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CHAPTER 1

INTRODUCTION

Financial risk management is traditionally separated into market risk and
credit risk. Market risk is the risk due to the fluctuations of market variables
and is the best known type of risk in banking. It is the risk of a change in value
of a financial position due to changes in the value of the underlying components
on which that position depends, such as cash products (stock, bond), derivatives
(plain vanilla, exotics), interest rate, equities, foreign exchange rate, emerging
markets, commodities, etc. Each component will have its own risk management
expertise requirement. Credit risk, or default risk, is the possibility that a borrower
will be unable to repay principal and interest as agreed in the loan repayment
contract. In the U.S., default risk is estimated by a credit rating from Standard
& Poor’s, Moody’s or some other rating agency. Investors control default risk by
monitoring the ratings of the bonds they hold or consider for purchase.

At present, the insurance industry in many countries over the world has
grown at a faster pace, so the insurance risk management problem arises conse-
quently. Insurance risk, concerning actuarial science, is considered in addition to
market risk and credit risk. The main problem is, how the insurance company can
manage the capital reserve for customer compensation according to its liabilities.
This means that the insurance company has the risk of the insolvency possibility
when its surplus becomes negative. Therefore, risk models have attracted much
attention in the insurance business, in connection with the possible insolvency and

the capital reserve of the insurance company.



1.1 Classical Risk Model

In 1903 the Swedish actuary Filip Lundberg laid the foundations of modern
risk theory. Risk theory is a synonym for non-life insurance mathematics, which
deals with the modeling of claims that arrive in an insurance business and which
gives advice on how much premium has to be charged in order to avoid insolvency
of the insurance company.

One of Lundberg’s main contributions is the introduction of a simple model
which is capable of describing the basic dynamics of a homogeneous insurance
portfolio. By this we mean a portfolio of contracts or policies for similar risks
such as automobile insurance for a particular kind of car, insurance against theft
in households or insurance against water damage of one-family homes. There are

three assumptions in the model
e Claims happen at the times 7; satisfying
O0=Ty <T1 <Tp <---.

We called them claim arrivals or claim times or claim arrival times.

{T,,n € Ny} is called a claim arrival process.

e The ith claim arriving at time 7; causes the claim size of claim severity
Y;. The sequence of {Y,,,n € N} constitutes an independent and identically
distributed (i.i.d.) sequence of non-negative random variables. {Y,,n € N}

is called a claim size process.

e The claim size process {Y,,,n € N} and the claim arrival process {T,,,n € Ny}

are mutually independent.

Now we can define the claim number process

N(t) =max{i > 1:T; <t},



i.e., {N(t),t > 0} is a counting process on [0, 00): N(t) is the number of the claims
which have occurred by time ¢. The object of main interest from the point of view

of an insurance company is the total claim size process:

N(t)
A(t)=> Vit >0.
i=1
Later in the 1930s, Harald Cramér, the famous Swedish statistician and proba-
bilist, extensively developed collective risk theory by using the total claim size
process A(t) with claim arrival times T; which are generated by a Poisson process.
The homogeneous Poisson process plays a major role in insurance mathemat-
ics. If we specify the claim number process as a homogeneous Poisson process
the resulting model which combines claim sizes and claim arrival times is called
Cramér-Lundberg model.
Let p(t) denote the premium income in the time interval [0,¢]. In the
Cramér-Lundberg model it is assumed that p(-) is a deterministic linear function:
that is, p(t) = cot,t > 0 where ¢y > 0 is a constant called the premium rate. With

the total claim amount A(t), put for ¢ > 0,
N(t)
X(t)=a+p(t) = At) =x+ct — Y Vi (1.1)
i=t

The process {X(t),t > 0} is called the risk process (or surplus process) of the
model; here x > 0 is the initial capital. A classical risk measure is the infinite

time ruin probability of the surplus process (1.1) which is defined by
O(z) =P(T < o0) (1.2)
for X(0) =z > 0 which is a function of the initial capital = where
T = inf{t > 0, X () < 0}. (1.3)

Such a T is called the ruin time: the first time the surplus falls below zero. Note

that ®(z) depends on the premium rate ¢q as well. Instead of the ruin probability,



Gerber and Shiu (1998) introduced the quantity
Ele™ Tir<o0)),d > 0 (1.4)

known as the Gerber-Shiu discounted penalty function and is a general case of

(1.2).

1.2 Outline of This Thesis

To attain the major objective, we give a brief outline of how we intend to
proceed and what each chapter contains. The thesis is organized as follows.

In Chapter II, we introduce some notation, terminology and some mathe-
matical tools which are used in the main theorems.

In Chapter I1II, we study the discrete-time surplus process with the claim
arrival times T,, = n,n > 0 according to the risk regulation. We prove the existence
of the minimum initial capital and apply the bisection method to approximate the
minimum initial capital for exponential claims.

In Chapter IV, we study the discrete-time surplus process which can be
controlled by two activities, one is reinsurance for which the reinsurance company
has an opportunity to default and the other is an investment in a financial market.
We prove the existence of an optimal plan and also derive a formula for the value
function. Finally, we approximate the value function and optimal plan for some
well known distributions.

The conclusion of the thesis is presented in the last chapter.



CHAPTER 11

PRELIMINARY

In this chapter, we introduce some terminology of insurance, the description

of the Risk-Based Capital Framework and the research problems.

2.1 Insurance and Reinsurance

In law and economics, insurance is a form of risk management primarily
used to hedge against the risk of a contingent, uncertain loss. Insurance is defined
as the equitable transfer of the risk of a loss, from one entity to another, in ex-
change for payment. An insurer is a company selling the insurance; an nsured
or policyholder is the person or entity buying the insurance policy. The insurance
rate is a factor used to determine the amount to be charged for a certain amount
of insurance coverage, called the premium.

Reinsurance is insurance that is purchased by an insurance company (in-
surer) from a reinsurer as a means of risk management, to transfer risk from the
insurer to the reinsurer.

Reinsurance treaties are mutual agreements between different insurance
companies with the aim to reduce the risk in a particular insurance portfolio by
sharing the risk of the occurring claims as well as the premium in this portfolio.
There are many types of reinsurance treaties, the insurance company handles two

treaties in mostly as follows:

e Proportional reinsurance. In a proportional reinsurance treaties each indi-

vidual claim of size Y is divided between insurer and reinsurer to a propor-



tionality factor b € [0, 1]: the insurer pays bY", the reinsurer pays (1 — b)Y,

o [xcess-of-loss reinsurance. In excess of loss (XL) reinsurance each claim of
size Y is divided between the insurer and the reinsurer according to priority

b € [0,00]: the insurer pays min{Y, b} and the reinsurer pays max{Y —b,0}.

The b from above is called the ceding company’s retention level or retention level.

2.2 Risk-Based Capital (RBC) Framework

A Risk Based Capital Framework (the RBC Framework) specifies the cap-
ital which an insurer needs to have in excess of its liabilities (mostly technical
reserves) based on the risk profile of the individual insurer. The difference be-

tween this approach and the current formula that is in place in Thailand is that:

e The required capital depends on the risk profile of the specific insurer, rather

than just the size of its business.

e The basis for valuation of assets and liabilities is more transparent than

before, and no longer incorporates undisclosed margins.

The RBC Framework seeks to amend the existing valuation methodology
for assets and liabilities, establish new capital requirement rules, update the role of
actuaries, introduce a new set of statutory reporting standards and introduce new
regulations or review existing regulations and consider how and when these may
require to be amended to harmonise with the new framework. The framework will

set out draft regulations, notices and guidelines (including actuarial guidelines).



2.2.1 Aims of Risk Based Capital in Thailand

The objective of Solvency Capital is to provide a buffer to protect the
interests of policyholders. This buffer should be sufficiently large to allow time for
management action or regulator action to counter the impact of adverse experience
on the ability of the insurer to meet its liabilities to customers. The proposed new
basis for Solvency Capital is a Risk Based Capital Framework (RBC Framework).

That is, the required Solvency Capital will directly reflect the risks to which
an individual company is exposed. RBC would replace the existing one size fits
all system.

The RBC Framework specifies the capital which an insurer needs to have
in excess of its liabilities (mostly technical reserves). The difference between the

proposed new approach and the current formula is that:

e The required capital depends on the risk profile of the specific insurer, rather

than just the size of its business; and

e The basis for valuation of assets and liabilities is more transparent than
before, and no longer incorporates undisclosed margins. Such a Framework

will drive better risk management and more efficient use of capital.

The proposed RBC Framework itself will trigger changes to regulation in
a number of areas. In addition, the role of actuaries and auditors will change
to reflect the increased weight given to an insurers own situation in assessing its
Solvency Capital requirement.

The RBC Framework has been designed specifically for Thailand, recogniz-
ing and reflecting the current situation of the whole industry. In particular, the

process recognized that the size and capabilities of different insurers are different,



and this is reflected in the relatively standardized and straightforward approach
which is proposed.

Where appropriate, certain features of international best practice, drawn in
particular from Solvency II and the Malaysian and Singaporean regimes have been
incorporated in the proposed RBC Framework. However, the circumstances and

interests of Thai companies have always been uppermost in the designers minds.

2.2.2 Principles of Risk Based Capital and Applicability

All insurers and reinsurers, including branches, will be subject to the RBC

requirements. The following principles underlie the proposed RBC Framework:

e Allow insurers greater opportunity to achieve efficient use of their capital by
linking the required capital more closely to the level of risk entailed by the

chosen business strategy.
e Aligned, where possible, with international best practice.

e Provide the regulator with relevant and timely information within the con-
text of specific risk capital levels, to provide adequate early warning for

timely intervention.
e Consistent between life and non-life companies.

e (Capital Requirement varies with risk and scale: the capital required of two in-
surers with similar liabilities and similar risks is to be consistent; conversely,
two insurers whose risk profiles are significantly different should experience

corresponding capital requirements.

e Thai Government guarantee to be considered the highest level of security

(i.e., risk free).



e Separation of buffers and margins from the estimates of technical reserves,
combined with explicit levels for the technical reserves, to allow greater trans-

parency and greater comparability of insurers solvency positions.

Some insurers may have developed or have access to internal models for set-
ting their own capital targets or for the purposes of reporting under the Solvency
IT regime. While the Office of Insurance Commission (OIC) wishes to encourage
the development of such models, all companies must still comply with the stan-
dard RBC Framework and the results from internal models may not be used as a
substitute at present. The OIC will consider allowing the use of such models in

the future.

2.2.3 The Formula for the Capital Requirement

The Capital Adequacy Ratio (CAR) for an insurer is defined as: (Total
Available Capital) divided by (Risk Capital Requirement). The RBC Framework

sets the target to be met by an insurer as a Capital Adequacy Ratio at least equal

to 100%. This means that

Total Available Capital >~ 100%.

CAR =
Risk Capital Requirment —
The risks to be taken into account in the Risk Capital requirement are

grouped into the following categories:

1. Group risk represents the risks associated with membership of a wider busi-
ness grouping such that risks to which other group companies are exposed

could have a financial or operational impact on the insurer.

2. Operational risk is produced by inadequate or failing internal processes, per-
sons or systems, or by external events. Examples are fraud or liability for

mis-selling.
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3. Liquidity risk describes the risk that an insurer while balance sheet solvent,

cannot generate enough cash to pay claims and other outgoings.

4. Market risk derives from market prices themselves or from the volatility of
those market prices. Among other risks, market risk includes equity risk,

interest rate risk, property risk and currency risk.

5. Credit risk includes both the risk that issuer of a bond, or other creditor
defaults and the risk that the counterparty in a risk mitigating contract is
unable to meet its obligations to the insurer. This latter risk is especially
relevant to reinsurance contracts, but also arises in the case of financial

derivatives.

6. Life insurance liability risk is the risk specific to policies held with life insur-
ers. It includes the risk of unexpectedly high or low mortality or morbidity
among policyholders, or an unexpectedly large increase in administrative

costs.

7. Non-life insurance liability risk is the risk specific to non-life insurance poli-
cies associated in particular with unexpectedly many or unexpectedly high

claims.

The Risk Capital Requirement is calculated by applying risk charges to the
value of specific items within the assets and the liabilities and to exposure measures
for other risks. Each type of asset or liability attracts a charge according to the
risks to which it is exposed and the sum (subject to diversification adjustments)
of these charges equals the Risk Capital Requirement.

There will continue to be an absolute minimum amount of capital which an

insurer or reinsurer must hold. This amount is currently Baht 50m for life insurers
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and Baht 30m for general insurers. These amounts will be reviewed once the RBC
Framework is completed.

The RBC Framework is not a substitute for good risk management, but acts
to strengthen it. Insurers are expected to continue to develop and implement sound
risk management and governance regimes. Insurers will be required to make sure
that their strategy, internal controls and decision making processes are effective in
ensuring that they assume only their intended level of risk. In addition, insurers
will be expected to actively manage their capital adequacy ratio by taking into
account the potential impact of business strategies on the insurers risk profile as
part of the decision making process. The OIC will retain the power to intervene
in the management of companies which do not meet adequate risk management

standards.

2.2.4 RBC Framework of Singapore and Malaysia

For the non-life insurance in Singapore and Malaysia, they have the regu-

latory control level 120% and 130%, respectively, i.e.,

Total Capital Available (TCA)
Total Capital Requirement (TCR)

> 120%, 130%, respectively,

Capital Adequacy Ratio (CAR) =

where

TCR = Insurance Risk Capital Charge+Market Risk Capital Charge

+Credit Risk Capital Charge.
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2.3 Relationship between RBC Framework and Research

Problems

We recall the surplus process { X (t),t > 0} as mentioned in (1.1), i.e.,
N()
X(t) :ZL'—i-Cot—ZYi
i=1

where ¢ is the premium rate for one unit timeand {Y,,,n € N} is the claim size
process. Since the nth claim arrives at the time 7,,, the possible insolvency can
occur only at claim arrival times 7T,,n € N. Thus, we are only interested in the
surplus at time 7,,. Since N(7},) = n, the surplus at time 7}, equals to

n

Xp=z+cT,— > Y (2.1)

i=1
where X, := X(T,,) for all n € Ny and X, := X (0) = « is the initial capital. Then,
{X,,n € No} as mentioned in (2.1) is called the discrete-time surplus process.

We say that the surplus process such that the inter-arrival process

{Z, =T,—T,_1,n € N} and the claim size process {Y,,,n € N} are i.i.d., satisfying

the net profit condition (NPC'), if

The interpretation of the NPC is rather intuitive. In a given unit of time
the expected claim size E[X;] has to be smaller than the premium income in this
unit time, represented by the expected premium cyE[T}] when ¢; is a premium

rate for one unit time. From inequality (2.2), there exists 6y > 0 such that

E[Y]
E[Th]’

co = (1 +6p) (2.3)

which is called the expected value premium principle. The quantity 6y is said to

be the safety loading of insurer.
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In this thesis, we consider the two different problems of the discrete-time
surplus process (2.1). For the first process, we consider the surplus process (2.1)
in the situation that the possible insolvency can occur only at claim arrival times
T, = n, n € N. We consider the ruin probability-based initial capital problem (or
minimum initial capital problem) as the RBC problem, i.e., we can consider the
ruin probability as the insurance risk and the initial capital as the insurance risk
capital charge. For the second process, we consider the discrete-time surplus pro-
cess with the claim arrival process {T},,n € Ng} which is a stochastic process under
the investment and reinsurance credit risk. The activities, making the insurance

risk, market risk and (reinsurance) credit risk, can be included in this process.



CHAPTER III

MINIMUM INITIAL CAPITAL PROBLEM

In this chapter, we study the minimum initial capital problem of the
discrete-time surplus process under the claim arrival times 7,, = n,n € N and

we consider the relationship between ruin probability and initial capital.

3.1 Model Descriptions

We consider the discrete-time surplus process in the situation that the pos-
sible insolvency can occur only at claim arrival times 7T, = n,n € N. The nth
claim arriving at time n causes the claim size Y,,. Let the positive random variable
Y,, be the claim size at time n defined in a probability space (2, F, P) for all n € N.
process. We assume that Y,,,n € N are independent and identically distributed
(i.i.d.) random variables, i.e., {Y,,n € N} is an ii.d. claim size process. Now
let the constant ¢y > 0 represent the premium rate for one unit time which is

calculated by the expected value premium principle, i.e.,
co = (1+60)E(Y1) (3.1)

where 6y > 0 is the safety loading of the insurer. Thus, the quantity con de-
scribes the inflow of capital into the business by time n, and the random variable
>, Y; describes the outflow of capital due to payments for claims occurring in

{1,2,3,--- ,n}. Therefore, the quantity
Xn:a:—l—con—ZYi (3.2)
i=1

is the surplus at time n with the constant Xg = x > 0 as the initial capital.
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The general approach for studying ruin probability in the discrete-time
surplus process is through the so-called Gerber-Shiu discounted penalty function.
This approach has appeared in Pavlova and Willmot (2004), Dickson (2005) and
Li (2005a,b). In these articles, they studied the ruin probability as a function of
the initial capital x > 0. In this chapter, we shall work in the opposite direction,
i.e., we study the initial capital for discrete-time surplus process as a function of

ruin probability.

3.2 Ruin Probability Behaviors

Let {X,,n € Nyo} be the discrete-time surplus process as in section 3.1.
We consider the finite-time ruin probabilities of the surplus process {X,,,n € Ny}
which is driven by the i.i.d. claim size process {Y,,,n € N} and the premium rate
co > 0.

Let x > 0 be an initial capital. For each n € N, we let
QOn(iL') = P(Xl Z O,X2 Z O,Xg Z 0, cee ,Xn Z O|X0 = l’) (33)

denote the survival probability at the times n. Thus, the ruin probability at one of

the times 1,2,3,--- ,n is denoted by

O, (x) = 1—p,(r)

= P(X; <0 for some i€ {1,2,3,--- ,n} Xy = x). (3.4)

Definition 3.1. Let {X,,n € Ny} be a surplus process which is driven by the
claim size process {Y,,,n € N} and the premium rate ¢y > 0. Let o € (0,1) and
let N € N be given. Let # > 0 be an initial capital. If ®y(x) < «, then z is called
an acceptable initial capital corresponding to («, N, ¢, {Y,,n € N}). Particularly,
if

= glzlgl{:c cOn(z) <a} (3.5)
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exists, then z* is called the minimum nitial capital corresponding to

(a, N, ¢, {Y,,n € N}) and is written as

" := MIC(«, N, ¢g, {Yn,n € N}). (3.6)

3.2.1 Ruin and Survival Probability
We define the total claim size process {A,,,n € N} by
Ay =Y1+Yo+Ys+---+Y,,neN. (3.7)

The survival probability at the time N as mentioned in (3.3) can be expressed as

follows:

SON(‘,E) - P(A1§I+CO,A2§LU+ZCO,"',ANS.T"‘NC(])

= P(ﬁ {w:Ap(w) <z + k:co}>. (3.8)

From equation (3.8), we have

N
on(z) =E H I(—oo,0) (A — Ko — x)] (3.9)
k=1
where
1, x €A,
HA(QT) =
0, ¢ A

for all A C R. For each a € R and x > 0, we obtain
I—oc0(@a—2) =

Then I(_wg(a — ) is increasing and right continuous in x. This implies that
Hff:l I(—co0)(ar — x) is also increasing and right continuous in & where a; € R,

k=1,2,3,--- ,N. By the Lebesgue’s dominated convergence theorem (Theorem
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C.2), we have
N -
Jim on(v) = lim B [H I(—cc.0] (A — ko = v)
k=1 |
_ N -
= E| lim ]I(—oo,(]} (Ak — kCo — V)
v—axt P}

N
= E HH(—oo,O] (Ak — ]CCO — $>]

R (3.10)

Therefore, pn(x) is increasing and right continuous. Moreover, we can conclude
that @y (z) = 1 — py(z) is decreasing and also right continuous. Let Fy,(y) be

the distribution function of Y7, i.e.,
Fy(y) =P <)

for all y € R. Since the claim size process {Y,,,n € N} is i.i.d., we obtain

Fy,(y) = Fy, (y)

for all y € R and n € N.

Theorem 3.1. Let N € N and ¢y > 0 be given. If {Y,,n € N} is an i.i.d. claim
size process, then

lim on(z) =1 and lim ®yx(x) = 0. (3.11)

T—r0o0 T—00

Proof. Firstly, we will show that the following property holds:

m{w:Yk(w) <z+c} C ﬂ{w:Ak(w) < Nz + ke (3.12)

k=1

N
Let wo € N {w: Yi(w) <z +cp} be given. For each k € {1,2,3,---, N}, we have
k=1

Yi(wo) < @+ ¢p and

k
Ag(wo) = Z Yi(wo) < kx + keg < Nx + key. (3.13)

i=1
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That is, wy € {w : Ag(w) < Nz + kco}. Therefore, (3.12) follows. Next, since the

claim size process {Y,,,n € N} is i.i.d., we obtain

P((Hw:Vilw) <z+a}) = [[PMV<z+a)
= I+
= (Fn(z+co))™. (3.14)

By equation (3.8), we have

on(Nz) =P (ﬂ {w : Ap(w) < Nz + k:co}) ) (3.15)

By (3.12), (3.14) and (3.15), we obtain

(Fy, (7 + ) < pn(Nz) < 1. (3.16)
Since
lim (Fy (2 + o)) = 1,
Tr—r00
we get

lim pn(Nz) = 1.

T—00

Thus, we conclude that

lim oy (z) =1,

T—00

and
lim ®y(z) = lim (1 — pn(x)) =1 — lim py(z) = 0.
Tr—00 T—r00 T—00
This completes the proof. n

Corollary 3.2. Let a € (0,1), N € N and ¢y > 0 be given. If {Y,,n € N} is an
1.1.d. claim size process, then there exists & > 0 such that, for all x > &, x is an

acceptable initial capital corresponding to (a, N, co, {Yn,n € N}).
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Proof. We consider the following cases:

Case 1. 0 < ®5(0) < a. Since ®y(x) is decreasing, we obtain

Oy(x) <DPN(0) <

for all x > 0.

Case 2. ®5(0) > a. By Theorem 3.1, we have ®y(z) — 0 as = — oc.
Thus, there exists £ > 0 such that ®5(Z) < «a. Since ®x(x) is decreasing, we
conclude that

(I)N(.%) < @N(:E) <«

for all z > 7. O

3.2.2 Bound for the Ruin Probability

From Theorem 3.1 and Corollary 3.2, we know that a small ruin probability
can be obtained by sufficiently large initial capital. In this part, we shall describe
the upper bound of ruin probability with negative exponential. In order to prove
the following lemma, we shall use an equivalent definition of the ruin probability

which is given as follows:

®,(z) = P(max (ZYZ — cok) > ). (3.17)

1<k<n 4

Lemma 3.3. Let N € N, ¢ > 0 and © > 0 be given. If {Y,,n € N} is an
1.9.d. claim size process, then the ruin probability at one of the times 1,2,3,--- | N

satisfies the following equation

xr+co
Oy (z) = Dy(x) + / Oy_1(x+ co — y)dFy, (y) (3.18)
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Proof. We will prove (3.18) by induction. We start with n = 1. Since ®y(z) =0

for all x > 0, we have

/HCO Og(x + co — y)dFy, (y) = 0. (3.19)

—0o0

This proves (3.18) for n = 1. Now assume that (3.18) holds for n = k > 1. Then

i) = P<1<f33,§+1< Yi—conbf’@)

=1

= ®y(z) +P( max (}/1+Z}/i—00n)>x,Y1§x+co)

2<n<k+1 -
=2

— @1 (CL’) + E [H(Yl SZ+CO’2<T3§+1(Y1 +>, Yifcon)>:p)}

= (@) + E[Tricoren) I _max i+, Yimeom) o)

= 1(2) + B[ core) (V1) Loy max (Vi + Y Y; —con))].

2<n<k+1 -
=2

(3.20)

We consider the second term of the right-hand side of (3.20). By Proposition

D.1(i) and (iv), we obtain

E[I(—o0zte0] (Y1) - Iz ooy max (Y7 + Z Y; — con))]

2<n<k+1 -
=2

= B[ - scioreo) (V1) - Ty, max (Vi + 37— con))lo ()]

2<n<k+1

=2
= Bl oo et (Y1) Ell(e.o0) (, max (V1 + 2_: Y; — con))|o(Y2)]].

(3.21)

Since the claim sizes Y,,,n € N are independent, we obtain that Y; and Y ,Y;
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are also independent for all n € {2,3,4,---}. By Theorem D.5, we have

2<n<k+1

Bl o0)(, max (Yi(w) + Z Yi —con))lo(Y1)]

=E[lz,00)( max (Yi(w)+ Z Y, —con))] as.

2<n<k+1

= E[H(z Y1 (w),00)_ 1MaX Y — Con
2<n<k+1

= P( max Y—co (n—1)) >z +4co— Y1(w))

2<n<k+1

By combining (3.20), (3.21) and (3.22), we have

CI)]H_l(CC) = (I)l(ZE) + E[]I(_oo,:c-ﬁ-co](}/l) : Cbk(l’ +co — }/1)]

= (I>1(ac)+/ Oy (x + co — Yy)dP
Yfl(—oo,:c—‘rco]
T+co
= <I>1(9(:) + / (I)k<$ + co — y)dFyl (y), (323)
which proves (3.18) for n = k + 1 and concludes the proof. O

Remark 3.1. Let N € N and # > 0 be given. Assume that {Y,,n € N} is
an i.i.d. exponential claim size process with intensity A > 0, i.e., Y; has the

probability density function
le (y) = e .

The obtained ruin probability is in the following recursive form

[ (iL‘ + NCO)]N ! —)\(x-l—Nco) T+ Co
|

Oy (z) = Pnoq(z) + (N —1)! x4+ Ncy

(3.24)

where ®y(z) = 0 and premium rate ¢y > E[Y;] = 1/A. This result is the same as

in Chan and Zhang (2006).
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Definition 3.2 (Sub-adjustment coefficient). Let ¢y > 0 and Y be a non-negative

random variable. If there exists hy > 0 such that
E[e"Y] < ehoeo, (3.25)

then hg is called a sub-adjustment coefficient of (¢, Y'). Specifically, if (3.25) is an

equality, then hg is called an adjustment coefficient of (cy,Y).

Theorem 3.4. Let ¢y > 0 be a premium rate and {Y,,,n € N} be an i.i.d. claim

size process. If hg > 0 is a sub-adjustment coefficient of (co, Y1), i.e.,
E[e1] < ehoco, (3.26)

then

d,(z) < e ho® (3.27)

for all x > 0 and n € N.
Proof. Assume that hg > 0 is a sub-adjustment coefficient of (co, Y1), i.e.,
E[ef0"1] < ehoco,

We will prove this theorem by induction. We start with n = 1. By Chebyshev’s

inequality (C.8), we obtain

hoY1 ho(x+00) E[eh0Y1] —hox
(I)l(l') = P(Yl >x + CO) = P(e > e ) < m <e . (328)

This proves (5.7) for n = 1. Assume that (5.7) holds for n = k > 1. By Lemma

3.3, we have
x+co
Dpiq(z) = Py(x) + / Op(x 4 co — y)dFy, (y). (3.29)

Firstly, we consider the second term of the right-hand side of (3.29). By using the

inductive assumption, we have

T+co

x+co
/ Bi(z + co — y)dFy. (y) < / MO DR, (). (3.30)

—00 —00
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Now we consider the first term of the right-hand side of (3.29). By Chebyshev’s

inequality (Theorem C.8) again, we obtain

P(}/l > T+ CO) - P(6h0Y1H(1’+co7oo) (}/1) > €h0(m+60))
E[ehOYI]I(I+Co,OO)(}/1)]
eho(z+co)

= / e~ho@tao=v gy (y). (3.31)
x+co

Therefore, (3.29) becomes

x+co ']
cbk-f-l(l‘) < / e_hO(x"'CO_y)dFyl(y)—i—/ e—ho(ﬂi+00—y)dFY1(y)

—00 T+co

— / e~ Mot apy, (y)

e—hoz 00 N
- / VAFy, ()
o —hozE[eh0Y1]
= € e—hoco
< e_hox, (332)
This proves (5.7) for n = k + 1 and concludes the proof. O

Theorem 3.4 gives the following corollary:

Corollary 3.5. Let a € (0,1) and ¢g > 0 be given and {Y,,,n € N} be an i.i.d.

claim size process. If hg > 0 is a sub-adjustment coefficient of (co, Y1), then

. _loga
=

is an acceptable initial capital corresponding (a, N, co, {Yn,n € N}) for all N € N.

Example 3.1 (Exponential claims). Consider the discrete-time surplus process
(3.2) driven by the i.i.d. exponential claim size process {Y,,,n € N} with inten-
sity A > 0, and the premium rate ¢y, calculated by the expected value premium
principle, i.e.,

co = (14 60)E[Y1] = (14 60)/A (3.33)
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where 6y > 0 is the safety loading of the insurer. Next, we show that the adjust-

ment coefficient of (¢, Y7) exists, i.e., there exists hg > 0 such that

E[e/0¥1] = ghoco,

Since
lim E[e"™] = lim B (3.34)
hs A~ h—=A- A —h '
and
lim e = lim eM1F0)/A = lHb0 « o (3.35)

h—A— h—A—

there exists an € > 0 such that 0 < A — ¢ < A and
E[ehlyl] > elieo

when hy ==\ —e. Let 9, = %,n € N. Then,

E Y1) — =1 > 9. 3.36
e =S T o2 (3.36)
By Taylor’s expansion, we have
L1+ = (1+6p) 146
nco _ (1460)/n _ 1T0o 0) 0
eonco = el1+6o +§ Y >1+ - (3.37)
Choosing ng > % > 1, i.e., ngby — (1 + 6y) > 0, then
146 1 By — (69 + 1
€5n000 . E[eénoYl] > + Uo _ _ Nobo ( 0+ ) > 0. (338)
no ng — 1 no(ng — 1)

Since 9, — 0 as n — oo, we can choose d,, > 0 such that 0 < ¢,, < hy < A and

nq > no. Let

then f(h) is continuous on [d,,, h;] and

f(0n,) > 0and f(hy) <O0.
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By the Bolzano’s Theorem (Theorem E.6), there exists hg € (d,,, hq) such that
f(ho) =0, ie., E[e"¥1] = hoe, (3.39)
Thus, hg is an adjustment coefficient. By Theorem 3.4, we have
dy(x) < e ov (3.40)

for all z > 0 and N € N. Moreover, we get that h is a sub-adjustment coefficient

of (¢g, Y1) for all 0 < h < hy. This means that
E[e™M1] < eheo (3.41)

for all 0 < h < hy. Next, we find the acceptable initial capital corresponding to
(o, N, co, {Yy,n € N}) in the case of « = 0.1, A = 1 and ¢y = 1.1. From the above
arguments, there exists an adjustment coefficient r of (1.1,Y7) such that 0 < r < 1,

ie.,

L o (3.42)

Now we approximate the adjustment coefficient r by a sub-adjustment coefficient.
Since

0<r—0.176134 < 1/10°, (3.43)

then 0.176134 € (0,7). Thus, we obtain that 0.176134 is a sub-adjustment coeffi-

cient of (1.1,Y7). By Corollary 3.5, we have that

log 0.1

_ 08U 4307991 3.44
TZ = Garess - 0TI (3.44)

which is an acceptable initial capital corresponding to (0.1, N,1.1,{Y,,n € N})
for all N € N. That is,

O (z) <0.1 (3.45)

for all x > 13.072917 and N € N.
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3.3 Existence of Minimum Initial Capital

A quantity «, discussed in previous section, can be described as the most
acceptable probability that the insurance company will become insolvent. As a
result of Corollary 3.2, we obtain that {x > 0 : ®y(z) < a} is a non-empty set for
all N € N. This means that we can always choose an initial capital which makes the
value of ruin probability not exceed «v. Since {x > 0: ®x(z) < a} is an infinite set,
there are many acceptable initial capital corresponding to («, N, ¢y, {Y,,,n € N}).

In this section, we will prove the existence of
MIC(a, N, ¢o, {Yn,n € N}) = m>1(r)1 {z:®y(z) < a}. (3.46)

Lemma 3.6. Let a,b and o be real numbers such that a < b. If f is decreasing

and right continuous on [a,b] and a € [f(b), f(a)], there exists d € [a,b] such that
d=min{z € [a,b] : f(z) <a}. (3.47)

Proof. Let
S:={x€la,b]: f(z) < a}. (3.48)

Since a € [f(b), f(a)], i.e., f(b) < a < f(a), we have b € S. Thus, S is a non
empty set. Since S is a subset of the closed and bounded interval [a, b], there exists
d € [a,b] such that d = inf S. Next, we consider the following cases:

Case 1. d =b. We know that b € S, thus b = min S.

Case 2. a < d < b. Since d = inf S, then there exists d,, € S such that
d<d,<d+1/n
for all n € N. Since f is decreasing and d,, € S, we get

f(d,) < a.
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Since f is right continuous at d, we have

f(d) = lim f(d,) < a.

n—oo

Therefore, d € S, i.e., d = min S. This completes the proof. O

Theorem 3.7. Let a € (0,1), N € N and ¢y > 0. Then there exist x* > 0 such
that

x* = MIC(a, N, ¢y, {Yn,n € N}). (3.49)

Proof. We consider by the following cases:
Case 1. &5 (0) < a. We have MIC(«, N, ¢y, {Y,,,n € N}) = 0.

Case 2. &y (0) > a. By Lemma 3.2, there exists & > 0 such that
@N(g) <a, ie., a € [@]\&5),@]\[(0)}

Since @y () is decreasing and right continuous, by Lemma 3.6, there exists

x* € [0, 7] such that

= min {z: dy(z) <a}= min {z:dy(z) <a}.
z€[0,7] z€[0,00)

That is, * = MIC(«, N, ¢y, {Y,,n € N}). ]

Next, we will approximate the minimum initial capital corresponding to
(a, N, co, {Y,,n € N}) by applying the bisection technique for the decreasing and

right continuous function.

Theorem 3.8. Let a € (0,1), N € N and vg,ug > 0 such that vg < ug. Let

{tun,n € N} and {v,,n € N} be real sequences defined by

Uy, = Up_1 a,nd Uy = Unfl‘zi’vnfl’ Zf (bN (Unfl‘;”vnfl) S Oé,

Un = —Un71;Un71 cmd Up = Up—1, Zf (bN (—unil—;vnil)

V

«,
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for allm € N. If Oy (ug) < a < Py (vg), then

lim w, = MIC(«, N, co, {Yn,n € N}) (3.50)
n—0o0

and

Vo

0 < u, — MIC(a, N, co, {Y,n € N}) < 2220

o (3.51)

Proof. Obviously, {u,,n € N} is decreasing and {v,,n € N} is increasing. More-

over, v, < u, for all n € N. Thus, {u,,n € N} and {v,,n € N} are convergent.

Since
Uy — U
Ogun—vn:(()z—n(])—>0asn—>oo,
there exists 2* € [vg, up] such that
lim u, = lim v, := 2™ (3.52)
n—oo n—oo

Since @y (x) is right continuous and ®y(u,) < « for all n, we have

Oy (z") = li_)In Oy (u,) < a. (3.53)
Hence,
MIC(a, N, ¢o, {Yn,n € N}) < z*. (3.54)

Suppose that MIC(a, N, ¢o, {Y,,n € N}) < 2*. Then there exists n; € N such
that

MIC(a, N, ¢g, {Yn,n € N}) < v, < z*

for all n > ny. Since @y () is decreasing and @y (v,) > «a for all n, we have
O (MIC(ar, Ny o, {Yn,n € N})) > Py (v,) > .

But ®y5(MIC(a, N, co, {Yn,n € N})) < «, which contradicts the definition of

MIC(av, N, ¢, {Yy,n € N}). Therefore, we conclude that

" = MIC(a, N, ¢o, {Yn,n € N}).
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Since v,, < z* < u,, we have

0<u, -z <u,—2"+z2"—v, =u, —v, = (3.55)

for all n € Ny. This completes the proof. O

3.4 Numerical Results

We provide numerical illustrations of the main results. We approximate the
minimum initial capital of the discrete-time surplus process (3.2) by using Theorem
3.8 in the case of {Y,,,n € N}, a sequence of i.i.d. exponential distribution with
intensity A = 1, by choosing model parameter combinations # = 0.10 and 0.25,

i.e., cg = 1.10 and ¢y = 1.25, respectively; and a = 0.1, 0.2, and 0.3.
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Table 3.1 Minimum Initial Capital MIC(a, N, ¢g, {Y,,n € N}) in the Discrete-

Time Surplus Process with Exponential Claims (A = 1)

a=20.1 a=0.2 a=0.3

N 0 =010 60=0.25 0 =010 60=0.25 0 =010 60=0.25

10 4.31979  3.39733 2.89299  2.09365 1.99866  1.29822

20 5.80758  4.13270 3.98629  2.58739 2.84100  1.65475
30 6.79110  4.47565 4.69131  2.80480 3.37378  1.80598
40 7.52286  4.66050 5.20541  2.91736 3.75644  1.88242
50 8.09890  4.76750 5.60309  2.98062 4.04866  1.92467
100 9.81693  4.92645 6.74521  3.07094 4.86622  1.98378
200 11.13547  4.94953 7.56254  3.08341 5.42576  1.99174
300 11.60285  4.95022 7.83409  3.08377 5.60493  1.99197
400 11.79769  4.95025 7.94308  3.08379 5.67546  1.99198
500 11.88611  4.95025 7.99137  3.08379 5.70634  1.99198
1,000 11.96920 4.95025 8.03565  3.08379 5.73435  1.99198
95,000 11.97291  4.95025 8.03757  3.08379 5.73555  1.99198

10,000 11.97291  4.95025 8.03757  3.08379 5.73555  1.99198

Table 3.1 shows approximation of MIC(a, N, ¢, {Y,,,n € N}) with ug5 as
mentioned in Theorem 3.8 by choosing vy = 0 and uy = 20, and ® 5 () is computed

from the recursive form (3.18).
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Figure 3.1 Minimum Initial Capital MIC(«, N, ¢, {X,,,n > 1}) in the Discrete-

Time Surplus Process with Exponential Claims (A = 1, N = 100)

Minimum Initial Capital u*

Figure 3.1 shows the approximation of MIC(a, N, ¢, {Y,,,n > 1}) for the
various values of o with uo5 as mentioned in Theorem 3.8. Here we choose vy = 0,
up = 20, and parameter combinations § = 0.10, § = 0.25, i.e., ¢ = 1.10, ¢ = 1.25,

respectively.



CHAPTER IV

VALUE FUNCTION PROBLEM

In this chapter, we study a value function problem of a discrete-time surplus
process under the investment and insurance controls. We derive the formula of

the value function and prove the existence of an optimal plan.

4.1 Model Descriptions

In this section, we discuss the discrete-time surplus process under the con-
ditions of reinsurance and investment. We assume that all of processes are defined
in a probability space (92, F,P).

Firstly, we recall the discrete-time surplus process without control which
has the claim size process {Y,,n € N} and claim arrival process {T,,,n € Ny}.

Thus, we have the inter-arrival process {Z,,n € N} defined by
Zy =Ty — Ty (4.1)

which is the length of time between (n — 1)th claim and nth claim. By period n,
we mean the random interval [T},_1,7,),n € N.
Now let the constant ¢y > 0 represent the premium rate for one unit time.

The random variable
n+1

Co Z ZZ = COTn—H (42)

=1

describes the inflow of capital into the business by time 7},, 1, and Z?:ll Y; describes

the outflow of capital due to payments for claims occurring in [0, T}, ,1]. Therefore,
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the quantity
n+1
Xnt1 = v+ cTh — Z Y;
i=1
= 24T — Y Yit+co(Tor1 — Tn) = Yot
i=1
= Xn —+ COZn+1 - Yn+1 (43)

is the surplus at time 7}, and the constant Xy = x > 0 is the initial capital.

In summary, the discrete time surplus process will be defined as follows:
XO =T, XnJrl = Xn + C(]Zn+1 — Yn+1, n € N. (44)

Next, we discuss the discrete-time surplus process with reinsurance and investment
controls. In the insurance business, reinsurance and investment are a normal ac-
tivities of an insurance company because reinsurance can reduce the risk arising
from claims, and an investment can increase the companies income. Thus, there
are many papers studying their effect in the insurance business. For example, the
effect of reinsurance on ruin probability was studied by Dickson and Waters (1996),
minimizing the ruin probability in a continuous-time surplus process was consid-
ered by Browne (1995), Hipp and Plum (2000), Hipp and Vogt (2001), Hgjgaard
and Taksar (1998a, 1998b), Schmidli (2001). We remark that a continuously con-
trolled surplus process such as the Cramér-Lundberg model can be reduced to a
discrete-time surplus process, for example, Schal (2004).

In this chapter, we prove the existence of an optimal plan (the strategy or
policy of choosing retention level of reinsurance and portfolio vector in investment
for minimizing a value function) and derive a formula of the value function under
the conditions that a reinsurer has the opportunity to default and investments in
risky assets in the framework of a discrete-time surplus process.

Now, let {X,,n € No} be the surplus process which can be controlled by

choosing the retention level b of reinsurance for one period, and at retention level
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b, the insurer has to pay the premium rate to the reinsurer which is deducted
from ¢, as a result of which the insurer’s income rate will be represented by the
function ¢(b). The level b stands for the control action without reinsurance, so

that ¢o = ¢(b) and the level b is the smallest retention level which can be chosen.

Of course, we obtain the net income rate c¢(b) where
0 < c(b) <c(b) <c(b) =co

for all b € [Q, l_)] and ¢(b) is increasing. By the expected value premium principle,

¢(b) can be calculated as follows:

E[Z)]

c(b)=co—(1+6q)- (4.5)

where 6; > 0 is the safety loading of the reinsurer and the function h(b,y) is the
part of the claim size y paid by the insurer, and the remaining part y — h(b,y),
called reinsurance recovery, is paid by the reinsurer.

Next, we recall the reinsurance credit risk which is the risk of the reinsurance
counterparty failing to pay reinsurance recoveries in full to the ceding company
(insurer) in a timely manner, i.e., unwillingness to pay, or even not paying them
at all. Therefore, we assume that for each retention level b € [b,b] the reinsurer

has an opportunity to default, i.e., the insurer has to pay

y if reinsurer default with probability P(K = 0) = p,

h(b,y) if reinsurer does not default with probability P(K =1) =1 — p,

where K is a random variable with value in {0,1} and p € [0,1) is constant. The
random variable K is said to be binary recovery coefficient. Let K, be a binary
recovery coefficient random variable at time T},,n € N. Therefore, at time T,, the
insurer pays

h(bp—1,Yn) K, + Y, (1 - K,). (4.6)
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In addition, the insurer can invest the surplus (capital) in a financial market

with m risky assets, called stocks, described by the price process
{S,=(Sh.Sz,...5") ,neNy} (4.7)

where S* > 0 is the price of one share of stock k at the time T;,. We now define

the return process

{R,= (R}, R,..,R)) ,n € N} (4.8)
by
R Sk Gk
e
for all k € {1,2,3,--- ,m}. For each n € N, a portfolio vector

bn = (68,82, ,67) e R™

n»wn?

specifies the time 7}, and the component 6% represents the amount invested in
stock k during period n + 1. This means that the insurance company holds 6% /S*
shares of stock k during period n + 1, so that the value of these share at the time

Tn+1 is
5_5 . Gk
Sk; n+1-
In this situation, we allow for a negative value for 6%, that is, we admit the
short selling of stocks. Let X, be a surplus and (b,,, d,,) be a control action at the

time 7,,. Then, we can modify the surplus process (4.4) as follows:

Xn+1 - X + C(b ) n+l = {h(bm Yn+1)Kn+1 + Yn+1(1 - Kn+1)}
- 25’“ + Z s,

= X + C(b ) n+1l = {h(bm Yn+1)Kn+1 + Yn+1(1 - KnJrl)}

= X+ c(bn)Znt1 — {h(bp, Yoy 1) K1 + Yopa (1 — Kppa) } + Z 55RZ+1

k=1
- Xn + C(bn)Zn—i-l - {h<bna Yn+1)Kn+1 + Yn+1(1 - Kn+1)} + <5n> Rn—l—l)
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where Xy = x and (-, -) is the inner product in R™. It is convenient to set

X(] =, Xn+1 = Xn + L(bn, 6n7 Kn+1, Rn+1, Yn+1> Zn+1), n c NO (49)
where
If we let
f(x7 b’ 57 k7 T? y7 Z) :: x—"_L(b’ 67 r’ y7 Z)7 (4'11)

then f is the system function as mentioned in Bersekas and Shreve (1978). We see
that the surplus process {X,,,n € Ny} is driven by the sequence of control actions
{(bn,d,),n € Ny} and the sequence of random vectors {W,,,n € N} where

W, = (K,, Ry, Yy, Z,) (the disturbance for period n) is the source of the random-
ness of the model. It is natural to assume that the process W, is i.i.d., so we make

the following assumption:

Assumption 1: Independence Assumption (IA)
W, = (K, R,,Y,, Z,), n € N are independent and identically distributed ran-
dom variables (i.i.d.). In addition, it is assumed that (K,,Y,,Z,) and R, are
independent for all n € N.

Let k,l € N such that £ # [ and A, B be Borel sets in R. Under Assumption

1, we have

P(Rk € A,Rl € B)
=P((Kk, Rk, Yr, Z1) € A x AxQxQ, (K, R, Y, 7)) € Qx BxQxQ)
=P((Kk, Rk, Yr, Z1) € A x Ax Qx Q)P(K,,R;,Y,,Z;) € 2 x BxxQ)

= P(Rk € A)P(Rl c B)
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and

P(Rk S A) = P((Kk,Rk,Yk,Zk) ceOxAxQx Q)
= P(K,R,Y,Z)€eNQXxAxQxN)

= P(Rl € A)

This means that the process {R,,n € N} is ii.d. Similarly, the processes

{K,,n € N}, {Y,,n € N} and {Z,,n € N} are also i.i.d.

4.2 Dynamic Programming with Finite Horizon

Let {X,,n € Ng} be a surplus process as mentioned in (4.9) with value
in a state space (5,S) which is a measurable space. Suppose that {X,,n € Ny}
is driven by a sequence of i.i.d. random variables {WW,,,n € N} with values in a
measurable space (E, ). Here, (E, &) is called the disturbance space. The surplus
process can be controlled at the beginning of every period by a measurable space
(U,U) which is called the control action space. In addition, the model is specified

by the following quantities:

a € [0, 1] is the discount factor,

g:SxU — (—o0,00] is the one-period cost function, which is measurable

and bounded from below;

N € Nis a time horizon (number of periods) and

Vy : 8 — (=00, 00] is the terminal cost function for time horizon N, which

is measurable and bounded from below.

Definition 4.1. A plan for the time horizon N over action space U is a (finite)
sequence

T i= (u07u17u27 tee ,UN_1> = {’U/Z}Z]\LBl
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of control action u; € U for all i € {0,1,2,--- , N — 1}. A set of all plans for the
time horizon N over action space U is denoted by P(N,U). A plan 7 € P(N,U)

is said to be u-stationary, if 1 = (u,u,--- ,u) for some u € U.
—— ——
N terms

For each initial state x € S and plan 7 = {u;}Y ', the surplus process (4.9) can

be written by

Xn+1 - Xn + L(“na Wn+1)

= 2+ Y L{up,Wir1),n=0,1,2,..,N -1 (4.12)
k=0

and Xg = x.
For the state X,, = z,, the cost at the time 7,, will be g(x,,u,) and the

next state

Tpy1 = Tp + ¢(bn)2n — {P(by, Yns1)kns1 + Yns1 (1 — kns1)} + (O, rngr)  (4.13)

will result in a cost g(x,41,u,11) at the time T}, ;. Thus, the present value of the
costs at the time T}, will be av- g(@p41, Upny1), 1€, g(Tpi1, Uns1) is discounted by

Q.

Definition 4.2. Let N be the time horizon. Then the total discounted cost func-

tion and the valued function for the time horizon N are defined by

N-1
oM (2, m) =E | Y a'g (Xiuw) + o Vn(Xy) [Xo =2 |, (4.14)
=0
where 7 = {u;}2 ' and
VW (z) = inf oW tively. 4.15
(x) 7r€71)1(1]\[’U) (xz,m), respectively (4.15)

A plan m € P(N,U) is said to be optimal, if
VN (z) = W) (z, 7). (4.16)
If 7 is u-stationary, we write

M (2, u) := W) (2, 7). (4.17)
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4.3 Main Results

In this section, we study the insurance model introduced in Section 4.1
under the assumption that the insurer can borrow an unlimited amount of money.
Let the state space S = R and the control space U = [b, b] x R™. Thus, for each
state x € S, we can choose any control actions u = (b, §) € [b,b] x R™, where b is
the retention level of reinsurance and § = (§',6%,--- ,6™) is the portfolio vector.

We study the cost structure which is given by the idea that the insurance
company is not insolvent (ruined) but only penalized if the size of the surplus is
negative or small. The penalty cost of being in state z is of the form const x e=#*

for some § > 0 (f is called a cost level). Therefore, we define the cost functions as
glw,u) =v-e P ?N(x) =1 -e 7 for some v,y > 0, (4.18)

when x € S,u € U. Thus, we obtain the total discounted cost function of model

(4.9) as

N-1
WM (2, 1) = E[Z aly-e P+ oy e TPV X = x], (4.19)
i=0

where m € P(N,U).
In this section, we will use the method of dynamic programming to prove
the main theorem. In order to do this, we define ®4" (x,7) and v, (x) as follows:
N-1
oM (w,m) = E [Z Ty e PR N Ty e TP | X, = m] ., (4.20)

(n=0,1,2,--+ ,N — 1)

@S\],V)(x,ﬂ) = yy-e (4.21)
where m = {u;}1 o' € P(N,U) and

Vn(N)(x) = ,]l)I(ljf\;U) q)gLN)(xuﬂ-% n= 071727"' 7N_ 17 (422)
e s

Vi@ = o\ (2, 7). (4.23)
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It is obvious to see that

M (z,7) = &\ (z,7), € P(N,U), (4.24)
and
VO (2) = VIV (@), (4.25)

For each m = (ug, u1, uz, ...uny—1) € P(N,U), we can see from equation (4.20) that

CI>7(1N)(J;, ) = (I)gN)(x, (U, Upy Uy ooy Uy 1, Uy **+ , UN—1))
N-1
= E Z Qi y e PN N Ty e TPV X, = (4.26)

does not depend on the control actions wug, u1, ..., u,—1. Therefore, (4.22) becomes

Vn(N)([L’) = inf (I),SLN)($,(U,Q,Ul,UQ,...,Un_l,un,"' ,UN_l)). (427)

Un,Un41, uN—1€U

Next, we define a function G : U — [0, 00| by

Gu) = E[e_ﬂL(“’Wl)]

_ E[e—ﬁ(c(b)Zl—h(b,Yl)Kl—i-Yl(1—K1)+<6,R1>)} (4.28)

for all u = (b,0) € U where W) is given as in Assumption 1 (IA). Thus, by

Assumption 1 (IA), we have
E [e L] = | [e7PLEI)] (4.29)
for all w € U and n € N,

Remark 4.1. By Assumption 1 (IA), for each 7 = {u;};' € P(N,U), the

equation (4.20) becomes
oM (2, m) = ve ™ + aG(u,) 0L (z, ) (4.30)

for all n € {0,1,2,--- ,N — 1}.
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Proof of the Remark 4.1. Let 7 = {u;}Y,' € P(N,U).

In the case of n = N — 1, we have

(I)g\]fvjl<x7 m) = E [7675"” + ayg - e’ﬁ(”L(“N—hWN))}

— ’ye_ﬁx +aE [e_ﬁL(uN—LWN)} vy - e "

= ye P74 ozG(uN_l)(I)S\],V)(x, ). (4.31)

In the case of 0 < n < N — 1. Consider

O (,m)
N-1
- E[Z o'y PN oV Ty e Y| X, = 33]
N-—1 i—1
— T L U',W'
= E[’Y@‘Bf + a,ye*ﬁ(z+L(un,Wn+1)) + Z ai_n’ye 5( +j§n (uj J+1))
i=n-+2
— _6(I+1\.]ilL(“j»Wj+1))
+V006N "e j=n :|
N-—1

i—1
_ ’}/€_B$+06E [6—5L(“n:Wn+1){,ye—ﬁr + Z ’)/Oéi_(n+1)€B<x+j=%:+1L(uj’Wj+1))
i=n-+2
N-—1
>

N—(n+1), j=nt1

+1p0 (4.32)

L(Uj,WjJrl)) }:|

Since the {W,,,n € N} is an independent sequence, {L(u,—1,W,),n € N} is also

an independent sequence. Thus, we obtain

oM (z, )

N—-1 il e
— ,Yefﬁx + aF [efBL(un,Wn+1):|E|:fyefﬁx + Z ’)/Oéi(nJrl)e/B(erj—%:ﬂ L(U]7WJ+1))

1=n-+2
(o5 )
—1-1/004N_(n+1)@_ﬁ m+j:§+1 (g, W) ]
N-1
= e " 4 aF [e_BL(“"’W"“)} E[ Z oDy e=BXs G N=(ntl) o =BXn |Xn+1 = x}
i=n+1
— e P 4+ a@ (u,) W) (2, 7). (4.33)

This proves Remark 4.1. O
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Remark 4.1 leads to the following lemma:

Lemma 4.1. Under Assumption 1, let x € S be an initial state and uw € U be a

control action. If G(u) < oo, then

(v = [ = (1 = aG@)] (aG)"™) - 557, aGlu) 1,
(V(N —n) + 1) - e, aG(u) =1

2, 0) =

for alln €{0,1,2,--- /N}.

Proof. In the case of aG(u) # 1, we will prove this case by using mathematical

induction. Obviously, the case n = N holds. Now assume that

e Pz
2w = (v = [y w0 (1= aGW)] (G ™ ) e (430
holds for n = k+ 1 < N. By virtue of Remark 4.1, we get
2" (z, u)
= ve PT 4 aG(u)CIDI(ﬁ)l (x,u)
N—(k+1 e P

= ve 7 + aG(u) (’y — [’y — (1 — OzG(u))] (aG(u)) (et )> . TG(U)

e P
= (101 = aG(@) + (06w = [y = (1~ aG@)] (G) ")) - s

e B

= (7= b= w1 = aG@)] (@G@)"™) 1= (4:35)

which proves for n = k. Thus, the case aG(u) # 1 holds. Similarly, the case

aG(u) =1 also holds. This proves Lemma 4.1. O

Lemma 4.2. Under Assumption 1, let x € S be an initial state. If there exists
u* € U such that

G(u*) = minE [e PHW] < o0, (4.36)

uelU

then

VIV () = ve 4+ aG(u*) - V) (2) (4.37)
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and the u*-stationary plan is an optimal plan, i.e.,
VN (z) = W) (2, u*).

Proof. Assume that there exists u* € U satisfying the condition in Lemma 4.2.

Let n € {0,1,2,--- | N — 1}. Then, by equation (4.27) and Remark 4.1, we have

VM) =  inf WM (z, )
T€P(N,U)
= inf ®£LN)($7 (uo,ul,u2,--- 7uN—1))
Un U 4-15e-ms un_1€U
— —Ba : (N)
= ve "+« inf {G(un)®n+1(x,(u0,u1,u2,...uN_l))}.
Un,Un+1,-,UN—1EU
(4.38)
For each {u;}Y,' € P(N,U), we have @,(fi)l(x, (u, Uy, ug, -+ ,uy—1)) > 0 and

Gup) > 0 for all m € {0,1,2,--- ,N — 1}, and & (z, (uo, ur, ug, - -, un_1))

does not depend on the control actions ug, uq, - - ,u,. Therefore, (4.38) becomes
ViV@) = ye ™+ inf Glu,)-  inf O (2, (uo, w1, s, - un 1))
un €U Up4-15e--) un—_1€U
e+ aG(u’) . nt1 (@, 7)
= e 7 4 aG(u") - Vn(ivl) (x). (4.39)
Next, we will prove
ViN(z) = o (z,u"),0<n < N (4.40)

by using mathematical induction. We start with n = N. By equation (4.23),
assumption 4.40 follows. Now, we assume that (4.40) holds for n = k+1 < N,
ie.,

Vit () = B (). (441)

Then

V(@) = ye P 4 aGwr) - V) (2)

= e P L aG(ut) - ol (2), (4.42)
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From Remark 4.1, we obtain

o™ = e 4 aG(ur) - o)) (2). (4.43)
Thus,
Vk(N) (x) = QDI(CN)(x,u*) (4.44)

VN (z) = W) (2, u*) (4.45)
for all n € {0,1,2,---, N — 1}. This implies that

VW (2) = VIV(z) = M (2, u*) = ) (2, u*), (4.46)
i.e., u*-stationary is an optimal plan. O

From Lemma 4.2, we need the condition for the existence of mi(r]l G(u)
ue

which can be shown by using the maximum and minimum theorem (Theorem
E.4). Firstly, we need the property that u — G(u) is continuous, so we make the

following assumption:

Assumption 2. Continuity Assumption (CA)

The functions ¢(b) and h(b,y) are continuous in b (for each y) and
E[eﬁ'yl} < 0, E[ef'”Rl“] < o0, forall & > 0, (4.47)
when || - || is the Euclidean norm in R™.

Lemma 4.3. Under Assumption 1-2, the function G : U — [0,00], defined by

(4.28), is continuous. Moreover,

b i— E[6*5(0(5)21*{h(b,Yl)KlJrYl(17K1)})] and § E[€*ﬂ<5,R1>:|

are also continuous.



Proof. Let u = (b,6) € U be given. Since ¢(b)Z; > 0 and
0 <h(b,Y1)Ki +Yi(1 - K1) <YK +Yi(l - Ky) =Y,
we have
c()Z1 — {h(b, Y1) K1 + Y1i(1 = K1)} + (6, Ri) > —Y; + (5, Ry)

and

Gu) = E B 21— { YD) Ki+Y1 (1= K1) F+(5,R0))
< E[G_B(_Yl+<6’R1>)}

E [655’1—5(57}31)} '

By Assumption 1 and 2, we have

G(u) < B[eM]E [0 <B|e™ | B[R] < oo,
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(4.48)

(4.49)

(4.50)

(4.51)

Thus, by using the Lebesgue’s dominated convergence theorem (Theorem C.2) and

continuity of exponential function, we obtain

v=ru (b,8)—(b,0)

— E |: hm e—ﬁ(c(i))Zl—{h(B,Yl)K1+Yl(1—K1)}+(5,R1)):|
(b6

)= (b,6)

_E |:6ﬁ(c(b)Z1{h(b,Yl)K1+Yl(1Kl)}+(6,R1)):|

= G(u).

We now conclude that u +— G(u) is continuous. Similarly, we obtain that

b s E[e P02 OYXDKRMA-KDD] and § s E[ePOR)]

are also continuous.

(4.52)
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Assumption 3. No-Arbitrage Assumption (NA)

For any portfolio vector 6 € R™, P ((d, Ry) > 0) = 1 implies P ((, R;) = 0) = 1.
In the investment, the investor will look for the arbitrage opportunity, i.e.,

they want to hold the portfolio 49 € R™ such that P ({(o, R1) > 0) = 1, which

implies that for the initial surplus X, = z, we have

X1 = x+c(bo)Zi — {h(bo, Y1)K1 + Yi(1 — K1)} + (0, R1)

> 2+ c(bo)Z1 — {h(bo, Y1) K1 +Yi(1 — Ki)} as. (4.53)

which means that the portfolio d; € R™ has no risk. Of course, the investor
would like to use this opportunity because the quantity P ((do, R1) > 0) may be
positive which indicates an arbitrage opportunity. Note that Assumption 3 (NA)
is equivalent to

“for any portfolio d € R™, 0 < P ((6,R1) <0) <lor (6, R) =0as.” (NA¥*)
By (NA*), we have

where

—{§eR™: (5,R)) =0 as.}

and

F*={6eR":0<P((§,R1) <0) <1}.

It is easy to see that & is a linear subspace of R™. Thus, there exists a linear

subspace 3t of R™ such that
R" =33 and 3Nt = {O}

( R™ is the direct sum of & and $*) which implies 3+ \ {0} C S~
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Lemma 4.4. Under Assumption 1-3, let § € R™ be given. If § € S+ \ {0}, then

there exists an € > 0 such that
E[— (o, Rl>ﬂ(<5,Rl><0)] >c. P((é, Ri) < —e) > 0.
Proof. Let § € 3\ {0}. Then, by (NA*), we have
P((6,R1) <0):=¢q (4.54)
for some g > 0. Let
A, ={weQ: ()R (w) <—1/n}

and

A = {w e Q: (5, Ri(w)) < 0}.

Obviously, A, C A,41 C A for all n € N and |J,~ | A, = As. Thus,

{P(An),n eN } is an increasing sequence and

lim P (4;) = hrn P(U A > Ay) = q. (4.55)

l—00

So that there exists [y € N such that P(Alo) > q/2, ie.,

P((6, Ri) < —1/ly) > q/2. (4.56)

By Chebyshev’s inequality (Theorem C.8), we have

LE|— (6, Ry) 1((5,R1)<0)} > P(—= (6, R1) 1s,r1)<0) > 1/1o)
= P((0, R1) L((s5,r1)<0) < —1/lo)
= P({(0, R1) < —1/ly)

> qo/2>0. (4.57)

Choose € = 1/ly. The lemma follows. O
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Theorem 4.5. Under Assumption 1-3, let x > 0 be an initial capital. Then there

exists u* = (b*,0*) € U such that

Glu) = (g%)inUE[6_5(c(b>zl—{h(b,yl)K1+Y1(1—K1>}+<6,R1>)] < 00
,0)€

(7= =0+ (1 = aGu)N) (aGwNY) - =55, aGw) #1,

(YN + 1) - e P2, aG(u*) = 1.

Moreover, u*-stationary is an optimal plan.

Proof. By Assumption 1 (IA), we have

inf G(u) = inf E[e—ﬁ(CWI—{h<b’Y1>K1+Y1<1—K1>})} inf E[e*ﬂ“ﬁﬂ]
uelU be [Q,E] dER™

Since [l_),ﬂ is compact and

b E[eﬁ(c(b)zl{h(b:YI)K1+Y1(1K1)})i|

is continuous, by using the maximum and minimum theorem (Corollary E.4), there

exists b* € [Q,ﬂ such that

= min E

E[e_ﬂ(C(b*)ZI_{h(b*’YI)K1+YI(1_K1)})] )
be(b,b]

[6_5 (c(b)Zl—{h(b,YI)Kl—i-Yl(l—Kl)})] .

(4.58)
Next, we will find the minimizer of E [e=#®#1] over R™. We consider the following
cases:
Casel. & = R™. By (NA¥), we can see that E[e #®R0] = 1 for all
0 € R™.
Case2. 3 # R™. Then I+ # {O} By Lemma 4.4, we can show that for

each § € I\ {0}, there exists an € > 0 such that

B~ (6, R I m<o)| = ¢ P((0, Ra) < —¢) >0,
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Hence,

hmE[e_m"'&’Rl)} = lim E[e "5 gy <o) + e (5 py20)]

n—oo n—oo

v

lim B [e= " (5 5,y <o)

n—oo

lim eﬂnE[_<5vR1)H(<6,R1)<O)]
n—oo

v

BneP((8,R1)<—¢)

v

lim e
n—oo

= 00. (4.59)
Next, for each k > 0, we define
Foi={6 €S| =1, E[e 0] <2},

Let 1 and kg be two real numbers such that ko > 11 > 0. If F},, # (), by convexity

of the exponential function, then

E[e‘m”l"s’R”} _ EF%%-@(&&H%-O}

Bl [empro6R0)] 4 B2 T ML
Ko K2
2K Ko — K

oy 2 1

IN

<
Ko Ko
. Ko + K1
= .
< 2 (4.60)

for all 9 € F,. This means that F,, D F, for all ks > k1 > 0. By inequality

(4.59), we have

ﬂﬂ:@

neN

Since F,, is compact for all k > 0, by Cantor’s intersection theorem (Theorem
E.5), there exists an nyg € N such that F,, = ) for all n > ng. This implies that

F, = () for all kK > ng and this is equivalent to

OB, = {6 € 3" 1|0 =k, E[e?OM] <2} =9
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for all kK > ng. Therefore, we have

inf E[e#0R)] = inf B [efUe0)R0+0-p(0).R))]
dER™ SER™

= inf B [efe00R]
deR™

= inf E [6_5<57R1>}

dest
=  inf E[e M, (4.61)

€S, |16]1<no

where p : R™ — R™ is an orthogonal projection on 3. Since {5 et 4| < ng}

is compact and § — E [6_5<5’R1>] is continuous, there exists

Fe{6eSt |0l <no}

such that
E [e #0% R = min B [e #OR)] 4.62
| I = ol BL } (4.62)
Therefore, u* = (b*,*) is a minimizer of G(u). By Lemma 4.4, we see that

u*-stationary is an optimal plan. Also from Lemma 4.1, we obtain

(v=Tr=w (1= aG@))] (aG@)") - =5, aG(u) £1,

(YN + 1) - e P2, aG(u*) = 1.

V() =

This completes the proof. n
Theorem 4.5 gives the following corollary.

Corollary 4.6. Under Assumption 1-3, let x > 0 be an initial capital. If there
exists u* € U such that

0 < aG(u") <1,

then

—Bx
: (N () — €
v (z) 1 —aG(u*)’
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As a result of corollary 4.6, for large time horizon Ny € N and u* a minimizer of
G(u) satisfying 0 < aG(u*) < 1, the value function V) () can be approximated
by V() (z) when

Ve (z) = lim VIV (x).

N—oo
Next, we present an important special case of the value function which is
defined by g(x,u) = 0, i.e., v = 0, and vy > 0. This means that the insurance

company has only to pay a penalty cost at the end. Thus, we want to minimize
M) (2, 7) = CIDE\],V) (z,7) =1y - e PXN | X, =,

which is the same problem as maximizing the expected utility of terminal wealth

if we choose the exponential utility function as 1 — =5,

Corollary 4.7. Under Assumption 1-3, let x > 0 be an initial capital. If g = 0,

then there exists u* € U such that
VN (2) = (aG ()N vy - e
where

G(u*) = min E

[ —5(c<b>zl—{h(b,Y1>K1+Y1(1—K1>}+<a,31>)}
(b,6)eU © '

4.4 Simulation Results

In this section, we provide the simulation results of Theorem 4.5. We
consider the discrete-time surplus process {X,,n € Ny} under the proportional

reinsurer without investment, i.e.,
Xo = z, Xpn=Xp 1+ C(bn—l)Zn - {bn—l Yo K+ Yn(l - Kn)}

where z > 0 is an initial capital, the process {Y,,,n € N} isi.i.d. exponential claim

size with E[Y]] = A, the process {Z,,,n € N} is i.i.d. exponential inter-arrival with
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E[Z;] = p, and the process {K,,,n € N} is i.i.d. binary recovery coefficient with

The premium rate ¢q and ¢(b) of insurer and reinsurer, respectively, are calculated

by the expected value premium principle, i.e.,
co=(1+600)A\/pand é&(b) = (14 0,)(1 —b)A/pu

where 6y > 0 and #; > 0 a safety loading of insurer and reinsurer, respectively and

b is the retention level. Now we fix 8y = 0.2 and 6; = 0.3, thus,
c(b) = ¢y — é(b) = (1.3b — 0.1)\ /.

We set

0.1 -
_ 2k _ 1
b=73) and b

In this situation, by Theorem 4.5, there exists b* such that

G(5) = min E[G@(c(b)zl{h(b,Yl)K1+Y1(1K1)})] < o0,

be[b,b]

and b*-stationary is an optimal plan. Specifically, b* is called the optimal retention

level.
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Table 4.1 Optimal Retention Level

pw=0.5 w=1.0 w=20

B p=01 p=0 p=01 p= p=0.1 p=

0.20 0.951  0.708 0.839  0.598 0.817  0.590
0.40 0.528  0.373 0.471  0.225 0.460 0.314
0.60 0.403  0.262 0.362  0.178 0.364  0.222

0.80 0.367  0.206 0.333  0.150 0.362  0.176

b=0.154 b=0.077 b =0.039

Table 4.1 shows the approximation of the optimal retention level by choos-
ing model parameter A = 1 and parameter combinations 8 = 0.2,0.4,0.6 and 0.8,

#=0.51and 2, and p= 0.0 and 0.1.

Figure 4.1 Reinsurance without Default and Reinsurance Credit Risk

1. 0455\
P(Ky=0)=0.1

1.04F N

1.035

1.025
> 1.02
1.015
1.01

1. 005

0. 995

1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Retention Level b

Figure 4.1 shows the approximation of G(b) and the optimal retention level.
We choose parameters § = 0.2, A = 1 and p = 0.5, and parameter combinations

p = 0.0 (reinsurance without default) and p = 0.1 (reinsurance credit risk).
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Figure 4.2 Cost level and Optimal Retention Level
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Figure 4.2 shows the approximation of G(b) and the optimal retention level.

We choose parameters A = 1, 4 = 0.5 and p = 0.1, and parameter combinations

8 =0.2,0.4,0.6 and 0.8.



CHAPTER V

CONCLUSIONS

This thesis is devoted to the study of the two different discrete-time surplus
processes: one is considered the classical surplus process with the claim arrival
times T,, = n,n € N and the other is considered under the conditions of investment
and reinsurance credit risk. Therefore, the results obtained are separated into two
parts.

In the first part, the relationship between the initial capital and ruin prob-

ability of the discrete-time surplus process

onx,Xn:x+con+ZY;,n€N, (5.1)
=1

where an initial capital x > 0 and the premium rate ¢y > 0, is studied. The claim
size process {Y,,n € N} is assumed to be i.i.d. The ruin probability at one of the

times 1,2,3,--- , N is defined by

Oy (z) = P{X; <0 for some i € {1,2,3,--- , N}| Xy =z} (5.2)
where = > 0 is an initial capital. {x > 0 : ®y(z) < a} is the set of acceptable
initial capital corresponding to (a, N, ¢, {Y,,n € N}) and the minimum initial
capital corresponding to (a, N, co, {Y,,n € N}) is defined by

MIC(av, N, co, {Yy,n € N}) = I;lzlgl{l’ : Oy (x) > al. (5.3)

The main results of this part are summarized as follows:
Theorem 5.1. Let N € N and ¢o > 0 be given. If {Y,,n € N} is an i.i.d. claim

size process, then

lim &y (x) = 0. (5.4)

T—r00
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Corollary 5.2. Let a € (0,1), N € N and ¢y > 0 be given. If {Y,,n € N} is an
1.1.d. claim size process, then there exists * > 0 such that, for all x > x, x is an

acceptable initial capital corresponding to (a, N, co, {Yn,n € N}).

Lemma 5.3. Let N € N, ¢g > 0 and x > 0 be given. If {Y,,n € N} is an
1.1.d. claim size process, then the ruin probability at one of the times 1,2,3,--- , N

satisfies the following equation

B(a) = 01(0) + [ T (4o — y)dF (y) (5.5)

—00

where g(x) = 0.

Theorem 5.4. Let co > 0 be a premium rate and {Y,,n € N} be an i.i.d. claim

size process. If ho > 0 is a sub-adjustment coefficient of (co, Y1), i.e.,
E[e1] < ehoco, (5.6)

then

d,(z) < e Moo (5.7)

for all x > 0 and n € N.

Corollary 5.5. Let a € (0,1) and ¢g > 0 be given and {Y,,,n € N} be an i.i.d.

claim size process. If hg > 0 is a sub-adjustment coefficient of (co, Y1), then

u > _loga
=

is an acceptable initial capital corresponding (a, N, co, {Yn,n € N}) for all N € N.

Theorem 5.6. Leta € (0,1), N € N andco > 0. If{Y,,,n € N} is an i.i.d. claim

size process, then there exist x* > 0 such that

" = MIC(a, N, co, {Yn,n € N}).
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Theorem 5.7. Leta € (0,1), N € Ny, ug > 0 such that vg < ug. Let{Y,,n € N}
be an i.i.d. claim size process, {u,,n € N} and {v,,n € N} be real sequences

defined by

Up = Up_1 and un:”n*zﬁ7 if Dy (”n*lT"‘”n*l) < a,

v, = 2= gnd w, = Uy, if Dy (=30mt) > q

for allm € N. If Oy (up) < a < Py (vg), then

lim u, = MIC(a, N, ¢o,{Y,,n € N}) (5.8)

n—oo

and

0 < u, — MIC(a, N, co, {Y,n € N}) < 2210,

= (5.9)

In the second part, we consider the discrete-time surplus process
Xn+1 = Xn + C(bn)ZnJrl - {h(bn7 Yn+1)Kn+1 + Yn+1(1 - KnJrl)} + <5n7 Rn+1>

for all n € N and Xy = x > 0 as initial capital. The surplus process {X,,,n € N} is
driven by the sequence of control actions {u,, = (b,,d,),n € Ng} and the sequence
of random vectors {W,, = (K, Ry, Yn, Zn),n € N} where {K,,n € N} is the
binary recovery coefficient process, { R,,,n € N} is the return process, {Y,,,n € N}
is the claim size process, and {Z,,n € N} is the inter-arrival process. The total

discounted cost function and the valued function for the time horizon N € N are

defined by
N—1
WM (z, 1) =B Z ale ™ PXi 4 aNype PV | Xy =2 || (5.10)
i=0
where m = {u;,n € N} and
V¥ (z) = inf oW tivel 5.11
(@)= _inf | @V (em), respectively, (5.11)

the control space U = [b,b] x R™. They are considered under the following as-

sumptions:
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Assumption 1: Independence Assumption (IA)

W, = (K, Ry, Yy, Z,), n € N are independent and identically distributed ran-
dom variables (i.i.d.). In addition, it is assumed that (K,,Y,,Z,) and R, are
independent for all n € N.

Assumption 2. Continuity Assumption (CA)

The functions ¢(b) and h(b,y) are continuous in b (for each y) and
E[eﬁ'y} < 00, E[eE'HR”] < oo, for all e > 0.

Assumption 3. No-Arbitrage Assumption (NA)
For any portfolio vector 6 € R™, P ({6, R;) > 0) = 1 implies P ({0, Ry) =0) = 1.

We obtain the following main theorem:

Theorem 5.8. Under Assumption 1-3, let x > 0 be an initial capital. Then there

exists u* = (b*,0%) € U such that

G(u*) = min E[e—ﬁ(c(b)Z—{h(b,Y)K—i—Y(l—K)}+<6,R>)} <o
(b,0)eU

(v == w- (1= aG@] (@G@)") - 5im, aGlur) £ 1,

(YN + 1) - e P2, aG(u*) = 1.

Moreover, u*-stationary is an optimal plan.

Finally, we should observe that further problems can be considered. For
instance, the ruin probability problem under the reinsurance credit risk, the mini-
mum initial problem in the situation that claim arrival times are random variables,
the surplus control problem in order to reach the some target, etc. Furthermore,
we can consider the total capital requirement (TCR) problem as the minimum

initial capital problem. We will continue to study in this field.
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APPENDIX A

NOTATIONS

Probability space

Outcome space

o-field

Probability measure

o-field generated by random variable X
{we: X(w) e B}

{we: X(w) <ax}

Expectation of the random variable X
Conditional expectation of the random variable X
given the o-field F

Indicator of set A

Set of positive integers

Set of non-negative integers

Real line

n-dimensional Euclidean space

Infimum (greatest lower bound)

Supremum (least upper bound)

Norm of z

Inner product of z and y

Orthogonal complement of a closed subspace &

x maps to f(x)



APPENDIX B

COMPUTER PROGRAMS

This appendix contains a copy of the programs written in Matlab to im-

plement the approximation in Chapter III and Chapter IV.

clc;clear;
%The number of iterations
n=25;
%Set the Parameters
lambda=1; alpha=0.1; c0=1.1;
fprintf (’lambda=)%7.1f,alpha=%5.5f,premuin=%1.2f\n’,lambda,alpha,c0)
fprintf (-—----—-——————— \n’)
%The number of claims
N=[10 20 30 40 50 100 200 300 400 500 1000 5000 10000];
for j=1:13
%Bisection method
v0=0;u0=20; u=[1;v=[1;w=[];
u(1)=u0;v(1)=v0;w(1)=u(1);
for i=1:n

w(i+1)=(u(i)+v(i))*0.5;

A=[]; PH1=[];

for k=1:N A(k)=log(k);

PH1 (k) =exp((k-1)*log(lambdax* (w(i+1)+k*c0))+log(w(i+1)+cO). ..



—-lambda* (w(i+1)+k*c0)-log(w(i+1)+k*c0)-(sum(A)-A(k)));
end
phil=sum(PH1);
if (phil<=alpha)
u(i+1)=w(i+1);
v(i+1)=v(i);
else
v(i+1)=w(i+1);
u(i+1)=u(i);
end
%0utput
M(j)=ceil (u(n)*100000)/100000;
fprintf (’N=%7.1f, Minimum Initial Captial=Y5.5f \n’,N(j),M(j))

end
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clc;clear;
n=25;
N=100;
alpha=[];
v0=0;u0=20;
lambda=1;
cO=[1.1 1.25];
MIC=[];
for r=1:2
for g=1:90
alpha(q)=q/100;
u=[];v=0];w=[];
u(1)=u0;v(1)=v0;w(1)=u(1);
for i=1:n
w(i+1)=(u(i)+v(i))*0.5;
A=[]; PH1=[];

for k=1:N A(k)=log(k);

PH1 (k)=exp ((k-1)*1log(lambda* (w(i+1)+k*cO(r)))...

+log(w(i+1)+c0(r))-lambda* (w(i+1)+k*c0(r))...
-log(w(i+1)+k*cO(r))-(sum(A)-A(k)));

end

phil=sum(PH1) ;

if (phil<=alpha(q))
u(i+1)=w(i+1);

v(i+1)=v(i);
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else
v(@E+D)=w(i+1);
u(i+1)=u(i);
end
end
MIC(r,q)=u(n)
end
end
hold on;
t=0.01:0.01:0.9
plot(t,MIC(1,:),’r’)

plot (t,MIC(2,:),’b?)
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%——-— Table 4.1, Figure 4.1 and Figure 4.2 in Chapter IV ----}
clc;clear;
%Set the size of random numbers
N=10000;
%Set the means of claim size and inter-arrival time
lambda=1; mu=2.0;
%Generate the random numbers
Y=exprnd(lambda,1,N); Z=exprnd(mu,1,N);
K=binornd(1,0.9,1,N);
%set the parameters (beta)
betal=0.2; beta2=0.4;beta3=0.6;betad=0.8;
%sCompute the premium rate of insurer with safety loading 0.2
c0=1.2xlambda/mu;
A1=[];A2=[];A3=[];A4=[];A5=[];A6=[];A7=[];A8=[];
b1=0;
for j=1:(1-b1)*1000+1

b=b1;

b=b+(j-1)/1000;

%(1-b)*1.3*lambda/mu is premium rate of reinsurer

Jwith safety loading 0.3

cb=c0-(1-b)*1.3*lambda/mu;

E1=[];E2=[];E3=[];E4=[];E5=[];E6=[];E7=[];E8=[];

for i=1:N
E1(i)=exp(-betal*(cb*Z(1)-(b*Y (1) *K(1)+Y(1)*(1-K(i)))));
E2(i)=exp(-betal*(cb*Z(i)-b*Y(i)));

E3(i)=exp(-beta2* (cb*Z(i)-(b*xY(i)*K(i)+Y(i)*(1-K(i)))));
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E4(i)=exp(~beta2* (cb*Z(i)-bxY(1i)));
E5(i)=exp(-betad* (cb*Z (i) - (b*Y (1) *K(i)+Y(i)*(1-K(i)))));
E6(i)=exp(-beta3*(cb*Z(i)-b*Y(i)));
E7(i)=exp(-betad* (cb*Z(i)-(b*Y(i)*K(1)+Y(i)*(1-K(i)))));
E8(i)=exp(-betad* (cb*Z(i)-b*¥(1i)));
end
A1(j)=mean(E1);
A2(j)=mean(E2);
A3(j)=mean(E3);
A4(j)=mean(E4);
A5(j)=mean(E5) ;
A6(j)=mean(E6);
A7(j)=mean(E7);
A8(j)=mean (E8);
end
for j=1:(1-b1)*1000+1
if A1(j)==min(A1)
M1=(j-1)/1000;
end
if A2(j)==min(A2)
M2=(j-1)/1000;
end
if A3(j)==min(A3)
M3=(3j-1)/1000;
end

if A4(j)==min(A4)



M4=(j-1)/1000;
end
if A5(j)==min(A5)
M5=(j-1)/1000;
end
if A6(j)==min(A6)
M6=(j-1)/1000;
end
if A7(j)==min(A7)
M7=(j-1)/1000;
end
if A8(j)==min(A8)
M8=(j-1)/1000;

end

end

%-Output for Table 4.1

fprintf (°
fprintf (°
fprintf (°
fprintf(® Dbeta |
fprintf (’
fprintf(’ 0.2 |
fprintf(® 0.4 |
fprintf(’ 0.6 |
fprintf(® 0.8 |

%1.3f
%1.3f
%1.3f

%1.3f

| %1.3f
|  %1.3f
| %1.3f

| %1.3f

\n’,M1,M2)
\n’,M3,M4)
\n’,M5,M6)

\n’,M7,M8)
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fprintf (’-—————————————————— - \n’)

%—-Output for Figure 4.1

hold on;

t=b1:0.001:1;

%Line A: beta=0.2,lambda=1,mu=2,c0=0.6,p=0.1
plot(t,Al,’r?)

%Line B: beta=0.4,lambda=1,mu=2,c0=0.6,p=0.1
plot(t,A3,’y’)

%Line C: beta=0.6,lambda=1,mu=2,c0=0.6,p=0.1
plot(t,A5, k’)

%Line D: beta=0.8,lambda=1,mu=2,c0=0.6,p=0.1

plot(t,A7,°c’)

%—-Output for Figure 4.2

hold on;

t=b1:0.001:1;

%Line 1: beta=0.2,lambda=1,mu=2,c0=0.6,p=0.1
plot(t,Al,’r’)

%Line 2: beta=0.2,lambda=1,mu=2,c0=0.6,p=0.0

plot(t,A2,’m’)
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APPENDIX C

PROBABILITY THEORY

We recall some definition and theorem in probability theory. Most of these
results can be found in BrzeZniak and Zastawniak (1999), Capinski and Kopp

(2004), and Aggoun and Elliott (2004).

Definition C.1. Let €2 be a non-empty set. A o-field F on Q is a family of a

subsets of {2 such that
1. the empty set () belong to F;
2. if A belong to F, then so does the complement 2\ A;

3. if Ay, Ay, -+ is a sequence of sets in F, then their union A; U Ay U - - - also

belong to F.
Definition C.2. Let F be a o-field on 2. A probability measure P is a function
P:F —10,1]

such that

2. if Ay, Ay, -+ are pairwise disjoint set (that is, A; N A; = 0 for i # j) belong
to F, then

P(AfjUA,U---) =P(A4A;) +P(Ay) +---.

The triple (2, F, P) is called a probability space. The sets belonging to F is called

events. An event A is said to occur almost surely (a.s.) whenever P(A) = 1.
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Definition C.3. If F is a o-field on €2, then a function X : 2 — R is said to be

F-measurable if
(XeB) ={weQ:Xw)eB}=X'(B)eF

for every Borel set B € B(R). If (Q,F,P) is a probability space, then such a

function X is called a random variable.

Definition C.4. The o-field o(X) generated by a random variable X : Q@ — R

consists of all sets of the form (X € B), where B is a Borel set in R.

Lemma C.1 (Doob-Dynkin). Let X be a random variable. Then each o(X)-

measurable random variable Y can be written as
Y = f(X)
for some Borel function f: R — R.

Definition C.5. Every random variable X : 2 — R gives rise to a probability
measure

Py(B) = P(X € B)

on R defined on the o-field of Berel sets B € B(R). We call Px the distribution

of X. The function Fx : R — [0, 1] defined by
Fx(z) =P(X <x)
is called the distribution function of X.

Definition C.6. If there is a Borel function fx : R — R such that for any Borel

set BCR

P(X € B)= /fo(x)dx
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then X is said to be a random variable with absolutely continuous distribution
and fy is called density of X. If there is a (finite or infinite) sequence of pairwise

distinct real numbers x1, xs, - - - such that for any Borel set B C R
P(X € B)= )Y P(X =u),

T, €EB

then X is said to have discrete distribution with value xq, x5, -+ and mass

P(X = x;) at x;.
Definition C.7. A random variable X : 2 — R is said to be integrable if

/ IX|dP < oo.
Q

Then
B[X] = / XdP
Q
exist and is called the expectation of X.
Definition C.8. Two events A, B € F are called independent if
P(ANB) =P(A)P(B).
In general, we say that n events Ay, Ay, --- , A, € F are independent if

for any indices 1 < iy < ip < -+ <t < n.

Definition C.9. Two random variable X and Y are called independent if for any

Borel sets A, B € B(R) the two events
(X €A)and (Y € B)

are independent. We say that n random variable X, X5, --- | X,, are independent

if for any Borel sets By, By, -+ , B, € B(R) the events
(X1 € By), (Xo€ By), -+ ,(X, € B)

are independent.
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Definition C.10. Two o-fields G and H contain in F are called independent if
any two events A € G and B € H are independent. Similarly, any finite number

of o-fields G, Gs, - -+ , G, contained in F are independent if any n events
AreG, A€ Gy, A EG,
are independent.

Definition C.11. We say that a random variable X is independent of o-field G if

the o-fields o(X) and G are independent.

Definition C.12. A Stochastic process is a family of random variable X(t)
parametrized by t € T, where T C N. When T = N, we shall say that X ()
is a stochastic process in discrete time (i.e., a sequence of random variable). When
T is an interval in R (typically T' = [0, 00)), we shall say that X (¢) is a stochastic

process in continuous time.

Theorem C.2 (Lebesgue’s Dominated Convergence Theorem). Suppose
{X,,n € N} is a sequence of random variables such that | X,| <Y a.s. where Y
is an integrable random variable. If X, converses to X a.s., then X,, and X are

integrable,

lim /XndP = lim XdP
Q

n—oo n—oo Q
and

lim / | X, — X|dP = 0.
Q

n—00

Theorem C.3. Let (2, F,P) be a probability space. Given a random variable

X Q-=R,
/Q 9(X (w))dP(w) = / 9(2)dPx ().
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Theorem C.4. If Px defined on R” is absolutely continuous with density fx,

g : R™ — R is integrable with respect to Px, then

[ s@apx) = [ pegteyis

Corollary C.5. In the situation of the previous theorem we have

/Qg(X)dP = - fx(z)g(z)dz.

Theorem C.6. Let (2, F,P) be a probability space. Let X be a real random

variable and B a Borel set. Then

/B o) = [ (X ()P()

X-1(B)

Here g is a Borel function and where B = R

[ ote)apxt@) = [ axnape).

Q
Proposition C.7. Let (2, F,P) be a probability space.
(i) Fx is non-decreasing (y; < ¥ implies Fx(y1) < Fx(y2));
(ii) lim Fx(y) =1, lim Fx(y)=0;
Yy—00 Yy——00

(iii) F is right continuous (if ¥ — yo, ¥ > vo, then Fx(y) — Fx(yo)).

Theorem C.8 (Chebyshev’s Inequality). If Y is a non-negative random variable,

e>0,0<p< oo, then




APPENDIX D

CONDITIONAL EXPECTATION

Let (Q, F,P) be a probability space and suppose that G, H are o-fields

containing in F.

Definition D.1. A random variable E[X|G] is called the conditional expectation

of X relative to a o-field G if
(i) E[X]G] is G-measurable,
(ii) [,E[X|G]dP = [, XdP, for all G € G.

Proposition D.1. (See Brzezniak and Zastawniak (1999))

The conditional expectation E[X|G] has the following properties:
(i) E[E[X|9]] = E[X];
(il) If X is G-measurable, then E[X|G] = X;

(iii) If X is independent of F, then E[X|G] = E[X]

(an independent condition drop out);

(iv) If X is G-measurable and XY is integrable, then E[XY|G] = XE[Y|G]

(taking out what is known);

(v) If # C G, then E[E[X|G][H] = E[X|H]

tower property).
property

Theorem D.2 (Jensen’s Inequality). Let ¢ : R — R be a convex function and

let X be an integrable random variable on a probability space (€2, F, P) such that
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¢(X) is also integrable . Then
P(E[XG]) < E[p(X)|d]
for any o-field G on 2 contained in F.

Lemma D.3. Let (2, F, P) be a probability space and let G be a o-field contained

in F. If X is a G-measurable random variable and for any B € G
/ XdP =0,
B
then X =0 a.s.

Proof. Observe that P(X > ¢) = 0 for all ¢ > 0 because

0§5P(X2£):/

(X>e)

edP < / XdP = 0.
(X>e)
Similarly, P(X < —e¢) =0 for all € > 0. As a consequence,
Pl—e< X <eg)=1

for all e > 0. Let

1 1
A, =(—<X<-),neN.
n n
Then P(A,) =1 for all n and
(X =0)=[)An
n=1

Since A, D A, 11 for all n, we obtain

as required. O

Theorem D.4. Suppose X and Y are G-measurable random variables. If
E[X14] = E[YL,]

for all A € G, then X =Y a.s.
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Proof. From the above lemma, it follows immediately. O]

Theorem D.5. Suppose that X and Y are independent and h is a measurable

function such that E[|h(X,Y)|] < oo, then
E[h(X,Y)|o(X)] = g(X)
where g(X(w)) = E[h(X(w),Y)] a.s.

Remark D.1. It is important here that X and Y are independent. This result is

not true when X and Y are dependent.

Proof of Theorem D.5. Clearly, g(X) is o(X)-measurable. Let A € o(X), so

that there exists a Borel set B such that A = X~'(B). Then

E0X,Y)(xep)] = // (2, y)Ip(x)dFy (y)dFx (z)
_ / 5(@) / h(w, ) (x)dFy (y)dFy ()
— [RHB(x)E[h(x,Y)]dFX(x)

= E[9<X)]I(X€B)]' (D.1)
By Definition D.1, we have g(X) = E[h(X,Y)|o(X)]. Consider
/Qg(X(w))HA(w)dP(w) = /Qg(X(w))]I(XGB)(w)dP(w)
= E[Q(X)H(XEB)]
= /R]IB(x)E[h(x,Y)]dFX(x)
= /Q]IA(oJ)E[h(X(w),Y)]dP(w). (D.2)

From Theorem D.4, we obtain g(X(w)) = E[A(X(w),Y)] a.s. O



APPENDIX E

FUNCTIONAL ANALYSIS

We recall some definition and theorem from functional analysis. Most of

these results can be found in Kreyszig (1998) and Apostol (1974).

Theorem E.1 (Continuous Mapping). A mapping 7' : X — Y of a metric space

(X, d) into a metric space (Y, d) is continuous at a point zg € X if and only if
T, — xo implies T'x,, — Txg.

Definition E.1. A metric space X is said to be compact if every sequence in X
has a convergent subsequence. A subset M of X is said to be compact if M is
compact considered as a subspace of X, that is, if every sequence in M has a

convergent subsequence whose limit is an element in M.

Theorem E.2 (Compactness). In a finite dimensional normed space X, any subset

M C X is compact if and only if M is closed and bounded.

Theorem E.3 (Continuous Mapping). Let X and Y be metric spaces and

T : X — Y. Then the image of a compact subset M of X under T is compact.

Corollary E.4 (Maximum and Minimum). A continuous mapping 7" of a compact
subset M of a metric space X into R assumes a maximum and a minimum at some

points of M.

Theorem E.5 (Canter Intersection Theorem).

Let {Fy, Fy, F3,- -+ } be a countable collection of nonempty sets in R such that:

(1) Fn+1CFna nGN;
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(ii) each set F, is closed and F} is bounded. Then the intersection N2, F, is
closed and nonempty.

Theorem E.6 (Bolzano’s Theorem).
Assume f is real-valued and continuous on a compact interval [a,b] in R, and
suppose that f(a) and f(b) have opposite signs; that is, assume f(a)f(b) < 0.

Then there is at least one point ¢ in the open interval (a, b) such that f(c) = 0.

Definition E.2 (Orthogonality). An element x of an inner product space X is

said to be orthogonal to an element y € X if

(x,y) =0.

Theorem E.7 (Schwarz Inequality). An inner product and the corresponding

norm satisfy the Schwarz inequality, i.e.,

[{z, )| < lllllyll

Theorem E.8 (Minimizing Vector). Let X be an inner product space and M # ()
a convex subset which is complete (in the metric induced by the inner product).

Then for every given x € X there exists a unique y € M such that

§=inf |z — 3| = |z — .
inf fla = 3| = o — y)

Theorem E.9 (Orthogonality). In theorem E.8, let M be a complete subspace Y

and x € X fixed. Then z = x — y is orthogonal to Y.

Definition E.3 (Direct Sum). A vector space X is said to be the direct sum of

two subspaces of Y and Z | written
X=Y®Z
if each x € X has a unique representation

r=y—+z



83

for some y € Y and z € Z. Then 7 is called algebraic complement of Y in X and

vice versa, and Y, Z is called a complement pair of subspaces in X.

In the case of a general Hilbert space H, the main interest concerns represen-

tations of H as a direct sum of a closed subspace Y and its orthogonal complement
Yii={z€H:z2lY},
which is the set of all vectors orthogonal to Y.

Theorem E.10 (Direct Sum). Let Y be any closed subset of a Hilbert space H.

Then H=Y & Z and Y N Z = {0} when Z =Y.

In theorem E.10, we found that for every x € H there exists and unique a
y €Y and z € Y+ such that = y + 2, y is called the orthogonal projection of =

on Y. Define a mapping
p: H — Y
r = y=p()

p is called the (orthogonal) projection of H onto Y.
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