
NUMERICAL COMPUTATION OF THE

FLOW AND HEAT TRANSFER OVER TWO

ROTATING CIRCULAR CYLINDERS

Jakgrit Sompong

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Applied Mathematics

Suranaree University of Technology

Academic Year 2008



การคํานวณเชิงตัวเลขของการไหลและการถายเทความรอน 
ผานทรงกระบอกกลมที่กําลังหมนุสองแทง 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

นายจักรกฤษณ สมพงษ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

วิทยานิพนธนีเ้ปนสวนหนึง่ของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบณัฑิต 
สาขาวิชาคณิตศาสตรประยุกต 
มหาวิทยาลัยเทคโนโลยีสุรนารี 

ปการศึกษา 2551 



NUMERICAL COMPUTATION OF THE FLOW AND

HEAT TRANSFER OVER TWO ROTATING

CIRCULAR CYLINDERS

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for a Doctoral Degree.

Thesis Examining Committee

(Assoc. Prof. Dr. Prapasri Asawakun)

Chairperson

(Assoc. Prof. Dr. Nikolay Moshkin)

Member (Thesis Advisor)

(Prof. Dr. Sergey Meleshko)

Member

(Asst. Prof. Dr. Eckart Schulz)

Member

(Assoc. Prof. Dr. Ekachai Juntasaro)

Member

(Prof. Dr. Pairote Sattayatham) (Assoc. Prof. Dr. Prapan Manyum)

Vice Rector for Academic Affairs Dean of Institute of Science



จักรกฤษณ  สมพงษ : การคํานวณเชิงตัวเลขของการไหลและการถายเทความรอนผาน
ทรงกระบอกกลมท่ีกําลังหมุนสองแทง (NUMERICAL COMPUTATION OF THE 
FLOW AND HEAT TRANSFER OVER TWO ROTATING CIRCULAR CYLINDERS)   
อาจารยท่ีปรึกษา :  รองศาสตราจารย ดร.นิโคไลน  มอสกิน, 99 หนา.   

 

          0งานวิจัยนี้ศึกษาการไหลของของไหลแบบสมํ่าเสมอท่ีมีความหนืดแบบไมยุบตัวและการ
ถายเทความรอนโดยการพาความรอนแบบบังคับผานทรงกระบอกกลมซ่ึงกําลังหมุนสองแทงดวย
การเรียงตัวแบบเคียงขางกัน คาคงท่ีของความเร็วเชิงมุมและอุณหภูมิภายในทรงกระบอกถูกนํามา
พิจารณา ผลเฉลยเชิงตัวเลขไดมาโดยพิกัดทรงกระบอกสองข้ัว วิธีผลตางอันตะถูกนํามาใชเพ่ือทํา
ใหสมการแบบจําลองเชิงคณิตศาสตรเปนวิยุตซ่ึงอยูในรูปของตัวแปรปฐมฐาน เราไดตรวจสอบ
ความถูกตองข้ันตอนวิธีเชิงตัวเลขโดยการเปรียบเทียบผลเฉลยเชิงตัวเลขของเรากับขอมูลจาก
หองปฏิบัติการจําลองทางฟสิกสและผลเฉลยเชิงตัวเลขอ่ืนๆ ที่หาได  และอิทธิพลของตัวแปรเสริม
ในแบบจําลองของการไหลและการถายเทความรอนไดแก เลขเรยโนลดส  เลขพรันดเทิล อัตราเร็ว
ของการหมุนทรงกระบอกและชองหางระหวางทรงกระบอกกลมไดถูกนําเสนอ  
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

สาขาวิชาคณิตศาสตร      ลายมือช่ือนกัศึกษา_______________________________ 

ปการศึกษา 2551                               ลายมือช่ืออาจารยท่ีปรึกษา________________________ 



JAKGRIT SOMPONG : NUMERICAL COMPUTATION OF THE

FLOW AND HEAT TRANSFER OVER TWO ROTATING CIRCULAR

CYLINDERS. THESIS ADVISOR : ASSOC. PROF. NIKOLAY

MOSHKIN, Ph.D. 99 PP.

VISCOUS INCOMPRESSIBLE FLUID/ HEAT TRANSFER/ BIPOLAR

CYLINDRICAL COORDINATES/ FINITE DIFFERENCE METHOD.

The present study numerically investigates the steady, viscous incompress-

ible fluid flow and force convection heat transfer over two rotating circular cylin-

ders in side-by-side arrangement. The constant angular velocity and the constant

temperature inside the cylinders are considered. Numerical solutions in bipolar

cylindrical coordinates are obtained. The finite difference method is used to dis-

cretize the equations of the mathematical model in terms of primitive variables.

The numerical algorithm has been verified by comparing our numerical results with

available data from laboratory physical modeling and other numerical results. The

influence of the model parameters such as Reynolds number (Re), Prandtl number

(Pr), rotational speed of cylinders and gap spacing between circular cylinders on

the flow and heat transfer are presented.

School of Mathematics Student’s Signature

Academic Year 2008 Advisor’s Signature



ACKNOWLEDGEMENTS

I am profoundly grateful to my thesis advisor Assoc. Prof. Dr. Nikolay

Moshkin for his support, patient help and offering many useful suggestions.

I would like to acknowledge all the lecturers who taught and helped me

during the course of studies at Suranaree University of Technology. They are

Assoc. Prof. Dr. Prapasri Asawakun, Prof. Dr. Sergey Meleshko and Asst.

Prof. Dr. Eckart Schulz.

I also would like to express my appreciation to Assoc. Prof. Dr. Ekachai

Juntasaro and Assoc. Prof. Dr. Varangrat Juntasaro for their valuable discussions

and comments.

I would like to express my appreciation to all who have helped me. These

include Asst. Prof. Dr. Jessada Tanthanuch and all of my friends at Suranaree

University of Technology.

I acknowledge the financial support of the Ministry of University Affairs

of Thailand (MUA). I am indebted to Department of Mathematics, Naresuan

University for grants to support my studies throughout.

Finally, I am deeply grateful to my parents and my brother for support,

understanding encouragement, and love.

Jakgrit Sompong



CONTENTS

Page

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . III

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II MATHEMATICAL FORMULATION OF PROBLEM . . . . 7

2.1 Physical assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Drag and lift coefficients . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Heat Transfer (Nusselt number) . . . . . . . . . . . . . . . . . . . . 14

III NUMERICAL METHODS . . . . . . . . . . . . . . . . . . . . . 18

3.1 Transformation of the governing equations . . . . . . . . . . . . . . 18

3.2 Discretization of the governing equations . . . . . . . . . . . . . . . 21

3.2.1 Description of grid . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Discretization of Navier-Stokes equations . . . . . . . . . . . 21

3.3 Discretization of the energy equation . . . . . . . . . . . . . . . . . 33



VI

CONTENTS (Continued)

Page

3.4 Computation of flow characteristics . . . . . . . . . . . . . . . . . . 38

3.4.1 Drag and lift coefficients . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Vorticity on the cylinder surfaces . . . . . . . . . . . . . . . 39

3.4.3 Nusselt number . . . . . . . . . . . . . . . . . . . . . . . . . 39

IV VALIDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Characteristics of flow and heat transfer over two circular cylinders

without rotation in large gap spacing . . . . . . . . . . . . . . . . 42

4.2 Characteristics of flow and heat transfer over two rotating circular

cylinders in large gap spacing . . . . . . . . . . . . . . . . . . . . . 54

V NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Effect of gap spacing (zero rotation) . . . . . . . . . . . . . . . . . 58

5.2 Large gap spacing (effect of rotation) . . . . . . . . . . . . . . . . . 60

5.3 Small gap spacing (g . 3) and non zero rate of rotation . . . . . . 65

VI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

APPENDICES

APPENDIX A THE ELIMINATION METHOD FOR THREE-

POINT EQUATIONS . . . . . . . . . . . . . . . . . . 92

APPENDIX B THE CYCLIC ELIMINATION METHOD . . . . . . . 96

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



LIST OF TABLES

Table Page

4.1 Validation of the numerical algorithm; comparison study for flow

over two side-by-side circular cylinders at g = 14 with flow over a

single cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Validations of the numerical algorithm; comparison study for flow

over two side-by-side circular cylinder at g = 14 with flow over a

single cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Effect of grid refinement upon CD, CDp , CDf
, and average Nusselt

number Nu for Re = 20 and g = 14. . . . . . . . . . . . . . . . . . 46

4.4 Comparison of the average Nusselt number at Pr = 0.7, g =

14, α = 0 for grid 21 × 21, 41 × 41, and 81 × 81 with the val-

ues found in the literature. . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Comparison of the average Nusselt numbers for cylinders with con-

stant temperature for g = 14. . . . . . . . . . . . . . . . . . . . . . 50

4.6 Hydrodynamic parameters of flow over a rotating circular cylinder

at Re = 20 with g = 14. . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Variation of the average Nusselt number at Re = 20 and α = 0. . . 61

5.2 Variation of average Nusselt number at g = 14. . . . . . . . . . . . 64

5.3 Variation of average Nusselt number at g = 2. . . . . . . . . . . . . 71

5.4 Variation of average Nusselt number at g = 1. . . . . . . . . . . . . 77



LIST OF FIGURES

Figure Page

2.1 Schematics of problem. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Convective heat transfer from a surface. . . . . . . . . . . . . . . . 15

3.1 Sketch of the meshes in physical and computational domain. . . . . 19

3.2 Staggered arrangement of v, u, p and T . . . . . . . . . . . . . . . . 22

3.3 The location of known velocity field at the infinity boundary. . . . 27

3.4 The flow chart of the numerical algorithm. . . . . . . . . . . . . . . 30

3.5 The structure of velocity in ξ-direction that used for compute
∂v

∂η

on the left and right boundary. . . . . . . . . . . . . . . . . . . . . 32

3.6 The cell at far boundary. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Location grid of temperature. . . . . . . . . . . . . . . . . . . . . . 36

3.8 Structure of grid: using compute force acting on cylinders surface. . 39

4.1 (a) Pressure coefficient over cylinder surface, (b) the vorticity

distribution over cylinder surface, for the left cylinder at Re =

20, 40, and g = 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 1st-column: Streamline patterns, 2nd-column: pressure fields of flow

over two circular cylinders for g = 14, α = 0 at 1st-row: Re = 20,

2nd-row: Re = 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The temperature contours for 1st-column: Re = 20 and 2nd-column:

Re = 40 of flow over two circular cylinders for g = 14, α = 0 at

1st-row: Pr = 1, 2nd-row: Pr = 10, and 3rd-row: Pr = 20. . . . . . 48



IX

LIST OF FIGURES (Continued)

Figure Page

4.4 Colburn j-factor as a function of the Reynolds number at different

Prandtl number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Colburn j-factor as a function of the Reynolds number at different

Prandtl number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Local Nusselt number variation on the surface of the circular cylin-

ders for α = 0, g = 14, and (a) Re = 10, (b) Re = 20, (c) Re = 40

at various Prandtl numbers. . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Local Nusselt number variation on the surface of the circular cylin-

ders at Pr = 1, g = 14 at various Reynolds numbers. . . . . . . . . 54

4.8 Local Nusselt number on the sequence of grids for Re = 20, g = 14,

and Pr = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 (a-b) Streamline patterns, (c-d) pressure fields and (e-f) tempera-

ture contours of flow over two circular cylinders at Re = 20, g = 14,

and Pr = 1.0, left column: α = 0.1, right column: α = 1.0. . . . . 56

5.1 Local Nusselt number for different gap spacing at Re = 20, α = 0,

and (a) Pr = 0.7, (b) Pr = 1, (c) Pr = 10, and (d) Pr = 20. . . . . 60

5.2 Average Nusselt number for different gap spacing at Re = 20, α = 0. 61

5.3 Local Nusselt number variation on the surface of the circular cylin-

ders at Re = 20, g = 14, α = 0, 0.1, 0.5, 1, and 2 for (a) Pr = 0.7,

(b) Pr = 1, (c) Pr = 10, and (d) Pr = 20. . . . . . . . . . . . . . . 63

5.4 Streamline patterns at Re = 20, g = 14, α = 0.1, 1.0, and 2.0,

and for Pr = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



X

LIST OF FIGURES (Continued)

Figure Page

5.5 Temperature contours over two circular cylinders at Re = 20, g =

14, α = 0.1, 1.0, 2.0, and for Pr = 1, 10, and 20. . . . . . . . . . . 66

5.6 Nusselt number at (a) Re = 10, (b) Re = 20, and (c) Re = 40, and

g = 14 for different Prandtl number Pr. . . . . . . . . . . . . . . . 67

5.7 Local Nusselt number at Re = 20, α = 1, and (a) Pr = 1, (b)

Pr = 5, (c) Pr = 10, and (d) Pr = 20. . . . . . . . . . . . . . . . . 69

5.8 Streamline patterns (left column) and temperature contours (right

column) of flow over two circular cylinders at Re = 20, α = 1, and

g = 1 - first row, g = 2 - second row, g = 3 - third row, g = 4 -

fourth row, and g = 5 - fifth row. . . . . . . . . . . . . . . . . . . . 70

5.9 Local Nusselt number at Re = 20, α = 1, and (a) g = 1, (b) g = 2,

(c) g = 3, and (d) g = 4. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.10 Nusselt number at (a) Re = 10, (b) Re = 20, and (c) Re = 40, and

g = 2 for different Prandtl number Pr. . . . . . . . . . . . . . . . . 73

5.11 Local Nusselt number variation on the surface of the circular cylin-

ders at Pr = 1, g = 1, α = 0, 0.5, 1, 1.5, 2, and 2.5 for (a)

Re = 10, (b) Re = 20, and (c) Re = 40. . . . . . . . . . . . . . . . 75

5.12 Streamlines contours over two circular cylinders at Re =

10 (left column), and Re = 20 (right column), P r = 1, g = 1,

and α = 0.5, 1.0, 1.5, and 2.0. . . . . . . . . . . . . . . . . . . . . . 78

5.13 Temperature contours over two circular cylinders at Re = 10, g =

1, P r = 1, 10, 20, and α = 0.5, 1.0, 1.5, and 2.0. . . . . . . . . . . 79



XI

LIST OF FIGURES (Continued)

Figure Page

5.14 Temperature contours over two circular cylinders at Re = 20, g =

1, P r = 1, 10, 20, and α = 0.5, 1.0, 1.5, and 2.0. . . . . . . . . . . 80

5.15 Nusselt number at (a) Re = 10, (b) Re = 20, and (c) Re = 40, and

g = 1 for different Prandtl number Pr. . . . . . . . . . . . . . . . . 81



CHAPTER I

INTRODUCTION

The flow of fluids and forced convection across a heated bluff body has

been the subject of considerable research interest because of its relevance in many

engineering applications. The flow past a cylinder is considered to be an ideal bluff

body to study the important phenomena of heat and mass transfer. For instance,

the knowledge of the hydrodynamic forces experienced by submerged cylindrical

objects such as off-shore pipelines is essential for the design of such structures. On

the other hand because of changing process and climatic conditions, one also needs

to determine the rate of heat transfer from such structures. Industrial processes

where heat and mass transfer from an isolated cylinder plays an important role

include anemometry and chemical or radioactive contamination/purification, glass

cooling, plastic and industrial devices and many other processes. Because of the

importance of these applications, there has been a great deal of interest in the fluid

flow and the heat transfer across a single cylinder from the experimental, analytical

and numerical approaches (e.g. Bharti et al. (2007), Soares et al. (2005), see also

excellent the reviews Morgan (1975), Lange et al. (1998), and Zdravkovich (1997,

2003))

Heat transfer and fluid flow around a single rotating cylinder has been

studied by several researchers, see for example the recent work of Mahfouz

(1999a, 1999b), Kang (1999), Badr (1989), Stojković (2002), Gshwendtner (2004),

and Mittal (2003). The flow around two stationary or rotating circular cylinders

can be considered as an elementary flow which is helpful to understanding the
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flow patterns and hydrodynamic characteristics around multiple bluff bodies in

engineering practice. The arrangement of the cylinders with respect to the free

stream flow direction can be

• tandem (or in-line): the free stream flow direction is parallel with the line

of the centers of the cylinders;

• transverse (or side-by-side): the free stream flow direction is perpendicular

to the line of the cylinders centers;

• staggered.

The incompressible flow around pairs of circular cylinders in tandem

arrangements was investigated in many papers. Many previous investigations have

revealed complex flow behavior, different flow patterns and wake interferences de-

pending upon the relative positioning of the two cylinders. For example, in a

series of work by Juncu (2007a, 2007b), a numerical study of natural and forced

convection heat transfer around two tandem circular cylinders at low Reynolds

numbers is presented. The steady flow of incompressible power-law fluids over a

pair of cylinders in tandem arrangement has been studied numerically by Patil

et al. (2008). The governing equations have been solved using a finite volume

method based solver (Fluent 6.2). In particular, the effect of the power-law index

(0.4 ≤ n ≤ 1.8), Reynolds number (1 ≤ Re ≤ 40) and the gap ratio between the

two cylinders (2 ≤ g ≤ 10) on the local and global flow characteristics such as

streamline profiles, center line velocity, surface pressure coefficient and individual

and total drag coefficients has been studied in detail. The heat transfer around

two spheres in tandem at moderate Reynolds number was investigated numerically

by Juncu (2006). The above mentioned papers comprise an excellent review on

problems of heat/mass transfer on flow around two tandem circular cylinders.

In case of a cylinder pair in side-by-side arrangements, experimental works
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of Bearman (1973), Zdravkovich (1985), and Williamson (1985) concluded that

the flow could be summarized into two major regimes and a complex transition

region between them. As the two cylinders are in very close proximity, the flow is

periodic and wake is a single Karman vortex street as in the flow past a single bluff

body. When the two cylinders are in longer distances, coupled and synchronized

vortex streets in the wake have been observed.

Research on numerical computations for the flow over multiple cylinders has

become active near the last decade of last century. Chang and Song (1990) used

a vorticity-stream function method to compute the flow past a pair of cylinders

in side-by-side and tandem arrangements at Re = 100. Flow visualization and

force coefficients were shown to be in good agreement with experiments. Mittal

et al. (1997) used a finite element method to simulate three configurations, side-

by-side, tandem and staggered arrangements of the cylinder pair at Re = 100 and

1000. Again, the results compared well with experiments. Recently, Kang (2003)

numerically investigated the characteristics of flow over two side-by-side circular

cylinders in the range of low Reynolds number defined as Re = U∞D/ν where

U∞ and ν are the free-stream velocity and kinematic viscosity, over the range of

40 ≤ Re ≤ 160 and the normalized gap spacing g∗ < 5; he identified six kinds of

wake patterns (g∗ = g/D, where g and D are the distance between two cylinders

surfaces and the cylinder diameter, respectively).

The flow past a rotating cylinder can be considered as the elementary prob-

lem related to the topic of present thesis. The rotation of a cylinder has been

adopted not only to understand the wake dynamics but also to control the vor-

tical structure in the wake by the numerous researches. As is well known, when

a cylinder rotates, the lift force is obtained by the Magnus effect which occurs

due to lower pressure on the flow accelerated side than on the flow decelerated
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side. Therefore, the flow changes considerably because of the rotation of the cylin-

der. As a parameter representing this problem, α is the rotational speed at the

cylinder surface normalized by the free-stream velocity, accordingly α is defined as

α = ωD/2U∞, where ω is the angular velocity of the cylinder. The other important

parameter is the Reynolds number. Kang et al. (1999) researched the flows for

60 ≤ Re ≤ 160 in the range of 0 ≤ α ≤ 2.5. Their results showed that the vortex

shedding completely disappears when α > αL, where αL is the critical rotational

speed which was found to be a logarithmic function of Re. As α increases, the

mean lift increases linearly. In contrast, the mean drag decreases with increasing

α and has a relatively strong dependence on Re. Stojković et al. (2002) calculated

the unsteady flow for one characteristic Reynolds number (Re = 100) in the typ-

ical 2D vortex shedding regime with α varying up to very high rotational speed

(0 ≤ α ≤ 12). In the case of low rotational speeds of 0 ≤ α ≤ 2, vortex shedding

completely is suppressed beyond αL = 1.8 obtained their numerical calculation.

In the range of 0 ≤ α ≤ αL and Re = 100 the mean values of drag and lift

decreases and increases with increasing α, respectively. Consequently, Stojković

et al. (2002) fairly confirmed the findings of Kang et al. (1999) in the case of

unsteady flow at Re = 100 for low rotational speeds of 0 ≤ α ≤ 2. Mittal and

Kumar (2003) numerically investigated the flow past a rotating circular cylinder

at Re = 200 for various rotational speeds (0 ≤ α ≤ 5). They showed that the

vortex shedding ceases beyond αL ≈ 1.9.

The problem of flow passing two rotating cylinders in side-by-side arrange-

ment has not been investigated widely. The thesis of Sungnul (2006) is devoted to

the study the self-motion of two rotating circular cylinders. Author of this thesis

has found only two recent studies of Yoon (2007, 2009) dealing with flow around

two rotating circular cylinders in side-by-side arrangement in the range of |α| ≤ 2
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for different gap spacing at Re = 100. Only one paper by Joucaviel (2008) has

been found, which studies the thermal behavior of an assembly of rotating cylin-

ders aligned in a cross-flow. The objective of Joucaviel (2008) was to maximize

the heat transfer rate density of the assembly. A numerical model was used to

solve the governing equation. Two configurations were studied: (i) the cylinders

rotating in the same direction and (ii) consecutive cylinders rotating in opposite

direction. The second configuration proved to be the more efficient.

As reviewed above, the effect of rotation for single cylinder and of gap spac-

ing between two stationary cylinder in side-by-side arrangement on corresponding

flow and heat transfer has been studied by numerous researcher. The problem of

flow passing two rotating cylinders in a side-by-side arrangement has been studied

only by a few researchers. However, the heat transfer and fluid flow past a pair of

rotating circular cylinders in side-by-side arrangement has not yet been addressed.

This thesis presents a numerical investigation of the characteristics of the

two-dimensional heat transfer and laminar flow around two rotating circular cylin-

ders in side-by-side arrangements. In order to consider the combined effects of the

rotation and the spacing between two cylinders on the flow and heat transfer, nu-

merical simulations are performed at a various range of absolute rotational speeds

(|α| ≤ 2.5) for different gap spacing at range of Reynolds number Re ≤ 40. Quan-

titative information about the flow and heat transfer variables such as the local

and average Nusselt number, pressure and friction coefficients on the cylinder sur-

faces is highlighted. The pattern of flow and temperature fields are analysed for a

wide range of parameters.

The mathematical formulation of the heat/mass transfer problem of flow

past two rotating circular cylinders is described in Chapter II. The problem is

recast in terms of a cylindrical bipolar coordinate system. Chapter III presents
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the details of the numerical algorithm based on the projection method to ap-

proximate solution of the momentum equation and the fractional step stabilizing

correction method to approximate the solution of the energy equation. In Chapter

IV, we represent the validation results of our numerical algorithm by comparison

with available numerical and experimental data. The results of various numerical

experiments are reported and discussed in Chapter V. Finally some general com-

ments, a summary of the achievements of this work and some ideas on how this

research could be continued are provided in Chapter VI.



CHAPTER II

MATHEMATICAL FORMULATION OF

PROBLEM

2.1 Physical assumptions

This study assumes the following design considerations:

1. Flow is steady, laminar and two dimensional.

Steady flow shows that there is no variation with time either of the external

flow or of flow within the boundary layer. The restriction on the Reynolds

number ensures that the flow is laminar.

2. The fluid is considered incompressible with constant properties.

From experiments, it is observed that enormous changes of pressure are re-

quired to produce measurable changes in the volumes and densities of liquids

(Evans, 1968). Since the flow conditions in this study will not contain such

extreme pressure differences, liquids can be regarded as incompressible. In a

gaseous medium, experiments have shown that the effects of the compress-

ible nature of the medium begin to appear at high speeds (speed of sound).

Since laminar flow is assumed in this study, where the fluid velocity is well

below high speeds, the assumption of incompressibility for gases is also re-

tained. The assumption of constant properties also appears to be soundly

based because experimental measurements do confirm that for most common

gases and liquids, the coefficients of viscosity are changed very small.
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3. Body forces are negligible.

The effects of gravitational or buoyancy forces are omitted due to forced

convection. Any effects produced by the buoyancy of the fluid due to tem-

perature differences will be assumed to be very small.

4. There are no slip at cylinders surface.

The condition of no slip is confirmed by previous experimental studies and

it is acceptable, at least for the fluid flows considered in this study.

5. Viscous dissipation is neglected

The ranges of dimension, velocities and temperatures adopted in this study

allow the neglect of viscous dissipation and natural convection effects.

6. Radiation heat transfer is negligible.

7. Temperature differences are small.

A large temperature difference between the fluid and the cylinder surface

over which it flows could produce extraneous effects which are avoided in

this study.

2.2 Basic equations

Consider the flow of a viscous incompressible fluid with a constant far away

streaming velocity (U∞) and temperature (T∞), along the y-direction normal to

the line between centers of rotating circular cylinders. The cylinders rotate about

their axes at angular velocities ωL and ωR, assuming that a positive value cor-

responds to counter-clockwise rotation. The sketch of flow geometry, coordinate

system and notations are shown in Figure 2.1. Since the present study is restricted

to long cylinders and flow conditions of Re ≤ 40, the flow across the cylinders is
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steady and two-dimensional; i.e., all flow variables are independent of the z- coor-

dinate and are, therefore, functions of the coordinates x and y alone. Furthermore,

the thermodynamical properties (density, heat capacity cp, thermal conductivity

k) are assumed to be independent of temperature. Under these conditions, the

momentum and energy equations are not coupled.

Figure 2.1 Schematics of problem.

From the above circumstances the flow of fluid is governed by the conser-

vation of momentum, mass and energy:

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p + µ∆~v, (2.1)

div ~v = 0, (2.2)

ρcp

(
∂T

∂t
+ (~v · ∇)T

)
= k∆T, (2.3)

where ~v denotes the velocity vector, p is the pressure, t is time, T is the fluid

temperature, cp is the heat capacity, µ is the viscosity of the fluid, and k is the

thermal conductivity.

When studying fluid flow and heat transfer passing two cylinders, the rea-



10

sonable coordinate system is the cylindrical bipolar coordinate system. The com-

mon definition of cylindrical bipolar coordinates (ξ, η, z) is

x =
a sinh η

cosh η − cos ξ
, y =

a sin ξ

cosh η − cos ξ
, z = z, (2.4)

where ξ ∈ [0, 2π), η ∈ (−∞,∞), and z ∈ (−∞,∞), a is a characteristic length in

the cylindrical bipolar coordinate system and is positive. The following identities

show that curves of constant ξ and η are circles in xy-space

x2 + (y − a cot ξ)2 = a2 csc2 ξ,

(x− a coth η)2 + y2 = a2csch2η.
(2.5)

The coordinate surfaces η = const and ξ = const corresponds to a family of

cylinders whose centers lie along the x and y axes, respectively. Figure 2.1 shows

two cylinders that are chosen to be η = ηR (with ηR > 0) and η = ηL (with

ηL < 0). The cylinders’ radii rL and rR and the distances of their centers from the

origin dL and dR are given by

ri = a csch|ηi|, di = a coth |ηi|, i = L,R. (2.6)

The center to center distance between the cylinders equals d = dL + dR. If rL, rR,

and d are given, one can find a, ηL, and ηR from relations (2.4)-(2.6) as follows

ηR,L = ln




(
d2 + rR

2 − rL
2

2drR

)
±

√(
d2 + rR

2 − rL
2

2drR

)2

− 1


 ,

a =

√
d4 − 2d2(rR

2 + rL
2) + (rR

2 − rL
2)2

4d2
.

(2.7)

The two-dimensional governing equations (2.1)-(2.3) describing the flow and

heat transfer for viscous incompressible fluid will be studied. For goodest gener-

ality, we usually nondimensionalize a given fluid flow and heat transfer problem

with the aid of appropriate scales of length, time and other involved properties.
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The nondimensional form of the governing equations (2.1)-(2.3) may be expressed

in the cylindrical bipolar coordinate system as follows:

∂vξ

∂t
+

1

h

(
vξ

∂vξ

∂ξ
+ vη

∂vξ

∂η

)
− 1

a

(
sinh η(vξvη)− sin ξ(vη)

2)

= −1

h

∂p

∂ξ
+

1

h

2

Re

[
1

h

(
∂2vξ

∂ξ2
+

∂2vξ

∂η2

)
− 1

a

(
sinh η

∂vη

∂ξ
− sin ξ

∂vη

∂η

)]
(2.8)

−1

h

2

Re

(
cosh η + cos ξ

a

)
vξ,

∂vη

∂t
+

1

h

(
vξ

∂vη

∂ξ
+ vη

∂vη

∂η

)
+

1

a

(
sinh η(vξ)

2 − sin ξ(vξvη)
)

= −1

h

∂p

∂η
+

1

h

2

Re

[
1

h

(
∂2vη

∂ξ2
+

∂2vη

∂η2

)
+

1

a

(
sinh η

∂vξ

∂ξ
− sin ξ

∂vξ

∂η

)]
(2.9)

−1

h

2

Re

(
cosh η + cos ξ

a

)
vη,

1

h2

[
∂(hvξ)

∂ξ
+

∂(hvη)

∂η

]
= 0, (2.10)

∂T

∂t
+

1

h

[
vξ

∂T

∂ξ
+ vη

∂T

∂η

]
=

2

RePr

1

h2

[
∂2T

∂ξ2
+

∂2T

∂η2

]
, (2.11)

where vξ and vη are the velocity components in ξ and η directions, respectively,

in the cylindrical bipolar coordinate system, and h = a/(cosh η − cos ξ). In the

above equations, the velocities are nondimensional with free stream velocity U∞,

all lengths with the radius rR of right cylinder, time with (rR)/(U∞), pressure by

ρU2
∞, and temperature by (T−T∞)/(TR−T∞). The two nondimensional parameters

which appear in the above equations are

• Reynolds number :

Re =
2U∞rR

µ
,

• Prandtl number :

Pr =
cpµ

k
.
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2.3 Boundary condition

The physically realistic boundary conditions for this flow are expressed as

follows. On the cylinder surfaces, the usual no-slip condition is applied. The two

commonly used thermal boundary conditions at the surfaces of the solid cylinders

are the constant temperature condition and the constant heat flux condition. The

nondimensional boundary conditions are as follows:

• On the cylinders surfaces, the no-slip boundary condition will be used

for all solid surfaces of the cylinders (η = ηL and η = ηR)

vξ = αi, vη = 0, at η = ηi, ξ ∈ [0, 2π), i = L, R, (2.12)

where αi =
ωiri

U∞
, i = L,R are the nondimensional angular velocities of left and

right circular cylinders.

• At infinity, the constant streamwise velocity is used,

~v = (vx, vy) = (0, 1), as x2 + y2 →∞. (2.13)

For the temperature field, we will employ the boundary conditions as follows:

• On the left and right cylinders surfaces, constant temperature are

T |η=ηL
=

TL − T∞
TR − T∞

, and T |η=ηR
= 1. (2.14)

• At infinity, the uniform temperature will be used,

T = 0, as x2 + y2 →∞. (2.15)

2.4 Drag and lift coefficients

The two most important characteristic quantities of the flow around a cylin-

ders are the drag and lift coefficients. When a solid body is placed in a fluid flow,

the direction of the force on the body does not coincide with the direction of the
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(undisturbed) flow. It is convenient to decompose the force into components FL

and FD perpendicular and parallel to the flow direction. The component FL is

called the lift force. The component FD is called the drag force (the resistance).

The lift FL and drag FD forces are usually expressed with the help of nondimen-

sional coefficients in the following form

FL = 0.5CLρAU2
∞,

FD = 0.5CDρAU2
∞,

where CL and CD are called lift and drag coefficient, ρ is fluid density, A is the

reference area (the choice of reference area A affects the value of CD and CL).

The dependence of drag and lift forces for a single circular cylinder has been

well studied in many research articles. In the region of small Reynolds number,

the drag coefficient varies strongly with Re. The contribution of the viscous and

pressure forces to the drag are very similar in this flow regime. When separation

starts at the cylinder and the recirculation region developed behind it at Re ≥ 5,

the contribution of pressure and viscous forces to the drag get out of balance.

The accuracy of the computations in this flow regime is commonly verified by

a comparison with experimental and numerical data as no analytical results are

available.

Let us turn back to the fluid flow past two cylinders. If Fxi
and Fyi

, i =

L,R are the lift and drag on the cylinders, the lift and drag coefficients are defined

by

CLi
=

Fxi

2ρU∞rR

, CDi
=

Fyi

2ρU∞rR

, i = L,R, (2.16)

and each consists of components due to the friction forces and the pressure. Hence

CL = CLf + CLp, CD = CDf + CDp, (2.17)
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where

CLp = − 1

ρ U∞ D

∫

Σ

p−→n · −→i x dS, (2.18)

CLf
= − 1

ρ U∞ D

∫

Σ

µ(−→n ×−→ω ) · −→i x dS, (2.19)

CDp = − 1

ρ U∞ D

∫

Σ

p−→n · −→i y dS, (2.20)

CDf
= − 1

ρ U∞ D

∫

Σ

µ(−→n ×−→ω ) · −→i y dS, (2.21)

Here
−→
i x, and

−→
i y are unit vectors in x and y axes directions, respectively, and ~n

is the outward unit normal to surface vector.

These non-dimensional coefficients CL and CD are evaluated by integration

around the cylinders walls. The formulas for coefficients in cylindrical bipolar

coordinates are the following

CLp = −
∫ 2π

0

hp

[(
−h

a
sinh η sin ξ

)
nξ +

(
−h

a
(cosh η cos ξ − 1)

)
nη

]
dξ,

CLf
= −

∫ 2π

0

hµω

[(
−h

a
sinh η sin ξ

)
nη +

(
−h

a
(cosh η cos ξ − 1)

)
nξ

]
dξ,

CDp = −
∫ 2π

0

hp

[(
h

a
(cosh η cos ξ − 1)

)
nξ +

(
−h

a
sinh η sin ξ

)
nη

]
dξ,

CDf
= −

∫ 2π

0

hµω

[(
h

a
(cosh η cos ξ − 1)

)
nη +

(
−h

a
sinh η sin ξ

)
nξ

]
dξ,

(2.22)

where nξ and nη are the components of the outward unit normal vectors in ξ and

η direction, respectively, ~n = (nξ, nη) and ω is the component of vorticity in z

direction,

ω = −1

h

[
∂v

∂η
− ∂u

∂ξ
− h

a
(sinh ηv − sin ξu)

]
. (2.23)

2.5 Heat Transfer (Nusselt number)

The important parameter of interest in mass and heat transfer problems is

the heat transfer rate per unit area from the cylinder wall to the ambient fluid. At

the surface, the relative velocity between the fluid and surface is generally taken as
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Figure 2.2 Convective heat transfer from a surface.

zero, as a consequence of the no-slip conditions that usually employed. Therefore,

the heat transfer at the surface is given by Fourier’s Law as:

q|w = −k

(
∂T

∂n

)

w

= −k(∇T · ~n)w, (2.24)

where q is the heat lost by the material at surface,

(
∂T

∂n

)

w

is the gradient in the

normal to fluid direction evaluated at the surface, and k is the thermal conductiv-

ity of the fluid. Instead of equation (2.24), engineers and technicians require an

expression based upon measurable quantities. The heat transfer coefficient h may

be evaluated from:

q|w = h(Tw − Tf ), (2.25)

where Tw is the surface temperature and Tf is the fluid temperature. Here, h is a

function of the temperature and location on the surface.

The local heat transfer coefficient h is generally presented in terms of the

local Nusselt number. In 1915, Nusselt analyzed the heat transfer from cylinders to

air in order to find a similarity condition between different flow cases. To establish

this similarity he used a normalized form of the specific heat flux called the Nusselt
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number

Nu =
qw

qref

=

−kw

[
∂(T − Tw)

∂r

]

w

ḱ
(Tw − T∞)

D

=
kw

ḱ




∂

(
Tw − T

Tw − T∞

)

∂
( r

D

)




w

, (2.26)

where qref is a reference heat flux, ḱ the thermal conductivity at a reference tem-

perature, kw is the thermal conductivity of the fluid at cylinder temperature, and

the subscript w indicates that quantities are evaluated at the cylinder wall. The

Nusselt number is used to obtain the actual heat flux either from equation (2.26)

or equation (2.25). Usually just the mean value of the Nusselt number is needed

namely when no local effect on the cylinder surface is of particular interest. In this

case, the value of Nu is averaged over the whole body surface. The average heat

transfer coefficient h̄ is obtained by averaging the local heat transfer coefficient

over the entire surface. Thus,

h̄ =
1

A

∫

A

h dS, (2.27)

where A is the surface area. In our particular case (flow past cylinders) the value

of h̄ is averaged over the whole cylinder perimeter

h̄ =
1

L

∫ L

0

h dS, S ∈ [0, L], (2.28)

where L is the perimeter of cylinder and S is parametrization of the cylinder

surface. An average Nusselt number Nu can similarly be defined as

Nu =
h̄L

k
. (2.29)

The heat transfer rate per unit area measured in the normal direction is

−k

(
∂T

∂n

)

w

= h(Tw − Tf ). (2.30)

In the following, the dimensionless variables are denoted by the superscript “*”.

Taking into account that T ∗ =
T − Tf

Tw − Tf

and n∗ =
n

L
(L is the characteristic
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length), we get (
∂T

∂n

)

w

=
Tw − Tf

L

(
∂T ∗

∂n∗

)

w

. (2.31)

Equation (2.30) can be recast as

−k(Tw − Tf )

L

(
∂T ∗

∂n∗

)

w

= h(Tw − Tf ). (2.32)

Hence, the local Nusselt number can be found as the normal derivative of nondi-

mensional temperature

Nu = −
(

∂T ∗

∂n∗

)

w

.

The average Nusselt number is

Nu = − 1

L

∫ L

0

(
∂T ∗

∂n∗

)

w

dS.

In our work, the local Nusselt number in the cylindrical bipolar coordinate system

based on the diameter of the cylinder is

Nu = −
(

∂T

∂n

)

= −∇T · ~n

= −1

h

∂T

∂η

= −
(

cosh η − cos ξ

a

)
∂T

∂η
. (2.33)

The average Nusselt number can be calculated by the relations:

Nu = − 1

2π

∫ 2π

0

∂T

∂η
dξ, ξ ∈ [0, 2π]. (2.34)

Note that this formula is used for computing the local Nusselt number on the left

cylinder and we use the plus sign instead of minus sign for the computation on

right cylinder.



CHAPTER III

NUMERICAL METHODS

3.1 Transformation of the governing equations

The first step in computing a numerical solution to the Navier-Stokes equa-

tions is the construction of a grid. A well-constructed grid ensures the accuracy

and quality of the solution. For the construction of a finite difference scheme the

new independent variables are introduced

ξ = χ1(ξ̂), η = χ2(η̂), (3.1)

or by implication

ξ̂ = ϕ1(ξ), η̂ = ϕ2(η), J =
∂(ξ, η)

∂(ξ̂, η̂)
6= 0. (3.2)

This mapping is used to transform the nonuniform mesh in physical space (ξ, η)

into a uniform rectangular mesh in computational domain (ξ̂, η̂). The sketch of

the meshes in physical and computational domain can be seen in Figure 3.1.

The functions ϕ1 and ϕ2 establish a one-to-one correspondence between

the nodes of the uniform mesh in the computational domain and the nodes of the

nonuniform mesh in the physical domain. The functions ϕ1 and ϕ2 are constructed

by tabularly assigning points in the physical domain to the corresponding points

in computational domain. The choice of mapping (3.1) and (3.2) enables us to

condense the mesh node near solid boundaries and in the neighborhood of the lines

η = 0 and ξ = 0 (ξ = 2π). In the computational domain (ξ̂, η̂), the nodes of the

mesh are distributed uniformly (see Figure 3.1b).
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Figure 3.1 Sketch of the meshes in physical and computational domain.
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It is not convenient to solve the governing equations over a nonuniform grid.

The governing equations (2.8)-(2.11) recast according mesh transformation (3.1)

and (3.2) are

∂v

∂t
+

1

h

1

J

(
vηη̂

∂v

∂ξ̂
+ uξξ̂

∂v

∂η̂

)
− 1

a

(
sinh(η)(vu)− sin(ξ)(u)2)

= −1

h

1

J
ηη̂

∂p

∂ξ̂
+

1

h2

1

J

2

Re

[
∂

∂ξ̂

(
ηη̂

ξξ̂

∂v

∂ξ̂

)
+

∂

∂η̂

(
ξξ̂

ηη̂

∂v

∂η̂

)]
(3.3)

−1

h

2

Re

[
1

J

1

2a

(
sinh(η) ηη̂

∂u

∂ξ̂
− sin(ξ) ξξ̂

∂u

∂η̂

)
+

(
cosh(η) + cos(ξ)

a

)
v

]
,

∂u

∂t
+

1

h

1

J

(
vηη̂

∂u

∂ξ̂
+ uξξ̂

∂u

∂η̂

)
+

1

a

(
sinh(η)(v)2 − sin(ξ)(vu)

)

= −1

h

1

J
ξξ̂

∂p

∂η
+

1

h2

1

J

2

Re

[
∂

∂ξ̂

(
ηη̂

ξξ̂

∂u

∂ξ̂

)
+

∂

∂η̂

(
ξξ̂

ηη̂

∂u

∂η̂

)]
(3.4)

+
1

h

2

Re

[
1

J

1

2a

(
sinh(η) ηη̂

∂v

∂ξ̂
− sin(ξ) ξξ̂

∂v

∂η̂

)
−

(
cosh(η) + cos(ξ)

a

)
u

]
,

1

h2

1

J

[
ηη̂

∂(hv)

∂ξ̂
+ ξξ̂

∂(hu)

∂η̂

]
= 0, (3.5)

∂T

∂t
+

1

h

1

J

[
vηη̂

∂T

∂ξ̂
+ uξξ̂

∂T

∂η

]
=

2

RePr

1

h2

1

J

[
∂

∂ξ̂

(
ηη̂

ξξ̂

∂T

∂ξ̂

)
+

∂

∂η̂

(
ξξ̂

ηη̂

∂T

∂η̂

)]
,

(3.6)

where u and v denote velocity components in η and ξ-directions, respectively, J is

the Jacobian of the transformation

J
def
=

∣∣∣∣∣∣∣

ξξ̂ ξη̂

ηξ̂ ηη̂

∣∣∣∣∣∣∣
def
=

∣∣∣∣∣∣∣

ξξ̂ 0

0 ηη̂

∣∣∣∣∣∣∣
= ξξ̂ηη̂. (3.7)

The subscripts indicate the partial derivatives with respect to the subscript vari-

ables

ξξ̂ =
∂ξ

∂ξ̂
=

∂χ1(ξ̂)

∂ξ̂
, ηη̂ =

∂η

∂η̂
=

∂χ2(η̂)

∂η̂
. (3.8)
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3.2 Discretization of the governing equations

3.2.1 Description of grid

The properties of computations are sensitive to the way in which convective

and diffusive terms are discretized. In the present work a central difference scheme

is used for discretization of both convective and diffusive terms. The grid employed

in computations is shown in Figure 3.2. In computational domain, we discretized

the flow field into cells of size ∆η×∆ξ with cell centres being identified by integers

indexes i and j in the η and ξ directions respectively, ξj = (j − 0.5)∆ξ and

ηi = ηL + (i− 0.5)∆η (∆ξ = 2π/n, ∆η = (ηR − ηL)/m). A staggered placement of

variables is used with velocity components u located on the vertical sides of each

cell and components v on the horizontal sides of each cell. We used the fractional

indexes to denote grid values of velocity components ui+1/2,j = u(ηi+1/2, ξj) and

vi,j+1/2 = v(ηi, ξj+1/2) where ηi+1/2 = ηi + 0.5∆η, ξj+1/2 = ξj + 0.5∆ξ. The

pressure p and temperature T are represented at cell centres (see Figure 3.2),

pi,j = p(ηi, ξj), Ti,j = T (ηi, ξj). The upper index n denotes values of variables at

time tn = nτ , where τ is the small step size in time.

3.2.2 Discretization of Navier-Stokes equations

Description of the projection method

Simulating incompressible flows presents a difficulty of satisfying the prop-

erty of mass conservation. The velocity field must satisfy the incompressibility

constraint, which reflects the unability of pressure to do compression work. For

developing numerical approximations to this problem, it is natural to exploit the

techniques of the fractional step projection method of Chorin (1968, 1969) and

Temam (1969, 1977). The main idea of the fractional step projection method is
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Figure 3.2 Staggered arrangement of v, u, p and T .

the splitting of the viscosity effect from the incompressibility, which are dealt with

in two separate subsequent steps. During the first fractional step the problem of

viscous (advection-diffusion) step is solved to determine the intermediate velocity

~̃un+1. No pressure is involved in this stage,

~̃un+1 − ~un

∆t
=

1

Re
∆~un − (~un · ∇)~un. (3.9)

Finally, having determined the intermediate velocity ~̃un+1, we have to perform the

projection step

~un+1 − ~̃un+1

∆t
+∇pn+1 = 0, (3.10)

∇ · ~un+1 = 0,

to determine the end-of-step velocity ~un+1 and the pressure pn+1.
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Navier-Stokes equation

The time derivatives are represented by forward differences. In case of a

steady solution, time is considered as artificial (iterative time). If the integer n

represents the time level, then the intermediate velocity field can be calculated

from

ṽi,j+ 1
2

= vn
i,j+ 1

2
− τ(CONV )n

i,j+ 1
2

+
τ

Re
(DIFFV )n

i,j+ 1
2
, (3.11)

ũi+ 1
2
,j = un

i+ 1
2
,j
− τ(CONU)n

i+ 1
2
,j

+
τ

Re
(DIFFU)n

i+ 1
2
,j
. (3.12)

Here we used the following notation for convective and diffusive terms

CONV =
1

h

1

J

(
vηη̂

∂v

∂ξ̂
+ uξξ̂

∂v

∂η̂

)
− 1

a

(
sinh(η)(vu)− sin(ξ)(u)2) ,

CONU =
1

h

1

J

(
vηη̂

∂u

∂ξ̂
+ uξξ̂

∂u

∂η̂

)
+

1

a

(
sinh(η)(v)2 − sin(ξ)(vu)

)
,

DIFFV =
1

h2

1

J

2

Re

[
∂

∂ξ̂

(
ηη̂

ξξ̂

∂v

∂ξ̂

)
+

∂

∂η̂

(
ξξ̂

ηη̂

∂v

∂η̂

)]

−1

h

2

Re

[
1

J

1

2a

(
sinh(η) ηη̂

∂u

∂ξ̂
− sin(ξ) ξξ̂

∂u

∂η̂

)]

+
1

h

2

Re

[(
cosh(η) + cos(ξ)

a

)
v

]
,

DIFFU =
1

h2

1

J

2

Re

[
∂

∂ξ̂

(
ηη̂

ξξ̂

∂u

∂ξ̂

)
+

∂

∂η̂

(
ξξ̂

ηη̂

∂u

∂η̂

)]

+
1

h

2

Re

[
1

J

1

2a

(
sinh(η) ηη̂

∂v

∂ξ̂
− sin(ξ) ξξ̂

∂v

∂η̂

)]

−1

h

2

Re

[(
cosh(η) + cos(ξ)

a

)
u

]
.

The velocity components, ṽi,j+ 1
2

and ũi+ 1
2
,j are computed for all faces of the cell

except one, where the velocity components are given by the boundary condition.

Figure 3.3 shows the location of grid points where velocity components are known

from the no-slip boundary condition or the boundary condition at infinity. The

boundary condition at infinity is shifted on the boundary of finite domain. The

convection and diffusion terms in (3.11)-(3.12) are given by the following equations
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(CONV )n
i,j+ 1

2
=

1

hi,j+1/2

1

Ji,j+1/2

(
vn

i,j+1/2

(
∂v

∂ξ

)n

i,j+1/2

+ un
i,j+1/2

(
∂v

∂η

)n

i,j+1/2

)

−1

a

(
sinh(ηi)(v

n
i,j+1/2u

n
i,j+1/2)− sin(ξj+1/2)(u

n
i,j+1/2)

2) ,

(CONU)n
i+ 1

2
,j

=
1

hi+1/2,j

1

Ji+1/2,j

(
vn

i+1/2,j

(
∂u

∂ξ

)n

i+1/2,j

+ un
i+1/2,j

(
∂u

∂η

)n

i+1/2,j

)

+
1

a

(
sinh(ηi+1/2)(v

n
i+1/2,j)

2 − sin(ξj)(v
n
i+1/2,ju

n
i+1/2,j)

)
,

(DIFFV )n
i,j+ 1

2
=

2

Re

1

h2
i,j+1/2

1

Ji,j+1/2

[(
∂2v

∂ξ2

)n

i,j+1/2

+

(
∂2v

∂η2

)n

i,j+1/2

]

− 1

Re

1

hi,j+1/2

1

Ji,j+1/2

1

a
sinh(ηi)

(
∂u

∂ξ

)n

i,j+1/2

+
1

Re

1

hi,j+1/2

1

Ji,j+1/2

sin(ξj+1/2)

(
∂u

∂η

)n

i,j+1/2

− 2

Re

1

hi,j+1/2

[(
cosh η + cos ξ

a

)

i,j+1/2

vn
i,j+1/2

]
,

(DIFFU)n
i+ 1

2
,j

=
2

Re

1

h2
i+1/2,j

1

Ji+1/2,j

[(
∂2u

∂ξ2

)n

i+1/2,j

+

(
∂2u

∂η2

)n

i+1/2,j

]

+
1

Re

1

hi+1/2,j

1

Ji+1/2,j

1

a
sinh(ηi+1/2)

(
∂v

∂ξ

)n

i+1/2,j

− 1

Re

1

hi+1/2,j

1

Ji+1/2,j

1

a
sin(ξj)

(
∂v

∂η

)n

i+1/2,j

+
2

Re

1

hi+1/2,j

[(
cosh η + cos ξ

a

)

i+1/2,j

un
i+1/2,j

]
,
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for the sake of simplicity we have introduced the following notations

ui,j+1/2 =
1

4
(ui+ 1

2
,j + ui+ 1

2
,j−1 + ui− 1

2
,j + ui− 1

2
,j−1),

(
∂v

∂ξ

)

i,j+1/2

=
1

Ji,j+1/2

(
ηi+1/2 − ηi+1/2

∆η

)(
vi,j+3/2 − vi,j−1/2

24η

)
,

(
∂v

∂η

)

i,j+1/2

=
1

Ji,j+1/2

(
ξj+1 − ξj

∆ξ

)(
vi+1,j+1/2 − vi−1,j+1/2

24η

)
,

(
∂2v

∂ξ2

)

i,j+1/2

=
1

Ji,j+1/2

1

∆ξ2

[(
ηi+1/2 − ηi−1/2

∆η

∆ξ

ξj+3/2 − ξj+1/2

)
(vi,j+3/2 − vi,j+1/2)

−
(

ηi+1/2 − ηi−1/2

∆η

∆ξ

ξj+1/2 − ξj−1/2

)
(vi,j+1/2 − vi,j−1/2)

]
,

(
∂2v

∂η2

)

i,j+1/2

=
1

Ji,j+1/2

1

∆η2

[(
ξj+1 − ξj

∆ξ

∆η

ηi+1 − ηi

)
(vi+1,j+1/2 − vi,j+1/2)

−
(

ξj+1 − ξj

∆ξ

∆η

ηi − ηi−1

)
(vi,j+1/2 − vi−1,j+1/2)

]
,

(
∂u

∂ξ

)

i,j+1/2

=
1

Ji,j+1/2

(
ηi+1/2 − ηi+1/2

∆η

)
[(ui+1/2,j+1 − ui−1/2,j+1)

−(ui+1/2,j − ui−1/2,j)]/24ξ,

(
∂u

∂η

)

i,j+1/2

=
1

Ji,j+1/2

(
ξj+1 − ξj

∆ξ

)
[(ui+1/2,j+1 − ui+1/2,j)

−(ui−1/2,j+1 − ui−1/2,j)]/24η,

Ji,j+1/2 =

(
ξj+3/2 − ξj−1/2

2∆ξ

)(
ηi+1 − ηi−1

2∆η

)
,

hi,j+1/2 =
a

cosh(ηi)− cos(ξj+1/2)
,
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vi+1/2,j =
1

4
(vi+1,j+ 1

2
+ vi,j+ 1

2
+ vi+1,j− 1

2
+ vi,j− 1

2
),

(
∂u

∂ξ

)

i+1/2,j

=
1

Ji+1/2,j

(
ηi+1 − ηi

∆η

)(
ui+1/2,j+1 − ui+1/2,j−1

24ξ

)
,

(
∂u

∂η

)

i+1/2,j

=
1

Ji+1/2,j

(
ξj+1/2 − ξj−1/2

∆ξ

)(
ui+3/2,j − ui−1/2,j

24η

)
,

(
∂2u

∂ξ2

)

i+1/2,j

=
1

Ji+1/2,j

1

∆ξ2

[(
ηi+1 − ηi

∆η

∆ξ

ξj+1 − ξj

)
(ui+1/2,j+1 − ui+1/2,j)

−
(

ηi+1 − ηi

∆η

∆ξ

ξj − ξj−1

)
(ui+1/2,j − ui+1/2,j−1)

]
,

(
∂2u

∂η2

)

i+1/2,j

=
1

Ji+1/2,j

1

∆η2

[(
ξj+1/2 − ξj−1/2

∆ξ

∆η

ηi+3/2 − ηi+1/2

)
(ui+3/2,j − ui+1/2,j)

−
(

ξj+1/2 − ξj−1/2

∆ξ

∆η

ηi+1/2 − ηi−1/2

)
(ui+1/2,j − ui−1/2,j)

]
,

(
∂v

∂ξ

)

i+1/2,j

=
1

Ji+1/2,j

(
ηi+1 − ηi

∆η

)
[(vi+1,j+1/2 + vi,j+1/2)

−(vi+1,j−1/2 + vi,j−1/2)]/24ξ,

(
∂v

∂η

)

i+1/2,j

=
1

Ji+1/2,j

(
ξj+1/2 − ξj−1/2

∆ξ

)
[(vi+1,j+1/2 + vi+1,j−1/2)

−(vi,j+1/2 + vi,j−1/2)]/24η,

Ji+1/2,j =

(
ξj+1 − ξj−1

2∆ξ

)(
ηi+3/2 − ηi−1/2

2∆η

)
,

hi+1/2,j =
a

cosh(ηi+1/2)− cos(ξj)
.
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is known by  B.C. at infinity

is found from continuity equation

is found from continuity equation

Figure 3.3 The location of known velocity field at the infinity boundary.

The artificial velocity components ṽi,j+ 1
2

and ũi+ 1
2
,j are obtained through solution

of momentum equations (3.11)-(3.12). The explicit advanced tilde velocity may

not necessarily lead to a flow field with zero mass divergence in each cell. This is

because at this stage the pressure field not used. Terms with no superscript are

taken at the nth time level. Pressure pn+1 and velocity components un+1 and vn+1

have to be computed simultaneously from the discrete analog of equation (3.10),

in such a way that no net mass flow takes place in or out of a cell. In a such case,

we make use of an iterative correction procedure in order to obtain a divergence
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free velocity field. First, equation (3.10) can be recast in the following form

vn+1,s
i,j+1/2 = ṽi,j+1/2 − τ

hi,j+1/2

(
∂p

∂ξ

)n+1,s−1

i,j+1/2

, (3.13)

un+1,s
i+1/2,j = ũi+1/2,j − τ

hi+1/2,j

(
∂p

∂η

)n+1,s−1

i+1/2,j

, (3.14)

where

(
∂p

∂ξ

)

i,j+1/2

=
1

Ji,j+1/2

(
ηi+1/2 − ηi−1/2

∆η

)(
pi,j+1 − pi,j

∆ξ

)
,

(
∂p

∂η

)

i+1/2,j

=
1

Ji+1/2,j

(
ξj+1/2 − ξj−1/2

∆ξ

)(
pi+1,j − pi,j

∆η

)
.

The discretized form of continuity equation in (3.10) is

div(u, v)n+1,s
i,j =

1

Ji,j

1

h2
i,j

[(
ηi+1 − ηi−1

2∆η

)(
(hvn+1,s)i,j+1/2 − (hvn+1,s)i,j−1/2

∆ξ

)

+

(
ξj+1 − ξj−1

2∆ξ

)(
(hun+1,s)i+1/2,j − (hun+1,s)i−1/2,j

∆η

)]
,

(3.15)

where the index s is used to denote iteration number, s = 1, 2, 3, ... . In the case

s = 1, pn+1,0 = pn. Substitution of (3.13) and (3.14) into equation (3.15) results

into a system of linear equations for unknown pressure at all grid points. If some

side of cell (i, j) coincides with a boundary where velocity components are known,

we do not perform the substitution and use the velocity given by the boundary

conditions. The point iterative pressure equation becomes

pn+1,s
i,j = pn+1,s−1

i,j − β

τ
(div(u, v)n+1,s

i,j ), (3.16)

where div(u, v)n+1,s
i,j is the unsatisfied divergency at the (i, j)th cell due to incorrect

velocities ũn+1
i+1/2,j and ṽn+1

i,j+1/2.

The pressure advanced equation (3.16) can be interpretated as Jacobi it-

erative method to solve the Poisson equation for pressure. In fact, taking the

divergence operation on both sides of the first equation (3.10) and requiring that
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∇ · ūn+1 ≡ 0, we get the following Poisson equation for pressure,

div(∇pn+1) =
1

τ
div(ũ, ṽ). (3.17)

Finite difference approximation of (3.17) results in an algebraic system with respect

to the unknown vector [..., pi−1,j, pi,j, pi+1,j, pi,j−1, pi,j+1, ...] which can be solved by

the method of false transient

B

(
∂p

∂β

)n+1

= div(∇pn+1)− 1

τ
div(ũ, ṽ), (3.18)

where β is an iterative parameter and B is any nonsingular operator (for example,

B = E − identity operator). Equation (3.16) is a particular case of (3.18) where

the forward finite difference is used to approximate the left-hand-side in (3.16),

(
∂p

∂β

)n+1,s+1

≈
pn+1,s+1

i,j − pn+1,s
i,j

β
. (3.19)

In our computation, instead (3.19) we also used the following approximation,

(
∂p

∂β

)n+1,s+1

≈
3 pn+1,s+1

i,j − 4 pn+1,s
i,j + pn+1,s−1

i,j

2 β
. (3.20)

In some cases (3.20) results is faster convergence of the method of false transients.

The pressure (velocity) equations explained above are to be iterated until the con-

tinuity equation is satisfied to the prescribed accuracy and then the computation

proceed to next time step (artificial time)

div(un+1,s
i,j , vn+1,s

i,j ) ≤ 10−6. (3.21)

The optimal value of the relaxation parameter β was found by trial and error.

The Figure 3.4 shows the flow chart of the numerical algorithm used.
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Compute intermediate velocity
          Eqs. (3.11), (3.12)

Compute divergency
       Eq. (3.15)
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       Eqs. (3.13), (3.14)
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                  temperature

Yes

No
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     Eq. (3.16)

Compute temperature

No

Yes

Figure 3.4 The flow chart of the numerical algorithm.
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Boundary conditions

On the surface of the cylinders, the no-slip condition is applied, which is

equivalent to setting the tangential velocity at the boundary to αi (i = L,R) and

the normal velocity to zero. In the present study, the left and right cylinders ro-

tate in clockwise (α < 0) and counterclockwise (α > 0) directions, respectively.

Implementation of no-slip and no penetration boundary conditions is straightfor-

ward. In all computations we assume that the boundary grid points are exactly

located on solid boundary. Because of the staggered arrangement of the variables,

we used second order one-side finite difference to approximate the derivatives
∂v

∂η̂

and
∂

∂η̂

(
ξξ̂

ηη̂

∂v

∂η̂

)
in equation (3.3) near the cylinder surfaces

(
∂v

∂η̂

)

1,j+1/2

=
1
2
(v1,j+1/2 + v2,j+1/2)− vηL

∆η̂
,

(
∂v

∂η̂

)

m,j+1/2

=
vηR

− 1
2
(vm,j+1/2 + vm−1,j+1/2)

∆η̂
,

[
∂

∂η̂

(
ξξ̂

ηη̂

∂v

∂η̂

)]

1,j+1/2

=
1

∆η

[(
ξξ̂

ηη̂

∂v

∂η̂

)

3
2
,j+ 1

2

−
(

ξξ̂

ηη̂

∂v

∂η̂

)

ηL,j+ 1
2

]
,

[
∂

∂η̂

(
ξξ̂

ηη̂

∂v

∂η̂

)]

m,j+1/2

=
1

∆η

[(
ξξ̂

ηη̂

∂v

∂η̂

)

ηR,j+ 1
2

−
(

ξξ̂

ηη̂

∂v

∂η̂

)

m− 1
2
,j+ 1

2

]
.

Here, we are approximated the derivative of velocity on the left and right bound-

aries by

(
∂v

∂η̂

)

ηL,j+ 1
2

=
1

∆η
(−8

3
vηL

+ 3v1,j+1/2 − 1

3
v2,j+1/2),

(
∂v

∂η̂

)

ηR,j+ 1
2

=
1

∆η
(
8

3
vηR

− 3vm,j+1/2 +
1

3
vm−1,j+1/2).

The sketch of grid and location of velocity component in ξ-direction is represent

in Figure 3.5.

Boundary condition at infinity

In a numerical simulation it is impossible to satisfy constant streamwise

velocity as x2 + y2 →∞. Usual practice involves the placement of the conditions
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Figure 3.5 The structure of velocity in ξ-direction that used for compute
∂v

∂η
on

the left and right boundary.

at a far (“artificial”) boundary which is located at large distance from the body.

The integral parameters, such as CD, CDp , and CDf
demonstrate an essential de-

pendence on the relative size of the computational domain. In 1998, Lange pointed

out that the Reynolds number may be seen as a ratio of two characteristic lengths:

the cylinder diameter D and a viscous length scale represented by ν/U∞. This

viscous length scale indicates the magnitude of the region influenced by diffusion

of the cylinder momentum and it varies with Re−1. If the boundary of the compu-

tational domain does not approximately accompany the expansion of the influence

region at small Re, the error caused by the artificial boundary condition disturbs

the solution, affecting even the vicinity of the cylinders. In our study we did not

touch this range of small Re.

In our computation the far-field boundary coincides with lines ξ = constant

and η = constant (recall that images of∞ in computational domain are two points

(ξ = 0, η = 0) and (ξ = 2π, η = 0)). To be more exact, we choose far boundary
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as the boundary of the following domain

Ω1 = {(ξ, η)|(η = ±(kw + 0.5)∆η and 0 ≤ ξ ≤ (kd + 0.5)∆ξ)∪

(ξ = (kd + 0.5)∆ξ and − (kw + 0.5)∆η ≤ η ≤ (kw + 0.5)∆η)} ,

Ω2 = {(ξ, η)|(η = ±(kw + 0.5)∆η and 2π − (kd + 0.5)∆ξ ≤ ξ ≤ 2π)∪

(ξ = 2π − (kd + 0.5)∆ξ and − (kw + 0.5)∆η ≤ η ≤ (kw + 0.5)∆η)}

where kw, kd are integer numbers. In Figure 3.3, a sketch of these domain Ω1 and

Ω2 is shown by shadow regions.

At the nodes of the mesh which is located on the boundary of the regions

Ω1 and Ω2 we assumed that

v = (−h

a
sinh η sin ξ)(vx)∞ + (

h

a
(cosh η cos ξ − 1))(vy)∞,

u = (−h

a
(cosh η cos ξ − 1))(vx)∞ + (−h

a
sinh η sin ξ)(vy)∞,

p = p∞.

(3.22)

Here we have utilized the idea that prescribing tangent component of velocity and

pressure gives a well-posed problem for the Navier-Stokes equations (Antontsev

et al. (1990), Moshkin and Damrongsak (2009)). The normal to the boundary

component of the velocity vector is computed from the requirement of continuity

equation for the cells contained in this boundary. For example for the case shown

in Figure 3.6.

div(u, v)n+1 = 0,

un+1
E − un+1

W

∆η
+

vn+1
N − vn+1

S

∆ξ
= 0,

un+1
E = un+1

W − ∆η

∆ξ
(vn+1

N − vn+1
S ).

3.3 Discretization of the energy equation

The momentum and energy equations are not coupled. The energy equation

is solved separately from the Navier-Stokes equations. When the steady solution
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Figure 3.6 The cell at far boundary.

of Navier-Stokes equations are computed, the iterative method of stabilizing cor-

rection is used (see Yanenko (1971)) to find the steady distribution of temperature.

The structure of the scheme of stabilizing correction is the following:

• the first fractional step produces absolute consistency with the energy

equation,

• all succeeding fractional steps are corrections and serve to improve the

stability.

For the 2D case, the scheme pocesses strong stability and satisfies the property

of complete consistency. The requirement of complete consistency guarantee con-

vergence of the nonsteady solution to the steady solution for arbitrary time and

space step size (Yaneko (1971)).

To describe the scheme of stabilizing correction, consider a two dimensional

convection-diffusion equation in the form

(~v · ∇)T =
2

RePr
∆T, (3.23)

where T = T (ξ, η), ~v = (vξ, vη), ∇ is the gradient operator, and ∆ is the Laplace

operator. To find the steady solution of (3.23) we use the method of false transient

and consider the related nonsteady problem with “fiction” time

∂T

∂t
= Λ1T + Λ2T, (3.24)
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where Λ1, Λ2 represent the derivatives in only one space direction (for example:

Λ1 = −v
∂

∂ξ
+

2

RePr

∂2

∂ξ2
, Λ2 = −u

∂

∂η
+

2

RePr

∂2

∂η2
). For the solution of (3.24)

Douglas and Rachford (1956) proposed the following scheme

T k+1/2 − T k

τ
= Λ1T

k+1/2 + Λ2T
k, (3.25)

T k+1 − T k+1/2

τ
= Λ2(T

k+1 − T k). (3.26)

Eliminating T k+1/2 we can rewrite system (3.25) and (3.26) in the uniform form

T k+1 − T k

τ
= Λ1T

k+1 + Λ2T
k+1 − τΛ1Λ2(T

k+1 − T k). (3.27)

It follows that schemes (3.25) and (3.26), and the equivalent scheme (3.27) ap-

proximate equation (3.23) with the some accuracy as the scheme

T k+1 − T k

τ
= Λ1T

k+1 + Λ2T
k+1. (3.28)

Details of discretization

Temperature references to nodes of main computational grid related with

center of cells of discrete domain Ωh = {(ξj, ηi)|ξj = (j − 0.5)∆ξ, ηi = ηL + (i −
0.5)∆η, j = 0, 1, ..., n+1, i = 0, 1, ...,m+1}. A sketch of the grid for temperature

in the computational domain is shown in Figure 3.7. It needs to be noted that

on the boundary of the shadowed domains Ω1 and Ω2 the constant temperature

of uniform stream T = T∞ is prescribed. The constant temperature of cylinder

surfaces is approximated by the following

T0,j + T1,j

2
= TL,

Tm+1,j + Tm,j

2
= TR,

where T0,j and Tm+1,j are “ghost” points introduced for convenience in writing

the computational code. The finite difference approximation of the first fractional
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Figure 3.7 Location grid of temperature.

step (3.25) is

−AiT
k+1/2
i−1,j + CiT

k+1/2
i,j −BiT

k+1/2
i+1,j = Fi,j, (3.29)

i = 1, 2, ..., kW − 1, kE + 1, ...m and j = 1, 2, ..., jb, jt, ..., n,

i = 1, 2, ..., m and j = jb + 1, ..., jt − 1

T
k+1/2
0,j = 2TL − T

k+1/2
1,j (3.30)

T
k+1/2
m+1,j = 2TR − T

k+1/2
m,j (3.31)

T
k+1/2
kW ,j = T∞, j = 1, 2, ..., jb, jt, ..., n (3.32)

T
k+1/2
kE ,j = T∞, j = 1, 2, ..., jb, jt, ..., n (3.33)

T
k+1/2
i,jb

= T∞, i = kW , ..., kE (3.34)

T
k+1/2
i,jt

= T∞, i = kW , ..., kE (3.35)
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where

Ai =
2τ

RePrJh2∆η2
,

Bi =
2τ

RePrJh2∆η2
,

Ci = 1 + 2
2τ

RePrJh2∆η2
,

Fi,j = T k
i,j +

2τ

RePr
∆ξξT

k
i,j − τ(~vn+1 · ∇)T k

i,j.

For each fixed index j equations (3.29)-(3.35) are a system of linear algebraic

equation with tridiagonal matrix. Algebraic system (3.29) is solved by LU fac-

torization of tridiagonal matrix (“sweep” method, proposed by Yanenko (1971),

Samarskii and Nikolaev (1989)). Details of the sweep method are represented in

the Appendix A.

The finite difference approximation of the second fractional step (3.26) is

−ÃjT
k+1
i,j−1 + C̃jT

k+1
i,j − B̃jT

k+1
i,j+1 = F̃i,j, (3.36)

i = 1, 2, ..., kW − 1, kE + 1, ...m and j = 1, 2, ..., n,

T k+1
i,j = T k+1

i,j+n, (3.37)

and

−ÃjT
k+1
i,j−1 + C̃jT

k+1
i,j − B̃jT

k+1
i,j+1 = F̃i,j, (3.38)

i = kW , ..., kE and j = jb + 1, ..., jt − 1,

T k+1
i,jb

= T∞, i = kW , ..., kE, (3.39)

T k+1
i,jt

= T∞, i = kW , ..., kE, (3.40)
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where

Ãj =
2τ

RePrJh2∆ξ2
,

B̃j =
2τ

RePrJh2∆ξ2
,

C̃j = 1 + 2
2τ

RePrJh2∆ξ2
,

F̃i,j = T
k+1/2
i,j +

2τ

RePr
∆ξξT

k
i,j.

For each fixed index i equations (3.36) or (3.38) are represented by a system

of linear algebraic equation with tridiagonal matrix. The algebraic system (3.36)-

(3.37) is solved by the cyclic elimination method ( Samarskii and Nikolaev (1989)).

Algebraic system (3.38)-(3.40) is solved by the elimination method for three-point

equation (Samarskii and Nikolaev (1989)). Details of cyclic elimination method

are presented in Appendix B.

3.4 Computation of flow characteristics

3.4.1 Drag and lift coefficients

To evaluate the integrals in equation (2.22) we used the middle point rule,

for example, in order to compute CDp we used formula:

CDp

∣∣
i
=

n∑
j=1

{
hp

[(
h

a
(cosh η cos ξ − 1)

)
nξ +

(
−h

a
sinh η sin ξ

)
nη

]}

i,j

∆ξ,

(3.41)

where i = L,R, that is, we computed the coefficient on the left and right cylin-

der surfaces, respectively. Here we approximated pressure on the cylinders by

extrapolation from interior points (see in Figure 3.8):

pL,j =
15

8
p1,j − 5

4
p2,j +

3

8
p3,j, (3.42)

pR,j = −15

8
pm,j +

5

4
pm−1,j − 3

8
pm−2,j. (3.43)
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Figure 3.8 Structure of grid: using compute force acting on cylinders surface.

3.4.2 Vorticity on the cylinder surfaces

For finding the vorticity, we used the following formula

ω = −1

h

[
∂v

∂η
− ∂u

∂ξ
− h

a
(sinh ηv − sin ξu)

]
.

On the circular cylinder surfaces the spatial derivatives
∂u

∂ξ
= 0 and

∂v

∂η
we ap-

proximated by one-side difference

(
∂v

∂η

)

L,j

= −8

3
vL + 3vn+1

1,j − 1

3
vn+1

2,j , (3.44)

(
∂v

∂η

)

R,j

=
8

3
vR − 3vn+1

m,j +
1

3
vn+1

m−1,j. (3.45)

3.4.3 Nusselt number

In Chapter II, we gave the definition of the local Nusselt number as:

Nu = −
(

∂T

∂n

)

wall

.
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In order to compute the average Nusselt number, we approximated the integral by

the middle point rule (the index used here can see from the Figure 3.8):

N̄u =
n∑

j=1

[
1

2π

∂T

∂η

]

i,j

∆ξ, i = L,R, (3.46)

where

∂T

∂η

∣∣∣∣
L,j

=
T1,j − T0,j

∆η
, (3.47)

∂T

∂η

∣∣∣∣
R,j

=
Tm+1,j − Tm,j

∆η
. (3.48)



CHAPTER IV

VALIDATION

Validation is usually accomplished by benchmarking the numerical results

againist the available reliable numerical and/or experimental predictions for the

analogous problem. In order to validate the computational code, two-dimensional

simulations in a Reynolds number range 0 ≤ Re ≤ 45 have been carried out.

The Reynolds number is defined in terms of the right cylinder diameter DR and

the free stream velocity U∞, Re = U∞DR/ν. Since it is well known that for

a large gap spacing between the surface of two cylinders the mutual influence

between cylinders disappears, we can assume that the flow and heat transfer will

be similar to flow and heat transfer over a single cylinder. Thus the comparisons of

the characteristics of flow and heat transfer of our numerical results (gap spacing

g = 14, g = (d − rL − rR)/DR) with the published data for single cylinder were

carried out. All computational experiments have been performed in a large domain

in order to reduce the influence on the outer boundary. The sequence of the

uniform grid is used. The wake behind the cylinder is steady in the flow regime

Re ≤ 46± 1.

We divided our validation into two parts. In the first part we compared

the characteristics of flow and heat transfer over two circular cylinders (g = 14)

without rotation. In the second part, comparison of characteristics of flow past

two rotating circular cylinders for large gap spacing (g = 14) are shown.
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4.1 Characteristics of flow and heat transfer over two cir-

cular cylinders without rotation in large gap spacing

The numerical simulations are presented here for Reynolds numbers Re =

10, 20, 30, and 40 where the flow is steady. Our data come from simulations

with the grids size 21 × 21, 41 × 41, and 81 × 81 in the ξ − η plane. In all of

the comparisons in this section, we used large gap spacing g = 14 to compare the

characteristics of flow. By symmetry assumption, for large gap spacing all our

presentations are made for the left cylinder. The outer boundary is located far

from the cylinders (greater than 40 cylinder diameters away from the cylinder).

The numerical methodology used in our work has been validated extensively in

terms of the total drag coefficient, pressure coefficient, vorticity on the cylinders

surface, streamline, temperature pattern, local and average Nusselt number.

The hydrodynamic drag force exerted by the fluid on the solid cylinders

is determined by the individual contributions due to the pressure and frictional

forces acting on the cylinders and can be expressed in terms of dimensionless drag

coefficients (frictional drag CDf
, pressure drag CDp , and total drag CD). The

dependence of the drag coefficients on the Reynolds number is shown in Figure 4.1

and Tables 4.1, 4.2. Representative results showing the variation of the pressure

coefficient (Cp) and vorticity (ω) on the surface of the left cylinder are plotted in

Figure 4.1 for two values of the Reynolds number Re = 20 and 40 and for gap

spacing g = 14.

Comparison of our numerical simulations is performed with the numerical

results of Dennis and Chang (1970) for Re = 20 and 40 and with the experimental

results of Thom for Re = 36, 45 and Apelt for Re = 40 (see in Batchelor (2000)).

Our data come from simulations with the grid size 81 × 81 in the ξ − η plane.
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Figure 4.1 (a) Pressure coefficient over cylinder surface, (b) the vorticity distri-

bution over cylinder surface, for the left cylinder at Re = 20, 40, and g = 14.
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Table 4.1 Validation of the numerical algorithm; comparison study for flow over

two side-by-side circular cylinders at g = 14 with flow over a single cylinder.

Re Contribution CD CDp CDf
LW /D

Present study (81 × 81) 2.798 1.572 1.226 —

Juncu (2007) 2.722 1.526 1.196 —

10 Soares et al. (2005) 2.760 1.550 1.210 0.25

Dennis et al. (1970) 2.846 1.600 1.246 0.27

St̊alberg et al. (2006) 2.840 1.589 1.251 0.29

Present study (81 × 81) 2.064 1.242 0.822 0.925

Sungnul and Moshkin (2006) 2.120 1.270 0.850 0.934

Relf (1913) (one cylinder) 2.160 — — —

Tritton (1959) (one cylinder) 2.080 — — —

20 Chung (2006) (one cylinder) 2.050 — — 0.960

Ingham et al. (1990) (one cylinder) 1.995 1.201 0.794 —

Batchelor (2000) (one cylinder) 2.001 — — 0.900

Dennis et al. (1970) 2.045 1.233 0.812 0.94

St̊alberg et al. (2006) 2.051 1.229 0.823 0.90

Fornberg (1980) 2.000 — — 0.91

Soares et al. (2005) 1.990 1.190 0.800 0.925
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Table 4.2 Validations of the numerical algorithm; comparison study for flow over

two side-by-side circular cylinder at g = 14 with flow over a single cylinder.

Re Contribution CD CDp CDf
LW /D

Present study (81 × 81) 1.738 1.098 0.640 —

30 Juncu (2007) 1.655 1.044 0.611 —

Takami et al. (1969) 1.717 — — 1.611

Soares et al. (2005) 1.670 1.040 0.630 1.600

Present study (81 × 81) 1.590 1.050 0.541 2.15

Sungnul and Moshkin (2006) 1.539 1.002 0.537 2.160

Relf (1913) (one cylinder) 1.620 — — —

40 Tritton (1959) (one cylinder) 1.590 — — —

Chung (2006) (one cylinder) 1.540 — — 2.300

Batchelor (2000) (one cylinder) 1.538 — — 2.150

Dennis et al. (1970) 1.522 0.998 0.524 2.35

St̊alberg et al. (2006) 1.530 0.994 0.536 2.13

Soares et al. (2005) 1.490 0.960 0.530 2.275

The closest distance to the far boundary for this grid is located about 53 cylinder

diameters away from the cylinder. The angle variable θ is zero at front stagnation

point and increases in the clockwise direction in the left cylinder. The data from

our simulations (∗ - sign for Re = 20 and ◦ - sign for Re = 40) match the results of

Dennis and Chang (1970), Thom and Apelt very well for Re = 20 and 40. Tables

4.1 and 4.2 summarize the quantities measured in our study and compare them

with numerical and experimental results from other publications. The pressure,

viscous and total drag coefficients, CDp , CDf
, CD defined by equations (2.22) are

presented. The separation bubble length, LW /D, is measured as the distance from
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the rare stagnation point on the cylinder surface to the point where the streamwise

velocity is zero and normalized with the cylinder diameter.

Figures 4.2-4.3 shows the steady-state streamlines, pressure fields, and iso-

lines of temperature for two Reynolds numbers Re = 20 and 40, g = 14, P r =

1, 10, and 20. Due to the symmetry about the y-axis all patterns are pre-

sented only around the left cylinder. Dependence of main characteristics of

flow (CD, CDf
, CDp , and Nu) on the grid resolution is demonstrated in Ta-

ble 4.3 for Re = 20, g = 14 and Pr = 0.7. Three grid sizes are investi-

gated 21 × 21 (∆ξ = 0.312, ∆η = 0.332), 41 × 41 (∆ξ = 0.156, ∆η =

0.166), and 81 × 81 (∆ξ = 0.078, ∆η = 0.083). The minimal distance from

cylinder surface to the far boundary is about 10.5D for the coarse grid and about

53D for the fine grid.

Table 4.3 Effect of grid refinement upon CD, CDp , CDf
, and average Nusselt

number Nu for Re = 20 and g = 14.

Source CD CDp CDf
Nu (Pr = 0.7)

Present study (21 × 21) 2.149 1.274 0.875 2.669

Present study (41 × 41) 2.112 1.274 0.838 2.481

Present study (81 × 81) 2.064 1.242 0.822 2.478

Soares et al. (2005) 1.990 1.190 0.800 2.430

The case of flow past a single cylinder was used to test the prediction

of Nusselt number (Nu). For the range of Re = 10, 20, and 40 and a Prandtl

number Pr = 0.7 (corresponding to the flow of air) the numerical values of average

Nusselt number for the constant temperature boundary condition were found to

be in excellent agreement with previous results available in the literature (Table
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Figure 4.2 1st-column: Streamline patterns, 2nd-column: pressure fields of flow

over two circular cylinders for g = 14, α = 0 at 1st-row: Re = 20, 2nd-row:

Re = 40.
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Figure 4.3 The temperature contours for 1st-column: Re = 20 and 2nd-column:

Re = 40 of flow over two circular cylinders for g = 14, α = 0 at 1st-row: Pr = 1,

2nd-row: Pr = 10, and 3rd-row: Pr = 20.
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4.4)

Table 4.4 Comparison of the average Nusselt number at Pr = 0.7, g = 14, α = 0

for grid 21× 21, 41× 41, and 81× 81 with the values found in the literature.

Source Nu

Re = 10 Re = 20 Re = 40

Present study (21 × 21) 1.892 2.670 3.796

Present study (41 × 41) 1.873 2.481 3.425

Present study (81 × 81) 1.850 2.478 3.333

Bharti et al. (2007) 1.862 2.465 3.282

Badr (1983) — 2.540 3.480

Dennis et al. (1968) 1.867 2.521 3.431

Lange et al. (1998) 1.810 2.408 3.280

Soares et al. (2005) 1.860 2.430 3.200

Sparrow et al. (2004) 1.602 2.205 3.082

Table 4.5 summarizes our computations for large gap spacing, g = 14

between cylinders in stream perpendicular to line of the cylinder centers. The

values of average Nusselt numbers (defined by equation (3.46)) for the range of

Reynolds numbers Re = 10, 20, 30, and 40 and for the range of Prandtl numbers

Pr = 0.7, 1.0, 7.0, 10, 20, and 50 are presented in Table 4.5.

Colburn j-factor analogy is probably the most successful and widely used

analogy from heat, momentum, and mass transfer analogies. The basic mecha-

nisms and mathematics of heat, mass, and momentum transport are essentially

the same. Among many analogies (like Reynolds analogy and Prandtl analogy)

developed to directly relate heat transfer coefficients, mass transfer coefficients,



50

Table 4.5 Comparison of the average Nusselt numbers for cylinders with constant

temperature for g = 14.

Re Pr Nu

Present study Bharti (2007) Juncu (2007) Soares (2005) Lange (1998)

0.7 1.850 1.862 1.862 1.810

1 2.082 2.214 2.560

10 7 3.858 3.857

10 4.329 4.286 4.257

20 5.438 5.429

50 7.418 7.214

0.7 2.478 2.465 2.465 2.408

1 2.787 2.857 2.730

20 7 5.286 5.214

10 6.041 5.857 5.729

20 7.631 7.357

50 10.780 9.929

0.7 2.936 2.929

1 3.310 3.357 3.229

30 7 6.397 6.286

10 7.294 7.071 6.937

20 9.605 9.000

50 13.141 12.214

0.7 3.333 3.283 3.282 3.280

1 3.773 3.714

40 7 7.533 7.214

10 8.727 8.214

20 11.471 10.357

50 17.401 14.286
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and friction factors, Colburn j-factor analogy proved to be the most accurate. As

expected, the average Nusselt number increases with the Reynolds number and/or

Prandtl number. Further analysis of our data demonstrate that the Nusselt num-

ber exhibits the classical dependence on Prandtl number, i.e. Nu ∝ Pr1/3. This

allows the reconciliation of the results for different Prandtl number through use

of j-factor as shown in Figure 4.5. The present results for 10 ≤ Re ≤ 40 and

0.7 ≤ Pr ≤ 50 compare with the expression

j = 0.6738 Re−0.5321 (4.1)

by Bharti et al. (2007) (represent by dashed line in Figure 4.5) for the constant

cylinder temperature.

10 20 30 40

0.1

0.2

0.3

0.4

Re

j=
N

u/
(R

eP
r1/

3 )

Bharti et al. (2007)
Present Pr=0.7
Present Pr=1
Present Pr=7
Present Pr=10
Present Pr=20
Present Pr=50

Figure 4.4 Colburn j-factor as a function of the Reynolds number at different

Prandtl number.

The variation of the local Nusselt number on the surface of the left cylinder

at Re = 10, 20, 40, g = 14 for a range of Prandtl numbers 0.7 ≤ Pr ≤ 50 is

shown in Figure 4.6. For comparison we plotted the data (Bharti et al. (2007))

for a single cylinder with a dotted line for Pr = 1, dash-dot line for Pr = 10
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Figure 4.5 Colburn j-factor as a function of the Reynolds number at different

Prandtl number.

and dashed line for Pr = 20. The variation of the local Nusselt number over the

surface of the left cylinder at Pr = 1, g = 14 for the range of Reynolds numbers

is shown in Figure 4.7.

Figure 4.8 shows the effect of grid size on the local Nusselt number on the

surface of the left cylinder for Re = 20, P r = 1.0, and g = 14. For comparison,

the results from Bharti et al. (2007) are plotted by a solid line.

Since the present results of our simulation are in satisfactory agreement

with other data available to the authors data, it is thus believed that the numerical

parameters and algorithms used in this works are justified. The large discrepancy

in average Nusselt number for large Prandtl number can be explained by increased

value of heat diffusion, and as a result the presence of the second cylinder does

not allow to assume similarity of heat transfer between flow over two side-by-side

cylinder and one single cylinder.
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Figure 4.6 Local Nusselt number variation on the surface of the circular cylinders

for α = 0, g = 14, and (a) Re = 10, (b) Re = 20, (c) Re = 40 at various Prandtl

numbers.



54

0 60 120 180 240 300 360
0

1

2

3

4

5

6

7

θ

N
u

Re=10
Re=20
Re=30
Re=40

Figure 4.7 Local Nusselt number variation on the surface of the circular cylinders

at Pr = 1, g = 14 at various Reynolds numbers.

4.2 Characteristics of flow and heat transfer over two ro-

tating circular cylinders in large gap spacing

In this section, we present our numerical results for the flow past two rotat-

ing circular cylinders of equal radii in side-by-side arrangement for large gap spac-

ing g = 14, range of Reynolds number Re ≤ 40 and rate of rotation 0.1 ≤ α ≤ 2.

The left cylinder rotates with constant angular velocity in clockwise direction and

the right cylinder rotates with the same angular velocity in counterclockwise di-

rection.

To the author’s knowledge, there are very few published data of drag and

lift coefficients at Re ≤ 40 and non zero angular velocity even for flow past single

cylinders. Table 4.6 shows the comparison of drag and lift coefficients at Re =

20 in range of 0.1 ≤ α ≤ 2 with those numerically obtained by Sungnul and
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Figure 4.8 Local Nusselt number on the sequence of grids for Re = 20, g = 14,

and Pr = 1.

Moshkin (2006), Badr et al. (1989), Ingham et al. (1990), and Chung (2006). The

comparisons show that the present results are in a good agreement.

Due to symmetry we only represent the streamline, pressure fields and

temperature contours around the left cylinder in Figure 4.9. From the previous

studies by Batchelor (2000), M.H. Chung (2006), and Sungnul and Moshkin

(2006), the streamline patterns at large gap spacing g = 14 of our results do not

contradict the results in the flow behind a single cylinder.
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Figure 4.9 (a-b) Streamline patterns, (c-d) pressure fields and (e-f) temperature

contours of flow over two circular cylinders at Re = 20, g = 14, and Pr = 1.0, left

column: α = 0.1, right column: α = 1.0.
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Table 4.6 Hydrodynamic parameters of flow over a rotating circular cylinder at

Re = 20 with g = 14.

Contribution CD CL

α = 0.1 α = 1.0 α = 2.0 α = 0.1 α = 1.0 α = 2.0

Present study (21 × 21) 2.146 2.035 1.906 0.286 2.974 6.309

Present study (41 × 41) 2.108 1.897 1.410 0.288 2.864 6.030

Present study (81 × 81) 2.052 1.847 1.346 0.293 2.770 5.825

Sungnul and Moshkin (80 × 80) 2.120 1.887 1.363 0.291 2.797 5.866

Badr et al. (1989) 1.990 2.000 — 0.276 2.740 —

Ingham et al. (1990) 1.995 1.925 1.627 0.254 2.617 5.719

Chung (2006) 2.043 1.888 1.361 0.258 2.629 5.507



CHAPTER V

NUMERICAL RESULTS

The characteristics of heat transfer in two-dimensional laminar flow past

two rotating circular cylinders of the same radius in a side-by-side arrangement at

a various range of absolute rotation speed (|α| ≤ 2.5) for a variety of gap spacing

were investigated. The results are represented in terms of isothermal patterns,

distribution of local Nusselt number on the surface of the cylinders and the average

Nusselt number for the ranges of parameters 10 ≤ Re ≤ 40, 0.7 ≤ Pr ≤ 20, and

constant temperature boundary conditions. Due to the symmetry all results are

presented for the left cylinder only. The left cylinder rotates with constant angular

velocity in the clockwise direction and the right cylinder rotates with the same

angular velocity in the counterclockwise direction as shown in Figure 2.1.

5.1 Effect of gap spacing (zero rotation)

For large gap spacing, g = 14 and α = 0 the variation of the local Nusselt

number for Re = 10, 20, and 40 for the range of Prandtl number 0.7 ≤ Pr ≤ 50

is shown in Figures 4.6 - 4.8. As expected, the Nusselt number increases with an

increase in the Reynolds number and/or Prandtl number. These figures show that

the largest values of Nu correspond to the front stagnation point θ = 0. The angle

variable θ is zero at point x = −dL, y = −rL (front stagnation point in the case of

flow past cylinder without rotation) and θ increases in clockwise direction on the

surface of the left cylinder. The value of the local Nusselt number decreases along

the surface of the cylinder as θ increases in the clockwise direction. The minimum
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value of Nu(θ) appears near the point of separation. A gradual increase in the

values of the local Nusselt number can be observed with an increase in the Reynolds

number and Prandtl number in the rear part of cylinder. The influence of the gap

spacing on the heat transfer rate in terms of the local Nusselt number Nu(θ) is

shown by Figure 5.1 for Re = 20, α = 0, and Pr = 0.7, 1, 10, and 20. This figure

shows that a significant influence of the distance between cylinders on the local

Nusselt number Nu(θ) is observed for g . 5. Another aspect that seems to be

interesting is the decreasing Nu(θ) for 0◦ < θ < 360◦ with decreasing g in the cases

of Pr = 0.7 and 1.0 (rate of convection and conduction are almost equal). In the

cases of Pr = 10 and 20 (convection is the dominant mechanism of heat transfer)

Nu(θ) decreases with g decreasing for 0◦ < θ < 180◦ and 270◦ < θ < 360◦, and

for 180◦ < θ < 270◦ the values of Nu(θ) increases with g increasing. It must be

mentioned that as g increases convergence of the local Nusselt number to the local

Nusselt number for a single cylinder have been observed for all Prandtl numbers.

This can be written in symbolic form as lim
g→∞

Nu(θ, g) = Nu(θ,∞). It is not

surpriseing that the average Nusselt number for each individual cylinder increases

with increasing gap spacing and tends to the average Nusselt number for a single

cylinder. The average Nusselt number is obtained by averaging the local Nusselt

number over the surface of cylinders (see Equation (2.34)). Table 5.1 and Figure

5.2 show the variation of the average Nusselt number with gap spacing between

nonrotating cylinders at different Prandtl numbers and fixed Reynolds number

Re = 20. As expected, the average Nusselt number for the cylinders increases

with the Prandtl number.
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Figure 5.1 Local Nusselt number for different gap spacing at Re = 20, α = 0,

and (a) Pr = 0.7, (b) Pr = 1, (c) Pr = 10, and (d) Pr = 20.

5.2 Large gap spacing (effect of rotation)

The effect of steady rotation on heat transfer is discussed in this section

for the case of large gap spacing, g = 14. Thus, the results of this paragraph can

be considered as illustrating the influence of rotation on heat/mass transfer in the

flow around single rotating circular cylinder. Cases with three Reynolds numbers,

Re = 10, 20, and 40 were selected for presentation. Prandtl numbers vary from

0.7 up to 20 to represent the range of moderate to hight convection rate.

Figure 5.3 shows the effect of the rotation rate α on the local Nusselt number
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Figure 5.2 Average Nusselt number for different gap spacing at Re = 20, α = 0.

Table 5.1 Variation of the average Nusselt number at Re = 20 and α = 0.

Pr = 0.7 Pr = 1 Pr = 5 Pr = 10 Pr = 20

g = 1 1.886 2.247 4.064 5.105 6.418

g = 5 2.403 2.703 4.598 5.802 7.335

g = 10 2.459 2.771 4.736 5.988 7.494

g = 14 2.478 2.787 4.792 6.041 7.631

at constant Re = 20. As α increases, the points of maximum and minimum of the

local Nusselt number shift in direction of rotation. For the case of zero rotation,

α = 0, the maximum value of Nu(θ) is at θ = 0◦ (the front stagnation point)

and the minimum value of Nu(θ) is observed near the rare stagnation point, θ =

180◦. For larger Pr numbers, Pr = 10 and 20, there are two local minima which

appear near the separation points. The non zero rotation substantially changes

the flow field and temperature distribution in the vicinity of the cylinder. Without

rotation, the flow field exhibits a asymmetric pair of standing vortices behind the
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cylinder defining a closed recirculation region (see for example Figure ??). With

an increasing rotation rate the flow becomes asymmetric, the vortex detaches

from the cylinder and the stagnation point rotates in the direction opposite to

the direction of the cylinder rotation departing from the surface of cylinder. The

details of steady flow and thermal field are presented in Figures 5.4 - 5.5 (for

the case Re = 20, g = 14, P r = 1, and 20, and α = 0.1, 1.0, and 2.0) in

the form of streamlines and constant temperature contours. It is seen that the

stagnation point for small speed of rotation α = 0.1 is slightly shifted counter-

clockwise and located in the interval 350◦ < θ < 359◦ (see Figure 5.4). For larger

speed of rotation 1 ≤ α ≤ 2, the stagnation point shift more significantly and

is located in the interval 270◦ < θ < 340◦. The point of maximum clustering of

the temperature isotherms which indicates high temperature gradient (and thus

highest local Nusselt number) shift in the clockwise direction and is located in the

interval 0◦ < θ < 70◦ at the “west” side of the cylinder surface (see Figure 5.5).

The clustering of isotherms near the cylinder surface increases with an increase

in the Prandtl number and/or α (compare first, second and third row in Figure

5.5). This behavior is quite expected due to the no-slip condition, the fluid layer

adjacent to the cylinder surface wraps around the cylinder and rotates with almost

the same angular velocity. When α increases, this layer becomes thinner and

a larger amount of fluid rotates with the cylinders. For large Prandtl number

Pr = 10 and 20, convection is the dominant mechanism of heat transfer which

explains the higher clustering of temperature isotherm for large Pr number.

Table 5.2 and Figure 5.6 show the dependence of the average Nusselt num-

ber on rotational speed for Re = 10, 20, and 40, g = 14, and Pr = 0.7, 1, 5, 10,

and 20. The average Nusselt number decreases with increasing α as show in Table

5.2 and Figure 5.6. For example, in the case of Re = 20, the average Nusselt num-
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Figure 5.3 Local Nusselt number variation on the surface of the circular cylinders

at Re = 20, g = 14, α = 0, 0.1, 0.5, 1, and 2 for (a) Pr = 0.7, (b) Pr = 1, (c)

Pr = 10, and (d) Pr = 20.

ber for Pr = 1 drops down by 10% and for Pr = 20, the average Nusselt number

drops down by almost 50% when α increases from 0 up to 2. This behavior can be

explained by the existence of a fluid buffering layer which wraps around the cylin-

der and rotates together with cylinder. For small rotational speed, 0 < α < 0.5,

the average Nu number decreases slightly with increasing α (only by a few per-

centage points). For larger values of α, the average Nu number decreases almost

linearly with α increase from 0.5 up to 2.0.
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Table 5.2 Variation of average Nusselt number at g = 14.

Re α Pr

0.7 1 5 10 20

0.0 1.850 2.082 3.510 4.329 5.438

0.5 1.849 2.069 3.487 4.389 5.579

10 1.0 1.816 2.027 3.307 4.029 4.813

1.5 1.787 1.983 3.095 3.654 4.195

2.0 1.752 1.929 2.862 3.293 3.688

0.0 2.479 2.787 4.792 5.965 7.631

0.1 2.472 2.774 4.790 5.915 7.678

20 0.5 2.450 2.753 4.811 6.084 7.775

1.0 2.412 2.686 4.579 5.514 6.767

2.0 2.276 2.497 3.724 4.249 4.725

0.0 3.333 3.773 6.693 8.727 11.471

0.5 3.308 3.752 6.718 8.707 11.287

40 1.0 3.231 3.656 6.274 7.678 9.058

1.5 3.120 3.487 5.585 6.456 7.418

2.0 2.981 3.289 4.850 5.507 6.133
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Figure 5.4 Streamline patterns at Re = 20, g = 14, α = 0.1, 1.0, and 2.0, and

for Pr = 1.

5.3 Small gap spacing (g . 3) and non zero rate of rotation

The key quantities that influence the thermal interaction between two ro-

tating circular cylinder in a uniform stream are the Reynolds number, the Prandtl

number, the gap between cylinders, and the rate of rotation. As we mentioned

previously (section 5.1) for g > 5 the temperature field around each of the two

cylinders is similar to the temperature field around a single cylinder. To be more

accurate, in Figure 5.7 we present the dependence of the local Nusselt number

distribution for case of Re = 20, α = 1, and Pr = 1, 5, 10, and 20. The differ-

ence between local Nusselt number distributions on the gap spacing for the cases

with g > 3 is not larger than 5% for all considered Pr number. It seems to be

interesting that the minimum value of the local Nusselt number for fixed Prandtl

number, Pr ∈ [1, 10], and for g > 1.5 does not depend on the gap spacing. The

location of this minimum shifts in clockwise direction (direction of rotation of the

left cylinder) when Pr increases. For instance, for Pr = 1, the minimum occurs at

θ ≈ 240◦, for Pr = 5 the minimum occurs at θ ≈ 270◦, for Pr = 10 the minimum
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Figure 5.5 Temperature contours over two circular cylinders at Re = 20, g = 14,

α = 0.1, 1.0, 2.0, and for Pr = 1, 10, and 20.
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Figure 5.6 Nusselt number at (a) Re = 10, (b) Re = 20, and (c) Re = 40, and

g = 14 for different Prandtl number Pr.
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occurs at θ ≈ 300◦.

Figure 5.8 shows streamline patterns and isotherm contours for fixed

Reynolds number Re = 20, P r = 1, and α = 1 for different gap spacing

g = 1, 2, 3, 4, and 5. The pattern of streamlines and isotherms around each

cylinder is similar to the corresponding patterns around a single rotating cylin-

der in the case g > 3 (compare rows 3, 4, and 5 on Figure 5.8). For small gap

spacing g = 1 (first row in Figure 5.8) streamlines edge two cylinders and main

stream flows around fluid bubble. Within this fluid bubble there are two regions

of fluid which rotate together with cylinders. The isotherms follow the streamline

patterns. For large gap spacing, g & 3 (see two last rows in Figure 5.8), there are

two separate wake-shape regions of isotherms behind each cylinder. These regions

are similar to the temperature field in the flow around a single rotating circular

cylinder. For small gap spacing, the interaction between the cylinders in uniform

flow become essential. There is a saddle critical point in the temperature field,

which is located between the cylinders (see first row in Figure 5.8). Therefore, the

results for g < 3 are addressed in this section.

The variation of the local Nusselt number on the surface of the left cylinder

at fixed Reynolds number and rate of rotation, Re = 20, α = 1, for the range

of Prandtl number 0.7 ≤ Pr ≤ 20 is shown in Figure 5.9. The maximum and

minimum values of the local Nusselt number in all cases are represented in Figure

5.9. In the cases of moderate to low convection rate, Pr = 0.7, 1, and 5, the

increase in Pr increases the local heat transfer rate at all points of cylinder surface.

For larger Pr and g & 2 there is light decrease of Nu(θ) when Pr increases from

5 to 20. This behavior is observed in the interval 300◦ < θ < 360◦ in Figure 5.9.

The effect of the rotation rate and Prandtl number on the average Nusselt

number is investigated for fixed gap spacing g = 2 and for several Reynolds number
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as shown in Table 5.3 and Figure 5.10. In case of zero rotation, the increase of

Prandtl number from 0.7 to 20 results in a considerable increases of the average

Nusselt number, Nu, that is almost three times. However in the non zero rotation

cases, the Prandtl number has a smaller effect on Nu since the rotating fluid layer

adjacent to the cylinder surfaces acts as a buffer isolating the cylinder from the

main stream and causing a decrease in the overall heat transfer rate. For instance,

in the case of Re = 10 at α = 2, the increase of Pr from 0.7 to 20 results in

increase of Nu only 2.0 times, compared with α = 0, where Nu increases by more

than 3 times.
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Figure 5.7 Local Nusselt number at Re = 20, α = 1, and (a) Pr = 1, (b) Pr = 5,

(c) Pr = 10, and (d) Pr = 20.
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Figure 5.8 Streamline patterns (left column) and temperature contours (right

column) of flow over two circular cylinders at Re = 20, α = 1, and g = 1 - first

row, g = 2 - second row, g = 3 - third row, g = 4 - fourth row, and g = 5 - fifth

row.
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Table 5.3 Variation of average Nusselt number at g = 2.

Re α Pr

0.7 1 5 10 20

0.0 1.630 1.866 3.147 3.936 4.934

0.5 1.519 1.750 2.867 3.493 4.254

10 1.0 1.353 1.556 2.482 2.937 3.458

1.5 1.189 1.328 2.130 2.497 2.787

2.0 1.121 1.248 1.872 2.101 2.273

0.0 2.223 2.503 4.223 5.299 6.658

0.5 2.115 2.370 3.875 4.819 5.957

20 1.0 1.989 2.211 3.402 4.095 4.889

1.5 1.789 1.994 2.971 3.430 3.859

2.0 1.596 1.786 2.677 2.962 3.195

0.0 2.973 3.351 5.752 7.300 9.292

0.5 2.802 3.139 5.328 6.740 8.362

40 1.0 2.589 2.865 4.558 5.546 6.509

1.5 2.390 2.610 3.921 4.547 5.050

2.0 2.261 2.474 3.485 3.858 4.190
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Figure 5.9 Local Nusselt number at Re = 20, α = 1, and (a) g = 1, (b) g = 2,

(c) g = 3, and (d) g = 4.

The variation of the local Nusselt number on the surface of the cylinders at

Re = 10, 20, and 40, Pr = 1 and g = 1 for a range of rotational rate 0 < α < 2.5

is shown in Figure 5.11. The variation of local Nusselt number with rotation rate

is not as straightforward as in the case of large gap spacing. One of the interesting

features is that as α increases, the value of Nu(0) (θ = 0◦) decreases to not more

than minimal value. For example, in case of Re = 10, this value is Nu(0) ≈ 0.75,

for Re = 20 this is Nu(0) ≈ 1.0, and for Re = 40 this is Nu(0) ≈ 2.0. The points

of maximum and minimum local Nusselt numbers shift in the direction of cylinder

rotation. The maximum value of Nu(θ) decreases as α increases. The minimum
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Figure 5.10 Nusselt number at (a) Re = 10, (b) Re = 20, and (c) Re = 40, and

g = 2 for different Prandtl number Pr.
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value of Nu(θ) decreases as α increases, up to the rate of rotation when the two

fluid layers adjacent to the cylinder surfaces merge.

The details of the steady flow and thermal fields are presented in Figures

5.12-5.14 in the form of streamlines and constant temperature contours. At Re =

10 and α = 0.5, the streamlines edge the two cylinders (see Figure 5.12, left

column). As can be seen from Figures 5.13 the temperature gradient is low along

the line between the cylinder centers (very rare clustering isotherms). This is the

reason of minimum value of Nu(θ) at θ ≈ 270◦. At Re = 20, similar behavior of

streamline patterns and temperature field corresponds to the rotation rate α ≈ 1.0.

However, at Re = 20 and α = 0.5, fluid from the main stream flows through the

gap spacing between the cylinders. Let us denote by α∗ the rate of rotation when

the two layers of fluid adjacent to the cylinder surfaces merge with each other

for the first time. If the rate of rotation is α > α∗ then the minimum value of

the local Nusselt number increases as α increases. The location of the minimum

value corelates with the location of the saddle critical point in the temperature

field. For instance, for Re = 10, α = 1 this minimum is located near θ = 300◦

and the line between cylinder center and saddle critical point corresponds to the

same direction θ = 300◦ (see second row in Figure 5.13). As the Prandtl number

increases, the clustering of the temperature isotherms near the cylinder surfaces

increases, which indicates increasing temperature gradient (and thus higher local

Nusselt number). This can be seen in Figures 5.13 and 5.14 (compare first, second,

and third columns). Comparison of the isotherms in Figures 5.13 and 5.14 shows

that an increase in the Prandtl and/or Reynolds number makes the wake-shape

region of the temperature field more narrow. It is interesting to point out that

the rate of rotation does not significantly affect the size of the wake shape region.

For instance, in Figure 5.13 for case Pr = 10, α = 1.0, 1.5, and 2.0, the width
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Figure 5.11 Local Nusselt number variation on the surface of the circular cylin-

ders at Pr = 1, g = 1, α = 0, 0.5, 1, 1.5, 2, and 2.5 for (a) Re = 10, (b)

Re = 20, and (c) Re = 40.
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(in x-direction) of the wake-shape region at y = 5 is approximately 6 and in

case Pr = 20, α = 1.0, 1.5, and 2.0 the width of the wake-shape region is

approximately 4. A similar effect can be seen in Figure 5.14 for Re = 20. If

we compare the size of wake-shape region of the temperature field in the cases

Re = 10, P r = 10, α = 1.5 and Re = 10, P r = 10, α = 2.0 (see second column

of Figure 5.13), we can observe that the size of the wake-shape region at y = 5

does not change significantly.

Another interesting observation concerns the saddle critical point in the

temperature field. When α = α∗ this critical point lies in the line connecting the

cylinder centers. When α > α∗ this saddle critical point is pushed down (negative

direction of y-axis) by the fluid layers which rotate together with the cylinders.

Recall here that the left cylinder rotates in the clockwise direction and the right

one in the counterclockwise direction. Another aspect that appear to be important

is the similarity of the isotherm patterns in the cases Re = 10, α = 1.5, P r = 20,

and Re = 10, α = 2.0, P r = 20 (or in the cases of Re = 20, α = 1.5, P r = 20,

and Re = 20, α = 2.0, P r = 20). This is easily explained by comparison of the

streamline patterns for the same cases. The patterns of isotherm are very similar

to the pattern of streamlines. Finally, it is appropriate to analyse the variation of

the average Nusselt number with the variation of other parameters such as α, Re,

and Pr. The results for the surface average Nusselt number are shown in Table

5.4 in tabular form and in Figure 5.15 in graphic form. An increase of the Prandtl

number results in a considerable increase of the average Nusselt number, Nu, for

small rotation rate α . 1. For larger values of α, α > 1, Nu still increases but

by a smaller amount. An increase of rotation rate α results in a decrease of the

average Nusselt number Nu. This behavior is related with the rotating fluid layers

adjacent to the cylinder surfaces. Such layers act as a buffer isolating cylinders
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from the main stream, and causing a decrease in the overall heat transfer rate.

The heat transfer through these layers is mostly due to conduction.

Table 5.4 Variation of average Nusselt number at g = 1.

Re α Pr

0.7 1 5 10 20

0.0 1.051 1.258 2.765 3.545 4.455

0.5 0.873 0.967 1.519 1.902 2.359

10 1.0 0.848 0.947 1.589 1.857 2.078

1.5 0.879 1.003 1.575 1.761 1.933

2.0 0.926 1.057 1.541 1.706 1.861

0.0 1.886 2.247 4.064 5.105 6.418

0.5 1.602 1.909 3.454 4.087 4.944

20 1.0 1.258 1.413 2.433 2.990 3.469

1.5 1.181 1.336 2.021 2.241 2.423

2.0 1.238 1.387 1.902 2.075 2.224

0.0 3.345 3.781 6.527 8.253 10.407

0.5 3.124 3.514 5.964 7.440 9.199

40 1.0 2.510 2.815 4.489 5.452 6.553

1.5 2.554 2.833 4.563 5.448 6.298

2.0 1.830 2.044 3.100 3.403 3.646
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Figure 5.12 Streamlines contours over two circular cylinders at Re =

10 (left column), and Re = 20 (right column), P r = 1, g = 1, and α =

0.5, 1.0, 1.5, and 2.0.
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Figure 5.13 Temperature contours over two circular cylinders at Re = 10, g =

1, P r = 1, 10, 20, and α = 0.5, 1.0, 1.5, and 2.0.
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Figure 5.14 Temperature contours over two circular cylinders at Re = 20, g =

1, P r = 1, 10, 20, and α = 0.5, 1.0, 1.5, and 2.0.
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Figure 5.15 Nusselt number at (a) Re = 10, (b) Re = 20, and (c) Re = 40, and

g = 1 for different Prandtl number Pr.



CHAPTER VI

CONCLUSIONS

The present study has numerically investigated the characteristics of two-

dimensional heat transfer in laminar flow past two rotating circular cylinder in a

side-by-side arrangement at various ranges of absolute rotation speed (|α| ≤ 2.5),

Reynolds number (10 ≤ Re ≤ 40), Prandtl number (0.7 ≤ Pr ≤ 20), and for gap

spacings (1 ≤ g ≤ 14).

We summarize the numerical results obtained in this work as follows:

I Numerical algorithms and computer codes have been developed and val-

idated.

I For large gap spacing (g = 14), an increase in rotational speed leads to

a displacement of the maximum and minimum values of the local Nusselt number

(Nu(θ)) in the direction of rotation. The maximum value of Nu(θ) decreases with

increased speed of rotation and the minimum value of Nu(θ) slightly increases

with increasing rotation.

I For small gap spacing (g = 1), the maximum value of Nu(θ) shifts in

the direction of the cylinders rotation and decreases when the speed of rotation

increases. For α = 2.5 the distribution of Nu(θ) becomes almost uniform.

I The average Nusselt number for each individual cylinder increases with

increasing gap spacing and tends to the average Nusselt number for a single cylin-

der.

I For large gap spacing (case of single cylinder) the average Nusselt number

decreases with increasing speed of rotation. For Pr = 20 average Nusselt number
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drops down by almost 50% when α increases from 0 to 2.

I In case of small gap spacing, g = 1, the main drop of the average Nusselt

number occurs as α increases from 0 up to 1.

I An increase in the Reynolds number, Prandtl number and rotational

rate α increases the asymmetry and complexity of the temperature contours. The

increase in the Prandtl and/or Reynolds numbers increases the compactness of

isotherms toward the downstream direction. This behavior can be explained by the

increasing the role of convection in the mechanism of heat transfer with increasing

Re and/or Pr number.

Based on this numerical study, the following recommendations for future

research can be made. We should be able to study the flow past two cylinders of

different radii which rotate at different angular velocities. It is possible to study

the case in which the cylinders are in tandem arrangement. Future work should

include simulations in the cases of higher Reynolds number, Re > 45.
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APPENDICES



APPENDIX A

THE ELIMINATION METHOD FOR

THREE-POINT EQUATIONS

We will begin the study of the elimination method with the case of a scalar

equation. Suppose we want to solve the following system of three-point equations

c0y0 − b0y1 = f0, i = 0,

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(A.1)

or, in vector form,

AY = F (A.2)

where Y = (y0, y1, . . . , yN)T is the vector of unknowns, F = (f0, f1, . . . , fN)T is the

right hand side vector, and A is the square (N + 1)× (N + 1) matrix with real or

complex coefficients.

A =




c0 −b0 0 0 · · · 0 0 0 0

−a1 c1 −b1 0 · · · 0 0 0 0

0 −a2 c2 −b2 · · · 0 0 0 0

· · · · · · · · · · ·
0 0 0 0 · · · −aN−2 cN−2 −bN − 2 0

0 0 0 0 · · · 0 −aN−1 cN−1 −bN−1

0 0 0 0 · · · 0 0 −aN cN




Systems of the form (A.1) arise from a three-point approximation to a

boundary-value problem for second-order ordinary differential equations with con-
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stant and variable coefficients, and also when realizing difference schemes for equa-

tions with partial derivatives.

Following the idea of Gauss’ method, we carry out the elimination of the

unknown in (A.1). We introduce the notation α1 = b0/c0, β1 = f0/c0 and write

(A.1) in the following form

y0 − α1y1 = β1, i = 0,

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(A.3)

Take the first two equations of the system (A.3)

y0 − α1y1 = β1, −a1y0 + c1y1 − b1y2 = f1.

Multiplying the first equation by a1 and adding it to the second equation, we

obtain (c1 − a1α1)y1 − b1y2 = f1 + α1β1 or, after dividing by c1 − a1α1

y1 − α2y2 = β2, α2 =
b1

c1 − α1a1

, β2 =
f1 + a1β1

1 − α1a1

.

All the remaining equations of the system (A.3) do not contain y0, therefore this

stage of the elimination process is completed. As a result we obtain a new “re-

duced” system

y1 − α2y2 = β2, i = 1,

−aiyi−1 + ciyi − biyi+1 = fi, 2 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(A.4)

which does not contain the unknown y0 and which has a structure analogous to

(A.3). When this system has been solved, the unknown y0 is found from the

formula y0 = α1y1 + β1. We can apply the above described elimination procedure

to the system (A.4). At the second stage, the unknown y1 is eliminated, at the

third y2, and so forth. At the end of the lth stage we obtain a system for the
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unknowns yl, yl + 1, · · · , yN

yl − αl+1yl+1 = βl+1, i = 1,

−aiyi−1 + ciyi − biyi+1 = fi, l + 1 ≤ i ≤ N − 1,

−aNyN−1 + cNyN = fN , i = N,

(A.5)

and formulas for finding yi for i ≤ l − 1

yi = αi+1yi+1 + βi+1, i = l − 1, l − 2, . . . , 0. (A.6)

The coefficients αi andβi, clearly, are found from the formulas

αi+1 =
bi

ci − αiai

; βi+1 =
fi + aiβi

ci − αiai

; i = 1, 2, . . . , ; α1 =
b0

c0

, β1 =
f0

c0

.

Substituting l = N − 1 in (A.5), we obtain a system for yN and yN−1

yN−1 − αNyN = βN ,−aNyN−1 + cNyN = fN (A.7)

from which we find yN = βN+1, yN−1 = αNyN + βN .

Combining these equations with (A.6) (l = N − 1), we obtain the final

formulas for finding the unknowns

yi = αi+1yi+1 + βi+1, i = N − 1, N − 2, . . . , 0,

yN = βN + 1,
(A.8)

where αi and βi are found from the recurrence formulas

αi+1 =
bi

ci − aiαi

, i = 1, 2, . . . , N − 1, αi =
b0

c0

,

βi+1 =
fi + aiβi

ci − aiαi

, i = 1, 2, . . . , N, βi =
f0

c0

(A.9)

Thus, the formulas (A.8)-(A.9) describe Gauss’method which, when applied to the

system (A.1), is given a special name - the elimination method. The coefficients αi

and βi are called the elimination coefficients, formulas (A.9) describe the forward

elimination path, and (A.8) the backward path. Since the values yi are found
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sequentially in reverse order, the formulas (A.8)-(A.9) are sometimes called the

right-elimination formulas.

An elementary count of the arithmetic operations in (A.8)-(A.9) shows that

realizing the elimination method using these formulas requires 3N multiplications,

2N + 1 divisions and 3N additions and subtractions. If there is no difference

between arithmetic operations, the total number of operations required for the

elimination method is Q = 8N + 1. Of this total, 3N − 2 operations are used for

computing αi, and 5N + 3 operations for computing βi and yi.

Notice that the coefficients αi do not depend on the right-hand side of the

system (A.1), but are determined solely by the coefficients ai, bi, ci of the difference

equations. Therefore, if we must solve a series of problems (A.1) with different

right-hand sides, but with the same matrix A, then the elimination coefficients αi

are only computed for the first problem of the series. Thus solving the first problem

in the series costs Q = 8N + 1 operations, but solving each of the remaining

problems only costs 5N + 3 operations.

In conclusion, we indicate the order of the computations for the formulas

of the elimination method. Beginning with α1 and β1, we calculate and store αi

and βi using (A.9). Then the solutions yi are found using (A.8).



APPENDIX B

THE CYCLIC ELIMINATION METHOD

Let us consider the following system,

−aiyi−1 + ciyi − biyi+1 = fi, i = 0,±1,±2, . . . , (B.1)

the coefficients and right-hand side of which are periodic with period N :

ai = ai+N , bi = bi+N , ci = ci+N , fi = fi+N . (B.2)

Systems of the type (B.1), (B.2) arise, for example, from three-point difference

schemes designed to find periodic solutions of second-order ordinary differential

equations, and also when approximating the solutions of equations with partial

derivatives in Cylindrical bipolar coordinate,

A solution of the system (B.1) satisfying the conditions (B.2) will, if it

exists, also be periodic with period N , i.e.,

yi = yi+N . (B.3)

Therefore it is sufficient to find the solution at, for example, i = 0, 1, . . . , N − 1.

In this case, the problem (B.1)-(B.3) can be written as:

−a0yN−1 + c0y0 − b0y1 = f0, i = 0

−aiyi−1 + ciyi − biyi+1 = fi, 1 ≤ i ≤ N − 1,
(B.4)

yN = y0. (B.5)

We have appended the condition (B.5) to the system (B.4) so that the equations

for i = N − 1 would not include yN , it having been replaced by y0. This allows us

to retain a unique form for the equations (B.4) for i = 1, 2, . . . , N − 1.
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If we introduce the vector of unknowns Y = (y0, y1, . . . , yN−1)
T and the

right-hand side F = (f0, f1, . . . , fN − 1)T ,then (B.4)-(B.5) can be written in the

vector form AY = F where

A =




c0 −b0 0 0 · · · 0 0 −a0

−a1 c1 −b1 0 · · · 0 0 0

0 −a2 c2 −b2 · · · 0 0 0

· · · · · · · · · ·
0 0 0 0 · · · cN−3 −bN−3 0

0 0 0 0 · · · −aN−2 cN−2 −bN−2

−bN−1 0 0 0 · · · 0 −aN−1 cN−1




is the matrix of the system (B.4), (B.5). The presence of the non-zero coefficients

a0 and bN−1 in (B.4) does not allow us to solve this system using the elimination

method described in the previous section. To find the solution of the system

(B.4), (B.5) we construct a variant of the elimination method called the the cyclic

elimination method

The solution of the problem (B.4), (B.5) will be found in the form of a

linear combination of the grid functions ui and vi

yi = ui + y0vi, 0 ≤ i ≤ N, (B.6)

where ui is the solution of the non-homogeneous three-point boundary-value prob-

lem

−aiui−1 + ciui − biui+1 = fi, 1 ≤ i ≤ N − 1,

u0 = 0, uN = 0
(B.7)

with homogeneous boundary conditions, and vi is the solution of the homogeneous

three-point boundary-value problem

−aivi−1 + civi − bivi+1 = fi, 1 ≤ i ≤ N − 1,

v0 = 1, vN = 1
(B.8)
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with non-homogeneous boundary conditions.

We now find under what conditions yi from (B.6) is the desired solution.

Multiplying (B.8) by y0, adding it to (B.7), and taking into account (B.6), we

find that the equations in (B.4) can be satisfied for i = 1, 2, . . . , N − 1. From the

boundary conditions for ui and vi it follows that (B.5) will be satisfied. Thus, if

yi satisfied the remaining unused equation at i = 0 in (B.4), the problem would

be solved. Substituting (B.6) in this equation, we obtain

−a0uN−1 − a0y0vN−1 + c0y0 − b0u1 − b0y0v1 = f0. (B.9)

Thus, if we choose y0 from the formula

y0 =
f0 − a0uN−1 + b0u1

c0 − a0vN−1 − b0v1

, (B.10)

then (B.9) will be satisfied, and consequently the solution of the problem (B.4),

(B.5) can be found from (B.6).

We are left with solving (B.7) and (B.8). They are particular cases of the

three-point systems of equations solved in the previous section using the elimina-

tion method. For (B.7) and (B.8), the elimination formulas have the following

form:

ui = αi+1ui+1 + βi+1, i = N − 1, N − 2, . . . , 1, uN = 0,

vi = αi+1vi+1 + γi+1, i = N − 1, N − 2, . . . , 1, vN = 1,
(B.11)

where the elimination coefficients αi, βi and γi are found from the following for-

mulas

αi+1 =
bi

ci − aiαi

, i = 1, 2, . . . , N, α1 = 0, (B.12)

βi+1 =
fi + aiβi

ci − aiαi

, i = 1, 2, . . . , N, β1 = 0, (B.13)

γi+1 =
aiγi

ci − aiαi

, i = 1, 2, . . . , N, γ1 = 1, (B.14)
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Let us transform (B.10). From (B.11) we obtain uN−1 = αNuN +βN = βN , vN−1 =

γN + αN . We substitute these expressions in (B.10) and take into account (B.2),

(B.12)-(B.14):

y0 =
fN + aNβN + βNu1

cN − aNαN − aNγN − bNv1

=
βN+1 + αN+1u1

1− γN+1 − αN+1v1

.

We have constructed an algorithm for solving problem (B.4), (B.5) called the

method of cyclic elimination:

α2 = b1/c1, β2 = f1/c1, γ2 = a1/c1,

αi+1 =
bi

ci − aiαi

, βi+1 =
fi + aiβi

ci − aiαi

, γi+1 =
aiγi

ci − aiαi

, i = 2, 3, . . . , N ;

uN−1 = βN , vN−1 = γN + αN ,

ui = αi+1ui+1 + βi+1, vi = αi+1vi+1 + γi+1, i = N − 2, N − 3, . . . , 1;

y0 =
βN+1 + αN+1u1

1− γN+1 − αN+1v1

, yi = ui + y0vi, i = 1, 2, . . . , N − 1.

(B.15)

An elementary computation indicates that the algorithm requires 6(N−1) multipli-

cations, 5N −3 additions and subtractions, and 3N +1 divisions. If no distinction

is made among arithmetic operations, the total number is Q = 14N − 8.
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