  
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3.2 Evaluation on detecting faults in real-world datasets 

In this section, we applied the anomaly detection methods to three real-world 

datasets, i.e., (NAMOS, 2006) INTEL Berkeley Lab (INTEL, 2004); SensorScope 

(2006) to detect anomalies in sensor traces. However, since we did not have ground 

truth information about faults for these datasets, visual inspection and the histogram 

method were used to decide whether the data is normal or abnormal. The histogram 

method was used because it displays the data distribution which allows us to 

determine a suitable threshold according to that data series.  

In the histogram method, we divided the time series of sensor readings into 

groups of N samples. We then plotted the histogram of the samples and selected  

a threshold according to outliers of the histogram. However, this approach was 

sensitive to the choice of N. Figure 3.10 showed the effect of N on the histogram 

computed for sensor measurements taken from a real-world deployment (Sharma, 

Golubchik, and Govindan, 2010). Therefore, the selection of the correct value for the 

parameter N required a good understanding of the normal sensor readings. In practice, 

one should also try a range of values for N to ensure that the samples flagged as faulty 

are not just a result of the value selected for N (Sharma, Golubchik, and Govindan, 

2010). With heuristic adjustments on the parameter value of N and some domain 

knowledge of the normal data profile, the histogram method was used as reference to 

identify abnormal data samples. 

In the real-world datasets experiment, we evaluated the performance of  

3 anomaly detection methods: the SOM, DWT using the Haar wavelet methods, and 

the integration of SOM and DWT using the Haar wavelet. We did not consider DWT 

using the db4 wavelet because it obtained poor detection performance as shown in the 
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synthetics faults experiment. For the SOM and the integration of SOM and DWT 

using Haar wavelet algorithms, we also considered the effects of changing the number 

of training samples, the number of training epochs which were 10 and 50 iterations, 

and the size of neurons which were 10x10 and 30x30.  

 

 

Figure 3.10 Histogram shape with N = 100 (a) and N = 1000 (b)  

 

We also compared the performance of the low and high pass Haar wavelet 

coefficients (LP and HP, respectively) in the DWT algorithm and the integration of 

SOM and DWT algorithm. This is because each coefficient can perform well for 

different types of faults so we can choose the suitable coefficients for the data. 

3.2.1  NAMOS 

In the NAMOS dataset, 9 buoys with temperature and chlorophyll 

concentration sensors (fluorimeters) were deployed in Lake Fulmor, for over 24 hours 

in August, 2006 (NAMOS,2006). We analyzed the measurements from chlorophyll 

sensors on buoys no. 103 for 104 samples as shown in Figure 3.11. In the experiment, 
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the histogram method was used to identify anomalies in the NAMOS dataset from 

which we selected the threshold of 0 and 500 as lower and upper bounds of the normal 

region, respectively. The sizes of training samples of 1500 and 3000 samples were 

used to train both the SOM and the integration of SOM and DWT algorithms.  

Figure 3.12 showed the percentage of detection alarm rates for true, 

miss and false alarms which were obtained from changing the sizes of training 

samples. Note that both the SOM algorithm and the proposed integrated SOM and 

DWT algorithm with low pass wavelet coefficients gave the best true alarm detection 

performance of nearly 100% while their false alarm rates were negligible. The 

integrated SOM and DWT algorithm and DWT algorithm with high pass coefficients 

gave the lowest performance. This is because the high pass coefficients are more 

suitable for detecting the changing points of the data whereas most of faults appear 

constant as seen from 9x103 samples onwards in Figure 3.11. In addition, reducing the 

size of training samples did not have any effect on the anomaly detection in the SOM 

algorithm and the proposed integrated SOM and DWT algorithm. This was because 

both training samples were obtained from a normal period of data which differ only in 

sample sizes. 
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Figure 3.11 NAMOS dataset of 104 samples. 

 

Figure 3.13 depicted the percentage of detection alarm rates for true, 

miss, and false alarms which were obtained by reducing the number of training epoch 

from 50 to 10 iterations. In this case, the SOM algorithm gave the best performance 

with nearly 100% of true alarm detection rate and no false alarm rate. DWT algorithm 

which used low pass coefficient gave high performance while the proposed integrated 

SOM and DWT algorithm with either coefficient failed on detecting any anomaly. The 

reason could be caused by the constant features of the faults in NAMOS which may be 

difficult to decide whether samples are normal or abnormal, in particular, if the 

wavelet coefficients were under-trained. Hence, care must be taken when selecting the 

suitable number of training epochs. In addition, we also investigated the effect  

of reducing the size of neurons. Results in Figure 3.14 showed that there was no 

significant effect from reducing size of neurons from 30x30 to 10x10. 
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alarm rate was 67% higher than the DWT method using high pass coefficients. Note 

that the high pass coefficients can detect spike faults better than low pass coefficient 

since the high pass coefficients reflect the rate of change between two successive 

samples. Note that the DWT using low pass coefficient gave the lowest performance.  

The results of changing number of training epochs were shown in Figure 3.17 and the 

sizes of neurons were shown in Figure 3.18. From both figures there were no 

significant effects on the detection rate because the fault in this dataset had high 

amplitude and can be easily detected. 

 

 

 

Figure 3.15 INTEL dataset of 2x104 samples. 
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Figure 3.19 SensorScope39 dataset of 32000 samples. 

 

   Figure 3.20 depicted the percentage of detection alarm rates 

which were obtained from changing the size of training samples. According to the 

results as shown, the SOM and the proposed algorithm can achieve a true alarm rate of 

up to 100% with very small false alarm rate. The DWT method using high pass 

coefficients also gave true alarm rate of up to 100% but gave high false alarm rate. 

Their true alarm rate was 8% higher than the DWT method using low pass 

coefficients. Note that the high pass coefficients can detect spike faults better than low 

pass coefficients since the high pass coefficients reflect the rate of change between 

two successive samples.  The results of changing number of training epochs were 

shown in Figure 3.21 and the sizes of neurons were shown in Figure 3.22. From both 

figures, there were no significant effects on the detection rate because the fault in this 

dataset has a high amplitude and can be easily detected. 
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algorithm using low pass coefficients can attain a true alarm rate of up to 17% more 

than the DWT algorithm alone. The integrated SOM and DWT algorithm and DWT 

algorithm which used high pass coefficients gave the lowest performance. This is 

because high pass coefficients were more suitable for short duration faults such as 

spike or sparse faults while the data in Figure 3.23 contained noise faults which 

affected a larger number of successive samples with an increase in their variance. The 

effect of reducing the number of training epochs was shown in Figure 3.25. According 

to the results, there was no significant effect on the performance of SOM and the 

integrated SOM and DWT. In Figure 3.26, the percentage of detection alarm rates for 

true, miss, and false alarms were obtained from reducing the size of neurons. Note that 

the proposed algorithm using low pass coefficients achieved a true alarm rate 2% 

lower than the SOM algorithm, whereas the false alarm rate remains lower than 0.5%. 

On the other hand, the proposed algorithm using low pass coefficients can attain a true 

alarm rate of up to 13% more than the DWT algorithm alone. 

 

 

 

Figure 3.23 SensorScope pdg dataset of 4000 samples. 
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Figure 3.34 depicted the percentage of detected alarm rates for true, miss, and 

false alarms obtained from changing the size of training samples. Note that the 

proposed algorithm using low pass coefficients achieved a true alarm rate 5% less than 

the SOM algorithm while false alarm rate remained lower than 3%. The proposed 

algorithm using low pass coefficients can attain a true alarm rate of up to 75% more 

than the DWT algorithm alone. The integrated SOM and DWT algorithm and DWT 

algorithm which used high pass coefficients gave low performance. This was because 

high pass coefficients were more suitable for short duration faults such as spike  

or sparse faults while the data in Figure 3.33 contained noise faults which affected  

a larger number of successive samples with an increase in their variance. 

The effect of reducing the number of training epochs was shown in Figure 

3.35. According to the results, there was no significant effect on the performance of 

SOM and the integrated SOM and DWT. Similarly, in Figure 3.36, no significant 

changes were found in the percentage of detected alarm rates for true, miss, and false 

alarms by reducing the size of neurons.  
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The results from the real-world dataset and bioorganic fertilizer dataset 

showed that our proposed algorithm, the integrated SOM and DWT algorithm 

performed as equally well as the SOM algorithm while using just half of the input data 

(using level 1 of DWT). This was because DWT was able to extract relevant data 

features without any significant loss in information thereby reducing wasted energy 

from transmitting all measurements to the base station. Hence, our results suggested 

that by applying DWT onto the sensor modes to achieve in-network data processing, 

the size of transmitted data can be reduced while still maintaining good anomaly 

detection abilities.  

However, a variety of data characteristics can affect the anomaly 

detection performance of the integrated SOM and DWT algorithm as can be seen from 

the NAMOS dataset. Hence, a suitable setting of the algorithm, such as the size of 

training epochs, has to be considered carefully. In terms of the number of neurons, the 

more neurons used, the finer SOM’s classification became, generally resulting in 

enhanced detection performance. However, the results in the real-world datasets and 

BOF dataset showed that there was no significant change in detection performance. In 

terms of the selection of wavelet coefficients, high pass coefficients were more 

suitable for detecting the changing points of the data, whereas low pass coefficients 

were more suitable for detecting the changing of trend of the data. These settings can 

be predetermined by considering the nature of the sensors deployed. For example, 

calibration errors in sensors can cause offset faults (whereby the measured value can 

differ from the true value by a constant), low battery voltage can cause a combination 

of noise and constant faults, while short faults can be caused by software error during 

communication and data logging (Sharma, Golubchik, and Govindan, 2010). 
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3.4 Summary 

In this chapter, we evaluated the anomaly detection algorithms performance on 

different datasets, synthetic and real data with the synthetic faults (known faults) and 

the real-world datasets with the real faults (unknown faults). In terms of the true alarm 

rate, the proposed algorithm outperformed the SOM algorithm by up to 18% and 

DWT algorithm by up to 35% in presence of bursty faults. With sparse faults, the 

proposed algorithm can gain a true alarm rate up to 10% above the SOM algorithm 

alone and entirely outperform the DWT algorithm alone. Such gain in true alarm rates 

came with a marginal increase of false alarm rate.  

In case of real-world datasets, we presented the anomaly detection in  

4 different resources, NAMOS, INTEL, and 2 SensorScope (pdg2008 and 

SensorScope no.39 datasets) datasets. Our proposed algorithm with Haar as a mother 

wavelet can attain up to 99%, 100%, 83%, and 100% of true alarm rates in the 

NAMOS, INTEL, and 2 SensorScope datasets, respectively. Our proposed algorithm 

also performed as equally well as the SOM algorithm and outperformed the DWT 

algorithm by up to 15%, 100%, 17%, and 8% in the NAMOS, INTEL, and  

2 SensorScope datasets, respectively. 

In case of BOF dataset, our proposed algorithm with Haar as a mother wavelet 

using low pass coefficients can attain 95% of true alarm rates. Our proposed algorithm 

also performed as equally well as the SOM algorithm and outperformed the DWT 

algorithm by up to 75%. 

The results showed that our proposed algorithm can maintain acceptable 

anomaly detection accuracy while using just half of the input data (using level  

1 DWT). 



 
 

CHAPTER IV 

CONCLUSION AND FUTURE WORK 

 

4.1 Conclusion 

This thesis proposed an integration of a competitive learning method called the 

self-organizing map (SOM) and the discrete wavelet transform (DWT), to detect 

anomalies from series of data containing synthetic faults and faults obtained from real-

world datasets. Our proposed algorithm, the integrated SOM and DWT algorithm, 

could help reduce wasted energy caused by transmitting all measurement data to the 

base station by applying the DWT algorithm onto the sensor modes in order to reduce 

size of transmitted data without losing the significant feature of the data. The original 

contributions and findings in this thesis can be summarized as follows. 

4.1.1 Synthetic faults experiments 

In the synthetic faults experiments, the results showed that the 

integration of SOM and DWT with Haar as a mother wavelet can attain 65% and 67% 

of true alarm rates in the case of bursty faults, and 69% and 80% of true alarm rates  in 

case of sparse faults for synthetic and real data, respectively. In terms of the true alarm 

rate, the proposed algorithm outperformed the SOM algorithm by up to 18% and 

DWT algorithm by up to 35% in presence of bursty faults. With sparse faults, the 

proposed algorithm can gain a true alarm rate up to 10% above the SOM algorithm 

alone and entirely outperformed the DWT algorithm alone. Such gain in true alarm 

rates came with a marginal increase of false alarm rate.  
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4.1.2 Faults in real-world datasets 

In the real-world datasets, the integration of SOM and DWT with Haar 

as a mother wavelet can attain up to 99%, 100%, 83%, and 100% of true alarm rates  

in the NAMOS, INTEL, SensorScope (pdg2008), and SensorScope (station no.39)  

datasets, respectively. Our proposed algorithm also performed as equally well as the 

SOM algorithm and outperformed the DWT algorithm by up to 15%, 100%, 17%, and 

8% in the NAMOS, INTEL, SensorScope (pdg2008), and SensorScope (station no.39)  

datasets, respectively. 

When reducing the number of training epochs, the proposed algorithm 

was directly affected. Hence, care must be taken when selecting the suitable number 

of training epochs. In the INTEL dataset and the SensorScope (station no.39) dataset, 

the proposed algorithm outperformed the DWT algorithm and performed equally well 

when compared to the SOM algorithm while using just half of the input data. In the 

SensorScope (pdg2008) dataset, the proposed algorithm outperformed the DWT 

algorithm but was slightly lower than the SOM algorithm. 

By reducing the size of neurons, the proposed algorithm still obtained  

a true alarm rate up to 16%, 100%, 84%, and 17% higher than the DWT algorithm in 

NAMOS, INTEL, SensorScope (pdg2008), and SensorScope (station no.39)  datasets, 

respectively. The proposed algorithm performed equally well as the SOM algorithm  

in the NAMOS, INTEL and SensorScope station no.39 datasets and only 2% lower 

than the SOM algorithm in the SensorScope (pdg2008) dataset. The reduction of the 

size of neurons did not show any significant change in detection performance. 
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4.1.3 Faults in the bioorganic fertilizer plant 

In the BOF dataset, the proposed algorithm using low pass coefficients 

achieved a true alarm rate 5% less than the SOM algorithm while false alarm rate 

remained lower than 3%. The proposed algorithm using low pass coefficients can 

attain a true alarm rate of up to 75% more than the DWT algorithm alone. The effect 

of reducing the number of training epochs was not significant on the performance  

of SOM and the integrated SOM and DWT. In addition, the reduction of the size  

of neurons did not show any significant change in detection performance. 

Our results suggested that the integration of SOM and DWT with Haar 

wavelet can lead to more effective anomaly detection.  In particular, our results 

confirmed that the proposed algorithm can maintain acceptable anomaly detection 

accuracy while using just half of the input data (using level 1 DWT) instead  

of transmitting entire data. This could help reduce wasted energy caused by 

transmitting all measurement data to the base station. 

However, since we did not have ground truth information about the 

faults incurred in these datasets, visual inspection and the histogram method were 

used to decide whether the data is normal or abnormal. Therefore, these methods are 

just heuristic estimation methods which may not coincide with the actual fault. 

Nevertheless, justifications of these faults can be made by consulting experts with 

domain knowledge on the information gathered from the environment under 

consideration (Sharma, Golubchik, and Govindan, 2010). 

On the other hand, a variety of data characteristics can affect the 

anomaly detection in the integrated SOM and DWT algorithm as can be seen from the 

NAMOS dataset. Hence, a suitable setting of the algorithm, such as the size of training 
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epochs, had to be considered carefully. In terms of the number of neurons, the more 

neurons used, the finer SOM’s classification became, generally resulting in enhanced 

detection performance. 

 

4.2 FUTURE WORK 

In the future, there are certain issues worthwhile investigating. 

 4.2.1  Increasing DWT level 

  The DWT obtains the hierarchical coefficients which can extract 

interesting the features of data. However, in our experiment we consider just the first 

level of the DWT coefficients. Considering other DWT coefficients level may be able 

to improve the anomaly detection algorithm performance. 

 4.2.2  Exploring other types of wavelets 

 To facilitate calculation by hand and allow comparison with the 

coefficients calculated from MATLAB program, we chose the Haar and Daubechies4 

as mother wavelets. However, there are many types of the wavelets family which may 

affect the performance of the proposed anomaly detection algorithm. 

 4.2.3  Implementation on the sensor nodes 

Another interesting direction is to investigate ways to identify and 

eliminate erroneous sensor readings directly at the sensor nodes (Liu and Zhou, 2010). 

which could help further reduce wasted energy from transmitting unwanted erroneous 

measurements to the base station. 

4.2.4  Comparison with other data compression techniques  

WSNs are resource constraint: limited power supply, bandwidth for 

communication, processing speed, and memory space. One possible way of achieve 
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maximum utilization of those resource is applying data compression on sensor data 

(Kimura and Latifi, 2005); (Sadler and Martonosi, 2006). It could be better to find out 

the most suitable data compression algorithm for anomaly detection in WSNs. 

4.2.5  Enhancing to fault predictability  

 The anomaly detection algorithm in this thesis can support detection 

when faults have already occurred. A worthwhile issue not only to be able to detect 

faults when they have already occurred but to predict them before a fault occurs. Such 

extension allows the user to take a suitable course of action to prevent the monitored 

environment before any significant damage occurs. 
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