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กระบวนการตัดสินใจแบบมารคอฟ  (Markov decision process)  องคความรูประการที่สอง 
คือ การขยายกระบวนการเรียนรูแบบเพลโตคิวจากกระบวนการตัดสินใจแบบมาคอฟไปสู 
การกําหนดปญญาโดยใชแบบจําลองพลังงานวิทยุ องคความรูประการสุดทาย คือ การเลือกจุด 
ที่เหมาะสมที่สุดแบบพาเรโตในวิธีการทางทฤษฎีเกมความไมรวมมือกันเพื่อประยุกตใชในเกม 
การสงตอแพตเกต  
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ผลการทดลองชี้ใหเห็นวาวิธีการที่นําเสนอสามารถกําหนดกลยุทธรวมที่ดีที่สุดไดโดยการ
เรียนรูแบบออนไลนซ่ึงตางจากวิธีการทางทฤษฎีเกมความไมรวมมือซ่ึงเปนวิธีคนหากลยุทธอยาง 
ถ่ีถวนแบบออฟไลน วิธีการที่นําเสนอใชเวลาในการคํานวณเพื่อไดมาซึ่งกลยุทธ นอยกวาวิธีการทาง
ทฤษฎีเกมความไมรวมมือ ในขณะที่ไดรับผลตอบแทนที่สูงกวา และมีความทนทานตอการ
เปลี่ยนแปลงสภาพแวดลอมไดดีกวา  (ไดแก  การเปลี่ยนแปลงเสนทางการเชื่อมตอของ 
ตัวตรวจรู และคาการสูญเสียเชิงวิถีในอากาศ) ดังนั้นวิธีการที่ ถูกนําเสนอในงานวิจัยนี้จึงมี
ความสามารถในการปรับเปลี่ยนกลยุทธเมื่อเกิดการเปลี่ยนแปลงของสิ่งแวดลอมดวยการคํานวณ 
ที่นอยกวาในระยะยาว 
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 Wireless Sensor Networks (WSNs) have been developed and extensively 

applied in environment monitoring. WSNs can be used to monitor and collect various 

physical attributes within a specific area or environment of interest. However, WSNs 

have limited power sources and must be extremely small, therefore their battery 

capacity constraints are much higher. To alleviate such limitation, multiple sensor 

networks can coexist independently within a region of interest without conflicting each 

other in order to share resources. Such networks are referred to as overlay WSNs. 

These networks can potentially gain certain benefits such as alternative routing paths, reduced 

energy consumption, thereby prolonging their network lifetime. However,  selfish behaviors  

may exist among sensor nodes to conserve their energy. Thus, cooperation between sensor 

nodes belonging to different network authorities may not always be readily available.  

Therefore, the main focus of this research is how to determine packet forwarding strategies 

which are beneficial to all networks under constrained resources in overlay WSNs.  

 The underlying aim of this research is therefore to propose the Nash Q-learning 

and the Pareto Q-learning, which are multiagent reinforcement learning algorithms in  

a packet forwarding game in non-cooperative overlay WSNs. The contribution of this 
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research are three-fold. The first contribution is the application of NashQ and ParetoQ 

algorithms to achieve the best mutual packet forwarding strategy in non-cooperative 

overlay WSNs with the MDP formulation. The second contribution is the extension of 

the ParetoQ algorithm from the MDP formulation to the radio energy model. The final 

contribution centers on the incorporation of Pareto optimality with the Non-

cooperative game algorithm and its application to the packet forwarding game.  

 The experiments show that the proposed algorithms can obtain the best mutual 

strategy by learning packet forwarding strategies online, as opposed to the offline exhaustive 

search in an existing Non-cooperative game theoretic approach. The proposed algorithms 

require significantly less computational time to obtain a strategy than the Non-cooperative 

game algorithm while achieving higher utility and higher robustness to dynamic environments 

(i.e., changing topology and path loss exponent) owing to its inherent online learning  process. 

Thus, the proposed approaches are more adaptive to environmental changes yet less 

computationally demanding in the long run. 
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CHAPTER I 

INTRODUCTION 

 

 This chapter introduces a background on resource allocation problems in 

multi-agent wireless sensor networks (WSNs) and highlights the significance of 

resource allocation problems using reinforcement learning. It also presents the 

motivation for applying reinforcement learning to achieve the best mutual policy for 

the agents which is the main focus of this thesis. 

 

1.1 Significance of the problem 

A wireless sensor network (WSN) is a wireless network consisting of spatially 

distributed autonomous sensory devices that can communicate with each other to 

perform sensing and data processing cooperatively. The overall objective of a WSN is 

to provide a low-cost solution to gather physical data from the environment, such as 

noise, pressure, light, vibration or temperature, at different locations, observation and 

transmit it to a base station. The most common energy storage device used in a sensor 

node is a battery which is suitable for a micro sensor with very low power 

consumption.  Therefore, WSN promises unlimited potential for numerous application 

areas including environmental, medical, military, transportation, entertainment, crisis 

management, homeland defense, and smart spaces, (Stankovic et al., 2008).  

Since WSNs are based on limited power sources and must be extremely small, 

their battery capacity constraints are much higher. Therefore, processing power, 
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memory and wireless communication abilities are very limited in order to reduce 

power consumption.  

1.1.1  Overlay WSNs 

Most research works consider a WSN which is controlled simply by 

one authority. However, in many scenarios, multiple sensor networks can coexist 

independently within a region of interest without conflicting each other. These 

networks may even be physically overlapping and their sensor nodes may be 

interleaved. Such networks are referred to as overlay wireless sensor networks 

(WSNs). In other words, overlay WSNs include a large number of nodes that are 

deployed in the same area which are controlled by different authorities. The networks 

perform different tasks and measure different data within the same area. The role of 

each sensor node in an overlay WSN is to send or forward its packets to its neighbor 

nodes through multi-hop communications, either with nodes within the same network 

authority or with nodes belonging to a different authority. 

Overlay networks provide several advantages such as the development 

of a new protocol with features needed in a short duration, implementation with  

a small cost and the ability to provide alternative routes for the transmission of data. 

Moreover, the most important usage for overlay WSNs is resource sharing between 

different authorities which can prolong their lifetime. The main reason is because 

intermediate nodes from other network authorities may help shorten the data 

transmission distance between neighboring nodes. When two authorities share their 

sensor nodes with the same goal of sending packets via a shorter distance, energy 

consumption is lowered; the networks can save their energy and eventually prolong 

their lifetime.  Although overlay networks have several advantages, a significant 
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amount of energy is also lost when sensor nodes within the overlay WSN 

cooperatively process and forward the data for other networks. As energy 

consumption is a critical issue for such networks, reducing energy consumption and 

prolonging the network lifetime are important targets.  

1.1.2  Significance of resource allocation in overlay WSNs 

Currently, many researches related to resource allocation problems in 

overlay WSNs have been proposed with a focus on saving energy. Murase and 

Shimonishi (2006) proposed a routing protocol in overlay networks, whereby end 

users establish routes to improve quality-of-service (QoS) by reducing delay and 

packet. Their results show that efficient network resource consumption is achieved 

and the network lifetime is prolonged. Mao et al. (2008) proposed an energy-aware 

coverage control protocol (EACCP) to reduce the amount of energy consumption and 

improve the performance in terms of sensing coverage and lifetime by minimizing the 

energy consumption required for overhead control, and balancing the energy load 

among all nodes. EACCP has been shown to adapt well to applications with 

heterogeneous energy capacities in the sensor networks, as well as effectively reduce 

the control overhead. Wang et al. (2007) proposed an energy-efficient clustering 

algorithm based on virtual area partition (VAP-E) which can approximately calculate 

the total energy of the networks.  By doing so, their method can balance the load 

between clusters and prolong lifetime of the network by reducing energy 

consumption. Furthermore, other areas of research related to overlay WSN 

applications include fault tolerance problem (Chitnis, 2009; Han et al., 2007) where in 

real applications, unpredictable events, such as battery depletion and environmental 

impairment, may cause these sensor nodes devices to fail. In addition, a node 
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deployment problem is studied in (Yu et al., 2007) where an algorithm is proposed to 

decide how many and where overlay sensor nodes should be deployed in the network. 

Several factors which impact the deployment of sensor nodes are considered to 

analyze and evaluate their solution including radio coverage range, node traffic load, 

and distance between sensor nodes.  Their simulation results showed that their 

algorithm can increase the network lifetime and reliability in the system. Li et al 

(2006) considered a target detection problem. The objective was to find the best way 

to combine and allocate resources so as to maximize the performance level of the 

sensor network in terms of target destruction rate and time in a battlefield application. 

All of these works focus on saving energy in overlay WSNs. Their results showed that 

two authorities cooperatively sharing resources results in reduced energy consumption 

and increased network performance. However, these researches only considered the 

resource allocation problem in a cooperative situation, meaning that, the authorities 

have to agree on sharing or providing a common resource in order to increase the 

benefit in their networks. 

Because cooperative behavior between sensor nodes belonging to 

authorities may not always readily available, the lack of cooperation among sensor 

nodes makes them more vulnerable to losing certain advantages aforementioned. Such 

situation is referred to as a non-cooperative game. Sensor nodes not only are deployed 

independently without any fixed strategy, but they may also act selfishly to conserve 

their energy.  Furthermore, there is no guarantee that node cooperation will be 

beneficial to both WSNs.  It may even be possible that cooperation may lead to 

benefits for a single party alone, or no benefit to any party at all. Vaz et al. (2008) 

showed that cooperation between two authorities in the same area may not always be 
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beneficial to any network, because whether or not each authority will cooperate 

depends on the configuration of each network. Their results showed that there are four 

factors which affect node cooperation, i.e. the density of the network, the data 

collection rate, the path loss exponent and the routing algorithm. Hence, node 

cooperation between different authorities in overlay WSNs is not straight forward. It is 

therefore necessary to find an algorithm (s) for each authority to decide whether to 

cooperate with each other or not at any given condition or instance, in a non-

cooperative environment. 

 1.1.3  The best strategy in overlay WSNs 

  In a non-cooperative game situation, there exist a number of decision 

makers, called agents (or players), who have potentially conflicting interests. Many 

researches try to find an algorithm which can rationally decide to select the best 

strategy in multi-agent WSNs. The tools which are usually employed to select suitable 

strategies for sensor node in WSNs are the Non-cooperative game algorithm 

(Felegyhaz et al., 2005) and reinforcement learning (Sutton and Barto, 1998). 

 1.1.3.1  The Non-cooperative game agorithm 

Recently, game theory has become a promising tool to analyze 

and improve the performance of sensor networks. This owes to the fact that game 

theory helps analyses the problem and selects the best strategy for problem solution, 

(Machado and Tekinay, 2008). Game theory, (Shoham and Brown, 2009), is a 

discipline aimed at modeling situations in which decision makers have to make 

specific actions that have mutual, possibly conflicting consequences. It has been used 

primarily in economics, in order to model competition between companies. The major 

advancement that has driven much of the development of game theory is Nash 
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equilibrium. Nash equilibrium is a collection of strategies for each of the players such 

that each player’s strategy is the best-response to the other players’ strategies.  

Game theory has also been applied in WSNs. Many researches 

employ an existing non-cooperative game approach to solve routing resource 

allocation problems in WSNs.  Lima et al. (2008) used game theory to determine a 

relay selection strategy for geographic routing in multi-hop WSNs. Their approach 

can retain a substantial portion of the Packet Delivery Success Ratio (PDSR) 

associated with a system with perfect relay selection. Zhao et al. (2008) applied a 

novel concept of incompletely cooperative game the MAC layer in WSNs. The 

incompletely cooperative game is classified as a stochastic game, where each player 

(i.e., sensor node) estimates the current game state based on what happened in the past 

timeslots. The player can predict its opponent’s actions according to what has 

happened, take actions simultaneously, i.e., transmitting their packets, listening or 

sleeping.  A simplified game-theoretic MAC protocol (GMAC) was presented to 

design a suitable equilibrium strategy based on a conditional game in WSNs. Their 

simulation results showed that the incompletely cooperative game is an appropriate 

tool to improve throughput, and decrease delay and packet-loss-rate, while increasing 

energy efficiency.  Niyato et al. (2007) investigated the performance of different sleep 

and wakeup strategies in a solar-powered wireless sensor/mesh network, where a solar 

cell is used to charge the battery in a sensor/mesh node. An analytical queueing model 

was presented for solution along with the game theoretic formulation, which was used 

for the design and optimization of energy efficient protocols for solar-powered 

wireless sensor/mesh networks under quality-of-service (QoS) constraints. Agah et al. 

(2004) proposed a non-cooperative game framework for intrusion detection in mobile 
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wireless sensor networks. They defined the attacker and the sensor network as the 

players in the game. They also defined the payoff function between players as  

a function of their distance and each node’s transmitter signal strength. They showed 

that non-cooperative game can achieve Nash equilibrium for both players as well as 

significantly improve the chance of detecting intrusions. Qiang et al. (2009) 

constructed a power control model based on non-cooperative game theory for ad hoc 

and sensor networks. They proposed a distributed non-cooperative algorithm for 

power control (DNGAPC) that satisfied QoS requirements such as the maximum 

network capacity, the minimum network radius and guaranteed network connectivity. 

Their approach outperformed the maximum energy power control algorithm 

(MAXPCA) and minimum energy power control algorithm (MINPCA) in terms of 

reachability, capacity and energy efficiency. Ma et al. (2008) also considered an 

intrusion detection system (IDS) in a WSN.  Their approach allowed each cluster head 

sensor node to decide whether a service is an intrusive service by considering the 

probability of starting up an IDS service using a non-cooperative game theory. The 

method not only ensures the security of network, but also reduces the cost caused by 

monitoring and prolongs the lifetime of each sensor node. Although those researches 

used non-cooperative game theory to determine resource allocation strategies in 

wireless sensor networks, non-cooperative game theory for overlay WSNs remains 

much to be explored.   

There are related works which consider non-cooperative game 

in overlay WSNs. In (Wu et al., 2005; Miller et al., 2005), incentive mechanisms were 

used to motivate cooperation between sensor nodes. Wu et al. (2005) proposed  

a mechanism design (MD) approach called InterSensorNet based on game theory to 
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handle the strategic agents that respond to incentives, which include a mechanism 

design for Data Collection (MDC) and the mechanism design for Data Aggregation 

(MDA).  They assumed multiple sensor networks under the control of different 

authorities. Their approach can be applied in routing and aggregation problems for 

optimizing the power usage and lifetime of the network. Miller et al. (2005) proposed 

the use of tokens as incentive to encourage each sensor associated with a network 

authority (sponsor) to cooperate with one another. The game starts with each sponsor 

acknowledging an agreed-upon number of tokens, which it distributes among its 

sensors. When a sensor from one sponsor requests a favor from another sponsor’s 

sensor, it offers a token in exchange for the favor. If the request is able to provide the 

favor, it does so in return for the token. If a sensor runs out of tokens, it can no longer 

request favors. So the more tokens are available to the sensors, the more favors will be 

performed. Their work showed that when sponsors jointly agree on the number of 

tokens, they can trade for favors. However, this approach will be beneficial for both 

sponsors only if they sign a contract before network deployment. Felegyhazi et al. 

(2005) applied the Non-cooperative game algorithm to describe such a situation that 

cooperation can exist in overlay WSNs without incentive mechanisms. They proposed 

a packet forwarding game model based on a non-cooperative resource allocation 

problem. They performed simulations to study the conditions for a cooperative 

equilibrium to hold in randomly generated network topology scenarios. Their results 

showed that the Non-cooperative game algorithm is a suitable framework to determine 

equilibrium strategy for such problem. 

The aforementioned works showed that game theory can 

determine a suitable strategy for all authorities. However, the major drawback of game 
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theory is the exhaustive search through the space of all joint strategies to obtain  

a suitable strategy. The agents must search the entire strategy space over to compute 

the benefits of all possible actions of sensor node to achieve the final conclusion or the 

best strategy. 

 1.1.3.2  Reinforcement Learning 

Reinforcement learning is a machine learning method which 

allows an agent to systematically learn correct behaviors through trial-and-error 

interactions with a dynamic environment in order to achieve a particular goal, (Sutton 

and Barto, 1998). Each agent has the capability to process and communicate thereby 

enabling it to make decisions and perform tasks in a distributed and coordinated 

manner to achieve a system-wide objective. As sensors in overlay WSNs are spatially 

distributed, constrained in resources, and can have a large number, the distributive 

decision-making feature of RL is inherently suitable for WSNs.  RL has been 

employed for resource allocation in many researches, where it has shown to be more 

efficient than traditional resource allocation schemes.    

A reinforcement learning strategy called Q-learning is an off-

policy temporal difference control algorithm, which directly approximates the optimal 

action-value function (Q-value). Each learning agent takes actions, receives a reward, 

updates local information with input from the environment, and repeats the process by 

learning its own optimal strategy (i.e. policy). Shah and Kumar (2007) proposed the 

Distributed Independent Reinforcement Learning (DIRL) based on Q-learning, which 

enabled autonomous self-learning/adaptive applications with inherent support for 

efficient resource/ management in WSNs.  Their results showed that their approach 

can achieve greater reward than other existing methods. Wang et al. (2006) presented 
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a novel routing scheme called the adaptive Routing (AdaR) based on Least Squares 

Policy Iteration (LSPI). They improved the convergence rate of a standard Q-learning while 

learning the optimal routing strategy in the sensor network.  Their results showed that 

AdaR can receive higher success rates of packet arriving at the base station and 

cumulative rewards than the normal Q-learning. Moreover, their results suggested that 

their approach can make correct tradeoffs between multiple optimization goals in 

order to maximize network lifetime. Forster and Murphy (2007) proposed  

a reinforcement learning approach to route data to multiple sinks in a WSN. They 

devised the Feedback Routing for Optimizing Multiple Sinks (FROM) algorithm.   

Q-learning has been applied in FROM to identify the best routes to multiple sinks. 

However, these above works only used RL to solve resource allocation problems in 

single authority WSNs.  

To cater multiple network authority frameworks existing in 

overlay WSNs, the concept of Multi-Agent Reinforcement Learning (MARL) can be 

used. MARL integrates together the single-agent RL, game theory, and direct policy 

search techniques. Applications of MARL are rapidly expanding and applied to 

several problem domains (Busoniu et al., 2008). With the success of single-agent  

Q-learning, Tham and Renaud (2005) employed Q-learning to solve multi-agent 

problems in WSN. Based on cooperative game, their results showed that Q-learning 

can find the best policy for each agent to improve the performance by maximizing 

their network lifetime. Liang et al. (2008) applied MARL in overlay WSNs to obtain a 

good routing protocol. A MARL based routing protocol with QoS support for WSN 

called MRL-QRP was proposed. Sensor nodes can compute routes satisfying certain 

QoS requirements using a distributed reinforcement learning algorithm based on  
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Q-learning. However, each agent in these researches obtained the best policy with 

respect to its own benefits without considering the joint benefit of the other agents. As 

a result, the policy achieved may not be the best mutual policy for all agents. 

On the other hand, (Hu and Wellman, 2003) considered joint 

benefits of other agents in the system. They introduced a MARL algorithm called 

Nash Q-learning (NashQ) to extend Q-learning to the context of non-cooperative 

multiple agents (i.e. authorities). NashQ uses the framework of a general sum 

stochastic game, whereby each agent’s reward depends on the joint action of all agents 

and the current state. The agent attempts to learn its equilibrium Q-values, which are 

defined by Q-values received in Nash equilibrium.  Moreover, the agent not only 

learns to find its own optimal policy, but it also learns actions and rewards of the other 

agent to find the other agent’s optimal strategy. Therefore, each agent acts rationally 

with respect to this expectation and eventually fairness can be achieved.  

Song et al. (2007) proposed another algorithm for non-

cooperative multiple agents called Pareto Q-learning (ParetoQ). Although agents in 

ParetoQ undergo learning process similar to NashQ, ParetoQ allows agents to 

converge to Pareto optimum (Deb, 1999) by online learning. Pareto optimality is a set 

of strategies which an agent cannot increase its utility without decreasing the utility of 

at least one other agent. The advantage of ParetoQ is its simplicity for finding the 

optimal point in each stage game. Moreover, it guarantees that every game must have 

at least one such optimal point under a pure strategy. Finally, for games with multiple 

Pareto optimal strategies, the selection of an equilibrium can follow a lexicographic 

convention (Song et al., 2007).  Therefore, ParetoQ can rationally select a unique 

Pareto optimal strategy for all agents. 
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In this thesis, we applied multi-agent Q-learning algorithms 

which are NashQ and ParetoQ algorithms to a packet forwarding problem in non-

cooperative overlay wireless sensor networks. The underlying objective of this thesis 

is to propose an algorithm to achieve the best mutual policy and improve the network 

performance between two different agents belonging to non-cooperative multi-agent 

WSNs. Both NashQ and ParetoQ algorithms were applied to decide a suitable course 

of action for the agents in the packet forwarding game by learning online without 

exhaustive search over the strategy space. This thesis also studied the equilibrium 

conditions of the packet forwarding strategies in an overlay WSN and proposed fair 

resource allocation schemes from an online learning process. 

To conclude, the main contributions of this thesis are three-

fold: 

1) The application of NashQ and ParetoQ algorithms to 

achieve the best mutual packet forwarding strategy in non-cooperative overlay WSNs 

with the MDP formulation. 

2) The extension of ParetoQ algorithm from the MDP 

formulation to the radio energy model. 

3) The incorporation of Pareto optimality with the Non-

cooperative game algorithm and its application to the packet forwarding game. 

 

1.2 Research objectives 

 1.2.1 To study optimal resource allocation schemes in overlay wireless 

sensor networks using multi-agent reinforcement learning. 
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1.2.2 To study the tradeoff between the computational time to obtain  

a packet forwarding strategy and the network performance (the successful packet 

delivery ratio, the energy consumption, the average utility of both agents and fairness). 

 

1.3 Assumptions  

1.3.1 Cooperative packet forwarding is beneficial when the network is sparse 

or when the environment is hostile. 

1.3.2 Multi-agent Q-learning provides an equilibrium more efficiently than 

the Non-cooperative game approach. 

1.3.3 A sensor node in overlay WSNs can communicate with each other 

using the same underlying protocol. 

 

1.4 Scope of the Research 

The experiment was separated into two parts. In the first part, the packet 

forwarding problem in non-cooperative overlay WSNs was formulated as a MDP and 

was solved with NashQ reinforcement learning. The performance of NashQ was 

compared with an existing algorithm called the Non-cooperative game approach 

(Felegyhaz et al., 2005). To evaluate the performance, we investigated the equilibrium 

conditions of the packet forwarding strategies. Results from this experiment suggested 

that the theoretical convergence conditions for the NashQ algorithm may be relaxed. 

We then proceed to study another MARL mechanism that provides a pure strategy to 

facilitate the conjecture of the other agent’s action, and is still guaranteed to converge. 

The second part therefore investigated and evaluated the performance of such 

mechanism so called the ParetoQ algorithm. The packet forwarding problem was 

formulated as a MDP and solved by the ParetoQ algorithm. The experiments were  
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conducted and the same metrics were measured and compared with the same sensor 

selection scheme as in part one. Moreover, we extended the study from the MDP 

formulation to a more realistic scenario by employing the radio energy regime 

(Naruephiphat and Usaha, 2008).  Under this scenario, we numerically evaluated the 

following performance metrics, the number of time steps required to obtain a strategy, 

the average successful packet delivery rate, the average energy consumption in the 

packet forwarding process and the average utility of the agents. Results were 

compared with the Non-cooperative game algorithm. 

 

1.5 Expected Usefulness 

1.5.1 To conceptually show that the multi-agent Q-learning algorithm can be 

applied to find the best mutual policy for packet forwarding in non-cooperative 

overlay WSNs. 

1.5.2 To obtain an optimal and fair resource allocation strategy for non-

cooperative overlay wireless sensor networks. 

1.5.3 To reduce computational time for determining the best mutual strategy 

by learning a strategy online.  

 

1.6 Synopsis of Thesis 

 The remainder of this thesis is organized as follows. Chapter 2 presents the 

theoretical background which is the foundation for the contributions of this thesis. 

Firstly, the concept of the Markov decision process formulation is reviewed. Next, 

existing tools used for solving the packet forwarding problem called NashQ and 

ParetoQ algorithms are introduced. 
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 Chapter 3 studied the resource allocation problem in non-cooperative overlay 

WSNs. The packet forwarding game was formulated as a MDP and solved by the 

NashQ algorithm. 

 Chapter 4 studied and evaluated the performance of another multi-agent  

Q-learning called the ParetoQ algorithm in non-cooperative overlay WSNs. The 

packet forwarding game was formulated as MDP and solved by the ParetoQ 

algorithm. Moreover, this chapter extended from the MDP formulation to a more 

realistic scenario by employing the radio energy model.  

 Finally, chapter 5 summarizes all the findings contribution in this thesis and 

points out possible future research directions.  

 



 

CHAPTER II 

BACKGROUND THEORY 

 

2.1 Introduction 

 This thesis studies the resource allocation problem in non-cooperative overlay 

wireless sensor networks (WSNs). Typically, overlay WSNs include a large number of 

nodes that are deployed in the same area which are controlled by different authorities. 

The networks perform different tasks and measure different data within the same area. 

The most important usage for overlay WSNs is resource sharing between different 

authorities which can prolong their lifetime. The main reason is because intermediate 

nodes from other network authorities may help shorten the data transmission distance 

between neighboring nodes. When any authorities share their sensor nodes with the 

same goal of sending packets via a shorter distance, energy consumption is lowered; 

the networks can save their energy and eventually prolong their lifetime. However, 

cooperative behavior between sensor nodes belonging to authorities may not always 

be readily available because sensor nodes may act selfishly to conserve their energy. 

Furthermore, there is no guarantee that node cooperation will be beneficial to all 

WSNs. Therefore, it is necessary to find an algorithm (s) for each authority to decide 

whether to cooperate with each other or not in a non-cooperative problem in  

overlay WSNs. 

 This thesis proposed the application of reinforcement learning (RL) to address 

the issue of non-cooperative resource allocation problem in overlay WSNs. 

Reinforcement learning (Sutton and Barto, 1998) is a machine learning scheme to
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provide a framework in which an agent learn the optimal policy based on the agents’ 

past experiences without full information about the model of the environment. RL 

relies on the assumption that the dynamics of the system satisfies a Markov Decision 

Process (MDP). RL has been used to encourage cooperation between sensor nodes in 

a WSN where all sensor nodes belong to a single network entity (Pandana et al., 2005; 

Shahl et al., 2008). To cater multiple network authority frameworks such as overlay WSNs, 

the concept of multi-agent reinforcement learning (MARL) can be used, which integrates 

together RL, game theory, and direct policy search techniques. 

Multi-agent systems differ from single-agent systems in that there are many 

different agents that are supposed to learn a task and that all of the agents’ actions 

affect the environment. Thus, the optimal policy does not rely on only one agent, but 

rather it conditions on all agents. There are works which directly applied Q-learning to 

multi-agent systems where an individual agent maximizes its own benefit. By doing 

so, it neglects the presence of the other agents. As a result, this may well lead to 

suboptimal decisions. Therefore, an individual agent should take account of the effect 

of joint actions as a more suitable strategy for multi-agent system. The desired 

convergence in multi-agent system is based on an equilibrium strategy profile (Sen  

et al., 2008) i.e., a collection of strategies of the agents, rather than optimal strategies 

for an individual agent since all of the agents’ actions affect the environment.   

To solve resource allocation in multi-agent systems, (Hu and Wellman, 2003); (Song 

et al., 2007) extended Q-learning to a non-cooperative multiple agent framework with 

guaranteed convergence. Hu and Wellman (2003) considered joint benefits of other 

agents in the system by introducing a MARL algorithm called Nash Q-learning 

(NashQ). In this algorithm, the agent attempts to learn its Nash equilibrium Q-values 
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online. Song et al. (2007) proposed another algorithm for non-cooperative multiple 

agents called Pareto Q-learning (ParetoQ), which allows agents to converge to Pareto 

optimum (Deb, 1999) by online learning. In this thesis, both algorithms were used to 

determine the best mutual policy in overlay WSNs.  

 Therefore, this chapter serves as an introductory to the fundamental theory of 

reinforcement learning which is the basis of the contribution of this thesis. The next 

section provides a theoretical background on Markov decision process (MDP) theory. 

A description of reinforcement learning is given in section 2.3. Section 2.4 presents 

the multi-agent Q-learning and a summary is presented in the final section. 

 

2.2 Markov decision process theory 

A Markov decision process (MDP) is a model of a decision-maker interacting 

synchronously with the environment. If the decision-maker sees the environment’s 

true state, it is referred as a completely observable Markov decision process. The 

foundation of Markov decision process is presented as follows. 

2.2.1 Markov property 

The Markov property states that anything that has happened so far can 

be summarized by the current state. Thus, the probability of being in the next state at 

time t+1 based on the past history of state changes can be defined simply as the 

conditional probability based on the current state at time t, 

 

1 1 0 0 1 1( | ,..., ) ( | ).t t t t t t t tP S s S s S s P S s S s+ + + += = = = = =  (2.1) 

 

This equation is referred to as the Markov property. A state refers to 

information on the environment that may be useful in making a decision. If the state 
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has the Markov property, then the environment’s state at time t+1 depends only on the 

state representation at time t.  

2.2.2 Markov Decision Process 

A MDP is a discrete-time random decision process defined by a set of 

states, actions and the one-step dynamics of environment. Given any state s and action 

a, the probability of occurrence of each possible next state s' is 

 

1( | , ) ( | , ).t t tP s s a P S s S s a a+′ ′= = = =  (2.2) 

 

This equation is called the state transition probability. Similarly, given any current 

state and action, s and a, together with any next state, s', the expected value of the 

incurred reward is 

 

1 1( , , ) [ | , , ],t t tR s a s E r S s a a S s+ +′ ′= = = =  (2.3) 

 

where [ ]E ⋅  is the expectation operator and 1tr+ is the reward received at time t +1. 

Equation (2.2) and (2.3), completely specify the most important aspects of the 

dynamics of the MDP. A MDP model can be shown in Fig. 2.1.  

 

 

 

Figure 2.1 A MDP model. 
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A tuple (S, A, P, R) can describe the MDP characteristics, where S 

denotes the set of states, A denotes the set of possible actions, P is the state transition 

probability matrix. R is a function of the reward expected from the environment as a 

result of taking action a A∈ .  Let ( | , )P s s a′ ∈ P be the state transition model that 

explains the probability of transiting to the next state s S′ ∈   after an agent takes 

action a A∈   at the current state s S∈ .   

The objective of solving a MDP is to find a policy, π , defined as a 

mapping of the state space to the action space, : [ ]S P Aπ → , where P[A] is the 

distribution over the action space. The action-value function ( , )tQ s aπ   of a given 

policy π   associates all state-action pairs ( , )s a  with an expected reward for 

performing action a in state s at time step t and following π  thereafter;     
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= + + + =∑ is the expected discounted return of the 

agent, β is the discount factor and [ ]Eπ ⋅ is the expectation operator under policy π .   

The objective of MDP is to find a policy to select actions at a given 

state such that the long term average reward is maximized. To achieve this, 

particularly in scenarios where the dynamics of the environment is difficult to model 

(such as in WSNs), a technique called reinforcement learning can be used to solve 

MDPs. 
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2.3 Reinforcement learning 

Reinforcement learning (RL) is a computational approach which identifies 

how a system in a dynamic environment can learn to choose optimal actions to 

achieve a particular goal. The learner is not taught which action to take, as in most 

forms of machine learning, but instead must discover which actions yield the most 

reward by trial-and-error interactions with its environment (Sutton and Barto, 1998). 

In RL model, the learner or decision maker is called the agent. Everything 

outside the agent is called environment. It uses a formal framework defining the 

interaction between a learning agent and its environment in terms of states (st), actions 

(at) and rewards (rt). The agent selects actions and the environment responds to those 

actions. Furthermore, the environment also feed backs to the agent rewards, as  

a consequence of the action selection at a given state, which the agent tries to 

maximize over time. More specifically, the agent and environment interact with each 

other in a sequence of discrete time steps. At each time step (t), the agent receives 

some representation of the environment’s state (st ) and selects an action (at). One time 

step later, the agent receives a numerical reward (rt+1) and finds itself in a new state 

(st+1). Figure 2.2 shows the agent-environment interaction in reinforcement learning. 
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Figure 2.2 Diagram of agent-environment interaction in reinforcement learning. 

 

2.3.1 The value function 

  Reinforcement learning algorithms are based on estimating value 

functions. A value function is the expected sum of rewards received from starting in 

state s. The value functions evaluate the performance of the decision which the learner 

has taken at a given state. Since the rewards received in the future by the learner 

depend on the actions which are taken, value functions are defined with respect to 

each particular policy. Therefore, we can define the value function of a state under a 

policy π , ( )V sπ is 

 

( ) [ | ]t tV s E R s sπ π= =  

1
0

         [ | ]k
t k t

k
E r s sπ β

∞

+ +
=

= =∑
 

(2.5) 
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  Similarly, the action-value function ( , )tQ s aπ of a given policy 

π associates all state-action pairs ( , )s a with an expected reward for performing action 

a in state s at time step t and following π  thereafter; 

 

1
0

( , ) [ | , ]

             [ | , ]

t t t

t k t t
k

Q s a E R s s a a

E r s s a a

π π

π β
∞

+ +
=

= = =

= = =∑  
(2.6)

 

 

2.3.2 The optimal value function 

The aim of solving a MDP is to find an optimal policy that achieves the 

maximum reward over the long run. The optimal state-value function, denoted as 

( )V s∗ ,would therefore be state value function over all possible policies, at state s that 

is the maximum.  

 

( ) max ( ),V s V sπ
π

∗ =
 (2.7)

 

 

for all s S∈ . 

  Optimal policies also share the same optimal action-value function, 

denoted ( ),Q s∗ and defined by 

 

( ) max ( , ),Q s Q s aπ
π

∗ =
 (2.8) 

 

  The standard solution to the problem above is through an iterative 

search method (Puterman, 1994) that searches for a fixed point of the following 

Bellman equation: 
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( ) max ( | , ) ( ) ,ta s

V s R P s s a V sπβ∗

′

⎧ ⎫′ ′= +⎨ ⎬
⎩ ⎭

∑
 

(2.9) 

 

The equation (2.9) is a form of the Bellman optimality equation for ( )V s∗ . The 

Bellman optimality equation for ( )Q s∗ is 

 

( ) ( | , ) max ( , )t as
Q s R P s s a Q s aβ∗ ∗

′′

′ ′ ′= + ∑
 

(2.10) 

 

2.3.3 Q-learning 

Q-learning (Sutton and Barto, 1998) defines a learning method within  

a MDP that is employed in single-agent RL systems. Q-learning is an algorithm that 

does not need a model of the environment and can directly approximate the optimal 

action-value function (Q-value) through online learning.  

In Q-learning process, the agent starts with an arbitrary initial Q-value 

at time step 0. After executing action a at state s, the agent will receive an immediate 

reward r and then transits to a new state and updates the new Q-value with the input 

from the environment.  The update rule at time step t+1 of the Q-value is given by: 

 

 

where  [0,1)tα ∈  is the learning rate. The process is repeated so that the agent can 

learn its own optimal policy. Note that the Q value in equation (2.4) can converge 

to *( , )Q s a  under the assumption that all states and actions have been visited infinitely 

often. 

 

1 ' '( , ) (1 ) ( , ) [ max ( , )],                      (2.11)
'

t t t tQ s a Q s a r Q s a
a

α α β+ = − + +
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2.4 Multiple agent Q-learning algorithm 

Multi-agent systems differ from single-agent systems in that there are many 

different agents that are supposed to learn a task and that all of the agents’ actions 

affect the environment. Thus, the optimal policy does not rely on only one agent, but 

rather it conditions on all agents. There are works which directly applied Q-learning to 

multi-agent systems where an individual agent maximizes its own benefit. By doing 

so, it neglects the presence of the other agents. As a result, this may well lead to 

suboptimal decisions. Therefore, an individual agent should take account of the effect 

of joint actions as a more suitable strategy for multi-agent system. 

2.4.1 Nash Q-learning algorithm  

Hu and Wellman (2003) proposed the Nash Q-learning (NashQ) 

algorithm, by extending Q-learning to a non-cooperative situation where each agent 

can rationally decide its action whether it will cooperate with other agents or not by 

considering both its own and other agents’ information as well.  

2.4.1.1 The action-value function 

Instead of finding an optimal action to maximize one single 

agent’s reward as the single-agent Q-learning, NashQ seeks joint actions that yield the 

best possible reward for all agents. For a two-agent system, the action-value function 

for any agent becomes 1 2( , , ),  where 1,2.iQ s a a i =  

The objective of the agents in the NashQ algorithm is to learn 

their best mutual response policy, which is defined by the Q-values received from 

Nash equilibrium (NE). NE is not only used to decide the agent’s own action policy, 

but also predict the other agent’s action, given by 1 2( ), ( )s sπ π′ ′  where ( )i sπ ′   is the 

agent i’s distribution over the set of actions at state s′ . NashQ then calculates a NE for 
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the stage game 1 2( ( ), ( ))t tQ s Q s′ ′ and updates its Q-values according to 

 

1 2 1 2
1( , , ) (1 ) ( , , ) [ ( )],i i i i

t t t t t tQ s a a Q s a a r NashQ sα α β+ ′= − + +   (2.13) 

 

where 

 

1 2( ) ( ) ( ) ( )i i
t tNashQ s s Q s sπ π′ ′ ′ ′= ⋅ ⋅     (2.14) 

 

 In order to calculate the Nash equilibrium, agent i must 

observe the other agent’s immediate reward and previous actions and updates its 

conjectures on the other agent’s Q-value, by maintaining its own update on the other 

agent’s Q-value: 

 

1 2 1 2
1( , , ) (1 ) ( , , ) [ ( )],    .j j j j

t t t t t tQ s a a Q s a a r NashQ s j iα α β+ ′= − + + ≠   (2.15) 

 

NE can be found in a pure-strategy equilibrium, where an agent is able 

to achieve the best response to the other agent’s choice. However, not all games have 

pure-strategy equilibrium (Daskalakis et al., 2009). Under this circumstance, the 

agents need to select their strategies randomly according to some probability 

calculated from the Lemke-Howson method (Shoham and Brown, 2009) to achieve 

the NE. Such equilibrium is called mixed-strategy equilibrium.  
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Table 2.1 The Nash Q-learning algorithm. 

 

 

2.4.1.2 Convergence 

NashQ requires two conditions in a stage game during learning to 

converge (Hu and Wellman, 2003). 

1) The stage games encountered during learning have a global 

optimal point, which is defined as a point of joint strategy in the stage game which 

every agent receives its highest payoff at this point, or  

2) They all have a saddle point which is defined as a point of 

joint strategy in the stage game which is a NE point, and each agent would receive  

a higher payoff when at least one of the other agents deviates.  

However, both the global and saddle points are hardly satisfied 

for these conditions because of both points may not exist in every stage game. Another 

limitation is that in selecting NE under a mixed strategy (when multiple NE exist), 

NashQ algorithm resorted to a mixed strategy selection where the Nash equilibrium 

probabilistically selected according to the Lemke Howson method (Shoham and Brown,  

 

Initialize: 
Let t = 0, get the initial state s0. 
Let the learning agent be indexed by i. 
For all s S∈ and , 1, 2i ia A i∈ =  , let 1 2( , , ) 0.i

tQ s a a =  
Loop 

Choose action .i
ta  

Observe 1 2 1 2, ; , ,t t t tr r a a and 1ts s+ ′=  

Update 1
i
tQ + for i=1,2 

1 2 1 2
1( , , ) (1 ) ( , , ) [ ( )],i i i i

t t t t t tQ s a a Q s a a r NashQ sα α β+ ′= − + +  
where [0,1)tα ∈ is the learning rate, and ( )i

tNashQ s′ is defined in (2.14) 
Let t := t +1. 
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2009). They algorithm showed that convergence can still be established with such relaxed 

convergence conditions. 

2.4.2 Pareto Q-learning algorithm 

Song et al. (2007) proposed another algorithm called, Pareto Q-learning 

algorithm (ParetoQ). Instead of finding the best mutual policies from NE, ParetoQ 

obtains equilibrium from Pareto optimality.  

2.4.2.1  Pareto optimality  

 One method for identifying the desired equilibrium point in  

a game is to compare strategy profiles using the concept of Pareto-optimality.  

To introduce this concept, let us first define Pareto-superiority.  

 Pareto-superiority, the strategy profile ξ  is Pareto-superior 

to the strategy profile ξ ′  if for any agent i, 

 

( , ) ( , ).i i i i i iu uξ ξ ξ ξ− −′ ′≥  (2.16) 

 

In other words, the strategy profile ξ  is Pareto-superior to the strategy profile ξ ′ , if 

the utility of an agent i can be increased by changing from ξ ′  to ξ  without decreasing 

the utility of other players. 

 Pareto optimal, the strategy profile ξ  is a Pareto optimal if 

there does not exist another strategy profile that is Pareto-superior to ξ . Meaning that, 

in a Pareto optimal strategy profile, one cannot increase the utility of player i without 

decreasing the utility of at least one other player. 

 The advantage of Pareto optimality is that every game must 

have at least one such optimal pure strategy. Meaning that, the agents can decide with 
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certainty which action to take such that the best mutual policy is achieved. ParetoQ 

algorithm can converge if the agents choose their strategies and update their Q-value 

by using global optimal point, or Pareto optimal, or alternatively, a saddle point, 

which are encountered in stage games during learning. The Q-values in the ParetoQ 

algorithm can be update using the following rule: Global NE > Pareto optimal > 

Saddle NE. Furthermore, when the stage games encounter multiple Pareto optimal 

points, agents can choose their strategies and update their Q-value according to  

a lexicographic convention. 

2.4.2.2 Lexicographic convention 

It is possible that multiple Pareto optimum equilibriums exist in a 

game. To enable each agent to correctly predict the other agent’s action, a lexicographic 

convention (Song et al, 2007) can be established as follows.  

1) The set of agents is ordered.  

2) The set of each agent’s action is ordered.  

3) The set of different solutions are ordering. 

(Global NE > Pareto optimal > Saddle NE)  

4) Both agents must agree to use the same series of convention. 

The choice for an optimal joint action proceeds as follows. The first agent in the agent 

ordering chooses an optimal action (that corresponds to a Global NE) that appears first 

in its action ordering. The next agent then chooses its first optimal action in its action 

ordering given the first agent’s choice. This procedure continues until all agents have 

chosen their actions. An example of lexicographic convention can be shown in  

Figure 2.3. 
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Game 1 Left Right Game 2 Left Right Game 3 Left Right 
Up 10,9 0,3 Up 5,5 0,6 Up 10,9 0,3 

Down 3,0 -1,2 Down 6,0 2,2 Down 3,0 2,2 
 

Figure 2.3 Three types of general-sum game. 

 

In each stage game, agent 1 has two action choices: Up and 

Down. agent 2’s action choices are left and Right.  

The first game has only one Nash equilibrium, with values 

(10,9), which is a global NE point.  

The second game also has a unique Nash equilibrium; in 

this case a saddle point, valued at (2,2). But there still is a Pareto dominating solution, 

valued at (5,5), which will be better for the both players. In this case, the strategy 

profile (5,5) will be selected. 

The third game has two Nash equilibriums including a 

global optimum, (10,9), and a saddle, (2,2). In this case, the strategy profile (10,9) will 

be selected. 

By using this convention, both agents are able to uniquely select 

their joint actions and the convergence of the ParetoQ algorithm is achieved. The advantage 

of ParetoQ algorithm over the Non-cooperative game approach is that it can converge 

by learning from the agents’ past experiences online, rather than the offline exhaustive 

search. Furthermore, unlike that the NashQ algorithm, each agent in the ParetoQ 

algorithm can predict the other agents’ actions with certainty such that the evaluation 

of the other agents’ Q value (the information necessary for guessing the other agent’s 

action) can also be accurately carried out.  
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2.5  Summary 

In this chapter, overviews of the multi-agent Q-learning algorithm called 

NashQ and ParetoQ are given. Both algorithms were used to determine the packet 

forwarding strategies in non-cooperative overlay WSNs in this thesis. By considering 

joint actions, the agents can rationally determine the best mutual policy and receive 

fair benefit for all agents in overlay WSNs.   

In the next chapter, a packet forwarding formulation in non-cooperative multi-

agent WSNs is presented. Nash Q-learning is used to study the conditions which 

equilibriums can exist and its performance is evaluated under a MDP formulated 

environment. 

 



 

CHAPTER III 

PACKET FORWARDING IN OVERLAY WIRELESS 

SENSOR NETWORKS : NASH Q-LEARNING 

 

3.1  Introduction 

Wireless sensor networks (WSNs) coexisting independently within a region of 

interest without conflicting each other are called overlay WSNs. Such networks 

include a large number of nodes that are deployed in the same area which are 

controlled by different authorities. The most important usage for overlay WSNs is 

resource sharing between different authorities which can prolong their lifetime. The 

main reason is because intermediate nodes from other network authorities may help 

shorten the data transmission distance between neighbouring nodes. When two 

authorities share their sensor nodes with the same goal of sending packets via a shorter 

distance, energy consumption is lowered; the networks can save their energy and 

eventually prolong their lifetime. 

Currently, many research related to resource allocation problems in overlay 

WSNs have been proposed with a focus on saving energy (Murase et al., 2006); (Mao 

et al., 2008); (Wang et al., 2007), fault tolerance problem (Chitnis et al., 2009); (Han 

et al., 2010), node deployment problem (Yu et al., 2007), target detection problem (Li 

et al., 2006). All of these works showed that two authorities cooperatively sharing 

resources results in reduced energy consumption and increased network performance. 

However, cooperative behaviour between sensor nodes belonging to authorities may 

not always be readily available. Sensor nodes not only are deployed independently
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without any fixed strategy, but they may also act selfishly to conserve their energy.  

Furthermore, there is no guarantee that node cooperation will be beneficial to both 

WSNs.  It may even be possible that cooperation may lead to benefits for a single 

party alone or no benefit to any party at all.  In (Vaz et al., 2008) showed that 

cooperation between two authorities in the same area may not always be beneficial to 

any network, because whether or not each authority will cooperate depends on the 

configuration of each network. It is therefore necessary to find an algorithm (s) for 

each authority to decide whether to cooperate with each other or not. 

Recently, game theory has become a promising tool to analyze and improve 

the performance of sensor networks. The major advancement that has driven much of 

the development of game theory is Nash equilibrium. Nash equilibrium is a collection 

of strategies for each of the players such that each player’s strategy is the best-

response to the other players’ strategies. In (Felegyhazi et al., 2005), the authors 

addressed the problem of whether cooperation can exist in WSNs without incentive 

mechanisms. In (Wu and Shu, 2008) and (Miller et al., 2005), incentive mechanisms 

were used to motivate cooperation between sensor nodes. 

In this chapter, we apply an existing algorithm called Nash Q-learning 

(NashQ) (Wu and Wellman, 2003) to a packet forwarding problem in non-cooperative 

overlay wireless sensor networks. NashQ uses the framework of a general sum 

stochastic game, whereby each agent’s reward depends on the joint action of all agents 

and the current state. The agent attempts to learn its Nash equilibrium online.  

Moreover, the agent not only learns to find its own policy, but it also learns actions 

and rewards of the other agent to find the other agent’s optimal strategy. Therefore, 

each agent acts rationally with respect to this expectation. 
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Therefore, the underlying aim of this chapter is to find the best mutual policy 

for all agents in non-cooperative overlay WSNs using Nash Q-learning (NashQ). 

Without full information, the agent not only learns its own policy, but it also observes 

the behavior of the other agent in order to evaluate their other policy for all agents.  

Hence, the best mutual policy is assumed to hold. 

The emphasis of this chapter is focused on the following issues: 

1. The formulation of packet forwarding game in non-cooperative overlay 

WSNs. 

2. The MDP formulation for Nash Q-learning algorithm. 

3. The comparison of algorithm performance between the Nash Q-learning 

algorithm and an existing algorithm called the Non-cooperative game algorithm. 

To the best of our knowledge, NashQ has not been applied for resource 

allocation in overlay WSNs before. Therefore, the contribution of this chapter is two-

fold: 1) the MDP formulation of the packet forwarding problem in a non-cooperative 

multi-agent WSN and, 2) the application of NashQ to solve for the best mutual policy 

in a multi-agent WSN. 

This chapter is organized as follows. Learning in non-cooperative games will 

be described in section 3.2. Section 3.3 is dedicated to describing the problem 

formulation. Section 3.4 presents the experimental results and discussion. Finally, 

section 3.5 summarizes the entire chapter. 

 

3.2  Learning in non-cooperative games 

Reinforcement learning (RL) (Sutton and Barto, 1998) is a machine learning 

scheme which is used to learn the optimal action based on the agents’ past experiences 
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without full information about prior model of the environment. RL relies on the 

assumption that the dynamics of the system follows a Markov Decision Process 

(MDP). The tuple (S,A,P,R) is used to describe the characteristics of MDP, where S is 

the set of states, A is the set of actions, P is the state transition probability matrix. Let 

( | , )P s s a′ ∈ P the probability of transiting to the next state 's from  state s when an 

agent takes action a, and R is a function of reward expected from the environment 

after taking the action a A∈  at state s S∈ and transiting to 's .  In MDP, the objective 

is to find a policy, π , defined as a mapping of the state set to the action set, 

:  S P Aπ ⎡ ⎤→ ⎣ ⎦  , where P A⎡ ⎤⎣ ⎦ is the distribution over the action space. The action-value 

function ( , )tQ s aπ  of a given policy π  associates all state-action pairs ( , )s a with an 

expected reward for performing action a in state s at time step t and following π  

thereafter; 

 

( , ) [ | , ]

               [ | , ] ,10

Q s a E R s s a at t t

kE r s s a at k t tk

π π

π β

= = =

∞
∑= = =+ +=

 (3.1) 

 

where 2
1 2 3 1

0
... k

t t t t t k
k

R r r r rβ β β
∞

+ + + + +
=

= + + + =∑  is the expected discounted return of 

the agent, β  is the discount factor and [ ]Eπ ⋅  is the expectation operator. The objective 

of the agent in a MDP is to determine a policy to select actions so that the sum of the 

discounted rewards it receives over the future is maximized. 

A well-known RL technique called Q-learning is employed to solve MDPs in 

single-agent systems. It is an algorithm that does not need a model of the environment 
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and can directly approximate the optimal action-value function (Q-value) through 

online learning. The agent takes action a at state s, receives a reward r, updates the 

local state with input from the environment, and repeats the process to learn its own 

optimal policy. Q-learning provides a simple procedure in which the agent starts with 

an arbitrary initial Q-value at time step 0. The update rule at time step t+1 of  

Q-learning is given by: 

 

' '( , ) (1 ) ( , ) [ max ( , )]1 't tQ s a Q s a r Q s at t ta
α α β= − + ++  , (3.2) 

 

where  [0, 1)tα ∈ is the learning rate and 's  is the next state that results from taking 

action a in state s. However, multi-agent systems differ from single-agent systems in 

that there are many different agents that are supposed to learn a task. The optimal 

policy does not rely on only one agent, but rather it depends on all agents. Several 

researches i.e. (Tham and Renaud, 2005); (Forster et al., 2007) employ Q-learning to 

solve multi-agent WSN problems. Their results show that Q-learning can improve the 

performance in their system based on cooperative game. However, cooperative 

behaviour between sensor nodes belonging to multiple agents may not always be 

available, particularly when sensor nodes are controlled by different agents. Hu and 

Wellman (2003) extended Q-learning to a non-cooperative multi-agent system where 

each agent can design its action whether it will cooperate with other agents or not. 

They proposed the Nash Q-learning (NashQ) algorithm, in which other agents’ actions 

are taken into consideration as well. Instead of finding out which action to take to 

maximize their reward like the (single-agent) Q-learning, NashQ looks for joint 

actions that yield the best reward for all agents. The agents attempt to learn their best 
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mutual response policy, which is defined by the Q-values received from Nash 

equilibrium (NE). NE is not only used to decide the agent’s own action policy, but 

also predict the other agent’s action policy, given by 1( ), ..., ( )ns sπ π′ ′  where ( )i sπ ′  is 

agent i’s distribution over its set of actions at state s′  and n is the number of agents. 

NE can be found in a pure-strategy equilibrium, where an agent is able to find the 

highest utility, meaning that the agents can decide with absolute certainty which action 

to take so that the best mutual policy is achieved. But in general, not all games have 

pure-strategy Nash equilibrium (Daskalakis et al., 2009), so the agents have to decide 

to select their policies randomly according to some probability to achieve the best 

response. Such NE behaviour is called mixed-strategy Nash equilibriums. Any game 

is guaranteed to have a mixed-strategy NE (Nash, 1951). The Lemke-Howson method 

(LH), is the best known method to solve for mixed-strategy NE for two agents 

(Shoham and Brown, 2009). However, this method still has certain limitations in 

computing the mixed-strategy NE probability, because the sequence of variables 

entering the LH method affects the solution directly. Nevertheless, the advantage of 

LH method is that it is guaranteed to find at least one NE point. We thus employ the 

LH method in both the proposed NashQ and an existing non-cooperative game 

approach (Felegyhazi et al., 2005), (See Section 3.4 for details). 

The convergence of NashQ is proved in (Hu and Wellman, 2003). They 

proved that NashQ can converge if  (1) the stage games encountered during learning 

have a global optimal point, which is defined as a point of joint strategy in the stage 

game which every agent receives its highest payoff at this point; or,  (2) they all have  

a saddle point which is defined as a point of joint strategy in the stage game which is  

a NE point, and each agent would receive a higher payoff when at least one of the 
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other agents deviates. The advantage of NashQ over other non-cooperative game 

theoretic approaches is that it can converge by online-learning from the agents’ past 

experiences. 

In this chapter, we thus apply NashQ algorithm in the problem of a packet 

forwarding problem in a non-cooperative multi-agent WSN in order to find the best 

mutual policy which provides the best benefit for all agents in the system. 

 

3.3  Problem Formulation 

In this section, we formulate the packet forwarding game in non-cooperative 

multi-agent WSNs. NashQ algorithm is then formally introduced in order to find the 

best mutual policy in multi-agent WSNs. In our game, the agent attempts to learn its 

equilibrium Q-values, which are defined by Q-values received in a NE.  Moreover, the 

agent not only learns to find its own optimal policy, but it also learns actions and 

rewards of the other agent to find the other agent’s optimal strategy. Therefore, each 

agent acts rationally with respect to this expectation and eventually the best mutual 

response can be achieved.   

In our model, we assume that there are two different WSNs referred to as 

domains, co-existing in the same area. Each WSN is assumed to operate as a 

centralized system controlled by a cluster head acting as an agent for that particular 

domain. We assume that the cluster heads have no limit in energy (e.g. it may be 

equipped with a renewable battery) and can control the behaviour of the sensor nodes 

in its domain. Each agent maintains two different routing tables, one for routing within 

their own network and the other for coordinating paths with the other network. We 

assume that two sensor nodes are able to communicate with each other if they are 
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within transmission range. Even if they belong to a different network, interactions 

between the agents are ensured by the cluster head in their own network. 

Each sensor node employs the radio model (Naruephiphat and Usaha, 2008) to 

compute the transmission and receiving cost required for transmitting a measurement 

packet. The reception cost of agent i is given by, , ( ) ,i RX elecC b E b= ×  where 

50 /elecE nJ bit=  is the expended cost in the radio electronics and we assume that 

250b Kbits=  is the size of the measurement packet transmitted. The transmission 

cost of agent i is given by, , ( , ) ( ),i TX elec ampC b d E b b dσε= × + × × where σ  is the 

path loss exponent and  10 / /amp pJ bit mσε =  is the energy consumed at the output 

transmitter antenna for transmitting one meter. We assumed that the agents send their 

packets to a base station (called sink) by either their own route or a coordinated route 

through the other network depending on actions selected by the agent. 

The action space is defined by { , , , }A DD DF AD AF=  where the short hand 

notations refer to the following: 

DD: The agent does not ask the other domain to forward packets and drops all packets 

from other domain if asked for help. 

DF: The agent does not ask the other domain to forward packets but helps the other 

domain to forward all packets if asked for help.  

AD: The agent asks the other domain to forward packets but drops all packets from 

the other domain if asked for help. 

AF: The agent asks the other domain to forward packets and helps the other 

domain forward all packets if asked for help. 
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After taking an action, the agent i evaluates the proportion of delivered 

measurement packets to the sink at time t denoted by ( ).p ti  If , ( )    ip t SRi ≥ where SRi  

is the ratio of successfully delivered measurement packets required by agent i, then the 

action is successful and agent i will receive a gain at time t, ( )   g t Gi i= , where 

0iG >> in order to encourage either agent to send its packets to the sink. Otherwise, 

( )   0.g ti = Agent i also incurs a cost in time step t denoted by
, ,  

( )
i TX i RXiC t C C= + , 

which is the total transmission and reception cost of all sensor nodes within the 

domain of agent i. The reward of agent i is then given by 

 

( ) ( ) ( )  .r t g t C ti i i= −  (3.3) 

 

We define the state space in our system as the set of all possible battery levels. 

In particular, the state space of each agent is divided into 3 states, i.e. high (h), 

medium (m) and low (l). The transition probability metric P for action a is defined by 

P(a),  

 

( ) ( ) ( ) 1
( )  ( ) ( ) ( )  0 1  ,

0 0 1( ) ( ) ( )

hh hm hl

mh mm ml

lh lm ll

p a p a p a

P a p a p a p a

p a p a p a

φ δ φ δ
θ θ

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎢ ⎥= = −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
      (3.4) 

 

where ( )xyp a  refers to the transition probability from state x to state y by taking action 

a and , , [0,1]θ φ δ ∈ . Note that each row of P(a) must satisfy ( ) 1xy
y

p a
∀

=∑ .  
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We divide the time into time units called time steps. We initialize 

1 1 20 ( , , ) 0Q s a a =  for all s S∈ ,  1 1 2 2, .a A a A∈ ∈  Agent i attempts to learn its equilibrium 

Q-value, starting from an arbitrary guess. At time step t, agent i observes the current 

state, takes its action and observes its own reward. It then observes the action, reward 

at the other agent and observes the next state of both agents. 

Agent i then calculates a NE 1 2( ), ( )s sπ π′ ′ for the stage game 1 2( ( ), ( ))t tQ s Q s′ ′ and 

updates its Q-values according to  

 

1 2 1 2( , , ) (1 ) ( , , )1

                                [ ( )] ,  

i iQ s a a Q s a at t t

i ir NashQ st t t

α

α β

= −+

′+ +
 (3.5) 

 

where                

 

1 2( ) ( ) ( ) ( ).i i
t tNashQ s s Q s sπ π′ ′ ′ ′= ⋅ ⋅  (3.6) 

 

In order to calculate the Nash equilibrium, agent i must observe the other 

agent’s immediate reward and previous actions and updates its conjectures on the 

other agent’s Q-value, by maintaining its own update on the other agent’s Q-value: 

 

1 2 1 2( , , ) (1 ) ( , , )1

                                [ ( )] ,  .

j j
Q s a a Q s a at t t

j j
r NashQ s j it t t

α

α β

= −+

′+ + ≠
 (3.7) 
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The process is repeated until the game ends when the battery level of either 

agent reaches “low” state, signifying a battery depletion of a sensor node in its 

domain. 

In this chapter, we evaluated the performance of NashQ algorithm by 

comparing it with the Non-cooperative game algorithm in (Felegyhazi et al., 2005). 

The Non-cooperative game is a branch of game theory, applied exclusively to the 

situation which the interests of multiple agents conflict. A multi-stage game can be 

defined by the tuple ( , , )η τ µ , where η is the set of players, τ denotes the set of 

strategies and µ is a set of utility functions.  There are two players (i.e. agents) in the 

game. The reward can be defined by (3.3). We define the utility as the cumulative 

rewards of the player, 
0

( )T
i it

r tµ
=

=∑ , where T denotes the lifetime of the domain 

depending on the transition probability matrix in (3.4). While NashQ attempts to learn 

its policy though the Q-values obtained through NE in (3.5) and (3.6), the policies of 

the players in the Non-cooperative game algorithm are obtained by determining the 

NE from the utility functions. 

In particular, to obtain the NE in the Non-cooperative game algorithm, the 

players first have to calculate utility functions for all possible actions 1 1 2 2,a A a A∈ ∈ , 

and then choose their policies. Such method can be considered as an offline method. 

On the other hand, NashQ obtains its policy through online-learning, without having 

to compute the utility functions for all possible actions. 

 

3.4 Experiment Results 

In this section, we evaluate the proposed NashQ algorithm and investigate the 

equilibrium conditions of the packet forwarding strategies. 
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To implement the packet forwarding game, we consider two different WSNs 

co-existing in the same area of size 40x20m2. Each sensor node has the goal of 

maximizing its own packet delivery to a sink. In our simulation, we investigate two 

scenarios, i.e. the separate sink and the common sink scenarios. The simulation 

parameters are shown in Table 3.1.  

 

Table 3.1 Simulation Parameter Values. 

Parameter Value 

Number of sensors per domain 10-90 
Distribution of the sensors Uniformly random 
Area size 40x20 m2 
Path loss exponent, σ 2-5 
Success requirement, SRi 1 
Positions of the common sink [20,10] 
Positions of the separate sink [10,10] and[30,10] 
Route selection Minimum energy path 

 

Simulation was performed for 100 runs under 100 randomly generated 

topologies. We compare the NashQ with the Non-cooperative game algorithm 

(Felegyhazi et al., 2005). For both NashQ and Non-cooperative game algorithm, the 

LH method is used to compute NE in (3.6). Three types of equilibrium can be 

observed as follows: 

Defective equilibrium: the agent ends up its game at the move DD-DD. 

Cooperative equilibrium: the agent ends up its game at the move AF-AF. 

Other equilibrium: the agent ends up at other moves. 

Figure 3.1a presents the proportion of simulation for each type of equilibrium 

by the NashQ algorithm in the common sink scenario. It can be seen that the 

proportion of cooperative equilibrium is higher than other types of equilibrium at low 
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sensor density but decreases as the density of sensor increases. This suggests that 

cooperation is required if the density of sensor is low. On the other hand, if the agents 

are provided several paths for their sensors to send packets to the sink, as in the case 

when sensor nodes are densely deployed in the area, cooperation between both agents 

is not necessary. This explains the reduction of cooperative behaviour and increase of 

defective equilibrium as the number of sensors per domain increases. 

Figure 3.1b presents the proportion of simulation by the Non-cooperative game 

algorithm in the common sink scenario. Similar to NashQ, the Non-cooperative game 

algorithm increasingly favors the defective equilibrium as the density of sensor nodes 

increases. The results show that though both algorithms prefer the defective 

equilibrium in the common sink scenario, NashQ prefers it more than the other 

algorithm. For example, at 90 nodes per domain, the proportion of defective 

equilibrium from NashQ is 87% while that of the Non-cooperative game is only 75%. 

In addition, as the node density decreases, the proportion of cooperative equilibrium 

from NashQ is also greater than the Non-cooperative game. This suggests that NashQ 

tends to promote more cooperation when necessary and demotes it more than the Non-

cooperative game, otherwise. 

Figure 3.2a and 3.2b depict the proportion of simulation for each type of 

equilibrium in the separate sink scenario. With reasons similar to the common sink 

case, NashQ and the Non-cooperative game algorithms show that the cooperative 

equilibrium is gradually reduced as the network size increases. More interestingly is 

that the NashQ algorithm provides a more robust behaviour than the Non-cooperative 

game algorithm in the sense that NashQ shows a monotonic decrease of cooperative 

behaviour and monotonic increase of defective behaviour as the number of sensors per 
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domain increases. On the other hand, Non-cooperative game results are not monotonic 

as can be seen in Figure 3.2 b) at 50, 70 and 90 nodes per domain.  It is caused by the 

limitation of LH algorithm when dealing with non-unique (i.e. multiple) NEs. As 

explained in Section III, the sequence of variables entering the LH algorithm directly 

affects the mixed-strategy NE probability. However, NashQ can avoid such condition 

whenever it is able to find the NE from either a global point or saddle point. 

Figure 3.3a shows the proportion of simulation for each type of equilibrium as 

a function of path loss exponent in the common sink scenario by the NashQ algorithm. 

The higher the path loss exponent, the more difficult it is to send the packets to the 

sink. Hence, the figure shows that cooperative equilibrium is more beneficial than 

other equilibriums in a hostile environment. 

Figure 3.3b shows the proportion of simulation by the Non-cooperative game 

algorithm, suggesting that cooperation between both agents is still the best strategy for 

all agents in a hostile environment in the separate sink scenario. Once again, it can be 

seen that NashQ obtains 20-50% more cooperative equilibrium than the Non-

cooperative game as the path loss exponent increases. This is likely caused by the fact 

that the Non-cooperative game employs the LH method to solve for a mixed strategy 

NE, thereby is not as robust to non-unique NEs as NashQ which uses the global or 

saddle point for its NE whenever possible. NashQ thus outperforms the Non-

cooperative game. 

Figure 3.4 presents the convergence of the NashQ algorithm in terms of error 

rate in the common sink scenario. The error rate is the percentage of the absolute 

difference between the previous Q-values and the newly updated Q-values summed 

over all state-action pairs. The figure shows that the initial stage of learning has high 
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error rate but decreases steadily in the long run. This suggests that NashQ algorithm 

can be performed online starting from an arbitrary value and still converges as long as 

convergence conditions are met (Hu and Wellman, 2003). The Non-cooperative game 

algorithm, on the other hand, must be performed offline where an exhaustive search 

through all strategies is performed to determine the best mutual response strategy in 

each game. Therefore, once trained, NashQ appears to be less computational 

demanding and more adaptive to topological changes than the Non-cooperative game 

algorithm. 
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(a) by NashQ algorithm 

(b) Non cooperative game algorithm.

 

 

Figure 3.1 Effect of network size on cooperation in the common sink scenario 
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(a) by NashQ algorithm 

(b) Non cooperative game algorithm.

 

 

Figure 3.2 Effect of network size on cooperation in the separate sink scenario 



49 

 

 

Figure 3.3 The effect of path loss exponent in the common sink scenario 
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Figure 3.4 Convergence of NashQ algorithm in the common sink scenario. 

 

3.5  Summary 

In this chapter, we proposed a NashQ algorithm to determine suitable packet 

forwarding strategies in a multi-domain WSNs. The objective of this chapter is to 

conceptually show that the NashQ algorithm can be applied to promote cooperation in 

multi-agent in overlay WSNs. The results showed that based on Lemke-Howson 

method, NashQ can find the best mutual response policy for multiple agents in non-

cooperative WSNs through online learning. Therefore, NashQ was more adaptive to 

topological changes yet less computationally intensive. In addition, NashQ promoted 

more cooperation between both agents in a hostile environment, and demoted more 

cooperation than the Non-cooperative game algorithm, when unnecessary. 

Furthermore, NashQ also appeared to be more robust to the non-uniqueness of Nash 

equilibrium when compared with the Non-cooperative game approach. 



 

CHAPTER IV 

PACKET FORWARDING IN OVERLAY WIRELESS SENSOR 

NETWORKS : PARETO Q-LEARNING 

 

4.1 Introduction 

Overlay wireless sensor networks (WSNs) consist of a large number of sensor 

nodes that are independently deployed in the same region of interest which are 

controlled by different network authorities without conflicting each other. These 

networks could potentially gain certain benefits such as alternative routing paths, 

reduced energy consumption) if their sensors share resources which can prolong their 

lifetime. Most existing works consider resource allocation problems in overlay WSNs 

with focus on saving energy (Murase et al., 2006); (Mao et al., 2008); (Wang et al., 

2007), target detection (Li et al., 2006), node deployment (Yu et al., 2007) and fault 

tolerance (Chitnis et al., 2009); (Han et al., 2010). All of these works showed that 

resource sharing and cooperation between two agents, results in reduced energy 

consumption and increased their network performance. However, because of possible 

selfish behaviors among sensor nodes to conserve their energy, cooperative behavior 

between sensor nodes belonging to different network authorities may not always be 

readily available.  Furthermore, it is possible that, under certain situations, node 

cooperation will not be beneficial to any WSN. Vaz et al. (2008) showed that 

cooperation between two different networks that are deployed in the same region may 

not always be beneficial to both networks. This is because whether or not each
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agent will cooperate depends on the configuration of each network, network 

connectivity and how hostile the environment is. In this chapter, our focus is mainly 

on determining a resource allocation scheme for non-cooperative sensors belonging to 

different network authorities. The challenge of resource allocation in this scenario is 

thus how to achieve good packet forwarding strategies decision in dynamic 

environments under resource constraints in overlay WSNs. 

Recently, game theory has become a common tool to analyse and improve the 

network performance in non-cooperative resource allocation problems. Game theory 

can be used to analyse the interaction and determine a set of strategies among rational 

agents, where each agent uses available information to decide its behaviour. The 

major advancement that has driven much of the development of game theory is the 

concept of Nash equilibrium (NE) which is used to determine a suitable and fair 

strategy for all agents. NE is a set of strategies for each of the players such that each 

player’s strategy is the best-response to the other players’ strategies. Many research 

focus on the problem of stimulating cooperation. Ref. (Wu and Shu, 2008); (Miller  

et al., 2005) applied game theory to overlay WSNs problems by using incentive 

mechanisms to motivate cooperation between sensor nodes. On the other hand, 

(Felegyhazi et al., 2005) applied the Non-cooperative game algorithm to describe such a 

situation that cooperation can exist in overlay WSNs without incentive mechanisms. 

They formulated a packet forwarding game into a non-cooperative resource allocation 

problem. The authors showed that the Non-cooperative game algorithm is a suitable 

framework which can determine equilibrium strategy for their problem. However,  

a drawback of their approach is that obtaining a strategy needs significant amount of 

computational time to compute the utility for all possible actions of sensor nodes. 
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Such computation is mainly performed offline and may not be feasible in networks in 

a dynamic environment. Packet forwarding strategies should not only be 

computationally light but also adaptive to changes in network topology, network 

configuration, communication channel conditions, etc. Therefore, a framework which 

could obtain a non-cooperative resource allocation solution which can cater dynamic 

environments is required. 

In this chapter, we introduce the application of reinforcement learning (RL) to 

address the issue of non-cooperative resource allocation problem in overlay WSNs. In 

the context of RL framework, an agent systematically learns correct behaviours online 

through trial-and-error interactions with a dynamic environment in order to achieve a 

particular goal. There are several recent researches which employ RL to encourage 

cooperation between sensor nodes in WSNs (Pandana and Liu, 2005); (Seah et al., 

2007); (Shah and Kumar, 2008). However, these works considered a single network 

where all sensor nodes belong to a single network entity. To cater multiple network 

authority frameworks such as overlay WSNs, the concept of multi-agent 

reinforcement learning (MARL) can be used, which integrates together RL, game 

theory, and direct policy search techniques. A standard RL method called Q-learning 

can be applied directly to the MARL framework (Watkins and Dayan, 1992). 

Applications of MARL are rapidly expanding, and a wide variety of approaches to 

exploit its benefits and address its challenges have been proposed and applied to 

several problems (Busoniu et al., 2008). Refs. (Shah and Kumar, 2007); (Tham and 

Renaud, 2005); (Forster et al., 2007) applied a MARL to solve resource allocation 

problems in WSNs. Q-learning was applied in their works to identify the best routing 

strategy. Their results showed that their approach can maximize their network 
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lifetime. Wang et al. (2007); Liang et al. (2008) improved the convergence rate of  

a standard Q-learning while learning the optimal routing strategy in sensor networks. 

Their results showed that their proposed algorithms can determine the best strategy for 

each agent by achieving higher success packet delivery ratio and can converge faster 

than the standard Q-learning method. However, these works only used MARL for 

resource allocation problems in WSNs which sensor nodes are cooperative and 

operate under a single network authority.  Moreover, they assumed that each sensor 

node acts as an agent which can obtain the best strategy by taking its action with 

respect to its own benefit without concerning the joint benefit of the other agents. This 

is, however, inappropriate as the state of the environment changes not only as a result 

of the action taken by that agent, but also from actions taken by all other agents in the 

system. Therefore, the agent needs to consider the other agents’ actions in order to 

predict its own optimal action. 

In the previous chapter, a packet forwarding game in overlay wireless sensor 

networks (WSNs) based on a Markov decision process (MDP) has been formulated. 

The best mutual policy for two different agents belonging in the same area is solved 

by using Nash Q-learning (NashQ) algorithm. Recall that in NashQ algorithm, the 

results showed that NashQ algorithm performed well when a unique NE existed. 

However, when multiple NE existed, NashQ algorithm resorted to a mixed strategy 

selection where the Nash equilibria were probabilistically selected according to the 

Lemke Howson method (Shoham and Brown, 2009). Though the mixed strategy 

regime does not satisfy the conditions to establish convergence of NashQ algorithm, 

results showed that the NashQ algorithm can still converge to a solution. This suggests 

that theoretical convergence conditions for NashQ algorithm may be relaxed. 
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However, there is still a pending issue of an agent predicting the other agent’s action 

(Hu and Wellman, 2003), in which under the mixed strategy, the probabilistic action 

selection results in an incorrect prediction.  Therefore, the goal of this chapter is to 

propose the Pareto Q-learning (ParetoQ) algorithm to solve the packet forwarding 

problem in non-cooperative overlay WSNs to facilitate the conjecture of the other 

agent’s action and guarantee convergence. 

ParetoQ allows agents to converge to Pareto optimum (Felegyhazi et al., 2006) 

since every stage game is guaranteed to have at least one optimal pure strategy. Pareto 

optimality is a set of strategies which an agent cannot increase its utility without 

decreasing the utility of at least one other agent. Without full information, the agent 

not only learns its own action, but it also observes actions of the other agents in order 

to evaluate the best mutual policy for all agents. Moreover, ParetoQ algorithm can 

determine a strategy when there are multiple equilibriums existing in the stage game. 

To evaluate the performance of ParetoQ, we divide the experiment into two parts. In 

the first part, we formulate our packet forwarding game into a  Markov Decision 

Process (MDP) framework in order to conceptually show that ParetoQ can be applied 

to obtain the best mutual policy in non-cooperative multi-agent WSNs through online 

learning. The second part extends the study to a more realistic scenario by replacing 

the MDP model with the radio energy model (Naruephiphat and Usaha, 2008) and  

a finer granulation of battery level.  

 Therefore, the underlying aim of this chapter is to select the best mutual policy 

for all agents in non-cooperative overlay WSNs using the ParetoQ algorithm. Without 

full information, the agent not only learns its own policy, but it also observes behavior 
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of the other agent in order to evaluate their other policy for all agents received from 

Pareto optimal.  Hence, the best mutual policy is assumed to hold. 

The emphasis of this chapter is focused on the following issues: 

1. The formulation of a packet forwarding game in non-cooperative overlay 

WSNs. 

2. The MDP formulation for the Pareto Q-learning and the Non-cooperative 

game algorithms. 

3. The performance comparison between the Pareto Q-learning algorithm 

and the Non-cooperative game algorithm based on MDP formulation. 

4. A formulation based on a more realistic energy model for the Pareto Q-

learning and the Non-cooperative game algorithm. 

5. The performance comparison between the Pareto Q-learning algorithm 

and the Non-cooperative game algorithm based on radio energy model. 

The main contribution of this chapter is three-fold: 1) the application of 

ParetoQ algorithm to achieve the best mutual packet forwarding strategy in non-

cooperative overlay WSNs with the MDP formulation; 2) and the extension of 

ParetoQ algorithm from the MDP formulation to the radio energy model; 3) the 

incorporation of Pareto optimality with the Non-cooperative game algorithm and its 

application to the packet forwarding game. 

The organisation of this chapter is as follows. Section 4.2 introduces learning 

in non-cooperative game, followed by the problem formation in Section 4.3. 

Experimental results obtained from simulation and the performance comparison with 

an existing algorithm are shown in Section 4.4. Section 4.5 presents the 

implementation. Finally, a summary is given in Section 4.6. 
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4.2  Learning in non-cooperative game 

In Non-cooperative Game, each agent can independently decide to interact 

with the other agents without any prior agreement or collaborative conditions. 

Therefore, it is necessary for each agent to predict actions of other agents in order to 

determine its own action, relative to the others. Among existing algorithms, the Non-

cooperative game algorithm (Felegyhazi et al., 2005)  is the most popular algorithm to 

provide a solution to such problem (Naserian and Tepe, 2009).  The Non-cooperative 

game algorithm, is a branch of game theory applied exclusively to the situation where 

the interests of multiple agents conflict. Such algorithm consists of a multi-stage 

game, defined by the tuple ( , , )η τ µ , where η  denotes the set of players, τ denotes the 

set of strategies (i.e. policies) and µ  denotes a set of utility functions. The solution in 

the Non-cooperative game algorithm is based on Nash equilibrium (NE) which attains 

the best mutual policy for all agents in the game. 

However, to determine such strategy, the Non-cooperative game needs 

significant amount of computational time to compute the utility for all possible 

actions. Therefore, the algorithm may not be practical to implement in WSNs as 

sensors will be deployed in an environment which changes frequently. Thus, sensors 

should be able to autonomously adapt their strategy according to their environmental 

condition.  

4.2.1 Reinforcement learning  

Reinforcement learning (RL) (Sutton and Barto, 1998) is a machine 

learning scheme in which an agent learns the optimal policy from the agents’ past 

experiences without prior information about the model of the environment. 
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Convergence of RL relies on the assumption that the dynamics of environment 

satisfies a Markov Decision Process (MDP).  

In a MDP, the tuple (S, A, P, R) is defined to describe their 

characteristics, where S denotes the set of all possible states, A denotes the set of all 

possible actions, P is the state transition probability matrix such that ( | , )P s s a′ ∈ P is 

the probability of transiting to the next state s S′ ∈  after an agent takes action a A∈  

at state s S∈ .  R is a function of the reward expected from the environment as a result 

of taking action a A∈ .  The objective of solving a MDP is to find a policy,π , defined 

as a mapping from the state space to the probability distribution, :  S P Aπ ⎡ ⎤→ ⎣ ⎦ , 

where P A⎡ ⎤⎣ ⎦ is the distribution over the action space. To determine the optimal policy, 

π ∗ , RL requires the knowledge of a quantification of future benefits (or returns) at a 

given condition called the action-value function. The action-value function  of a given 

policy π , denoted by ( , )tQ s aπ , associates all state-action pairs ( , )s a  with an expected 

reward for performing action a in state s at time step t and following π  thereafter; 
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= + + + =∑ is the expected discounted return of the 

agent, β  is the discount factor and [ ]Eπ ⋅ is the expectation operator of a given policy 

π .  The goal of the RL agent is to determine a policy to select actions so that its 

expected discounted future reward is maximized.  
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Q-learning is one of the most popular and effective algorithm employed 

in RL systems (Sutton and Barto, 1998). It is an algorithm that does not need a model 

of the environment and can directly approximate the optimal action-value function  

(Q-value) through online learning. During the learning process, the agent starts with 

an arbitrary initial Q-value. After executing action a at state s, the agent receives an 

immediate reward r and then updates both the new state and new Q-value with input 

from the environment. The update rule at time step t+1 of Q-learning is given by: 

 

1( , ) (1 ) ( , ) [ max ( , )],t t t t ta
Q s a Q s a r Q s aα α β+ ′

′ ′= − + +      (4.2) 

 

where [0,1)tα ∈ is the learning rate. The process is repeated iteratively to learn the 

agent’s own optimal policy. The condition for Q-learning to converge is that all states 

and actions must be visited infinitely often (Watkins and Davan, 1992). Q-learning is 

applied to solve in single-agent systems where there is only one agent which can 

change the state of the environment.  

4.2.2 Multiple agent Q-learning 

Multi-agent systems differ from single-agent systems in that there are 

many different agents that are supposed to learn a task and that all of the agents’ 

actions affect the environment. Thus, the optimal policy does not rely on only one 

agent, but rather it conditions on all agents. There are works which directly apply  

Q-learning to multi-agent systems where an individual agent maximizes its own 

benefit. By doing so, it neglects the presence of the other agents. As a result, this may 

well lead to suboptimal decisions. Therefore, an individual agent should take account 

of the effect of joint actions as a more suitable strategy for multi-agent systems. 
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4.2.2.1 Nash Q-learning  

Hu and Wellman (2003) proposed the NashQ algorithm for  

a multi-agent game framework. The authors extended Q-learning to a non-cooperative 

situation where each agent can rationally decide its action whether it will cooperate 

with other agents or not by considering both its own and other agents’ information as 

well. Instead of finding out an optimal action to maximize their own reward like the 

(single-agent) Q-learning, and disregarding other agents’ actions NashQ seeks joint 

actions that yield the best reward for all agents. The objective of the agents in the 

NashQ algorithm is to learn their best mutual response policy, which is defined by the 

Q-values received from Nash equilibrium (NE). NE is not only used to decide the 

agent’s own action, but also predict the other agents’ actions, given by 1( )... ( )ns sπ π′ ′  

where ( )i sπ ′   is the agent i’s distribution over the set of actions at state s′  and n is the 

number of all the agents. Considering two agent system (i.e. i=1,2), NashQ then 

calculates a NE for the stage game 1 2( ( ), ( ))t tQ s Q s′ ′ and updates its Q-values  

according to  

 

1 2 1 2
1( , , ) (1 ) ( , , ) [ ( )],i i i i

t t t t t tQ s a a Q s a a r NashQ sα α β+ ′= − + +   (4.3) 

 

1 2( ) ( ) ( ) ( )i i
t tNashQ s s Q s sπ π′ ′ ′ ′= ⋅ ⋅     (4.4) 

 

NE is able to find a pure-strategy equilibrium, where an agent can 

choose with certainty an action which achieves the best response to the other agent’s 

choice. However, not all games have pure-strategy equilibrium. Under this 

circumstance, the agents need to select their strategies randomly according to some 
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probability calculated from the Lemke-Howson method (Hu and Wellman, 2003)  

to achieve the NE. Such equilibrium is called mixed-strategy equilibrium. 

NashQ requires two conditions in a stage game during learning to 

converge, including,  (1)  the existence of a global optimal point, which is the joint 

action in the stage game whereby every agent receives the highest utility; (2) the 

existence of a saddle point, which is the joint action in the stage game which is a NE, 

and each agent would receive a higher utility when at least one of the other agents 

deviates.  Although the authors in (Hu and Wellman, 2003) showed convergence can 

still be established in their framework with relaxed convergence conditions, there is no 

guarantee of convergence if the NashQ algorithm is to be applied in other frameworks.  

4.2.2.2 Pareto Q-learning 

Pareto Q-learning (ParetoQ) is another multi-agent 

reinforcement learning algorithm (Song et al., 2007). Instead of finding the best 

mutual policies by received from NE, ParetoQ seeks for Pareto optimal equilibrium.  

The advantage of Pareto optimal over NE is that every game 

must have at least one optimal pure strategy, meaning that the agents can decide with 

certainty which action to take such that the best mutual policy is achieved. 

Furthermore, for game with multiple equilibia, actions can be selected according to  

a lexicographic convention (Shoham and Brown, 2009).  Therefore, these features 

suggest that ParetoQ may achieve a more suitable mutual policy than NashQ at  

a given time step. The pseudocode of the ParetoQ algorithm is shown in Table 4.1. 
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Table 4.1 The Pareto Q-learning algorithm.  

Initialize  Loop 
 
Let t = 0, get the initial state s0. 
Let the learning agent be indexed 
by i. 
For all s S∈ and , 1,2i ia A i∈ =  , 
let 1 2( , , ) 0.i

tQ s a a =  
 

 
Choose action .i

ta  

Observe 1 2 1 2, ; , ,t t t tr r a a and 1ts s+ ′=  
Update 1

i
tQ + for j=1,2. 

1 2 1 2
1( , , ) (1 ) ( , , ) [ ( )]i i i i

t t t t t tQ s a a Q s a a r ParetoQ sα α β+ ′= − + +

where [0,1)tα ∈ is the learning rate  
Let t := t +1. 
 

 

ParetoQ algorithm can converge if the agents choose their 

strategies and update their Q-value by using global optimal point, or Pareto optimal, or 

alternatively, a saddle point, which are encountered in stage games during learning.  

The Q-values in the ParetoQ algorithm can be updated using the following rule: 

Global NE > Pareto optimal > Saddle NE. Furthermore, when the stage games 

encounter multiple Pareto optimal, agents choose their strategies and update their  

Q-value according to a lexicographic convention.  

The advantage of ParetoQ algorithm over the Non-cooperative 

game approach is that it can converge by learning from the agents’ past experiences 

online, rather than the offline exhaustive search. Furthermore, unlike the NashQ 

algorithm, each agent in the ParetoQ algorithm can predict the other agents’ actions 

with certainty such that the evaluation of the other agents’ Q values, the information 

necessary for guessing the other agent’s actions, can also be accurately carried out.  In 

this chapter, we thus apply ParetoQ algorithm in the packet forwarding problem in 

non-cooperative overlay WSNs in order to find the best mutual policy which provides 

the best benefit for all agents in the system. 
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4.3  Problem formulation 

In this section, we apply the ParetoQ algorithm into the packet forwarding 

game where two agents co-exist in a non-cooperative overlay WSN. The ParetoQ 

algorithm is formally introduced in order to find the best mutual policy in multi-agent 

WSNs. In our game, the agent attempts to learn its equilibrium Q-values, which are 

defined by Q-values obtained from Pareto optimal conditions.  Moreover, the agent 

not only learns to find its own Pareto optimal policy, but also learns actions and 

rewards of the other agent to find the other agent’s Pareto optimal strategy. Therefore, 

each agent acts rationally with respect to this expectation and eventually the best 

mutual response can be achieved.   

4.3.1  Packet forwarding game 

Throughout this chapter, the energy consumption, the reward function, 

the action space, the energy model and the concept of the packet forwarding game 

from the previous chapter are used.  For the sake of completeness of the chapter, the 

problem formulation is presented as follows. 

In our model, we assume that there are two different WSNs, i.e. agent i, 

i=1, 2, deployed in an overlay WSN. We assume that the system operates as  

a centralized system whereby a representative of each network, called cluster head, 

controls the behaviour of all other sensor nodes in its network authority. It is assumed 

that the cluster heads have no limit in energy (e.g. it may be equipped with  

a renewable energy supply). The role of each sensor node in an overlay WSN is to 

send its data measurements (i.e., packets) to neighbouring nodes through multi-hop 

communications to a base station. We assume that two sensor nodes are able to 
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communicate when they are within transmission range. Even if sensor nodes belong to 

a different network, interactions between the agents are ensured by the cluster head in 

their own network. Therefore, each agent maintains two different routing tables, one 

for routing within their own network and the other for routing through coordinated 

paths with the other network.  

4.3.1.1 Radio model  

Energy consumption required to packet forwarding process is 

computed from the radio model in (Naruephiphat and Usaha, 2008).  The radio model 

for the reception cost of agent i is given by, , ( )i RX elecC b E b= ×  where elecE is the 

expended cost in the radio electronics and we assume that b is the size of the 

measurement packet transmitted. Therefore, the transmission cost of agent i is given 

by, , ( , ) ( )i TX elec ampC b d E b b d σε= × + × × where σ  is the path loss exponent and ampε is 

the energy consumed at the output transmitter antenna for transmitting one meter. We 

assumed that the agent sends its packet to a base station (called sink) by either its own 

route or a coordinated route through the other network depending on actions selected 

by the agent.  

4.3.1.2 Action 

In the Non-cooperative game, each agent can independently 

decide its own action whether or not to cooperate with the other agent.  A set of 

strategies, which include all the possible joint actions available in the game, is defined 

by A = {DD, DF, AD, AF}, where the shorthand notations refer to the following: 

DD: The agent does not ask the other network to forward its 

packets and drops all packets from other network if asked for help. 
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DF: The agent does not ask the other network to forward its 

packets but helps the other network to forward all packets if asked for help.  

AD: The agent asks the other network to forward its packets 

but drops all packets from the other network if asked for help. 

AF: The agent asks the other network to forward its packets 

and helps the other network forward all packets if asked for help. 

4.3.1.3 Reward 

After taking an action, agent i evaluates the proportion of 

delivered measurement packets to the sink at time t denoted by ( ).ip t  If, ( )i ip t SR≥  

where iSR   is the successful measurement ratio required by agent i, then the action is 

considered successful and agent i will receive a gain at time t, 

( )     i ig t G number of delivered measurement packet= × . Note that 0iG >>  in order to 

encourage either agent to send its packets to the sink; otherwise, ( ) 0.ig t =  Agent i also 

incurs a cost in time step t denoted by , ,( ) ,i i TX i RXC t C C= + , which is the total 

transmission and reception cost of all sensor nodes within the network authority of 

agent i. The reward of agent i is then given by 

 

( ) ( ) ( ).i i ir t g t C t= −  (4.5) 

 

4.3.2 MDP model 

In  reinforcement learning, each decision which an agent makes is a 

function of an output from the environment, i.e., the most recent state of the 

environment. The environment is said to have Markov property so that the history of 

its state changes can be summarized into the current state. The next state of the 
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environment is assumed to follow randomly as a function of a given action at the 

current state. Given the state s and action a, the probability of the environment 

transiting to a possible next state s′  in the next time step is given by 

 

1( | , ) P[ | , ].t t tP s s a s s s s a a+′ ′= = = =  (4.6) 

 

and consequently giving the agent a corresponding reward.  This defines a discrete 

time stochastic control process called the Markov Decision Process (MDP). In order to 

conceptually investigate the performance of the ParetoQ algorithm in a MDP 

framework, we define the state s in our game as the battery level of the network (i.e., 

the battery level of the sensor node with the least residual battery) where s S∈ . S is 

the state space of the environment which is divided into 3 states, i.e. high (h), medium 

(m) and low (l)  

 

{ ,  ,  }.S h m l=  (4.7) 

 

where h, m, l represent the state s in (4.6).  We assume that state transition for both 

agents in our game follows the transition probability metric for action a, P(a) is given 

by:  

 

( ) ( ) ( ) 1
( )  ( ) ( ) ( )  0 1  ,

0 0 1( ) ( ) ( )

hh hm hl

mh mm ml

lh lm ll

p a p a p a

P a p a p a p a

p a p a p a

φ δ φ δ
θ θ

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎢ ⎥= = −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
      (4.8) 

 

where ( )xyp a refers to the transition probability of agent i to state y by taking action  

a at state x. The parameters , , [0,1]θ φ δ ∈ and each row of P(a) must satisfy 
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( ) 1xy
y

p a
∀

=∑ . Note that ,  and θ φ δ are transition probabilities that define the network 

battery level remaining as a result of the agents taking action a.  

We assume that the game ends when either agent again reaches “low” 

state after taking action a at state “low” state with probability 1, signifying a battery 

depletion of a sensor node in its network authority. 

4.3.3 Radio energy model 

In order to apply the ParetoQ to a more realistic energy state change 

than the MDP model in (4.6) and (4.7), we then define the state space as the set of the 

actual battery levels of sensor nodes in each agent. Instead of (4.6), the state is divided 

according to the remaining battery level after an agent has taken an action. The radio 

model (Naruephiphat and Usaha, 2008) is employed to calculate the energy 

consumption of sensor nodes activity and estimate remaining battery level of the 

sensor nodes.   

We define the bottleneck as the lowest remaining battery level of 

sensor nodes within the WSN controlled by agent i given by min { }i m i mB B∀ ∈= . iB is then 

quantized into n+1 discrete values, { (0),..., ( )}i iB B n , where ( ),  0iB k k n≤ ≤  denotes the 

quantized remaining battery level. The state space is then given by 

 

{ }: ( )iS s s B k= = .         (4.8) 

 

Because this model refers to the actual battery level, the state transition depends on the 

remaining battery level, which varies with the energy consumption depending on the 

agent’s action. Therefore, the transition probability in (4.7) is not necessary in this 
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model. The game is repeated until the bottleneck of either agent reaches “0” state, 

signifying battery depletion of a sensor node in its domain and the game then ends. 

Since the increase in state space size affects the learning rate of the MARL 

algorithm, the granularity of the state space division may help the agents achieve 

different solutions. In order to study effect of state space division, we divide the state 

space into two cases, 3 states (n=2), in order to compare it with the three-state MDP 

model in (4.6), and a more finer case with 10 states (n=9). 

4.3.4 ParetoQ reinforcement learning 

In our game, the time is divided into discrete time units called time 

steps. At the beginning, the action value functions are initialised to 1 2
0 ( , , ) 0,iQ s a a =  

for all ,  ,  1,  2.i is S a A i∈ ∈ =  Agent i attempts to learn its equilibrium Q-value, 

starting from an arbitrary guess. At time step t, agent i observes the current state, takes 

its action and observes its own reward. It then observes the action, reward at the other 

agent and observes the next state of both agents.  

Agent i then calculates the Pareto optimal strategy 1 2( ), ( )s sπ π′ ′  and 

updates its Q-values as follows 

 

1 2 1 2
1( , , ) (1 ) ( , , ) [ ( )],i i i i

t t t t t tQ s a a Q s a a r ParetoQ sα α β+ ′= − + +   (4.7) 

 

1 2( ) ( ) ( ) ( ).i i
t tParetoQ s s Q s sπ π′ ′ ′ ′= ⋅ ⋅      (4.8) 

 

Recall that Pareto optimality is defined as a set of strategies which an 

agent cannot increase its utility without decreasing the utility of at least one other 

agent. In order to calculate the Pareto optimal strategy, agent i must observe the other 
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agent’s immediate reward and previous actions and updates its conjectures on the 

other agent’s Q-function, by maintaining its own update on the other agent’s Q-

function: 

 

1 2 1 2
1( , , ) (1 ) ( , , ) [ ( )],  .j j j j

t t t t t tQ s a a Q s a a r ParetoQ s j iα α β+ ′= − + + ≠      (4.9) 

 

The game is repeated until either agent runs out of battery. 

In our packet forwarding game, it is possible that multiple Pareto 

optimum equilibriums exist in a game.  To enable each agent to correctly predict the 

other agent’s actions (and thereby update (4.9) accordingly), the lexicographic 

convention (Song et al., 2007) can be established as follows.  

1) The set of agents is ordered.  

2) The set of each agent’s action is ordered.  

3) The set of different solutions are ordered 

(Global NE > Pareto optimal > Saddle NE)  

4) Both agents must agree to use the same series of convention.  

By using this convention, both agents are able to uniquely select their 

joint actions and the convergence of the ParetoQ algorithm is achieved. 

4.3.5 The Non-cooperative game based on Pareto optimality framework 

In order to evaluate the performance of the ParetoQ algorithm, we 

compare it in a packet forwarding problem with the Non-cooperative game algorithm 

(Felegyhazi et al., 2005). However, instead of obtaining the best mutual strategy 

received from NE as in (Felegyhazi et al., 2005), the policies of the agents in in the 

Non-cooperative game used in this chapter are obtained by exhaustively searching for 

Pareto optimal strategies through all the utility functions (and adopting the 
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lexicographic convention should multiple equilibriums exist). Note that such method 

can be viewed as an offline strategy search method. On the other hand, our proposed 

ParetoQ algorithm obtains its strategy though online learning, without having to 

compute the utility functions for all possible actions.  

 

4.4 Experiment results 

In this section, we evaluate the performance of the proposed ParetoQ 

algorithm and investigate the equilibrium conditions of the packet forwarding 

strategies in an overlay WSN. We study its performance under 2 models, i.e., the 

MDP model and the radio energy model. 

We consider two WSNs co-existing in the same area, which are deployed in  

a 40x20 m in overlay WSNs. Each WSN is controlled by a cluster head acting as an 

agent which collects the residual energy level of the networks (state) and takes actions 

and observes rewards as a result of their actions. The goal of each agent is to 

maximize the packet delivery within its network to the sink. We investigate two 

scenarios, the common sink scenario where the agents share the same sink and the 

separate sink scenario where each agent sends packets to its own sink. Simulation 

results are carried out over 1000 randomly generated topologies. The simulation 

parameters are shown in Table 4.1. 

The implementation of ParetoQ requires a two-phase learning process i.e., (1) 

the training phase which coarsely learns ParetoQ values and (2) the testing phase 

which fine-tunes the Q-values. In the ParetoQ training phase, each agent learns its 

packet forwarding strategies from Q-values which are initialised and iteratively 

updated according to (4.7)-(4.9). The training ends when the difference between the 
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previous and the new utility at each agent is less than 1%. The latest Q-values for each 

state-action pair at each agent from the training phase are used as initial Q-values of 

each agent in the testing phase.   

We evaluated the ParetoQ algorithm by comparing it with the Non-cooperative 

game algorithm (Felegyhazi et al., 2005) on the Pareto optimality framework 

described in the previous section.  

 

Table 4.2 Simulation parameter values. 

Parameter Value 
Number of sensor per domain 10-90 
Distribution of the sensors Uniformly random 
Area size 40x20m 
Path loss exponent 2-5 
Success requirement ( )iSR  1 
Position of the common sink [20,10] 
Position of the separate sink [10,10] and [30,10] 
The size of the measurement packet transmitted (b) 250 Kbits 

elecE  50nJ/bit 
ampε  10 / /pJ bit mσ  

iG  100 
Coverage range 6 m 
Route selection Minimum energy path 

 

To investigate situations which call for sensor node cooperation in non-

cooperative WSNs, we investigate the equilibrium conditions of the packet forwarding 

strategies of both algorithms by distinguishing the following equilibriums: 

 

 

• Defective equilibrium: the agent ends up its game at the strategy DD-DD. 
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• Cooperative equilibrium: the agent ends up its game at the strategy AF-AF. 

• Other equilibrium: the agent ends up at other strategies. 

4.4.1  ParetoQ based on MDP model 

To evaluate the ParetoQ algorithm, we first conceptually show that  the 

algorithm can be applied to a packet forwarding game in non-cooperative overlay 

WSNs by using a MDP model to characterize the energy state transition of the 

network. 

Figure 4.1a presents the proportion of simulation for each type of 

equilibrium by the ParetoQ algorithm based on the MDP model in the common sink 

scenario. The results show that the proportion of cooperative equilibrium is higher 

than the other types of equilibrium when the density of sensor nodes is low.  

In contrast, as the density of sensor nodes increases, cooperation is reduced and 

defective equilibrium continually increases. This suggests that cooperation is vital in 

sparse networks. On the other hand, when sensor nodes are densely deployed in the 

area, various paths are available for their sensors to send packets to the sink, hence, 

cooperation between both agents is not necessary. This explains the reduction of 

cooperative equilibrium and increase of defective equilibrium as the network size 

increases.  

Figure 4.1b presents the proportion of simulation for each type of 

equilibrium by the Non-cooperative game algorithm in the common sink scenario 

based on the MDP model. Similar to the ParetoQ, it can be seen that the  

Non cooperative game algorithm increasingly prefers the defective equilibrium as the 

density of sensor nodes increases yet at a less extent than the ParetoQ algorithm. For 

example, at 90 nodes per domain, the proportion of defective equilibrium from 
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ParetoQ is 78% while that of the Non-cooperative game is only 69%. The results 

suggest that though both algorithms favor the defective behavior in the common sink 

scenario, ParetoQ prefers defective equilibrium more than the other algorithm.  

The proportion of simulation for each type of equilibrium in the 

separate sink scenario is shown in Figure 4.2a and 4.2b. The results show that both 

algorithms favor defective equilibrium over other equilibrium as the density of sensor 

nodes increases. More interestingly, the ParetoQ algorithm shows a monotonic 

decrease of cooperative equilibrium and monotonic increase of defective equilibrium 

as the number of sensors per domain increases. The Non-cooperative game results, on 

the other hand, are not monotonic as can be seen in Figure 4.1b and Figure 4.2b in 

case of 10, 20 and 30 nodes per domain. This suggests that ParetoQ algorithm can 

obtain a more robust behavior than the Non-cooperative game algorithm.  

We then investigate sensor nodes behavior in more hostile 

environments. Figure 4.3a presents the proportion of simulation for each type of 

equilibrium as a function of path loss exponent in the common sink scenario by the 

ParetoQ algorithm based on the MDP model. The results show that the higher the path 

loss exponent, the more frequent the cooperative behavior is selected by both agents. 

The reason is because increasing the path loss exponent increases the difficulty in 

sending the packets to the sink. Hence, cooperation of both agents is more beneficial 

in this situation.  

Figure 4.3b show the proportion of simulation by the Non-cooperative 

equilibrium under the MDP model. Similar to ParetoQ, the Non-cooperative game 

algorithm also prefers the cooperative equilibrium as the best strategy in hostile 

environments. While the Non-cooperative game results show a slight increase in 
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preference for cooperative behavior, ParetoQ tends to promote more cooperation in a 

more hostile environment.  It can be seen that when path loss exponent is increased to 

5, the proportion of cooperative equilibrium attained by the ParetoQ algorithm is 86% 

while that of the Non-cooperative game is only 77%. 

The above results show that the ParetoQ algorithm based on the MDP 

model can find the best mutual response policy for multi-agents in non-cooperative 

overlay WSNs without having to resort to exhaustive searching as the  

Non cooperative game algorithm. ParetoQ also provides more robust behavior than 

the Non-cooperative game algorithm as shown by the monotonic behavior when the 

network size and path loss exponent are changed. Therefore, it also should perform 

well in real world application. 

Hence, we then apply the ParetoQ to a more realistic scenario (i.e., by 

using the radio energy model) in the next experiment. We also investigate other 

performance metrics to evaluate the algorithm.  
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Figure 4.1 Effect of network size on cooperation in the common sink scenario  

  with the MDP model 

 



76 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 50 70 90

Pr
op

or
tio

n 
of

 si
m

ul
at

io
n

Number of sensors per domain

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 50 70 90

Pr
op

or
tio

n 
of

 si
m

ul
at

io
n

Number of sensors per domain

Defective
Cooperative
Other

Defective
Cooperative
Other

 

 

Figure 4.2 Effect of network size on cooperation in the separate sink scenario  

  with the MDP model 
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Figure 4.3 The Effect of path loss exponent in the common sink scenario  

  with the MDP model 
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4.4.2  ParetoQ based on radio energy model 

In this section, we evaluate the proposed ParetoQ algorithm based on  

a more realistic energy model which is described in Section 4.3.3. Instead of using the 

MDP model to characterise the energy state transition of the network, we use the radio 

energy model to govern the change in the remaining battery level in each sensor node 

in the WSNs. We divide the state space into two cases, i.e., 3 states in order to 

compare it with the 3 states MDP model in the previous experiment, and a finer case 

with 10 states. 

Each sensor node is assumed to have an initial battery level of 100 J. 

The sensor nodes cannot recharge their batteries when depleted (except for the cluster 

head acting as the agent in the network). Simulation results were obtained from 1000 

randomly generated topologies. The results can be observed as follows. 
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Figure 4.4 Effect of network size on cooperation in the common sink scenario  

  with the radio energy model 
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Figure 4.4a and 4.4b depict the proportion of simulation for each type 

of equilibrium in the ParetoQ algorithm with 3-state and 10-state battery levels, 

respectively, in the common sink scenario with the radio energy model. The results 

show that the ParetoQ tends to promote cooperative equilibrium at low sensor node 

density and demote it when the network size increases for the same reasons given for 

Figure 4.1a. The results show that defective behaviour becomes more favourable for 

all agents as the sensor node density increases. Figure 4.4c presents the proportion of 

simulation by the Non-cooperative game algorithm in the common sink scenario. 

Similar to both cases of ParetoQ, the Non-cooperative game algorithm increasingly 

favors the defective equilibrium as the density of sensor nodes increases. Note that all 

three algorithms tend to promote cooperation between both agents when the sensor 

density is low in the common sink scenario. For example, in the case of 10 nodes per 

domain, the 10-state ParetoQ prefers it 93% of the run while the 3-state ParetoQ and 

the Non-cooperative game algorithm prefer it 85% and 78% of the runs, respectively. 

As the network size increases, all algorithms gradually change their policies to 

defective equilibrium. For example, at 90 nodes per domain, the 10-state ParetoQ 

tends to promote defective equilibrium more than other algorithms with the proportion 

of defective equilibrium of 49% while that of the Non-cooperative game is 45% and 

the 3-state ParetoQ is only 42%. The results suggest that the ParetoQ algorithm can 

still achieve good performance in finding the best mutual strategy for both agents 

when the energy consumption is governed by the radio energy model.  

In addition to the equilibrium types of the packet forwarding strategies, 

we also considered additional performance metrics, i.e., the number of time steps 

required to obtain a strategy, the successful packet delivery ratio, the energy 
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consumption in the packet forwarding process and the average utility of an agent 

compared with the Non-cooperative game algorithm. Since both agents perform 

equally well, our experiments results are only shown for agent 1.  
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Figure 4.5 The successful packet delivery ratio in the common sink scenario  

  with the radio energy model 

 

Figure 4.5 presents the average successful packet delivery ratio in the 

common sink scenario with the radio energy model. At 10 nodes per domain, it can be 

seen that both the 3-state and the 10-state ParetoQ algorithms are able to deliver 

packets to the sink as well as the Non-cooperative game algorithm. Interestingly, 

when the network size increases to 50, 70 and 90 nodes per domain, both the 3-state 

and the 10-state ParetoQ algorithms can deliver more packets to the sink than the 

Non-cooperative game algorithm by 12% on average.  
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Figure 4.6 The energy required in the packet delivery process in the common sink  

  scenario with the radio energy model. 
 

Figure 4.6 presents the average energy consumption in the packet 

delivery process. The results show that when the network size increases, the 3-state 

and the 10-state ParetoQ algorithms require more energy consumption than the  

Non cooperative game algorithm. This is corroborated by the higher successful packet 

delivery ratio in Figure 4.5. This suggests that the increase in energy consumption in 

the 3-state and the 10-state ParetoQ algorithms are not an artifact of the online 

learning process, but by the higher number of packets successfully delivered. 
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Figure 4.7 Utility values in the common sink scenario with the radio energy model 

 

Figure 4.7 presents the average utility obtained for both agents within 

the common sink scenario with the radio energy model. The results show that at 30 

sensor nodes per domain, the 3-state and the 10-state ParetoQ algorithms achieve less 

utility than the Non-cooperative game algorithm due to the lower successful packet 

delivery ratio. On the other hand, the 3-state and the 10-state ParetoQ algorithms 

achieve more utility than the Non-cooperative game algorithm as the network size 

increases (over 50 sensors per domain).  

These results above show that the ParetoQ results can perform better 

than the Non-cooperative game results without the need of exhaustive search to obtain 

a strategy as the Non-cooperative game algorithm. More interestingly is that the 

proposed algorithm requires less computational time to obtain such strategy than the 

Non cooperative game algorithm as depicted in Figure 8. Figure 8 show that the  

Non cooperative game requires a significant amount of time steps to obtain a strategy. 

This is due to the off-line exhaustive strategy search process in the Non-cooperative 
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algorithm which requires information about all possible utility values from every joint 

strategy in order to obtain a solution. For example, at 10 nodes per domain, the density 

of sensor node is low, meaning that there are fewer paths between the sensor nodes 

and the sink. Therefore, the energy consumption required to forward the packet is also 

low. In order to obtain the utility for an action, it is necessary to run the game until 

energy is depleted (i.e., the game ends). The process is repeated for all possible joint 

actions. Since the energy consumed in the packet forwarding process is low, the 

number of time-steps encountered in the game before the game can end is high as can 

be observed in Figure 4.8.  
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Figure 4.8 Number of time step required to obtain a strategy in common sink  

  scenario with the radio energy model. 
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On the other hand, when sensor nodes are densely deployed in the area, 

much energy is required to execute an action. The number of time steps used in 

computing the utility is then reduced as the network size increases. Note that the  

3-state and the 10-state ParetoQ algorithms require fewer time steps than the  

Non cooperative game algorithm to obtain a strategy. This is a result from the online 

learning process of the ParetoQ algorithm, which in each time step, the agents 

continue to improve their policies based on their past experience. This suggests that 

the online learning process of the ParetoQ algorithm for the common sink scenario can 

save computational time while achieving an average utility close to that of the  

Non cooperative game algorithm when the network size is small and outperforms the 

Non cooperative game algorithm as the network size grows above 50 nodes per 

domain (Figure 4.5, 4.7). 

In order to evaluate the fairness of the best mutual strategy,  

we investigate the difference in average utility obtained by agent 1 and agent 2 as 

shown in Figure 4.9. We conjecture that the closer such difference is to zero,  the 

fairer the strategy is for all agents.  It can be seen that our proposed algorithm is closer 

to zero than the Non-cooperative game.  

 



86 

0
2
4
6
8

10
12
14
16
18

10 20 30 50 70 90

D
iff

er
en

ce
 in

 a
ve

ra
ge

 u
til

ity
 

ob
ta

in
ed

 fr
om

 b
ot

h 
ag

en
ts

 (x
10

2 )

Number of sensors per domain

Non cooperative Game
ParetoQ (3 states)
ParetoQ (10 states)

 

 

Figure 4.9 The difference in average utility obtained by both agents in  

 common sink scenario with the radio energy model. 

 

The performance of all algorithms in the separate sink scenario is 

shown in Figures 4.10a, 4.10b and 4.10c, in terms of the proportion of simulation for 

each type of equilibrium. The results show that all algorithms prefer cooperative 

equilibrium over other types of equilibrium and gradually demote it as the number of 

sensors per domain increases. Figure 10a and 10b depict the ParetoQ algorithm results 

which show a monotonic decrease of cooperative behavior and a monotonic increase 

of defective behavior as the number of sensors per domain increases. However, the 

10-state ParetoQ algorithm promotes more cooperation between the agents than the  

3 state ParetoQ algorithm. Figure 4.10c shows the Non-cooperative game algorithm 

results, which are non-monotonic (as can be seen at 10 nodes per domain). However, 

it also demotes cooperative equilibrium as the network size increases.  
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Figure 4.10 Effect of network size on cooperation in the separate sink scenario 

  with the radio energy model 
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Figure4.11 The successful packet delivery ratio in the separate sink scenario  

with the radio energy model Non-cooperative game/  

ParetoQ (3 state)/ ParetoQ(10 state) 

 

Figure 4.11 presents the average successful packet delivery ratio in the 

separate sink scenario with the radio energy model. Similar to the common sink, both 

the 3-state and the 10-state ParetoQ algorithms can deliver more packets than the Non-

cooperative game algorithm as the network size increases. However, the increase in 

successful packet delivery resulted in higher energy consumption than the Non-

cooperative game algorithm as shown in Figure 4.12.  
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Figure 4.12 The energy required in the packet delivery process in the separate  

sink scenario with the radio energy model Non-cooperative game/  

ParetoQ (3 state)/ ParetoQ(10 state) 

 

Figure 4.13 presents the average utility for both agents in the domain 

for the separate sink scenario with the radio energy model. It can be seen that both the 

3-state and the 10-state ParetoQ algorithms can achieve higher utility than the  

Non cooperative game algorithm as the network size increases.  

 

 

 

 

 



90 

0

5

10

15

20

10 20 30 50 70 90

A
ve

ra
ge

 u
til

ity
 o

f b
ot

h 
A

ge
nt

s (
x1

03 )

Number of sensors per domain

Non-cooperative Game
ParetoQ (3 states) 
ParetoQ (10 states) 

 

 

Figure 4.13 Utility value in the separate sink scenario with the radio energy model 
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Figure 4.14 Number of time steps required to obtain a strategy in separate  

sink scenario with the radio energy model Non-cooperative game/  

ParetoQ (3 state)/ ParetoQ(10 state) 
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Figure 4.14 shows the number of time steps required to obtain  

a strategy in the separate sink scenario with the radio energy model. The results show 

that the online-learning process from both the 3-state and the 10-state ParetoQ 

algorithms can obtain a strategy in fewer time steps than the Non-cooperative game 

algorithm for the same reasons given for Figure 4.8.  

Figure 4.15 shows the difference in average utility obtained from both 

agents in the separate sink scenario with the radio energy model. It can be seen that 

the difference in average utility in the 3-state and the 10-state ParetoQ results are 

closer to zero than the Non-cooperative game algorithm. These results suggest that the 

ParetoQ algorithm not only performs as well as the Non-cooperative game with less 

computational time, but the strategy obtained is also fairer for all agents than the Non-

cooperative game algorithm.  
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Figure 4.15 The difference in average utility obtained from both agents in  

separate sink scenario with the radio energy model. 
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Figures 4.16a, 4.16b and 4.16c present the proportion of simulation for 

each type of equilibrium as a function of path loss exponent in the common sink 

scenario for the 3-state ParetoQ, the 10-state ParetoQ and the Non-cooperative game 

algorithms, respectively. All algorithms show that the higher the path loss exponent, 

the more beneficial it is to cooperate for both agents. Furthermore, the results have 

shown that the 10-state ParetoQ promotes more cooperation in a hostile environment 

than other algorithms. For example, when the path loss exponent is 5, the 10-state 

ParetoQ achieves 64% cooperative equilibrium while the 3-state ParetoQ and the Non-

cooperative game algorithms can attain 59% and 48%, respectively. 
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Figure 4.16 The effect of path loss exponent in the common sink scenario  

with the radio energy model 
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4.5  Implementation 

The implementation of the ParetoQ algorithm requires a trained packet 

forwarding strategy at the cluster head of each sensor network. In terms of memory 

requirement for storing the Q-table, ParetoQ algorithm requires memory storage for 

storing all values of ( , )iQ s a  which has 1 2 1 2| | | | | | | |S S A A× × ×  entries at each agent. 

Suppose that each entry requires 8Bytes, a reasonable amount of memory of 1152 

Bytes ( 2 23 4 8Bytes× × ) and 12800 Bytes ( 2 210 4 8Bytes× × ) are needed for the 3-state 

and 10-state ParetoQ algorithms, respectively. However, since each WSN is centrally 

controlled by an agent located at the cluster head, increasing the state or action space 

size will render a large amount of data stored at the cluster head which may lead to 

increased processing time.  

 

4.6  Summary 

In this chapter, we applied the ParetoQ algorithm to the packet forwarding 

game in a multi-domain WSN to determine the best mutual benefit for both agents. 

The contribution of this chapter is three-fold. First, we conceptually showed that the 

ParetoQ algorithm can be applied to promote cooperation in multi-agent overlay 

WSNs using the MDP model to define the state transition of the battery level in the 

network. Secondly, we applied the ParetoQ algorithm to a more realistic scenario 

using the radio energy model to evaluate the performance of the ParetoQ algorithm. 

Finally, we applied and evaluated the Non-cooperative game algorithm based on the 

Pareto optimum framework to solve for the best mutual packet forwarding policy in 

non-cooperative overlay WSNs. 
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Based on the MDP model, the results showed that the ParetoQ algorithm can 

find the best mutual response policy for two agents in non-cooperative WSNs through 

online learning. The algorithm can provide more robust behavior than the Non-

cooperative game algorithm as shown by the monotonic behaviour in attaining 

defective and cooperative equilibriums as the network size and path loss exponent 

varies.   

Based on the radio energy model, we investigated the effect of state division in 

the ParetoQ algorithm by comparing the 3-state and the 10-state ParetoQ algorithms. 

Results suggested that careful consideration of state space division can achieve more 

effective learning process and achieve higher utility from the networks in our 

framework.  Moreover, our results suggested that even thought the ParetoQ algorithm 

started from randomly selecting joint strategies, it was able to learn online from its 

past experience to obtain the best mutual policy thereby saving time to execute  

a decision and improving the performance of the network without having to resort to 

exhaustive search as the Non-cooperative game algorithm. More interestingly, 

ParetoQ consistently outperformed the Non-cooperative game algorithm as the 

network size increased.  In addition, the 10-state ParetoQ promoted the most 

cooperation between both agents, particularly in a hostile environment. Finally, the 

major advantage of online learning in the ParetoQ algorithm is that it was more 

adaptive to topological changes yet less computationally intensive than the Non-

cooperative game. 



 

CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

 In overlay wireless sensor networks (WSNs), resource sharing and cooperation 

between the agents can prolong network lifetime. However, selfish behaviors of 

sensor nodes may occur in order to conserve their energy. Therefore, cooperation 

between sensor nodes belonging to different network authorities may not always be 

readily available. Furthermore, it is possible that node cooperation will not be 

beneficial to any WSNs. Hence, the work presented in this thesis was aimed  

at resource allocation algorithms to deal with non-cooperative behaviors of sensor 

nodes existing in overlay WSNs. The research work carried out in this thesis was 

divided into two parts: a MDP formulation for a packet forwarding game in overlay 

WSNs using Nash Q-learning (NashQ) reinforcement learning presented in Chapter 3; 

and a MDP formulation and a more realistic formulation based on the radio energy 

model for a packet forwarding game in overlay WSNs using Pareto Q-learning 

(ParetoQ) reinforcement learning presented in Chapter 4, respectively. The original 

contributions in this thesis can be summarized as follows. 



97 
 

 5.1.1 Chapter 3 

  The purpose of this chapter is to conceptually show that the NashQ 

algorithm can be applied to promote cooperation in overlay WSNs. Two contributions 

were made here: 

1) The MDP formulation of the packet forwarding problem in a non-

cooperative multi-agent WSN. 

2) The application of NashQ to solve for the best mutual policy in a 

multi-agent WSN. 

The numerical study showed that based on the Lemke-Howson method, 

NashQ algorithm can find the best mutual response policy for multiple agents in non-

cooperative WSNs through online learning. Therefore, NashQ algorithm was more 

adaptive to topological changes yet less computationally intensive than the Non-

cooperative game algorithm. In addition, NashQ algorithm promoted more 

cooperation between both agents in a hostile environment, and demoted more 

cooperation than the Non-cooperative game algorithm, when it was unnecessary. 

Furthermore, NashQ also appeared to be more robust to the non-uniqueness of Nash 

equilibrium when compared with the Non-cooperative game approach. NashQ 

algorithm performed well when a unique NE existed. However, when multiple NE 

existed, NashQ algorithm resorted to a mixed strategy selection where the Nash 

equilibria were probabilistically selected according to the Lemke Howson method. 

Though the mixed strategy regime does not satisfy the conditions to establish 

convergence of NashQ algorithm, the results showed that the NashQ algorithm can 

still converge to a solution. This suggests that theoretical convergence conditions for 

NashQ algorithm may be relaxed. However, there was still a pending issue of an agent 
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predicting the other agent’s action, in which under the mixed strategy, the 

probabilistic action selection resulted in an incorrect prediction. 

 5.1.2 Chapter 4 

  The purpose of this chapter is to facilitate the conjecture of the other 

agent’s action, and still guarantee the convergence by applying the ParetoQ algorithm 

to the packet forwarding game in overlay WSNs. Three contributions were made here: 

1)  The application of ParetoQ algorithm to achieve the best mutual 

packet forwarding strategy in non-cooperative overlay WSNs with the MDP 

formulation. 

 2)  The extension of ParetoQ algorithm from the MDP formulation to 

the radio energy model. 

3)  The incorporation of Pareto optimality with the Non-cooperative 

game algorithm and its application to the packet forwarding game. 

The numerical study showed that, based on the MDP model, the 

ParetoQ algorithm can find the best mutual response policy for two agents in non-

cooperative WSNs through online learning. The ParetoQ algorithm can provide more 

robust action selection than the Non-cooperative game algorithm by obtaining  

a monotonic increase (or decrease) equilibrium as the network size and a function of 

path loss exponent change.   

Based on the radio energy model, we investigated the effect of state 

division in the ParetoQ algorithm by comparing the 3-state and the 10-state ParetoQ 

algorithms. Results suggested that careful consideration of state space division can 

achieve more effective learning process and achieve higher utility from the networks 

in our framework.  Moreover, our results suggested that even thought the ParetoQ 
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algorithm started from randomly selecting joint strategies, it was able to learn online 

from its past experience to obtain the best mutual policy. Therefore, ParetoQ can save 

time in executing a decision and can improve the performance of the network without 

having to resort to exhaustive search as the Non-cooperative game algorithm. More 

interestingly, ParetoQ consistently outperformed the Non-cooperative game algorithm 

as the network size increased.  In addition, the 10-state ParetoQ promoted the most 

cooperation between both agents, particularly in a hostile environment. Finally, the 

major advantage of online learning in the ParetoQ algorithm was that it was more 

adaptive to topological changes yet less computationally intensive than the Non-

cooperative game. 

 

5.2 Future work 

 5.2.1 WSNs with energy harvesting technology 

  A major limitation of sensor nodes is the limited amount of battery.  

It is possible for sensor nodes to use large batteries for longer lifetimes, but such 

nodes will have increased size, weight and cost. In recent years, energy harvesting 

techniques have the potential to prolong lifetime of sensor nodes in WSNs 

applications. An energy harvesting device can collect energy from ambient sources 

such as solar and wind energy thereby alleviating the need for battery replacement. 

The challenging issues is however to estimate the periodicity, manage the harvestable 

energy source and decide routing strategies which can assure the longest lifetime of 

the battery before the next recharge cycle. 
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5.2.2 Secure in routing protocol 

  In this thesis, we studied the packet forwarding strategy between two 

different WSNs belonging to the same area. Routes establish communication paths 

between sensor nodes and are used to forward packet from sensor nodes to a sink. 

Such routes, typically the shortest paths, may either belong to the sensor node’s own 

network or a different network. Although shortest paths can reduce the amount of 

transmitted energy, there is no guarantee that these shortest paths are secure enough to 

successfully forward packets to the sink. Moreover, this thesis has not covered 

security issues involved when packets are falsely forwarded. Security aspects in 

routing procedure have not been emphasized in this thesis.  

There are several WSN applications which support critical 

infrastructures (e.g. military, healthcare, environmental), where highly sensitive 

information is at risk, thus security becomes a vital issue. Security should be 

supported by fundamental operations in WSNs in order to promote a stable security 

infrastructure that will be able to handle routing effectively and efficiently.  

 5.2.3 Extension to distributed MARL 

  In this thesis, we assumed that the system operated as a centralized 

system whereby a representative of each network, called cluster head, controls the 

behavior of all other sensor nodes in its network authority. However, to enhance 

scalability, each sensor should be able to make its own decision whether to cooperate 

or not. Because sensor nodes are deployed in a large area, each sensor may have 

different requirement in its decision to help to forward packets or not.   Thus, sensors 

should decide its strategy in a distributed manner. Moreover, since local information 

(i.e. node state and position) are locally stored in each node, sensor networks would be 
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more scalable in terms of reduced burden in dealing with synchronization  

a communication overhead. 

5.2.4 Sensor node mobility 

In this thesis, we focused on the situation where the location of the 

sensor nodes in the WSNs were fixed. However, sensors are mobile in many scenarios 

such as telemedicine and military applications. In such applications, sensor may 

frequently encounter topology changes. Therefore, routing schemes which can 

efficiently locate the sensor devices, establish communication paths and determine the 

best mutual strategy for all agents in the overlay WSN is needed. 

5.2.5  Performance evaluation of testbed 

The main objective of this thesis was to show that packet forwarding 

strategies in non-cooperative in overlay WSNs can be governed by using NashQ and 

ParetoQ algorithms. The packet forwarding game was simulated by Visual C++ 

programming to perform the online learning process and evaluate algorithms. 

Therefore, an important future direction is to extend the framework either to employ 

raw data collected from the field measurement for training the learning algorithms,  

or to implement the framework in an actual sensor network. 
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