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CHAPTER 1

INTRODUCTION

In the Standard Model (SM) hadrons are comprised of quarks which are
held together by strong forces. Quantum Chromodynamics (QCD) is used to
formulate in terms of quarks and leptons degrees of freedom and its fundamental
coupling constant is the strong coupling constant a,g. At high energies, observables
can be expanded in terms of ag. But at low energies, the strong coupling constants
become large so that the perturbative methods are not applicable. This leads to
use of effective field theory (EFT) method which is called Chiral Perturbation
Theory (ChPT). ChPT is just the EFT of the SM at low energies. It was initiated
by S. Weinberg in 1979 (Weinberg, 1979) and then developed by J. Gasser and H.
Leutwyler in 1984 and 1985 (Gasser and Leutwyler, 1984; Gasser and Leutwyler,
1985) and described in terms of the degrees of freedom relevant to low-energy
strong processes. Physical quantities are calculated as expansions in terms of
small momenta. The ChPT Lagrangian contains an infinite number of terms and
Feynman diagrams contributing to any physical process can be derived.

ChPT has proven to be a useful method for studying low energy processes
for example 77 scattering which is a fundamental process for QCD at low en-
ergies (Bijnens et al., 1996; Bijnens et al., 1997). However, the extension to
processes which involve a nucleon (Gasser et al., 1988) caused some problems.
In the mesonic sector the Feynman diagrams which are relevant for calculation
are chosen by a scheme called Weinberg’s power counting (Weinberg, 1979). It

gives a chiral order D to each diagram. But in the case with nucleon there are



terms which do not obey the power counting. These problems can be solved by
the application of a renormalization scheme, which regenerates the power count-
ing. The different methods were subsequently developed for the description of
the baryonic sector. Heavy baryon chiral perturbation theory (HBChPT) received
most success (Bernard et al., 1992; Ecker and Mojzis, 1996). HBChPT is con-
structed similarly as heavy-quark effective theory. The nucleon field is divided
into two components which are heavy and light where the heavy components are
integrated out. Subsequently the nonlocal contributions created by integrating
out, the heavy components are expanded in local interaction terms suppressed
with powers of the nucleon mass. Later the new manifestly Lorentz-invariant for-
mulations of baryonic ChPT have been introduced (Ellis and Tang, 1998; Becher
and Leutwyler, 1999; Gegelia and Japaridze, 1999; Goity et al., 2001; Schindler
et al., 2004). These formulations were used to restore the power counting in the
baryonic sector.

The complete chiral Lagrangian in baryonic case based on the relativistic
ChPT has been constructed up to fourth order and applied to describe the dy-
namics of TN scattering (Fettes et al., 1998; Fettes and Meiner, 2000; Fuchs
et al., 2003). In the framework of ChPT the presence of the electromagnetism was
originally proposed by Urech (Urech, 1995). In principle, it is straightforward to
establish the theoretical framework for the description of EM effects. First, the
photon field was included as an additional dynamical degree of freedom and then
the most general Lagrangian of the desired order was constructed. The divergences
of the generating function to one loop were calculated and the structure of the local
action that incorporates the counterterms which cancel the divergences was de-
termined. This method was used to calculate the electromagnetic corrections for

the low energy mm scattering (Ecker et al., 1989; Meifiner et al., 1997; Knecht and



Urech, 1998). About a decade ago, the general Lagrangian with virtual photons
for baryonic case was constructed by Miiller and Meifiner with the same procedure
(Miiller and Meifiner, 1999). They applied this method to calculate the nucleon
self energy, nucleon mass and the scalar form factor of the nucleon based on the
heavy baryon chiral perturbation theory.

The inclusion of virtual photons and leptons in the chiral Lagrangian was
introduced for mesonic sector by Knecht et al. (2000). The full treatment of
isospin breaking effects in semileptonic weak interaction was allowed. They enlarge
the ChPT Lagrangian with virtual photons (Urech, 1995) by including the light
leptons as dynamical degree of freedom and determine the additional one-loop
divergences generated by the presence of virtual leptons and give the full list of
associated counterterms. This method was applied to the pion and kaon decays
to calculate their decay rates.

There has been no development of the chiral Lagrangian with both virtual
photons and leptons for baryonic sector. Therefore, in this thesis we construct the
general pion-nucleon Lagrangian in which both virtual photons and leptons are
included. Then, we use this Lagrangian to calculate the tree level contributions of
the new terms involving photons to the weak form factors. This is an important
first step in the calculation of radiative corrections to weak processes, such as beta
decay or muon capture, in the framework of ChPT. We then consider as a specific
example radiative corrections to neutron beta decay.

In Chapter II, a review of ChPT with the construction of the Lagrangian
both in mesonic and baryonic sectors will be presented. The inclusion of virtual
photons and leptons to the mesonic Lagrangian and virtual photons in the pion-
nucleon Lagrangian up to fourth order will be shown in Chapter III. In Chapter

IV, we construct the new Lagrangian in the pion-nucleon sector, including both



virtual photons and leptons. Renormalization scheme and the calculations of the
wavefunction renormalizations of pion, nucleons and leptons are in Chapter V. In
Chapter VI we apply our new Lagrangian to the neutron beta decay to evaluate
the weak form factors to the nucleon current. A summary and conclusion can be

found in Chapter VII, while the appendices contain theoretical details.



CHAPTER 11

CHIRAL PERTURBATION THEORY

Chiral perturbation theory is based on an effective Lagrangian which can
be used to describe strong interactions at low energies. In the effective Lagrangian,
the quark and gluon fields are replaced by meson and baryon fields and the quark
interactions are replaced by a series of effective vertices. Since the effective vertices
are reformulated from QCD, they must possess the same symmetry properties,
which are chiral, Lorentz, parity, charge conjugation and time reversal symmetries.

In this chapter, the definition of chiral symmetry will be explained and the
building blocks which are used to construct the effective Lagrangian for both pion

and pion-nucleon systems will be introduced.
2.1 Chiral symmetry in QCD
The form of the QCD Lagrangian is

1 .
EQCD = —§<GHVG/W> + (j(Z’YuD# — M)q. (21)

The matrix G, is the gluon field strength tensor, the vector ¢ and ¢ are the
quark fields, D, is the gauge covariant derivative, and M is quark mass matrix.
The quark field is decomposed into the sum of the left and right handed

helicity components,

1 1
q= 5(1—75)q+§(1+75)q=qL+qR. (2.2)



By using this, the QCD Lagrangian is then written as

1 . .
Loop = —§<GWGW> + qr(iv" Dy — M)qr + qr(iv" D, — M )qr,

—qrMqr — gL Mqg. (2.3)

We notice that if M = 0, ¢q;, and qr do not interact with each other. In this case
they are each invariant under its own transformations, and there is a new symmetry
group SU(N)gr x SU(N) which is referred to as chiral symmetry group.

One assumes that the vacuum state does not obey chiral symmetry even
be invariant under SU(N). From this result SU(N)g x SU(N)y is spontaneously
broken down to SU(N). Goldstone’s theorem predicts the occurrence of N? — 1
massless bosons which are called pseudoscalar Goldstone bosons.

The mass of the three lightest quarks, the up, down, and strange, are small
compared to typical energy scales of QCD. This means that the chiral symmetry

is valid for just the light quarks:

g=|d |- (2.4)

The spontaneous breaking of this chiral symmetry form the pseudoscalar octet.
In this work, the strange quark mass is considered to be large at very low

energies so only the up and down quarks are involved
q= , (2.5)

which is invariant under the chiral symmetry group SU(2)g x SU(2). The sponta-
neous breaking of this symmetry predicts the occurrence of three massless bosons,

which are the pions.



2.2 Pion chiral perturbation theory

2.2.1 Definitions

The pion fields obey an SU(2) symmetry which is isospin symmetry. This
symmetry was created to describe the symmetry of the nucleons where the masses
of proton and neutron are almost identical. Then the nucleons can be treated
as a single particle with isospin state either up or down.That means each state
represents either proton or neutron.

This spin symmetry is used for the three pion states, with the isospin quan-
tum number I3 = 0, £1 instead of I3 = £1/2. But this representation is not used
in chiral perturbation theory. One can write a new representation for the SU(2)
symmetry by using a three dimensional basis composed of the Pauli matrices. Then

he pion wavefunction is written as the triplet

3
¢ = ZTiﬂ'i, (26)
i=1

where the 7;’s are the Pauli matrices:

The m;’s are fundamental pion fields which are convenient notations; how-
ever we have to transform to the physical pion fields that are eigenstates of electric

charge and defined as follow:

T —’i7T2

77'Jr = —,
V2

_ 7T1+i7T2

™ = ),

V2
0 = ms, (2.8)



which gives the general pion wavefunction as

70 \/§7T+
¢ = : (2.9)
\/§7r_ —70
In chiral perturbation theory, the nonlinear function of the meson field ¢ is

used in the chiral Lagrangian (Weinberg, 1979). The exponential representation

is the most common choice

i¢(z)

Ulw) = exp[—

] (2.10)

where Fj is a constant with the proper dimensions. The matrix U is the building
block from which an effective Lagrangian is constructed and must be invariant

under chiral symmetry,
U(x) — gR(:v)U(:v)gz(x) gr(x),gr(x) € SU(2). (2.11)

The matrix U has always appeared in the effective Lagrangian for the pro-
cesses which do not have nucleons. For the processes which involve nucleons, one
defines (Ecker et al., 1989)

U=u? (2.12)
which in the exponential parameterization gives

ip(x)
2F,

u(¢p(z)) = exp[—-1, (2.13)

where the constant F, can be identified with the pion decay constant. The matrix
u can be written in two components u;, and up with u? = uRuTL = uTLuR and each

component transforms chirally as

ur, — gLuLh_l(gngR7¢)7
ur — grurh (g1, 9r, 9),

gr, gL € G = SU(Q)L X SU(?)R, (2.14)



where the compensator h(gr, gr, ¢) is a nonlinear function of the pion field ¢ and
the chiral symmetry group G.

One defines the covariant derivative as (Fearing and Scherer, 1996)

A% higr, g, )A . D,A=0,A+T,A, 015
BS Mg, gr, ®)Bh~ (g1, 9r, ) : DB = 0,B + [T, B], |
where
Ty = 5 [uh(@ — iruun + ub (@, — ius] (2.16)

with r, = v, +a, and [, = v, — a,. v, and a, are the external vector and axial-
vector fields. Note that the definition of the covariant derivative depends on the
transformation property of the object it acts on and the covariant derivative trans-
forms in the same way as that object. The I, is the so-called chiral connection.

It transforms under local transformation as
I, — hl,h '+ ho,h " (2.17)

The connection I', contains one derivative. Another object with one derivative is

called the axial-vector object and defined as
wy, =i |k (0, — ir,)ug — ub (8, — il )ur| (2.18)

which transforms homogeneously, u,, — hu,h~'. Field strength tensors are defined

by
Ff =ulFfug £l Fluy, (2.19)
where
Fﬁ = a,urzx - aur,u - i[r,u,a Tl/]7 (220)
Floo= Oy — Ol — il 1), (2.21)
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Under a chiral transformation, these two tensors transform as

FR — grF[ g, (2.22)

174

Fl — gLFL gl (2.23)

14

Therefore, they make the transformation of F) Miy as
+ +7-1
FE = hFEnL. (2.24)

The last component corresponds to the explicit symmetry breaking created by the

non-zero quark mass. It is introduced as
Xe = uhxur £ ubxlug, (2.25)
with
X = 2By(s +ip), (2.26)

where s and p are scalar and pseudoscalar densities and B is related to the quark
condensate in the chiral limit. It is used to set up a general Lagrangian which has
symmetry breaking. It is then assumed that for the real world, the scalar density

is the quark mass matrix

M = : (2.27)
0 mq

and the pseudoscalar is zero. One assumes that y transforms as

X = grX9}, (2.28)
under chiral symmetry, so it makes

X+ — hxh ™. (2.29)
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In order to construct the Lagrangian we have to know the order of each

building blocks. One assign the following chiral dimensions to the building blocks:

U,0,0 = O(1), (2.30)
u, = O(p), (2.31)
Xt Fay = O(p?). (2.32)

Here, p denotes a small momentum or meson mass with respect to the typical
hadronic scale of about 1 GeV. The covariant derivative of each building block has

the same order as the building block it acts on.

2.2.2 Chiral invariants

In the Lagrangian, all terms must be invariant under chiral transformation.
This requires that the trace of matrices has to be taken. The lowest order contri-
bution to the Lagrangian is the second order O(p?). There are three terms which

obey Lorentz and chiral symmetry

(uuu“),
(X1

{(x-), (2.33)

where (- - -) represents the trace in flavor space. This method is used to derive the
fourth order effective Lagrangian as well. Each term is comprised of four axial-
vector objects, two axial-vector objects and one ., two axial-vector objects and
one Fli, one y+ and one Fi, two Y4 or two F}i There are too many chiral

invariant terms, so they will not be written explicitly.
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2.2.3 Parity

The parity transformation acts on the fields as follow:
ug(t,x) — u};(t, —x) = ur(t, —x)
up(t,x) — ul(t,—x) = up(t, —x)
duup(t,x) — Mub(t,—x) = 9*uy(t, —x)
Oyur(t,x) — "ul (t, —x) = 9" ug(t, —x)
vu(t,x) — vH(t, —x)
a,(t,x) — —a"(t,—x)
s(t,x) — s(t,—x)
p(t,x) — —p(t,—x). (2.34)
They lead to the transformation of the building blocks as
u, — —u
X+ — X+
Yo — —X—
El — Pt
F, — —F". (2.35)
By using these transformation properties. The three chiral invariant terms are
reduced to
(upu”),

) (2.36)

2.2.4 Charge conjugation

The last symmetry of the QCD Lagrangian which is considered in the chiral

Lagrangian is charge conjugation. The transformation properties of the fields



under this symmetry are

From the properties above, one gets
u, — U

X+ = Xh

Using the property of trace
(AT) = (4),

and one has for a pair of matrices,

(A"B") = ((BA)") = (BA) = (AD).

13

(2.37)

(2.38)

(2.39)

(2.40)

As a result, there are still two possible terms which are invariant under all QCD

symmetries. They are

(uuu“),

(X4)-

(2.41)
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2.2.5 The Lagrangian

At the second order, there are two independent terms left so there should
be two constants in the Lagrangian which are taken to be the pion decay constant
Fy and the parameter related to the strength of the quark-antiquark condensate

By. The resulting Lagrangian is

F? F?
£ = 20 fu) + =L (), (2.42)

At fourth order, there are twelve terms which satisfy all QCD symmetries.
The constants which are usually called the low energy constants are defined as /;.

Then, the fourth order Lagrangian is (Gasser and Leutwyler, 1985)

LY = 0 (u,u)? + Ly (uu”) (ubu,) 4 Oy (uuu,u”)
+la (Y (x o) + s (uutx s ) + le{x)?
)+ 26+ ) (08) + 120 — ) (%)
il (F ) + i(zm 20y )(FE P

1
(010 = 260) (F, PP, (2.43)

2.3 Baryon chiral perturbation theory

2.3.1 Definitions

The inclusion of baryons in the effective Lagrangian was first systematized
by (Gasser et al., 1988). The construction of the Lagrangian for baryon is more
difficult because the nucleon mass does not vanish in the chiral limit. In the deriva-
tion of the Lagrangian for pion it was assumed that the energy and momentum
of the fields were very much less than 1 GeV which is called chiral scale, however

the nucleon mass is close to the 1 GeV scale, which implies that an expansion in
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terms of the nucleon energy will not converge. In this section the pion-nucleon
Lagrangian will be derived and the convergence will be studied in the next section.

The nucleon fields will be defined in the spinor

U= , (2.44)
n

where p and n are proton and neutron wavefunction respectively. When we con-
sider massless quarks in QCD the axial symmetry U(1) must be included. Under
this symmetry the quark fields are invariant and transform as (Donoghue et al.,
1995)

q— e . (2.45)

The axial symmetry should be satisfied in the chiral Lagrangian. In the previous
section, the terms in the pion Lagrangian are unchanged under axial transforma-
tion so it was ignored. The symmetry group which is used in the pion-
nucleon Lagrangian is SU(2)g x SU(2), x U(1)4 and the transformation of the

nucleon field is

v — h(gngR7¢>\Ij7 W%Eh_lpglmg}?a(rb)' (246)

From Equation (2.15), the nucleon covariant derivative is defined as
D,V =0,V +T,V, (2.47)

and transforms as

D,V — h(gr,9r, ¢)D, V. (2.48)

For the construction of invariant terms and phenomenological applications,
one treats isosinglet and isotriplet components of the external fields separately and

defines the traceless operator as

X=X - (X), (2.49)



16

Table 2.1 Chiral dimension and the transformation properties of the building

blocks and the covariant derivative of the nucleon field

u, x+ x- Ff F, D,

chiral dimension 1 2 2 2 2 1
parity - + - + - 4+
charge conjugation + 4+ + - 4+ o+
hermitian conjugation + + - 4+ + +

where (...) represents the trace. To construct a hermitian Lagrangian which is
chiral, parity and charge conjugation invariant, we need to know the transforma-
tion properties of the fields under all transformations. Under parity the building
block transforms to =+ itself with changing Lorentz indices from lower to upper.
The building block transforms to + its transposed under charge conjugation and
to &£ itself under hermitian conjugation where the signs are given in Table 2.1
(Fettes et al., 2000).

The pion-nucleon Lagrangian also includes the Clifford algebra elements
which are 73, 7, and 7,75 and 0,,, the metric g,, and the Levi-Civita tensor €,z
and the covariant derivative of the nucleon field to contract Lorentz indices. Each
matrix transforms to =+ itself with changing Lorentz indices from lower to upper
under parity. Under charge conjugation the matrix transforms to + its trans-
posed under charge conjugation and transforms to +4(itself) 4° under hermitian

conjugation where the signs are given in Table 2.2 (Fettes et al., 2000).
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Table 2.2 Transformation properties and chiral dimension of the Clifford algebra
elements, the metric, the Levi-Civita tensors with the covariant derivative of the

nucleon field.

Y5 VYu VY5 Ow  YGuv  Euvap D“\II

chiral dimension 1 0 0 0 0 0 0
parity - + - + + - +
charge conjugation + -  + -+ + —
hermitian conjugation — +  + + + + —

2.3.2 Chiral invariants

In this section, we will construct all possible chiral and Lorentz invariant
terms by combining all building blocks. Any invariant term in the pion-nucleon
Lagrangian is of the form

VA0, W+ hc., (2.50)

where A" is a product of pion and/or external fields and the covariant derivative
thereof. ©,, . is a product of an element of Clifford algebra I',,, and n covariant
derivatives acting on the nucleon field D7, .

One expects that the first term in the pion-nucleon Lagrangian will be the

Lagrangian for a free Dirac field

Liree = V(iy, D" —my)¥, (2.51)

where my is the nucleon mass and this Lagrangian is counted as O(p). All terms
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which are chiral and Lorentz invariant are

VU (iy, D" —my)¥, (2.52)
Uy, P, (2.53)
Urytysu, W, (2.54)
WUy 0, (2.55)
Wu, DMV + h.c. (2.56)

At second order, the chiral invariant terms are

Y, u'V, (2.57)
Wo u,u, W, (2.58)
W DFay, W, (2.59)
Uy u, D'V + h.c., (2.60)
Vo' D,u, ¥, (2.61)
Wu,u, D' DY¥ + h.c., (2.62)
Wu,u, D DMV + h.c., (2.63)
W {u,u,) D" D"V + h.c., (2.64)
W {u,u,)D* D"V + h.c., (2.65)
Vel Py, u, Dy DV + hec., (2.66)
Uy, (2.67)
T{x+)P, (2.68)
Wy U, (2.69)
W(x_)V, (2.70)
Vo FL W, (2.71)

Vo (Fi ), (2.72)
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VF! D*D"¥ + h.c., (2.73)
VE! DYD*U 4 hec., (2.74)
Vet PEE Do Dg¥ + h.c., (2.75)
W(F)D' DYV + h.c., (2.76)
W(F})D"D"W + h.c., (2.77)
Vet P (FF)DaDs¥ + h.c., (2.78)
Vo' F,, 0, (2.79)
Vot (F, )V, (2.80)
U, D'D'V 4 h.c., (2.81)
V[, D'D'"W 4 h.c., (2.82)
Vet PF DoDg¥ + h.c., (2.83)
U(F, )D"D"¥ + h.c., (2.84)
U(F, )D"D"¥ +h.c., (2.85)
Ve (F VDo DV + h.c. (2.86)

The terms which involve derivatives of the nucleon field are not hermitian

therefore these terms must be the sum of the term and its hermitian conjugate.

2.3.3 Parity

The parity transformation of each factor are given in Table 2.1 and Table

2.2. The lowest order parity invariant terms are

U (i, D" — my) ¥, (2.87)

UryFysu, U. (2.88)
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The second order O(p?) terms are

Wutu, W, (2.89)
U (utu, )W, (2.90)
Vo u,u, W, (2.91)
Wot (u,u,) W, (2.92)
U~y u, D*¥ + h.c., (2.93)
Ur°(u,) D"V + h.c., (2.94)
Wu,u, D' DYV + h.c., (2.95)
W), u,)D* D"V + h.c., (2.96)
Wu,u, DY DMV + h.c., (2.97)
W {u,u,)y D" DMV + h.c., (2.98)
Uy, (2.99)
W)V, (2.100)
Vo' Fh W, (2.101)
Vo (Fi ), (2.102)
VE! D'D'V 4 h.c., (2.103)
UFf D'D' 4 h.c., (2.104)
U(F[)D"D"V +h.c., (2.105)
U(F,[)D"D"V +h.c., (2.106)
Vet *PF DoDg¥ + h.c., (2.107)

Vet *?(F VDo DsV + h.c. (2.108)
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2.3.4 Charge conjugation

The first order parity invariant terms which are also invariant under charge

conjugation are

(i, D" — my)¥, (2.109)

WrykaPu, U, (2.110)

and for the second order Lagrangian there are

U {utu, )W, (2.111)
Wot [u,,u,] V, (2.112)
W {u,u,)D" D"V + h.c., (2.113)
Wy, U, (2.114)
Wy )0, (2.115)
Vo' Fh W, (2.116)
Vo (Fi ), (2.117)
Vet P F DoDg¥ + h.c., (2.118)
Vet *?(F VDo DV + h.c. (2.119)

2.3.5 The pion-nucleon Lagrangian

The list of invariant terms generated above still contains linearly dependent
term which can be reduced by using various identities. First of all, the property
which is frequently used in the construction of the Lagrangian is provided by the
Cayley-Hamilton theorem. For 2 x 2 matrices A and B, the anti-commutator of

these two matrices can be written in terms of their traces as

{A,BY = A(B) + (A)B + (AB) — (A)(B). (2.120)
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Another identity is the curvature relation

1 [
Dy D] = 7 [y ] = 5 (2.121)

We notice that the terms on the right hand side are both second order, so

the term in Equation (2.118) can be rewritten as
Vet F (DgDyo + O(p*))V = W F | FJ 0. (2.122)
The Lorentz indices can be interchanged, which gives
Ve F DoDgW¥ = —We P F,,D,DsW. (2.123)

The result is that the term in Equation (2.118) is not actually a second
order term. The same proof can be use to eliminate Equation (2.119).
Another set of identities is based on the equation of motion (EOM) deduced

from the lowest order pion Lagrangian

Dy ] = 5X- (2.124)
and pi-nucleon Lagrangian
. 1
(Z’yuD“ —mpy + §gAfy“’y5u“) v = 0, (2.125)
. % 1
1y, D" +my — égA’yufyg)u“ v = 0 (2.126)

where my and g4 are the nucleon mass and the axial-vector coupling constant in
the SU(3) chiral limit. The EOM is used to simplify things, e.g. it allows us to
disregard v, D" in many terms.

For the construction of higher order Lagrangian we need more relations to
reduce to the minimal set of terms. Some of these relations have already appeared

in (Fettes et al., 1998) as following:

UA*D, U +he = 2myUy, A"V, (2.127)

UA"™D,D,¥ +hec. = —my(Uy,A"iD,¥ +h.c.), (2.128)



UA"*iDyD, D,V + h.c.

ﬁvaAwiDM\If + h.c.

U579, A" Do D, + h.c.

U5y, A**PiDg D, D,V + h.c.

Vo5 A®HiD, W + h.c.

Vo,3AP"" D, D,V + h.c.

V50,5 A°P* D, W + h.c.

iVy50,5A*" D, D,V + h.c.

Wry,[iDH, A]W

@75% [iD*) A]W

W57, [D*, AY)iD,V + h.c.
Weasuwn” [DY, A*F)iD\W + h.c.

T[D*, AY]D, D,V + h.c.

Vo ,s5[D*, A**"1D,D,¥ + h.c.
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my (U, A"*D,D,V + h.c.), (2.129)
QimNﬁ%UWAW\II

+ (U7, A"iD, ¥ + h.c.), (2.130)
mN(W%UWA‘“’O‘Da\I/ +h.c.)
+(T57, A" D D, W + hec.),  (2.131)

my (19750, AP Dg D, + h.c.)

+(U57, A" iDg D, D,V + h.c.),

(2.132)
—QmNEé?aﬂuu%’VVAaﬂﬂ‘I’
~(Wop, A*MiD, ¥ + h.c.)
+ (Voo A"iDgl + h.c.), (2.133)

my (i@ewgw%v”Aaﬁ“”Dl,\I/ + h.c.)

— (W0, A" D, D,V + h.c.)

+(V0,, A D, Ds¥ +h.c.), (2.134)
—(5750/3MA0‘5“D04 + h.c.)
+(U500, AP DV + hec.),  (2.135)

—(1U505, A" D, D,V + h.c.)
+ (10500, A" D, DV + h.c.),(2.136)

B4 ns A, 0, (2.137)

oy Ty AT — %‘%M A, u,] W (2.138)
0 (2.139)
0, (2.140)
0, (2.141)
0, (2.142)
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where the symbol = means equal up to terms of higher order.
Another set of identities is provided by the connection between curvature

relation in Equation (2.121) and the Bianchi identity for covariant derivatives
[Da, [D,, D,]] + cyclic = 0, (2.143)

where “cyclic” refers to cyclic permutations It leads

i

[Da, F] + cyclic = 5

[Ua, F,,] + cyclic, (2.144)
by using the Leibniz rule and the relation that
[Dysuy] = [Dy,uy] = F,. (2.145)

The effective 7N Lagrangian is given by the combination of terms with

increasing chiral dimension,
e 1 2 3 4
£t =B+ L8+ L8+ £+ (2.146)
At lowest order, the effective 7N Lagrangian is given by

LY = (mD“ —my + gf%%u“) v. (2.147)

At second order, there are seven independent terms with their low energy constants

(LECs) (Gasser et al., 1988),

— c c
LY = Tialxs) — =5 () {D", D"} +he) + —(u?)
8my; 2
iC4 v ~ Cg v Cr v
T 0" s w] FesXy + g0 E 4 oo <Fu+u>} v

(2.148)

The third order pion-nucleon Lagrangian has 23 independent terms and 118 terms

for the fourth order. We will write these two Lagrangian in the form (Fettes et al.,



Table 2.3 The terms of dimension three for the relativistic Lagrangian.

)

10
11
12
13
14

15

——[u,, [D,, u*]]D¥ + h.c.

_2mN

;[Uu, [D'uy ul/]]Dy ‘I‘ h.C.

— 5k
ﬁ[u#, [Dy, ua])(D* D" D* + sym.) + h.c.
— e (wuu0) Dy + hic.
ﬁi[X—,UM]D“ + h.c.

ﬁi[D“, ﬁﬁ]D” + h.c.

s D" (Fn)] D + hee.
ﬁiguya6<ﬁ,ﬁu(x>Dﬁ + h.c.

Lo (1Y, Dy 1 e

m
575 (U )y,

%7ﬂ5<uuuu)u”

_snlﬁv Vs (Uaty)u, { D, DV} + h.c.

— ez 7" Ut )ua {D%, D'} + hic.

;Z’U”V([Dav uu]ul/>Da + h.c.

4mN

L _jgh (u,[D,, ua]) D* + h.c.

4mN

2000)

23
S = > 40Py,
=1

118

EE:L]{[ = 2616054)@,
=1
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(2.149)

(2.150)

and the monomials O®) and O® are in Table 2.3 and Table 2.4, respectively.



Table 2.3 (Continued.)

i OB

16 57"y (X4 Uy

17 3"y (X ti)

18 i ys5[Dy, x-]
19 Jiv*ys[Dy, (X))

20 —ﬁi’y”% [FiF us] {D* D"} + h.c.

o
21 iyt ys[FL, u]

22 %7”75 (DY, F;Iu]

23 %fyu’yg,a“”o‘ﬂ <u,,FC;3>
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Table 2.4 The independent terms for fourth order relativistic pion-nucleon La-

grangian.

) oW

2 () (u'u”)

3 #<Uu><uuuy> {D*,D"} + h.c.
N

4~ {uaw) (uu,) {D", D"} + h.

5 ot (Uaty) (w,ug) (D* D DY DY + sym.) + h.c.
N

6 %‘guu [, 0] (- 1)

T e, ul(uug) {D%, D} + .

8 %UHV<[uH’ ul/]ua>ua

9 _87:;?\, O-au<[uon u,u]uy>uﬁ {DV, Dﬁ} + h.c.

10 _ﬁggyﬁ<hauuy>uﬁ {Da’ DT} + h.c.

1 =y"y5(hau[u®, ) D" + hec.




Table 2.4 (Continued.)

oW

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

ﬁ")/l/’}/5<hau [ua’ uu]>D'u + h.C.

—24;3&7575%&#[%, ugl)(D*D* D" + sym.) + h.c.

(g I1)
_#wauh% {D#, D"} +h.c.

<hauhyﬁ>(DaD“DyD/B + syms.) + h.c.

48m

_O-lW[h ha}

2 aps "y

— 5z 0" [y hus] {D°, D7} + hic.

() (u - u)

— gz () (waw ) {D#, D7}
50 () [, o]

[Dy, [D*, {x+)]]

R u)

— gz Xt () { D¥, D"}
Uy (X4 ut)

2 uy (X+uy) {D*, D"} + h.c.

§UW<X+ [ty ])
4mN 75X+, hu| DY + hec.
o V5[ Dy X4, us) DY + hec.
[Dw (D", X+]]
4mN T (X -) [w,, u,| DY + h.c.
472% (X=)hu {D*, D"} + h.c.
iu[D*, (x-)]
4mN =5 (X [y, u,]) DY + h.c.
i (%) {DF, D} e

27



Table 2.4 (Continued.)

i O“

36 i(u, D", 7))

37 —40"[u,. [Dy X

38 X+ {(x+)

39 X+{x+)

40 (Xex+)

41 X-(x-)

42 i(EL) [ut, v

43 —47;2 (Fr ) [u® u,]{D", D"} + h.c.
44 —50"(EL) (u - u)

45 —30"(F ) (uu,)

46 gzo(F ) uus {D¥, D} +hec.
A7 81 (F ) (uug) {D*, D"} + h.c.
48 yre (Ff)he DY +hec.

49 (Fl)hg D 4 h.c.

50 =g v s (F) hus(DHDYDP 4 sym.) + hoc.
52 — s Y suu[ D, (FL ) DY + hee,
53 —ﬁyy%u“[D"‘? (F ) D" +h.c.
54 —30"[D*, [Dq, (F}})]]

55 i(F[ut, u])

56 4mN (FJr [u®, u,]) {D*, D"} + h.c.
57 —%J“”F‘j;(u - u)

58 —%a““ﬁju(uauy)

59 G0 (uaug) {D*, D} + he.
60 ,DP} +hec.
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Table 2.4 (Continued.)

i oW

61 —%0““ua<ﬁ}j,ua>

62 —%a’”ua(ﬁ(j Uy,

63 —%U‘“’uM(F+ @)

64 81 ua<F+u5 {D*,D"} +h.c.
65 8%0‘“’ F*u,, {DO‘ DB}—FhC
66 sé u (Ffug) {D* D} + h.c.
67 s (B hS) DY + hc.

68 —ﬁy”yﬂFO‘LhﬁD” +h.c.

69 24437075@; hug)(D* DY DP 4+ sym.) + h.c.
0 - e [Ed hygl {DP, D7} + hc.
71 4mﬂ"%< u®[Dy, 1) DY + h.c,

72 Tty (D, F, 1) DY + hee.

73 795 (u®[Da, F,]) D + hec.

4 —lom[D? (D, F})

75 el (F,up)

76 5‘“’ﬂua<F 5){D* D"} +h.c.
77 —Waaw (Fug) {D?, D"} +h.c.
78 —Wsa’“’F (uyug) {D°, D7} +h.c.
79 M”y Hoys (Foplu®, uy]) DY + hec.

80 MV Y5 (Flyp[u®, u,]) D* + hec.
81—z (Fo,hg) {D*, D"} + h.c.

82 LoM[Fy,, he]

83  —t % m(Fy., hug) {D* D} + h.c.
84 - Mo hug) {D”, D?} + h.c.

ST o
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Table 2.4 (Continued.)

i oW
85 (u'[D", F])
86—k (uu[D* F)) {D", D"} + hec.
87 st [u®,[Da, F,)]]
88 501 [ug, [D, F, ]
89 (Fpa) (FHF)
90 — g (Fa ) (F ) {D", DV} + hc.
o1 Ef(Fm)
92 - (Fety {D*, D} + hec.
93 (FL )
94 (F;MF;”) {D*, D"} + h.c.
95 ZU“V[FOZL, Fot]
96 [F, Ff){D*, D’} + h.c.
97 UW[FW Fo)
98 —gr"[F,,, F5]{D* D} +hc.
99 —ﬁv"%F;H(FﬁﬂD” + h.c.
100 — oV s F () D+ hee.
101 "5 (F F2T) DY + hic.
102 TV Vs (Fo Bt ) DM + hec.
103 ic*P[F,  Fi]
104 —5ired[Fy, F{D? D™} +h.c.
105 =50 (FL)(x+)
106 —50‘“’F+ (X+)
107 —50"(F X+
108 20‘“’F X+

30
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Table 2.4 (Continued.)

i oW

109 4mN7'LL75[Fuw X+]DV + h.c.

110 =75 (Fh) (x-)D¥ + h.c.
111 4mN 7“75F+V(X_>D” + h.c.
112 4mN7”75<F+ )X-D" + h.c.

113 9y (FLX-)D" + he.

114 —30™([F,,. X-]

115 (% —x2)

116 —i((x@ = (=203 - ()

117 s (P Fo™ + P2, Fot) {D*, D"} + hee.

118 %(FM—VF*“’— + F F

2.4 Power counting

In this section, we will set up a scheme to organize the infinite number of
terms contributing to the most general effective Lagrangian which can be ordered
according to the number of derivatives acting on pion fields and powers of pion

masses,

L=L1+ Lo+ L3+ ... (2.151)

The mesonic Lagrangian contains terms of even power, while in the baryonic case
all orders appear. The order of a Feynman diagram will be defined corresponding
to the order of each term in the Lagrangian. For the mesonic sector this is achieved
by Weinberg’s power counting. Any Feynman diagram contributing to a physical

matrix element M is a function of the quark masses an the momenta of pions

M = Dy(my, p;) + Da(mg, p;) + .. ... (2.152)
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Consider the behavior of a physical matrix element M (m,, p;) under linear rescal-
ing of the external pion momenta, p; — tp;, and quadratic rescaling of quark

masses, 1mg > t2mq,
M(my, pi) = M(Emg, tp;) = t° M(my, p;). (2.153)
Here, D is the chiral dimension and is given by

D=2+ 2(n—1)Na, + 2N, (2.154)

n=0

where Ny, is the number of vertices form Ls, and Ny, is the number of loop inte-
grations. For small values of ¢ diagrams with an increasing order D are suppressed
and those with smaller D dominate. If the order D is fixed only a limited number

of diagrams from the most general Lagrangian contribute. Using the relation
Ny = Ny — Np + 1, (2.155)

where Ny is the total number of vertices and N; stands for the number of internal

pion lines, one obtains

D =4N, = 2N+ ) 2nNy,. (2.156)

n=0

Therefore, one assigns the following chiral order to individual parts of Feynman

diagrams:

1. Loop integration in 4 dimensions counts as chiral order 4,
2. a pion propagator counts as chiral order —2,

3. a vertex from Lo, counts as chiral order 2n.

Next we will extend to the baryonic sector. The power counting in the baryonic
sector was first stated by Gasser, Sainio, and Svarc (Gasser et al., 1988). The gen-
eralization of the power counting from the mesonic sector is realized by assigning

the following chiral orders to the individual component of diagram:
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1. The nucleon propagator counts as chiral order —1,
2. vertices from the Lagrangian EEZ\)[ count as chiral order n,
3. the mesonic power counting is still the same.

Finally loop corrections are arised at some stage in a perturbative calculation which
have to be treated carefully. In the mesonic sector diagrams are evaluated by using
dimensional regularization and the so-called modified minimal substraction scheme
of ChPT (]\73 ). When ChPT was extend to include processes with one nucleon,
one saw a breakdown of the power counting. The breakdown consist of terms with
smaller chiral dimension of the nucleon. Let us establish the chiral orders of the

diagrams in Figure 2.1 using the above power counting.

1. The diagram of the left in Figure 2.1 has chiral order

D=n+2-1-1-2=n—-1-3 (2.157)

2. The right diagram in Figure 2.1 has chiral order

D=n+1-2-2=n-—1 (2.158)

where n is the space-time dimension. However the lowest-order term has chiral
order

D=2, (2.159)

We will see explicitly that the calculation of the diagrams in dimensional
regularization combined with the M S-scheme shoes that in Figure 2.1, the left
diagram contains terms violating power-counting, but the right diagram satisfies
power counting. One has to remember that the power counting was ob-
tained by rescaling the momenta and quark masses of a physical element and

attending to the behavior of diagrams contributing to this matrix element case
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k _‘]?
,".-)-\\ 1 ;
2 p—k P p p

Figure 2.1 Self-energy diagrams

by case. Therefore, power counting should be applied to renormalized diagrams
only, it was realized in (Gasser et al., 1988) that the validity of the power counting

scheme is related to the choice of the renormalization scheme.



CHAPTER III

INCLUSION OF PHOTONS AND LEPTONS

In the previous chapter we have presented the construction of the most
general effective Lagrangian only for strong interactions. In this chapter we will
construct the complete effective chiral Lagrangian including photons and leptons
for the mesonic and photons for the baryonic sectors. The next chapter will be
devoted to the extension of this procedure to obtain the full Lagrangian in the
baryonic sector including both virtual photons and leptons. Since the details of
the construction are similar to the previous chapter, we will concentrate on the

parts due to the inclusion of the photons and leptons.

3.1 Chiral perturbation theory with virtual photons

From the reason that Chiral perturbation theory is a nonrenormalizable
theory, loops generate divergences. One needs a set of counterterms for each order
and thus an infinite number to renormalize to all orders. In ChPT, one considers
only order by order, and renormalizes only be order. The divergences can be ab-
sorbed by introducing counterterms. The associated coupling constants of these
counterterm absorb the divergences that are produced by loop-graphs with a vir-
tual photon or a vertex from the Lagrangian of O(e?).

The counterterms of the effective Lagrangian for electromagnetic interac-
tions were introduced firstly by G. Ecker et al. (Ecker et al., 1989) but they
considered only up to second order for mesonic sector. Then, the counterterms

for fourth order effective Lagrangian in mesonic (Urech, 1995) and baryonic sector
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(Miiller and Meifiner, 1999) were constructed later.

To introduce photons in the effective field theory, one firstly has to set up
the power counting scheme for the electric charge e. From the observation that
e?/4m ~ m?2 /(4w F,)? ~ 1/100, one counts the electric charge as a small momen-

tum (Miiller and MeiBner, 1999),
e =0(p). (3.1)

Since the electric charge is always quadratic there are only terms of order e? at

second order, e?p at third order and e?p? or e* at fourth order .

3.1.1 Definitions for meson case

The effective Lagrangian in mesonic sector with the inclusion of virtual pho-
tons had been constructed (Urech, 1995) up to fourth order. The building blocks
which corresponded to the electromagnetic effects are defined via the spurions @)y,

and Qg with a definite transformation property under chiral SU(3), x SU(3)g,
Q[ — g[Q[g}, gr € SU(3), I = L,R (32)

In our case we consider chiral SU(2) symmetry and follow the procedure
and notation of Knecht et al. (Knecht et al., 2000) in which the photon field A,
is introduced in

w, = i[uk (8, — ir,)ur — ub (9, — il )ug), (3.3)
by adding the term which corresponds to the electromagnetic field to the usual
external vector field v,. The result gives

Tu = Ut au — QR Ay, (3.4)

l, = v,—a,—eQ7"A,. (3.5)
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In this work we consider SU(2) symmetry. The quark charge matrix for

SU(2) symmetry is

o 2/3 0
QL,R = ) (3-6)
0 -1/3
and one introduces spurion fields ()7, with the transformation properties
em G em em G em
QL — 91Q7 gz, QR — 9rQR 9;37 (3.7)

under chiral SU(2), x SU(2)g. In accord with the definitions of the building
blocks defined in the previous chapter, one also defines
o = uLQL ur, (3.8)
oR = uEQeLmuR, (3.9)
which transform under chiral group as,
em G em _
QL — h(ga ¢) QL h(gu ¢) 17 (310)
em G em -
oF* = h(g,¢)Q% (g, 9)". (3.11)

Furthermore, under parity (P) and charge conjugation (C) transformations,

one finds
o SO QP S o (3.12)
g &y ot & g (3.13)

One also defines the derivative of Q%" and Q5™ as (Knecht et al., 2000)

V.05 = V,08 + [,“ Q™) = ul (D,Q™uy, (3.14)
V08 = V,08 - [uwQem]—uk(Du g, (3.15)

where
D,Q5™ = 9,Q5™ — i[l,, Q5] (3.16)

D, Q%" = 0,Q%" —i[r,, QR (3.17)
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which transform in the same way as Q7" and Q7" and the definitions of V,Q™

and V,Q%" are

VO = 9,00 + [T Q5. (3.18)

V. QR = 0,97 + [y, Q7] (3.19)

3.1.2 The EM lagrangian in meson case

With these building blocks the lowest order effective pion Lagrangian with

virtual photons takes the form

1 1 F? F2
L2 :—ZF"”FW—éA(auA“)2+—0<uuu“>+zo

TT,em 4

() T Fy Z(Q1" Q") (3.20)

where F),,, is the field strength tensor of the photon field A, F,, = 0,4, —0,A,.
is the gauge fixing parameter and will be kept at A = 1 (we are using the Feynman
gauge). The coupling constant Z can be determined from the difference of the
charged pion and the neutral pion masses.

For the fourth order, there are two minimal set of terms. One has order

4

e?p? and another one has order e*. For the first set Urech’s Lagrangian can be

rewritten in Knecht’s notation as (Knecht et al., 2000)

Oy = &R {%h«@%ﬂf + (QR)?) () + ko (QF" Q5 )
ks [(Qf" ) (QF" ) + ( Q5w ) Q)]
Fha( Q5w (QF ) + ks (((Q)° + (QR) )
+ke((Q7" QF" + Qr" Q7" )u,u)
k() + (2 xs)
+hs Q" Q") () + ko ([(Q™) + (QR™)Ix+)
+ho(Qr" QR + Q" Q" )x+)

—ku((Q7"Qr" — QR Q7" )Xx-)
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ik ([(V,Q5M Q7" — 01"V, Q5"
~ (V. Qi)QR + QY05 | o)
s (Y, Q) (V' Q)

o ((VuQE) (V4 Q5°) + (V@) (V4 Q) | (3.21)

The latter set which has order e* and which we will need, was not considered by
Knecht et al. Therefore, we have rewritten at order e* based on the Knecht’s

notation as

k16

Lo = Fy {k15<Q‘§zerLm>2+7(<Q%m QR +(Q27))

k17

o+ @ ) (3.22)

3.1.3 Definitions for baryon case

Electromagnetic corrections to pion-nucleon systems were first emphasized
by Weinberg (Weinberg, 1977). He pointed out that reactions involving nucleon
and neutral pions might lead to violations of isospin symmetry and argued that
the mass difference of the up and down quarks can produce a 30% effect in the
difference of the 7% and 7%n S-wave scattering length. This calculation was ex-
tended to the so-called pion-nucleon o-term by Meifiner and Steininger (Meifner
and Steininger, 1998). The effective chiral pion-nucleon Lagrangian with the in-
clusion of virtual photons to one loop was constructed up to third order in that
paper and extended to fourth order by Miiller and Meifiner (Miiller and Meifiner,
1999).

To introduce virtual photons in the effective pion-nucleon field theory one

defines (Meifiner and Steininger, 1998)

Qs = % (uQu' £ u'Qu) (3.23)
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which can be rewritten in Knecht’s notation as

Qr =5 (Q7" + QF"), (3.24)

N | —

where the definitions of Q5™ and Q%" are in Equation (3.8) and Equation (3.9).

It is natural here to use the nucleon charge matrix

om 10
LR — ) (3-25)
00

We can also define the covariant derivative of Q4 via

[vu: Q:i:] - %[uuv Q:F] + Ci:, (326)

1

i = 5 { w008 = ill Q) = uh(O.QF — ilr, QFlun)} . (3:27)

Under parity and charge conjugation ()4 transform as

Qs B +Qs, Qr 5 QLT (3.28)

3.1.4 The EM lagrangian in baryon case

At first order, from substituting Equation (3.4) and Equation (3.5) to Equa-

tion (3.3) one finds

D
BN
=
=
I

= (. = 1 ~
*Nem = ¥ (WMDM —my + EQAVH%UM) v, (3.29)
with

D, = D,—iQ.A,, (3.30)

Uy = uy—2Q_ A, (3.31)
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Table 3.1 Monomials O; of third order for the relativistic EM lagrangian.

i oY i oY

1 7N75<Q+uu> 7 7N<Q—Uu>@+

2 s (Q ) Q- 8 (Q u)(Qy)
3 7 s(Qiu ) (Qe) 9 Q4+, [V, Q4]
4 Q%+ Q) 10 Q- [iV,, Q-]

5 ys(Q% — Q%) 11 5(Qx, [V, Q-]]
6 Y(Qruu) Q- 12 4#5]Q-, [V, Q4]

At second order, local contact terms with their low-energy constants (LECs)
fi; appear. The EM Lagrangian is given in terms of squares of (1 as expressed

before (Miiller and Meiner, 1999),

3
LD om =D EF RO, (3.32)

i=1

with

—(@Q>-@Q%), OP =(Q)Q., O =(Q%+Q), (3.33)

where @i represents the traceless part of (). The EM Lagrangian to third order

has been constructed with LECs g; (Miiller and Meifiner, 1999)

‘CﬂN em Z 62F291\Ij0 (334)

=1
with the (91(3) are in Table 3.1.
Next, we will consider the terms of fourth order. The complete fourth
order EM pion-nucleon Lagrangian with corresponding LECs is written as (Miiller

and Meifiner, 1999)

5
=3 ' R TO Y + Z 2F2h, 50 (3.35)

=1

£(4)

7N,em
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Table 3.2 The monomials for (9(64).

i oY)

(3 +Q%)?

2 (A -2

3 (3 Q12 -Q%)
4 (2 +Q2>< Q4)Q+

5 (R -Q2)Q)Qy

Table 3.3 The monomials for O(e?p?).

i O(e*p?) i O(e*p?)

6 (Q2+Q%)w?) 12 <Q2+Q2><uuuy>D“D”+h.c.
T (Q2 Q%)) 13 (Q2 — Q2)(uuu,)DPDY + hec.
8 (Quu)(Qu) 14 (Quu,)(Qqu,)D'D” + hec,
9 (Qu)(@Quw) 15 (Qu,)(Q w)D'D" +he.
10 (Q4)(u?)Qy 16 (Q<){uuu,)Q DD + hec.
11 Q) (Quu)u* 17T (Q){(Quu,)u, D*D” +h.c.

Note that the first five terms are all O(e?) and given in Table 3.2. The other terms

are O(e?p?) and given in Table 3.3.
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i O(e*p?) i O@p?)

18 i (Q [y, u)) Qs 42 om(Q% - Q2)(F)

19 i0m (O, u]) O 43 oM (Q)Q+(F)

20 Q0" (Q2 + Q) [ty us) 44 0"5([Q+, Q1)

21 o (Q4 — Q2)uy ) 15 0"35Qs, Q 1(F)

22 i (Q ) [Q, uy) 16 o5 (Q)Q-, F)

23 o (Q-u,)[Q-, ) AT o (QuNQ-F,)

24 o (Q)(Qy [uy, w)) 18 0" Q{Q-F,)

25 Ys(Quuu)(Q-w,)iD” +he. 49 o"Q_(QLF,)

26 7"5(Qeu,)(Q-w,)iDF +he. 50 0My5(Q4)[Qx, )

2T Y5(Q N Q uwiD” +he. 51 ([iV,,QL)[Q,u])

28 Y 5{QiNQ-uu)uiDF +he. 52 ([iV,, Q_)[Q4, ut])

29 (Q%+ Q%)X+ 53 ([iV,, Q4][Q-,u, ] D*D” + h.c
30 (Q% - Q)X 54 {(iV,, Q)@+ w) DFD” + hic
31 (QiNQ4X+) 55 ([iV,, w)[Q4, Q-]1D*D” + h.c
32 (Q% + Q%) (xy) 56 (Q-[V", [V, Q1))

33 (Q2 — Q2){xy) 57 (Q-[V,, [V, Q) DD + h.c
34 (Q1)Q+(x+) 58 ([V,, Q-][V*,Q_])

35 (Q)[iQ-,X-] 59 {[V,, Q_][V,,Q-_])D*D” + h.c
36 ([Q4, Q-IX-) 60 (Q)[[iV,, Q-] u]

37 (@4 Q-)(x-) 61 (Qu)[[iV,. Q- w)]D"D¥ + hc
38 0" (Q%+ Q2)F, 62 (Q)[iV,.w).Q-1D*D¥ +hc
39 o"(Q% - Q2)ES, 63 ([V*,Q4][V,i, Q1))

40 o (QuNQ4FS) 64 (V. Q4][Vy, Q) D" D¥ + hoc.
41 o"(Q3 + Q2)(F) 65 (Q+[V", [V, Q1))
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i O i O

66 (Q+[Vy [Vo, QN DMDY +hic. 79 0™ [Q-, [V}, [V,, Q-]

67 (V" [V, Q411(Q4) 80 795(Q)[[Vy, Q) w,|D¥ + huc.
68 [V, [Vo, QuI(Q)D'D” +hie. 81 4"35(Q1) [V, Q) u] D" + hic.
69 ™[V, Q:)(Q-w) 82 175{[Vy, Q4][Q+, w]) DY + hic.
0 0"Q{[Vyu, Q- Juy) 83 (v mQ+][Q+,uy]>D“+h-C-
71 o (Q) (Vi Q-uy) 84 7495([V,, Q-1[Q—, u))D” + huc.
72 0"V, Q-1(Qru, 85 7"75([Vw Q-)[Q—, w)) D + hc.
3 o"Q [V, Qiluw) 86 7"75([Viu Q4][V, Q_)iD" + hic.
4 o, (Y, Q41Q-) 87 5[V, Q4][Ve, Q_])iD” + hic.
5 0wV, Q-1Q4) 88 i0"y5{(V, [V2, Q41Q-)

6 i0"([V,, Q4] [V, Q1] 89 i0"y5((Vp [Vi, Q1Q4)

7T 0" [V, Q-] [V, Q_]] 90 i0"75(Q+) [V, [Vs, Q-]]

78 0™ [Qy, [V, Vo, Q4]

3.2 Chiral perturbation theory with photons and leptons

3.2.1 Definitions in meson case

The theoretical results in mesonic sector mentioned in previous section have

been used to calculate the electromagnetic corrections to the elastic 77 scatter-

ing amplitude, in particular to its S-wave threshold parameters.

These electro-

magnetic effects are found to be comparable size to the O(p®) strong interaction

contributions (Meifiner et al., 1997; Knecht and Urech, 1998).

The further extension of ChPT is the analysis of the electromagnetic correc-

tions in semileptonic reactions. For the complete treatment of the electromagnetic
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and weak interactions within the framework of the ChPT, the photons and light
leptons have to be included as explicit dynamical degrees of freedom in a suitable
effective Lagrangian.

The photon field A, and the leptons ¢,v,(¢ = e, i) are also introduced in

Equation (3.3) with (Knecht et al., 2000)

l, = vy—a,—eQ7"A, + Z (5% (1 — 5) @Y + Try,(1 75)KQWkT) ;
(3.36)

re = vu+a, — eQPA,. (3.37)

The matrix QY¥* is the new building block which corresponds to the weak

field and transforms as

QS 9.Q5%), (3.38)

under chiral symmetry. The weak spurion in SU(2) symmetry is taken at

0V,
vk _9\/2G, 1, (3.39)

0 O

where G is the Fermi coupling constant and V4 is Kobayashi-Maskawa matrix

element. To work with the usual generalizations one defines

— uLQL ur, (340)
which transforms as
Q% & hig, 6)Q*h (g, ¢). (3.41)

In the leptonic case we have to consider the C'P transformation of the
building blocks, we find

oy B (—ophT, (3.42)

where (---)7 is the transpose of the matrix in (---).
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3.2.2 The leptonic lagrangian in meson case

The lowest order effective Lagrangian takes the form

2) 1 v FO2 FO2 2 4 em jem
£7r7r,wk = _ZF/U/FM + I<UMUN> + Z<X+> +e FOZ<QL QR >
+ Z (017", + ey Ay — me)l + Tgi* (1 — v5)Ove] . (3.43)
¢

For the fourth order Lagrangian with LECs z; is given by (Knecht et al., 2000)

Logsc = € D2 {F [l (1 =) (w'{QR, OF')
¢

+ @209, (1 = y5)ve(u [ QR Q1Y)

+ z3mel(1 — v5)ve(Qr Q")

+izaly,(1 = 93)ve(QFFVH Q)

Fims Oy, (1 — 75 ) ( QFEV* Q™) + hic.

+ 26l (i7" 0, + ey A,)l

+a7mll} . (3.44)

In L, wk we consider only quadratic terms in the weak fields and linear

in Gp. The coupling constants xy,..., x5 are real in the limit of C'P invariance
and the reality of g and z7 is a consequence of the hermiticity of the associated

action.

One has used
] 1
Vot =5 (x- - plcd) + R zon, o) (3.49

which is the mesonic equation of motion for SU(2) symmetry and the following

relations
em ywk 2 wk wk ~em 1 wk wk
QoL = gQL ; Qr Q" = —gQL , (Q7F) =0, (3.46)

to get a minimal set of terms in Equation (3.44). This equation was applied

to perform a complete one-loop analysis of semileptonic pion and kaon decays
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including the electromagnetic contributions of O(e?p?). The theoretical results for

the decay rates of m — (v, and K — (vy were illustrated (Knecht et al., 2000).



CHAPTER IV
THE LEPTONIC LAGRANGIAN FOR

BARYONIC SECTOR

The inclusion of virtual photons and leptons has been worked out com-
pletely only for meson case by Knecht et al. (2000) which the details have been
shown in previous Chapter.

In this thesis we will extend the work of Knecht et al. to calculate the
electromagnetic corrections to the neutron beta decays which involve both the
weak leptonic and nucleonic currents. Thus we will have photons loops connecting
to both leptons and nucleons. Therefore, we have to include both virtual photons
and leptons in the effective Lagrangian as dynamical degrees of freedom as in the
meson case, but we also have nucleons which bring in the Dirac structure. Thus
this is much more complicated than it is in the purely mesonic sector thus we will
devote this chapter to the consideration of both virtual photons and leptons in

baryonic sector.

4.1 Weak current building block

In this section, we will be concerned with the construction of the effective
Lagrangian for baryon ChPT involving virtual photons and leptons. Since the
details of the construction with virtual photons involved has been demonstrated
in Section 3.1.3 and 3.1.4, we will concentrate on discussing the new aspects due

to the inclusion of the leptons.
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To introduce leptons in the effective pion-nucleon Lagrangian we have to

define the building block which represents weak current. This building block is

Wk which has been defined in Equation (3.40). In the real world there is only
left-handed weak current so the subscript L will be neglected.

We recall the definition and the transformation properties of the weak cur-

rent building block to make it easier to follow the argument. One defines the weak

current building block as

Q" = uf QY *ur (4.1)
where
0 V,
}/Vk = —2\/§GF ’ ’ (42)
0 0
and it transforms as
Q™ & h(g. ) Q" h M (g,0), Q™ L (—Qh)T (4.3)

under the chiral group and charge conjugation with parity invariance (CP), re-

spectively. And we define

A=Y (1 =), C=e,p (4.4)
l

where (1 — 75) reflects the parity violation.

4.2 The construction of leptonic lagrangian

In this section, we give a detailed exposition of how to get the effective chiral
leptonic lagrangian for baryon case. The way to form the invariant monomials is
to combine the building block which have been introduced formerly into invariant
terms in the form of Equation (2.50). For third order leptonic lagrangian we have

to consider terms of the form

i UQL QO (4.5)
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with the possibilities of ©* are v*, v#v5, D* and o*¥ D,.. The multiplication of ()4
and Q%X can be rewritten in terms of commutators, anticommutators, single and

multiple traces, which are

[Q+, @™, {Q+,Q™}, (Qu)Q™, QL(Q™), (QLQ™). (4.6)

From the definitions of Q_ and Q" in Equation (3.23) and Equation (4.1), they
give (Q_) = (Q"¥) = 0 and for the anticommutator terms we use Equation (2.120)

which leads

{Q1, 9™} = Qu(Q™) +(Q4)Q™ +(Q+ Q") — (Q4)(Q™)

= (Q+)Q"™ +(Q. Q™) (4.7)
{Q-, 9™} = Q_(Q") +(Q)Q™ +(Q-Q") — (Q_)(Q™)
= (Q_Q") (4.8)

All possible chiral invariant terms are
[Qi? QWk]
U (QL)Qvk p O"F +h. (4.9)
(Q+QY)
Next, we apply the CP transformation to these terms. The transformation prop-
erties of the Clifford algebra elements have been shown in Table 2.2 and under CP

transformation @5, Q"% and jffktransform as

Qe Qo). Q@ D (@uyT, ik CFy ] (4.10)
So that the CP invariant terms are

Wy Q, Q"W + hec, (4.11)

Wy Q- Q"W + h.c. (4.12)

WY (Q) QY + hc. (4.13)

ezafy“jl‘fk (Qy Q"™ + h.c. (4.14)
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U Q- Q™) + hec. (4.15)
e2$7“75j,‘fk[Q+, Q" ¥ + h.c. (4.16)
6257“75]'31‘[@_, Q" U + h.c. (4.17)
62@7“75jxk<Q+>QWk\I/ + h.c. (4.18)
626’)/”’)/5jyk<Q+ Q"MW + h.c. (4.19)
62§7u75jxk<62_ Q"M 4 h.c. (4.20)
W Q4, QDM + h.c. (4.21)
Q- QK] DMY + h.c. (4.22)
W (Q4) QD" + h.c. (4.23)
W (Q+ Q) D" + h.c. (4.24)
W (Q-Q" ) D" + h.c. (4.25)
o i Q4, Q"|D, ¥ + h.c. (4.26)
Wot W Q-, QY|D, ¥ + h.c. (4.27)
W i (Q4) Q™ D,V + hec. (4.28)
W i (Q4 Q) D,V + h.c. (4.29)
*Wo i (Q-Q¥)D, U + h.c. (4.30)

We can use the total derivative argument on Equations (4.21) - (4.25) to
put D* on Q4 or Q" these equations become higher order. In Equations (4.26)

- (4.30), we use the Dirac matrices relation,

i
o =" (4.31)

For example, let us consider Equation (4.26)

Wot W [Q4, QYD ¥ + h.c.

= 2mN62@ij’y“ [Q., Q¥ ]¥ + higher order, (4.32)
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Table 4.1 The monomials Oi,wk(e2p) of third order for the leptonic Lagrangian.

1 O (ep)

1 9"9MQ. Q") + he.

2 R QQL) + hec

3 Qs Q" + he.

4 AHEHQ_Q™) + he.

5 M@, Q" + hee.

6 M5iM(Q. Q") + hc.
T s QYN(Q4) + hc.
8 5@y, Q] + hic.
9 AP H(QQF) + hec.

10 525 Q-, @] + h.c.

which yields Equations (4.26) - (4.30) are not independent terms. To make our
result consistent with the previous Lagrangian, we switch )+ to the traceless

version ()4 where

Qr = Qs — %<Qi>, (4.33)

4.3 The leptonic lagrangian in baryon case

For the third order, the leptonic Lagrangian is written shortly as
10 ,
L = R0, (4.34)

i

where O, wx denotes the minimal chiral CP invariance terms which are shown in
Table 4.1.
For fourth order leptonic Lagrangian we construct only for the specific case

which has no pion i.e. no u,. The leptonic Lagrangian can be written in the same
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Table 4.2 The monomials Oi7wk(€2p2) of fourth order for the leptonic Lagrangian.

i Ou(e®p?) i Ow(e?p?)

Li(Ve) Q4 Q™) + hue 1L 0m75(V, i )(Q4 Q%) + huc.

2 i(VAR)(Q) Q™ + he 12 0" 95(V,ii) Q) Q™ + b,

3V [Qn 0% the 13 0map(Wq) [@n, @Y + e

LATG QY fhe 1L oRns(T,(@ Q") + b

5 i(Vr) _@_,ka: +he 15 0ag(V, ) Q ka ¥ he.

6 o (V.57 )( Q9" ) + h.c. 16 ZW5(V‘“]M )( Q. Q") + h.c.

T oV Q)0 + he. 1T iys(VA9)(Q4) Q" + hic.

8 (V00 [0, @] 4 hes 18 ins(THY) [@+,ka} + e,

9 o"(V, k)(Q Qvk) + h.c. 19 diys(VHgY k)(Q oQvk) + h.c.

10 o(V,5% )[Q Qwﬂ Fhe 20 (W )[Q ka} + hee.
way a8 .

L= PFs ¥ oy, (4.35)

with the monomials O; i (e?*p?) are shown in Table 4.2.



CHAPTER V

RENORMALIZATION

From the exploring work of Weinberg (1979), effective field theory has been
developed to one of the most important tools for investigating strong interaction
processes in the low-energy regime. It is based on a completely general lagrangian
requires an infinite number of counterterms and is not renormalizable, infinities
encountered in the calculation of loop diagrams need to be removed by a renor-
malization of the infinite number of free parameters of the lagrangian.

If the lagrangian is actually the most general one possible, up to a given
order, then a renormalization can be set up for that order, and relations between
all physical observables will be finite. Infinities arising in the calculation are all
absorbed into the definitions of the free parameters of the contact terms in the
lagrangian.

In this work, we do not do a full renormalization which gives lots of loop
diagrams for the beta decay process and would be better after renormalization.
The calculations in this chapter relate to the contributions of the electromagnetic
LECs to the weak current. We will discuss the wavefunction renormalizations of
all particles involved in the beta decay. Since these renormalizations appear in
the calculations of the observables for beta decay and thus will contribute to the
contributions of the electromagnetic LECs to the observables.

To determine the pion and nucleon wave function renormalizations Z, and
Zn, we have to calculate the pion self energy and nucleon self energy. The calcu-

lation of self energy for pion and nucleon will be shown in later sections.
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Figure 5.1 Tree-level diagrams contributing to the pion self-energy.

5.1 Pion self energy

According to Weinberg’s power counting scheme, we have to include a tree-
level contribution from £$% and a tree-level contribution from £'%. The pion self

energy Y. can therefore be written as
Y, =% 4 W (5.1)

where the superscript refer to the contributions from the Lagrangian L2 and £8.
The tree-level diagrams contributing to the pion self-energy are shown in Figure

5.1, the results for the tree-level diagrams read

| ,
S = iL?) = % <p2 - mw> 2, (5.2)
02 02 o2
Sy =L = z”;_,; [l4(p2 ) — zgm,r] 2, (5.3)
0

—i¥y =LY, =i’ F3Z (7 2)* — 7], (5.4)
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—iY = iLW

) 10 N
= e {gpQ(k’l + ko + ks + k:6)7T2 +p2(—2k3 + ky)(T - 2)2
102
—§m7r(10k:7 + 46ks + 10kg + 46k1o + 36k;1 )7
02
+4mﬂ.(k8 -+ ]ﬁo —+ kn)(ﬁ . 2)2

, 5 b} S
+Z€4FO2 |:—§(2k15 -+ k16)7'('2 + §<2/{315 + k16)<7T : 2)2 . (55)

5.2 Pion wave function renormalization constant

From H. Fearing et al. (Fearing et al., 1997), they defined ', (¢?) as the
Green function which is the sum of iL,, for tree-level and one-loop calculations.

The Green Function is related to the pion self energy ¥, (¢?) via
0?2
iLen () =i (p* =1, = S07)) (5.6)

2
o] . . . . . .
where m_ is the square of pion mass in chiral limit.

1 i
iLrr(p?) 02 ’

= . (5.7

P2 — e — B(m2) — (p? — m2)S (m2) — S(p?)

The last equation is obtained from expanding the self energy about the point

The pion mass is obtained from the condition that the propagator has a

pole at the physical mass which means

iLrr(m2) =m2 —m_— %(m2) =0, (5.8)

T

which gives
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So the full propagator can be written as

iLen(P?)  (p? = m2) = (p? —m2)T(m2) — B(p?)’
(p? —m2)[1 = X/ (m2)] - £(p?)’

g

1 iZy
One defines —7—7m = s g Then

_ 1 _ [ip® —m2)
I = Sy [ Lo () }m (5-11)

In our case, we consider only tree-level calculations.

02
) 02 o2
iLan(?) = 50— m)r? +imE PPl — (s + )| o+ it FRZ|(7 - 2)2 = )
0

10
+i€2 [§p2(k1 + kQ + k?5 + ]{?6)71'2 +p2(—2k3 + k?4)(7? : 2)2
02

—%(10167 + 46](38 -+ 10]{79 + 46]{710 + 36]{?11)71'2

o2
—+ 4mﬂ(k:8 —+ klO —+ ]CH)(?? . 2)2i|

+?;€4FO2 |ig(2k15 + le)((ﬁ . 2)2 — 7T2):| . (512)

Then calculate the propagator for pion that correspond to the annihilation

of T4 to create m4(7? = 7% 4 27t ),

o2
o2 m o2
T (p®) = i(p*—m,)+ i [2p214 —om._(ls + 14)] — 2ie?F2Z
0
20ie?
+ v p2(k:1 + ko + /{?5 + kﬁ)
2i62 0?2
—me(lokﬁ + 46k'8 + 10]{79 + 46]{310 + 36k11)
10ie* F2

9 (2]{215 + /{316). (513)
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Then the pion self energy can be obtained as

Ow|>q§?o

—E(p2) = [ p 4 — 2m l3 + l4)] — 262F022
0,
{5 (a + oo+ s +k6)}

|: 1O/€7 + 46ks + 10kg + 46k19 + 36/611)
—e* 9 (Qk‘ls + k1g).

(5.14)

To get the pion wavefunction renormalization constant we calculate the
derivative of the pion self energy as

d¥(p?) 2m? 20¢?
— = —Lly+ — (ki + ko + ks + k¢). 5.15
a0 |, F2 it (k1 + ko + ks + k) (5.15)
From the relation that
1
Ty = ——es
1—%'(m3)
we get
1
Zn = 20e2
(k1 + ko + ks + ko)
2m 20¢e?
~ 1- F2 g+ —— 5 —— (k1 + ko + ks + k) (5.16)

which is the charged pion wave function renormalization constant

5.3 Nucleon self energy

A one-particle state in the spectrum of a Hamiltonian has the physical

2
N-

mass my if P? = m% for this state. The corresponding full propagator I'(P) has
a simple pole at P2 = m3,. The full propagator can be written in terms of free
nucleon propagator as

(5.17)
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62 62 62
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NN,em NN,em NN,em
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Figure 5.2 Tree-level diagrams contributing to the nucleon self-energy.

where myy is the bare nucleon mass and —1%(P) represents the summation of one
particle irreducible diagrams. The physical mass of the nucleon is given by the
pole in the full propagator. The mass of the nucleon is given by /A = my where
Py satisfies

Po—my —S(Py) = 0. (5.18)

When the nucleon momentum is close to the pole, the nucleon propagator is of

the form
iZ(P + my)
I'(P) = 5.19
(P) P2 —mi +i0t’ ( )
where the renormalization constant is
_ 0%(Fy)
Zl=1-2"2"2 5.20

The external nucleon fields must also be renormalized, which results in a factor of
V/Z in the amplitude for each external fields.
The tree-level diagrams contributing to the nucleon self-energy from contact

interaction are shown in Figure 5.2 and can be evaluated as
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—i% = i(if —my), (5.21)
o2
=X = dicymg, (5.22)
—ie) = 0, (5.23)
. . o4 o4 o4
—i¥g = i(16m ez + 2m ens + 2m eiie), (5.24)
. e2F? Lo
—i% = i (h T2k f), (5.25)
—iXp = 0, (5.26)

etFy
—iYy = i 40(h1+h2+h3+?-2h4+?-2h5)

02
+2i62F()2m7r(h32 + h33 + 7 - ?:’h34). (527)

Next, we will consider the loop diagrams which are shown in Figure 5.3.
Only one-loop diagrams are calculated in this work. The detail of loop calculation
is in Appendix B. The diagram 5.3(h) is the third order contribution to 3(P), the

vertices are given by the first order term

@g—Av“%u“\P = @_QAW“%(?#W”T“\I/, (5.28)
2 2

where a is the pion isospin index. The contribution to the matrix element from

each pion-nucleon vertex is %‘(‘)755%“7“. The total matrix element is

ddf . g . .
—iYn = pt? / ( \If< ZgAv“%@ﬂ“T") ‘1“1/( ZgAv”%@ﬂrbTb) v,

27T)d 2FQ 2F0
_ T4 e / d T [ (C+ R) Iy s [+ R)' (5.20)
AR (2m) (L+¥+p) —my +i0"

We will always redefine the integration variable ¢ so to make the first pion

momentum k = 0,

194 / AU T T (L + ) + x5 T

4F5 (2m)* (€4 D)2 — g + 0+

ig% 4a / AU fysl(L+p) + ] frsis®Tort
(

a2 5 2 52
4y 20810+ p)2 — g + i04][2 — 1, + 0]

X =

. (5.30)
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Figure 5.3 loop diagrams contributing to the nucleon self-energy.

The isospin indices are summed over including the neutral and charged
pion loops, and the sum contributes a factor of 3 to the matrix element. The loop
integral can be written as a sum of the integral in Appendix. Then the contribution

to X(p) from diagram (h) is

. 3292 o
—1X(p) = TF(?GN[P, Lys(L+§+m) fys). (5.31)

The contribution from the remaining diagrams in Figure 5.3 are

o2 ]
Z - o2 o2 )
Fg (2m)d [(0+p)2 —my +i0T]2[(2 —m_ + i07]
o2
—31c Tnﬂg2 3 ]
= %IWNNUMU, Lysif+ p+myl[f+ p+mn] L), (5.32)
0

e = O (5.33)

The contribution from diagram (k) and (1) are given by the three terms in the



Lagrangian which contain 2 pion fields.

die 1
- 4—d
i /
)12 _ 52 i

2

—6icym

syl _ ™
lz(k) - Fo2

)

—ig = o2

Then,

For diagram (1),

a1
zZm = 5

iy = —'[,r 1

Leayy 1 1],
. —if?,(f2

—2263) = T[,r[l].

So the final result for diagram (1) is

—ie?

—1X() = 5f1 4 3foT - 2+ f3] I[1].

The results of the rest diagrams in Figure 5.3 are

—iSm = 0,

—i%m = 0,

—i% = 0,

—iXg = 0,

%) = AL s AL+ 9 ) A

%y = Mlmv[qm, Vs AL+ P+mn)rs L.

8
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(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
(5.40)
(5.41)
(5.42)
(5.43)

(5.44)
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5.4 Nucleon renormalization constant
The wave function renormalization constant for nucleon, defined by
Zyt=1- g—?ﬂ: - (5.45)

is used to renormalize the nucleon propagator and the external nucleon fields.
In our case, we consider only tree-level diagrams. Therefore, the nucleon wave

function renormalization constant is

Ty~ 1. (5.46)



CHAPTER VI

CALCULATION OF THE FORM FACTORS

We will apply our method to the neutron beta decay process, since this
decay is a low energy process. In this work we will calculate the contributions of
the LECs to the radiative corrections, but loop calculation will not be considered
because they would be too complicated. Thus, our result will miss out on finite
contributions from loops. In this chapter, we calculate unrenormalized LECs, but
we know that they can be renormalized and that the expressions for the contri-
butions from the LECs will look the same only with unrenormalized quantities

replaced by renormalized ones.

6.1 Weak form factor of the nucleon current

We consider the neutron beta decay process,

n(pi) = p(py) + e (pe) + Ve(py), (6.1)

where p;, py, pe and p, denote the four-momentum of the neutron, proton, electron
and anti-neutrino, respectively. The S-matrix amplitude is indicated in a common

(V-A) form (Bjorken and Drell, 1964) and given by

1Gp Vg _ - . .
M= - 55 Lai(pe) a1 — 75)u(p,)a(ps) T [V — Au(p;), (6.2)
with
a 2\ ZGM(QQ) af G5<q2) o

Ve = Gvlan"+ = = 0+ = (6.3)

Gp(q° iGr(q?
A% = Galg)ys+ D o 2T<q>0“5qm5, (6.4)

B my
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(e

where ¢* = p§ — p;'. Here G is the Fermi constant, V,,q4 is an element of the CKM
matrix, m, is the physical muon mass, my is the average of the physical neutron
and proton masses, my = %(mn + m,), and 74 is the isospin raising operator,
(p|74|n) = 1. Here we also consider second class currents.

The fact that the nucleon has a complicated internal structure means a
deviation from the V-A structure, i.e. Gy /G4 # 1 and induces non-zero scalar
Gs, pseudo-scalar Gp, weak-magnetic GG);, and axial-tensor G, form factors.
G A(0) is most exactly determined from neutron beta decay rate.

The contributions to the weak-nucleon-nucleon vertex involve coupling of
the nucleons to an external vector field and to an external axial field for strong,
em and weak interactions. The diagrams which contribute to these contributions
are given in Figure 6.1.

The tree level contributions to the amplitude for strong terms correspond

to diagram (a) — (d) in Figure 6.1 and are given by (Ando and Fearing, 2007)

M@y = iV ZnU0) + 7 5,)7" Ui/ 2y,

= i INU(0) + 70 + 70, )V 2, (6.5)
M@a = igaV/ ZnY T - a5V Zy,
= igaV/ ZnVy(rea) + 7, )V s Vi Zn, (6.6)
1w0"’q,

[(06 —+ 207)’0&8) + 067_" . 17“]\111‘\/ ZN,

M(b)v - Z.\/ZNWJC om
N

o™, . ) a
= /ZnT, 9 ((cs+ 200008 + colry 5} + 75, Wi/ Zy, (6.7)

my

Mupa = 0, (6.8)

T v v 2d7 s d o~
My = iUpg"q" — 9" (pi + ps) (v + ——7 - 5,)T;, (6.9)
my my

by using the Gordon decomposition

AL Gl (. m.
o i U e 1 (6.10)
2mN 2mN
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1 2 3 4
EngVV,NNA ‘CSV>NV,NNA ‘C’EVBVV,NNA ‘CSVR’V,NNA

(2 (3) (4)
[’NNV,NNAA,em ‘CNNV,NNA,em ENNV,NNA,em

(¢) (f) (9)

: (4)
‘C'NNV,NNA,wk ‘CNNV,NNA,WI:

(h) (7)

Figure 6.1 Diagrams which contribute to the coupling of nucleon to the exter-

3 (17 7 3 :
nal vector and axial vector currents. Ly, NN 4 is the pion-nucleon Lagrangian

from the strong part, LNNV NNAem 18 the Lagrangian from the EM part and

Cg\? ]il,)v NNAwk IS the Lagrangian from the weak part up to fourth order.
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we can replace,

(ps + pi)v = 2mNYy + 100Dy — Pi)°. (6.11)
So we get
= , y _ wl2dy o ds . .
My =iV (¢"q" — g™ ) 2mny + ioau(ps — pi)*) [—U,S) =7 vu] v,
my my
(6.12)

since the momentum transfer ¢* = p} — pi* therefore,

T v v ; «a 2d s d =g
= U< [-2mat g +io™ ] x 2—(177)(5) + ﬁ(njfr +7-0,)| ¢ U;
my H my H © ’

(6.13)
_ 02 L
M(C)A = Z\Ilff}/#f}% [4m7rd167- : a,u + d22(q2g,u,1/ - ququ)'r - a ]\I/“
_ o2 -
= iy [‘W“’Ysmﬂdw + Y5 daag” — 2mN’quud22} T a,V,

_ o2 ~ ~—

o2 o2

M(d)V = iﬁfia“”ql,[4(q2654 — 4m7r6105)1}£8) —+ 2((]2674 — 4mﬂ_6106)7? . QN)M]\I/Z‘,
ST 2 02 (s)
= iWyio"q,[4(q"ess — 4m e105)v,,
o2
+2<q2€74 — 4mﬂ.6106)<7'+’l7: + T,@;)]\I’Z’, (615)
M@apa = 0. (6.16)

The subscript V or A refers to coupling to vector and axial current respec-
tively and the number refers to the diagram number in Figure 6.1. The contribu-
tions from electromagnetic terms originating from the Lagrangian constructed in

Ref. (Miiller and Meifiner, 1999) in diagram (e)-(g) are given by

M(e)V = 0, (6].7)

M(e)A = 0, (6.18)
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Mipv = Z€2F2\ij’)/ Go(—=T -0y +T- 20, 2)V,,
= ie®F Wy ge(— 7'+v+ — 70, + 130;)¥,, (6.19)
Mipa = i€’ FVpytys[gn 7 - 242930, - 2+ (s + g5)(T - )]s,
= i€’ FU iy ys[gumsay, + 2gsan, + (ga + g5)(T4a) +7_a,, )]s,
= i FyV iy ys[(ga + g5) (Tyay +7oa))] Y (6.20)
My = —ie?FU {2(hss + hso)io™ q,7 - 0, + 4hagic" D, - 2
+4(hay + haz)ic" q,v,, () 4 Ahyqiot q, 7 - zv( 5)
—heriq,T - 0" X Z — 2hesiq, (pi'p + p‘;pl})f'- v, X 3
+hrsio! g, (=T -0, +T- 20, - 2)} U,
= i€’ F Uy {2(has + hso)io" q, (140, + 7_0, ) + 4haoic" q,0,,
+4(hay + h42)i0“”qu,(f) + 4h43iUWQV73"Uff)
—heriquivV2(T B — 7)) + hesiqug’[iV2(r O — )]
+hagio™ q, (=70} — 7_0, + 730,) } U, (6.21)
Mgpa = > W t4hsoo™ vs5q, 7 - G, X 29,

= ie®FyUio" ysq,4hsoV2(mia) — T_a, ). (6.22)

The tree level contributions to the amplitude from our new terms corre-

spond to diagram (h)-(i) in Figure 6.1 are

. ~(3
Mpy = LGN
— V2GRV FET { ~(nan® 4+ npy9s) 7 - (0 + i) + 537 (2 — i)
—(ny" + sy ) T - (0 + 1) + 5 7 (2 - ig)] | s,

(6.23)
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Ma = wg@\m,wka

= _Z'\/ﬁGFVud(EQFOQEf

{[(52 + 83)¢" — (812 + $13)i0" 750 ] [J';Vk;' (@ +19) — j,vfkTF' (- ZQ)]

— (57 + 58)i0™ g + (517 + s15)350"] |07 - (& + i) + 3 7+ (2 — ig) | } Wi

(6.24)

In the weak case, we have to rewrite jl‘fkf'- (Z +y) in terms of a, and v,
which is
—V2GpVyq [5357 - (2 +14)) +he] — 270, or — 27 ay, (6.25)
—V2GpVoa [j37 - (& +1i9) —hc.] — —V2i7- 0, x 2 or V2iF-a, x 2

(6.26)

This holds only for the v, and v_ components. By picking up either v, or a,

appropriately. Then M ;) and M;) are

Mampy = 12 FgW s {2(ng + n3) "7 - 0, — 2(ng + ng)y"vs7 - au} Vi,
= e’ FyU s {2(ng + ng)y (140} +7_0,,)
—2(n7 + ng)y'ys (40 +7-a, ) } U, (6.27)
My = il Ry { [—\/5(82 + 83)¢"T - 0, X £ — \/5(512 + $13)i0" Y5, T - Ay, X z]
+ [=2s7 + 88)i0™ g, 7 - B — 2(s17 + 518)75¢"F - ) } v,
T { [—\/5(52 + 53)q" (140 — T_0;,)
—2(s7 + 38)z'o’“’q,,(%r'z?;r +7.0,)

—V/2(s15 + s13)i0" 5, (T4 — T_0,)

—2(s17 + 518)75q" (T1;; + T_EL;)] } ;. (6.28)

Another contribution which we have to calculate comes from the NN«

vertex and will contribute to the axial current. The diagrams are shown in Figure
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Figure 6.2 Tree level diagrams which contribute to the N N7 vertex.

6.2.

M@gr = —

—j—;iO\/ZN@ﬁ- #7950 ViN/ Zx N 7,

0,

o2
Mx

Fo
0.

€2F0—

2

Uy y5q, {1 (g1 + 911)7

(dig — 2d16) W py, 757 - Tq" Vs,

~

+(gs+ g5 — g11)7 - T},

M(h)w = 0.

ToE4 g4
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(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

To get the contribution to the weak nucleon-nucleon current form 7#/NN

amplitude we combine the 7NN amplitudes with the 7A amplitudes to get the
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pion pole diagram. The amplitudes for 7 A vertex are

M) = 2Ry R - i\ Zs (6.36)
4

MY = iR a (6.37)
Fo

for the second and fourth order respectively. The contraction between M q), with

M ff)‘ gives

ME\BVA = QFOV \I’fT 7Y Y540 (2F0q,)T - A/ Z: ¥,

75q,ﬂ at

== —2ngmNZNZ \Ilf D) \I/z
q —mx

g B 7 )
q2 m2

= —2igamNINZx v; (6.38)

Contracting M), and /\/lfi)l, we get

2
ma
M%\,A = (d18—2d16)\11f7' T Y500 (2Foqmu) T - a/ Z, ¥,

Fy
— 4im2m \If 75q“<d18_2d16>7- &#\IJZ
™ q2 m2
dis — 2d o »
gm0 T 2 (MGG g
q —mz

The contraction between the EM correction of N N7 amplitude and the second

order mA amplitude is calculated as

~

MNNA em = —?FV {7 50 [(g1 + gu1)T - 27 2 + 2937 - 2

+ (g4 + 95 — g11)T - T qu7 - A},

2ie?F2m
N q? mZN\IJf {59, (g1 + grr)a" - 27 - 2 + gsat - 2
+(g4 + g5 — gu)7 - @]} U,
2ie F2mN_
2 —m2 f{%qu [ 94+95—911)(T+a H 4 r_at ]}\If

(6.40)

Another third order NN A amplitude is from the contraction between the

lowest order N N7 vertex and the fourth order mA vertex for strong, EM and weak
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parts. Firstly, we contract N N7 vertex with the fourth order strong wA vertex,

M(3) _ _4igAm72rmN— V5quT - yula v,
N N A,strong F02 q2 2
4. 2 — e ~+,,LL _Nfz,u‘
_ ngm;mN‘I}f%qu 4(7'+2a —|2—7' a )\I/Z (6.41)
Fs q= —mz

For the contraction between the N N7 vertex and the fourth order EM 7 A vertex,

it yields the EM NN A amplitude as

. = 40 oo
M\ sem = —igamne’V f’)’squ{ {g(kl I 41@} 7
FA(ky — 2ks — ko) - B0 - z}\IJ
. - 1 40
= —1gampye \I/f’yg,q“ (]2——77’L2 §<k1 + k‘z + k5 + kﬁ) + 4]{312

T

X(reatt +_a*) }\I/z (6.42)

The third order weak NN A amplitude is

[—221 — 2@y + 2a5)(Tya™ — T_a ) }\Il

3 . =
MEV%VA,Wk = —QZQAmNGQ‘I’f{%qu Z—m?

(6.43)

6.2 The calculations

The most general form for the vector and axial-vector currents evaluated

for neutron beta decay are given by

_ iGy ., Gg
(p(pp) |V, In(ps)) = alpy) {va“ oW m—uq“} roulp),  (6.44)

1Gr
2mN

G
(p(pp)|AfIn(ps)) = ul(py) [GM“% + m—Pq"% + " g5 } Tu(p;).

I

(6.45)
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By adding up the vector contributions of Equations (6.5), (6.7), (6.13),

(6.15), (6.17), (6.19) and (6.21), the vector current operator can be calculated as

VI = A1+ ¢*(—2ds) + €2 F [~ go + 2(ns + 13)]

w0t q, 0?2
+ 9 |:C6 — 166106mNm7r

my

—|—262F02(2h38 + 2h3g — h7g — 2(87 + Sg))TfLN
+q2(2d6 + 4674771]\[)}

_|_£ [€2F02mu (—\/5(32 + s3) + \/§h67>] . (6.46)

My,
The axial vector current can be received from Equations (6.6), (6.8), (6.14), (6.16),
(6.18), (6.20), (6.22), (6.27), (6.28), (6.38), (6.39), (6.40), (6.41), (6.42) and (6.43)

and written as

o2
At = Aty [QA + 4mdig + ¢ das + € F (91 + g5 — 2(n7 + ns))}

+

¢"vs [ —2mymy
m

{ngA —m2(2dis — 4dig) — €*F (g1 + g5 — g11)
m

20 2
+e2gA[§(k1 + k’z + ]f5 —+ k@) -+ 2k12] — €2gA(§l‘1 + Lo — $3):|
—2mnmy,days — 2€2F02mﬂ(817 + 518)}

v
+w27nﬂ62F02 2mN(—4\/§h50 — \/5(812 + 813))] . (647)
N

From above equations we get

Gv(q®) = 1+ ¢*(=2dg) + €*Fy [—go + 2(ny + n3)], (6.48)

Guld®) = c6— 166106mN7%72T + 26?2 (2hsg + 2hsg — hag — 2(s7 + s5)) my
+¢*(2ds + deqymy), (6.49)

Gs(q®) = e Fym, <2(52 + 83) — \/§h67) ) (6.50)

02
GA(Q2) = ga+4m_dig+ ¢*day + 62F02 (94 + g5 — 2(n7 +ng)), (6.51)
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2mym
GP<Q2) = _q2 ivm‘; {ngA - mfr(2d18 — 4dyg) — €2F02(94 + g5 — g11)
9 20 2
+e ga |:§(]{71 + kg + k?5 + kG) + 2]{712 — 51‘1 — X9 + (L’gi|
—QmNm#dgg - 2€2F02mu(517 + 818), (652)
Gr(?) = 2myeE? [4\/§h50 — 2s1a + 513)] - (6.53)

The pion-nucleon-nucleon coupling Gyn(q¢?) is defined by the TN N am-
plitudes by

MWNN(qZ) = _G’II'NN(QQ)EJCF' 7?’75‘111‘- (6-54)

The 7NN amplitudes have been calculated in Ref. (Ando and Fearing, 2007).

o2
— m._

Many = =V ,T - Ty,75¢" 2%0 - FO(dIS — 2dy6) | ;. (6.55)

Substituting v,¢" = 2my. Then,

m 02
Gann(g?) = ?N [QA —m,(2dis — 4d16)} : (6.56)
0
Therefore,
o2 G IEF,
ga — mﬂ(leg — 4d16) = M, (657)
my

and Gp(g*) can be rewritten as

Gp(®) =

_ 2mymy, { Gann(¢*) Fy

¢ — m2 MmN — &2 F§ (g4 + g5 — g11)

9
—2mNmud22 — 262F02mu(817 + 818), (658)

20 2
+€29A |:—(k‘1 + kQ -+ k5 -+ k’6) + Qk‘lg — gl’l — X2 + 373:| }

6.3 Dimensional analysis of the LECs

Since there is a lack of experimental information for the electromagnetic
and weak low-energy constants (LECs) fi, g;, hi, n; and s;, we have to look for

some method estimating them. One possibility is dimensional analysis (Miiller



75

and Meifiner, 1999). It is a tool for estimating the dimensionless parameters
appearing in a low energy effective theory. The application of dimension analysis
is an estimation of the size of the LECs. The accepted estimation is o = 4.
From the effective Lagrangian, we can notice that each power whether of
electromagnetic or weak charge matrices appearing in any monomial is accom-
panied by a factor of Fj so that the corresponding LECs have the same mass
dimension as their strong counterparts. Therefore, the f;,g; and h;_ 5 scale as
|3

[mass] ™!, [mass]™2 and [mass| ™3, respectively. Most of hg_go have dimensional-

3 except for the terms which have single and double of the covariant

ity [mass]”
derivative acting on wavefunction have [mass]™ and [mass|™® respectively. Fur-
thermore, the factors of Iy are proportional to the natural low energy scale and
defined through (0[A%(0)|7*(z)) = €?*p,d* Fy where |7%(p)) is the exact one-pion
eigenstate and |0) is the corresponding vacuum. The appearing of the pion decay
constant in the chiral limit is necessary and sufficient conditio for spontaneous
chiral symmetry breaking. The origin of electromagnetic and weak LECs is the
integration of hard photon loops. Therefore, each power in e? is a power in the fine
structure constant o = €2/4x. Thus the natural scale of chiral symmetry breaking

is A ~ my ~ 1GeV, one can deduce the following estimates on the renormalized

electromagnetic and weak LECs at the typical hadronic scale:

_ iNz v i ill...5 iLG...9O

i ) T ’ R} = s hy = — 6.59

f i 9T 4 L5 = (4r)2 6...90 ppe ( )
L r_ Si

= Si = (6.60)

with the fi, Ji, Bi, n; and §; are number of order one,

fi ™ G~ hi oy~ 8 = O(1). (6.61)

Because our formulas also contain ¢;, d; and e; which are the strong LECs

for the second, third and fourth order of the pion-nucleon Lagrangian. We will
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apply the dimensional analysis to get their dimensionality. The dimension of the
strong LECs for second order is considered as [mass| ™!, for the third order scale
as [mass|™? whereas the dimension for the LECs of the most terms in fourth
order is [mass]®>. By the same reason as the consideration of the dimension for
he_g0, the dimension of LECs of the terms which have single derivative acting on
wavefunction is [mass]™ and the dimensionality [mass]™® is for the LECs of the

terms which have double derivative acting on wavefunction.



CHAPTER VII

CONCLUSIONS

We have constructed the most general effective pion-nucleon Lagrangian
for the relativistic baryon chiral perturbation theory with the consideration of
the electromagnetic corrections in weak processes. The electromagnetic reactions
requires the inclusion of the virtual photons and the light leptons fields as explicitly
dynamical degrees of freedom in the chiral Lagrangian. We applied our new terms
of the pion-nucleon Lagrangian to the neutron beta decay and evaluate their weak
form factors.

In order to obtain and simplify the radiative corrections to the weak form

factors we define

G=G[1+ %(ev —e4)] (7.1)

where ey and ey are the a-order corrections. The values of G’s correspond to the
physical value with short-range radiative corrections have been removed. From
Equation (6.48) to Equation (6.53), we get the radiative corrections for all weak

form factor as following:

Gy, = %éﬂ? [— g0 + 2(na + n3)| (7.2)
Gh, = %2621?3 [2h3s + 2hsg — hzs — 2(s7 + s3)] (7.3)
Gy = %mHeZFOQ [—\/5]167 + 2(s9 + s3)] (7.4)
G, = Z%621702 [94 + g5 — 2(n7 + ng)] (7.5)
Gp = %62(%){ [F()Q(gzx + 95— gu11) — QA(?(kl + ko + ks + k)

2 47
+2k19 — 5351 — T+ 953)} }_327”#621?02(517 + s18) (7.6)
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4
G, = §2mN62F02 [4\/§h50 —2(s12 + 813)] (7.7)

From the result of weak form factors the interesting things happened when
we get non-zero Gg and G, which are corresponded to the second-class currents
and do not figure in the standard model.

From Equation (6.50) and Equation (6.53) we may conclude that the in-
duced scalar and induced tensor form factors come from the radiative corrections.
To date, there is no unambiguous evidence for the presence of second class currents
in nuclear beta decay, but it is nonetheless an interesting experimental challenge
to place limits on the possible presence of these second-class currents.

The induced scalar in the vector current is second class is zero by the
conserved vector current (CVC) hypothesis, we do not question that here. We
look for second-class effects by a finite value for the induced-tensor G in the axial
current. An early estimate based on the dynamics of relativistic current quarks

(Halprin et al., 1976) gave:
Gr ~ (mg —my)/2myw (7.8)

where w is a single-quark energy of about 400 MeV and my is the nucleon mass, so
that we might then expect Gy ~ 4 x 107% MeV 1. More reliable estimation of G
derived from the application of QCD sum rules to m,, and my symmetry-breaking
which yields (Shiomi, 1996) Gy = (1.0 +0.4) x 107° MeV .

If the LECs are in the natural order, the value of G is estimated to be of
the order 10~7. This leads to an estimation of G about 100 times smaller than

that of Ref. (Shiomi, 1996).
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APPENDICES



APPENDIX A

INFRARED REGULARIZATION OF BECHER

AND LEUTWYLER

The method of infrared regularization is based on dimensional regulariza-
tion and the analytic properties of loop integrals. It is applicable to one-loop

integral in the one-nucleon sector of ChPT. Consider the general integral

daP 1
QW)Dal---ambl---bl’

Heon.(qy--,p1,---) :l/( (A.1)

where a; = (k+¢;)? —mZ2 +i0" and b; = (k+ p;)* — m% + 0" represent pion and
nucleon propagators, respectively, D is the number of space-time dimensions and
the masses m, and my refer to the lowest-order pion mass and the nucleon mass

in the chiral limit. One combine the pion propagators by using

1 o \" Y ! X
ap--- Gy (8m3r) /0 dx1~--/0 dxm_lZ’ (A-2)

with the numerator given by

1 for m = 2,
X = (A.3)

To(x3)? - (X)) for m > 2,

and the recursion relation for the denominator

A = A,
A1 = ai
Appr = A+ (1 —ay)ap1 (p=1,...,m—1) (A.4)

The denominator A can be written as

A=(k+q)?—A+i0", (A.5)
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where 7 is a linear combination of the external momenta ¢; and A ia a constant.

We combine the nucleon propagators in the same way

1 o (-1) 1 1 Y

where the numerator reads

1 for | = 2,
Y = (A.7)

ya(ys)® - (g — )2 for 1 > 2,

and the recursion relation for the denominator B is given by

B = B
B, = b
Byiy1i = yBy+(1—y)bpr (p=1,...,01—1) (A.8)

The result for the denominator is
B = (k+p)>— B+i0*, (A.9)

where p is a linear combination of the external momenta p;. The two resulting

denominators can be combined by using the identity

1 ! dz
AB /0 [(1—2)A+ 2B’ (4.10)

giving

' P (m—1) o (I-1)
Hyon.(qu,...,p1,...) = (8m2> (am >
N

/ dz/ d“””l/ x| dD>k [<1—z>il+zB]

(A.11)

where

1 1 1 1 1 1
/ dr; = / dxy - / ATp,_1, / dy; = / dyy - - / dy;_1. (A.12)
0 0 0 0 0 0
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one obtains

-1 1-l—m D
Hﬂ...N.--<Q1, ey D1y ) = ((ZH)TWFU +m — E)
1 1 1
[aztra—art [ [ agxyipeen o,
0 0 0
(A.13)
with
f)=p" = (pP°—B)z+ Al —2)— (@ —2p-q) = —i0". (A.14)

The infrared regularization consists of the z integration as

1 o 0
/dz...:/ dz-~-—/ dz---. (A.15)
0 0 1

The first term on the right-handed of Equation. A.15 is called the infrared singular

part I, and the second term is called the infrared regular part R,
Hy n.=ILi.n.+Ri.n., (A.16)

it can be written shortly

H=I+R. (A.17)

The infrared singular I satisfies power counting, while R contains terms that vi-
olate the power counting. In contrast to the infrared singular part the regular
part allows for an expansion in a Taylor series in the external momenta and the
quark masses. Therefore using an appropriate renormalization procedure one can
compensate these terms in the redefinition of the coupling constants and fields of
the most general Lagrangian. So the Green functions obtained from a one-loop
diagram separated into an infrared singular and regular part separately satisfy the
Ward identities of the theory. This guarantees that regular part can be combined
in the coupling constants and fields of the most general Lagrangian. If one re-

moves the regular part of the integral Iy, the resulting expression satisfies power
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counting. Note that / and R contain additional divergences which are not shown

in I,y therefore, these divergences have to be taken away.



APPENDIX B

LOOP INTEGRALS

We will define the general loop integral in d dimensions containing ¢ pion
propagators and j nucleon propagators and corresponding to the momenta as in

Figure (B.1) as

Iﬂﬂ...WNN...N[k17 k27 ey khpl?p?? e 7pj7 A]

e [ A
= [ 2r) Dalhy) - Dale) Dno) Dy Y

Here p is a scale factor and A is the numerator function, which may contain
anything. D, (k) = ({ + k)? — T?Li +ie and Dy(p) = (¢ + p)* — m% + ie are the
pion and nucleon propagator denominators , respectively. ﬁ”bi and my are the
unrenormalized pion and nucleon masses appearing in the original Lagrangian.

The number of subscripts m and N correspond to the number of pion and nucleon

propagators, respectively.

i C+p1 L+po {+pj Py
> e ° > ° *—>
Otk b Ptk
o p
{+ ko ‘,.‘ ®

______ <

Figure B.1 The general loop integral.
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