154 K. Kerdprasop and N. Kerdprasop

SUT-Miner

A SR B AR SRS R RSN EE RN N NN RSN

5 eI Sion . : [
“ Pre-DM: Ty .
R) L)
i b $
f L
Heterogeneous ¢ 2 .
L]
data sources P® .
% - -
Pel i
1. i : .
! :o:-o.'.'o'-ocono'l“oooooot *sesey o'o'.c'ocut-o-'t io.
] -
: normalized data
i

gy

discovered knoW!edge

et o -

Knowledge
o E'vah;ator '

P g e e r rm n o r e e p o p e 4t w8 PR b e d o s = e ey e e e e

Knowledge
. Integrator. "

Fig. 1 Architecture of a knowledge-mining system

Knowledge Mining with a Higher-Order Logic Approach 155

Target attribute - available?

.'.I’r:e;i'ic'tioin-f' .

. Deseription
- (unsupervised Tearning). -

[# target att'ri.bute?J Gase~based or attributef'based?" ‘
- \ 1 caserbased / attributé~pased

“Type of target”
- attribute?

Fig. 2 Ontology for guiding mining method selection at the DM step

4 Implementation and Running Example

The SUT-Miner system has been implemented based on the concept of higher-
order logic which is an extension of first-order logic to be more expressive and
more powerful. First-order logic has been extensively used in intelligent systems
[22] as an inference mechanism to deduce new facts. A classic example is that
given a general rule Px Man(x) => Mortal(x) and a known fact Man(Socretes), we
can deduce new fact that Mortal(Socretes).

Despite its successful application to many computational problems such as
natural language processing, first-order logic poses a restriction on the type of
variables appearing in quantifications to exclude predicates. Higher-order logic
[12], on the other hand, allows variables to quantify over predicates. With such
relaxation, higher-order logic facilitates the implementation of a knowledge-
intensive system that takes other knowledge as its input in a closed form. An
exemplar in figure 3 demonstrates a higher-order logic-based implementation of
frequent pattern mining problem. The ceding is based on the syntax of SWI prolog
(www.swi-prolog.org).

156 K. Kerdprasop and N. Kerdprasop

Fig. 3 Frequent-pattern mining implemented with a higher-order logic approach

Knowledge Mining with a Higher-Order Logic Approach 157

Fig. 4 Some part of a breast-cancer frequent pattern mining result

Frequent pattern mining is the discovery of relationships or correlations be-
tween items in a database. Let [= {i,, i,, 1, ..., 1} be a set of m items and DB =
{C.C,C, .., C,} be a database of n cases or observations and each case con-
tains items in /. A pattern is a set of items that occur in a case. The number of
items in a pattern is called the length of the pattern. To search for all valid patterns
of length 1 up to m in large database is computational expensive. For a set I of m
different items, the search space for all distinct patterns can be as huge as 2™-1. To
reduce the size of the search space, the support measurement has been introduced
[1]. The function support(P) of a pattern P is defined as a number of cases in DB
containing P. Thus, support(P) = {T| T e DB, P < T }I. A pattern P is called
frequent pattern if the support value of P is not less than a predefined minimum
support threshold minS. It is the minS constraints that help reducing the computa-
tional complexity of frequent pattern generation. The minS metric has an anti-
monotone property and is applied as a basis for reducing search space of mining
frequent patterns in algorithm Apriori [1].

We have tested our implementation with the breast cancer dataset taken from
the UCI repository (http://www.ics.uci.edu/~mlearn/MLRepository html). This
medical data set is a collection of 191 observations on follow-up patients examin-
ing on a recurrence of breast cancer. Each patient's record contains ten attributes:
age, menopause, tumor-size, inv-nodes, node-caps, deg-malignant, breast (left,
right), breast-quad, irradiate (yes, no), recurrence (yes, no). We run frequent-
pattern mining with minimum suapport 0.001 and show some of the discovered as-
sociation rules in figure 4. Each rule is attached with the confidence value as a
metric to evaluate accuracy of the induced rule. For the rule A => B, confidence is

158 K. Kerdprasop and N. Kerdprasop

computed from proportion of support(A&B) to support(A). The confidence value
1.0 thus implies a 100% accurate association rule.

The mining results shown in figure 4 are in the form of implication. Rule inter-
pretation is straightforward. Taking the last rule in the figure as an example, it can
be interpreted as "a patient who has cancer at her left breast in left lower quadrant
position and had been treated with radiation implies that she will have a 77-
percent chance of cancer recurrence.” During the process of searching for frequent
patterns, the support values of frequently occurred patterns can also be out put to
quantify supporting evidence of the induced association rules.

5 Conclusions and Discussion

We have proposed the design of SUT-Miner, a knowledge-mining system. The
system is intended to support knowledge acquisition in medical data and other
domains that require new knowledge to support better decisions. The proposed
system 1s an environment for knowledge discovery composing of tools and meth-
ods suitable for various kinds of mining such as data classification, regression,
clustering, association mining. The intelligence of the system is supported by on-
tology technology to provide semantics for mining technique selection as well as
for knowledge integration at a post-data mining step.

The implementation of the proposed system has beer done based on the con-
cept of higher-order logic which is an extension of the well-known first-order
logic. With the expressive power of higher-order logic, program coding of the de-
signed system is very concise as demonstrated in the paper. Program conciseness
directly contributes to program verification and validation which are mmportant is-
sues in software engineering. The closed form of higher-order logic also supports
constraint mining and higher-order mining, i.e. mining from previously discovered
knowledge. Our future research is to extend the design of SUT-Miner to facilitate
constraint and higher-order mining. Implementing a mechanism for knowledge in-
ferring is also one of our research plans.

Acknowledgments. This work has been fully supported by research fund from Suranaree
University of Technology (SUT) granted to the Data Engineering and Knowledge Discov-
ery research unit. This research is also partly supported by grants from the National Re-
search Council of Thailand (NRCT) and the Thailand Research Fund (TRF) under grant
number RMU 5080026.

References

1] Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Proc. VLDB,
pp. 487499 (1994)

[2} Alavi, M., Leidner, D.E.: Review: Knowledge management and knowledge manage-
ment systems: Conceptual foundations and research issues. MIS Quarterly 25(1),
107-136 (2001

{31 Bojarczuk, C.C., Lopes, H.S., Freitas, A.A., et al.; A constrained-syntax genetic pro-
gramming system for discovering classification rules: Application to medical data
sets. Artificial Intelligence in Medicine 30, 27-48 (2004)

Knowledge Mining with a Higher-Order Logic Approach 159

[4]

[5]
[6]
{71
[8]
(9]

[10]
[11]
{12]
[13]
[14]
f15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]
[23]
{24

{25]

Bratsas, C., Koutkias, V., Kaimakamis, E., et al.: KnowBaSIGS-M: An ontology-
based system for semantic management of medical problems and computerised algo-
rithmic solutions. Computer Methods and Programs in Biomedicine 83, 39-51 (2007)
Correia, R., Kon, F., Kon, R.: Borboleta: A mobile telehealth system for primary
homecare. In: Proc. ACM Symposium on Applied Computing, pp. 13431347 (2008)
De Raedt, 1., Guns, T, Nijssen, S.: Constraint programming for itemset mining. In:
Proc. KDD, pp. 204-212 (2008)

Ghazavi, S., Liao, T.W.: Medical data mining by fuzzy modeling with selected fea-
tures. Artificial Intelligence in Medicine 43(3), 195-206 (2008)

Hristovski, D., Peterlin, B., Mitchell, J.A,, et al.: Using literature-based discovery to
identify disease candidate genes. Int. J. Medical Informatics 74, 289-298 (2003)
Huang, M.J,, Chen, M.Y, Lee, S.C.: Integrating data mining with case-based reason-
ing for chronic diseases prognosis and diagnosis. Expert Systems with Applica-
tions 32, 856867 (2007)

Hulse, N.C., Fiol, G.D., Bradshaw, R L., et al.: Towards an on-demand peer feedback
system for a clinical knowledge base: A case study with order sets. J. Biomedical In-
formatics 41, 152-164 (2008)

Kakabadse, N.K., Kouzmin, A., Kakabadse, A.: From tacit knowledge to knowledge
management: Leveraging invisible assets. Knowledge and Process Management 8(3),
137~154 (2001)

Nadathur, G., Miller, D.: Higher-order Horn clauses. J. ACM 37, 777-814 (1990)
Nguyen, D., Ho, T., Kawasaki, S.: Knowledge visualization in hepatitis study. In:
Proc. Asia-Pacific Symposium on Information Visualization, pp. 59-62 (2006)
Palaniappan, S., Ling, C.S.: Clinical decision support using OLAP with data mining.
Int. J. Computer Science and Network Security 8(9), 290-296 (2008)

Roddick, I.F., Fule, P., Graco, W L: Exploratory medical knowledge discovery: ex-
periences and issues. ACM SIGKDD Explorations Newsletter 5(1), 94-99 (2003)
Roddick, LF., Spiliopoulou, M., Lister, D., et al.: Higher order mining. ACM
SIGKDD Explorations Newsletter 10(1), 5-17 (2008)

Ruppel, C.P., Harrington, S.J.: Sharing knowledge through intranets: A study of or-
ganizational culture and intranet implementation. IEEE Transactions on Professional
Communication 44(1), 37-51 (2001)

Sahama, T.R., Croil, P.R.: A data warchouse architecture for clinical data warchous-
ing. In: Proc. 12th Australasian Symposium on ACSW Frontiers, pp. 227-232 (2007)
Satyadas, A., Harigopal, U., Cassaigne, N.P.: Knowledge management tutorial: An
editorial overview. IEEE Transactions on Systems, Man and Cybernetics, Part
C 31(4), 429-437 (2001)

Shillabeer, A., Roddick, J.F.: Establishing a lineage for medical knowledge discovery.
In: Proc. 6th Australasian Conf. on Data Mining and Analytics, pp. 29--37 (2007)
Thongkam, I., Xu, G., Zhang, Y., et al.: Breast cancer survivability via AdaBoost al-
gorithms. In: Proc. 2nd Australasian Workshop on Health Data and Knowledge Man-
agement, pp. 35-64 (2008)

Truemper, K.: Design of logic-based intelligent systems. John Wiley & Sons, New
Jersey (2004)

Uramoto, N., Matsuzawa, H., Nagano, T, et al.: A text-mining system for knowledge
discovery from biomedical documents. IBM Systems J. 43(3), 516-533 (2004)

Zhou, X, Liu, B., Wu, Z.: Text mining for clinical Chinese herbal medical knowledge
discovery. In: Discovery Science 8th Int. Conf., pp. 396-398 (2005)

Zhuang, Z.Y., Churilov, L., Burstein, F.: Combining data mining and case-based rea-
soning for intelligent decision support for pathology ordering by general practitioners.
European J. Operational Research 195(3), 662-675 (2009) doi: 10.1016/.ejor.
2007.11.003

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasog

Knowledge Induction from Medical Databases with Higher-Order
Programming

Nittaya Kerdprasop and Kittisak Kerdprasop
Data Engineering and Knowledge Discovery (DEKD) Research Unit
School of Computer Engineering, Suranaree University of Technology
111 University Avenue, Nakhon Ratchasima 30000
THAILAND
nittaya@sut.ac.th, kittisak Thailand@gmail.com

Absiract: - Medical data mining is an emerging area of computational intelligence applied to automatically
analyze patients’ records aiming at the discovery of new knowledge potentially useful for medical decision
making. Induced knowledge is anticipated not only to increase accurate diagnosis and successful disease
treatment, but also to enhance safety by reducing medication-related errors. Modern healthcare organizations
regularly generate huge amount of electronic data that could be used as a valuable resource for knowledge
induction to support decision-making of medical practitioners. Unfortunately, a domain-specific decision
support system that provides a suite of customized and flexible tools to efficiently induce knowledge from.
medical databases with representational heterogeneity does not currently exist, We, thus, design and develop a
medical decision support system based on a powerful logic programming framework. The proposed system
includes a knowledge induction component to induce knowledge from clinical data repositories and the induced
knowledge can also be deployed to pre-treatment data from other sources. The implementation of knowledge
induction engine has been presented to express the power of higher-order programming of logic-based
language. The flexibility of our mining engine is obtained through the pattern matching and meta-programming
facilities provided by logic-based language.

Key-Words: - Medical decision making, Medical informatics, Logic-based knowledge induction, Higher-order
programming

1 Introduction decision support system and data warchouse [2], [4],

Knowledge is a valuable asset to most organizations {104, [11], [29}' . X .
as a substantial source to enhance understanding of Our work is also in the main stream of medical
data relationships and support better decisions to decision support system development, but_ our
increase organizational competency. Automatic. ~ methodology is different from those appeared in the
knowledge acquisition can be achieved through the literature. The system proposed in this paper is
availability of the knowledge induction component. based_ on logic and htgher—order programming
The induced knowledge can facilitate various paradigms. The justification of our logic-based
knowledge-related activities ranging from expert system is that the closed form of Horn clauses that
decision support, data exploration and explanation, trez?ts program in the same way as data facilitates
estimation of future trends, and prediction of future fusion of knowledge learned from different SONIGES;
outcomes based on present data. this situation is a normal settmg.m medlcla! d‘omau_'x.
In this paper, we present the knowledge Knowledge reuse can also easily practice in this
induction system specifically designed to facilitate framework. We design the system as an integrated
knowledge discovery from medical data. Various environment storing 2 repertoire of tools for
data mining and machine learning methods had been dlscovermg_vanous kinds ofi_mowiedge. .
proposed to learn useful knowledge from medical _The outline of this paper is as follows. Section 2
data [5], [6], {7], 8], [17], [19]. Major techniques !)neﬂy dlscu§535 knowledge m.ductlon methods
adopted by many researchers are rule induction and implemented in our sy stem. Section 3 reviews the
classification tree generation with the main purpose basics of logic and higher-order programming.
to support medical diagnosis [3], [9], [13]. Some Sections 4 and 5 present the conceptual design and
researchers had even extended the knowledge implementation, respectively, of our system. Section
discovery aspect to the larger scale of medical 6 concludes the paper.

ISSN: 1790-0832 1719 Issue 10, Volume 8, October 2009

: WSEAS TRANSACTIONS on
. INFORMATION SCIENCE and APPLICATIONS

2 Knowledge Induction Methods

This section briefly reviews the three main data
mining methods extensively applied to induce
knowledge from varieties of data domains. These
methods are implemented in our medical decision
support system.

2.1 Tree-Based Knowledge Induction
Decision tree induction [18] is a popular method for
inducing knowledge from data. Popularity is due to
the fact that mining result in a form of decision tree
is interpretability, which is more concern among
medical practitioners than a sophisticated method
but lack of understandability. A decision tree is a
hierarchical structure with each node contains
decision attribute and node branches corresponding
to different attribute values of the decision node.
The goal of building decision tree is to partition data
with mixing classes down the tree until the leaf
nodes contain pure class.

In order to build a decision tree, we need to
choose the best attribute that contributes the most
towards partitioning data to the purity groups. The
metric to measure attribute’s ability to partition data
into pure class is fnfo, which is the number of bits
required to encode a data mixture. To choose the
best attribute, we have to calculate information gain,
which is the yield we obtained from choosing that
attribute. The information gain calculates yield on
data set before splitting and after choosing attribute
with two or more splits. The gain value of each
candidate attribute is calculated. Then choose the
maximum one to be the decision node. The process
of data partitioning continues until the data subset
has the same class label.

2.2 Association Mining

Association mining is the discovery of relationships
or correlations between items in a database. Let [=
{i}, 1, i3, -1-» I n} be a set of m items and DB = { C,,
Cay Gy, ..., C ,} be a database of » cases or
observations and each case contains items in /. A
pattern is a set of items that occur in a case. The
number of items in a pattern is called the length of
the pattern. To search for all valid patterns of length
1 up to m in large database is computational
expensive. For a set [of m different items, the
search space for all distinct patterns can be as huge
as 2™1. To reduce the size of the search space, the
support measurement has been introduced [1]. The
function support(P) of a pattern P is defined as a
number of cases in DB containing P. Thus,

ISSN: 1790-0832

1720

Nittaya Kerdprasop, Kittisak Kerdprasop

support(Py=|{T| T e DB, P T }|. A pattern P is
called frequent pattern if the support value of P is
not less than a predefined minimum support
threshold minS. It is the minS constraints that help
reducing the computational complexity of frequent
pattern generation. The minS metric has an anti-
monotone property and is applied as a basis for
reducing search space of mining frequent patterns in
algorithm Apriori [1].

2.3 Data Clustering

Clustering refers to the iterative process of
automatic grouping of data based on their similarity.
There exist a large number of clustering techniques,
but the most classical and popular one is the k-
means algorithm [12]. Given a data set containing »
objects, k-means partitions these objects into k
groups. Each group is represented by the centroid,
or central point, of the cluster. Once cluster means
or representatives are selected, data objects are
assigned to the nearest centers. The algorithmn
iteratively selects new better representatives and
reassigns data objects until the stable condition has
been reached. The stable condition can be observed
from cluster assigning that each data object does not
change its cluster.

3 Programming Based on Logic

In logic programming, a clause is a disjunction of
literals {atomic symbols or their negations) such as
pvg and —pv r. A statement is in clausal form if it
is a conjunction of clauses such as (pvg) A= pvr).
Logic programming is a subset of first order logic in
which clauses are restricted to Horn clauses.

A Horn clause, named after the logician Alfred
Horn [16], is a clause that contains at most one
positive literal such as — pv— g v r. Horn clauses are
widely used in logic programming because their
satisfiability property can be solved by resolution
algorithm (an inference method for checking
whether the formula can be evaluated to true).

A Horn clause with no positive literal, such as
- pv—gq, which is equivalent to —{paag), is called
guery in Prolog and can be interpreted as ‘- p, ¢’ in
which #s value (true/false} to be proven by
resolution method. A clause that contains exactly
one positive literal such as r is called a fucr
representing a true statement, written in clausal form
as ‘r ;-7 in which the condition part is empty and
that means » is unconditionally true. Therefore, facts
are used to represent data. A Homn clause that
contains one positive literal and one or more

Issue 10, Volume 6, Cctober 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

negative literals such as — pv— gv r is called a
definite clause and such clause can equivalently
written as (pa g)—» r which in turn can be
represented as a Prolog rule as r - p, ¢. The symbol
“:-'is intended to mean ‘-, which is implication in
first-order logic (it stands for ‘if*), and the symbol
"’ represents the operator A (or "AND").

In Prolog, rules are used to define procedures
and a Prolog program is normally composed of facts
and rules. Running a Prolog program is nothing
more than posing queries to obtain true/false
answers. The advantages of wusing logic
programming are the flexible form of query posing
and the additional information regarding variable
instantiation obtained from the Prolog system once
the query is evaluated to be true.

The symbols p, g, r are called predicates in first-
order logic programming and they can be quantified
over variables such as r(X) - p(X,¥}, g(¥). This
clause has the same meaning as VX (p(X,¥) 4 g(})
~# r(X}).The scope of variables is within a clause
(delimit the end of clause with a period). Horn
clauses are thus the fundamental concept of logic
programming.

Higher-order predicate is a predicate in a clause
that can quantify over other predicate symbols [14],
[15]. As an example, hesides the rule r(X):- p(X,Y),
g(Y), if we are also given the following five Horn
clauses (or facts): p(l, 2). p(l. 3). p(5, 4. q(2).
q(4).

By asking the query: ?- r(X), we will get the
response as ‘frue’ and also the first instantiation
information as X=!. If we want to know all
instantiations that make »(X) to be true, we may ask
the query: ?- findall(X, r(X}, Answeri.We will get
the response: Answer = f1,5], which is a set of all
answers obtained from the predicate »(X} according
to the given facts. The predicate symbol findall
quantifies over the variables X, Answer, and the
predicate . The predicate findall is thus called a
higher-order predicate.

Meta-level programming is also another
powerful feature of Prolog. Meta-programs treat
other programs as their input data. Data and
program in Prolog take the same representational
format, i.e. clausal form. Therefore, it is very naturai
to write meta-program in Prolog.

The following example illustrates the procedure
map that takes a list of integers [1,2,3,4,5] and
another procedure square as its input arguments and
produce a list of square values as its output. I we
pose the query: ?- map(square, [1,2,3,4,3], L), then
we will get the answer: L = [1,4,9,16,25].

square(X, ¥j - ¥ is X*X

ISSN: 1790-0832

1721

Nittaya Kerdprasop, Kittisak Kerdprasop

map(ProcedureName, [H|T], [NewH|NewT]) :-
Procedure=.. [ProcedureName, H,Newfl],
call{Procedure),
map(ProcedureName, T, NewT).

map(_ {1, []).

4 Medical Decision Support System
Health information is normally distributive and
heterogencous. Hence, we design the medical
decision support systern (Figure 1) to include data
integration component at the top level to collect data
from distributed databases and also from documents
in text format. Data at this stage are to be stored in a
warehouse to support direct querying as well as
analysis with knowledge induction engine.

Knowledge base in our design stores both
induced knowledge, in which its significance has to
be evaluated by the domain expert, and background
knowledge encoded from consultation with human
experts. Knowledge inferring and reasoning is the
module interfacing with medical practitioners and
physicians at the front-end and accessing knowledge
base at the back-end.

Medical Decision Support System

Patient Tecords
Clinical data &
Other documents

. -
Medical Response |
practitioner

Figure 1. Knowledge induction component in the
medical decision support system

Issue 10, Volume 6, October 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

The process of knowledge discovery is complex
and iterative in its nature. We design the system to
be composed of two phases: knowledge induction
and knowledge inferring.

Knowledge induction is the back-end of the
system responsible for acquiring and discovering
new and useful knowledge. Usefulness is to be
validated at the final step by human experts.
Discovered knowledge is stored in the knowledge
base to be applied to solve new cases or create new
knowledge in the knowledge inferring phase, which
is the front-end of the proposed system.

The proposed system obtains input from
heterogeneous data sources. Such data can be
redundant, incomplete, and noisy. Therefore, the
knowledge-induction-and-evaiuation component
(Figure 2) has been designed to clean, transform,
and select only relevant data sample.

Knowledge-induction-and-evaluation

: Knowl_ec_lge
. Evaluator:

Knowledge
Integrator

Figure 2. Architecture of the knowledge-induction-
and-evaluation component

ISSN: 1790-0832

1722

Nittaya Kerdprasop, Kittisak Kerdprasop

l Target atmibite available? J

Deseription.
{unsupervised leamung)

{ Case-based or nm—:‘hute-bnsed?j

case-basad

nomuual / mum&

e e

Prediction
{supervised leamning’

target aftzibate?

Figure 3. Ontology for guiding mining-method

selection at the DM step

The DM component is for performing various
mining tasks, Currently, we design and implement
three different mining modules, i.e. classification,
association, and clustering. We adopt the ontology
concept at this step to guide the mining
methodology selection. A simple form of ontology
to select appropriate mining method is shown in
Figure 3.

The Post-DM component composed of two main
features: knowledge evaluator and knowledge
integrator. These features petform functionalities
aiming at a feasible knowledge deployment.
Knowledge evaluator involves evaluation, based on
corresponding measurement metrics, of the mining
results. Knowledge integrator examines the induced
patterns to remove redundant knowledge.

5 System Implementation

In this section, we present the Prolog coding of DM,
a major module for mining different kinds of
knowledge in the knowledge-induction-and
evaluation component. Prolog code is based on the
syntax of SWT Prolog (www.swi-prolog.org).

Data format. The data to be used by any mining
method of the DM module take the same format,
that is, as a Prolog file, As an illustration, we use the
allergy data of ten patients. The following data show
information of ten patienis suffering from allergy
(class = yes). The possible indicative symptoms are
sore throat, fever, swollen glands, congestion, and

Issue 10, Volume 6, Oclober 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

headache. Some patients had some of these
symptoms but are not suffering from allergy (class =
no). To induce the common symptoms (or model)
of allergy patients from this data, we have to save
this data set as a Prolog file (data.pl).

%% Data: Allergy diagnosis

% Patients’ symptoms and their possible vatues
attribute(soreThroat, fyes, no}).
attribute(fever, [yes, no}).
attribute(swollenGlands, [yes, no]).
attribute(congestion, [yes, no]).
attribute(headache, [yes, no}).
attribute(class, [yes, noj).

% data instances

instance(l, class=no, {soreThroat=yes, fever=yes,
swollenGlands=yes, congestion=yes,
headache=yes]).

instance(2, class=yes, [soreThroat=no, fever=no,
swollenGlands=no, congestion=yes,
headache=yes]).

instance(3, class=no, {soreThranyes, fever=yes,
swollenGlands=no, congestion=yes,
headache=nol).

instance(4, class=no, [soreThroat=yes, fever=no,
swollenGlands=yes, congestion=no,
headache=no]}.

mmstance(5, class=no, [soreThroat=no,
fever=yes, swollenGlands=no,
congestion=yes, headache=no]}.

mmstance(6, class=yes, [soreThroat=no, fever=no,
swollenGlands=no, congestion=yes,
headache=noJ).

instance(7, class=no, [soreThroat=no,
fever=no, swollenGlands~yes,
tongestion=no, headache=no}).

instance(8, class=yes, [soreThroat=yes, fever=no,
swollenGlands=no,
congestion=yes, headache=yes]).

instance(9, class=no, [soreThroat=no,
fever=yes, swollenGlands=no,
congestion=yes, headache=yes}).

instance(10, class=no, [soreThroat'—'yes,
fever=yes, swollenGlands=no,
congestion=yes, headache=yes]).

IGSN: 1790-0832

1723

Nittaya Kerdprasop, Kittisak Kerdprasop

Classification. The objective of classification is
to induce data model of two classes: positive (class
= yes) and negative (class=no). Binary classification
is a typical task in medical data mining. The code,
however, can be easily modified to classify data
with more than two classes. To induce the common
symptoms (or model) of patients suffering from
allergy, we use the decision-tree induction method
[18]. The process starts when the following main
module is invoked. Note that clauses containing
higher-order predicates are highlighted throughout
the given program code.

: ~include('data.pl’).
:-dynamic current_node/1,node/2 edge/3,

main :-
init(AllAter, BdgeList),
getNode(N), % get node number
create_edge(N,AllAttr, EdgeList),
print_model.

init(AllAttr, [root-nil/PB-NBJ) :-
retractall{node(,_)},
retractall(current_node(}),
retractali(edge{ ,_,),
assert{current_node(0)}),
findall(X, attribute(X,), AllAttr1),
delete(AllAtirl, class, AllAttr),
findall(X2,instance(X2,class=yes,),PB),
findall{(X3,instanee(X3,class=no,),NB).

getNode(X) -
current_node(X),
X1is ¥+1,
retractall(current_node(),
assert(current_node(X1)),

The main module calls the init procedure (or
precidate) to initialize the temporary knowledge
base by removing all information that might be
remained in the knowledge base and asserting the
root node of the tree. The node and edge structures
of our decision tree have the following formats:

node(nodelD, [PositiveCase]-{NegativeCase])

edge(ParentNode, Edgelabel, ChildNode)

lssue 10, Volume 6, October 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

The node structure is composed of two parts:
node-id and the mixture of positive and negative
cases in that node. The edge is a link from parent
node to child node. Each edge contains three pieces
of information; that is, id of parent node, the edge
iabel, and id of child node. Node id 0 is a special
node representing a root node and it links to node
number 1. The tree building starts with the
create_edge and create_nodes procedures.

create_edge(_,]} - L.

create_edge([J,) :- L

create_edge(N, AllAttr, Edgelist) :-
create_nodes(N, AllAttr, Edgelist).

create_nodes(_,_,[]) :- .

create_nodes(_,[],) :- L.

create_nodes(N, AllAttr, [H1-H2/PB-NB| T :-
getNode(N1), % get node number N1
assertledge(N,H1-H2,N1)},
assert(node(IN1,PB-NB)),

append(PB, NB, Allinst),

{({(PBN\==[], NB \==[]} .»
(cand_node(AHAttr, Alllnst, AllSplit),
best_attribute(AllSplit,

[V, MinAttr, Split]),
delete(AllAttr, MinAttr, Attr2),
create_edge{ N1, Attr2, Split))

; true),
create_nodes(N, AllAtty, T).

best._attribute(f], Min, Min).
best_attribute((H | T}, Min) :-
best_attribute(T, H, Min).
best_attribute(fH | T}, Min0, Min) :-
 Co &
Min0 = [VO, _, _],
(V<V0->Minl = H;
Minl = Min0),
best_attribute(T, Minl, Min).

% generate candidate decision node
cand_node((},_[:- &

- Nittaya: Kér:ciﬁrééééﬁ’:Kit_tisak Kerdprasop

cand_node({H { T],Ins, [[Val H SphtL] IAtt})
info(H, Ins, Val, SplitL}, : :
cand_node(1,Ins,Att).

% compuie Info of each candidate node

concat3(A,B,C.R) :-
atom_concat{A,B,R1),
atom_concat{R1,C,R).

infe(4, Curlnstl,, R, Split) :-
attribute{A,L),
maplist{ concat3(4,=), L, L1),
suminfo(l.1, CurlnstL, R, Split).

suminfo([f,_,0,[]).
suminfo([H | T[, CurInstl, R, [Split | ST}
AllBag=Curlnstl,
term_to_atom(FH 1, H),
findall(X1, (instance(X1,_,L.1),
member(X1, Curlnsth),
member(H1,1L1)}), BagGro),
findall(X2, (instance(X2,class=yes, L2},
member(X2, Curlnstl),
member{I11,1L.2)), BagPos),
findall(X3,instance(X3,class=no, L3},
member(X3, Curlnstly),
member(H1,L3)), BagNeg),
{(H11=H22) =H1,
length(AllBag, Nall),
length(BagGro, NGro),
length(BagPos, NPos),
length(BagNeg, NNeg),
Split = H11-H22/BagPos-BagNeg,
suminfo(T, CurlnstL, R1,ST),
(NPosis 0 *->L1 =0;
L1 is (fog(NPos/NGro)/log(2)}),
(0isNNeg*->L2 = 0;
L2 is (Jog(INNeg/MNGro)og(2))),
{ NGrois 0 > R=999;
R is (NGro/MNaly* (-(NPos/NGro)y*Li-
{(NNeg/NGro)*L2}+R1).

cand_node(_,[],{]).

ISSN: 1790-0832

The given source code does not provide detail for
print_model procedure. Interested readers are
suggested to simply add a rule print_model :- true.

1724 Issue 10, Volume 6, October 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Then run the program by calling predicate main.
Prolog will respond trre with no other information
because we simply add the always-true condition in
the print_model predicate. At this moment we can
view the tree model by calling listing(node} and
listing(edge) predicates. The results will be as
follows:

17?- main.

true.

27?- listing(node).

:- dynamic user:node/ 2.

user:node(l, [2, 6, 8]-[1, 3,4, 5,7, 9, 10]).
user:node(2, []-f1, 3, 5, 9, 10]).
usermode(3, [2, 6, 8]-[4, 7]).
user:node(4, {1-[4, 7]).

usermode(5, [2, 6, 8]-[]).

rue.

3 7- listing(edge).

:- dynamic user:edge/3.
user:edge(0, root-nil, 1).
user:edge(l, fever-yes, 2),
user:edge(1, fever-no, 3).
useredge(3, swollenGlands-yes, 4).
user:edge(3, swollenGlands-no, 5).

true.

The running results convey the following
information. From node number 1, the edge with
label fever-yes (representing attribute fever with a
value yes) links to node number 2. Node 1 contains
all ten cases of patients suffering and not suffering
from aliergy, whereas node 2 contains the
information []-[1,3,5,9,10] to infer none of positive
cases and five negative cases. Therefore, the results
in the above node and edge structures represent the
following data model:

class(allergy) - fever=no,
swollenGlands=no.

Association mining. We implement the
association mining module based on the algorithm
APRICRI [1]. The implementation shows only the
first pass of the algorithm; that is, the generation of
frequent itemsets. The second pass, which is the
generation of association rules from frequent

ISSN: 1790-0832

1725

Nittaya Kerdprasop, Kitlisak Kerdprasop

itemsets, can be easily extended from the given
code.

Main predicate of this module is -
associaiion_mining. Upon invocation, this predicate
obtains input data from the predicate input(Data),
and get the minimum support value through the
predicate min_support(¥). Then the main predicate
starts the process by making candidate and large
itemsets of length one, two, three, and so on
(through the predicates makeC!, makel, and
apriori _loop, respectively). All highlighted terms
are higher-order predicates. These predicates are
maplist, include, and serof,

The predicate maplist takes three arguments;
therefore, it may be written as maplist/3. This
predicate applies its first argument, which is also a
predicate, to each element of a list appeared in the
second argument. The result is a list in the third
argument.

The predicate include/3 takes another predicate
as its first argument and adds the result obtained
from the first argument to the list in second
argument. The result appears as a list in the third
argument. The predicate sefof/3 also works with
other predicate to collect each answer as a hist in its
third argument.

association, mining ;-
input(Data),
min_support{V),
makeC1(C),
makeL(C,L),
apriori_loop(L,1).

apriori_loop(L,N) :-
length(L) is 1,1
apriori_loop(L,N) :- N1 is N+1,
makeC(IN1,L,C),
makeL{C, Res),
apriori_loop(Res, N1).

makeC1l{Ans) - input(D),
allComb(1, ItemSet, Ans2),
maplist{countSS(D), Ans2, Ans).

makeC{N,ItemSet,Ans) ;- input(D),

allComb{2,ItemSet, Ansl),
maplist(flatten, Ansl, Ans2),

Issue 10, Volume 6, October 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

maplist(ist_to_ord_set, Ans2, Ans3),
list_to_set{Ans3,Ansd),
include(len(N}, Ans4, Ans5).
maplistlcountS3(D), Ans5, Ans).

%scan database to find; List+IN
makeL(C,Res) :- includeffilter, C, Ans),
maplist(head, Ans, Res).

filter{ +N) :- input{A),
length(4, I},
min_support(V),
N>=(V/100}*1.

head(H+_ H).

% arbitrary subset of the set containing
% given number of elements
comb(@, _, []).
comb(N, [XiT], [X|Comb]} :-
N=9,
N1 is N-1,
comb{N1,T,Comb).
comb(,[_| T},Combj} :-
N=0,
comb(N,T,Comb).

allComb(N,[,Ans) :-
setof(L, comb(N, I, L), Ans).

countSubset(A,[],0).

countSubset(4,[B | X],N} :-
not{subset(A,B)),
countSubset(A,X,N).

countSubset(A,[B 1 X],N) -
subset(A,B),
countSubset(A, X, N1),
Nis N1+1.

countSS5(SL,S,5+N) :-
countSubset(S,5L,N).

len(N, X} :- length(X,N1), N is N1

{S8N: 1780-0832

1726

Nittaya Kerdprasop, Kittisak Kerdprasop

Clustering. We implement the data clustering
based on k-means algorithm [12]. The main
predicate is clustering in which the number of
clusters (k) has to be specified and data are to be
included, The predicate makelnitCluster creates
initial % clusters with randomized & centroids, then
assign each data 1o the closest centroid through the
predicate assignPoint.

Note that the symbol ‘*°, such as those appear in
the predicate emax(Res, A*V) and freg(X, N*Y,
N*F), refers to the data format to represent
Attribute*¥Value; it does not mean multiplication. In
Prolog, numerical computation will occur in a
clause with the predicate ‘s, such as S7 is S+ [/ in
the reComputeCenter procedure.

The iteration step, repeatCompute predicate, re-
computes the new & centroids and then re-assign
each data point to the new closest centroid. Heration
stops when all data do not change their clusters. The
source code presented in the following works with
categorical data. For numerical or data with mixing
types, the distance measurement has to be modified.

clustering(X) :-
makeInitCluster(K, AliChast),
assignPoint(AllClust, Data, Start, AUPt),
01dClust=AllC}ust,
repeatCompute({, AllPt, OldClust).

makelInitCluster{l, AllClust):-
initClust(X, 1, AllClust).

initClust(X, L0, [} :-
Lo>K, !.
initClust(K, Lo, [LO*Li'T]) :-
instance(L0,_ L),
L1 is LO+1,
initChast(, L1, T).

assignPoint(_, U, M, () :-
M=1, L
assignPoint(AllClust, U, M, [M-V-A{T]) :-
maplist{freq(M), AllClust, Res),
cmax(Res, A*V),
M1is M+1,
assignPoint(AllClust, U, M1, T).

1ssue 10, Volume 6, October 2009

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

freq(X, N*Y, N*F) :-
instance(X, _, L1),
intersection(LL1, Y, I},
lengthl, F).

cmax(lL, A*V) .-
maplist(cvalue, L, L2),
max_list(1.2, V),
member(A*V, L), 1.

cvalue(*V, V).

reComputeCenter(®, S, AllPoint, []) :-
S=K L

reComputeCenter{X, 5, AllPoint, [S*New(|T)) :-

findall(P, membex(P-_-S, AllPoint), 7),
allPointAtAllAttr(Z, New(),

51 is §+1,

reComputeCenter(K, 51, AllPoint, T).

allPointAtAllALEr(AllP, NewClusters) :-
findall(AttName, (attribute(AttName,),
AttName\==class), AttNameL),
maplist(allPointfAlIP), AttNamel,
NewClusters).

allPoint(AHP, Att, A) -
findall(Att=V, (instance(X, _, K),
member{X, AlIP),
member(Att=V, K)}, 2},
maxFreq(Z, A*V).

maxFreq(l, A*V) :-
findall(X*C, (member(X,L), count(X,L,()), 2),
cmax{Z,A*V).

repeatCompute(K, AllPt, OldClust) :-
reComputeCenter(K,Start, AllPt, NewClus),
(OldClust=NewClus ->
writeln(-No-cluster-changes***End*");

(writeln(newClust-NewClus),
assignPoint(NewClus,Data,Start, AlIPt2),
writeln(allNewPoint-AllPt2),
repeatCompute(K, AllPt2, NewClus))).

ISSN: 1780-0832

1727

Nittaya Kerdprasop, Kittisak Kerdprasop

6 Conclusion

Huge amount of data collected by hospitals and
clinics are not yet turmned into useful knowledge due
to the lack of efficient analysis tools. We thus
propose a rapid prototyping of an automatic data-
mining {ool to induce knowledge from medical data.
The induced knowledge is to be evaluated and
integrated into the knowledge base of a medical
decision support system. Discovered knowledge
facilitates the reuse of knowledge base among
decision-support applications within organizations
that own heterogeneous clinical and health
databases. One obvious application of such
knowledge is to pre-process other data sets by
grouping it into focused subset containing only
relevant data instances.

Our implementation of knowledge induction
engines is based on the concept of higher-order
Hom clauses using the logic-programming
paradigm. Higher-order programming has been
originally appeared in functional languages and
soon be ubiquitous in several modern programming
languages such as Java. Higher order style of
programuning has shown the outstanding benefits of
code reuse and high level of abstraction.

This paper illustrates higher order programming
techniques in Prolog by means of higher-order
predicates such as maplist, findall, setoff, and
include. These predicates take other predicates as its
argument, With such expressive power of higher-
order predicates, program coding of the designed
systein is very concise as demonstrated in the paper.
Program conciseness contributes directly to program
verification and validation, which are important
issues in software engineering.

The powerful feature of meta-level programming
in Prolog facilitates the reuse of data-mining results
represented as rules to be flexibly applied as
conditional clauses in other applications. The
plausible extension of our current work is to add
constraints into the knowledge induction method in
order to limit the search space and therefore yield
useful and timely knowledge. We also plan to
extend our system to work with stream data that
normally occur in modern medical institutions.

Acknowledgements

This research has been funded by grants from the
National Research Council and the Thailand
Research Fund (TRF, grant number RMUS5080026).
Data Engineering and Knowledge Discovery

Issue 10, Volume 6, Oclober 2008

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

{DEKD) Research Unit has been fully supported by
Suranaree University of Technology.

References:

[1] R. Agrawal et al.,, Fast discovery of association
rules, In U. Fayyad, G.Piatetsky-Shapiro, P.
Smyth, and R.Uthurusamy (Eds.), 4dvances in
Knowledge Discovery and Data Mining, AAAT
Press, pp.307-328.

Y. Bedard et al.,, Integrating GIS components

with knowledge discovery technology for

envircnmental health decision support, fmt. J

Medical Informatics, Vol.70, 2003, pp.79-94,

C. Bojarczuk et al, A constrained-syntax

genetic programming system for discovering

classification rules: Application to medical data

sets, Artificial Intelligence in Medicine, Vol 30,

2004, pp.27-48.

E. German, A, Leibowitz, and Y. Shahar, An

architecture for linking medical decision-

support applications to clinical databases and
its evaluation, J Biomedical Informatics,

Vol.42, 2009, pp.203-218.

§S. Ghazavi and T. Liao, Medical data mining

by fuzzy modeling with selected features,

Artificial Intelligence in Medicine, Vol.43,

No.3, 2008, pp.195-206.

M. Huang, M. Chen, and S. Lee, Integrating

data mining with case-based reasoning for

chronic diseases prognosis and diagnosis,

Expert Systems with Applications, Vol.32,

2007, pp.856-867.

N. Hulse et al., Towards an on-demand peer

feedback system for a clinical knowledge base;

A case study with order sets, J Biomedical

Informatics, Vol.41, 2008, pp.152-164.

C.-P. Hung, H.J. Su, and S.-L. Yang,

Melancholia diagnosis based on GDS

evaluation and meridian energy measurement

using CMAC neural network approach, WSEAS

Transaciions on Information Science and

Applications, 6(3), March 2009, pp.500-509.

E. Kretschmann, W. Fleischmann, and R.

Apweiler, Automatic rule generation for

protein annotation with the C4.5 data mining

algorithm applied on SWISS-PROT,

Bioinformatics, Vol.17, No.10, 2001, pp.920-

926.

[10] P.-). Kwon, H. Kim, and U, Kim, A study on
the web-based intelligent self-diagnosis
medical system, Advances in Engineering
Software, Vol40, 2009, pp.402-406.

{111 C. Lin et al, A decision support system for
improving doctors” prescribing behavior,

[2]

(31

(4}

[6]

(71

(8]

1

ISSN: 1790-0832

1728

Nittaya Kerdprasop, Kittisak Kerdprasop

Expert Systems with Applications, Vol.36,
2009, pp.7975-7984.

[12] . MacQueen, Some methods for classification
and analysis of multivariate observations,
Proceedings of the 5" Berkeley Symp. on
Mathematical Statistics and Probability, vol.1,
pp.281-297.

{13] E. Mugambi et al., Polynomial-fuzzy decision
tree structures for classifying medical data,
Knowledge-Based System, Vol.17, No.2-4,
2004, pp.81-87.

[14] G. Nadathur and D. Miller, Higher-order Horn
clauses, J ACM, Vol.37, 1990, pp.777-814.

[15] L. Naish, Higher-order logic programming in
Prolog, Technical Report 96/2, Dept. Computer
Science, Univ. Melbourne, Australia, 1996,

{16] 8.-H. Nienhuys-Cheng and R.D. Wolf]
Foundations of Inductive Logic Programming,
Springer, 1997.

[17} B. Pandey and R.B. Mishra, Knowledge and
intelligent computing system in medicine,
Computers in Biclogy and Medicine, Vol.39,
2009, pp.215-230.

[18} JR. Quinlan, Induction of decision trees,
Machine Learning, Vol.1, 1986, pp.8i-106.

[19] O. Rijal et al., A relook at logistic regression
methods for the initial detection of lung
ailments using clinical data and chest
radiography, WSEAS Transactions on
Information Science and Applications, 6(9),
September 2009, pp.1503-1512.

[20] T. Wah and O. Sim, Development of a data
warchouse for lymphoma cancer diagnosis and
treatment decision support, WSEAS
Transactions on Information Science and
Applications, 6(3), March 2009, pp.530-543.

Issue 10, Volume 6, October 2609

20th International Workshop on Dratabase and Expert Systems Application

SUT-Miner: A Knowledge Mining and Managing System for Medical Databases

Kittisak Kerdprasop and Nittaya Kerdprasop
Data Engineering and Knowledge Discovery (DEKD) Rescarch Unit
School of Computer Engineering, Suranaree University of Technology
Nakhon Ratchasima, Thailand
{kerdpras, nittaya} @sut.ac.th

Abstract—Knowledge is 2 valuable asset to most organizations
as # substantial source to support better decisions. Recently
there has been an increasing interest in devising database and
data mining technologics to automatically induce knowledge
from biomedicine, clinical and health data. Most work had
adopted a single technique in the knowledge induction process.
We propose a knowledge mining system as an infegrated
envirorment storing a repertoire of tools for discovering strong
and wseful knowledge. We demonstrate the usefulness aspect
through the semi-automatic trigger creation for the medical
database. A rapid prototyping of association mining engine is
also presented in the paper.

Keywords-knowledge mining; medical datahases; triggers;
association ricles

L INTRODUCTION

The term knowledge assets refer to any organizational
intangible possessions related to knowledge such as know-
how, expertise, intellectual property. In clinical companies
and computerized heaithcare applications, knowledge assets
include order sets, drug-drug interaction rules, guidelines for
practitioners, and clinical protocels [11]. Knowledge assets
can be stored in data repositories either in implicit or explicit
form. Explicit knowledge can be managed through the
existing tools available in the current database technology.
Implicit knowledge, on the contrary, is harder to achieve and
reirieve.

Implicit knowledge acquisition can be achieved through
the availability of the knowledge-mining system. Knowledge
mining is the discovery of hidden knowledge stored possibly
in various forms and places in farge data repositories. In
health and medical domains, knowledge has been discovered
in different forms such as association, classification rules,
clustering, trend or temporal pattern analysis {22]. The
discovered knowledge facilitates expert decision support,
diagnosis and prediction.

In this paper we present the design and implementation
of a knowledge-mining system named SUT-Miner to support
a high-level decision in medical domains. The system is also
applicable 1o any domain that requires a knowledge-based
decision support. A rapid prototyping of the proposed system
is provided in a declarative style using second-order Horn
clauses [15]. The intuitive idea of owr design and
implementation is that for such a complicated knowledge-
based system program coding should be done declaratively
at a high level to alleviate the burden of programmers.

1529-4188/09 525.00© 2009 {EEE
DOI 10.110%/DEXA.2009.24

318

The proposed system has been tested with diabetes.
database containing 768 cases to induce association rules:
from the underlying data instances. Application of the
induced knowledge on creating database triggers is also
demonstrated.

The outline of this paper is as follows. Section 2 reviews:
related work. Section 3 is the architecture of SUT-Miner..
Section 4 shows the implementation of association mining
engine. Section 5 demonstrates running example on diabetes.
database. Section 6 illustrates the application of the induced:
association rules. Section 7 concludes the paper and:
discusses our future research directions.

II. RELATED WORK

In recent years we have witnessed increasing number of:
applications mining knowledge from biomedicine, clinical.
and health data. Roddick et al [19] discussed the two:
categories of mining techniques applied over medical data:;
explanatory and exploratory. Explanatory mining refers o
techniques that are used for the purpose of confirmation or:
making decisions. Exploratory mining is data investigation
normally done at an early stage of data analysis in which an”
exact mining objective has not yet been set,

Explenatory mining in medical data has been extensively
studied in the past decade employing various learning.
techniques. Bojarczuk et al [4] applied genetic programming -
method to discover classification rules from medical data :
sets. Thongkam et al [24] studied breast cancer survivability .
using AdaBoost algorithms. Ghazavi and Liao [9) proposed .
the idea of fuzzy modeling on selected features medical data. ;
Huang et al [10] introduced a system to apply mining :
techniques to discover rules from health examination data. -
Then they employed a case-based reasoning to support the -
chronic disease diagnosis and treatments. The recent work of -
Ziuang et al [26] also combined mining with case-based
reasoning, but applied a different mining method.
Biomedical discovery support systems are recently proposed °
by a number of researchers [3, 7]. Some work [21] extended .
medical databases to the level of data warehouses. |

Exploratory, as oppose to explanatory, is rarely applied
to medical domains. Among the rare cases, Nguyen and
Kawasaki [16] introduced knowledge visualization in the *
study of hepatitis patients. Paluniappan and Ling [18] applicd -
the functionality of OLAP teols to improve visualization. :

It can be seen from the literature that most medical
ktnowledge discovery systems have applied only some
mining techniques such as classification rules mining,

£ cn'r%eguter
i
= psoctety

iation mining to discover hidden knowledge. We, on
ontrary, design a knowledge-mining system aiming at
ding a suite of tools to facilitate users and medical
ctitioners on discovering different kinds of knowledge
m their data and background knowledge repositories. The
yment of induced knowledge has also been
nonstrated through the creation of database triggers.
Friggers are a major concept of active databases, which
end traditional database systems with the mechanism to
pond automatically to some specific events. Upon the
urrence of the specified event, the rule condition is
luated. the condition is satisfied, then some actions are
formed. Although triggers are important database feature
consistency monitering, their deployment is still limited
to the fact that creating complex trigger rules is not an
y task {6, 13). Tools and environments to aid users and
abase programmers are certainiy needed.

In medical domain the employment of triggers to achieve
ve behavior is quite rare. Most of the proposed methods
for detecting static events such as the discovery of
onships that suggest risks of adverse events in patient
epeords [17, 23], detection of dependency patterns of process
quences for curing brain stroke patients [14], the
eneration of rules to annotated protein data in medical
base [12], or the exploration of environmental health
ata [3]. Our work differs from those appeared in the
ature in that we propose to employ knowledge discovery
chniques to semi-automatically create trigger rules. The
ilization of our proposed method is to increase consistency
medical database. Any database modification events
olating constraints will be alerted and undone. The system
! esigned by Agrawal and Johnson [I} is also to support

HI. SYSTEM ARCHITECTURE

i~ The process of knowledge mining is complex and
“Herative in jts nature. We design the system (Fig. 1) to be
mposed of two phases: knowledge induction and
owledge inferring.

: Knowledge induction is the back-end of the system
sponsible for acquiring and discovering new and useful
rnowledge. Usefulness is to be validated at the final step by
aman experts. Discovered knowledge is stored in the
wowledge base to be applied to solve new cases or create
w knowledge in the knowledge-inferring phase which is
e front-end of the proposed system.

The system obtains input from heterogeneous sources.
erefore, redundancy, incompleteness, noise can be
pected from the input data. The Pre-DM component has
:been designed to clean, transform the data format, and select
:ﬂnly relevant data. The DM component is for performing
rious mining tasks. Currently, we design and implement
ree different mining engines, i.e. classification, association,
d clustering,

The Post-DM component composed of two main
deatures: knowledge evaluator and know[edge integrator.
These features perform functionality aiming at a feasible

knowledge deployment, which is important for the
applications in medical diagnosis and predicting. Knowledge
evaluator involves evaluation, based on corresponding
measurement metrics, of the mining results. Knowledge
integrator examines the induced patterns to remove
redundant knowledge. Ontology has also been applied at this
step to provide essential semantics regarding the domain
problems.

SUT-Miner

L R e S I R T e)

Pre.DM

-

Heterogenzons
data senrces

Trevavvnivant

seraaaradsas

‘0l.I-.l-.l.Ilo..tr—‘[ntpitiillill.lcb
nomulized data | 1

Vebunsenmannanand

diseovered Inowledge

¢ Enowledge
: Evnlener

Koowiedze |
Integrator

I\ne\\[edgv: mfﬁn‘mg phasc

Fati
- Solutions

An architecture of SUT-Miner.

Figure 1.

IV, IMPLEMENTATION

Cur implemeniation is based on the concept of second-
order Horn clauses, which is an extension of first-order logic
{FOL) to be more expressive. FOL has been extensively used
in intelligent systems [25] as an inference mechanism to
deduce new facts. A classic example is that given a general
rule that all men are mortal ¥ Man(x) => Mortal(x) and a
known fact that Socretes is a man Man(Socrefes), we can
deduce new fact that Mortal{Socretes).

Despite its successful application to many computational
problems such as natural language processing, FOL poses a
restriction on the type of variables appearing in
quantifications to exclude predicates. Second-order logic
[15], ont the other hand, allows variables to quantify over
predicates. With such relaxation, second-order logic
facilitates the implementation of a knowledge-intensive
system that takes other knowledge as its input in a closed
form.

assocfation_mining -
input{Data),
min_support(V),
makeC1{C), makeL(C, L),
apriori_ioop(L,1).
apriori_loop(L, N) -
length(L)is 1, .
apriori_loop(L, N) :-
M1 is N+1,
makeC{N1, L, C},
makel(C, Res),
apriori_loop(Res, N1).
makaC1{Ans) :~
input{D),
allComb(1, ltemSet, Ans2),
maplist(countSS(D), Ans2, Ans).
makeC(N, ltemSet, Ang)
input(D),
allComb{(2,HemSet, Ans1),
maplist{fiatten, Ans1, Ans2), maplist(list_fo_ord_set
Ans2, Ans3) , list_to_set(Ans3, Ansd),
include(len{N}, Ans4, Ans5), maplist{countSS(D),
AnsS, Ans).

T

%scan database to find: List+N
maket (C,Res) :- include(filter, C, Ans),
maplisifhead, Ans, Res).
filter(_+N} - input{A),
length(A, b,

min_support(V),

N=={V/100)*L
head(H+_, H). % The sign + represents pattern, not addition

% arbitrary subset of the set containing given no. of elements
comb(0, _, 1.
comb(N, [X{ T}, (X[Comb}) - N> 0, N1 is N-1,
comb(N1, T, Comb).
comb(N, [_] 7], Comb} :- N >0,
comb(N, T, Comb).
aliComb(N, §, Ans) :- setof(L, comb(N, 1, L), Ans).
countSubset(A, [, 0).
countSubset(A, [B | X], N} :- not{subset(A, B)),
countSubset{A, X, N).
countSubset(A, [BEX],N) - subset(A, B),
countSubset(A, X, N1),
Nis N1+1.
countS3(Sl., S, 3+N) - countSubsel(S, SL, N).
len(N, X} - length{X, N1}, Nis N1.

Figure 2. Asscciation mining in SUT-Mirer implemented with second-
order logic using Prolog,

320

In Fig. 2, a second-order logic-based implementation of
association rule mining [2] has been demonstrated. The
coding is based on the syntax of SWI prolog (www.swi.
prolog.org). The main module of this program is (ha
predicate association_mining. The predicate apriori ' loop
lmplemcnts the Apriori algorithm [2] with the spec:ﬁed.
minimum support value V. The first candidate set-of
association is to be found through the predicate makeC1,’
which the frequently occurred ones are discovered by {
predicate makel.. The next candidate sets are to be generated
by the predicate makeC.

From our coding, the SOL concept has been utilized
through the predicates maplist, include, and setof. The use :
these second-order Horn clauses contributes significantly to
program conciseness and the ease of program verification, :

V. EXPERIMENTATION

We have tested our association mining implementation:
with the diabetes dataset taken from the UCI database
(hitps/fwww.ics.uci.edw/~mlearn/MLRepository. html). This
medical data set is a collection of 768 observatians on fema
patients investigating whether the patien: shows signs of
diabetes (class=1} or not (class=0) according to World
Health Organization criteria. Each patient's record contairis
eight attributes: number of times pregnant, plasma glucosé
concentration (a two hours in an oral glucose tolerance test),
diastolic blood pressure, triceps skin fold thickness (mm.);
hour serum insulin, body mass index, diabetes pedigre
function, and age. The best five accurate association rules ar
shown in Fig. 3. Each rule is annotated with the number 0
cases supporting the induced association.

7. IF triceps-thickness=(0-2.91

AND diabeles-pedigres-in=(0-0.3122]"
THEN 2Hr-serum-insulin=(0-84.6]

(support= 128 cases ouf of 76!
2 IF iriceps-thickness={0-9.91 ;
AND dinbetes-pedigree-fn="(0-0.3122]' AND class=t
THEN ZHr-serum-insufin="(0-84.6]'
(support= 83 cases oul of 76t
3. IF diastolic-pressure=173.2-85.4]"
AND triceps-thickness=10-9.9]'

THEN ZHr-serum-insulin={0-84.6]"

(suppori= 75 cases oul of .76‘5‘

4. IF times-pregnant=1{3-5]'
AND triceps-thickness=10-9.8}'
THEN 2Hr-serurn-insulin="(0-84.6]' _
(stpporf= 52 cases out of 768,
5. IF diastolic-pressure=173.2-85.4) .
AND triceps-thickness=10-9.9]' AND class=0

THEN ZFir-serum-insufin=(0-84.6}"

(support= 48 cases ouf of 768,

Figure 3. Asseciation rules that are mined from the diabetes database.

VI. KNOWLEDGE DEPLOYMENT

= Wedesign a framework (Fig. 4) to add active behavior to
. the medical database through the induced trigger rules. There
are three major components in our model: mining, trigger
generation and conflict resolution components. Mining
omponent induces knowledge from the database contents
and presents as rules: association and classification rules.
‘The data repository cantains both base data and trigger rules.

Trigger generation component is responsible for converting
induced classification/association rules into trigger format
‘then stores generated triggers in the repository. In case of
trigger rule application and rule conflict occurs, conflict
resolution component will handle the situation.

: We demonstrate the application of our proposed
= framework towards database consistency monitoring through
' the following example.

erExamp!e Trigger generation on diabetes database.
From the first association rule in Fig. 3,

IF triceps-itickness=10-8 9]
AND diabetes-pedigree-fn="10-0.3 122}
THEN ZHr-serum-insulin="(0-84.6]"
the database trigger can be created as follows:

CREATE TRIGGER rule_ 1 ON diabetes FOR UPDATE,
INSERT
ASTF (SELECT COUNT() FROM diabetes
WHERE (triceps-thickness = ‘(0-9.9F)
and {diabetes-pedigree-fn= (0-0.31227)
and (ZHr-serum-insulin <> “(0-84.6])) > 0
BEGIN

RAISERROR ('soft constraint violation, please verify’):
END

This trigger will raise a warning message upon any
c!atabase updates that violates the rule “any female patient
with triceps thickness in the range 0-9.9 mm and diabetes
_pedigree function in the range 0-0.3122, 2-hour serum
_nsulin has to be in the rage 0-84.6”. Any attempt to insert
violating data will fire this trigger to draw attention flom
database administrator. Such trigger rule is thus deployed as
atool to support database integrity checking.

mduced knm vledea

Incorporating induced knowledge as a set of trigger rules in
medical databases.

Figure 4.

32

VH. CONCLUSION AND DISCUSSION

We have proposed the design and implementation of
SUT-Miner, a knowledge-mining system. The system is
intended to support knowledge acquisition in medical data
and other domains that require new knowledge to support
better decisions. The proposed knowledge discovery
environment is composed of tools and methods suitable for
various kinds of mining such as data classification,
¢lustering, association-rule mining.

The implementation of the proposed system has been
done based on the concept of second-order logic, which is an
extension of the well-known first-order logic. With the
expressive power of higher-order logic, program coding of
the designed system is very concise as demonstrated in the
paper. Program conciseness contributes directly to program
verification and validation, which are important issues in
software engineering. The declarative style of programming
also eases the future extension of our system to cover the
concepts of higher-order mining {20] and constraint
programming [8] that should naturally be applied to the task
of knowledge mining,

We also provide a framework to semi-automatically
generate (frigger rules from current database contents by
means of association mining technique. Induced trigger
rules, in addition to predefined triggers, can be viewed as
supplementary constraints to help increasing database
consistency. Our proposed framework is thus a preliminary
design of active medical databases.

This work is a rapid prototype of our big project, We
plan to further our implementation on the knowledge
inferring part and also test the knowledge induction
component on various medical data sets. The induced
knowledge is also to be verified by the doctors.

ACKNOWLEDGMENT

This research has been funded by grant from the National
Research Council. The first author has been supported by a
grant from the Thailand Research Fund (TRF, grant number
RMUS080026). The Data Engineering and Knowledge
Discovery (DEKD) Research Unit is fully supported by the
research grants from Suranaree University of Technology
(SUT), in which our system has been named after.

REFERENCES

“Securirg electronic health records
. J Medical

[t] R. Agrawal and C. Johnson,
without impeding the ffow of information”,

Informatics, 76, 2007, pp.471-479.

R. Agrawal and R. Srikant, “Fast algorithm for mining association
rules”, Proc. 20" VLDB, 1994, pp.487-499.

Y. Bedard et al, “Integrating GIS components with knowledge
discovery technelogy for environmentat health decision support™, Inz.
J Medical informatics, 70, 2003, pp.79-94,

C. Bojarczuk, H. Lopez, A. Freitas, and E. Michalkiewicz, “A
constrained-syntax genetic programuming system for discovering
classification mules: Application to medical data sets”, Artificial
Intelligence in Medicine, 30, 2004, pp.27-48.

C. Bratsas, V. Koutkias, E. Kaimakamis, P. Bamidis, G. Pangalos,
and N. Maglaveras, “KnowBaSICS-M: An ontology-based system for
semantic management of medical problems and computerised

2
31

[4]

[5}

