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SELF-ORGANIZING MAP (SOM)

Wireless Sensor Networks (WSNs) have been developed and extensively
applied in agriculture monitoring. WSNs can be used to monitor and collect various
physical attributes within a specific area or environment of interest. Therefore, WSNs
can be viewed as a large database whose data readings from the sensors may be
abnormal due to faulty sensors or unusual phenomenon in the monitored domain.
However, with huge amount data, much energy is wasted in transmitting all of the
measured data to the base station. Hence, in order to reduce energy consumption of
transmitting all data, the data should be preprocessed prior to transmission while still
maintaining the acceptable anomaly detection rate.

The underlying aim of this research is therefore to propose an anomaly
detection algorithm which is able to detect anomalies accurately by means of reducing
wasted energy caused by transmitting all measurement data for anomaly detection at
the base station. The contribution of this research centers on the anomaly detection
using Self-Organizing Map and Discrete Wavelet Transform in order to reduce the size

of transmitted data without losing the significant features of the data obtained from



both random number generator and collected from wireless sensor networks in a real
environment.

In the experiments, the data were tested in 3 scenarios. Firstly, synthetic faults
were added into synthetic and real data. The results showed that our SOMDWT
algorithm can achieve true alarm rate up to 65% and 69% in case of synthetic data,
and 67% and 80% in real data for the bursty and sparse faults, respectively. Note that
most results had low false alarm rates, i.e., less than 1 % except in the case of sparse
faults due to the increased detection difficulty. Secondly, the real faults obtained from
four separate real-world datasets, namely, NAMOS, INTEL, and 2 datasets from
SensorScope (pdg2008 file and SensorScope weather station no.39) were tested. The
results showed that our algorithm can attain up to 99%, 100%, 83%, and 100% of true
alarm rates in the NAMOS, INTEL, and SensorScope (pdg2008 file and SensorScope
weather station no.39) dataset, respectively. All of the results suggested that their false
alarm rates were negligible. Finally, we developed a prototype of a WSN and
deployed it in a biororganic fertilizer (BOF) plant, located at the SUT university farm.
The proposed SOMDWT algorithm was then tested with the real faults from the
dataset acquired from the prototype. The results showed that our algorithm also
performed as well as the SOM algorithm and outperformed the DWT algorithm by up
to 75%. All of the results demonstrated that our proposed algorithm can maintain
acceptable anomaly detection accuracy while using just half of the input data (using

level 1 DWT).
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CHAPTER I

INTRODUCTION

1.1  Significance of the Problem

Agriculture faces many challenges, for example, environmental problems such
as climate changes, and water shortage; human problems such as labor shortage and
usage of chemical substances, and social problems such as animal welfare and food
safety. To prevent and alleviate such problems and even increase yield, condition
monitoring is crucial for agriculture, particularly for crop production and farming
industry. Agriculture monitoring can be applied in livestock and dairy productions to
constantly monitor human food supply chain (Kwong et al., 2009). Such application
allows us to monitor animal health and explore their behaviors, which is much needed
to understand how the environmental condition affects animal health (Guo et al.,
2006). For crops, agriculture monitoring can be applied in several stages of crop
growth. In each stage, different parameters can be monitored. Effective monitoring
at different stages can help save cost by reducing usage of resources such as water,
pesticides, and fertilizer (Goh, Sim, and Ewe., 2007). Precision agriculture such as
a hydroponics greenhouse requires precise proportion of nutrient solutions and
environment conditions to achieve a suitable ecosystem which accelerate crop growth
and yield. The hydroponics plants are highly sensitive to nutrient changes in the
system. To achieve an efficient control in a greenhouse environment, an adaptive,
accurate, cost effective control and monitoring system is needed (Li, Deng, and

Ding, 2008).



Agriculture monitoring can also be applied in bioorganic fertilizer (BOF)
production plants. A prototype of such plants has been constructed in Suranaree
University of Technology (SUT), Thailand, to reduce production time and enhance
quality control in the composting process. However, the prototype plant itself still
relies mainly on manually measuring and controlling the composting parameters such
as moisture, homogeneity, temperature, pH, oxygen, soil nutrients, etc., which is both
time consuming and laborious. Autonomous monitoring devices such as wireless
sensor networks therefore warrant potential use in the composting process.

A wireless sensor network (WSN) is a wireless network that consists of
distributed autonomous sensoring devices which cooperatively monitor or collect
environmental conditions such as temperature, sound, vibration, pressure, motion,
or pollutants at different locations. The development of wireless sensor networks was
originally motivated by military applications such as battlefield surveillance.
However, WSNs are now used in many civilian application areas such as environment
and habitat monitoring, healthcare monitoring applications, and traffic control.

There are several measurements which can be collected from a WSN deployed
in BOF plants. These measurements are vital to the BOF production. In other words,
these measurements can be viewed as key performance indicators (KPIs) in the
fertilizer plant. A good choice of a set of KPIs to monitor and analyze the collected
data is crucial to understanding the reasons for the various operational states of the
WSN, noticing abnormal incidents, analyzing them and providing a suitable course
of action. With the huge amount of data continually collected from the WSN,

it becomes increasingly difficult to detect anomalies in the data measurements.



Therefore, anomaly detection techniques are necessary to automatically detect actual
faults and alert the system controller to take a suitable action.

Research emphasizing on anomaly detection in communication networks has
progressed in recent years. These works include a statistical analysis approach in IP
networks that focused on load anomaly detection in segments of IP networks that
carry (almost) exclusively voice traffic (Thottan and Chuanyi, 2003); (Hajji, 2003);
(Ho et al., 2000). proposed a service anomaly detection algorithm in wide area
networks (WANS) which generated alarms upon detecting exceptional states such as
a router interface being “down” or the utilization of a network segment exceeding
a predefined threshold. Ref. (Laiho et al., 2005, 2002); (Barreto et al., 2000).
investigated anomaly detection in cellular mobile networks which required monitoring
hundreds of adjustable variables in each cell consisting of parameters within the base
stations (BS) and quality information of the calls. Ref. (Feather, Siewiorek, and
Maxion, 1993); (Maxion and Feather, 1990). studied anomaly detection for two types
of failures in Ethernet segments, namely, hard failures which are characterized by the
inability to deliver packets, and soft failures which are characterized by a partial loss
of network bandwidth. Possible causes of a hard failure include power failure, cut
cable, or failure of major network equipment. Causes
of soft failures include inappropriate use of the network, temporary congestion
causing delayed transmission, failed host hardware, failure of higher level protocols,
or mischievous users. Ref. (Hood and Ji, 1997); (Hood and Ji, 1997). proposed
anomaly and performance change detection algorithms in small networks that
improved network reliability and management in high-speed communication

networks. In particular, they proposed an intelligent system using adaptive statistical



approaches to learn the normal behavior of the network. Deviations from the norm
were detected and the information was combined in the probabilistic framework
of Bayes network. Their method can thereby detect unknown or unseen faults.
As demonstrated on real network data, their method can detect abnormal behavior
before a fault actually occurs, giving the network management system the ability to
avoid a potentially serious problem. Ref. Sukkhawatchani, P., and Usaha, W. (2008).
also investigated anomaly detection with real network data. They applied
a competitive learning algorithm called self-organizing map (SOM) to detect traffic
measurement anomalies from an actual cellular network service provider.

There are also works on fault and anomaly detection in wireless sensor
networks (WSNSs). In general, anomaly detection in WSNSs refers to the problem
of finding patterns in data that do not conform to expected behavior (Kaur, Saxena,
and Gupta, 2010). Abnormal data patterns can be caused by faulty sensors in the
network or unusual phenomena in the monitored domain.

Anomalies caused by faulty sensor communications were presented in
(Lee and Choi, 2008). They proposed a distributed algorithm for detecting and
isolating faulty sensor nodes in WSNs. Each sensor node identified its own status
based on local comparisons of sensed data with thresholds. Ref. (Sharma, Golubchik,
and Govindan, 2010). applied 4 different anomaly detection techniques, e.g., the rule-
based method, the linear least-squares estimation (LLSE) method, the autoregressive
integrated moving average (ARIMA) method, and the learning-based hidden Markov
model (HMM) method, for different types of faults obtained in the real-world

datasets, namely, NAMOS (NAMOS, 2006). INTEL (INTEL, 2006). and

SensorScope (SensorScope, 2006). They classified these faults into 3 types, i.e., noise



faults, short faults, and constant faults. Their research suggested that there is presently
no known anomaly detection method suitable for every type of fault.

Another application of anomaly detection is to detect an unusual phenomenon
in the monitored domain. Erroneous measurements may occur as a result
of transducers, or from faults introduced by harsh environmental conditions. In a large
network, it is extremely difficult and time consuming to detect these erroneous
measurements manually. In addition, energy is wasted in the network when
forwarding the unwanted erroneous measurements to the base station for analysis. One
solution to alleviate network energy consumption is to reduce the amount of data that
needs to be communicated through the network. As energy expenditure is critical in
WSNSs, anomaly detection methods in WSN must not only perform well but also
demand low energy consumption. Distributed in-network processing can reduce
transmission energy and eventually help prolong the overall network lifetime of the
WSN (Rajasegarar, Leckie, and Palaniswami, 2008); (Cordina and Debono, 2008).
focused on increasing the lifetime of a WSN using an approach that relies on cluster-
based routing algorithms. The lifetime of the sensor network was improved through
the use of a number of mechanisms that minimized energy dissipation and improved
energy balancing between the nodes. These mechanisms included cluster head
separation, cluster head election, cluster head rotation, and load balancing cost
functions. Our work was motivated by the concept of prolonging the network lifetime.
In particular, we focused on finding means to reduce the amount of transmitted data in
the network for anomaly detection at the base station, while still maintaining

acceptable accuracy and reliability in detecting abnormal data.



This thesis considered anomalies caused by unusual phenomenon and faulty
sensors. To detect these anomalies, a dynamic data classification scheme such as data
mining method could be useful. ta mining is an expanding area of research in artificial
neural network and information management whose objective is to extract relevant
information from large databases. Typical data mining and analysis tasks include
classification, regression, and clustering of data, aiming at determining parameter/data
dependencies and finding various anomalies from the data. One particular method,
called the self-organizing map (SOM), has several beneficial features which make it
a useful tool in data mining. In particular, it follows the probability density function
of the data and is, thus, an efficient clustering and quantization algorithm. The most
important feature of the SOM in data mining is the visualization property
(Laiho et al., 2005)

SOM has been applied for anomaly detection in communication networks
(Barreto et al., 2006); (Sukkhawatchani, P., and Usaha, W. (2008)); (Zheng and Hu,
2005). as well as WSNs (Paladina, Paone, Jellamo, and Puliafito, 2007). focused on
evaluating the position of sensors in a WSN, or the localization problem. Their
localization technique was based on a simple SOM, implemented on each sensor node.
The main advantages of their solution were the limited storage and computing costs.
However, SOM requires processing time which increases with the size of input data.
To reduce the input data size, features of the data can be extracted without losing the
significant data which can be used for anomaly detection. This can be achieved by the
Discrete Wavelet Transform (DWT).

Wavelets have been extensively employed for anomaly (Aquino and Barria,

2001). and fault detection (Yadaiah and Ravi, 2007). DWT had also been integrated



with SOM for several applications. Ref. (Doshi, King, and Lawrence, 2007). used
DWT and SOM for feature extraction for nematode species identification.
Hyperspectral data, which typically has high dimensions, was used for species
identification. DWT and SOM provided the necessary dimensionality reduction
without losing vital information. In (Xu and Zhao, 2002). DWT and SOM were
employed for fault detection and isolation (FDI) to control a tank system. In order
to detect the faults that reflected themselves as fault-induced frequency changes
at certain time instants in the measured signal, DWT was applied to capture such
changes and extract fault features online and in real-time. An improved SOM was then
used to isolate the fault. In Ref (Postalcioglu, Erkan, and Bolat, 2007). multiplicative
and additive types of sensor faults had been examined and disturbance had been
applied to create faults in temperature sensors. In particular, feature vectors of the
sensor faults had been constructed using DWT, sliding window, and a statistical
analysis. Classification of the feature vectors was obtained by using SOM.

To the best of our knowledge, the integration of DWT and SOM has not yet
been applied for anomaly detection in WSNs. Therefore, the underlying aim of this
paper was to propose an anomaly detection algorithm which determined the discrete
wavelet transform, and detects the abnormality of the sensor readings by training the
SOM using the wavelet coefficients. Our proposed algorithm, the integrated SOM and
DWT algorithm could help reduce wasted energy caused by transmitting all
measurement data to the base station by applying DWT algorithm onto the sensor
modes in order to reduce size of transmitted data without losing the significant feature

of the data.



1.2 Research Objectives

The objectives of this thesis are as follows:

1.2.1 To obtain the anomaly detection algorithm for a wireless sensor
network which can reduce the energy consumption required for transmitting data
packets back to the base station.

1.2.2 To obtain a wireless sensor network prototype for a BOF production

plant.

1.3  Assumptions

1.3.1 Abnormal data which occur in a wireless sensor network can be
detected by changing signal levels collected from the sensors.
1.3.2 Faults can be caused by faulty sensors in the network or unusual

phenomena in the monitored domain.

1.4 Scope of the Research

1.4.1. A wireless sensor network prototype was designed for agriculture
monitoring.

1.4.2. Anomaly detection methods for WSNSs were studied.

1.4.3. Discrete wavelet transform (DWT) and self-organizing map (SOM) were
studied to detect abnormal data collected from a wireless sensor network in an agriculture
field.

1.4.4. The simulation and experimental findings were analyzed and

concluded.



1.5 Expected Usefulness

1.5.1 To obtain an algorithm implemented at the base station or gateway
which detects abnormal data collected from a wireless sensor network.
1.5.2 To obtain a wireless sensor network prototype for a BOF production

plant.

1.6 Synopsis of Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the
theoretical background which is the foundation of the contributions of this thesis.
Firstly, the concept of the general anomaly detection and related works are presented.
This is followed by the self-organizing map (SOM) algorithm, the discrete wavelet
transform (DWT) algorithm and the proposed algorithm, the integrated SOM and
DWT.

Chapter 3 presents the experiments conducted to evaluate the performance of
the proposed integration of SOM and DWT algorithm. The experiments evaluated the
anomaly detection methods described in the previous chapter with series of synthetic
data and actual data collected from a wireless sensor network injected by various
synthetic faults. Furthermore, its performance against real-world datasets which
included real faults from various sensor networks were also evaluated.

Finally, Chapter 4 summarizes all the findings and the original contribution in

this thesis and points out possible future research directions.



CHAPTER I

BACKGROUND THEORY

2.1 Related works

In anomaly detection scenarios, several methods have been presented. For
example, Rule-based methods such as the histogram method (Ramanathan et al.,
2006) require domain knowledge about sensor readings to develop heuristic rules or
constraints that the sensor readings must satisfy. Although methods belonging to this
group can be highly accurate, the choice of parameters is critical to their accuracy;
Estimation-based methods such as the linear least square estimation (LLSE) Kailath
(1977) define “normal” sensor behavior by using spatial correlation from
measurements at different sensors. This method is accurate, but cannot classify faults;
Time series analysis-based methods such as the autoregressive integrated moving
average (ARIMA) (Box, Jenkins, and Reinsen, 1994) are commonly used for
analyzing periodically and temporally correlated data collected by the same sensor.
However, such methods are more effective for detecting short duration faults than
long duration ones, and incur more false alarm than the other methods; Learning-
based methods such as the Hidden Markov model (HMM) Bengio and Frasconi
(1996) or neural networks model the normal and faulty sensor readings using training
data and are therefore suitable for phenomena that may not be spatio-temporally
correlated. Learning methods can be cumbersome to train, but can accurately detect
anomalies (Sharma, Golubchik, and Govindan, 2010). The proposed algorithm in this

thesis is based on a learning method using self- organizing map (SOM). SOM has
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several beneficial features which make it a useful tool in data mining. In particular, it
follows the probability density function of the data and is, thus, an efficient clustering
and quantization algorithm. The most important feature of the SOM in data mining is
the visualization property (Laiho et al., 2005)

This chapter serves as an introduction to related anomaly detection methods
which were used to improve our algorithm, the integrated SOM and DWT, and
compared with our algorithm. These methods include the single threshold (univariate
and multivariate) methods (Barreto et al., 2006) the self-organizing map (SOM)
algorithm and the discrete wavelet transform (DWT).

Data acquisition in wireless sensor networks (WSNs) involves intensive
collection of input data from sensor nodes. Algorithms based on data mining had
proved to be especially suitable in highly complex and data intensive applications
(Laiho et al., 2005).The self-organizing map (SOM) is one of the most popular neural
algorithms due to its efficient visualization properties. It has been used for anomaly
detection in various scenarios. Ref. (Sukkhawatchani, P., and Usaha, W., 2008) used
the SOM algorithm to analyze and monitor traffic anomalies in a cellular mobile
network. Their results showed that SOM outperformed the multivariate method.
Furthermore, the SOM can be able to handle a larger number of the interested or
collected data.

Apart from cellular networks, (Ramadas, Ostermann, and Tjaden, 2003)
proposed an anomaly detection system based on SOM algorithm at level of network
connection, where each connection was defined with six features: duration of the
connection, type of protocol, type of service, state of the connection, source bytes and

destination bytes. Ref. (Lichodzijewski, Heywood, and Heywood, 2002) described the
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use of SOM in the intrusion detection system (IDS) to detect anomalies in the network
connections by characterizing each connection with six statistical features. However,
both works used a different set of the features. Another difference between these two
works was that in the first work SOM was applied to all the network traffic, whereas
the latter constructed a neural network by each network service.

Anomaly detection in WSNs, however, requires careful consideration than
other applications because energy expenditure is critical in such networks. Therefore,
anomaly detection methods in WSN must not only perform well but also demand low
energy consumption. One solution to alleviate network energy consumption is to
reduce the amount of data that needs to be communicated through the network.
Wavelet analysis technique was considered for dimensionality reduction. Processing
of the wavelet coefficients may allow signal representation with a lower number
of bits than needed for representing the original signal (Brechet, Lucas, Doncarli, and
Farina, 2007).

The wavelet analysis technique has also been widely used for network anomaly
detection recently due to its inherent time-frequency property that allows splitting
signals into different components at several frequencies. In the work (Barford, Kline,
Plonka, and Ron, 2002) wavelet transform was applied for analyzing and
characterizing the flow-based traffic behaviors. Based on different frequency
components, a deviation algorithm was presented to identify anomalies by setting
a threshold for the signal composed from the wavelet coefficients at different
frequency levels. Ref. (Kim, Reddy, and Vannucci, 2004) proposed a technique for
traffic anomaly detection through analyzing correlation of destination IP addresses

in outgoing traffic at a router. They applied discrete wavelet transform on the address
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and port number correlation data over several time scales. Any deviation from
historical regular norms would alert the network administrator of the potential
anomalies in the traffic.

Wavelet was not only applied for detecting specific network anomalies
directly, it was also widely used in network measurement from the perspectives
of traffic performance analysis (Huang, Feldmann, and Willinger, 2001) traffic
anomalies diagnosing and mining (Lakhina, Crovella, and Diot, 2004) traffic
congestion detection (Kim et al., 2004) and dimensionality reduction (Bruce,
Cheriyadat, and Burns, 2003); (Bruce, Koger, and Li, 2002); (Ciancio, Pattem, Otega,
and Krishnamachari, 2006) addressed the problem of energy consumption reduction in

wireless sensor networks by means of data compression using lifting factorization
wavelet transform. In particular, they reconstructed a version of the data

measurements at the central node, with the sensors spending as little energy as
possible, for a given data reconstruction accuracy. Ref (Li, Zhang, and Fang, 2009)
also proposed a data compression algorithm in WSN based on lifting wavelet
transform. Their algorithm distributed the computing quantity which the lifting
wavelet transform required to all nodes, eliminated extra computing and data
transmission, thereby reduced the information redundancy of network, and
consequently saved the energy of wireless transmission and prolonged network
lifetime.

The anomaly detection of SOM and the data reduction ability in wavelets
therefore motivated us to integrate these two methods to achieve efficient and
effective anomaly detection methods for condition monitoring. To the best of our

knowledge, there is no prior work applying such combination for anomaly detection
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in WSNs. In a similar work such as (Xu and Zhao, 2002). DWT and SOM were
employed for fault detection and isolation (FDI) in the control system (tank system).
There were existing works combining SOM and DWT for classification application as
in a fault tolerant control system (Postalcioglu, Erkan, and Bolat, 2007) where the
feature vectors of the sensor faults have been constructed using DWT, sliding window
and a statistical analysis. Classification of the feature vectors was obtained by using
SOM, clustering application. In (Cheng, Zhang, Hu, and Li, 2007) they proposed the
combination of the DWT and SOM algorithm to cluster the urban traffic flow
network. Discrete wavelet transform was adopted for flow feature extraction, because
it is insensitive to disturbance/scaling, and zooms in multiple finer granularities. The
self-organizing map (SOM) algorithm was then used to cluster road links into groups,

for which different feature sets were considered for different purposes.

2.2  Anomaly Detection

Network anomaly refers to circumstances when network operations deviate
from normal network behavior. Abnormal data patterns can be caused by faulty
sensors in the network or unusual phenomena in the monitored domain. This thesis,
we are interested in monitoring anomaly detection in the data gathered from WSNss.

The first step of anomaly detection involves selecting the data parameters to be

monitored and grouping them together in a pattern vectorx” e R, u=1,...,N,

x| (KPI#
2.1
o _ | X5 |_|KPIY (2.1)

Xt | |KPIg
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where 2 is the observation index, N is the number of parameter types or key

performance indices (KPIs) chosen to monitor the environmental condition.
The second step involves identifying the methodology used to classify a new

state vector x"V

as normal or abnormal. Single threshold methods, such as the
univariate and the multivariate anomaly detection tests are currently deployed by
means of one of the following statistical methods.

2.2.1 Univariate Anomaly Detection Test

A component-wise analysis is performed on x"™" to verify if the

components X" are within their normal ranges of variation. The anomaly detection

test is given by

THEN x[™ is a NORMAL component

ELSE x}™ is an ABNORMAL component (2.2)

new

where the decision threshold K > 0, and the normal range interval of x7™ is

[x_j -Koj, x_J + Ko, ]. Typically, the value of K relies on the Gaussian distributed X;,

e.g., K=1.96 for confidence interval 95% or K = 2.57 for confidence interval 99%.
2.2.2 Multivariate Anomaly Detection Test

The analysis is performed on x™" as a whole, by taking into

new

consideration the joint influence of all the componentsx™, j = 1,...,n. The anomaly

detection test is given by
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N =

I {(x= -x) ;' (x —x)f" <k

THEN x™ is a NORMAL vector

ELSE x™ is an ABNORMAL vector (2.3)

1\ - =\ . .
where CX:(—j Z(x” - X)(X“ - X) is the sample covariance matrix of the data, and K

u=l1
is the critical value Xf,l_a of the chi-square distribution with n degrees of freedom and

significance level o .
These methods are based on the assumption that the components of X
are Gaussian distributed. Their drawbacks are that different detection results are

obtained when outliers are present in the data set. This is because outlier distorts the

estimates of X and C. Therefore, anomalies with slight departures from normal state

or base line are difficult to detect.

2.3 Self-Organizing Map

Competitive neural models such as the self-organizing map (SOM) (Laiho,
Kylvaja, and Hoglund, 2002) are able to extract statistical regularities from the input
data vectors and encode them in the weights without supervision. It maps a high-
dimensional data manifold onto a low-dimensional, usually two-dimensional, grid or
display.

The basic SOM consists of a regular grid of map units or neurons as shown in
Figure 2.1(a). Each neuron, denoted by i (depicted by the black dot), has a set

of layered neighboring neurons (depicted by the white dots) as shown in Figure 2.1(a).
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Neuron i maintains a weight vector m, . In order to follow the properties of the

input data, such vector is updated during the training process. For example, Figure 2.1
(b) shows a SOM represented by a 2-dimensional grid of 4x4 neurons. The dimension
of each vector is equal to the dimension of the input data. In the figure, a vector of
input data (marked by x) is used to train the SOM weight vectors (the black dots). The
winning neuron (marked by BMU) as well as its 1-neighborhood neurons, adjusts their
corresponding vectors to the new values (marked by the gray dots).

The SOM is trained iteratively. In each training step, one sample vector X
from the input data set is chosen.

The distances between the sample data and all of weight vectors in the SOM

are calculated using some distance measure. Suppose that at iteration t, neuron i whose

weight vector m,; (t) is the closest to the input Vectorx(t). We denote such weight

vector by m_ (t) and refer to it as the Best-Matching Unit (BMU), which is
Hx(t)—mc(t)H: argmjn Hx(t)—mi(t)H (2.4)

where |||| is the Euclidian distance.
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Figure 2.1 An illustration of the SOM (a) with rectangular lattice neighbors
belonging to the innermost neuron (black dot) corresponding
to 1, 2 and 3 neighborhoods, (b) SOM updates the BMU

with 1- neighborhood.

Suppose neuron i is to be updated, the SOM updating rule for the weight

vector of neuron i is given by
m; (t+1) = m; (1) + 720 (1, DX (1) —m; (D] (2.5)

where tis the iteration index, x(t)is an input vector, 5, is the learning rate, h_(i,t)1s

the neighborhood function of the algorithm. The Gaussian neighborhood function may

be used, that is

o) —r. ) 2.6)
202(1)

h.(i,t) =exp|—
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where r,(t)and r_(t)are the positions of neurons iand the BMU Crespectively, and
o (t)is the radius of the neighborhood function at time t. Note that h_(i,t) defines the

width of the neighborhood. It is necessary that limh_ (i,t)=0 and lims, =0 for the
t—oow tow

algorithm to converge (Barreto et al., 2006).

SOM has been applied for anomaly detection in communication networks
(Barreto et al., 2006); (Sukkhawatchani, P., and Usaha, W., 2008); (Zheng and Hu,
2005) as well as WSNs (Paladina, Paone, Jellamo, and Puliafito, 2007) focused on
evaluating the position of sensors in a WSN, or the localization problem. Their
localization technique was based on a simple SOM, implemented on each sensor node.
The main advantages of their solution were the limited storage and computing costs.
However, SOM requires processing time which increases with the size of input data.
To reduce the input data size, features of the data can be extracted without losing the
significant data can be used for anomaly detection. This can be achieved by the

discrete wavelet transform (DWT).

2.4 Discrete Wavelet Transform

Wavelet is a small wave which has its energy concentrated in time to give
a tool for the analysis of transient, non-stationary, or time-varying phenomena. The
goal of the wavelet analysis is to create a set of basis functions and transforms that
will give an informative, efficient, and useful description of a function or signal. If the
signal is represented as a function of time, wavelets provide efficient localization in
both time and frequency or scale. If signal or function f(t) often be better analyzed,

described, or processed if expressed as a linear decomposition by
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fO=Yay,(t) 2.7)

where { is an integer index for the finite sum, a,are the real-valued expansion
coefficients, and y,(t) are a set of real-valued functions of t called the expansion set.

For the wavelet expansion, a two-parameter system is constructed such that (2.7)

becomes

f(t)zzklzaj,kl//j,k (t) (2.8)
j

where both j and k are integer indices and the y/;,(t) are the wavelet expansion

functions or mother wavelet, i.e., Haar mother wavelet, Daubechies mother wavelet or

Mexican Hat mother wavelet. The set of expansion coefficients a;, are called the

discrete wavelet transform (DWT) of f(t) and (2.8) is the inverse transform.

DWT is a mathematical transform that separates the data signal into fine-scale
information known as detail coefficients, and rough-scale information known as
approximate coefficients. Its major advantage is the multi-resolution representation
and time-frequency localization property for signals. Usually, the sketch of the
original time series can be recovered using only the low-pass-cut off decomposition
coefficients; the details can be modeled from the middle-level decomposition
coefficients; the rest is usually regarded as noises or irregularities. The following

equations describe the computation of the DWT decomposition process:

apy" (k)=> hy(n-2k)a"" (k) (2.9)
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dpi” (K)=2go(n-2k)a"" (k). (2.10)

T

where the rough-scale (or approximation) coefficients a?"" are convolved separately

with hyand g,, the wavelet function and scaling function, respectively, n is the time

scaling index, K is the frequency translation index for wavelet level j. The resulting

DWT
a:

coefficient is down-sampled by 2. This process splits i

roughly in half,
partitioning it into a set of fine-scale (or detail) coefficients dﬁ\?" and a coarser set

of approximation coefficients a?j’lv T (Postalcioglu, Erkan, and Bolat, 2007).

DWT has the capability to encode the finer resolution of the original time
series with its hierarchical coefficients. Furthermore, DWT can be computed
efficiently in linear time, which is important while dealing with large datasets. That is
the DWT can reduce amount of the input data without losing significant feature of the
data by replacing the data with its hierarchical coefficients, low pass and high pass
coefficients.

In our experiment, the Haar and Daubechies4 wavelet were used as a mother
wavelet in order to reduce the size of the data before performing the anomaly
detection with the SOM algorithm. The reason for using these two types of wavelets is
because they are relatively easy to cross-check by hand with computed coefficients
from MATLAB program.

2.4.1 Haar Wavelet

Haar wavelet is the simplest type of wavelet with its unit width, unit

length, unit height pulse function as shown in Figure 2.2 Like all wavelet transforms,
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the Haar transform decomposes a discrete signal into 2 subsignals of half its length

Walker (1999).
1.5 1.5
1 1
0.5i 0.5
0 0
0.5/ 0.5
1 1
1.5 -1.5
0.5 0 0.5 1 15 0.5 0 0.5 1 1.5
(a) (b)

Figure 2.2 Haar scaling (a) and wavelet (b) function from

http://cnx.org/content/m11150/latest

One subsignal is an averaging or trend; the other subsignal is a difference or

fluctuation. Let’s begin with the 1-level Haar wavelet. These wavelets are defined as

1 -1
W'=| —.=2.0.0....,0
1 (ﬁ 2 ]

W, =(0,0, (2.11)

1 -1
—,—,0,0,..,0
V2'\2 j

3

ap

W;I/z:(O,O,...,O,%,
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They all are very similar to each other in that they are each a translation

in time by an even number of time-unit of the first Haar wavelet W,'. The second Haar
wavelet W, is a translation forward in time by 2 units of W, , and W, is a translation

forward in time by four units of W, , and so on.

They can also express the 1-level trend values as scalar products with
certain elementary signals. These elementary signals are called 1-level Haar scaling

signals, and they are defined as

1 1
V!=]0,0,—,—,0,0,....0 2.12
) ( > ] (2.12)

1 1

V.,=|0,0,..,0,——,—
oot 1)

Using these Haar wavelet, the detail coefficients for the first fluctuation
subsignal d' are expressed as scalar products, d =f-W! and also using the Haar
scaling signals, the approximate coefficients a' for the first trend are expressed
as scalar products a_=f-V! for m = 1, 2,..., N/2, where f is the signal and N is the

signal length.
2.4.2 Daubechies Wavelet
The Daubechies wavelet transforms are defined in the same way as the
Haar wavelet transform by computing averages and differences via scalar products

with scaling signals and wavelets. The only difference between them consists in how
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these scaling signals and wavelets are defined. Let the wavelet numbers £, 5,, 5;, 5,

be defined by

1-3 J3-3 3443 —1-3
fi= 4J’ﬂ2 4fﬂ3 4J’ﬁ“ VN

(2.13)

(a) (b)

Figure 2.3 Daubechies4 scaling (a) and wavelet (b) function from

http://cnx.org/content/m11150/latest

Using these wavelet numbers, the 1-level Daubechies4 wavelets are defined by

=(B,, 5By :,0,0,...,0)
=(0.0.8, .. 8. ,.0,0....,0)

W!=(0,0,0,0,, . By, 5,,0,0,...,0) (2.14)

Wy, =(0,0,..,0, 8., B, ;. 8,)

W;I/Z (ﬁwﬂwoo O’ﬁl’ﬂz)
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These are all translates of W,. Each wavelet has a support of just 4 units,

corresponding to the four non-zero wavelet numbers used to define them. The 1-level

Daubechies4 wavelet satisty
W,L = ﬂ]VZOm-l + :Bzvzom + ﬁ3V20m+1 + ﬂ4V20m+2 (2.15)

We now turn to a discussion of the Daubechies4 scaling signals. Let the

scaling numbers «,,a,,a;,a, be defined by

1443 3443 3-43 1-43

= a,= (2.16)

a,= . o= . O, = :
Pa2T T a2 42T a2

Using these scaling numbers, the 1-level Daubechies4 scaling signals are defined by

Vll=(0!1,a2,a3,a4,0,0,...,0)
v, =(0,0,¢,2,,0;,2,,0,0,...,0)

V! =(0,0,0,0,¢, 1y, 2,,,,0,0,...,0) (2.17)

L
Vi =(0,0,...,0,0, a5, 05, 1, )

1
Ve =( 3,2,4,0,0,...,0,,,,)

As same as the Daubechies4 wavelet, the first level Daubechies4 scaling

signals satisfy

- 0 0 0 0
Vo= Vo, +a,Vy, + a3V, +a,V

2m+2

(2.18)
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2.5 Integration of SOM and DWT

In our proposed algorithm in this thesis, the integration of SOM and DWT, the
DWT algorithm was used as an input data preprocessor of the SOM algorithm in order
to reduce the size of input data without losing any significant feature of the data. This
can enable the implementation of in-network processing which can help to reduce the
radio communication energy and eventually prolong the lifetime of the WSN
(Rajasegarar, Leckie, and Palaniswami, 2008). The input data were padded with zero
if its length was odd. After obtaining the wavelet coefficients, these coefficients were
fed to the SOM algorithm which can be divided into 2 sets. Each set contained both
approximate and detail coefficients. The first set which was obtained from noiseless
data, was used to train the SOM algorithm. The second set which was obtained from
the faulty data would be used to test the SOM algorithm. Then to reduce the false
alarms the detected results were double checked by using the univariate method

(Barreto et al., 2006); (Sukkhawatchani, P., and Usaha, W. (2008).

2.6 Anomaly Detection

A new observation data set can be considered abnormal if the distance between

the weight vector of the winning neuron and the new state vector, given by

e  =|

Xnew _ mé‘” (2.19)

is greater than a certain percentage p=1-—«a of the distances in the distance

distribution profile. That is,
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IF e e[ep,ep}

THEN X" is NORMAL vector

ELSE X™" is ABNORMAL vector (2.20)

Equation (2.20) is referred to as the global decision. Once abnormal behavior has been
detected by the procedure in (2.20), it is necessary to investigate which of KPIs of the
problematic state vector are the most relevant ones. That is called the local decision.
We require instead a kind of decision rule that points out the KPIs (if any) that

contribute most to the supposed abnormal state vector. For this purpose, we evaluate

the absolute values of each component of the error vector E*

EXL) () —we,
‘E”‘: ‘Ezﬂ‘ _ ‘Xf—.Wﬁz 2.21)
erl) \pe—w,
Thus, for each of the resulting n sample distributions ﬂEJ“ },,u=1,..., N we
compute the interval of normality U E;l.IE] } of the jth KPI.

Whenever an incoming state vector X" is considered abnormal by the fault

detection stage, we take the absolute values of each component E[™ of the

corresponding quantization error vector and execute the following test:
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IF

9

new
Ej

(|7l E51]

THEN x; is a NORMAL KPI

3

ELSE X; is an ABNORMAL KPI (2.22)

That is, if the quantization error due to the KPI X; is within the range defined

3

by the intervalU E;

3

] , then it does not contribute to the abnormal state previously

detected; otherwise it will be indicated as an abnormal KPI. In Lee and Choi (2008)

an addition of local decisions of each KPI is presented.
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Figure 2.4 The integration of the SOM and DWT algorithm diagram.

2.7  Summary

In this chapter, we introduced the anomaly detection methods including the
univariate anomaly detection, multivariate anomaly detection, the self-organizing map
or SOM, the discrete wavelet transform or DWT algorithm, and the proposed
integrated SOMDWT algorithm. However, the SOM algorithm requires processing
time which increases with the size of input data [49]. Hence, the DWT algorithm can

be used to reduce the input data size in order to reduce transmission energy and
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eventually help prolong the overall network lifetime of the WSN without losing the
significant data. The performances of the aforementioned algorithms were then
evaluated by means of synthetic and real data injected with synthetic faults and also

the real-world dataset. These experiments are shown in the next chapter.



CHAPTER Il

EXPERIMENTS AND RESULTS

In this section, we evaluated the performance of the proposed integration of
SOM and DWT algorithm by detecting anomalies in series of synthetic data and actual
data collected from a wireless sensor network injected by various combinations of
synthetic faults. We then conducted experiments to evaluate its performance by testing
the proposed algorithm on real-world datasets with real-world faults obtained from
various environmental, and microclimate sensor networks, and the dataset obtained

from the WSN deployed at the SUT BOF plant.

3.1 Evaluation on detecting synthetic faults

In the experiment, we generated the synthetic input data from a normal
distribution N(0,1) and synthetic faults by additive White Gaussian noise (AWGN)
with power 25 dBW generated from MATLAB. We used such fault because its
statistical similarity to the synthetic input data thus, it is more difficult to be detected.
Therefore, we can evaluate the performance of the algorithms under ambiguous faults.
The amount of faults was represented by the notation n/s, where “n” is the amount
of faults per series and “s” is the amount of series of faults, resulting in the total
amount of nxs faults. The generated faults added to the input data ranged from bursty
which was 20/10, then 10/10, 2/10, and finally to sparse which was 1/10. The exact
positions of the faults injected in the input data were predetermined and was later used

to detect true and false alarms.
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In the experiment using real data collected from wireless sensor nodes, we had
chosen 2 parameters, namely soil temperature and soil moisture, as KPIs collected
from samples of compost in the SUT bioorganic fertilizer plant. In this experiment, the
data of the 2 KPIs at the WSNs were collected every 5 minutes for 3 days. We
compared 3 anomaly detection methods: SOM algorithm, DWT algorithm, and
integration of SOM and DWT algorithm.

We measured 2 performance metrics:

1) The true alarm rate which is defined by the number of detected true

anomalies over the total number of true anomalies in the data set as shown below

Total detected true alarms y

True alarm rate = 100 (3.1

Total true anomalies

2) The false alarm rate which is defined by the number of detected false

alarms over the total number of detected anomalies as shown below

Total detected false alarms 8

False alarm rate = 100 (3.2)

Total normal data

In the DWT algorithm, we used the threshold given by (3.3) and (3.4) in order

to decide whether the data is normal or abnormal [50]

o, = median(‘d1 —d_l‘) (3.3)

T, =0,+2log,(N), (3.4)

where N is the size of data and d; is the median of the level 1 detail coefficients.
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This threshold was calculated from the low pass and high pass coefficients
from the assumed normal data by using Haar and Daubechies4 mother wavelets. The
Haar and Daubechies4 wavelets were used because they are relatively easy to cross-
check by hand with computed coefficients from MATLAB program. Hence, we can
compare the position of each coefficient with the actual fault position. After the
threshold calculation, the set of coefficients which were obtained from the DWT
of the noisy data were compared with the threshold, coefficient by coefficient. For the
real data scenario, the data was normalized by equation (3.5) before being processed

by the DWT to eliminate potential outliers:

)= (Data)-mean(Data) (3.5)
\/ variance(Data)

Norm(Data

If the absolute value of the coefficient was greater than the computed
threshold, an anomaly was said to be detected.

In the SOM algorithm and the proposed integrated SOM and DWT algorithm,
the initial value for learning rate in the SOM part was set to o = 0.9, and gradually
reduced to nr = 107, in order to guarantee convergence. The number of training
epochs was set to 50 because longer training epochs tend to over train the SOM
Barreto et al. (2006). The required percentage of distance in (2.8) was set to 99%.
We used a Gaussian neighborhood function because the distribution of the collected
data after the normalization fits well to the Gaussian distribution.

Figures 3.2 and 3.3 demonstrated that the anomaly detection in SOM algorithm
and the integrated SOM and DWT algorithms improved as the number of neurons was

increased. This suggests that the more neurons used, the “finer” SOM’s classification
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becomes resulting in enhanced detection performance.

However, at neuron size 50x50, the SOM required much longer training time

with a marginal improvement in the detection performance. Therefore, the 30x30 size

of neurons was selected to train and test the SOM. We also improved the SOM

algorithm by double checking with the univariate method in order to reduce the false

alarm rate Barreto et al. (2006); Sukkhawatchani, P., and Usaha, W. (2008). To obtain

accurate results, the performance metric was averaged over 70 runs, which gave the best

accuracy as shown in Table 3.1.

Table 3.1 Accuracy results obtained by feeding synthetic input data to the 30x30

neuron SOM algorithm.

Runs True alarm rate (%) | Deviation from previous runs
1 62.00 -
10 59.50 0.040
20 57.65 0.031
30 58.17 0.009
40 57.68 0.008
50 57.82 0.002
60 57.88 0.004
70 58.14 0.001
80 58.06 0.001
90 58.17 0.001
100 58.27 0.001
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Figure 3.2 True alarm rates with different size of neurons in the sparse faults case.
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To evaluate the performance of all algorithms, the results of each algorithm
were compared to the (known) fault positions which were injected into the input data.
In particular, when an anomaly was detected then its position was compared with the
(known) fault position. If this position existed, then the anomaly detected was a true
alarm; otherwise, it was a miss. On the other hand, if an anomaly was detected but the
(known) fault position did not exist, then the anomaly was a false alarm.

Figures 3.4 and 3.5 showed the percentage of true alarm rate averaged over
70 runs, as a function of the amount of faults added into the input data. Note that the
proposed integrated SOM and DWT algorithm which used Haar as a mother wavelet
gave the best performance over other algorithms. This is because the DWT with Haar
wavelet can detect changing points. In particular, the Haar wavelet uses 2 adjacent
input data to compute a coefficient whereas the Daubechies4 uses 4 adjacent input
data to compute a coefficient. However, Daubechies4 gave a lower performance than
Haar because each coefficient was computed from an average over 4 input data. If
a fault occurred in 1 of these 4 data, such fault would be averaged with the remaining
3 normal data resulting in a coefficient with an absolute value possibly lower than the
decision threshold. Consequently, the true alarm rate was reduced. On the other hand,
the Haar wavelet only used 2 adjacent data to compute 1 coefficient. Thus, the true
alarm rate was significantly higher than that of Daubechies4 (db4). The integrated
SOM and DWT algorithm using Haar also outperformed the SOM algorithm. This is
because in the Haar case, the coefficients obtained were transformed from two
adjacent data. Therefore, if some data were faulty or differed greatly from the data
nearby, this coefficient can detect such anomaly. On the other hand, the SOM

algorithm directly checked the data one by one to detect an anomaly. If the data were
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faulty but had a small magnitude, then this fault may not be detected, and
consequently the true alarm rate was reduced. Note that the DWT algorithm had the
lowest performance because the decision threshold in (3.4) is rather conservative.
Furthermore, the threshold was changed throughout the detection and the algorithm
did not have any double checking method.

In Figures 3.4 and 3.5, the proposed algorithm can achieve up to 65% and 67%
of true alarm rates in case of bursty faults for synthetic and real data, respectively. The
proposed algorithm achieved a true alarm rate of up to 18% higher than the SOM
algorithm alone in presence of bursty faults. Compared to the DWT alone, the
proposed algorithm can attain a true alarm rate of up to 35% more in the bursty

faults case.
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Figure 3.4 True alarm rates with synthetic data.
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As for sparse faults, the proposed algorithm can achieve up to 69% and 80%
true alarm rates for synthetic and real data, respectively. The integrated SOM and
DWT also gave true alarm rates of up to 10% higher than the SOM algorithm alone
whereas DWT performed the weakest, in presence of sparse faults.

Figures 3.6 and 3.7 depicted the false alarm rate results in the synthetic and
real data experiments, respectively. Note that most results had low false alarm rates,
i.e., less than 1 % except in the case of sparse faults due to the increased detection
difficulty.

The integration of SOM and Daubechies4 DWT also gave a weak performance
due to the reasons previously explained. All these results showed that the integration
of SOM and DWT with Haar as a mother wavelet outperformed the SOM algorithm

and DWT method.
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From these figures, the false alarm rate of the proposed algorithm was 0.11%

and 0.13% in presence of bursty faults and 0.91% and 1% in presence of sparse faults

with synthetic and real data, respectively. Note that the false alarm rate of the

proposed algorithm was slightly higher than the other two algorithms.
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Since the gain in the true alarm rate was more significant, such tradeoff was
therefore considered acceptable.

Figures 3.8 and 3.9 illustrated the effect of the decreasing of AWGN noise
power from 25dBW to 10dBW in both synthetic and real data scenarios. Only the
Haar wavelet was used in the proposed algorithm and the DWT algorithm. The
Daubechies4 was not included due to its weak performance. Though the anomaly
detection was more difficult, the proposed integrated SOM and DWT still consistently
outperformed the other two methods in terms of true alarm rate but with marginal
increased in the false alarm rate as tradeoft.

The proposed integration of SOM and DWT algorithm with Haar wavelet
outperformed the SOM algorithm and the DWT algorithm alone. Our results
demonstrated that the proposed integrated SOM and DWT anomaly detection scheme
can be deployed in a resource-constrained network such as a WSN. In particular, the
DWT using Haar wavelet can be implemented at the sensor nodes as a data
preprocessor to reduce the amount of data to be transmitted by at least half (for one
level DWT). Since energy consumption is critical in WSNs, such distributed in
network processing can reduce transmission energy and eventually help prolong the
overall network lifetime of the WSN (Rajasegarar, Leckie, and Palaniswami, 2008).

while still maintaining acceptable anomaly detection accuracy.
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3.2 Evaluation on detecting faults in real-world datasets

In this section, we applied the anomaly detection methods to three real-world
datasets, i.e., (NAMOS, 2006) INTEL Berkeley Lab (INTEL, 2004); SensorScope
(2006) to detect anomalies in sensor traces. However, since we did not have ground
truth information about faults for these datasets, visual inspection and the histogram
method were used to decide whether the data is normal or abnormal. The histogram
method was used because it displays the data distribution which allows us to
determine a suitable threshold according to that data series.

In the histogram method, we divided the time series of sensor readings into
groups of N samples. We then plotted the histogram of the samples and selected
a threshold according to outliers of the histogram. However, this approach was
sensitive to the choice of N. Figure 3.10 showed the effect of N on the histogram
computed for sensor measurements taken from a real-world deployment (Sharma,
Golubchik, and Govindan, 2010). Therefore, the selection of the correct value for the
parameter N required a good understanding of the normal sensor readings. In practice,
one should also try a range of values for N to ensure that the samples flagged as faulty
are not just a result of the value selected for N (Sharma, Golubchik, and Govindan,
2010). With heuristic adjustments on the parameter value of N and some domain
knowledge of the normal data profile, the histogram method was used as reference to
identify abnormal data samples.

In the real-world datasets experiment, we evaluated the performance of
3 anomaly detection methods: the SOM, DWT using the Haar wavelet methods, and
the integration of SOM and DWT using the Haar wavelet. We did not consider DWT

using the db4 wavelet because it obtained poor detection performance as shown in the
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synthetics faults experiment. For the SOM and the integration of SOM and DWT
using Haar wavelet algorithms, we also considered the effects of changing the number
of training samples, the number of training epochs which were 10 and 50 iterations,

and the size of neurons which were 10x10 and 30x30.
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Figure 3.10 Histogram shape with N = 100 (a) and N = 1000 (b)

We also compared the performance of the low and high pass Haar wavelet
coefficients (LP and HP, respectively) in the DWT algorithm and the integration of
SOM and DWT algorithm. This is because each coefficient can perform well for
different types of faults so we can choose the suitable coefficients for the data.

3.21 NAMOS

In the NAMOS dataset, 9 buoys with temperature and chlorophyll
concentration sensors (fluorimeters) were deployed in Lake Fulmor, for over 24 hours
in August, 2006 (NAMOS,2006). We analyzed the measurements from chlorophyll

sensors on buoys no. 103 for 10* samples as shown in Figure 3.11. In the experiment,
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the histogram method was used to identify anomalies in the NAMOS dataset from
which we selected the threshold of 0 and 500 as lower and upper bounds of the normal
region, respectively. The sizes of training samples of 1500 and 3000 samples were
used to train both the SOM and the integration of SOM and DWT algorithms.

Figure 3.12 showed the percentage of detection alarm rates for true,
miss and false alarms which were obtained from changing the sizes of training
samples. Note that both the SOM algorithm and the proposed integrated SOM and
DWT algorithm with low pass wavelet coefficients gave the best true alarm detection
performance of nearly 100% while their false alarm rates were negligible. The
integrated SOM and DWT algorithm and DWT algorithm with high pass coefficients
gave the lowest performance. This is because the high pass coefficients are more
suitable for detecting the changing points of the data whereas most of faults appear
constant as seen from 9x10° samples onwards in Figure 3.11. In addition, reducing the
size of training samples did not have any effect on the anomaly detection in the SOM
algorithm and the proposed integrated SOM and DWT algorithm. This was because
both training samples were obtained from a normal period of data which differ only in

sample sizes.
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Figure 3.11 NAMOS dataset of 10* samples.

Figure 3.13 depicted the percentage of detection alarm rates for true,
miss, and false alarms which were obtained by reducing the number of training epoch
from 50 to 10 iterations. In this case, the SOM algorithm gave the best performance
with nearly 100% of true alarm detection rate and no false alarm rate. DWT algorithm
which used low pass coefficient gave high performance while the proposed integrated
SOM and DWT algorithm with either coefficient failed on detecting any anomaly. The
reason could be caused by the constant features of the faults in NAMOS which may be
difficult to decide whether samples are normal or abnormal, in particular, if the
wavelet coefficients were under-trained. Hence, care must be taken when selecting the
suitable number of training epochs. In addition, we also investigated the effect
of reducing the size of neurons. Results in Figure 3.14 showed that there was no

significant effect from reducing size of neurons from 30x30 to 10x10.
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Figure 3.14 Detection rate in the NAMOS dataset using the size of neurons of 10x10

3.22 INTEL

In the INTEL dataset, 54 Mica2Dot motes with temperature, humidity
and light sensors were deployed in the Intel Berkeley Research Lab between February
28th and April 5th, 2004 (INTEL, 2004). For this experiment, we presented the results
on the anomaly detection in the temperature readings.

We selected the threshold value of 16 and 30 as the upper and lower
bounds of the normal data regions. These values were obtained from the histogram
method. The sizes of training samples used were 1000 and 2000 samples as shown in
Figure 3.15.

Figure 3.16 showed the percentage of detection alarm rates for true,
miss, and false alarms which were obtained from changing the size of training
samples. According to the results as shown, the SOM and the proposed algorithm can

achieve a true alarm rate of up to 100% with very small false alarm rate. Their true
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alarm rate was 67% higher than the DWT method using high pass coefficients. Note
that the high pass coefficients can detect spike faults better than low pass coefficient
since the high pass coefficients reflect the rate of change between two successive
samples. Note that the DWT using low pass coefficient gave the lowest performance.
The results of changing number of training epochs were shown in Figure 3.17 and the
sizes of neurons were shown in Figure 3.18. From both figures there were no
significant effects on the detection rate because the fault in this dataset had high

amplitude and can be easily detected.
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Figure 3.15 INTEL dataset of 2x10” samples.
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Figure 3.16 Detection rate in the INTEL dataset using training epoch of 50 iterations.
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Figure 3.17 Detection rate in the INTEL dataset using training epoch of 10 iterations.
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Figure 3.18 Detection rate in the INTEL dataset using the size of neurons of 10x10.

3.2.3 SensorScope
The SensorScope project was an ongoing outdoor sensor network
deployment consisting of weather-stations with sensors for sensing several
environmental quantities such as temperature, humidity, solar radiation, soil moisture
etc. (SENSORSCOPE, 2006) We did not have the ground truth regarding faulty
samples for this dataset. We used a combination of visual inspection and the
histogram method to identify anomaly samples (Sharma, Golubchik, and Govindan,
(2010).
3.2.3.1 SensorScope station no.39 dataset
In this experiment, we presented the results on anomaly
detection in one KPI of SensorScope which was collected from weather station no.39
(SensorScope39). Using visual inspection and the histogram method, the lower and
upper threshold valued used for anomaly detection in SensorScope were 1.5 and 9.
The sizes of training samples were 1600 and 3200 samples as illustrated in

Figure 3.19.
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Figure 3.19 SensorScope39 dataset of 32000 samples.

Figure 3.20 depicted the percentage of detection alarm rates
which were obtained from changing the size of training samples. According to the
results as shown, the SOM and the proposed algorithm can achieve a true alarm rate of
up to 100% with very small false alarm rate. The DWT method using high pass
coefficients also gave true alarm rate of up to 100% but gave high false alarm rate.
Their true alarm rate was 8% higher than the DWT method using low pass
coefficients. Note that the high pass coefficients can detect spike faults better than low
pass coefficients since the high pass coefficients reflect the rate of change between
two successive samples. The results of changing number of training epochs were
shown in Figure 3.21 and the sizes of neurons were shown in Figure 3.22. From both
figures, there were no significant effects on the detection rate because the fault in this

dataset has a high amplitude and can be easily detected.
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Figure 3.20 Detection rate in the SensorScope39 of first KPI dataset using training

epoch of 50 iterations.
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Figure 3.21 Detection rate in the SensorScope39 of first KPI data set using training

epoch of 10 iterations.
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Figure 3.22 Detection rate in the SensorScope39 of first KPI dataset using

the size of neurons of 10x10.

3.2.3.2 pdg2008-metro-1 dataset

In the experiment, we presented the results on the anomaly
detection in two types (KPIs) of data in the pdg2008-metro-1 dataset, i.e., the surface
and ambient temperature readings. Using visual inspection and the histogram method,
the lower and upper threshold values used for anomaly detection in SensorScope were
-14 and 4 for the surface temperature and -12 and 4 for the ambient temperature. The
sizes of training samples were 700 and 2000 samples for both KPIs as shown in

Figure 3.23.
Figure 3.24 showed the percentage of detection alarm rates for true, miss, and
false alarms obtained from changing the size of training samples. Note that the
proposed algorithm using low pass coefficients achieved a true alarm rate 2% higher

than the SOM algorithm while false alarm rate remained less than 0.5%. The proposed
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algorithm using low pass coefficients can attain a true alarm rate of up to 17% more
than the DWT algorithm alone. The integrated SOM and DWT algorithm and DWT
algorithm which used high pass coefficients gave the lowest performance. This is
because high pass coefficients were more suitable for short duration faults such as
spike or sparse faults while the data in Figure 3.23 contained noise faults which
affected a larger number of successive samples with an increase in their variance. The
effect of reducing the number of training epochs was shown in Figure 3.25. According
to the results, there was no significant effect on the performance of SOM and the
integrated SOM and DWT. In Figure 3.26, the percentage of detection alarm rates for
true, miss, and false alarms were obtained from reducing the size of neurons. Note that
the proposed algorithm using low pass coefficients achieved a true alarm rate 2%
lower than the SOM algorithm, whereas the false alarm rate remains lower than 0.5%.
On the other hand, the proposed algorithm using low pass coefficients can attain a true

alarm rate of up to 13% more than the DWT algorithm alone.
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Figure 3.23 SensorScope pdg dataset of 4000 samples.
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Figure 3.24 Detection rate in the SensorScope pdg dataset using training

epoch of 50iterations.
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Figure 3.25 Detection rate in the SensorScope pdg dataset using training

epoch of 10 iterations.
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Figure 3.26 Detection rate in the SensorScope pdg dataset using the size

of neurons of 10x10.

3.3 Evaluation on detecting faults in bioorganic fertilizer datasets

In this research, we also applied the anomaly detection algorithms to a BOF
dataset which was collected from the prototype of WSN deployed at SUT BOF plant.

To collect data from the prototype, we have designed a system suitable for
extreme conditions in the fertilizer compost. The preliminary design for the prototype
system consists of base station, sensor mote, and sensor probes for soil moisture and
soil temperature which were mounted onto a post. A number of such posts were
installed at two locations within the compost. The motes monitor and transmit data
continuously to the base station. The design allowed the posts to be easily removed

before the compost is turned over.
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Figure 3.27 Prototype post.

At the gateway or base station, we used Crossbow’s MIB520CB (USB-
interface board). The MIB520CB provides USB connectivity to the IRIS or MICA
family of motes for communication and in-system programming. Any
IRIS/MICAz/MICA2 node can function as a base station when connected to the
MIB520CB USB interface board.

In addition to data transfer, the MIB520CB also provides a USB programming
interface. The MIB520CB offers two separate ports: one dedicated to in-system Mote
programming and the second for data communication over USB interface. The
MIB520CB has an on-board processor that programs Mote Processor Radio Boards.
USB Bus power eliminates the need for an external power source.

At the sensor mote, we used Crossbow’s MPR2400 (MicaZ). The MPR2400 is

based on the Atmel ATmegal28L which is a low-power microcontroller that runs
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MoteWorks from its internal flash memory. A single processor board (MPR2400) can
be configured to run our sensor application/ processing and the network/radio
communications stack simultaneously. The 51-pin expansion connector supports
Analog Inputs, Digital I/0, 12C, SPI, and UART interfaces. These interfaces make it
easy to connect to a wide variety of external peripherals.

For the data acquisition board, we used Crossbow’s MDA300. The data
Acquisition board (DAQ) is used to get information from variety of different sources.
These sources can be a hardware DAQ attached to the local or remote running
machine, a remote TCP or UDP connection or any different sensors. DAQ software
provides interface of the data sources to different outputs. We used two sensor devices
which are soil temperature sensor and soil moisture sensor. Thermocouples are widely
used temperature sensors which can also be used to convert heat into electric power.
They are cheap and interchangeable, have standard connectors, and can measure a
wide range of temperatures. As for the soil moisture sensor probe, we used EC-5

because it can tolerate high temperatures within the pile of compost.

Figure 3.28 MIB520CB (USB interface board).



Figure 3.29 Sensor node model MPR2400 or MicaZ.

Figure 3.30 Data acquisition board model MDA300.
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Figure 3.31 Temperature sensor (Thermocouple).
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Figure 3.32 Moisture sensor (EC-5).

We performed anomaly detection on one type (KPI) of data in the BOF
dataset, i.e., the temperature readings which was collected every 5 minutes for a day.
Using visual inspection and the histogram method, the lower and upper threshold
values used for anomaly detection in BOF dataset were 0 and 30. The sizes of training

samples were 1000 and 2000 samples as shown in Figure 3.33.
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Figure 3.34 depicted the percentage of detected alarm rates for true, miss, and
false alarms obtained from changing the size of training samples. Note that the
proposed algorithm using low pass coefficients achieved a true alarm rate 5% less than
the SOM algorithm while false alarm rate remained lower than 3%. The proposed
algorithm using low pass coefficients can attain a true alarm rate of up to 75% more
than the DWT algorithm alone. The integrated SOM and DWT algorithm and DWT
algorithm which used high pass coefficients gave low performance. This was because
high pass coefficients were more suitable for short duration faults such as spike
or sparse faults while the data in Figure 3.33 contained noise faults which affected
a larger number of successive samples with an increase in their variance.

The effect of reducing the number of training epochs was shown in Figure
3.35. According to the results, there was no significant effect on the performance of
SOM and the integrated SOM and DWT. Similarly, in Figure 3.36, no significant
changes were found in the percentage of detected alarm rates for true, miss, and false

alarms by reducing the size of neurons.
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Figure 3.34 Detection rate in the bioorganic fertilizer dataset using training epoch of

50 iterations.
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The results from the real-world dataset and bioorganic fertilizer dataset
showed that our proposed algorithm, the integrated SOM and DWT algorithm
performed as equally well as the SOM algorithm while using just half of the input data
(using level 1 of DWT). This was because DWT was able to extract relevant data
features without any significant loss in information thereby reducing wasted energy
from transmitting all measurements to the base station. Hence, our results suggested
that by applying DWT onto the sensor modes to achieve in-network data processing,
the size of transmitted data can be reduced while still maintaining good anomaly
detection abilities.

However, a variety of data characteristics can affect the anomaly
detection performance of the integrated SOM and DWT algorithm as can be seen from
the NAMOS dataset. Hence, a suitable setting of the algorithm, such as the size of
training epochs, has to be considered carefully. In terms of the number of neurons, the
more neurons used, the finer SOM’s classification became, generally resulting in
enhanced detection performance. However, the results in the real-world datasets and
BOF dataset showed that there was no significant change in detection performance. In
terms of the selection of wavelet coefficients, high pass coefficients were more
suitable for detecting the changing points of the data, whereas low pass coefficients
were more suitable for detecting the changing of trend of the data. These settings can
be predetermined by considering the nature of the sensors deployed. For example,
calibration errors in sensors can cause offset faults (whereby the measured value can
differ from the true value by a constant), low battery voltage can cause a combination
of noise and constant faults, while short faults can be caused by software error during

communication and data logging (Sharma, Golubchik, and Govindan, 2010).
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3.4 Summary

In this chapter, we evaluated the anomaly detection algorithms performance on
different datasets, synthetic and real data with the synthetic faults (known faults) and
the real-world datasets with the real faults (unknown faults). In terms of the true alarm
rate, the proposed algorithm outperformed the SOM algorithm by up to 18% and
DWT algorithm by up to 35% in presence of bursty faults. With sparse faults, the
proposed algorithm can gain a true alarm rate up to 10% above the SOM algorithm
alone and entirely outperform the DWT algorithm alone. Such gain in true alarm rates
came with a marginal increase of false alarm rate.

In case of real-world datasets, we presented the anomaly detection in
4 different resources, NAMOS, INTEL, and 2 SensorScope (pdg2008 and
SensorScope no.39 datasets) datasets. Our proposed algorithm with Haar as a mother
wavelet can attain up to 99%, 100%, 83%, and 100% of true alarm rates in the
NAMOS, INTEL, and 2 SensorScope datasets, respectively. Our proposed algorithm
also performed as equally well as the SOM algorithm and outperformed the DWT
algorithm by up to 15%, 100%, 17%, and 8% in the NAMOS, INTEL, and
2 SensorScope datasets, respectively.

In case of BOF dataset, our proposed algorithm with Haar as a mother wavelet
using low pass coefficients can attain 95% of true alarm rates. Our proposed algorithm
also performed as equally well as the SOM algorithm and outperformed the DWT
algorithm by up to 75%.

The results showed that our proposed algorithm can maintain acceptable
anomaly detection accuracy while using just half of the input data (using level

1 DWT).



CHAPTER IV

CONCLUSION AND FUTURE WORK

4.1 Conclusion

This thesis proposed an integration of a competitive learning method called the
self-organizing map (SOM) and the discrete wavelet transform (DWT), to detect
anomalies from series of data containing synthetic faults and faults obtained from real-
world datasets. Our proposed algorithm, the integrated SOM and DWT algorithm,
could help reduce wasted energy caused by transmitting all measurement data to the
base station by applying the DWT algorithm onto the sensor modes in order to reduce
size of transmitted data without losing the significant feature of the data. The original
contributions and findings in this thesis can be summarized as follows.

4.1.1 Synthetic faults experiments

In the synthetic faults experiments, the results showed that the
integration of SOM and DWT with Haar as a mother wavelet can attain 65% and 67%
of true alarm rates in the case of bursty faults, and 69% and 80% of true alarm rates in
case of sparse faults for synthetic and real data, respectively. In terms of the true alarm
rate, the proposed algorithm outperformed the SOM algorithm by up to 18% and
DWT algorithm by up to 35% in presence of bursty faults. With sparse faults, the
proposed algorithm can gain a true alarm rate up to 10% above the SOM algorithm
alone and entirely outperformed the DWT algorithm alone. Such gain in true alarm

rates came with a marginal increase of false alarm rate.



67

4.1.2 Faults in real-world datasets

In the real-world datasets, the integration of SOM and DWT with Haar
as a mother wavelet can attain up to 99%, 100%, 83%, and 100% of true alarm rates
in the NAMOS, INTEL, SensorScope (pdg2008), and SensorScope (station no.39)
datasets, respectively. Our proposed algorithm also performed as equally well as the
SOM algorithm and outperformed the DWT algorithm by up to 15%, 100%, 17%, and
8% in the NAMOS, INTEL, SensorScope (pdg2008), and SensorScope (station no.39)
datasets, respectively.

When reducing the number of training epochs, the proposed algorithm
was directly affected. Hence, care must be taken when selecting the suitable number
of training epochs. In the INTEL dataset and the SensorScope (station no.39) dataset,
the proposed algorithm outperformed the DWT algorithm and performed equally well
when compared to the SOM algorithm while using just half of the input data. In the
SensorScope (pdg2008) dataset, the proposed algorithm outperformed the DWT
algorithm but was slightly lower than the SOM algorithm.

By reducing the size of neurons, the proposed algorithm still obtained
a true alarm rate up to 16%, 100%, 84%, and 17% higher than the DWT algorithm in
NAMOS, INTEL, SensorScope (pdg2008), and SensorScope (station no.39) datasets,
respectively. The proposed algorithm performed equally well as the SOM algorithm
in the NAMOS, INTEL and SensorScope station no.39 datasets and only 2% lower
than the SOM algorithm in the SensorScope (pdg2008) dataset. The reduction of the

size of neurons did not show any significant change in detection performance.
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4.1.3 Faults in the bioorganic fertilizer plant

In the BOF dataset, the proposed algorithm using low pass coefficients
achieved a true alarm rate 5% less than the SOM algorithm while false alarm rate
remained lower than 3%. The proposed algorithm using low pass coefficients can
attain a true alarm rate of up to 75% more than the DWT algorithm alone. The effect
of reducing the number of training epochs was not significant on the performance
of SOM and the integrated SOM and DWT. In addition, the reduction of the size
of neurons did not show any significant change in detection performance.

Our results suggested that the integration of SOM and DWT with Haar
wavelet can lead to more effective anomaly detection. In particular, our results
confirmed that the proposed algorithm can maintain acceptable anomaly detection
accuracy while using just half of the input data (using level 1 DWT) instead
of transmitting entire data. This could help reduce wasted energy caused by
transmitting all measurement data to the base station.

However, since we did not have ground truth information about the
faults incurred in these datasets, visual inspection and the histogram method were

used to decide whether the data is normal or abnormal. Therefore, these methods are
just heuristic estimation methods which may not coincide with the actual fault.
Nevertheless, justifications of these faults can be made by consulting experts with
domain knowledge on the information gathered from the environment under
consideration (Sharma, Golubchik, and Govindan, 2010).

On the other hand, a variety of data characteristics can affect the
anomaly detection in the integrated SOM and DWT algorithm as can be seen from the

NAMOS dataset. Hence, a suitable setting of the algorithm, such as the size of training
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epochs, had to be considered carefully. In terms of the number of neurons, the more
neurons used, the finer SOM’s classification became, generally resulting in enhanced

detection performance.

42 FUTURE WORK

In the future, there are certain issues worthwhile investigating.
4.2.1 Increasing DWT level
The DWT obtains the hierarchical coefficients which can extract
interesting the features of data. However, in our experiment we consider just the first
level of the DWT coefficients. Considering other DWT coefficients level may be able
to improve the anomaly detection algorithm performance.
4.2.2 Exploring other types of wavelets
To facilitate calculation by hand and allow comparison with the
coefficients calculated from MATLAB program, we chose the Haar and Daubechies4
as mother wavelets. However, there are many types of the wavelets family which may
affect the performance of the proposed anomaly detection algorithm.
4.2.3 Implementation on the sensor nodes
Another interesting direction is to investigate ways to identify and
eliminate erroneous sensor readings directly at the sensor nodes (Liu and Zhou, 2010).
which could help further reduce wasted energy from transmitting unwanted erroneous
measurements to the base station.
4.2.4 Comparison with other data compression techniques
WSNs are resource constraint: limited power supply, bandwidth for

communication, processing speed, and memory space. One possible way of achieve
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maximum utilization of those resource is applying data compression on sensor data
(Kimura and Latifi, 2005); (Sadler and Martonosi, 2006). It could be better to find out
the most suitable data compression algorithm for anomaly detection in WSNSs.
4.2.5 Enhancing to fault predictability

The anomaly detection algorithm in this thesis can support detection
when faults have already occurred. A worthwhile issue not only to be able to detect
faults when they have already occurred but to predict them before a fault occurs. Such
extension allows the user to take a suitable course of action to prevent the monitored

environment before any significant damage occurs.
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Abstract: - Wireless Sensor Networks (WSNs) have been developed and extensively applied in agriculture monitoring
to monitor and collect various physical attributes within a specific area or environment of interest. Data readings from
the sensors may be abnormal due to the sensors themselves such as limited battery power, onboard processing
capability, sensor malfunction, or noise from the communication channel. It is thus, important to detect such data
anomalies available in WSNs to determine a suitable course of action. The underlying aim of this paper is therefore to
propose an anomaly detection scheme which is able to detect anomalies accurately by means of exploiting both time
and frequency characteristics of the data signals. The contribution of this paper centers on anomaly detection by using
Discrete Wavelet Transform (DWT) combined with a competitive learning neural network called self-organizing map
(SOM) in order to accurately detect abnormal data readings are collected from WSNs.

Key-Words: - anomaly detection, wavelets, discrete wavelet transform, self-organizing map, wireless sensor networks,

agriculture monitoring

1 Introduction

Wireless sensor networks (WSNs) have been recently
deployed in many areas of agriculture to increase yield
and prevent outbreaks such as in hydroponics and paddy
fields, fertilizer composting process, and livestock
monitoring. However, these applications rely mainly on
manually measuring and controlling the parameters such
as moisture, homogeneity, temperature, pH, oxygen, soil
nutrients, etc., which is both time consuming and
laborious. Autonomous monitoring devices such as
WSNs therefore warrant potential use in agriculture
monitoring.

A WSN is a wireless network that consists of
distributed autonomous devices using sensors to
cooperatively monitor or  collect  environmental
conditions at different locations. Several measurements
can be collected from the WSN. The collected
measurements from the WSN may be affected by
anomalies in the sensor network such as faulty sensors,
faulty communication between sensors or actual
abnormal physical measurements. With the huge amount
of data continually collected from the WSN, it becomes
increasingly difficult to detect anomalies in the data
measurements. Therefore, anomaly detection techniques
are necessary to automatically detect faults and alert the
system controller to take suitable action.

Rescarch emphasizing on anomaly detection
communication networks has progressed in recent years,
¢.g. in IP networks [1], i cellular mobile networks [2].
There are also works on fault and anomaly detection in
wireless sensor networks (WSNs) [3]. Ref [4] presented
a dynamic model of wircless sensor networks (WSNs)
based on recurrent neural networks (RNNs) and used it
for fault detection at the sensor node.

Another mechanism commonly used for anomaly
detection is a competitive learning method called self-
organizing map (SOM) [5], [6]. SOM has several
beneficial features which make it a useful tool in data
mining. It follows the probability density function of the
data and 1s, thus, an efficient clustering and quantization
algorithm. The most important feature of the SOM is the
visualization property.

However, SOM has some weaknesses where it
extracts relevant features of the data only in the time
domain. In many scenarios, features of the data extracted
from both time and frequency domain can be used to
further enhance anomaly detection [7]. This can be
achieved by the Discrete Wavelet Transform (DWT).
Wavelets have been extensively employed for anomaly
and fault detection in many applications [8]. DWT has
also been integrated with SOM to detect faults [9], [10].
In particular, feature vectors of the faults have been
constructed using DWT, sliding window and a statistical
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analysis. Classification of the [eature vectors was
obtained by using SOM.

To the best of our knowledge. DWT and SOM have
not vet been applied to anomaly detection in WSNs.
Therefore, the underlying aim of this paper is to propose
an anomaly detection algonthm which deternunes the
wavelet transform, and detects the abnormality of the
sensor readings by training the SOM using the wavelet
coefficients.

2 Anomaly Detection
The first step mvolves selecting the parameters to be
monitored and grouping them together in a pattern
vector x* € R, p=1....N.

Y [KPILF)
- KPI ¢ | - (1)
X = = w2
L x; L KPL )

where g is the observation index. # is the number of
KPIs chosen to momitor the environmental condition.

2.1 Self-Organizing Map

Competitive neural models such as the self-organizing
map (SOM) [1], [11] are able to extract statistical
regularities from the input data vectors and encode them
in the weights without supervision. It maps a high-
dimensional data manifold onto a low-dimensional,
usually two-dimensional, grid or display.

The basic SOM consists of a regular grid of map
units or neurons as shown in Fig 1(a). Each neuron,
denoted by 7 (depicted by the black dot), has a set of
layered neighboring neurons (depicted by the white
dots) as shown in Fig 1(a).

Neuron 7 maintains a weight vector m, . In order to

follow the propertics of the input data, such vector is
updated during the training process. For example,
Fig.1(b) shows a SOM represented by a 2-dimensional
grid of 4x4 neurons. The dimension of each vector is
equal to the dimension of the input data. In the figure, a
vector of input data (marked by x) is used to train the
SOM weight vectors (the black dots). The winning
neuron (marked by BMU) as well as its 1-neighborhood
neurons, adjust their corresponding vectors to the new
values (marked by the gray dots).

The SOM is trained iteratively. In each training step,
one sample vector X from the input data set is chosen.
The distances between the sample data and all of weight
vectors in the SOM are calculated using some distance
measure. Suppose that at iteration £, neuron i whose

weight vector m, (l ) is the closest to the input vector

x(r]. We denote such weight vector by m_ (I] and

refer to it as the Best-Matching Unit (BMU), that is
||.\'{r,1 -m. i!}|| = arg m__illl ||I(.I‘) -m, irj” (2)

where |||| is the Euclidian distance.

Q000

(a)
Fig. 1 An illustration of the SOM (a) with rectangular
lattice neighbors belonging to the mmnermost neuron
(black dot) corresponding to 1. 2 and 3- neighborhoods,
(b) SOM updates the BMU with 1-neighborhood.

Suppose neuron 7 1s to be updated, the SOM updating
rule for the weight vector of neuron 7 is given by
m,(f+1) = m, () + a(Hh, (1.0[x() -m, ()] 3
where tis the iteration index, x(#)is an input vector,
a(t) 1s the learning rate, % (,r)is the neighborhood

function of the algorithm. The Gaussian neighborhood
function may be used, that is

r (-0 ‘ )

267 (1)

h,(i,t) = exp [—

where 7,(¢)and 7 (f)are the positions of neurons 7and
the BMU crespectively, and o(f)is the radius of the
neighborhood function at time ¢. Note that £ (i,f)

defines the width of the neighborhood. Tt is necessary
that lim# (i,1)=0 and lim a(r) =0 for the algorithm to

converge [1]. [11].
2.1.1 Anomaly Detection

2.2 Discrete Wavelet Transform

DWT is a mathematical transform that separates the
signal into fine scale information known as detail
coefficients, and rough-scale information known as
approximate coefficients. Its major advantage is the
multi-resolution  representation and time-frequency
localization property for signals. Usually, the sketch of
the original time series can be recovered using only the
low-pass-cut off decomposition coefficients; the details
can be modeled from the middle-level decomposition
coefficients; the rest is usually regarded as noises or
irregularities. The following equations describe the
DWT decomposition process:
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ary (k)= hy(n=2k)a™ (k) (5)

d (k)= g,(n=2)a" (k) , (6)

where the broad scale, or approximation, coefficients

DwT
a

. are convelved separately with / and g, the

wavelet function and scaling function, respectively; n is
the time scaling index, k is the frequency translation
index for wavelet level j. The resulting coefficient is

down-sampled by 2. This process splits aﬂVIVT roughly
in half, partitioning it into a set of fine scale, or defai/

- owr -
coefficients o - and a coarser set of approximation

coefficients aﬂ’f [12].

Therefore, DWT is powerful in encoding the finer
resolution of the original time series with its hierarchical
coefficients. Furthermore, DWT can be computed
cfficiently in lincar time, which is important while
dealing with large datasets.

2.3 Integration of SOM and DWT

[ Tnout data I Padded ]

213 (- |-|IN| O

\ 4
| Select Mother Wavelet |

y

| Apply Discrete Wavelet Transform |

l—l—l

Approximate Detail
Coefficient Coefficient

N

Apply Self-Organizing Map

'

Double checking with Univariate method

!

Decision

Fig.2 The mtegration of the SOM and DWT
algorithm diagram.

In the integration of SOM and DWT algorithm, the
DWT algorithm is used as an input data preprocessor of
the SOM algorithm in order to reduce size of data
without losing any significant feature of the data. The
nput data will be padded with zero if its length 1s odd
data. After obtaining the wavelet coefficients, these
coefficients will be fed to the SOM algerithm which can
be divided into 2 sets. Fach set contains both
approximate and detail coefficients. The first set which
is obtained from noiseless data, will be used to train the
SOM algorithm and the second set will be used to test
the SOM algorithm, respectively. Then the detected
results will be double checked by using the univariate
method [5].

2.4 Anomaly Detection

A new observation data set can be considered abnormal
if the distance between the weight vector of the winning
neuron and the new state vector, given by

Xnew _m/t

A
e = ¢

¥

is greater than a certain percentage p=1-« of the

distances in the distance distribution profile. That is,
IF ¢* e[e;,e; },
THEN x™* is NORMAL

ELSE x™ is ABNORMAL. (8)

Equation (8) is referred to as the global decision. In
[13], an addition of local decisions of each KPls is
presented. Suppose that a data vector X" is considered
abnormal by the global decision. Then in the local

anomaly detection, the absolute value of error in each
component of the error vector is then computed by

H u
|x1 _mc,ll
B o H
oo | [ m] ©
H H
xfz 7mc,ﬂ

The error in each KPI is then compared to the
interval of normality component-by-component, and the
anomaly decision is carried out as in (8).

3 Experiment Results

In this section, we evaluated the performance of the
proposed integration of SOM and DWT algorithm by
detecting anomalies in series of synthetic data and actual
data collected from a wireless sensor network.
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In the experiment, we generated the synthetic input
data from a normal distribution N(0,1) and synthetic
faults by additive white Gaussian noise (AWGN) with
power 25 dBW generated from MATLARB. We used
such fault because its statistical similarity to the
synthetic input data thus, it is more difficult to be
detected. Thercfore, we can evaluate the performance of
the algorithms under ambiguous faults. The amount of
faults can be represented by the notation n/s, where “n”
is the amount of faults per series and “s” is the amount
of series of faults, resulting in the total amount of nxs
faults. The generated faults added to the input data
ranged from bursty (20/10) to sparse (1/10). The exact
positions of the faults incurred in the input data were
predetermined and was later used to detect true and false
alarms. In the experiment using real data, we have
chosen 2 parameters, namely temperature and moisture,
as KPIs collected from samples of compost in a
bioorganic fertilizer plant. In this paper, the data of the 2
KDIs at the WSNs were collected every 5 minutes for 3
days.

We compared 3 anomaly detection methods:
1. SOM algerithm

2. DWT algorithm

3. Integration of SOMand DWT algorithm

We measured 2 performance metrics: 1) the #rue
alarm rate which is defined by the number of detected
true anomalies over the total number of true anomalies
in the data set; and 2) the false alarm rate which is
defined by the number of detected false alarms over the
total number of detected anomalies.

In the DWT algorithm, we used the threshold in
(11) in order to decide whether the data is normal or
abnormal.

dl_gl

) (10)

I, =c,2log, (N). (11)

where N is the size of data and 4,is the sample mean of
the level 1 detail coefficients [12].

This threshold was calculated from the low pass and
high pass coefficients from the assumed normal data by
using Haar and Daubechies4 mother wavelets. The Haar
and Daubechics4 wavelets were used becanse they are
relatively easy to cross-check by hand with computed
coefficients from MATLAB program. Hence, we can
compare the position of each coefficient with the actual
fault position. After the threshold calculation, the set of
coefficients which are obtained from the DWT of the
noisy data will be compared with the threshold,
coefficient by coefficient. For the real data scenario, the
data was normalized by equation (12) before being
processed by the DWT to eliminate potential outliers.

o, = median(

Norm(Data) = (Data? -mean(Data) (12)
variance(Data)

If the absolute value of the coefficient is greater than the
computed threshold, an anomaly is said to be detected.

In the SOM algorithm and the proposed
integration of SOM and DWT algorithm, the initial
value for learning rate in the SOM part was set to 1o =
0.9, and gradually reduced to mr = 107, in order to
guarantee convergence [14]. The number of training
epochs was set to 50 because longer training epochs tend
to over train the SOM [6]. The confidence interval was
set to 99% (K=2.57). We used a Gaussian neighborhood
function because the distribution of the collected data
after the normalization fits well to the Gaussian
distribution. The 3030 size of neurons was used.
Figures 3 and 4 show that the anomaly detection in SOM
algorithm and the integrated SOM and DWT algorithms
improve as the number of neurons is increased. This
suggests that the more neurons used, the “finer” SOM’s
clagsification becomes resulting in enhanced detection
performance. However, at neuron size 50x50, the SOM
requires much longer training time with a marginal
improvement in the detection performance. Therefore,
The 30x30 size of neurons was selected to train and test
the SOM. We also improved the SOM algorithm by
double checking with the univariate method in order to
reduce the false alarm rate [5] To obtain accurate
results, cach algorithm was repeated for 70 runs which
gave the best accuracy as shown in Tablel.

Table 1. Accuracy results of the true alarm rate obtained

by feeding synthetic input data to the 30x30 neuron
SOM algorithm.

Runs | True Alarm rate | Deviation'
1 62.00 -
10 59.50 0.040
20 57.65 0.031
30 58.17 0.009
40 57.68 0.008
50 57.82 0.002
60 57.88 0.004
70 58.14 0.001
80 58.06 0.001
90 58.17 0.001
100 58.27 0.001

'Deviation = ‘ 1-Ratio ‘

. Truealarm of the current iteration
Ratio=

True alarm of the previousiteration
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Fig.7, False alarm rates with synthetic data.

In the proposed integration of SOM and DWT
algorithm, we improved the performance of the SOM
part of the algorithm by replacing the input synthetic
data with low pass and high pass coefficients obtained
from the DWT which used Haar and Daubechies4 as
mother wavelets. In the case of actual data, we
normalized all of data by (12) before passing it through
the DWT process as well. The coefficients obtained
from the noiseless data were used to train the SOM. To
test the SOM, the synthetic faults previously described
were added to the original set of noiseless data.

100

70 WSOM + WL [Synthetic

W 50M [synthetic data]
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Fig. 4. True alarm rates with different size of neurons in

the bursty faults case.
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Fig.6, True alarm rates with real data.
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Fig 8, False alarm rates with real data.

To evaluate the performance of all algorithms, the
results of each algorithm were compared to the (known)
fault positions which were added into the input data. In
particular, when an anomaly was detected then its
position was compared with the (known) fault position.
If this position existed, then the anomaly detected was a
true alarm; otherwise, it was a miss. On the other hand,
if an anomaly was detected but the (known) fault
position did not exist, then the anomaly was a false
alarm.
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Fig. 9, True alarm rate with 10 dBW AWGN faults.

Real data

Fig. 5 and Fig. 6 show the percentage of true alarm
rale averaged over 70 runs, as the function of the amount
of faults added info the input data.  Note that the
proposed integrated SOM and DWT algorithm which
used Haar as a mother wavelet gives the best
performance over other algorithms. This is because the
DWT with Haar wavelet can detect changing points. In
particular, the Haar wavelet uses 2 adjacent mput data to
compute a coefficient whereas the Daubechies4 uses 4
adjacent input data to compute a coefficient. However,
Daubechiesd gave a lower performance than Haar
because each coefficient was computed from an average
over 4 input data. [f a fault occurred in 1 of these 4 data,
such fault will be averaged with the remaining 3 normal
data resulting in a coefficient with an absolute value
possibly lower than the decision threshold.
Consequently, the true alarm rate is reduced. On the
other hand, the Haar wavelet only uses 2 adjacent data to
compute 1 coefficient. Thus, the true alarm rate is
gignificantly higher than that of Daubechiesd. The
integrated SOM and DWT algorithm using Haar also
outperforms the SOM algorithm. This is because in the
Haar case, the coefficients obtained were transformed
from two adjacent data. Therefore, if some data was
faulty or differed greatly from the data nearby, this
coefficient can detect such anomaly. On the other hand,
the SOM algorithm directly checked the data one by one
to detect an anomaly. If the data was faulty but had a
small magnitude, then this fault may not be detected,
and consequently the true alarm rate was reduced. Note
that the DWT algorithm has the lowest performance
because the decision threshold in (11) is rather
conservative. Furthermore, the threshold is fixed
throughout the detection and the algorithm does not have
any double checking method.

Fig.7 and Fig. 8 show the false alarm rate results in
the synthetic and real data experiments, respectively.
Note that most results have low false alarm rates, ic.,
less than 1 % except in the case of sparse faults due to
the increased detection difficulty.

B

Sparse Bursty Sparse Bursty
Synthetic data Real data

Types of faults

Fig. 10, False alarm rate with 10 dBW AWGN faults.

ie]

The integration of SOM and Daubechiesd DWT also
gave a weak performance due to the reasons previously
explained. All these results show that the integration of
SOM and DWT with Haar as a mother wavelet
outperforms the SOM algorithm and DWT method as it
can achieve upto 65% and 67% of true alarm rafes in
case of bursty faults for synthetic and real data,
respectively. As for sparse faults, the proposed
algorithm can achieve upto 69% and 80% true alarm
rates for synthetic and real data, respectively. In
addition, the false alarm rate is 0.11% and 0.13% in case
of bursty faults and 0.91% and 1% in case of sparse
faults with synthetic and real data, respectively.

DWT to reduce transmitted data; The proposed
integration of SOM and DWT algorithm with Haar
wavelet outperformed the SOM algorithm and the DWT
algorithm alone. Our results suggest that the proposed
integrated SOM and DWT anomaly detection scheme
can be deployed in a resource-constrained network such
as a WSN. In particular, the DWT using Haar wavelet
can be implemented at the sensor nodes as a data
preprocessor to reduce the amount of data to be
transmitted by at least half (for one-level DWT). Since
energy consumption is critical in WSNs, such distributed
in-network processing can reduce transmission energy
and eventually help prolong the overall network lifetime
of the WSN [3] while still maintaining acceptable
anomaly detection accuracy.

Fig. 9 and Fig. 10 show the effect of the decreasing
of AWGN noise power from 25dBW to 10 dBW in both
synthetic and real data scenarios. Though the anomaly
detection is more difficult, the proposed integrated SOM
and DWT still consistently outperforms the other two
methods in terms of true alarm rate but with marginal
increase in the false alarm rate as tradeofT.

4 Conclusion
This paper proposed an integration of a competitive
learning method called the self-organizing map (SOM)
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and the discrete wavelet transform (DWT), to detect
anomalies in synthetic and real data collected from WSN
deployed in a bioorganic fertilizer plant.

The results show that the integration of SOM and
DWT with Haar as a mother wavelet can attain 65% and
67% of true alarm rates in the case of bursty faults, and
69% and 80% of true alarm rates in case of sparse faults
for synthetic and real data, respectively. The proposed
algorithm outperforms the SOM algorithm and DWT
algorithm. In addition, the false alarm rate is 0.11% and
0.13% in case of bursty faults and 0.91% and 1% in case
of sparse faults for synthetic and real data, respectively.
The proposed algorithm can maintain acceptable
anomaly detection accuracy while using just half of the
nput data. Our results suggest that the integration of
SOM and DWT with Haar wavelet can lead to a more
effective anomaly detection which reduces human
operator’s troubleshooting efforts.

In the future, we plan to extend our work to
investigate anomaly detection with actual faults obtained
from the bicorganic fertilizer plant environment, and
study its performance by increasing the DWT level and
considering other different types of wavelets.
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Anomaly Detection in Wireless Sensor
Networks using Self-Organizing Map and
Wavelets

S. Siripanadorn, W. Hattagam, N. Teaumroong

Abstract—This paper proposes an anomaly detection scheme
which is able to detect anomalies accurately by employing only
important features of data signals, instead of using all the sensor data
traces. The contribution of this paper centers on anomaly detection
by using Discrete Wavelet Transform (DWT) combined with a
competitive learning neural network called self-organizing map
(SOM) in order to accurately detect abnormal data readings while
using just half of the data size. Experiment results from synthetic and
real data injected with synthetic faults collected from a WSN show
that the proposed algorithm outperforms the SOM algorithm by up to
18% and DWT algorithm by up to 35% in presence of bursty faults
with marginal increase of false alarm rate. Furthermore, in the real-
wotld datasets experiments show that our proposed algorithm can
maintain acceptable anomaly detection accuracy as well as the SOM

algorithm while using just half of the input data.

Keywords—Anomaly Detection, Discrete Wavelet Transform,
Self-Organizing Map, Wireless Sensor Networks, Agriculture
Monitoring.

1. INTRODUCTION

ireless sensor networks (WSNs) have been recently

deployed in many areas of agriculture to increase yield

and prevent outhreaks such as m hydroponics and
paddy fields, fertilizer composting process, and livestock
monitoring. However, these applications rely mamly on
manvally measuring and controlling the parameters such as
moisture, temperature, pH, oxygen, soil nutrients, etc., which
are both time consummng and laborious. Autonomous
monitoring devices such as WSNs therefore warrant potential
use in agriculture monitoring.

A WSN 1s a wireless network that consists of distributed
autonomous devices using sensors to cooperatively monitor or
collect environmental conditions at different locations. Several
measurements can be collected from the WSN. The collected
measurements from the WSN may be affected by anomalies in
the sensor network. With the huge amount of data continually
collected from the WSN, it becomes ncreasingly difficult to
detect anomalies in the data measurements. Therefore,
anomaly detection techniques are necessary to automatically
detect faults and alert the system controller to take suitable
action.

Research  emphasizing  on  anomaly detection in
communication networks has progressed i recent years,e.g.,
il

network traffic [1], [2], [3], in TP networks [4], in cellular
mobile networks [5]. In general anomaly detection refers to
the problem of finding patterns in data that do not conform to
expected behavior [1]. Abnormal data pattems can be caused
by faulty sensors in the network or unusual phenomena m the
morutored domain.

Anomalies caused by faulty sensor commumications are
presented in [6]. They proposed a distributed algorithm for
detecting and isolating faulty sensor nodes in WSNs. Fach
semsor node identifies its own status based on local
comparisons of sensed data with thresholds. Ref. [7] applied 4
different anomaly detection techniques for different types of
faults obtained i the real-world datasets, namely, NAMOS
[8], INTEL [9] and SensorScope [10]. They classified these
faults into 3 types, i.e., noise faults, short faults and constant
faults. This research suggested that there is presently no
known anomaly detection method suitable for every type of
faults.

Another application of anomaly detection is an unusual
phenomenon 1 the monitored domamn.  Erroneous
measurements may occur as a result of transducers drifting out
of calibration, or from faults introduced by harsh
environmental conditions. In a large network it 18 extremely
difficult and time consuming to detect these erroneous
measurements manually. In addition, energy 1s wasted in the
network when forwarding the unwanted erroncous
measurements to the base station for analysis. One solution to
alleviate network energy consumption 1 to reduce the amount
of data that needs to be communicated through the network.
Energy is critical i WSNs, therefore anomaly detection
methods in WSN must not only perform well but also demand
low energy consumption. Distributed m-network processing
can reduce transmission energy and eventually help prolong
the overall network lifetime of the WSN [11]. Our work 1s
motivated by this concept. In particular, we focus on reducing
the amount of transmitted data by in-network processing for
anomaly detection at the base station.

This paper considers anomalies caused by unusual
phenomenon and faulty sensors. To detect these anomalies, a
dynamic data classification scheme such as data mining
method could be useful.

Data miming 1s an expanding area of research m artificial
neural network and information management whose objective
is to extract relevant information from large databases. One
particular method, called the self-orgamzimg map (SOM), has
several beneficial features which make it a useful tool m data
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mining. In particular, it follows the probability density
function of the data and is, thus, an efficient clustering and
quantization algorithm. The most important feature of the
SOM in data mining is the visualization property [12].

SOM has been applied for anomaly detection in
communication networks [13], [14], [15] as well as WSNs
[16]. Ref. [16] focuses on evaluating the position of sensors in
a WSN, or the localization problem. Their localization
technique is based on a simple SOM, implemented on each
sensor node. The main advantages of their solution are the
limited storage and computing costs. However, SOM requires
processing time which increases with the size of input data.
To reduce the input data size. features of the data can be
extracted without losing the significant data can be used for
anomaly detection. This can be achieved by the Discrete
Wavelet Transform (DWT). Wavelets have been extensively
employed for anomaly [17] and fault detection [18]. DWT has
also been integrated with SOM to detect system faults [19].
[20]. In particular, feature vectors of the faults have been
constructed using DWT, sliding windows and a statistical
analysis. Classification of the feature vectors was obtained by
using SOM.

To the best of our knowledge, DWT and SOM have not yet
been applied for anomaly detection in WSNs. Therefore, the
underlying aim of this paper is to propose an anomaly
detection algorithm which determines the discrete wavelet
transform, and detects the abnormality of the sensor readings
by training the SOM using the wavelet coefficients. Our
proposed algorithm, the integrated SOM and DWT algorithm,
could help reduce wasted energy caused by transmitting all
measurement data to the base station by applying DWT
algorithm onto the sensor modes in order to reduce size of
transmitted data without losing the significant feature of the
data.

II. ANOMALY DETECTION

The first step of anomaly detection involves selecting the
data parameters to be monitored and grouping them together

in a pattern vector X € R, u=1....N,

(xf (XPLY
L xf RPLYE Y]
x" = A = )

Lxf, \KPIY

where 1 is the observation index, n is the number of

parameter tvpes or key performance indices (KPIs) chosen to
monitor the environmental condition.

A. Self-Organizing Map

Competitive neural models such as the self-organizing map
(SOM) [13], are able to extract statistical regularities from the
input data vectors and encode them in the weights without
supervision. It maps a high-dimensional data manifold onto a
low-dimensional, usually two-dimensional, grid or display.

The basic SOM consists of a regular grid of map units or

neurons as shown in Fig 1(a). Each neuron, denoted by i
(depicted by the black dot), has a set of layered neighboring
neurons (depicted by the white dots) as shown in Fig 1(a).

Neuron 7 maintains a weight vectorm . In order to follow

the properties of the input data, such vector is updated during
the training process. For example, Fig.1(b) shows a SOM
represented by a 2-dimensional grid of 4x4 neurons. The
dimension of each vector is equal to the dimension of the
input data. In the figure, a vector of input data (marked by x)
1 used to train the SOM weight vectors (the black dots). The
winning neuron (marked by BMU) as well as its 1-
neighborhood neurons, adjust their corresponding vectors to
the new values (marked by the gray dots).

The SOM is trained iteratively. In each training step. one
sample vector x from the input data set is chosen.

(a) (b)
Fig. 1 An illustration of the SOM (a) with rectangular lattice
neighbors belonging to the innermost neuron (black dot)
correspanding to 1, 2 and 3- neighborhoods, (b) SOM updates the
BMU with 1-neighborhood.

The distances between the sample data and all of weight
vectors in the SOM are calculated using some distance
measure. Suppose that at iteration  neuron 7 whose weight

vector m (t) is the closest to the input vector x(¢). We

denote such weight vector by m () and refer to it as the

Best-Matching Unit (BMU), that is
||x(t) —-m, ([)" = arg mv}fl ||x(t) -m I(I)" @)

where "” is the Euclidian distance.

Suppose neuron 7 is to be updated, the SOM updating rule
for the weight vector of neuron i is given by

m(t+1)=m @)+ 5k G,0[x() - m (1] ©)
where ¢ s the iteration index, x(1}is an input vector, 7, is the
learning rate, 4 (i,7) is the neighborhood function of the

algorithm. The Gaussian neighborhood function may be used,
that is

N-r@)|
h (i,1) = exp N A0V nr:( ) @
20°()
where () and 7 (f)are the positions of neurons i and the
BMU, crespectively, ando(f)is the radius of the

neighborhood function at time ¢. Note that 7 (5,1} defines the
width of the neighborhood. 1t is necessary that lim 4 (5,£) = 0

and (im 5,=0 for the algorithm to converge [13].

15w

B. Discrete Wavelet Transform

DWT is a mathematical transform that separates the data
signal into fine-scale information known as detail coefficients,
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and roughscale mformation known as approximate
coefficients. Its major advantage is the multi-resolution
representation and time-frequency localization property for
signals. Usually, the sketch of the original time series can be
recovered using only the low-pass-cut off decomposition
coefficients; the details can be modeled from the middle-level
decomposition coefficients; the rest 13 usually regarded as
noises or irregularities. The following equations describe the
computation of the DWT decomposition process:

a’ (k)= h(n-2ka"" (k) 3
A7 k)= g,(n-20)a™" (k) , )

where the rough-scale (or approximation) coefficients ajm

are convelved separately with / and g, , the wavelet function

and scaling function, respectively, n is the time scaling ndex,
k 1s the frequency translation index for wavelet level j. The

resulting coefficient is down-sampled by 2. This process splits

a;m roughly in half, partitioning it into a set of fine-scale (or

detail) coefficients le and a coarser set of approximation
coefficients afjﬂ [21].

DWT has the capability to encode the finer resolution of the
origmal time series with its hierarchical coefficients.
Furthermore, DWT can be computed efficiently in linear time,
which is important while dealing with large datasets.

C. Integration of SOM and DWT

In the integration of SOM and DWT algorithm, the DWT
algorithm 1s used as an input data preprocessor of the SOM
algorithm m order to reduce the size of data without losing
any significant feature of the data. This enables the
implementation of in-network processing which helps to
reduce the radio communication energy and eventually
prolong the lifetime of the WSN [11]. The mput data will be
padded with zero if its length is odd data. After obtaining the
wavelet coefficients, these coefficients will be fed to the SOM
algorithm which can be divided into 2 sets. Each set contamns
both approximate and detail coefficients. The first set which 1s
obtained from noiseless data, will be used to tramn the SOM
algorithm. The second set which 1s obtained from the faulty
data will be used to test the SOM algorithm. Then to reduce
the false alarms the detected results will be double checked by
using the univariate method [13], [14].

D. Anomaly Detection

A new observation data set can be considered abnormal if
the distance between the weight vector of the winning neuron
and the new state vector, given by

)

1 greater than a certain percentage p=1-« of the distances
in the distance distribution profile. That is,

M -+
IF e e[ep,ep},

Hew

THEN x™ is NORMAL ®)

ELSE x™ is ABNORMAL.

Equation (8) is referred to as the global decision. In [6], an
addition of local decisions of each KPIs is presented. Suppose
that a data vector X 1s considered abnormal by the global
decision. Then m the local anomaly detection, the absolute
value of error in each component of the error vector 1s then
computed by

u #
|x1 ’ms,ll
4 #
g | = |x2 My &)
¥ #
<, 7mr,n

The error 1n each KP1 15 then compared to the mterval of
normality  component-by-component, and the anomaly
decision is carried out as in (8).

. EXPERIMENT RESULTS

A. Evaluation on detecting synthetic faults

In this section, we evaluated the performance of the
proposed integration of SOM and DWT algorithm by
detecting anomalies m series of synthetic data and actual data
collected from a wireless sensor network injected by various
synthetic faults.

In the experiment, we generated the synthetic mput data
from a normal distribution N(0,1) and synthetic faults by
additive white Gaussian noise (AWGN) with power 25 dBW
generated from MATLAB. We used such fault because its
statistical similarity to the synthetic input data thus, it is more
difficult to be detected. Therefore, we can evaluate the
performance of the algorithms under ambiguous faults. The
amount of faults 1s represented by the notation n/s, where “n”
1s the amount of faults per series and “s” 1s the amount of
series of faults, resulting in the total amount of nxs faults. The
generated faults added to the nput data ranged from bursty
(20/10) to sparse (1/10). The exact positions of the faults
injected in the input data were predetermined and was later
used to detect true and false alarms. In the experiment using
real data, we have chosen 2 parameters, namely temperature
and moisture, as KPls collected from samples of compost in a
bioorganic fertilizer plant. In this paper, the data of the 2 KPIs
at the WSNs were collected every 5 mmutes for 3 days. We
compared 3 anomaly detection methods: SOM algorithm,
DWT algorithm, and integration of SOM and DWT algorithm.

We measured 2 performance metrics: 1) the true alarm rate
which is defined by the number of detected true anomalies
over the total number of true anomalies in the data set; and 2)
the false alarm rate which is defined by the number of
detected false alarms over the total number of detected
anomalies.

In the DWT algorithm, we used the threshold m (11)
order to decide whether the data 1s normal or abnormal
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g, = median(|d, fgl‘) (10)

T :Jwﬂf2logé(N), (11)

where N is the size of data and 4, is the sample mean of the
level 1 detail coefficients [21].

This threshold was calculated from the low pass and high
pass coefficients from the assumed normal data by using Haar
and Daubechies4 mother wavelets. The Haar and Daubechies4
wavelets were used because they are relatively easy to cross-
check by hand with computed coefficients from MATLAB
program. Hence, we can compare the position of each
coefficient with the actual fault position. After the threshold
calculation, the set of coefficients which are obtamed from the
DWT of the noisy data will be compared with the threshold,
coefficient by coefficient. For the real data scenario, the data
was normalized by equation (12) before being processed by
the DWT to eliminate potential outliers:

Norm(Datz) = (Data) -mean(Data) (12)
variance(Data)

If the absolute value of the coefficient is greater than the
computed threshold, an anomaly 1s said to be detected.

In the SOM algorithm and the proposed integrated SOM
and DWT algorithm, the 1mutial value for learning rate m the
SOM part was set to 1o = 0.9, and gradually reduced to 1y =
10% in order to guarantee convergence [13]. The number of
training epochs was set to 50 because longer training epochs
tend to over tramn the SOM [13]. The required percentage of
distance in (8) was set to 99%. We used a Gaussian
neighborhood function because the distribution of the
collected data after the normalization fits well to the Gaussian
distribution. The 30x30 size of neurons was used. Fig. 2 and 3
show that the anomaly detection in SOM algorithm and the
integrated SOM and DWT algorithms improve as the number
of neurons 1s increased. This suggests that the more neurons
used, the “finer” SOM’s classification becomes resulting in
enhanced detection performance. However, at neuron size
50x50, the SOM requires much longer traimng time with a
marginal improvement in the detection performance.
Therefore, the 30x30 size of neurons was selected to train and
test the SOM. We also mproved the SOM algorithm by
double checking with the univariate method in order to reduce
the false alarm rate [13], [14]. To obtain accurate results, each
algorithm was repeated for 70 runs.

To evaluate the performance of all algorithms, the results of
each algorithm were compared to the (known) fault positions
which were injected into the input data. Tn particular, when an
anomaly was detected then its position was compared with the
(known) fault position. If this position existed, then the
anomaly detected was a true alarm; otherwise, it was a miss.
On the other hand, if an anomaly was detected but the
(known) fault position did not exist, then the anomaly was a
false alarm.

Fig. 4 and Fig. 5 show the percentage of true alarm rate
averaged over 70 runs, as a function of the amount of faults
added into the mput data. Note that the proposed mtegrated

SOM and DWT algorithm which used Haar as a mother
wavelet gives the best performance over other algorithms.
This 15 because the DWT with Haar wavelet can detect
changing points. In particular, the Haar wavelet uses 2
adjacent mput data to compute a coefficient whereas the
Daubechies4 uses 4 adjacent nput data to compute a
coefficient. However, Daubechiesq gave a lower performance
than Haar because each coefficient was computed from an
average over 4 mput data. If a fault occurred in 1 of these 4
data, such fault will be averaged with the remaining 3 normal
data resulting in a coefficient with an absolute value possibly
lower than the decision threshold Consequently, the true
alarm rate 15 reduced. On the other hand, the Haar wavelet
only uses 2 adjacent data to compute 1 coefficient. Thus, the
true alarm rate 15 sigmficantly ligher than that of
Daubechies4. The integrated SOM and DWT algorithm using
Haar also outperforms the SOM algorithm. This is because
the Haar case, the coefficients obtained were transformed
from two adjacent data. Therefore, 1f some data was faulty or
differed greatly from the data nearby, this coefficient can
detect such anomaly. On the other hand, the SOM algorithm
directly checked the data one by one to detect an anomaly. If
the data was faulty but had a small magnitude, then this fault
may not be detected, and consequently the true alarm rate was
reduced. Note that the DWT algorithm has the lowest
performance because the decision threshold in (11) is rather
conservative. Furthermore, the threshold 15 fixed throughout
the detection and the algorithm does not have any double
checking method.

Fig.4 and 5 show that the proposed algorithm can achieve
up to 65% and 67% of true alarm rates in case of bursty faults
for synthetic and real data, respectively. The proposed
algorithm achieved a true alarm rate of up to 18% higher than
the SOM algorithm alone m presence of bursty faults.
Compared to the DWT alone, the proposed algorithm can
attain a true alarm rate of up to 35% more in the bursty faults
case.

As for sparse faults, the proposed algorithm can achieve up
to 69% and 80% true alarm rates for synthetic and real data,
respectively. The integrated SOM and DWT also gave true
alarm rates of up to 10% higher than the SOM algorithm alone
whereas DWT performed the weakest, i presence of sparse
faults.

Fig.6 and Fig. 7 show the false alarm rate results m the
synthetic and real data experiments, respectively. Note that
most results have low false alarm rates, ie., less than 1 %
except in the case of sparse faults due to the increased
detection difficulty.

The integration of SOM and Daubechies4 DWT also gave a
weak performance due to the reasons previously explamed.
All these results show that the integration of SOM and DWT
with Haar as a mother wavelet outperform the SOM algorithm
and DWT method.

From these figures, the false alarm rate of the proposed
algorithm is 0.11% and 0.13% in presence of bursty faults and
0.91% and 1% m presence of sparse faults with synthetic and
real data, respectively. Note that the false alarm rate of the
proposed algorithm 15 slightly higher than the other two
algorithms. Since the gam in the true alarm rate 1 more
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significant. such tradeoff is therefore considered acceptable.
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Fig. 8 and 9 show the effect of the decreasing of AWGN
nosse power from 25dBW to 10dBW in both synthetic and
real data scenarios. Only the Haar wavelet was used in the
proposed algorithm and the DWT algorithm. The Daubechies4
was not included due to its weak performance. Though the
anomaly detection is more difficult, the proposed integrated
SOM and DWT still consistently outperforms the other two
methods m terms of true alarm rate but with marginal increase
in the false alarm rate as tradeoff.

The proposed integration of SOM and DWT algorithm with
Haar wavelet outperformed the SOM algorithm and the DWT
algorithm  alone. Our results suggest that the proposed
integrated SOM and DWT anomaly detection scheme can be
deployed in a resource-constrained network such as a WSN.
In particular, the DWT usmg Haar wavelet can be
implemented at the sensor nodes as a data preprocessor to
reduce the amount of data to be transmitted by at least half
(for one-level DWT). Since energy consumption 1s critical
WSNs, such distributed in-network processing can reduce
transmission energy and eventually help prolong the overall
network lifetime of the WSN [11] while still mamtamng
acceptable anomaly detection accuracy.

B. Evaluation on detecting faults in real-world datasets

In this section, we apply the anomaly detection methods to
three real-world datasets, 1.e., NAMOS [8], INTEL Berkeley
Lab [9], and SensorScope [10], to detect anomalies m sensor
traces. However, since we did not have ground truth
nformation about faults for these datasets, visual inspection
and the histogram method are used to decide whether the data
is normal or abnormal. The histogram method was used
because it displays the data distribution which allows us to
determine a suitable threshold according to that data series.

The histogram method divides the time series of sensor
readings into groups of N samples. We then plot the histogram
of the samples and select a threshold according to outliers of
the histogram. However, this approach is sensitive to the
choice of N. Fig. 10 [10] shows the effect of N on the
histogram computed for sensor measurements taken from a
real-world deployment [7]. Therefore, selecting the correct
value for the parameter N requires a good understanding of
the normal sensor readmgs. In practice, one should also try a
range of values for N to ensure that the samples flagged as
faulty are not just an artifact of the value selected for N [7].
With heuristic adjustments on the parameter value of N and
some doman knowledge of the normal data profile, the
tustogram method was used as reference to identify abnormal
data samples.

In the real-world datasets experiment, we evaluated the
performance of 3 anomaly detection metheds: the SOM, DWT
using the Haar wavelet methods, and the integration of SOM
and DWT using the Haar wavelet. For the SOM and the
mtegration of SOM and DWT using Haar wavelet algorithms,
we also considered the effects of changmng the number of
training samples, the number of training epochs which were
10 and 50 tterations, and the size of neurons which were
10x10 and 30x30. We also compared the performance of the
low and high pass Haar wavelet coefficients (LP and HP,
respectively) in the DWT algorithm and the integration of

SOM and DWT algorithm.
1 NAMOS

In the NAMOS dataset, 9 buoys with temperature and
chlorophyll concentration sensors  (fluorimeters) were
deployed in Lake Fulmor, James Reserve for over 24 hours in
August, 2006 [8]. We analyzed the measurements from
chlorophyll sensors on buoys no. 103 for 10" samples as
shown in Fig.11. In the experiment, the histogram method was
used to identify anomalies in the NAMOS dataset from which
we selected the threshold of 0 and 500 as lower and upper
bounds of the normal region, respectively. The size of training
samples of 1500 and 3000 samples were used to train both the
SOM and the integration of SOM and DWT algorithms.

Fig. 12 shows the percentage of detection alarm rates for
true, miss and false alarms which were obtained from
changing the size of training samples. Note that both the SOM
algorithm and the proposed integrated SOM and DWT
algorithm with low pass wavelet coefficients gave the best
true alarm detection performance of nearly 100% while their
false alarm rates is negligible. The mtegrated SOM and DWT
algorithm and DWT algorithm with high pass coefficients
gave the lowest performance. This is because the high pass
coefficients are more suitable for detecting the changing
ponts of the data whereas most of faults appear constant as
seen from 9x10° samples onwards in Fig. 11. In addition,
reducing the size of training samples did not have any effect
on the anomaly detection i the SOM algorithm and the
proposed integrated SOM and DWT algorithm. This is
because both training samples are obtained from a normal
period of data which differ only n sample sizes.

Fig. 13 shows the percentage of detection alarm rates for
true, miss and false alarms which were obtained by reducing
the number of training epoch from 50 to 10 iterations. In this
case, the SOM algorithm gave the best performance with
nearly 100% of true alarm detection rate and no false alarm
rate. DWT algorithm which used low pass coefficient gave
tigh performance while the proposed integrated SOM and
DWT algorithm with either coefficient failed on detecting any
anomaly. The reason could be caused by the constant features
of the faults in NAMOS which may be difficult to decide
whether samples are normal or abnormal, m particular, if the
wavelet coefficients are under trained. Hence, care must be
taken when selecting the suitable number of traiming epochs.
In addition, we also mvestigated the effect of reducing the size
of neurons. Results in Fig.14 show that there is no significant
effect from reducing size of neurons from 30x30 to 10x10.

2) INTEL

In the INTEL dataset, 54 Mica2Dot motes with
temperature, humidity and light sensors were deployed in the
Intel Berkeley Research Lab between February 28th and April
5th, 2004 [9]. In this paper, we present the results on the
anomaly detection m the temperature readings.

In the experiment, we selected the threshold value of 16 and
30 as the upper and lower bounds of the normal data regions.
These values were obtamned from the histogram method. The
size of training samples used was 1000 and 2000 samples as
shown in Fig. 15.

Fig. 16, shows the percentage of detection alarm rates for
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true, miss and false alarms which were obtained from
changing the size of trammg samples. According to the results
as shown, the SOM and the proposed algorithm can achieve a
true alarm rate of up to 100% with very small false alarm rate.
Their true alarm rate 15 67% higher than the DWT method
wing ligh pass coefficients. Note that the lugh pass
coefficients can detect spike faults better than low pass
coefficient smee the high pass coefficients reflect the rate of
change between two successive samples. Note that the DWT
using low pass coefficient gave the lowest performance. The
results of changing number of traming epochs are shown in
Fig. 17 and the size of neurons are shown in Fig. 18. From
both figures there are no significant effects on the detection
rate because the fault in this dataset has a high amplitude and
can be easily detected.
3) SensorScope

The SensorScope project is an ongoing outdoor sensor
network deployment consisting of weather-stations with
sensors for sensing several environmental quantities such as
temperature, humidity, solar radiation, soil moisture, and so
on [10]. We did not have the ground truth regarding faulty
samples for this dataset. We used a combination of visual
inspection and the histogram method to identify anomaly
samples [7].

In the experiment, we present the results on the anomaly
detection n two types (KPLs) of data in the pdg2008-metro-1
dataset, 1.e., the surface and ambient temperature readings.
Using visual inspection and the histogram method, the lower
and upper threshold values used for anomaly detection in
SensorScope were -14 and 4 for the surface temperature and
-12 and 4 for the ambient temperature. The sizes of traning
samples were 700 and 2000 samples for both KPIs as shown
m Fig.19.

Fig. 20 shows the percentage of detection alarm rates for
true, miss and false alarms obtained from changing the size of
training samples. Note that the proposed algorithm using low
pass coefficients achieved a true alarm rate 2% higher than the
SOM algorithm while false alarm rate remained less than
0.5%. The proposed algorithm using low pass coefficients can
attain a true alarm rate of up to 17% more than the DWT
algorrthm alone. The integrated SOM and DWT algorithm and
DWT algorithm which used high pass coefficients gave the
lowest performance. This is because high pass coefficients are
more suitable for short duration faults such as, spike or sparse
faults while the data in Fig. 19 contains noise faults which
affect a larger number of successive samples with an increase
n their variance.

The effect of reducing the number of training epochs 13
shown in Fig. 21. According to the results, there is no
significant effect on the performance of SOM and the
integrated SOM and DWT.

Fig. 22 shows the percentage of detection alarm rates for
true, miss and false alarms which were obtained from
reducing the size of neurons. Note that the proposed algorithm
using low pass coefficients achieved a true alarm rate 2%
lower than the SOM algorithm, whereas the false alarm rate
remains lower than 0.5%. On the other hand, the proposed
algorithm using low pass coefficients can attan a true alarm
rate of up to 13% more than the DWT algorithm alone.

The results from the real-world dataset show that our
proposed algorithm, the integrated SOM and DWT algorithm
performs as equally well as the SOM algorithm while using
just half of the mput data (using level 1 of DWT). Thus 1s
because DWT 1s able to extract relevant data features without
any significant loss in mformation, thereby reducing wasted
energy from transmitting all measurements to the base station.
Hence, by applying DWT onto the sensor modes, to achieve
wn-network data processing, the size of transmitted data can be
reduced while still maintain good anomaly detection abilities.

However, a variety of data characteristics can affect the
anomaly detection in the integrated SOM and DWT algorithm
as can be seen from the NAMOS dataset. Hence, a suitable
setting of the algorithm, such as the size of traming epochs,
has to be considered carefully. In terms of the number of
neurons, the more neurons used, the finer SOM’s
classification becomes, generally resulting in enhanced
detection performance. However, the results m the real-world
datasets show that there is no significant change in detection
performance. In terms of the selection of wavelet coefficients,
ligh pass coefficients are more suitable for detecting the
changing points of the data, whereas low pass coefficients are
more suitable for detecting the changing of trend of the data.
These settings can be determmed by considering the nature of
the sensors deployed. For example, calibration errors in
sensors can cause offset faults (whereby the measured value
can differ from the true value by a constant), low battery
voltage causes a combination of noise and constant faults,
while short faults are caused by software error during
communication and data logging [7].

IV. CONCLUSION

This paper proposed an mtegration of a competitive
leaming method called the self-organizing map (SOM) and
the discrete wavelet transform (DWT), to detect anomalies
from synthetic faults and faults obtained from real-world
datasets.

In the synthetic faults experiment, the results show that the
integration of SOM and DWT with Haar as a mother wavelet
can attam 65% and 67% of true alarm rates m the case of
bursty faults, and 69% and 80% of true alarm rates in case of
sparse faults for synthetic and real data, respectively. In terms
of the true alarm rate, the proposed algorithm outperforms the
SOM algorithm by up to 18% and DWT algorithm by up to
35% in presence of bursty faults. With sparse faults, the
proposed algorithm can gam a true alarm rate up to 10%
above the SOM algorithm alone and entirely outperforms the
DWT algorithm alone. Such gain in true alarm rates come
with a marginal merease of false alarm rate.

In the real-world datasets, the mtegration of SOM and
DWT with Haar as a mother wavelet can attain up to 99%,
100% and 83% of true alarm rates in the NAMOS, INTEL and
SensorScope dataset, respectively. Our proposed algorithm
also performs as equally well as the SOM algorithm and
outperforms the DWT algorithm by up to 15%, 100%, and
17% m the NAMOS, INTEL and SensorScope dataset,
respectively.
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In terms of the true alarm rate when reducing the number of
training epochs, the proposed algorithm has a poor
performance due to the detection ability of wavelet
coefficients is unsuitable for the anomaly in the NAMOS
dataset. In the INTEL dataset, the proposed algorithm
outperforms the DWT algorithm and performs equally well
when compared to the SOM algorithm while using just half of
the input data. In the SensorScope dataset, the proposed
algorithm outperforms the DWT algorithm but is slightly
lower than the SOM algorithm.

By reducing the size of neurons, the proposed algorithm
still obtained a true alarm rate up to 16%, 100% and 84%
higher than the DWT algorithm in NAMOS, INTEL and
SensorScope dataset, respectively. The proposed algorithm
performed equally well as the SOM algorithm in the NAMOS
and INTEL dataset but only 2% lower than the SOM
algorithm in the SensorScope dataset. The reduction of the
size of neurons did not show any significant change in
detection performance.

Our results suggest that the integration of SOM and DWT
with Haar wavelet can lead to more effective anomaly
detection. In particular, our results confirm that the proposed
algorithm can maintain acceptable anomaly detection accuracy
while using just half of the input data (using level 1 DWT).

In the future, we plan to extend our work to investigate
anomaly detection with actual faults obtaned from the
bicorganic fertilizer plant environment, and study its
performance by increasing the DWT level and considering
other different types of wavelets. Furthermore, we also plan to
investigate ways to identify and eliminate erroneous sensor
readings at the sensor nodes, which could help further reduce
wasted energy from transmitting unwanted erroneous
measurements to the base station.
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