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CHAPTER I

INTRODUCTION

Financial risk management is traditionally separated into market risk and

credit risk. Market risk is the risk due to the fluctuations of market variables

and is the best known type of risk in banking. It is the risk of a change in value

of a financial position due to changes in the value of the underlying components

on which that position depends, such as cash products (stock, bond), derivatives

(plain vanilla, exotics), interest rate, equities, foreign exchange rate, emerging

markets, commodities, etc. Each component will have its own risk management

expertise requirement. Credit risk, or default risk, is the possibility that a borrower

will be unable to repay principal and interest as agreed in the loan repayment

contract. In the U.S., default risk is estimated by a credit rating from Standard

& Poor’s, Moody’s or some other rating agency. Investors control default risk by

monitoring the ratings of the bonds they hold or consider for purchase.

At present, the insurance industry in many countries over the world has

grown at a faster pace, so the insurance risk management problem arises conse-

quently. Insurance risk, concerning actuarial science, is considered in addition to

market risk and credit risk. The main problem is, how the insurance company can

manage the capital reserve for customer compensation according to its liabilities.

This means that the insurance company has the risk of the insolvency possibility

when its surplus becomes negative. Therefore, risk models have attracted much

attention in the insurance business, in connection with the possible insolvency and

the capital reserve of the insurance company.
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1.1 Classical Risk Model

In 1903 the Swedish actuary Filip Lundberg laid the foundations of modern

risk theory. Risk theory is a synonym for non-life insurance mathematics, which

deals with the modeling of claims that arrive in an insurance business and which

gives advice on how much premium has to be charged in order to avoid insolvency

of the insurance company.

One of Lundberg’s main contributions is the introduction of a simple model

which is capable of describing the basic dynamics of a homogeneous insurance

portfolio. By this we mean a portfolio of contracts or policies for similar risks

such as automobile insurance for a particular kind of car, insurance against theft

in households or insurance against water damage of one-family homes. There are

three assumptions in the model

• Claims happen at the times Ti satisfying

0 = T0 ≤ T1 ≤ T2 ≤ · · · .

We called them claim arrivals or claim times or claim arrival times.

{Tn, n ∈ N0} is called a claim arrival process.

• The ith claim arriving at time Ti causes the claim size of claim severity

Yi. The sequence of {Yn, n ∈ N} constitutes an independent and identically

distributed (i.i.d.) sequence of non-negative random variables. {Yn, n ∈ N}

is called a claim size process.

• The claim size process {Yn, n ∈ N} and the claim arrival process {Tn, n ∈ N0}

are mutually independent.

Now we can define the claim number process

N(t) = max{i ≥ 1 : Ti ≤ t},
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i.e., {N(t), t ≥ 0} is a counting process on [0,∞): N(t) is the number of the claims

which have occurred by time t. The object of main interest from the point of view

of an insurance company is the total claim size process:

Λ(t) =

N(t)∑
i=1

Yi, t ≥ 0.

Later in the 1930s, Harald Cramér, the famous Swedish statistician and proba-

bilist, extensively developed collective risk theory by using the total claim size

process Λ(t) with claim arrival times Ti which are generated by a Poisson process.

The homogeneous Poisson process plays a major role in insurance mathemat-

ics. If we specify the claim number process as a homogeneous Poisson process

the resulting model which combines claim sizes and claim arrival times is called

Cramér-Lundberg model.

Let p(t) denote the premium income in the time interval [0, t]. In the

Cramér-Lundberg model it is assumed that p(·) is a deterministic linear function:

that is, p(t) = c0t, t ≥ 0 where c0 > 0 is a constant called the premium rate. With

the total claim amount Λ(t), put for t ≥ 0,

X(t) = x+ p(t)− Λ(t) = x+ c0t−
N(t)∑
i=t

Yi. (1.1)

The process {X(t), t ≥ 0} is called the risk process (or surplus process) of the

model; here x ≥ 0 is the initial capital. A classical risk measure is the infinite

time ruin probability of the surplus process (1.1) which is defined by

Φ(x) = P(T < ∞) (1.2)

for X(0) = x ≥ 0 which is a function of the initial capital x where

T = inf{t ≥ 0, X(t) < 0}. (1.3)

Such a T is called the ruin time: the first time the surplus falls below zero. Note

that Φ(x) depends on the premium rate c0 as well. Instead of the ruin probability,
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Gerber and Shiu (1998) introduced the quantity

E[e−δT I(T<∞)], δ > 0 (1.4)

known as the Gerber-Shiu discounted penalty function and is a general case of

(1.2).

1.2 Outline of This Thesis

To attain the major objective, we give a brief outline of how we intend to

proceed and what each chapter contains. The thesis is organized as follows.

In Chapter II, we introduce some notation, terminology and some mathe-

matical tools which are used in the main theorems.

In Chapter III, we study the discrete-time surplus process with the claim

arrival times Tn = n, n ≥ 0 according to the risk regulation. We prove the existence

of the minimum initial capital and apply the bisection method to approximate the

minimum initial capital for exponential claims.

In Chapter IV, we study the discrete-time surplus process which can be

controlled by two activities, one is reinsurance for which the reinsurance company

has an opportunity to default and the other is an investment in a financial market.

We prove the existence of an optimal plan and also derive a formula for the value

function. Finally, we approximate the value function and optimal plan for some

well known distributions.

The conclusion of the thesis is presented in the last chapter.



CHAPTER II

PRELIMINARY

In this chapter, we introduce some terminology of insurance, the description

of the Risk-Based Capital Framework and the research problems.

2.1 Insurance and Reinsurance

In law and economics, insurance is a form of risk management primarily

used to hedge against the risk of a contingent, uncertain loss. Insurance is defined

as the equitable transfer of the risk of a loss, from one entity to another, in ex-

change for payment. An insurer is a company selling the insurance; an insured

or policyholder is the person or entity buying the insurance policy. The insurance

rate is a factor used to determine the amount to be charged for a certain amount

of insurance coverage, called the premium.

Reinsurance is insurance that is purchased by an insurance company (in-

surer) from a reinsurer as a means of risk management, to transfer risk from the

insurer to the reinsurer.

Reinsurance treaties are mutual agreements between different insurance

companies with the aim to reduce the risk in a particular insurance portfolio by

sharing the risk of the occurring claims as well as the premium in this portfolio.

There are many types of reinsurance treaties, the insurance company handles two

treaties in mostly as follows:

• Proportional reinsurance. In a proportional reinsurance treaties each indi-

vidual claim of size Y is divided between insurer and reinsurer to a propor-
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tionality factor b ∈ [0, 1]: the insurer pays bY , the reinsurer pays (1− b)Y .

• Excess-of-loss reinsurance. In excess of loss (XL) reinsurance each claim of

size Y is divided between the insurer and the reinsurer according to priority

b ∈ [0,∞]: the insurer pays min{Y, b} and the reinsurer pays max{Y − b, 0}.

The b from above is called the ceding company’s retention level or retention level.

2.2 Risk-Based Capital (RBC) Framework

A Risk Based Capital Framework (the RBC Framework) specifies the cap-

ital which an insurer needs to have in excess of its liabilities (mostly technical

reserves) based on the risk profile of the individual insurer. The difference be-

tween this approach and the current formula that is in place in Thailand is that:

• The required capital depends on the risk profile of the specific insurer, rather

than just the size of its business.

• The basis for valuation of assets and liabilities is more transparent than

before, and no longer incorporates undisclosed margins.

The RBC Framework seeks to amend the existing valuation methodology

for assets and liabilities, establish new capital requirement rules, update the role of

actuaries, introduce a new set of statutory reporting standards and introduce new

regulations or review existing regulations and consider how and when these may

require to be amended to harmonise with the new framework. The framework will

set out draft regulations, notices and guidelines (including actuarial guidelines).
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2.2.1 Aims of Risk Based Capital in Thailand

The objective of Solvency Capital is to provide a buffer to protect the

interests of policyholders. This buffer should be sufficiently large to allow time for

management action or regulator action to counter the impact of adverse experience

on the ability of the insurer to meet its liabilities to customers. The proposed new

basis for Solvency Capital is a Risk Based Capital Framework (RBC Framework).

That is, the required Solvency Capital will directly reflect the risks to which

an individual company is exposed. RBC would replace the existing one size fits

all system.

The RBC Framework specifies the capital which an insurer needs to have

in excess of its liabilities (mostly technical reserves). The difference between the

proposed new approach and the current formula is that:

• The required capital depends on the risk profile of the specific insurer, rather

than just the size of its business; and

• The basis for valuation of assets and liabilities is more transparent than

before, and no longer incorporates undisclosed margins. Such a Framework

will drive better risk management and more efficient use of capital.

The proposed RBC Framework itself will trigger changes to regulation in

a number of areas. In addition, the role of actuaries and auditors will change

to reflect the increased weight given to an insurers own situation in assessing its

Solvency Capital requirement.

The RBC Framework has been designed specifically for Thailand, recogniz-

ing and reflecting the current situation of the whole industry. In particular, the

process recognized that the size and capabilities of different insurers are different,
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and this is reflected in the relatively standardized and straightforward approach

which is proposed.

Where appropriate, certain features of international best practice, drawn in

particular from Solvency II and the Malaysian and Singaporean regimes have been

incorporated in the proposed RBC Framework. However, the circumstances and

interests of Thai companies have always been uppermost in the designers minds.

2.2.2 Principles of Risk Based Capital and Applicability

All insurers and reinsurers, including branches, will be subject to the RBC

requirements. The following principles underlie the proposed RBC Framework:

• Allow insurers greater opportunity to achieve efficient use of their capital by

linking the required capital more closely to the level of risk entailed by the

chosen business strategy.

• Aligned, where possible, with international best practice.

• Provide the regulator with relevant and timely information within the con-

text of specific risk capital levels, to provide adequate early warning for

timely intervention.

• Consistent between life and non-life companies.

• Capital Requirement varies with risk and scale: the capital required of two in-

surers with similar liabilities and similar risks is to be consistent; conversely,

two insurers whose risk profiles are significantly different should experience

corresponding capital requirements.

• Thai Government guarantee to be considered the highest level of security

(i.e., risk free).
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• Separation of buffers and margins from the estimates of technical reserves,

combined with explicit levels for the technical reserves, to allow greater trans-

parency and greater comparability of insurers solvency positions.

Some insurers may have developed or have access to internal models for set-

ting their own capital targets or for the purposes of reporting under the Solvency

II regime. While the Office of Insurance Commission (OIC) wishes to encourage

the development of such models, all companies must still comply with the stan-

dard RBC Framework and the results from internal models may not be used as a

substitute at present. The OIC will consider allowing the use of such models in

the future.

2.2.3 The Formula for the Capital Requirement

The Capital Adequacy Ratio (CAR) for an insurer is defined as: (Total

Available Capital) divided by (Risk Capital Requirement). The RBC Framework

sets the target to be met by an insurer as a Capital Adequacy Ratio at least equal

to 100%. This means that

CAR =
Total Available Capital

Risk Capital Requirment
≥ 100%.

The risks to be taken into account in the Risk Capital requirement are

grouped into the following categories:

1. Group risk represents the risks associated with membership of a wider busi-

ness grouping such that risks to which other group companies are exposed

could have a financial or operational impact on the insurer.

2. Operational risk is produced by inadequate or failing internal processes, per-

sons or systems, or by external events. Examples are fraud or liability for

mis-selling.
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3. Liquidity risk describes the risk that an insurer while balance sheet solvent,

cannot generate enough cash to pay claims and other outgoings.

4. Market risk derives from market prices themselves or from the volatility of

those market prices. Among other risks, market risk includes equity risk,

interest rate risk, property risk and currency risk.

5. Credit risk includes both the risk that issuer of a bond, or other creditor

defaults and the risk that the counterparty in a risk mitigating contract is

unable to meet its obligations to the insurer. This latter risk is especially

relevant to reinsurance contracts, but also arises in the case of financial

derivatives.

6. Life insurance liability risk is the risk specific to policies held with life insur-

ers. It includes the risk of unexpectedly high or low mortality or morbidity

among policyholders, or an unexpectedly large increase in administrative

costs.

7. Non-life insurance liability risk is the risk specific to non-life insurance poli-

cies associated in particular with unexpectedly many or unexpectedly high

claims.

The Risk Capital Requirement is calculated by applying risk charges to the

value of specific items within the assets and the liabilities and to exposure measures

for other risks. Each type of asset or liability attracts a charge according to the

risks to which it is exposed and the sum (subject to diversification adjustments)

of these charges equals the Risk Capital Requirement.

There will continue to be an absolute minimum amount of capital which an

insurer or reinsurer must hold. This amount is currently Baht 50m for life insurers
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and Baht 30m for general insurers. These amounts will be reviewed once the RBC

Framework is completed.

The RBC Framework is not a substitute for good risk management, but acts

to strengthen it. Insurers are expected to continue to develop and implement sound

risk management and governance regimes. Insurers will be required to make sure

that their strategy, internal controls and decision making processes are effective in

ensuring that they assume only their intended level of risk. In addition, insurers

will be expected to actively manage their capital adequacy ratio by taking into

account the potential impact of business strategies on the insurers risk profile as

part of the decision making process. The OIC will retain the power to intervene

in the management of companies which do not meet adequate risk management

standards.

2.2.4 RBC Framework of Singapore and Malaysia

For the non-life insurance in Singapore and Malaysia, they have the regu-

latory control level 120% and 130%, respectively, i.e.,

Capital Adequacy Ratio (CAR) =
Total Capital Available (TCA)

Total Capital Requirement (TCR)

≥ 120%, 130%, respectively,

where

TCR = Insurance Risk Capital Charge+Market Risk Capital Charge

+Credit Risk Capital Charge.
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2.3 Relationship between RBC Framework and Research

Problems

We recall the surplus process {X(t), t ≥ 0} as mentioned in (1.1), i.e.,

X(t) = x+ c0t−
N(t)∑
i=1

Yi

where c0 is the premium rate for one unit timeand {Yn, n ∈ N} is the claim size

process. Since the nth claim arrives at the time Tn, the possible insolvency can

occur only at claim arrival times Tn, n ∈ N. Thus, we are only interested in the

surplus at time Tn. Since N(Tn) = n, the surplus at time Tn equals to

Xn = x+ c0Tn −
n∑

i=1

Yi (2.1)

where Xn := X(Tn) for all n ∈ N0 and X0 := X(0) = x is the initial capital. Then,

{Xn, n ∈ N0} as mentioned in (2.1) is called the discrete-time surplus process.

We say that the surplus process such that the inter-arrival process

{Zn = Tn−Tn−1, n ∈ N} and the claim size process {Yn, n ∈ N} are i.i.d., satisfying

the net profit condition (NPC ), if

E[Y1]− c0E[T1] < 0. (2.2)

The interpretation of the NPC is rather intuitive. In a given unit of time

the expected claim size E[X1] has to be smaller than the premium income in this

unit time, represented by the expected premium c0E[T1] when c0 is a premium

rate for one unit time. From inequality (2.2), there exists θ0 > 0 such that

c0 = (1 + θ0)
E[Y1]

E[T1]
, (2.3)

which is called the expected value premium principle. The quantity θ0 is said to

be the safety loading of insurer.
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In this thesis, we consider the two different problems of the discrete-time

surplus process (2.1). For the first process, we consider the surplus process (2.1)

in the situation that the possible insolvency can occur only at claim arrival times

Tn = n, n ∈ N. We consider the ruin probability-based initial capital problem (or

minimum initial capital problem) as the RBC problem, i.e., we can consider the

ruin probability as the insurance risk and the initial capital as the insurance risk

capital charge. For the second process, we consider the discrete-time surplus pro-

cess with the claim arrival process {Tn, n ∈ N0} which is a stochastic process under

the investment and reinsurance credit risk. The activities, making the insurance

risk, market risk and (reinsurance) credit risk, can be included in this process.



CHAPTER III

MINIMUM INITIAL CAPITAL PROBLEM

In this chapter, we study the minimum initial capital problem of the

discrete-time surplus process under the claim arrival times Tn = n, n ∈ N and

we consider the relationship between ruin probability and initial capital.

3.1 Model Descriptions

We consider the discrete-time surplus process in the situation that the pos-

sible insolvency can occur only at claim arrival times Tn = n, n ∈ N. The nth

claim arriving at time n causes the claim size Yn. Let the positive random variable

Yn be the claim size at time n defined in a probability space (Ω,F ,P) for all n ∈ N.

process. We assume that Yn, n ∈ N are independent and identically distributed

(i.i.d.) random variables, i.e., {Yn, n ∈ N} is an i.i.d. claim size process. Now

let the constant c0 > 0 represent the premium rate for one unit time which is

calculated by the expected value premium principle, i.e.,

c0 = (1 + θ0)E(Y1) (3.1)

where θ0 > 0 is the safety loading of the insurer. Thus, the quantity c0n de-

scribes the inflow of capital into the business by time n, and the random variable∑n
i=1 Yi describes the outflow of capital due to payments for claims occurring in

{1, 2, 3, · · · , n}. Therefore, the quantity

Xn = x+ c0n−
n∑

i=1

Yi (3.2)

is the surplus at time n with the constant X0 = x ≥ 0 as the initial capital.
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The general approach for studying ruin probability in the discrete-time

surplus process is through the so-called Gerber-Shiu discounted penalty function.

This approach has appeared in Pavlova and Willmot (2004), Dickson (2005) and

Li (2005a,b). In these articles, they studied the ruin probability as a function of

the initial capital x ≥ 0. In this chapter, we shall work in the opposite direction,

i.e., we study the initial capital for discrete-time surplus process as a function of

ruin probability.

3.2 Ruin Probability Behaviors

Let {Xn, n ∈ N0} be the discrete-time surplus process as in section 3.1.

We consider the finite-time ruin probabilities of the surplus process {Xn, n ∈ N0}

which is driven by the i.i.d. claim size process {Yn, n ∈ N} and the premium rate

c0 > 0.

Let x ≥ 0 be an initial capital. For each n ∈ N, we let

φn(x) := P(X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, · · · , Xn ≥ 0|X0 = x) (3.3)

denote the survival probability at the times n. Thus, the ruin probability at one of

the times 1, 2, 3, · · · , n is denoted by

Φn(x) = 1− φn(x)

= P(Xi < 0 for some i ∈ {1, 2, 3, · · · , n}|X0 = x). (3.4)

Definition 3.1. Let {Xn, n ∈ N0} be a surplus process which is driven by the

claim size process {Yn, n ∈ N} and the premium rate c0 > 0. Let α ∈ (0, 1) and

let N ∈ N be given. Let x ≥ 0 be an initial capital. If ΦN(x) ≤ α, then x is called

an acceptable initial capital corresponding to (α,N, c0, {Yn, n ∈ N}). Particularly,

if

x∗ = min
x≥0

{x : ΦN(x) ≤ α} (3.5)
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exists, then x∗ is called the minimum initial capital corresponding to

(α,N, c0, {Yn, n ∈ N}) and is written as

x∗ := MIC(α,N, c0, {Yn, n ∈ N}). (3.6)

3.2.1 Ruin and Survival Probability

We define the total claim size process {Λn, n ∈ N} by

Λn := Y1 + Y2 + Y3 + · · ·+ Yn, n ∈ N. (3.7)

The survival probability at the time N as mentioned in (3.3) can be expressed as

follows:

φN(x) = P
(
Λ1 ≤ x+ c0,Λ2 ≤ x+ 2c0, · · · ,ΛN ≤ x+Nc0

)
= P

( N∩
k=1

{
ω : Λk(ω) ≤ x+ kc0

})
. (3.8)

From equation (3.8), we have

φN(x) = E

[
N∏
k=1

I(−∞,0] (Λk − kc0 − x)

]
(3.9)

where

IA(x) =

 1, x ∈ A,

0, x ̸∈ A

for all A ⊂ R. For each a ∈ R and x ≥ 0, we obtain

I(−∞,0](a− x) =

 1, a ≤ x,

0, x < a.

Then I(−∞,0](a − x) is increasing and right continuous in x. This implies that∏N
k=1 I(−∞,0](ak − x) is also increasing and right continuous in x where ak ∈ R,

k = 1, 2, 3, · · · , N . By the Lebesgue’s dominated convergence theorem (Theorem
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C.2), we have

lim
ν→x+

φN(ν) = lim
ν→x+

E

[
N∏
k=1

I(−∞,0] (Λk − kc0 − ν)

]

= E

[
lim
ν→x+

N∏
k=1

I(−∞,0] (Λk − kc0 − ν)

]

= E

[
N∏
k=1

I(−∞,0] (Λk − kc0 − x)

]
= φN(x). (3.10)

Therefore, φN(x) is increasing and right continuous. Moreover, we can conclude

that ΦN(x) = 1 − φN(x) is decreasing and also right continuous. Let FY1(y) be

the distribution function of Y1, i.e.,

FY1(y) = P(Y1 ≤ y)

for all y ∈ R. Since the claim size process {Yn, n ∈ N} is i.i.d., we obtain

FYn(y) = FY1(y)

for all y ∈ R and n ∈ N.

Theorem 3.1. Let N ∈ N and c0 > 0 be given. If {Yn, n ∈ N} is an i.i.d. claim

size process, then

lim
x→∞

φN(x) = 1 and lim
x→∞

ΦN(x) = 0. (3.11)

Proof. Firstly, we will show that the following property holds:

N∩
k=1

{ω : Yk(ω) ≤ x+ c0} ⊂
N∩
k=1

{
ω : Λk(ω) ≤ Nx+ kc0

}
. (3.12)

Let ω0 ∈
N∩
k=1

{ω : Yk(ω) ≤ x+ c0} be given. For each k ∈ {1, 2, 3, · · · , N}, we have

Yk(ω0) ≤ x+ c0 and

Λk(ω0) =
k∑

i=1

Yi(ω0) ≤ kx+ kc0 ≤ Nx+ kc0. (3.13)
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That is, ω0 ∈ {ω : Λk(ω) ≤ Nx + kc0}. Therefore, (3.12) follows. Next, since the

claim size process {Yn, n ∈ N} is i.i.d., we obtain

P
( N∩
k=1

{ω : Yk(ω) ≤ x+ c0}
)

=
N∏
k=1

P(Yk ≤ x+ c0)

=
N∏
k=1

FYk
(x+ c0)

= (FY1(x+ c0))
N . (3.14)

By equation (3.8), we have

φN(Nx) = P

(
N∩
k=1

{
ω : Λk(ω) ≤ Nx+ kc0

})
. (3.15)

By (3.12), (3.14) and (3.15), we obtain

(FY1(x+ c0))
N ≤ φN(Nx) ≤ 1. (3.16)

Since

lim
x→∞

(FY1(x+ c0))
N = 1,

we get

lim
x→∞

φN(Nx) = 1.

Thus, we conclude that

lim
x→∞

φN(x) = 1,

and

lim
x→∞

ΦN(x) = lim
x→∞

(1− φN(x)) = 1− lim
x→∞

φN(x) = 0.

This completes the proof.

Corollary 3.2. Let α ∈ (0, 1), N ∈ N and c0 > 0 be given. If {Yn, n ∈ N} is an

i.i.d. claim size process, then there exists x̃ ≥ 0 such that, for all x ≥ x̃, x is an

acceptable initial capital corresponding to (α,N, c0, {Yn, n ∈ N}).
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Proof. We consider the following cases:

Case 1. 0 ≤ ΦN(0) ≤ α. Since ΦN(x) is decreasing, we obtain

ΦN(x) ≤ ΦN(0) ≤ α

for all x ≥ 0.

Case 2. ΦN(0) > α. By Theorem 3.1, we have ΦN(x) → 0 as x → ∞.

Thus, there exists x̃ > 0 such that ΦN(x̃) < α. Since ΦN(x) is decreasing, we

conclude that

ΦN(x) ≤ ΦN(x̃) < α

for all x ≥ x̃.

3.2.2 Bound for the Ruin Probability

From Theorem 3.1 and Corollary 3.2, we know that a small ruin probability

can be obtained by sufficiently large initial capital. In this part, we shall describe

the upper bound of ruin probability with negative exponential. In order to prove

the following lemma, we shall use an equivalent definition of the ruin probability

which is given as follows:

Φn(x) = P
(
max
1≤k≤n

(
k∑

i=1

Yi − c0k) > x
)
. (3.17)

Lemma 3.3. Let N ∈ N, c0 > 0 and x ≥ 0 be given. If {Yn, n ∈ N} is an

i.i.d. claim size process, then the ruin probability at one of the times 1, 2, 3, · · · , N

satisfies the following equation

ΦN(x) = Φ1(x) +

∫ x+c0

−∞
ΦN−1(x+ c0 − y)dFY1(y) (3.18)

where Φ0(x) = 0.
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Proof. We will prove (3.18) by induction. We start with n = 1. Since Φ0(x) = 0

for all x ≥ 0, we have ∫ x+c0

−∞
Φ0(x+ c0 − y)dFY1(y) = 0. (3.19)

This proves (3.18) for n = 1. Now assume that (3.18) holds for n = k ≥ 1. Then

Φk+1(x) = P

(
max

1≤n≤k+1
(

n∑
i=1

Yi − c0n) > x

)

= Φ1(x) + P
(

max
2≤n≤k+1

(Y1 +
n∑

i=2

Yi − c0n) > x, Y1 ≤ x+ c0
)

= Φ1(x) + E
[
I(Y1≤x+c0, max

2≤n≤k+1
(Y1+

∑n
i=2 Yi−c0n)>x)

]
= Φ1(x) + E

[
I(Y1≤x+c0) · I( max

2≤n≤k+1
(Y1+

∑n
i=2 Yi−c0n)>x)

]
= Φ1(x) + E

[
I(−∞,x+c0](Y1) · I(x,∞)( max

2≤n≤k+1
(Y1 +

n∑
i=2

Yi − c0n))
]
.

(3.20)

We consider the second term of the right-hand side of (3.20). By Proposition

D.1(i) and (iv), we obtain

E
[
I(−∞,x+c0](Y1) · I(x,∞)( max

2≤n≤k+1
(Y1 +

n∑
i=2

Yi − c0n))
]

= E
[
E[I(−∞,x+c0](Y1) · I(x,∞)( max

2≤n≤k+1
(Y1 +

n∑
i=2

Yi − c0n))|σ(Y1)]
]

= E
[
I(−∞,x+c0](Y1)E[I(x,∞)( max

2≤n≤k+1
(Y1 +

n∑
i=2

Yi − c0n))|σ(Y1)]
]
.

(3.21)

Since the claim sizes Yn, n ∈ N are independent, we obtain that Y1 and
∑n

i=2 Yi
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are also independent for all n ∈ {2, 3, 4, · · · }. By Theorem D.5, we have

E[I(x,∞)( max
2≤n≤k+1

(Y1(ω) +
n∑

i=2

Yi − c0n))|σ(Y1)]

= E[I(x,∞)( max
2≤n≤k+1

(Y1(ω) +
n∑

i=2

Yi − c0n))] a.s.

= E[I(x−Y1(ω),∞)( max
2≤n≤k+1

(
n∑

i=2

Yi − c0n))]

= P( max
2≤n≤k+1

(
n∑

i=2

Yi − c0n) > x− Y1(ω))

= P( max
2≤n≤k+1

(
n∑

i=2

Yi − c0(n− 1)) > x+ c0 − Y1(ω))

= Φk(x+ c0 − Y1(ω)). (3.22)

By combining (3.20), (3.21) and (3.22), we have

Φk+1(x) = Φ1(x) + E
[
I(−∞,x+c0](Y1) · Φk(x+ c0 − Y1)

]
= Φ1(x) +

∫
Y −1
1 (−∞,x+c0]

Φk(x+ c0 − Y1)dP

= Φ1(x) +

∫ x+c0

−∞
Φk(x+ c0 − y)dFY1(y), (3.23)

which proves (3.18) for n = k + 1 and concludes the proof.

Remark 3.1. Let N ∈ N and x ≥ 0 be given. Assume that {Yn, n ∈ N} is

an i.i.d. exponential claim size process with intensity λ > 0, i.e., Y1 has the

probability density function

fY1(y) = λe−λy.

The obtained ruin probability is in the following recursive form

ΦN(x) = ΦN−1(x) +
[λ(x+Nc0)]

N−1

(N − 1)!
e−λ(x+Nc0)

x+ c0
x+Nc0

(3.24)

where Φ0(x) = 0 and premium rate c0 > E[Y1] = 1/λ. This result is the same as

in Chan and Zhang (2006).
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Definition 3.2 (Sub-adjustment coefficient). Let c0 > 0 and Y be a non-negative

random variable. If there exists h0 > 0 such that

E[eh0Y ] ≤ eh0c0 , (3.25)

then h0 is called a sub-adjustment coefficient of (c0, Y ). Specifically, if (3.25) is an

equality, then h0 is called an adjustment coefficient of (c0, Y ).

Theorem 3.4. Let c0 > 0 be a premium rate and {Yn, n ∈ N} be an i.i.d. claim

size process. If h0 > 0 is a sub-adjustment coefficient of (c0, Y1), i.e.,

E[eh0Y1 ] ≤ eh0c0 , (3.26)

then

Φn(x) ≤ e−h0x (3.27)

for all x ≥ 0 and n ∈ N.

Proof. Assume that h0 > 0 is a sub-adjustment coefficient of (c0, Y1), i.e.,

E[eh0Y1 ] ≤ eh0c0 .

We will prove this theorem by induction. We start with n = 1. By Chebyshev’s

inequality (C.8), we obtain

Φ1(x) = P(Y1 > x+ c0) = P(eh0Y1 > eh0(x+c0)) ≤ E[eh0Y1 ]

eh0(x+c0)
≤ e−h0x. (3.28)

This proves (5.7) for n = 1. Assume that (5.7) holds for n = k ≥ 1. By Lemma

3.3, we have

Φk+1(x) = Φ1(x) +

∫ x+c0

−∞
Φk(x+ c0 − y)dFY1(y). (3.29)

Firstly, we consider the second term of the right-hand side of (3.29). By using the

inductive assumption, we have∫ x+c0

−∞
Φk(x+ c0 − y)dFY1(y) ≤

∫ x+c0

−∞
e−h0(x+c0−y)dFY1(y). (3.30)
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Now we consider the first term of the right-hand side of (3.29). By Chebyshev’s

inequality (Theorem C.8) again, we obtain

P(Y1 > x+ c0) = P(eh0Y1I(x+c0,∞)(Y1) > eh0(x+c0))

≤
E[eh0Y1I(x+c0,∞)(Y1)]

eh0(x+c0)

=

∫ ∞

x+c0

e−h0(x+c0−y)dFY1(y). (3.31)

Therefore, (3.29) becomes

Φk+1(x) ≤
∫ x+c0

−∞
e−h0(x+c0−y)dFY1(y) +

∫ ∞

x+c0

e−h0(x+c0−y)dFY1(y)

=

∫ ∞

−∞
e−h0(x+c0−y)dFY1(y)

=
e−h0x

e−h0c

∫ ∞

−∞
eh0ydFY1(y)

= e−h0x
E[eh0Y1 ]

e−h0c0

≤ e−h0x. (3.32)

This proves (5.7) for n = k + 1 and concludes the proof.

Theorem 3.4 gives the following corollary:

Corollary 3.5. Let α ∈ (0, 1) and c0 > 0 be given and {Yn, n ∈ N} be an i.i.d.

claim size process. If h0 > 0 is a sub-adjustment coefficient of (c0, Y1), then

u ≥ − logα

h0

is an acceptable initial capital corresponding (α,N, c0, {Yn, n ∈ N}) for all N ∈ N.

Example 3.1 (Exponential claims). Consider the discrete-time surplus process

(3.2) driven by the i.i.d. exponential claim size process {Yn, n ∈ N} with inten-

sity λ > 0, and the premium rate c0, calculated by the expected value premium

principle, i.e.,

c0 = (1 + θ0)E[Y1] = (1 + θ0)/λ (3.33)
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where θ0 > 0 is the safety loading of the insurer. Next, we show that the adjust-

ment coefficient of (c0, Y1) exists, i.e., there exists h0 > 0 such that

E[eh0Y1 ] = eh0c0 .

Since

lim
h→λ−

E[ehY1 ] = lim
h→λ−

λ

λ− h
= ∞ (3.34)

and

lim
h→λ−

ehc0 = lim
h→λ−

eh(1+θ0)/λ = e1+θ0 < ∞, (3.35)

there exists an ε > 0 such that 0 < λ− ε < λ and

E[eh1Y1 ] > eh1c0

when h1 := λ− ε. Let δn = λ
n
, n ∈ N. Then,

E[eδnY1 ] =
λ

λ− δn
=

n

n− 1
= 1 +

1

n− 1
, n ≥ 2. (3.36)

By Taylor’s expansion, we have

eδnc0 = e(1+θ0)/n = 1 +
1 + θ0
n

+
∞∑
k=2

(1 + θ0)
k

nk · k!
≥ 1 +

1 + θ0
n

. (3.37)

Choosing n0 >
1+θ0
θ0

> 1, i.e., n0θ0 − (1 + θ0) > 0, then

eδn0c0 − E[eδn0Y1 ] ≥ 1 + θ0
n0

− 1

n0 − 1
=

n0θ0 − (θ0 + 1)

n0(n0 − 1)
> 0. (3.38)

Since δn → 0 as n → ∞, we can choose δn1 > 0 such that 0 < δn1 < h1 < λ and

n1 ≥ n0. Let

f(h) = E[ehY1 ]− ehc0 ,

then f(h) is continuous on [δn1 , h1] and

f(δn1) > 0 and f(h1) < 0.
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By the Bolzano’s Theorem (Theorem E.6), there exists h0 ∈ (δn1 , h1) such that

f(h0) = 0, i.e., E[eh0Y1 ] = eh0c. (3.39)

Thus, h0 is an adjustment coefficient. By Theorem 3.4, we have

ΦN(x) ≤ e−h0x (3.40)

for all x ≥ 0 and N ∈ N. Moreover, we get that h is a sub-adjustment coefficient

of (c0, Y1) for all 0 < h ≤ h0. This means that

E[ehY1 ] ≤ ehc0 (3.41)

for all 0 < h ≤ h0. Next, we find the acceptable initial capital corresponding to

(α,N, c0, {Yn, n ∈ N}) in the case of α = 0.1, λ = 1 and c0 = 1.1. From the above

arguments, there exists an adjustment coefficient r of (1.1, Y1) such that 0 < r < 1,

i.e.,

1

1− r
= e1.1r. (3.42)

Now we approximate the adjustment coefficient r by a sub-adjustment coefficient.

Since

0 < r − 0.176134 ≤ 1/106, (3.43)

then 0.176134 ∈ (0, r). Thus, we obtain that 0.176134 is a sub-adjustment coeffi-

cient of (1.1, Y1). By Corollary 3.5, we have that

x ≥ − log 0.1

0.176134
= 13.072917, (3.44)

which is an acceptable initial capital corresponding to (0.1, N, 1.1, {Yn, n ∈ N})

for all N ∈ N. That is,

ΦN(x) ≤ 0.1 (3.45)

for all x ≥ 13.072917 and N ∈ N.
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3.3 Existence of Minimum Initial Capital

A quantity α, discussed in previous section, can be described as the most

acceptable probability that the insurance company will become insolvent. As a

result of Corollary 3.2, we obtain that {x ≥ 0 : ΦN(x) ≤ α} is a non-empty set for

allN ∈ N. This means that we can always choose an initial capital which makes the

value of ruin probability not exceed α. Since {x ≥ 0 : ΦN(x) ≤ α} is an infinite set,

there are many acceptable initial capital corresponding to (α,N, c0, {Yn, n ∈ N}).

In this section, we will prove the existence of

MIC(α,N, c0, {Yn, n ∈ N}) = min
x≥0

{
x : ΦN(x) ≤ α

}
. (3.46)

Lemma 3.6. Let a, b and α be real numbers such that a ≤ b. If f is decreasing

and right continuous on [a, b] and α ∈
[
f(b), f(a)

]
, there exists d ∈ [a, b] such that

d = min
{
x ∈ [a, b] : f(x) ≤ α

}
. (3.47)

Proof. Let

S := {x ∈ [a, b] : f(x) ≤ α} . (3.48)

Since α ∈ [f(b), f(a)], i.e., f(b) ≤ α ≤ f(a), we have b ∈ S. Thus, S is a non

empty set. Since S is a subset of the closed and bounded interval [a, b], there exists

d ∈ [a, b] such that d = inf S. Next, we consider the following cases:

Case 1. d = b. We know that b ∈ S, thus b = minS.

Case 2. a ≤ d < b. Since d = inf S, then there exists dn ∈ S such that

d ≤ dn < d+ 1/n

for all n ∈ N. Since f is decreasing and dn ∈ S, we get

f(dn) ≤ α.
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Since f is right continuous at d, we have

f(d) = lim
n→∞

f(dn) ≤ α.

Therefore, d ∈ S, i.e., d = minS. This completes the proof.

Theorem 3.7. Let α ∈ (0, 1), N ∈ N and c0 > 0. Then there exist x∗ ≥ 0 such

that

x∗ = MIC(α,N, c0, {Yn, n ∈ N}). (3.49)

Proof. We consider by the following cases:

Case 1. ΦN(0) ≤ α. We have MIC(α,N, c0, {Yn, n ∈ N}) = 0.

Case 2. ΦN(0) > α. By Lemma 3.2, there exists x̃ > 0 such that

ΦN(x̃) < α, i.e., α ∈
[
ΦN(x̃),ΦN(0)

]
.

Since ΦN(x) is decreasing and right continuous, by Lemma 3.6, there exists

x∗ ∈ [0, x̃] such that

x∗ = min
x∈[0,x̃]

{x : ΦN(x) ≤ α} = min
x∈[0,∞)

{x : ΦN(x) ≤ α} .

That is, x∗ = MIC(α,N, c0, {Yn, n ∈ N}).

Next, we will approximate the minimum initial capital corresponding to

(α,N, c0, {Yn, n ∈ N}) by applying the bisection technique for the decreasing and

right continuous function.

Theorem 3.8. Let α ∈ (0, 1), N ∈ N and v0, u0 ≥ 0 such that v0 < u0. Let

{un, n ∈ N} and {vn, n ∈ N} be real sequences defined by vn = vn−1 and un = un−1+vn−1

2
, if ΦN

(
un−1+vn−1

2

)
≤ α,

vn = vn−1+un−1

2
and un = un−1, if ΦN

(
un−1+vn−1

2

)
> α,
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for all n ∈ N. If ΦN(u0) ≤ α < ΦN(v0), then

lim
n→∞

un = MIC(α,N, c0, {Yn, n ∈ N}) (3.50)

and

0 ≤ un −MIC(α,N, c0, {Yn, n ∈ N}) ≤ u0 − v0
2n

. (3.51)

Proof. Obviously, {un, n ∈ N} is decreasing and {vn, n ∈ N} is increasing. More-

over, vn ≤ un for all n ∈ N. Thus, {un, n ∈ N} and {vn, n ∈ N} are convergent.

Since

0 ≤ un − vn =
(u0 − v0)

2n
→ 0 as n → ∞,

there exists x∗ ∈ [v0, u0] such that

lim
n→∞

un = lim
n→∞

vn := x∗. (3.52)

Since ΦN(x) is right continuous and ΦN(un) ≤ α for all n, we have

ΦN(x
∗) = lim

n→∞
ΦN(un) ≤ α. (3.53)

Hence,

MIC(α,N, c0, {Yn, n ∈ N}) ≤ x∗. (3.54)

Suppose that MIC(α,N, c0, {Yn, n ∈ N}) < x∗. Then there exists n1 ∈ N such

that

MIC(α,N, c0, {Yn, n ∈ N}) < vn ≤ x∗

for all n ≥ n1. Since ΦN(x) is decreasing and ΦN(vn) > α for all n, we have

ΦN(MIC(α,N, c0, {Yn, n ∈ N})) ≥ ΦN(vn) > α.

But ΦN(MIC(α,N, c0, {Yn, n ∈ N})) ≤ α, which contradicts the definition of

MIC(α,N, c0, {Yn, n ∈ N}). Therefore, we conclude that

x∗ = MIC(α,N, c0, {Yn, n ∈ N}).
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Since vn ≤ x∗ ≤ un, we have

0 ≤ un − x∗ ≤ un − x∗ + x∗ − vn = un − vn =
u0 − v0

2n
(3.55)

for all n ∈ N0. This completes the proof.

3.4 Numerical Results

We provide numerical illustrations of the main results. We approximate the

minimum initial capital of the discrete-time surplus process (3.2) by using Theorem

3.8 in the case of {Yn, n ∈ N}, a sequence of i.i.d. exponential distribution with

intensity λ = 1, by choosing model parameter combinations θ = 0.10 and 0.25,

i.e., c0 = 1.10 and c0 = 1.25, respectively; and α = 0.1, 0.2, and 0.3.
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Table 3.1 Minimum Initial Capital MIC(α,N, c0, {Yn, n ∈ N}) in the Discrete-

Time Surplus Process with Exponential Claims (λ = 1)

α = 0.1 α = 0.2 α = 0.3

N θ = 0.10 θ = 0.25 θ = 0.10 θ = 0.25 θ = 0.10 θ = 0.25

10 4.31979 3.39733 2.89299 2.09365 1.99866 1.29822

20 5.80758 4.13270 3.98629 2.58739 2.84100 1.65475

30 6.79110 4.47565 4.69131 2.80480 3.37378 1.80598

40 7.52286 4.66050 5.20541 2.91736 3.75644 1.88242

50 8.09890 4.76750 5.60309 2.98062 4.04866 1.92467

100 9.81693 4.92645 6.74521 3.07094 4.86622 1.98378

200 11.13547 4.94953 7.56254 3.08341 5.42576 1.99174

300 11.60285 4.95022 7.83409 3.08377 5.60493 1.99197

400 11.79769 4.95025 7.94308 3.08379 5.67546 1.99198

500 11.88611 4.95025 7.99137 3.08379 5.70634 1.99198

1,000 11.96920 4.95025 8.03565 3.08379 5.73435 1.99198

5,000 11.97291 4.95025 8.03757 3.08379 5.73555 1.99198

10,000 11.97291 4.95025 8.03757 3.08379 5.73555 1.99198

Table 3.1 shows approximation of MIC(α,N, c0, {Yn, n ∈ N}) with u25 as

mentioned in Theorem 3.8 by choosing v0 = 0 and u0 = 20, and ΦN(x) is computed

from the recursive form (3.18).
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Figure 3.1 Minimum Initial Capital MIC(α,N, c, {Xn, n ≥ 1}) in the Discrete-

Time Surplus Process with Exponential Claims (λ = 1, N = 100)
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Figure 3.1 shows the approximation of MIC(α,N, c, {Yn, n ≥ 1}) for the

various values of α with u25 as mentioned in Theorem 3.8. Here we choose v0 = 0,

u0 = 20, and parameter combinations θ = 0.10, θ = 0.25, i.e., c = 1.10, c = 1.25,

respectively.



CHAPTER IV

VALUE FUNCTION PROBLEM

In this chapter, we study a value function problem of a discrete-time surplus

process under the investment and insurance controls. We derive the formula of

the value function and prove the existence of an optimal plan.

4.1 Model Descriptions

In this section, we discuss the discrete-time surplus process under the con-

ditions of reinsurance and investment. We assume that all of processes are defined

in a probability space (Ω,F ,P).

Firstly, we recall the discrete-time surplus process without control which

has the claim size process {Yn, n ∈ N} and claim arrival process {Tn, n ∈ N0}.

Thus, we have the inter-arrival process {Zn, n ∈ N} defined by

Zn := Tn − Tn−1 (4.1)

which is the length of time between (n− 1)th claim and nth claim. By period n,

we mean the random interval [Tn−1, Tn) , n ∈ N.

Now let the constant c0 > 0 represent the premium rate for one unit time.

The random variable

c0

n+1∑
i=1

Zi = c0Tn+1 (4.2)

describes the inflow of capital into the business by time Tn+1, and
∑n+1

i=1 Yi describes

the outflow of capital due to payments for claims occurring in [0, Tn+1]. Therefore,
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the quantity

Xn+1 = x+ c0Tn+1 −
n+1∑
i=1

Yi

= x+ c0Tn −
n∑

i=1

Yi + c0(Tn+1 − Tn)− Yn+1

= Xn + c0Zn+1 − Yn+1 (4.3)

is the surplus at time Tn+1 and the constant X0 = x ≥ 0 is the initial capital.

In summary, the discrete time surplus process will be defined as follows:

X0 = x, Xn+1 = Xn + c0Zn+1 − Yn+1, n ∈ N. (4.4)

Next, we discuss the discrete-time surplus process with reinsurance and investment

controls. In the insurance business, reinsurance and investment are a normal ac-

tivities of an insurance company because reinsurance can reduce the risk arising

from claims, and an investment can increase the companies income. Thus, there

are many papers studying their effect in the insurance business. For example, the

effect of reinsurance on ruin probability was studied by Dickson and Waters (1996),

minimizing the ruin probability in a continuous-time surplus process was consid-

ered by Browne (1995), Hipp and Plum (2000), Hipp and Vogt (2001), Højgaard

and Taksar (1998a, 1998b), Schmidli (2001). We remark that a continuously con-

trolled surplus process such as the Cramér-Lundberg model can be reduced to a

discrete-time surplus process, for example, Schäl (2004).

In this chapter, we prove the existence of an optimal plan (the strategy or

policy of choosing retention level of reinsurance and portfolio vector in investment

for minimizing a value function) and derive a formula of the value function under

the conditions that a reinsurer has the opportunity to default and investments in

risky assets in the framework of a discrete-time surplus process.

Now, let {Xn, n ∈ N0} be the surplus process which can be controlled by

choosing the retention level b of reinsurance for one period, and at retention level
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b, the insurer has to pay the premium rate to the reinsurer which is deducted

from c0, as a result of which the insurer’s income rate will be represented by the

function c(b). The level b stands for the control action without reinsurance, so

that c0 = c(b) and the level b is the smallest retention level which can be chosen.

Of course, we obtain the net income rate c(b) where

0 ≤ c(b) ≤ c(b) ≤ c(b) = c0

for all b ∈
[
b, b
]
and c(b) is increasing. By the expected value premium principle,

c(b) can be calculated as follows:

c(b) = c0 − (1 + θ1) ·
E [Y1 − h(b, Y1)]

E[Z1]
(4.5)

where θ1 > 0 is the safety loading of the reinsurer and the function h(b, y) is the

part of the claim size y paid by the insurer, and the remaining part y − h(b, y),

called reinsurance recovery, is paid by the reinsurer.

Next, we recall the reinsurance credit risk which is the risk of the reinsurance

counterparty failing to pay reinsurance recoveries in full to the ceding company

(insurer) in a timely manner, i.e., unwillingness to pay, or even not paying them

at all. Therefore, we assume that for each retention level b ∈ [b, b] the reinsurer

has an opportunity to default, i.e., the insurer has to pay y if reinsurer default with probability P(K = 0) = p,

h(b, y) if reinsurer does not default with probability P(K = 1) = 1− p,

where K is a random variable with value in {0, 1} and p ∈ [0, 1) is constant. The

random variable K is said to be binary recovery coefficient. Let Kn be a binary

recovery coefficient random variable at time Tn, n ∈ N. Therefore, at time Tn the

insurer pays

h(bn−1, Yn)Kn + Yn(1−Kn). (4.6)
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In addition, the insurer can invest the surplus (capital) in a financial market

with m risky assets, called stocks, described by the price process{
Sn =

(
S1
n, S

2
n, ..., S

m
n

)
, n ∈ N0

}
(4.7)

where Sk
n > 0 is the price of one share of stock k at the time Tn. We now define

the return process {
Rn =

(
R1

n, R
2
n, ..., R

m
n

)
, n ∈ N

}
(4.8)

by

Rk
n =

Sk
n − Sk

n−1

Sk
n−1

,

for all k ∈ {1, 2, 3, · · · ,m}. For each n ∈ N, a portfolio vector

δn =
(
δ1n, δ

2
n, · · · , δmn

)
∈ Rm

specifies the time Tn and the component δkn represents the amount invested in

stock k during period n+1. This means that the insurance company holds δkn/S
k
n

shares of stock k during period n+ 1, so that the value of these share at the time

Tn+1 is

δkn
Sk
n

· Sk
n+1.

In this situation, we allow for a negative value for δkn, that is, we admit the

short selling of stocks. Let Xn be a surplus and (bn, δn) be a control action at the

time Tn. Then, we can modify the surplus process (4.4) as follows:

Xn+1 = Xn + c(bn)Zn+1 − {h(bn, Yn+1)Kn+1 + Yn+1(1−Kn+1)}

−
m∑
k=1

δkn +
m∑
k=1

δkn
Sk
n

Sk
n+1

= Xn + c(bn)Zn+1 − {h(bn, Yn+1)Kn+1 + Yn+1(1−Kn+1)}

+
m∑
k=1

δkn
(Sk

n+1 − Sk
n)

Sk
n

= Xn + c(bn)Zn+1 − {h(bn, Yn+1)Kn+1 + Yn+1(1−Kn+1)}+
m∑
k=1

δk
n
Rk

n+1

= Xn + c(bn)Zn+1 −
{
h(bn, Yn+1)Kn+1 + Yn+1(1−Kn+1)

}
+ ⟨δn, Rn+1⟩
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where X0 = x and ⟨·, ·⟩ is the inner product in Rm. It is convenient to set

X0 = x, Xn+1 = Xn + L(bn, δn, Kn+1, Rn+1, Yn+1, Zn+1), n ∈ N0 (4.9)

where

L(b, δ, k, r, y, z) = c(b) · z −
{
h(b, y)k + y(1− k)

}
+ ⟨δ, r⟩. (4.10)

If we let

f(x, b, δ, k, r, y, z) := x+ L(b, δ, r, y, z), (4.11)

then f is the system function as mentioned in Bersekas and Shreve (1978). We see

that the surplus process {Xn, n ∈ N0} is driven by the sequence of control actions

{(bn, δn), n ∈ N0} and the sequence of random vectors {Wn, n ∈ N} where

Wn = (Kn, Rn, Yn, Zn) (the disturbance for period n) is the source of the random-

ness of the model. It is natural to assume that the process Wn is i.i.d., so we make

the following assumption:

Assumption 1: Independence Assumption (IA)

Wn = (Kn, Rn, Yn, Zn), n ∈ N are independent and identically distributed ran-

dom variables (i.i.d.). In addition, it is assumed that (Kn, Yn, Zn) and Rn are

independent for all n ∈ N.

Let k, l ∈ N such that k ̸= l and A,B be Borel sets in R. Under Assumption

1, we have

P(Rk ∈ A,Rl ∈ B)

= P((Kk, Rk, Yk, Zk) ∈ Ω× A× Ω× Ω, (Kl, Rl, Yl, Zl) ∈ Ω×B × Ω× Ω)

= P((Kk, Rk, Yk, Zk) ∈ Ω× A× Ω× Ω)P((Kl, Rl, Yl, Zl) ∈ Ω×B × Ω× Ω)

= P(Rk ∈ A)P(Rl ∈ B)
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and

P(Rk ∈ A) = P((Kk, Rk, Yk, Zk) ∈ Ω× A× Ω× Ω)

= P((Kl, Rl, Yl, Zl) ∈ Ω× A× Ω× Ω)

= P(Rl ∈ A).

This means that the process {Rn, n ∈ N} is i.i.d. Similarly, the processes

{Kn, n ∈ N}, {Yn, n ∈ N} and {Zn, n ∈ N} are also i.i.d.

4.2 Dynamic Programming with Finite Horizon

Let {Xn, n ∈ N0} be a surplus process as mentioned in (4.9) with value

in a state space (S,S) which is a measurable space. Suppose that {Xn, n ∈ N0}

is driven by a sequence of i.i.d. random variables {Wn, n ∈ N} with values in a

measurable space (E, E). Here, (E, E) is called the disturbance space. The surplus

process can be controlled at the beginning of every period by a measurable space

(U,U) which is called the control action space. In addition, the model is specified

by the following quantities:

• α ∈ [0, 1] is the discount factor;

• g : S × U → (−∞,∞] is the one-period cost function, which is measurable

and bounded from below;

• N ∈ N is a time horizon (number of periods) and

• V̂N : S → (−∞,∞] is the terminal cost function for time horizon N , which

is measurable and bounded from below.

Definition 4.1. A plan for the time horizon N over action space U is a (finite)

sequence

π := (u0, u1, u2, · · · , uN−1) = {ui}N−1
i=0
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of control action ui ∈ U for all i ∈ {0, 1, 2, · · · , N − 1}. A set of all plans for the

time horizon N over action space U is denoted by P(N,U). A plan π ∈ P(N,U)

is said to be u-stationary , if π = (u, u, · · · , u︸ ︷︷ ︸
N terms

) for some u ∈ U .

For each initial state x ∈ S and plan π = {ui}N−1
i=0 , the surplus process (4.9) can

be written by

Xn+1 = Xn + L(un,Wn+1)

= x+
n∑

k=0

L(uk,Wk+1), n = 0, 1, 2, ..., N − 1 (4.12)

and X0 = x.

For the state Xn = xn, the cost at the time Tn will be g(xn, un) and the

next state

xn+1 = xn + c(bn)zn − {h(bn, yn+1)kn+1 + yn+1(1− kn+1)}+ ⟨δn, rn+1⟩ (4.13)

will result in a cost g(xn+1, un+1) at the time Tn+1. Thus, the present value of the

costs at the time Tn+1 will be α · g(xn+1, un+1), i.e., g(xn+1, un+1) is discounted by

α.

Definition 4.2. Let N be the time horizon. Then the total discounted cost func-

tion and the valued function for the time horizon N are defined by

Φ(N)(x, π) = E

[
N−1∑
i=0

αig (Xi, ui) + αN V̂N(XN) |X0 = x

]
, (4.14)

where π = {ui}N−1
i=0 and

V (N)(x) = inf
π∈P(N,U)

Φ(N)(x, π), respectively. (4.15)

A plan π ∈ P(N,U) is said to be optimal , if

V (N)(x) = Φ(N)(x, π). (4.16)

If π is u-stationary, we write

Φ(N)(x, u) := Φ(N)(x, π). (4.17)
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4.3 Main Results

In this section, we study the insurance model introduced in Section 4.1

under the assumption that the insurer can borrow an unlimited amount of money.

Let the state space S = R and the control space U = [b, b] × Rm. Thus, for each

state x ∈ S, we can choose any control actions u = (b, δ) ∈ [b, b]× Rm, where b is

the retention level of reinsurance and δ = (δ1, δ2, · · · , δm) is the portfolio vector.

We study the cost structure which is given by the idea that the insurance

company is not insolvent (ruined) but only penalized if the size of the surplus is

negative or small. The penalty cost of being in state x is of the form const× e−βx

for some β > 0 (β is called a cost level). Therefore, we define the cost functions as

g(x, u) = γ · e−βx, V̂N(x) = ν0 · e−βx, for some γ, ν0 ≥ 0, (4.18)

when x ∈ S, u ∈ U. Thus, we obtain the total discounted cost function of model

(4.9) as

Φ(N)(x, π) = E
[N−1∑

i=0

αiγ · e−βXi + αNν0 · e−βXN
∣∣X0 = x

]
, (4.19)

where π ∈ P(N,U).

In this section, we will use the method of dynamic programming to prove

the main theorem. In order to do this, we define Φ
(N)
n (x, π) and V

(N)
n (x) as follows:

Φ(N)
n (x, π) := E

[
N−1∑
i=n

αi−nγ · e−βXi + αN−nν0 · e−βXN |Xn = x

]
, (4.20)

(n = 0, 1, 2, · · · , N − 1)

Φ
(N)
N (x, π) := ν0 · e−βx (4.21)

where π = {ui}N−1
i=0 ∈ P(N,U) and

V (N)
n (x) = inf

π∈P(N,U)
Φ(N)

n (x, π), n = 0, 1, 2, · · · , N − 1, (4.22)

V
(N)
N (x) = Φ

(N)
N (x, π). (4.23)
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It is obvious to see that

Φ(N)(x, π) = Φ
(N)
0 (x, π), π ∈ P(N,U), (4.24)

and

V (N)(x) = V
(N)
0 (x). (4.25)

For each π = (u0, u1, u2, ...uN−1) ∈ P(N,U), we can see from equation (4.20) that

Φ(N)
n (x, π) = Φ(N)

n (x, (u0, u1, u2, ..., un−1, un, · · · , uN−1))

= E

[
N−1∑
i=n

αi−nγ · e−βXi + αN−nν0 · e−βXN |Xn = x

]
(4.26)

does not depend on the control actions u0, u1, ..., un−1. Therefore, (4.22) becomes

V (N)
n (x) = inf

un,un+1,··· ,uN−1∈U
Φ(N)

n (x, (u0, u1, u2, ..., un−1, un, · · · , uN−1)). (4.27)

Next, we define a function G : U → [0,∞] by

G(u) := E
[
e−βL(u,W1)

]
= E

[
e−β(c(b)Z1−h(b,Y1)K1+Y1(1−K1)+<δ,R1>)

]
(4.28)

for all u = (b, δ) ∈ U where W1 is given as in Assumption 1 (IA). Thus, by

Assumption 1 (IA), we have

E
[
e−βL(u,Wn)

]
= E

[
e−βL(u,W1)

]
(4.29)

for all u ∈ U and n ∈ N.

Remark 4.1. By Assumption 1 (IA), for each π = {ui}N−1
i=0 ∈ P(N,U), the

equation (4.20) becomes

Φ(N)
n (x, π) = γe−βx + αG(un)Φ

(N)
n+1(x, π) (4.30)

for all n ∈ {0, 1, 2, · · · , N − 1}.
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Proof of the Remark 4.1. Let π = {ui}N−1
i=0 ∈ P(N,U).

In the case of n = N − 1, we have

Φ
(N)
N−1(x, π) = E

[
γe−βx + αν0 · e−β(x+L(uN−1,WN ))

]
= γe−βx + αE

[
e−βL(uN−1,WN )

]
ν0 · e−βx

= γe−βx + αG(uN−1)Φ
(N)
N (x, π). (4.31)

In the case of 0 ≤ n < N − 1. Consider

Φ(N)
n (x, π)

= E
[N−1∑
i=n

αi−nγe−βXi + αN−nν0 · e−βXN |Xn = x
]

= E
[
γe−βx + αγe−β

(
x+L(un,Wn+1)

)
+

N−1∑
i=n+2

αi−nγe
−β
(
x+

i−1∑
j=n

L(uj ,Wj+1)
)

+ν0α
N−ne

−β
(
x+

N−1∑
j=n

L(uj ,Wj+1)
)]

= γe−βx + αE
[
e−βL(un,Wn+1)

{
γe−βx +

N−1∑
i=n+2

γαi−(n+1)e
−β
(
x+

i−1∑
j=n+1

L(uj ,Wj+1)
)

+ν0α
N−(n+1)e

−β
(
x+

N−1∑
j=n+1

L(uj ,Wj+1)
)}]

. (4.32)

Since the {Wn, n ∈ N} is an independent sequence, {L(un−1,Wn), n ∈ N} is also

an independent sequence. Thus, we obtain

Φ(N)
n (x, π)

= γe−βx + αE
[
e−βL(un,Wn+1)

]
E
[
γe−βx +

N−1∑
i=n+2

γαi−(n+1)e
−β
(
x+

i−1∑
j=n+1

L(uj ,Wj+1)
)

+ν0α
N−(n+1)e

−β
(
x+

N−1∑
j=n+1

L(uj ,Wj+1)
)]

= γe−βx + αE
[
e−βL(un,Wn+1)

]
E
[ N−1∑
i=n+1

αi−(n+1)γe−βXi + αN−(n+1)ν0e
−βXN

∣∣Xn+1 = x
]

= γe−βx + αG (un) Φ
(N)
n+1(x, π). (4.33)

This proves Remark 4.1.
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Remark 4.1 leads to the following lemma:

Lemma 4.1. Under Assumption 1, let x ∈ S be an initial state and u ∈ U be a

control action. If G(u) < ∞, then

Φ(N)
n (x, u) =


(
γ −

[
γ − ν0(1− αG(u))

]
(αG(u))N−n

)
· e−βx

1−αG(u)
, αG(u) ̸= 1,(

γ(N − n) + ν0
)
· e−βx, αG(u) = 1

for all n ∈ {0, 1, 2, · · · , N}.

Proof. In the case of αG(u) ̸= 1, we will prove this case by using mathematical

induction. Obviously, the case n = N holds. Now assume that

Φ(N)
n (x, u) =

(
γ −

[
γ − ν0 · (1− αG(u))

]
(αG(u))N−n

)
· e−βx

1− αG(u)
, (4.34)

holds for n = k + 1 ≤ N . By virtue of Remark 4.1, we get

Φ
(N)
k (x, u)

= γe−βx + αG(u)Φ
(N)
k+1(x, u)

= γe−βx + αG(u)
(
γ −

[
γ − ν0(1− αG(u))

]
(αG(u))N−(k+1)

)
· e−βx

1− αG(u)

=
(
γ(1− αG(u)) +

(
γαG(u)−

[
γ − ν0(1− αG(u))

]
(αG(u))N−k

))
· e−βx

1− αG(u)

=
(
γ −

[
γ − ν0(1− αG(u))

]
(αG(u))N−k

)
· e−βx

1− αG(u)
(4.35)

which proves for n = k. Thus, the case αG(u) ̸= 1 holds. Similarly, the case

αG(u) = 1 also holds. This proves Lemma 4.1.

Lemma 4.2. Under Assumption 1, let x ∈ S be an initial state. If there exists

u∗ ∈ U such that

G(u∗) = min
u∈U

E
[
e−βL(u,W1)

]
< ∞, (4.36)

then

V (N)
n (x) = γe−βx + αG(u∗) · V (N)

n+1(x) (4.37)
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and the u∗-stationary plan is an optimal plan, i.e.,

V (N)(x) = Φ(N)(x, u∗).

Proof. Assume that there exists u∗ ∈ U satisfying the condition in Lemma 4.2.

Let n ∈ {0, 1, 2, · · · , N − 1}. Then, by equation (4.27) and Remark 4.1, we have

V (N)
n (x) = inf

π∈P(N,U)
Φ(N)

n (x, π)

= inf
un,un+1,...,uN−1∈U

Φ(N)
n (x, (u0, u1, u2, · · · , uN−1))

= γe−βx + α inf
un,un+1,...,uN−1∈U

{
G(un)Φ

(N)
n+1(x, (u0, u1, u2, ...uN−1))

}
.

(4.38)

For each {ui}N−1
i=0 ∈ P(N,U), we have Φ

(N)
n+1(x, (u0, u1, u2, · · · , uN−1)) ≥ 0 and

G(un) ≥ 0 for all n ∈ {0, 1, 2, · · · , N − 1}, and Φ
(N−1)
n+1 (x, (u0, u1, u2, · · · , uN−1))

does not depend on the control actions u0, u1, · · · , un. Therefore, (4.38) becomes

V (N)
n (x) = γe−βx + α inf

un∈U
G(un) · inf

un+1,...,uN−1∈U
Φ

(N)
n+1(x, (u0, u1, u2, ...uN−1))

= γe−βx + αG(u∗) · inf
π∈P(N,U)

Φ
(N)
n+1(x, π)

= γe−βx + αG(u∗) · V (N)
n+1(x). (4.39)

Next, we will prove

V (N)
n (x) = Φ(N)

n (x, u∗), 0 ≤ n ≤ N (4.40)

by using mathematical induction. We start with n = N . By equation (4.23),

assumption 4.40 follows. Now, we assume that (4.40) holds for n = k + 1 ≤ N ,

i.e.,

V
(N)
k+1 (x) = Φ

(N)
k+1(x, u

∗). (4.41)

Then

V
(N)
k (x) = γe−βx + αG(u∗) · V (N)

k+1 (x)

= γe−βx + αG(u∗) · Φ(N)
k+1(x). (4.42)
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From Remark 4.1, we obtain

Φ
(N)
k = γe−βx + αG(u∗) · Φ(N)

k+1(x). (4.43)

Thus,

V
(N)
k (x) = Φ

(N)
k (x, u∗) (4.44)

which proves (4.40) for n = k. We conclude that

V (N)
n (x) = Φ(N)

n (x, u∗) (4.45)

for all n ∈ {0, 1, 2, · · · , N − 1}. This implies that

V (N)(x) = V
(N)
0 (x) = Φ

(N)
0 (x, u∗) = Φ(N)(x, u∗), (4.46)

i.e., u∗-stationary is an optimal plan.

From Lemma 4.2, we need the condition for the existence of min
u∈U

G(u)

which can be shown by using the maximum and minimum theorem (Theorem

E.4). Firstly, we need the property that u → G(u) is continuous, so we make the

following assumption:

Assumption 2. Continuity Assumption (CA)

The functions c(b) and h(b, y) are continuous in b (for each y) and

E
[
eβ·Y1

]
< ∞, E

[
eε·∥R1∥

]
< ∞, for all ε > 0, (4.47)

when ∥ · ∥ is the Euclidean norm in Rm.

Lemma 4.3. Under Assumption 1-2, the function G : U → [0,∞], defined by

(4.28), is continuous. Moreover,

b 7→ E
[
e−β(c(b)Z1−{h(b,Y1)K1+Y1(1−K1)})

]
and δ 7→ E

[
e−β⟨δ,R1⟩

]
are also continuous.
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Proof. Let u = (b, δ) ∈ U be given. Since c(b)Z1 ≥ 0 and

0 ≤ h(b, Y1)K1 + Y1(1−K1) ≤ Y1K1 + Y1(1−K1) = Y1, (4.48)

we have

c(b)Z1 −
{
h(b, Y1)K1 + Y1(1−K1)

}
+ ⟨δ, R1⟩ ≥ −Y1 + ⟨δ, R1⟩ (4.49)

and

G(u) = E

[
e−β(c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

}
+⟨δ,R1⟩)

]
≤ E

[
e−β(−Y1+⟨δ,R1⟩)

]
= E

[
eβY1−β⟨δ,R1⟩

]
. (4.50)

By Assumption 1 and 2, we have

G(u) ≤ E
[
eβY1

]
E
[
e−β⟨δ,R1⟩

]
≤ E

[
eβY1

]
· E
[
e|β|·∥δ∥·∥R1∥

]
< ∞. (4.51)

Thus, by using the Lebesgue’s dominated convergence theorem (Theorem C.2) and

continuity of exponential function, we obtain

lim
v→u

G(v) = lim
(b̃,δ̃)→(b,δ)

E

[
e−β(c(b̃)Z1−

{
h(b̃,Y1)K1+Y1(1−K1)

}
+⟨δ̃,R1⟩)

]
= E

[
lim

(b̃,δ̃)→(b,δ)
e−β(c(b̃)Z1−

{
h(b̃,Y1)K1+Y1(1−K1)

}
+⟨δ̃,R1⟩)

]
= E

[
e−β(c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

}
+⟨δ,R1⟩)

]
= G(u). (4.52)

We now conclude that u 7→ G(u) is continuous. Similarly, we obtain that

b 7→ E
[
e−β(c(b)Z1−{h(b,Y1)K1+Y1(1−K1)})

]
and δ 7→ E

[
e−β⟨δ,R1⟩

]
are also continuous.
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Assumption 3. No-Arbitrage Assumption (NA)

For any portfolio vector δ ∈ Rm, P (⟨δ, R1⟩ ≥ 0) = 1 implies P (⟨δ, R1⟩ = 0) = 1.

In the investment, the investor will look for the arbitrage opportunity, i.e.,

they want to hold the portfolio δ0 ∈ Rm such that P (⟨δ0, R1⟩ ≥ 0) = 1, which

implies that for the initial surplus X0 = x, we have

X1 = x+ c(b0)Z1 −
{
h(b0, Y1)K1 + Y1(1−K1)

}
+ ⟨δ0, R1⟩

≥ x+ c(b0)Z1 −
{
h(b0, Y1)K1 + Y1(1−K1)

}
a.s. (4.53)

which means that the portfolio δ0 ∈ Rm has no risk. Of course, the investor

would like to use this opportunity because the quantity P (⟨δ0, R1⟩ > 0) may be

positive which indicates an arbitrage opportunity. Note that Assumption 3 (NA)

is equivalent to

“for any portfolio δ ∈ Rm, 0 < P (⟨δ, R1⟩ < 0) < 1 or ⟨δ, R1⟩ = 0 a.s.” (NA*)

By (NA*), we have

Rm = ℑ ∪ ℑ∗ and ℑ ∩ ℑ∗ ̸= ∅

where

ℑ =
{
δ ∈ Rm : ⟨δ, R1⟩ = 0 a.s.

}
and

ℑ∗ = {δ ∈ Rm : 0 < P (⟨δ, R1⟩ < 0) < 1} .

It is easy to see that ℑ is a linear subspace of Rm. Thus, there exists a linear

subspace ℑ⊥ of Rm such that

Rm = ℑ⊕ ℑ⊥ and ℑ ∩ ℑ⊥ =
{
0
}

( Rm is the direct sum of ℑ and ℑ⊥) which implies ℑ⊥ \
{
0
}
⊂ ℑ∗.
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Lemma 4.4. Under Assumption 1-3, let δ ∈ Rm be given. If δ ∈ ℑ⊥ \
{
0
}
, then

there exists an ε > 0 such that

E
[
−⟨δ, R1⟩ I(⟨δ,R1⟩<0)

]
≥ ε · P

(
⟨δ, R1⟩ ≤ −ε

)
> 0.

Proof. Let δ ∈ ℑ⊥ \
{
0
}
. Then, by (NA*), we have

P (⟨δ, R1⟩ < 0) := q (4.54)

for some q > 0. Let

An := {ω ∈ Ω : ⟨δ, R1(ω)⟩ ≤ −1/n}

and

A∞ := {ω ∈ Ω : ⟨δ, R1(ω)⟩ < 0} .

Obviously, An ⊂ An+1 ⊂ A∞ for all n ∈ N and
∪∞

n=1 An = A∞. Thus,{
P
(
An

)
, n ∈ N

}
is an increasing sequence and

lim
l→∞

P (Al) = lim
l→∞

P
( l∪
n=1

An

)
= P (A∞) = q. (4.55)

So that there exists l0 ∈ N such that P
(
Al0

)
> q/2, i.e.,

P
(
⟨δ, R1⟩ ≤ −1/l0

)
> q/2. (4.56)

By Chebyshev’s inequality (Theorem C.8), we have

l0E
[
−⟨δ, R1⟩ 1(⟨δ,R1⟩<0)

]
≥ P

(
−⟨δ, R1⟩ 1(⟨δ,R1⟩<0) ≥ 1/l0

)
= P

(
⟨δ, R1⟩ 1(⟨δ,R1⟩<0) ≤ −1/l0

)
= P

(
⟨δ, R1⟩ ≤ −1/l0

)
> q0/2 > 0. (4.57)

Choose ε = 1/l0. The lemma follows.
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Theorem 4.5. Under Assumption 1-3, let x ≥ 0 be an initial capital. Then there

exists u∗ = (b∗, δ∗) ∈ U such that

G(u∗) = min
(b,δ)∈U

E
[
e−β
(
c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

}
+⟨δ,R1⟩

)]
< ∞

and

V (N)(x) =


(
γ − [γ − ν0 · (1− αG(u∗))] (αG(u∗))N

)
· e−βx

1−αG(u∗)
, αG(u∗) ̸= 1,

(γN + ν0) · e−βx, αG(u∗) = 1.

Moreover, u∗-stationary is an optimal plan.

Proof. By Assumption 1 (IA), we have

inf
u∈U

G(u) = inf
b∈
[
b,b
]E[e−β

(
c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

})]
inf

δ∈Rm
E
[
e−β⟨δ,R1⟩

]
.

Since
[
b, b
]
is compact and

b 7→ E
[
e−β
(
c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

})]
is continuous, by using the maximum and minimum theorem (Corollary E.4), there

exists b∗ ∈
[
b, b
]
such that

E
[
e
−β

(
c(b∗)Z1−

{
h(b∗,Y1)K1+Y1(1−K1)

})]
= min

b∈[b,b]
E
[
e
−β

(
c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

})]
.

(4.58)

Next, we will find the minimizer of E
[
e−β⟨δ,R1⟩

]
over Rm. We consider the following

cases:

Case1. ℑ = Rm. By (NA*), we can see that E
[
e−β⟨δ,R1⟩

]
= 1 for all

δ ∈ Rm.

Case2. ℑ ̸= Rm. Then ℑ⊥ ̸=
{
0
}
. By Lemma 4.4, we can show that for

each δ ∈ ℑ⊥ \
{
0
}
, there exists an ε > 0 such that

E
[
−⟨δ, R1⟩ I(⟨δ,R1⟩<0)

]
≥ ε · P

(
⟨δ, R1⟩ ≤ −ε

)
> 0.
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Hence,

lim
n→∞

E
[
e−β⟨n·δ,R1⟩

]
= lim

n→∞
E
[
e−β⟨n·δ,R1⟩I(⟨δ,R1⟩<0) + e−β⟨n·δ,R1⟩I(⟨δ,R1⟩≥0)

]
≥ lim

n→∞
E
[
e−β⟨n·δ,R1⟩I(⟨δ,R1⟩<0)

]
≥ lim

n→∞
eβnE[−⟨δ,R1⟩I(⟨δ,R1⟩<0)]

≥ lim
n→∞

eβnεP(⟨δ,R1⟩<−ε)

= ∞. (4.59)

Next, for each κ > 0, we define

Fκ :=
{
δ ∈ ℑ⊥ : ∥δ∥ = 1, E

[
e−β⟨κ·δ,R1⟩

]
≤ 2
}
.

Let κ1 and κ2 be two real numbers such that κ2 > κ1 > 0. If Fκ2 ̸= ∅, by convexity

of the exponential function, then

E
[
e−β⟨κ1·δ,R1⟩

]
= E

[
e
−β

κ1
κ2

·κ2⟨δ,R1⟩+κ2−κ1
κ2

·0
]

≤ κ1

κ2

E
[
e−βκ2⟨δ,R1⟩

]
+

κ2 − κ1

κ2

≤ 2κ1

κ2

+
κ2 − κ1

κ2

=
κ2 + κ1

κ2

< 2 (4.60)

for all δ ∈ Fκ2 . This means that Fκ1 ⊃ Fκ2 for all κ2 > κ1 > 0. By inequality

(4.59), we have ∩
n∈N

Fn = ∅.

Since Fκ is compact for all κ > 0, by Cantor’s intersection theorem (Theorem

E.5), there exists an n0 ∈ N such that Fn = ∅ for all n ≥ n0. This implies that

Fκ = ∅ for all κ ≥ n0 and this is equivalent to

∂Bκ :=
{
δ ∈ ℑ⊥ : ∥δ∥ = κ, E

[
e−β⟨δ,R1⟩

]
≤ 2
}
= ∅
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for all κ ≥ n0. Therefore, we have

inf
δ∈Rm

E
[
e−β⟨δ,R1⟩

]
= inf

δ∈Rm
E
[
e−β(⟨ρ(δ),R1⟩+⟨δ−ρ(δ),R1⟩)

]
= inf

δ∈Rm
E
[
e−β⟨ρ(δ),R1⟩

]
= inf

δ∈ℑ⊥
E
[
e−β⟨δ,R1⟩

]
= inf

δ∈ℑ⊥,∥δ∥≤n0

E
[
e−β⟨δ,R1⟩

]
, (4.61)

where ρ : Rm → Rm is an orthogonal projection on ℑ⊥. Since
{
δ ∈ ℑ⊥ : ∥δ∥ ≤ n0

}
is compact and δ 7→ E

[
e−β⟨δ,R1⟩

]
is continuous, there exists

δ∗ ∈
{
δ ∈ ℑ⊥ : ∥δ∥ ≤ n0

}
such that

E
[
e−β⟨δ∗,R1⟩

]
= min

δ∈ℑ⊥,∥δ∥≤n0

E
[
e−β⟨δ,R1⟩

]
. (4.62)

Therefore, u∗ = (b∗, δ∗) is a minimizer of G(u). By Lemma 4.4, we see that

u∗-stationary is an optimal plan. Also from Lemma 4.1, we obtain

V (N)(x) =


(
γ −

[
γ − ν0 · (1− αG(u∗))

]
(αG(u∗))N

)
· e−βx

1−αG(u∗)
, αG(u∗) ̸= 1,(

γN + ν0
)
· e−βx, αG(u∗) = 1.

This completes the proof.

Theorem 4.5 gives the following corollary.

Corollary 4.6. Under Assumption 1-3, let x ≥ 0 be an initial capital. If there

exists u∗ ∈ U such that

0 < αG(u∗) < 1,

then

lim
N→∞

V (N)(x) =
γe−βx

1− αG(u∗)
.
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As a result of corollary 4.6, for large time horizon N0 ∈ N and u∗ a minimizer of

G(u) satisfying 0 < αG(u∗) < 1, the value function V (N)(x) can be approximated

by V (∞)(x) when

V (∞)(x) := lim
N→∞

V (N)(x).

Next, we present an important special case of the value function which is

defined by g(x, u) = 0, i.e., γ = 0, and ν0 > 0. This means that the insurance

company has only to pay a penalty cost at the end. Thus, we want to minimize

Φ(N) (x, π) = Φ
(N)
N (x, π) = ν0 · e−βXN , X0 = x,

which is the same problem as maximizing the expected utility of terminal wealth

if we choose the exponential utility function as 1− e−βx.

Corollary 4.7. Under Assumption 1-3, let x ≥ 0 be an initial capital. If g ≡ 0,

then there exists u∗ ∈ U such that

V (N)(x) = (αG(u∗))N ν0 · e−βx

where

G(u∗) = min
(b,δ)∈U

E
[
e
−β

(
c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

}
+⟨δ,R1⟩

)]
.

4.4 Simulation Results

In this section, we provide the simulation results of Theorem 4.5. We

consider the discrete-time surplus process {Xn, n ∈ N0} under the proportional

reinsurer without investment, i.e.,

X0 = x,Xn = Xn−1 + c(bn−1)Zn − {bn−1 · YnKn + Yn(1−Kn)}

where x ≥ 0 is an initial capital, the process {Yn, n ∈ N} is i.i.d. exponential claim

size with E[Y1] = λ, the process {Zn, n ∈ N} is i.i.d. exponential inter-arrival with
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E[Z1] = µ, and the process {Kn, n ∈ N} is i.i.d. binary recovery coefficient with

P(K1 = 0) = p = 1− P(K1 = 1).

The premium rate c0 and c̃(b) of insurer and reinsurer, respectively, are calculated

by the expected value premium principle, i.e.,

c0 = (1 + θ0)λ/µ and c̃(b) = (1 + θ1)(1− b)λ/µ

where θ0 > 0 and θ1 > 0 a safety loading of insurer and reinsurer, respectively and

b is the retention level. Now we fix θ0 = 0.2 and θ1 = 0.3, thus,

c(b) = c0 − c̃(b) = (1.3b− 0.1)λ/µ.

We set

b =
0.1µ

1.3λ
and b = 1.

In this situation, by Theorem 4.5, there exists b∗ such that

G(b∗) = min
b∈[b,b]

E
[
e−β
(
c(b)Z1−

{
h(b,Y1)K1+Y1(1−K1)

})]
< ∞,

and b∗-stationary is an optimal plan. Specifically, b∗ is called the optimal retention

level.
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Table 4.1 Optimal Retention Level

µ = 0.5 µ = 1.0 µ = 2.0

β p = 0.1 p = 0 p = 0.1 p = 0 p = 0.1 p = 0

0.20 0.951 0.708 0.839 0.598 0.817 0.590

0.40 0.528 0.373 0.471 0.225 0.460 0.314

0.60 0.403 0.262 0.362 0.178 0.364 0.222

0.80 0.367 0.206 0.333 0.150 0.362 0.176

b = 0.154 b = 0.077 b = 0.039

Table 4.1 shows the approximation of the optimal retention level by choos-

ing model parameter λ = 1 and parameter combinations β = 0.2, 0.4, 0.6 and 0.8,

µ = 0.5, 1 and 2, and p = 0.0 and 0.1.

Figure 4.1 Reinsurance without Default and Reinsurance Credit Risk
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Figure 4.1 shows the approximation of G(b) and the optimal retention level.

We choose parameters β = 0.2, λ = 1 and µ = 0.5, and parameter combinations

p = 0.0 (reinsurance without default) and p = 0.1 (reinsurance credit risk).
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Figure 4.2 Cost level and Optimal Retention Level
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Figure 4.2 shows the approximation of G(b) and the optimal retention level.

We choose parameters λ = 1, µ = 0.5 and p = 0.1, and parameter combinations

β = 0.2, 0.4, 0.6 and 0.8.



CHAPTER V

CONCLUSIONS

This thesis is devoted to the study of the two different discrete-time surplus

processes: one is considered the classical surplus process with the claim arrival

times Tn = n, n ∈ N and the other is considered under the conditions of investment

and reinsurance credit risk. Therefore, the results obtained are separated into two

parts.

In the first part, the relationship between the initial capital and ruin prob-

ability of the discrete-time surplus process

X0 = x,Xn = x+ c0n+
n∑

i=1

Yi, n ∈ N, (5.1)

where an initial capital x ≥ 0 and the premium rate c0 > 0, is studied. The claim

size process {Yn, n ∈ N} is assumed to be i.i.d. The ruin probability at one of the

times 1, 2, 3, · · · , N is defined by

ΦN(x) = P{Xi < 0 for some i ∈ {1, 2, 3, · · · , N}|X0 = x} (5.2)

where x ≥ 0 is an initial capital. {x ≥ 0 : ΦN(x) ≤ α} is the set of acceptable

initial capital corresponding to (α,N, c0, {Yn, n ∈ N}) and the minimum initial

capital corresponding to (α,N, c0, {Yn, n ∈ N}) is defined by

MIC(α,N, c0, {Yn, n ∈ N}) = min
x≥0

{x : ΦN(x) ≥ α}. (5.3)

The main results of this part are summarized as follows:

Theorem 5.1. Let N ∈ N and c0 > 0 be given. If {Yn, n ∈ N} is an i.i.d. claim

size process, then

lim
x→∞

ΦN(x) = 0. (5.4)
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Corollary 5.2. Let α ∈ (0, 1), N ∈ N and c0 > 0 be given. If {Yn, n ∈ N} is an

i.i.d. claim size process, then there exists x̃ ≥ 0 such that, for all x ≥ x̃, x is an

acceptable initial capital corresponding to (α,N, c0, {Yn, n ∈ N}).

Lemma 5.3. Let N ∈ N, c0 > 0 and x ≥ 0 be given. If {Yn, n ∈ N} is an

i.i.d. claim size process, then the ruin probability at one of the times 1, 2, 3, · · · , N

satisfies the following equation

ΦN(x) = Φ1(x) +

∫ x+c0

−∞
ΦN−1(x+ c0 − y)dFY1(y) (5.5)

where Φ0(x) = 0.

Theorem 5.4. Let c0 > 0 be a premium rate and {Yn, n ∈ N} be an i.i.d. claim

size process. If h0 > 0 is a sub-adjustment coefficient of (c0, Y1), i.e.,

E[eh0Y1 ] ≤ eh0c0 , (5.6)

then

Φn(x) ≤ e−h0x (5.7)

for all x ≥ 0 and n ∈ N.

Corollary 5.5. Let α ∈ (0, 1) and c0 > 0 be given and {Yn, n ∈ N} be an i.i.d.

claim size process. If h0 > 0 is a sub-adjustment coefficient of (c0, Y1), then

u ≥ − logα

h0

is an acceptable initial capital corresponding (α,N, c0, {Yn, n ∈ N}) for all N ∈ N.

Theorem 5.6. Let α ∈ (0, 1), N ∈ N and c0 > 0. If {Yn, n ∈ N} is an i.i.d. claim

size process, then there exist x∗ ≥ 0 such that

x∗ = MIC(α,N, c0, {Yn, n ∈ N}).
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Theorem 5.7. Let α ∈ (0, 1), N ∈ N v0, u0 ≥ 0 such that v0 < u0. Let {Yn, n ∈ N}

be an i.i.d. claim size process, {un, n ∈ N} and {vn, n ∈ N} be real sequences

defined by vn = vn−1 and un = un−1+vn−1

2
, if ΦN

(
un−1+vn−1

2

)
≤ α,

vn = vn−1+un−1

2
and un = un−1, if ΦN

(
un−1+vn−1

2

)
> α,

for all n ∈ N. If ΦN(u0) ≤ α < ΦN(v0), then

lim
n→∞

un = MIC(α,N, c0, {Yn, n ∈ N}) (5.8)

and

0 ≤ un −MIC(α,N, c0, {Yn, n ∈ N}) ≤ u0 − v0
2n

. (5.9)

In the second part, we consider the discrete-time surplus process

Xn+1 = Xn + c(bn)Zn+1 −
{
h(bn, Yn+1)Kn+1 + Yn+1(1−Kn+1)

}
+ ⟨δn, Rn+1⟩

for all n ∈ N and X0 = x ≥ 0 as initial capital. The surplus process {Xn, n ∈ N} is

driven by the sequence of control actions {un = (bn, δn), n ∈ N0} and the sequence

of random vectors {Wn = (Kn, Rn, Yn, Zn), n ∈ N} where {Kn, n ∈ N} is the

binary recovery coefficient process, {Rn, n ∈ N} is the return process, {Yn, n ∈ N}

is the claim size process, and {Zn, n ∈ N} is the inter-arrival process. The total

discounted cost function and the valued function for the time horizon N ∈ N are

defined by

Φ(N)(x, π) = E

[
N−1∑
i=0

αie−βXi + αNν0e
−βXN |X0 = x

]
, (5.10)

where π = {ui, n ∈ N} and

V (N)(x) = inf
π∈P(N,U)

Φ(N)(x, π), respectively, (5.11)

the control space U = [b, b] × Rm. They are considered under the following as-

sumptions:
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Assumption 1: Independence Assumption (IA)

Wn = (Kn, Rn, Yn, Zn), n ∈ N are independent and identically distributed ran-

dom variables (i.i.d.). In addition, it is assumed that (Kn, Yn, Zn) and Rn are

independent for all n ∈ N.

Assumption 2. Continuity Assumption (CA)

The functions c(b) and h(b, y) are continuous in b (for each y) and

E
[
eβ·Y

]
< ∞, E

[
eε·∥R∥

]
< ∞, for all ε > 0.

Assumption 3. No-Arbitrage Assumption (NA)

For any portfolio vector δ ∈ Rm, P (⟨δ, R1⟩ ≥ 0) = 1 implies P (⟨δ, R1⟩ = 0) = 1.

We obtain the following main theorem:

Theorem 5.8. Under Assumption 1-3, let x ≥ 0 be an initial capital. Then there

exists u∗ = (b∗, δ∗) ∈ U such that

G(u∗) = min
(b,δ)∈U

E
[
e−β
(
c(b)Z−

{
h(b,Y )K+Y (1−K)

}
+⟨δ,R⟩

)]
< ∞

and

V (N)(x) =


(
γ − [γ − ν0 · (1− αG(u∗))] (αG(u∗))N

)
· e−βx

1−αG(u∗)
, αG(u∗) ̸= 1,

(γN + ν0) · e−βx, αG(u∗) = 1.

Moreover, u∗-stationary is an optimal plan.

Finally, we should observe that further problems can be considered. For

instance, the ruin probability problem under the reinsurance credit risk, the mini-

mum initial problem in the situation that claim arrival times are random variables,

the surplus control problem in order to reach the some target, etc. Furthermore,

we can consider the total capital requirement (TCR) problem as the minimum

initial capital problem. We will continue to study in this field.
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APPENDIX A

NOTATIONS

(Ω,F ,P) Probability space

Ω Outcome space

F σ-field

P Probability measure

σ(X) σ-field generated by random variable X

(X ∈ B) {ω ∈ Ω : X(ω) ∈ B}

(X ≤ x) {ω ∈ Ω : X(ω) ≤ x}

E[X] Expectation of the random variable X

E[X|F ] Conditional expectation of the random variable X

given the σ-field F

IA Indicator of set A

N Set of positive integers

N0 Set of non-negative integers

R Real line

Rm n-dimensional Euclidean space

inf Infimum (greatest lower bound)

sup Supremum (least upper bound)

∥x∥ Norm of x

⟨x, y⟩ Inner product of x and y

ℑ⊥ Orthogonal complement of a closed subspace ℑ

x 7→ f(x) x maps to f(x)



APPENDIX B

COMPUTER PROGRAMS

This appendix contains a copy of the programs written in Matlab to im-

plement the approximation in Chapter III and Chapter IV.

%----------- Table 3.1 in Chapter III -----------%

clc;clear;

%The number of iterations

n=25;

%Set the Parameters

lambda=1; alpha=0.1; c0=1.1;

fprintf(’lambda=%7.1f,alpha=%5.5f,premuim=%1.2f\n’,lambda,alpha,c0)

fprintf(’------------------------------------------\n’)

%The number of claims

N=[10 20 30 40 50 100 200 300 400 500 1000 5000 10000];

for j=1:13

%Bisection method

v0=0;u0=20; u=[];v=[];w=[];

u(1)=u0;v(1)=v0;w(1)=u(1);

for i=1:n

w(i+1)=(u(i)+v(i))*0.5;

A=[]; PH1=[];

for k=1:N A(k)=log(k);

PH1(k)=exp((k-1)*log(lambda*(w(i+1)+k*c0))+log(w(i+1)+c0)...
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-lambda*(w(i+1)+k*c0)-log(w(i+1)+k*c0)-(sum(A)-A(k)));

end

phi1=sum(PH1);

if (phi1<=alpha)

u(i+1)=w(i+1);

v(i+1)=v(i);

else

v(i+1)=w(i+1);

u(i+1)=u(i);

end

%Output

M(j)=ceil(u(n)*100000)/100000;

fprintf(’N=%7.1f, Minimum Initial Captial=%5.5f \n’,N(j),M(j))

end

%----------- End -----------%
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%----------- Figure 3.1 in Chapter III -----------%

clc;clear;

n=25;

N=100;

alpha=[];

v0=0;u0=20;

lambda=1;

c0=[1.1 1.25];

MIC=[];

for r=1:2

for q=1:90

alpha(q)=q/100;

u=[];v=[];w=[];

u(1)=u0;v(1)=v0;w(1)=u(1);

for i=1:n

w(i+1)=(u(i)+v(i))*0.5;

A=[]; PH1=[];

for k=1:N A(k)=log(k);

PH1(k)=exp((k-1)*log(lambda*(w(i+1)+k*c0(r)))...

+log(w(i+1)+c0(r))-lambda*(w(i+1)+k*c0(r))...

-log(w(i+1)+k*c0(r))-(sum(A)-A(k)));

end

phi1=sum(PH1);

if (phi1<=alpha(q))

u(i+1)=w(i+1);

v(i+1)=v(i);
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else

v(i+1)=w(i+1);

u(i+1)=u(i);

end

end

MIC(r,q)=u(n)

end

end

hold on;

t=0.01:0.01:0.9

plot(t,MIC(1,:),’r’)

plot(t,MIC(2,:),’b’)

%----------- End -----------%
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%---- Table 4.1, Figure 4.1 and Figure 4.2 in Chapter IV ----%

clc;clear;

%Set the size of random numbers

N=10000;

%Set the means of claim size and inter-arrival time

lambda=1; mu=2.0;

%Generate the random numbers

Y=exprnd(lambda,1,N); Z=exprnd(mu,1,N);

K=binornd(1,0.9,1,N);

%set the parameters (beta)

beta1=0.2; beta2=0.4;beta3=0.6;beta4=0.8;

%Compute the premium rate of insurer with safety loading 0.2

c0=1.2*lambda/mu;

A1=[];A2=[];A3=[];A4=[];A5=[];A6=[];A7=[];A8=[];

b1=0;

for j=1:(1-b1)*1000+1

b=b1;

b=b+(j-1)/1000;

%(1-b)*1.3*lambda/mu is premium rate of reinsurer

%with safety loading 0.3

cb=c0-(1-b)*1.3*lambda/mu;

E1=[];E2=[];E3=[];E4=[];E5=[];E6=[];E7=[];E8=[];

for i=1:N

E1(i)=exp(-beta1*(cb*Z(i)-(b*Y(i)*K(i)+Y(i)*(1-K(i)))));

E2(i)=exp(-beta1*(cb*Z(i)-b*Y(i)));

E3(i)=exp(-beta2*(cb*Z(i)-(b*Y(i)*K(i)+Y(i)*(1-K(i)))));
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E4(i)=exp(-beta2*(cb*Z(i)-b*Y(i)));

E5(i)=exp(-beta3*(cb*Z(i)-(b*Y(i)*K(i)+Y(i)*(1-K(i)))));

E6(i)=exp(-beta3*(cb*Z(i)-b*Y(i)));

E7(i)=exp(-beta4*(cb*Z(i)-(b*Y(i)*K(i)+Y(i)*(1-K(i)))));

E8(i)=exp(-beta4*(cb*Z(i)-b*Y(i)));

end

A1(j)=mean(E1);

A2(j)=mean(E2);

A3(j)=mean(E3);

A4(j)=mean(E4);

A5(j)=mean(E5);

A6(j)=mean(E6);

A7(j)=mean(E7);

A8(j)=mean(E8);

end

for j=1:(1-b1)*1000+1

if A1(j)==min(A1)

M1=(j-1)/1000;

end

if A2(j)==min(A2)

M2=(j-1)/1000;

end

if A3(j)==min(A3)

M3=(j-1)/1000;

end

if A4(j)==min(A4)
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M4=(j-1)/1000;

end

if A5(j)==min(A5)

M5=(j-1)/1000;

end

if A6(j)==min(A6)

M6=(j-1)/1000;

end

if A7(j)==min(A7)

M7=(j-1)/1000;

end

if A8(j)==min(A8)

M8=(j-1)/1000;

end

end

%-Output for Table 4.1

fprintf(’-----------------------------\n’)

fprintf(’ lambda=%1.1f,mu=%1.1f \n’,lambda,mu)

fprintf(’-----------------------------\n’)

fprintf(’ beta | p=0.1 | p=0.0\n’)

fprintf(’-----------------------------\n’)

fprintf(’ 0.2 | %1.3f | %1.3f \n’,M1,M2)

fprintf(’ 0.4 | %1.3f | %1.3f \n’,M3,M4)

fprintf(’ 0.6 | %1.3f | %1.3f \n’,M5,M6)

fprintf(’ 0.8 | %1.3f | %1.3f \n’,M7,M8)
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fprintf(’-----------------------------\n’)

%-Output for Figure 4.1

hold on;

t=b1:0.001:1;

%Line A: beta=0.2,lambda=1,mu=2,c0=0.6,p=0.1

plot(t,A1,’r’)

%Line B: beta=0.4,lambda=1,mu=2,c0=0.6,p=0.1

plot(t,A3,’y’)

%Line C: beta=0.6,lambda=1,mu=2,c0=0.6,p=0.1

plot(t,A5,’k’)

%Line D: beta=0.8,lambda=1,mu=2,c0=0.6,p=0.1

plot(t,A7,’c’)

%-Output for Figure 4.2

hold on;

t=b1:0.001:1;

%Line 1: beta=0.2,lambda=1,mu=2,c0=0.6,p=0.1

plot(t,A1,’r’)

%Line 2: beta=0.2,lambda=1,mu=2,c0=0.6,p=0.0

plot(t,A2,’m’)

%----------- End-----------%



APPENDIX C

PROBABILITY THEORY

We recall some definition and theorem in probability theory. Most of these

results can be found in Brzeźniak and Zastawniak (1999), Capiński and Kopp

(2004), and Aggoun and Elliott (2004).

Definition C.1. Let Ω be a non-empty set. A σ-field F on Ω is a family of a

subsets of Ω such that

1. the empty set ∅ belong to F ;

2. if A belong to F , then so does the complement Ω \ A;

3. if A1, A2, · · · is a sequence of sets in F , then their union A1 ∪ A2 ∪ · · · also

belong to F .

Definition C.2. Let F be a σ-field on Ω. A probability measure P is a function

P : F → [0, 1]

such that

1. P(Ω) = 1;

2. if A1, A2, · · · are pairwise disjoint set (that is, Ai ∩Aj = ∅ for i ̸= j) belong

to F , then

P(A1 ∪ A2 ∪ · · · ) = P(A1) + P(A2) + · · · .

The triple (Ω,F ,P) is called a probability space. The sets belonging to F is called

events. An event A is said to occur almost surely (a.s.) whenever P(A) = 1.
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Definition C.3. If F is a σ-field on Ω, then a function X : Ω → R is said to be

F -measurable if

(X ∈ B) := {ω ∈ Ω : X(ω) ∈ B} = X−1(B) ∈ F

for every Borel set B ∈ B(R). If (Ω,F ,P) is a probability space, then such a

function X is called a random variable.

Definition C.4. The σ-field σ(X) generated by a random variable X : Ω → R

consists of all sets of the form (X ∈ B), where B is a Borel set in R.

Lemma C.1 (Doob-Dynkin). Let X be a random variable. Then each σ(X)-

measurable random variable Y can be written as

Y = f(X)

for some Borel function f : R → R.

Definition C.5. Every random variable X : Ω → R gives rise to a probability

measure

PX(B) = P(X ∈ B)

on R defined on the σ-field of Berel sets B ∈ B(R). We call PX the distribution

of X. The function FX : R → [0, 1] defined by

FX(x) = P(X ≤ x)

is called the distribution function of X.

Definition C.6. If there is a Borel function fX : R → R such that for any Borel

set B ⊂ R

P(X ∈ B) =

∫
B

fX(x)dx
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then X is said to be a random variable with absolutely continuous distribution

and fX is called density of X. If there is a (finite or infinite) sequence of pairwise

distinct real numbers x1, x2, · · · such that for any Borel set B ⊂ R

P(X ∈ B) =
∑
xi∈B

P(X = xi),

then X is said to have discrete distribution with value x1, x2, · · · and mass

P(X = xi) at xi.

Definition C.7. A random variable X : Ω → R is said to be integrable if∫
Ω

|X|dP < ∞.

Then

E[X] :=

∫
Ω

XdP

exist and is called the expectation of X.

Definition C.8. Two events A,B ∈ F are called independent if

P(A ∩B) = P(A)P(B).

In general, we say that n events A1, A2, · · · , An ∈ F are independent if

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P(Ai1)P(Ai2) · · ·P(Aik)

for any indices 1 ≤ i1 < i2 < · · · < tk ≤ n.

Definition C.9. Two random variable X and Y are called independent if for any

Borel sets A,B ∈ B(R) the two events

(X ∈ A) and (Y ∈ B)

are independent. We say that n random variable X1, X2, · · · , Xn are independent

if for any Borel sets B1, B2, · · · , Bn ∈ B(R) the events

(X1 ∈ B1), (X2 ∈ B2), · · · , (Xn ∈ Bn)

are independent.
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Definition C.10. Two σ-fields G and H contain in F are called independent if

any two events A ∈ G and B ∈ H are independent. Similarly, any finite number

of σ-fields G1,G2, · · · ,Gn contained in F are independent if any n events

A1 ∈ G1, A2 ∈ G2, · · · , An ∈ Gn

are independent.

Definition C.11. We say that a random variable X is independent of σ-field G if

the σ-fields σ(X) and G are independent.

Definition C.12. A Stochastic process is a family of random variable X(t)

parametrized by t ∈ T , where T ⊂ N. When T = N, we shall say that X(t)

is a stochastic process in discrete time (i.e., a sequence of random variable). When

T is an interval in R (typically T = [0,∞)), we shall say that X(t) is a stochastic

process in continuous time.

Theorem C.2 (Lebesgue’s Dominated Convergence Theorem). Suppose

{Xn, n ∈ N} is a sequence of random variables such that |Xn| ≤ Y a.s. where Y

is an integrable random variable. If Xn converses to X a.s., then Xn and X are

integrable,

lim
n→∞

∫
Ω

XndP = lim
n→∞

∫
Ω

XdP

and

lim
n→∞

∫
Ω

|Xn −X|dP = 0.

Theorem C.3. Let (Ω,F ,P) be a probability space. Given a random variable

X : Ω → R, ∫
Ω

g(X(ω))dP(ω) =

∫
R
g(x)dPX(x).
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Theorem C.4. If PX defined on Rn is absolutely continuous with density fX ,

g : Rn → R is integrable with respect to PX , then∫
Rn

g(x)dPX(x) =

∫
Rn

fX(x)g(x)dx.

Corollary C.5. In the situation of the previous theorem we have∫
Ω

g(X)dP =

∫
Rn

fX(x)g(x)dx.

Theorem C.6. Let (Ω,F ,P) be a probability space. Let X be a real random

variable and B a Borel set. Then∫
B

g(x)dFX(x) =

∫
X−1(B)

g(X(ω))dP(ω).

Here g is a Borel function and where B = R∫
R
g(x)dFX(x) =

∫
Ω

g(X(ω))dP(ω).

Proposition C.7. Let (Ω,F ,P) be a probability space.

(i) FX is non-decreasing (y1 ≤ y2 implies FX(y1) ≤ FX(y2));

(ii) lim
y→∞

FX(y) = 1, lim
y→−∞

FX(y) = 0;

(iii) FX is right continuous (if y → y0, y ≥ y0, then FX(y) → FX(y0)).

Theorem C.8 (Chebyshev’s Inequality). If Y is a non-negative random variable,

ε > 0, 0 < p < ∞, then

P(Y ≥ ε) ≤ E[Y p]

εp
.



APPENDIX D

CONDITIONAL EXPECTATION

Let (Ω,F ,P) be a probability space and suppose that G,H are σ-fields

containing in F .

Definition D.1. A random variable E[X|G] is called the conditional expectation

of X relative to a σ-field G if

(i) E[X|G] is G-measurable,

(ii)
∫
G
E[X|G]dP =

∫
G
XdP, for all G ∈ G.

Proposition D.1. (See Brzeźniak and Zastawniak (1999))

The conditional expectation E[X|G] has the following properties:

(i) E[E[X|G]] = E[X];

(ii) If X is G-measurable, then E[X|G] = X;

(iii) If X is independent of F , then E[X|G] = E[X]

(an independent condition drop out);

(iv) If X is G-measurable and XY is integrable, then E[XY |G] = XE[Y |G]

(taking out what is known);

(v) If H ⊂ G, then E[E[X|G]|H] = E[X|H]

(tower property).

Theorem D.2 (Jensen’s Inequality). Let ϕ : R → R be a convex function and

let X be an integrable random variable on a probability space (Ω,F ,P) such that
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ϕ(X) is also integrable . Then

ϕ(E[X|G]) ≤ E[ϕ(X)|G]

for any σ-field G on Ω contained in F .

Lemma D.3. Let (Ω,F ,P) be a probability space and let G be a σ-field contained

in F . If X is a G-measurable random variable and for any B ∈ G∫
B

XdP = 0,

then X = 0 a.s.

Proof. Observe that P(X ≥ ε) = 0 for all ε > 0 because

0 ≤ εP(X ≥ ε) =

∫
(X≥ε)

εdP ≤
∫
(X≥ε)

XdP = 0.

Similarly, P(X ≤ −ε) = 0 for all ε > 0. As a consequence,

P(−ε < X < ε) = 1

for all ε > 0. Let

An = (− 1

n
< X <

1

n
), n ∈ N.

Then P(An) = 1 for all n and

(X = 0) =
∞∩
n=1

An.

Since An ⊃ An+1 for all n, we obtain

P(X = 0) = lim
n→∞

P(An) = 1,

as required.

Theorem D.4. Suppose X and Y are G-measurable random variables. If

E[XIA] = E[Y IA]

for all A ∈ G, then X = Y a.s.
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Proof. From the above lemma, it follows immediately.

Theorem D.5. Suppose that X and Y are independent and h is a measurable

function such that E[|h(X, Y )|] < ∞, then

E[h(X, Y )|σ(X)] = g(X)

where g(X(ω)) = E[h(X(ω), Y )] a.s.

Remark D.1. It is important here that X and Y are independent. This result is

not true when X and Y are dependent.

Proof of Theorem D.5. Clearly, g(X) is σ(X)-measurable. Let A ∈ σ(X), so

that there exists a Borel set B such that A = X−1(B). Then

E[h(X,Y )I(X∈B)] =

∫
R

∫
R
h(x, y)IB(x)dFY (y)dFX(x)

=

∫
R
IB(x)

∫
R
h(x, y)IB(x)dFY (y)dFX(x)

=

∫
R
IB(x)E[h(x, Y )]dFX(x)

= E[g(X)I(X∈B)]. (D.1)

By Definition D.1, we have g(X) = E[h(X, Y )|σ(X)]. Consider∫
Ω

g(X(ω))IA(ω)dP(ω) =

∫
Ω

g(X(ω))I(X∈B)(ω)dP(ω)

= E[g(X)I(X∈B)]

=

∫
R
IB(x)E[h(x, Y )]dFX(x)

=

∫
Ω

IA(ω)E[h(X(ω), Y )]dP(ω). (D.2)

From Theorem D.4, we obtain g(X(ω)) = E[h(X(ω), Y )] a.s.



APPENDIX E

FUNCTIONAL ANALYSIS

We recall some definition and theorem from functional analysis. Most of

these results can be found in Kreyszig (1998) and Apostol (1974).

Theorem E.1 (Continuous Mapping). A mapping T : X → Y of a metric space

(X, d) into a metric space (Y, d̃) is continuous at a point x0 ∈ X if and only if

xn → x0 implies Txn → Tx0.

Definition E.1. A metric space X is said to be compact if every sequence in X

has a convergent subsequence. A subset M of X is said to be compact if M is

compact considered as a subspace of X, that is, if every sequence in M has a

convergent subsequence whose limit is an element in M .

Theorem E.2 (Compactness). In a finite dimensional normed spaceX, any subset

M ⊂ X is compact if and only if M is closed and bounded.

Theorem E.3 (Continuous Mapping). Let X and Y be metric spaces and

T : X → Y . Then the image of a compact subset M of X under T is compact.

Corollary E.4 (Maximum and Minimum). A continuous mapping T of a compact

subset M of a metric space X into R assumes a maximum and a minimum at some

points of M .

Theorem E.5 (Canter Intersection Theorem).

Let {F1, F2, F3, · · · } be a countable collection of nonempty sets in Rm such that:

(i) Fn+1 ⊂ Fn, n ∈ N;
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(ii) each set Fn is closed and F1 is bounded. Then the intersection ∩∞
n=1Fn is

closed and nonempty.

Theorem E.6 (Bolzano’s Theorem).

Assume f is real-valued and continuous on a compact interval [a, b] in R, and

suppose that f(a) and f(b) have opposite signs; that is, assume f(a)f(b) < 0.

Then there is at least one point c in the open interval (a, b) such that f(c) = 0.

Definition E.2 (Orthogonality). An element x of an inner product space X is

said to be orthogonal to an element y ∈ X if

⟨x, y⟩ = 0.

Theorem E.7 (Schwarz Inequality). An inner product and the corresponding

norm satisfy the Schwarz inequality, i.e.,

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Theorem E.8 (Minimizing Vector). Let X be an inner product space and M ̸= ∅

a convex subset which is complete (in the metric induced by the inner product).

Then for every given x ∈ X there exists a unique y ∈ M such that

δ = inf
ỹ∈M

∥x− ỹ∥ = ∥x− y∥.

Theorem E.9 (Orthogonality). In theorem E.8, let M be a complete subspace Y

and x ∈ X fixed. Then z = x− y is orthogonal to Y .

Definition E.3 (Direct Sum). A vector space X is said to be the direct sum of

two subspaces of Y and Z , written

X = Y ⊕ Z,

if each x ∈ X has a unique representation

x = y + z
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for some y ∈ Y and z ∈ Z. Then Z is called algebraic complement of Y in X and

vice versa, and Y, Z is called a complement pair of subspaces in X.

In the case of a general Hilbert spaceH, the main interest concerns represen-

tations of H as a direct sum of a closed subspace Y and its orthogonal complement

Y ⊥ := {z ∈ H : z⊥Y },

which is the set of all vectors orthogonal to Y .

Theorem E.10 (Direct Sum). Let Y be any closed subset of a Hilbert space H.

Then H = Y ⊕ Z and Y ∩ Z = {0} when Z = Y ⊥.

In theorem E.10, we found that for every x ∈ H there exists and unique a

y ∈ Y and z ∈ Y ⊥ such that x = y + z, y is called the orthogonal projection of x

on Y . Define a mapping

ρ : H → Y

x 7→ y = ρ(x).

ρ is called the (orthogonal) projection of H onto Y .
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