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in the framework of quantum field theory. The experiments confirm that the
appearance of A(1405) resonance is a superposition of the two states, 73 and
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CHAPTER 1

INTRODUCTION

The study of quasi-bound K-nuclear states has become a hot subject in
nuclear physics. Recently, definite information about the strong interaction level
shifts of the kaonic hydrogen atom was obtained from the experiment KpX at KEK
(Iwasaki et al., 1997; Ito et al., 1998) which indicates a repulsive-type for the 1s
orbit. For heavier nuclei (Friedman et al., 1993; Batty et al., 1997), reanalyzed all
of the existing data of K atoms, including a density-dependent term for the KN
scattering length, and deduced optical potential with a strongly attractive real
part and also a strongly absorptive imaginary part. The reason for such a highly
attractive potential, despite the fact that the strong interaction shifts appear to
be negative, comes from the assertion that the A(1405) state is not an elementary
particle, but the bound state of K + N. From such a potential one expects deeply
bound nuclear states in heavier nuclei, but their widths are estimated to be on the
order of 100 MeV or if their potential parameters are strictly applied, and thus
such nuclear states may not be identified as discrete state.

Calculations of strong binding of K in a nuclear medium based on chiral
SU(3) dynamics have a long history (Brown et al., 1994; Waas et al., 1996;
Waas and Weise, 1997; Waas et al., 1997; Lutz and Korpa, 2002; Lutz et al.,
2008). The recent interest in this topic was prompted by Akaishi and Yamazaki
(Brown et al., 1994; Lutz et al., 2008; Akaishi and Yamazaki, 2002) who used
a simple potential model to calculate bound states of few-body systems such as

K~ pp, K pn, and K~ pnn. However, it is noted that the predictive power of all



such investigations is limited because the interactions are constrained just by the
scattering processes. The energy range of the KN interaction relevant for deeply
bound kaonic nuclei lies far below the KN threshold. For variational calculations
of few-body systems involving anti-kaons, one must use a realistic effective KN
interaction, particularly in the form of a potential. This potential is in general
complex and energy dependent. It must be constrained to reproduce the scattering
amplitude in vacuum. Also it must encode the full coupled-channel dynamics. A
number of attempts in this direction, using a schematic effective interaction, have
been reported in (Dote et al., 2004; Weise, 2007).

However, we have found that all versions of the K N interactions give unrea-
sonably large decay widths for the kaonic hydrogen atom. We would like to derive
an effective interaction which reproduce not only the KN scattering amplitudes
but also the kaonic hydrogen atom data. This work is just the first step of the
whole project with which such a potential is expected to be worked out.

This chapter is devoted to the observation of A(1405) and the KN states.
The state is mainly the bound state of a K~ and a proton (p) related to their quark
configurations. The KN systems couples to a large number of other channels due
to the strong interaction at small distances. However, for processes at low energies
close to the KN mass threshold, one may consider only the 73 and 7A channels.
In our study, we neglect the n3 and nA channels since the couplings are believed

weak.

1.1 The observation of A(1405) resonances

The case of the A(1405) is one of the examples of dynamically generated
resonances which was already described within scattering theory with coupled

channels (Jones et al., 1977). Recently the advent of nonperturbative methods



with input from chiral Lagrangian has set of original idea on firmer grounds (Kaiser
et al., 1995; Kaiser et al., 1997; Oller and Meissner, 2001; Oset and Ramos,
1998; Jido et al., 2002; Garcia-Recio et al., 2003; Garcia-Recio et al., 2004). The
A(1405) resonance appearing about 30 MeV below the KN threshold plays an
important key role in the KN interaction and related processes, and is a subject
to find out its nature, whether it is a genuine three quarks system (Isgur and Karl,
1978; Kimura et al., 2000), or a molecular-like meson-baryon bound state where
chiral dynamics plays an important role. The recent discovery of the pentaquark
(Nakano et al., 2003), should stimulate again on the nature of the A(1405) since the
existence of that exotic state forces an interpretation of that baryon with at least
five quarks (Hosaka, 2003; Jaffe and Wilczek, 2003), although molecular structures
with KN (heptaquark) have also been investigated (Bicudo and Marques, 2004;
Llanes-Estrada et al., 2004). Within the chiral approach (Kaiser et al., 1995;
Kaiser et al., 1997; Oller and Meissner, 2001; Oset and Ramos, 1998; Jido et al.,
2002; Garcia-Recio et al., 2003; Garcia-Recio et al., 2004), the A(1405) stands as a
quasi-bound state of meson baryon, mostly KN and 7%, which is also equivalent
to five quarks in the quark picture. The existence of the pentaquark makes more
easily acceptable the idea of other pentaquark non-exotic state and vice versa.
Explorations on the nature of the A(1405) will provide more clues to understand
the nonperturbative nature of the QCD dynamics.

With this chiral unitary approach (Nachera et al., 1999), the photoproduc-
tion of the A(1405) on the proton and nuclei was calculated and found different
shapes of X invariant mass distributions in different 73 charge channels, which
was lately experimentally confirmed (Ahn and collaboration, 2003), and gave sup-
port to the assumption that the A(1405) is a meson baryon loosely bound state.

Additionally, it was found (Jido et al., 2003) that the SU(3) symmetry breaking



leads to two poles of K N scattering matrix that might be responsible for the nomi-
nal A(1405), one dominantly coupling to 7% and the other to K N, and these poles
are the mixing of the SU(3) singlet and octet. It was concluded that there are two
A(1405) resonances and the experimentally observed one is a superposition of the
two states. However, whether the two poles really exist in the A(1405) region are

still unsolved experimentally.

1.2 Coupled-channel of KN systems

The appearance of A(1405) resonances, related to the experimental, confirm
that these resonances are superposition of the two states. These two resonances
couple differently to 7% and K N states and, as a consequence, the properties of
the A(1405) (mass and width) will depend on the particular reaction employed to
produce it. KN scattering in the I = 0 channel is dominated by the presence of

the A(1405), located only 28 MeV below the KN threshold.

1332 MeV 1433 MeV
: :
X | v
A(1403)

Figure 1.1 Threshold energy spectrum of K N scattering at isospin equal to zero.

In 1960s (Dalitz et al., 1967), the A(1405) was obtained as a KN quasi-
bound state in a potential model (Schrédinger equation). The study of KN
scattering has been revisited more recently from the ideas of chiral Lagrangian.
However, the presence of a resonance makes charged conjugation parity and time
reversal (CPT) not applicable, i.e., non-perturbative techniques implementing uni-

tarization in coupled channels are mandatory.



The dynamically resonances can be generated by coupled-channel of KN
systems. To understand the coupled-channel interaction of KN systems, we will
consider the particle properties of kaon and baryon.

Considering to the quark configurations of anti-kaon with J* =07, I = %

Y

and S = —1 and nucleon with JZ = %Jr, I=1 and S =0
_ K°(ds
[ e
K~ (us)
p(uud
[ vt
n(udd)

The KN systems can generate A(1405) with the following diagram.

K~ r
C T u w
F 3 | I r 3 F 3
j— E—
< 5 u D AY
]
s U u d
K~ P

Figure 1.2 Quark diagram for K~ p — K~ p process.

The strong interaction at lowest energies can be studied in a direct way in
simple hadronic atoms like kaonic hydrogen or kaonic helium atoms. In these atoms
the strong interaction between anti-kaon and nucleon (K N) leads to an energy shift
and an increased width due to the reduced lifetime and nuclear absorption.

The present theory anticipates that the K N interaction is strongly attrac-
tive below threshold due to an s-wave resonance with the mass of A(1405) about

28 MeV below threshold. This resonance is an importance for the existence of



kaonic nuclear clusters.

This work is a part of the whole project which try to calculate a potential
which would reproduce the low energy K N scattering data, kaonic hydrogen atom
data, and transition amplitudes predicted by other theoretical approaches. This
potential is needed when we expand our calculations to multiple particles system.

The thesis is organized as follows. In Chapter II we derive the dynamical
Lippmann-Schwinger equation for radial outgoing scattered wave function. In
Chapter III we construct our numerical procedure. In Chapter IV we describe the
coupled-channel interaction. Finally, in Chapter V contains results for the total

cross section of KN channels, discussions, and conclusions.



CHAPTER 11
LIPPMANN-SCHWINGER EQUATION FOR

KN SYSTEMS

This chapter we describe the analytical procedure to solve our dynamical
equations. We start from the scattering process of free particle with the Lippmann-
Schwinger equation. In this work we study the s-wave low energy K N interactions.
A reliable and realistic starting point for a theory of low energy KN interac-
tions is the coupled-channel approach based on the chiral SU(3) meson-baryon
effective Lagrangian (Kaiser et al., 1995), and subsequently expanded by several
groups (Oset and Ramos, 1998; Oller and Meissner, 2001; Lutz and Kolomeitsev,
2002). Unitarization of the chiral interaction correctly reproduces the KN scat-
tering observables and provides a framework for generating the A(1405) resonance
dynamically as a KN quasi-bound state embedded in the strongly interacting 7%
continuum. This approach is successful over a wide range of energies and a variety
of channels. But the detail of what chiral SU(3) dynamics tells us about the KN
interactions below threshold would be investigated are needed. Because this inter-
action can then be used in K~ -nuclear few-body calculations (Dote and Weise,
2007). Finally, the derived Lippmann-Schwinger equation must be reduced into

only the radial part of the dynamical equations.



2.1 Derivative of Lippmann-Schwinger equation

There are several methods can be used to study the KN systems. Since,
the A(1405) is generated from KN subthreshold, this enables us to consider the
scattering method. Thus, we have to solve the scattering equation by using the
integral form of the Schrodinger’s equation, known as Lippmann-Schwinger equa-
tion.

Starting from the basic Schrodinger equation, we have

(E - Ho)l/Ja = Va5¢6> (21)

where Hj is the kinetic energy operator of free particles (p?/2m) consisting of a
momentum p and a mass m that can be solved exactly, E is an energy eigenvalue
of Hy, Vs is the interaction between the initial state (8) and the final state («),
1o is an eigenfunction of the final state, and 13 is an eigenfunction of the initial
state.

From a time independent formulation of a scattering process, assuming that

the harmiltonian can be written as

H=H,+V, (2.2)

where V' is the perturbation operator.

The transformation from a differential equation to an integral equation is

1

[¥a) = 162) + T

Vas [¥8) (2.3)

where |¢,) is the energy eigenket of H,. However, the operator £ — Hj is a

singularity, so we can circumvent by adding a small complex term (i€) to the



denominator.
In order to solve this equation explicitly, let us translate it into a ket equa-
tion independent of particular representations. By taking the inner product with

the bra (7], we obtain

1

(F ) = (F160) + 1l 55

Vag [¥5) - (2.4)

Considering the second term in the right hand side of the equation Eq.

(2.4), one can rewrite as the following

1 1
(] mvaﬁ |ths) = (7] T _Hytie |71) (71| Vag [72) (P2| ¥g)
1
= (7] T _Hytie |71) Vag(F1)0 (71 — 72) (73| ¥g)
1 y y y
= (7] E_Hotic 7") Vg (7 )ba(7), (2.5)

and then write an operator of the bra-ket notation in term of inverted

N S
E—Hg+ie
Green’s function. Thus, the formal solution of the Lippmann-Schwinger equation

for outgoing scattered wave can takes the form

$al7) = 6a(?) + / 7 G, 7 Va7 Vs (), (2.6)

where G(7,7') is the Green’s function.
In our system the potential is a spherically symmetric. The scattering state,
of course, can be expanded in terms of spherical harmonics and a radial part. To

do this, we first expand the scattering wave functions in the spherical harmonics
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as

W) = (2/m)2 Y0 Ritg (b, r) Vi (k)Y (7). (2.7)

Wss'JM

For the outgoing scattered (final) state, the wave function becomes

Vo) = (2/m)? Y Ry (ke )Y (R)YE ()i

Wss' JM
= (2/m)'? Yy VM (YL (7 Ry (Kay ). (2.8)

'ss' JM

For the incoming particle (initial) state, the wave function becomes

wa(™) = 2/m)V2 Y Ry (R, )Y (k)Y ()i

'ss' JM

= (2/m)Y/? YIMABYYIM (7#)iE RO (kg 1), 2.9
U's! s B8, T

1'ss' IM

where Rjlg (K, r) is the radial functions which generalize the functions R;(k,r).

Furthermore we write the Green’s function as (See in Appendix A)

. 2m 1 6il§:|7“'—F’|

2m

JMls

with
gk, 7, 7) = —ikji(kr )R (krs), (2.11)

where j; is the spherical Bessel functions, and h; is the Hankel functions.
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We may then decompose the initial free wave by

[e.o]

Gk, 5,my,7) = (2/m)/2 Y Z i (kar) Vi ()Xo, Yim (F)Xomer  (2.12)
=0 m=—1
where X, is the spinor and
Yim (P)Xsm, = > C(Imy, smy, JM)Y;IM (7). (2.13)
JM

Substituting Eq. (2.13) into Eq. (2.12), we get

Gk, 5,my,7) = (2/m)/2 Y Z i (kar )Y (B)Xs.m.
=0 m=—1
x> C(lmy, smy, JM)YIM (), (2.14)
JM
where
+1 )
YiIM(E) = C(lmy, smy, JM) Yo (k)X am, (2.15)
m=—I
thus
+I )
VI (k) = Y Cllmy, smag, JM)Y (k)X s.m. (2.16)
m=-—I

Substituting Eq. (2.16) into Eq. (2.14), we get

Gal(k,7) = (2/m)/> YN i Gilkar) VM (F)YIM (R)

ls JM

2/7’(’ 1/2222 ,]l k? T l’ / )YJM*(]{;)(SZZ/(sss/. (217)

ss" JM
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Consider the second term in the right hand side of the Eq. (2.6), we get

[ TG Waal ()
/ds /Z a k’a,T 7“ YJM*(A,)YJM( )Vag(F/)(Q/W)l/z

JMls

X Z Rl,,ls kegr Y (k) Y/ (7
'ss' JM

:/ EF Y YY) g (ks 7, 1) Vg (F 1) (2 ) 2

x> Ry (ker YV (F) Y (k)i
'ss' JM
_ / CF Y () 2 (a7, 7' )Vag (7 ) (2 7)Y
< Ry (et Y ()Y (ki

'ss' JM

co w 27
= / / / % sin g (Ko, 7, r’)‘/lg‘f,s, (7")(2/m)"/?
000

x> Ry (ke )M (R)YIM ()i dgdd’

ss' JM

/ r2dr’ gy (ke r, ) V20 (F7)(2)7) V2

0

XY Ry (kar) ol Y (7)Y, M (k)i
'ss' JM

P2 g (ko r") D Vit i (r)(2/m)2

l// 1"

<N S R (Rsr )Y (7)Y (il
'ss' JM
o0

_ / r2dr gk, 1) D Vi () 2/ 7)1
0

l//S//

<Y R (k)Y ()Y (R)i”

'ss' JM
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2/7T 1/2 Z l’ / YJM*(]%)Z-ZI

'ss' JM

<> / R Vi VR st (218)

l// 1

We now substituting Eq. (2.8), (2.17), and (2.18) in the Lippmann-
Schwinger equation Eq. (2.6) to obtain the set of coupled integral equations which
become the equation of radial scattered wave functions of coupled-channel as fol-

lows

Rlo’é:;’],ls (ka?r) =J (k T)(Saa()(sll/dss’

—l—Z/dr’r’le ko, r')‘flfﬁ’l‘,{s,,(r')Rﬁ,’;],,,ls(kg,r’), (2.19)
Ve

where o and ag are final and initial state of the system, [(I') and s(s") are total
orbital angular momentum and spin of initial (final) states, J is the total angular
momentum, k, and ks are the momenta of final state and initial state respectively,
g1 is the radial component of the Green’s function G(k,7, ), and Vl,of”l‘f/s,, is the
interaction term between the initial state (3) and the final state («).

In the next chapter, the radial Lippmann-Schwinger of the outgoing scat-

tered wave function will be calculated by the numerical method.



CHAPTER III
NUMERICAL METHOD OF RADIAL PART

LIPPMANN-SCHWINGER EQUATION

This chapter we describe the numerical procedure to solve our dynami-
cal equations based on the chiral SU(3) symmetry. The s-wave meson-baryon
interaction is studied at S = —1 sector by means of a coupled-channel Lippmann-

Schwinger equation. This method can describe the A(1405) resonance successfully.

3.1 The numerical methods

The calculations starting from the radial part of the out scattered wave
equation Eq. (2.19). We consider the case of s-wave with [ =’ = 0 and, s = s’ = 0.
For the total orbital angular momentum (1) equal to zero, the coupling state of
the radial part s-wave function can be simply solved as a hard sphere scattering.

Suppose that V(r) — 0 at » > R, so the radial part can be rewritten as

Rk ) = o (ko )a + / P2 g ks 7o )WV () Ralko ), (3.1)

where 044, is Dirac delta function.

To find the solution of Eq. (3.1) we substitute kr’ with 2, so we get r’ = %

Then, Eq. (3.1) becomes

Raw) = o)y + [ gl g(, ) Vas (') Rala). (32)
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2m

According to the central potential, Vog(2') — 55 Vas(2') where m is the

reduce mass of the outgoing particles, the Eq. (3.2) becomes

r )2
Rala) = io)oaas + [ Ty la, ) Vsl R, (33
0

We use the numerically Gaussian-Legendre method to solve this above equa-
tion by dividing an area under the function of integral and later do the summation
over all interval. The size of each interval correspond to the weight function w(x)
which is generated by Gaussian-Legendre method.

Next, the integral term of the radial part will be written in the language of

Gaussian-Legendre as follows

2m

Ra(o) = e + 7 [ d'Vaala) ) Ba(a') (3.4

0

where f(z') = 2”go(x,2’). Now let 2/ = z;, and z = x;, where the indices i
and j represent the final and initial state respectively. Therefore, we can use the

summation to approximate the value of integration. Then the Eq. (3.4) becomes

Ra(xi> :j(xz aag Tt h2k3 Zf :L‘] O(,B(x])RB(x])]

J(2:) 000 +ZFO‘5 z;)Rp(x;), (3.5)
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N N
where ) Ff;ﬁ(xj) = 25" fla;)w(z;)Vas(z;)]. To evaluate Eq. (3.5) we use
j=1

Ro(x;) = jo(xi)daag +ZF°‘B z;)Rg(x;)

N
Ro(xi) = > FP(x5)Ra(x;) = jo(#:)0aa
j=1
N
Z [0ij Ra () Fi?6<xj)RB($j)] = Jo(%i)daas
j=1
N
Z 04005 5(x;) Fﬁﬁ(%)Rﬁ(ﬂfj)] = Jjo(i)daaq
j=1
N
> (61008 — F7 () Ral)] = Jo(2:)Saaq- (3.6)
7j=1

Note that in the above equation we have to sum over  too. To calculate the
approximate solution of a set of real linear equations with multiple right-hand
sides, we must rewrite into the matrices form, where the index 7 runs from one to

N. Let we rewrite each term in Eq. (3.6) as follows

D _ (0008 = F (25)) = [Ay), (3.7)
ZRﬂ(%’) = [Rj], (3.8)

and
jO(xi)(Saao = [Ji15a5]7 (39)

where [A;;], [Rj1], and [Ji10,p] are matrices. Thus, the radial part of the out
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scattering wave in Eq. (3.6) becomes

[A]ixj[R]jxl - [J]ixl

[Rljx1 = [A]7 [ T]ixa- (3.10)

1XJ

Later, we use this equation for our coupled-channel calculation.
Considering the radial Green’s function, we can divide it into two cases
depending on the range of scattering. First, for r > ¢’ or z; > z;, the radial

Green’s function can be written as

9o(wi, v5) = kjo(ws)no(w;). (3.11)

Second, for r < r' or x; < z;, the radial Green’s function can be written as

9o(ws, 25) = kjo(x;)no(;), (3.12)

where jo and ng are the spherical Bessel function of the 1st and the 2nd kind for
rank [ = 0 respectively.

Substituting Eq. (3.11), and (3.12) into Eq. (3.1), we then calculate with
the numerical program (See in Appendix B). Now, we can use the set of linear
equations to evaluate the radial part by using the NAG Fortran Library. The
details of our Fortran code are shown in Appendix B.

Finally, we obtain the approximated solutions of the radial part of scattered
wave function in the form of matrix elements depend on the interaction (input

potential).



18
3.2 The total cross section

The results from the radial part of the out scattered wave function can be
used to get other properties of the scattering process such as, the cross sections,
phase shifts, scattering lengths, scattering amplitudes, and transition amplitudes.
Those properties can also be obtained from the experiments and compared with
the theoretical calculations.

In this work, we succeed in computing the cross section of K N. The details

of analytic solution are given in this section.

3.2.1 Direct process

In case of direct process (o — «), we start with the radial part that satisfies

the Schrodinger equation in the spherical coordinates, that is
g 7 _V(/r) Rl(/r) = —kQRl(T). (313)

We are interested in the far-field solution where the distance r > R and V (r) = 0,

thus the Eq. (3.13) becomes

igrzg_l(l—l—l)
r20r Or 72

Ri(r) = —k*Ry(r). (3.14)

The general solution of Eq. (3.14) according to the far-field condition is

RZ(T) = aljl(kr) — bml(kr), (315)
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where a; and b; are constant coefficients. Therefore, the asymptotically general

solution of this equation above can be written as

_ Aysin(kr + 6 — Im/2)

Ru(r) kr
Ajcosoy sin(kr — Im/2)  Aysindcos(kr — I /2)
— +
kr kr
= Ayji(kr)cosd; — Ayny(kr) sin oy, (3.16)

where A; is the amplitude of the asymptotic solution, and §; is a phase shift due
to the potential scattering.
The wave function across the boundary at » = R should be continuous and

differentially continuous. Thus, we have

r o dR(r) Jj(kR)cosd, — nj(kR) sin g,
=kR = f. 3.17
Ri(r) dr |,._np Ji(kR)cosd; — ny(kR) sin g, b (8:17)
Let 3, = k’lez E:gzzgiizzgzg :2 27 then the phase shift becomes
Buj(kR) — kRjj(kR)
0, = t . 3.18
LT aretan ( Bim(kR) — kRn|(kR) (3.18)

We have seen that the phase shift depends on the energy of the incoming
particle as well as on the total orbital angular momentum [. We shall see that
very often, only the states of small angular momentum contribute to the scattering
state significantly. Thus we are motivated to study the scattering of the states of
different angular momentum. Therefore, the total cross section oy, according to
the optical theorem is given in

A 1=kR

Ttot = 73 EO (20 + 1) sin? §;. (3.19)
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Therefore the total cross section in case of the direct process are given by

the Eq. (3.19).

3.2.2 Cross process

Similarly, the cross process (ap — «) can be obtained in the same way but
different in the first term of the radial equation on the right hand side of the Eq.
(3.1). According to this equation, if the potential equal to zero, then the incoming
state for the radial part of the scattered wave can not occur. Thus, the radial part

of the out scattering wave is reduced to
RO (r) = / P21 gu(r, )V () RE (), (3.20)

where o # . Considering for the large-distance behavior, the wave function

—

<:c | <p(+)> in the presence of the scatterer is given by

o). (3:21)

where f(6) is the scattering amplitude.
As we will see explicitly later, at sufficiently large distances, the spatial
dependence provided that the potential is of finite range. Using the partial method

to expand the plane wave in term of the spherical wave, we get

(21)3 (2 +1) fl(k)B(cose)efr, (3.22)

(| M) =

where f;(k) is the partial-wave amplitude, and P, is Legendre function of rank .

Next, the full-wave function at any r can be written as (for r > R, where R being
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the range of the potential)

(T | ™) = ;z‘l(m + 1) Ry () Py(cosh). (3.23)

The equivalent between Eq. (3.22) and Eq. (3.23) shows that the definition

of the partial-wave amplitude is as follows

= iZRl<T)

filk) = i'e™* " Ry(r)r. (3.24)

In this chapter we have shown already the numerical method that can
be used to solve the dynamical equations of the radial outgoing scattered wave
function. The next chapter we will consider the interaction term as the input
potential appeared in the integral term of the radial part wave function. This step
is the most important step in our calculation. The details of calculation will be

shown in the next chapter.



CHAPTER IV

STRONG INTERACTION OF KN

This chapter shows the calculations of the coupling interaction. For vari-
ational calculations of few-body systems involving KN, one must use a realistic
effective KN interactions, preferentially in the form of a potential. This potential
is generally complex and energy dependent. It must be constrained to reproduce
the scattering amplitudes. It also must encode the full coupled-channel dynamics.
First attempts in this direction, using a schematic effective interaction (Weise,
2007; Dote and Weise, 2007). Here we would like to explicitly derive such an ef-
fective interaction in the single KN channel and construct an equivalent, energy
dependent local potential, starting from chiral SU(3) coupled-channel scattering.
The derivation of the radial out scattered wave function in the language of the
Lippmann-Schwinger equation shown that the other quantities can be further cal-
culated with. Basically, the most important term in radial Lippmann-Schwinger
equation of the out scattering particle is the potentials (%), that is the interac-
tion between the particle § and «.

The s-wave resonance in KN coupled-channel systems clearly tell us that
the interactions is strong. In this part, we describe the various two-body interac-
tions (K N). Here, we intend to construct two-body coupled-channel K N interac-
tions. The coupled-channel involved KN and 7Y (Y = A,Y) with different total
charge states for the mesons and baryons (in the particle basis), or in different
total isospin states (in the isospin basis). The physical masses used in the particle

basis and average masses used in the isospin basis may be found in Table 4.1.
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Table 4.1 Particle masses (in MeV). The fourth column gives the average mass
for each isospin multiplet, and the last column specifies the phase convention used
for the isospin states.

Mass  Avg. Mass States
K K- 4937 495.7 :—1
K° 497.7 11 1)
N p 9383 9389 12 1)
n 939.6 11-1)
T w  139.6 138.0 I1—1)
™t 139.6 111)
™ 134.9 110)
¥ YT 11974 1193.1 11 —1)
¥t 1189.4 111)
30 1192.6 110)
A 1115.7 0 0)

It is important to emphasize here that we follow the observation by Oset
and Ramos (Oset and Ramos, 1998) and retain the channels in our fit although
this channel has a considerably higher threshold as compared with that for KN.
As a result we have two coupled channels: KN, 7% to deal with for I = 0, and
three coupled channels: KN, 7%, wA for I = 1. In terms of physical (or particle)

channels the following two groups are separately coupled by this direction

K p— K p, K 7727, 7°%°% 77%F, 79A.

4.1 The formalism appropriate to complete charge-

independence

Particles are proposed to possess a strangeness quantum number ()

which is conserved in strong interaction (but not weak). As a definition we can
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write the complete charge as

Q:e{]z+%(N+S)] =e{lz+%Y}, (4.1)

where () is total charge, I, is isospin projection, N is baryon number, and e is the
magnitude of electron charge. If we average over all a family of which have the
same N and S, where Y = N + S, then we have > I, = 0.

For N-baryon, the strangeness is S = 2% — N, and S = 2% for mesons.
The strangeness quantum number shown in Table 4.2, and Table 4.3 makes a big
difference to which strong reactions are available for the various particles. For
example, Kt has only elastic scattering (with S = 41) while K~ has many more

final states (all having S = —1).

Table 4.2 The strangeness of baryons with the corresponding average charged.

Family Q/e S

N ( i ) Lo
E+

» o o 0 -1
=

A A 0 -1

Table 4.3 The strangeness of mesons with the corresponding average charged.

Family Q/e S
Jr

™

T 0 0 0

T

-
/KO
(k)

N
1
—_
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In the framework of SU(3) symmetry, the strong interaction is invariant
under the unitary transformation of u, d, and s quarks, the interactions among
the channels (S = —1) KN, 7%, and 7A are related with each other under the
conservation of isospin. The relations are usefully express in the isospin basis.

In this situation, it is appropriate to consider basic states of definite total
isotopic spin I. For the KN states of total charge zero with I = 0 and I = 1, the

states are

o = (\K p) = [K’n)), (4.2)

%I

0= == (|K7p) + |K0)) (4.3)

Sl

For the Y7 states, these take the forms

b0 = 7(\w+2> 7 +|77E) (4.4)
d1 = 5 (=27 = [=57%). (4.5)
= [7°A). (4.6)

In these isospin amplitudes we must use average mass for the K(K~, K°),
N(p,n), m(z=, 7% 7T), (X7, X% 3"), and A states.

The strong interaction terms, may be interpreted in terms of interactions
in isospin basis since the proton, neutron, neutral anti-kaon, negatively charge
kaon, neutral pion, negatively charge pion, positively charge pion, lambda , sigma,
negatively charge sigma, and positively charge sigma are all isospin eigenstates.

11

We use the phase convention for nucleon, that are p = |§, 5> and n =

The phase convention for anti-kaon are K~ = |%, —%> and K° = %, %>
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The phase convention for pion are 7~ = |1, —1), 7° = |1,0), and 7™ = |1, 1).

The phase convention for sigma are ¥~ = |1, —1), X° = |1,0), and X =
I1,1).

The phase convention for lambda are A = |0,0).

Because the strong interaction is isospin conserve, so we can express the
particle basis interactions in the form of isospin basis.

Starting from the spin state of spin —% particles K and N, the total spin
and its projection onto the defined axis can be computed by using the rules for
adding angular momentum in quantum mechanics and the Clebsch-Gordan (Cj;)

coefficients (See in Appendix C). In general,
ILL)y= Y O3 |NLi)|LLy). (4.7)
Ia+10=1I,
For I = 0, the isospin basis in terms of the particle basis can be written as

x(0,0) = Cixa(3. 3)x2(3. —3) — Coaxa (3, —3)x2(3: 3)
1 1
= —K'n— —K"
vz Tt
= i(f(on — K™ p) — 1(0,0). (4.8)

V2

For I =1, the isospin basis in term of the particle basis can be written as

X(1,0) = Cix1(3. 3)x2(5. —3) + Coxa (5, —5)x2(5, 3)

= E(Kon + K p) — 1(1,0). (4.9)

On the other hands, the particles basis can be written in terms of the linear
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combination of isospin basis as follows

—0 L — .
K% = 7% (|KN(1)) + |[KN(0))), (4.10)
Kp— % (RN — [KN(©)). (4.11)

Similarly to the other particles, for 73 with I = 2, the isospin basis in term of the

particle basis can be written as

X(2,2) = Cixi(1,1)x2(1,1)
=7tyt — 1(2,2), (4.12)

X(27 1) = CIX1(1= 1>X2(17 0) + CQXI(L 0)X2<17 1)
1 1

= —n"%0 + —x'%t

V2 V2

= %(ﬁzﬂ +70%h) = 1(2,1), (4.13)

X(27 O) - OIX1(1= 1)X2(17 _1) + C2X1<17 _1)X2(17 1) + C3X1<17 O)X2(17 O)

1 1 2
= 71t 4+ —1r 2t 4+ \[WOEO
NG V6 3
1 +
= (TS + 12T + 2789 = 1(2,0). 4.14
7 )= 1(2,0) (4.14)

For I =1, the isospin basis in term of the particle basis can be written as

X(1,1) = Cixa(1,1)x2(1,0) + Coxa(1,0)x2(1, 1)

1 50 L o
_ o E+
\/§7T \/§7T
1
= —(7"2’ —77%%) — I(1,1), (4.15)
V2
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x(1,0) = Cixi (L, )xa(1, =1) + Cox1(1,0)x2(1,0) + Caxa (1, —1)x2(1, 1)

I R
:Ew Y —Eﬂ' by
_ %(ﬁz— — %) = I(1,0). (4.16)

For I = 0, the isospin basis in term of the particle basis can be written as

x(0,0) = Cixi1 (1, )xa(1, —=1) + Cax1(1,0)x2(1,0) + Caxa (1, —1)x2(1, 1)

1 +y— L v L
=7t — —1'Y 4 —7r 27

V3 V3 V3
:~§§@*2—4#20+ﬂ-2+)—>uaoy (4.17)

The particles bases in terms of linear combination of isospin bases can be written

as

030 — \/g|7r§3(2)> _ % 73(0)) | (4.18)
YT = L s L s L s

7D = 2 TER) + s TS + 2 75 0). (4.19)
. 1 1 1

R = - InS() — = [FE() + = [7(0). (4.20)

For mA with I = 1, the isospin basis in term of the particle basis can be written

as

x(1,0) = Cix1(1,0)x2(0,0)

=A% — I(1,0). (4.21)

Thus, the particles bases in terms of linear combination of isospin bases can be
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written as
A% = |7A(1)) . (4.22)

Finally, we consider the rates of the strong interaction (elastic scattering
and charge exchange scattering) where everything else is unchanged. Historically
it was assumed that these were interactions occurring at a single vertex. In this

case we have
Rate o |(¢¢] V |1)]?, (4.23)

and we define V = Vo + V; + VO where V3 is an operator for the isospin 2 states
with eigenvalue V7, V, is an operator for the isospin 1 states with eigenvalue Vi,
and Vj is an operator for the isospin 0 states with eigenvalue Vz(}

The amplitude for various scattering process can be written in isospin basis

as follows:

(K~p|V|Kp) = (% (BN()| - % <mr(0)|>
1 — 1 —
xV (ﬁ [KN(1)) - 7 |KN(0)>>
=5 (RN| VA [RN(1)) + 3 (RN ()] % [KN(0)

1 1
25‘/111 + §V101 (4.24)

1 — y/I=1 0 — y/I=0
where Vjj = VKN—)FN and Vj; = VKN%KN
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(| V[ Kn) = (5 (RN)] = = (RN (0)])
1 —= 1 —=
xV (ﬁ |[KN(1)) + 7 |KN(O)>)
=5 (RN| W [RN(1)) - 2 (RN ()| % [KN(0)

1 1
=V — 5V (4.25)

1 — /=1 0 — yI=0
where Vi3 = VFNHFN and Vi, = VKN%KN

(K| V |n050) = (% (KN(1)| - —= <7N(0)}>

2
<V ( 3 |TE(2)) — 7 |7TZ(0)>>

=V (4.26)

0 — 1/ I=0
where Vi3 = V=o' o

1
7 <KN(0)\)
1 1

1
1 ,— ~ = >
= (RN 7500 ~ = (RN 5(0)

(K™p|V|nt57) = (% (KN(1)| -

1

1 1
_5‘/14_\/6

vy (4.27)

1 — /=1 0 — 1/ I=0
where Vi, = VFN—WZ and Via = VfN—HrE
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<K*p| Vv ‘7FE+> = <% (KN(1)| - % <FN<O)’)

1 1 1
x V (% 172(2)) — 7 [mX(1)) + 7 |ﬂ2(0)>)

1 ,— ~ 1 — ’
= — 5 (BN [=Z(1)) - 7 (KN(0)] Vo [7%(0))
1

1
= 51/115 — %vl% (4.28)

1 — y7I=1 0 — 1/I=0
where Viy = Vi o and Vig = Vielh o

(K| V [x°A%) = (% (RN(1)| - % <?N(0)|> VrA(1)

1 — ~
= (KN Vi [7A(L)

1

\/§V116 (4.29)

1 — y/I=1
where Vig = V= |

(K°n| VK p) = (% (KN + % @V(U)!)
1 — I =
XV <E KN(1)) - 7 IKN(0)>)
:% (BEN1)| Vi [KN(1)) - % (KN(0)| Vo |KN(0))

1 1
=SVa - 5V (4.30)

1 — /=1 0 — 1/I=0
where Vy) = Vi 2 and Vo = ViZT

(RK'| V' |En) = (% BN+ <m<o)|>
1 — 1 —
xV (E |[KN(1)) + 7 |KN(0)>>
= (RN W [ENW) + 5 (FNO)| T [EN(0))

1 1
=Vih+ 5V (4.31)
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where Vi, = Vi 2 and Vo = VIET 0

=0 050\ _ L_ L_
<Kn‘v|wz>_<\/_<KN1\+\/_<KNO\)

xv<\[|7rz Iwz >>>

— % (KN(0)| Vo |72(0))

1

_ %‘/2% (4.32)

0 1=0
where Vo3 = V2!

0 vy (L L ®
(K| V |r*% >(E<KN<1)!+E<KN<O>\)

1 1 1
v (% 2(2) + 5 I72L) + 2= IWE(OD)

1, . I = ’
=3 BNV [72(0) + = (KN (0)] Vo [2(0))
:§V24 + %‘/24 (4.33)

where V3, = VIS and Vi = V20

. ey (1 L
(K°n|V |7~ >(E<KN“)’+E<KN(O)’)

1 1 1
4 (% m@2) - 5 I+ |7TE(0)>)

1, . I — ’
= — 5 (ENO)| Vi [72(1)) + 7 (KN(0)| Vo [r=(0))
1, 1

where Vop = VIS and Vi) = V2O

KN—7m% KN—7mxs
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<K0n|V‘WOAO>—(\/—<KN |+ <KN |>V\7TA(1)>
:E<KN )| V1 |mA(1))

1
_ EV?IG (4.35)

=1
where Vi = VN A

050 - — 271- —LTr
(n°°| V | K p>—<\/;< 22) - 5! E(0)|>

1
(\/_\KN ) - ﬁuav(o»)
(T2(0)| Vo [KN(0))

050 0 — Zﬂ- —LW
(S| V K n>—(\f3< =) - = 2<0>|>

XV (% [KN(1)) + % |FN(O)>)

1 ~ —_
= £ (O |[KN(0))

1

0 1=0
where Vi, = VFZ_>KN

<w020\v|w020>=<\/g<7r2(2)| ) <\/>|7r2 ——|7rE )>>

= 2 (e ()| Vo r2(2) + g (2(0)] Vo |75(0))

2 1
= VA + 2V, (4.38)
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2 — y/I=2 0 — {/I=0
where ‘/33 - VT('E—MTE and ‘/33 - VT('E—HTE

0330 )= 27‘(‘ —iﬂ'
(@ 2|V |2 >—<\/;< @) - = z(o>|>

1 1 1
<V <% )+ o InS() + |wz<o>>>
:% (T8(2)| Va |72(2)) — % (r2(0)| Vo [72(0))
:1{/324 _ 1‘/3(21 (4.39)

3 3

2 _ y/1=2 0 — 1/1=0
where Vi3 = Vig= 5 and Vg = Vig® 5

0370 - = 27? —Lﬂ'
(m°2°| V| Z+>—(\/;< @) - = z<o>|>

1 1 1
xV (% |T5(2)) — 7 [5(1)) + 7 |ﬂ2(0>>)
:% (r2(2)| V3 |72(2)) — % (w5(0)] Vo [73(0))

1 1
—VE - V3 (4.40)

2 — 1=2 0 — I1=0
where ‘/35 - Vﬂ'Z*)TI’E and ‘/35 = VﬂZ%TrE

050 0AO\ __ EW —iw -
(@2 V |7°A%) = <\/;< @) - = 2<0>|>V| A1)

=0 (4.41)
- Dy = L ™ i T i ™
(w2 |V |57p) = (52 (SO + = (r(0)] + 5= (7200
xV (% |KN(1)) — % |KN(0)>)
_% (rS(1)| Vi [KN(1)) + % (T(0)| Vo [KN(0))
3V + 2=V (4.42)
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=1 0 1=0
where V} =V ey and Vg =V

N ) = L’N i’ﬂ' i?T
(r* 2|V |Rn) = (= (r2(2)] + 5 (2] + = (r5(0)))

v (% RN + % \FN(0)>>
=5 (rS()| Vi [RN(D) + = (+50)| 1 [FN (0)

1 1
5V + =V (4.43)
where Vi = VIZ! - and Vi) = V20
(xS |V [050) = < L 2@+ = (r(1)] + <7r2(0)y)
7 v

V3
XV <\[ywz |7TE )>>

:é (T2(2)| Vs [72(2)) — % (73(0)| Vi [wE(0))
1 2 1 0
=sVi— 3V (4.44)

0 =0
where ‘/213 =V5 Z—mZ and V3 = V. 5& 5

e ey (1 1 1
(rtS7 |V |ats >_(% <7r2(2)|+ﬁ<7r2(1)|+ﬁ<7r2(0)|)

1 1 1
v (5 0) + i) + o)

(W2 V5 [75(2) + 5 (x2(1)| Vi [rS(1)

2 (75(0)| Vo [x5(0))

:6‘/44 + V44 + 3V44 (4.45)

+ | =

—_

1=0
where Vi = Vg2 o, Vig = Vish s, and V) = V55 5
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Ty g T L s L T
(w5 |V ]rs >—(\/6< D)+ 5 (S + z<o>|)

1 1 1
" (7 ) - o IRD) + - |7rz<o>>)

=2 (T2@)| 7S (2) — 5 (xS ()| Vi r5(1)

+ 3 (nS(0)] T InS(0))

1

vl (4.46)

2 1=2 0 1=0
where Vi = V52 o Vs = VL 5 and Vi = VS0 5

(27| V [r°A°%) = (% (rX(2)] + % (mX(1)] + % (7?2(0)|) V|mA(1))

1 N
=75 (mX(1)| Vi |wA(1))
1 1
= Ev46 (4.47)
where Vi = Vi1,
Xt S s L us L s
(r |V |K p>—(\@< D(2)| - s z<1>|+ﬁ< =0)])

<V (G5IRMw) - 75 RN} )
1 1 |1
= -5 (W ENQD) = —= 20V [KN(0))

1 1
_ §V511 _ %{/501 (4.48)

1 I=1 0 1=0
where ‘/51—V2 KN and V51_VE%KN
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B A IR
(s \VIKn>—(¢6< D) - 5 (EW)] + z<o>\)

x V (% I[KN(1)) + % WN(O)})

1

—— 5 (TSI [RN (W) + - (x£0) Vo [N 0)

1
=— 5V +

B
V6

10 (4.49)

1 I=1 0 1=0
where ‘/:’)2—‘/2 KN and V52_VE%KN

\} (rS(1)] +

(\[\7@ |7TZ )>>

:% (T2(2)| Va |72(2)) — % (T2(0)] Vo [72(0))

(r 5|V |7°2°) = (\1[ (r¥(2)| — <7r2(0)\)

&IH

1 1
ngsé - §V5% (4.50)

2 1=2 0 1=0
where ‘/—53 = VnZ—mE and ‘/'53 - vﬂZ—HTE

-xt ) = LTF —iﬂ' Lﬂ'
<w2\V<wE>—(¢6<z<2>| ﬁ<z<1>|+¢§<z<o>|)

1
v (S @) + = e ) + = r2(0))

= 2 (rS(Q)| T3 72 () — 5 (xS ()] T [72(0)

(w2 (0)[ Vo [72(0))

1
= 6‘/524_ 5‘/})14+

+
1 0
§V54 (4.51)

1=0
where V3, = V52 o, Vi, = V5L 5 and Vi, = V5% 5
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st A Lﬂ' —iﬂ' Lﬂ'
(S| V |rE >—(¢6<2<2>r ﬁ<z<1>r+ﬁ<z<on)

1 1 1
“V (% T8(2) — 5 TR0} + |7r2(0)>)
£ TS)] 5 T2 ) + 3 (1) i ()

+ 3 (nS(0)] T InS(0))

1 1 1
= 6‘/525 + 5‘/515 + 5‘/5% (4.52)

2 1=2 1 I=1 0 1=0
where Vi = VigS s, Vis = Vigt, oy and Vg = VigTo

—y+ o oy _ (1 . RS - 1 - -
(7% |v;m>_(%< D) - o (0] + = z<o>|)V| A(L)
- —% (rS(0)| T4 [=A(L)
-5V (4.53)

where ‘/516 - VWIEiHrA

(r"A°| V |K~p) = (wA(1 )|V(\/_\KN ) — \/_\KN >)

1
:E@r )| Vi [KN(1))
1 1
IEVM (4.54)
where Vj, = VIAiKN
0AO 0 I =
(#AV |n) = AV (S5 RN W) + 5 [FNO)))

(rA (1) V2 |[EN(1))

Vi (4.55)
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1 =1
where Vg, =V =

(A V |7°%0) = (xA(1)|V (\/g |T32(2)) \/_ |733(0 )>>

=0 (4.56)

OA° YT = i s L us L T
(TN V |t >—<wA<1>\v(¢gr D) + 5 T} + z<o>>)
(A Vi [r5(1)

Ve (4.57)

where Vv614 - VTK‘A*HTE

070 —y iﬂ —iw Lw
(TN V |77 >—<wA<1>|v<¢6| D(2)) - 75 175 + | z<o>>)

1 A~
--5 (TA(1)| Vy [75(1))

1
= _Evfi% (4.58)

where Vb = VI

e

(rOA°| V |7°A%) = (xA(1)| V |7A(1))

= 1(mA(1)| Vi [wA(1))
= Vg (4.59)
where ‘/66 — VTK‘A—HTA
The interactions of various channels in isospin basis, now are given in the

collected Table 4.4, and Table 4.5.
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Table 4.4 Isospin basis interaction terms for the first three coupled channels of
physical states.

K™p K% 7OyY

Ep sVi+3Vih V-3V Vi

0 1y/1 4 170 11/0
512 3Var + 3V , ;;%?B .
oY §L33+‘V§Vﬁ
Tt
Y

7OA°

Table 4.5 Isospin basis interaction terms for the last three coupled channels of
physical states.

N Tty oA
Kp =V — %V Wh-ZVE 5V
Koo —3Vi+ Vi gVt Vs Ve
T80 VR -5V 5Vis — 5V, 0
TNt VA VAV gVE - sVis+3ViE — Vi
TR sVes +3Vas 3V J5Ves
nAY Vi

4.2 Low energy chiral SU(3) symmetry

In this framework, the vector meson exchange is widely use to study KN
systems. The s-wave interaction of Goldstone boson (meson) with any hadron (H)

predicted by chiral SU(3) symmetry are so-called Weinberg-Tomozawa interaction.

Figure 4.1 T-channel diagram of meson-hadron interaction.

The exchanging process introduces us the coupling constants between the
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channels that become the coupling strength. The exact coupling strength can be
worked out by starting from the SU(3) matrices of the octet pseudoscalar meson

and octet baryon in this following

7§7r0 + \/ién T Kt
2=| a0y g |
K~ K° —\%n
\%EO + \/LéA ¥t P
B=| x- —iwiia
== =0 —2A

Considering the trace of Weinberg-Tomozawa Lagrangian with the lowest
order in momentum, we find that the interaction (kernel) becomes

Lwr = Tr (BW [(99,® — 9,59)B — B(90,d — aucpcb)]) : (4.60)

1
412
where f is the form factor and J, is the covariant derivative. In this example we
show only KN sector where the term v#3, is included in the kernel (K). Since we
are interest in the coefficient between the various channels, thus the Lagrangian

in the particle basis takes the form

LWty = Y CijBi®:Kp ®;B;

(2]
= 20K KpK p+ 2nK°KpK®n

+nK°KpK p+pK KpK°n + ... | (4.61)

where K, is the interaction kernel in particles basis.

The coefficients in Eq. (4.61) are the coupling strength (Cj;) of particle
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from channel ¢ — j in particle basis. Some example of these coupling strength

(C;;) are given in Table 4.6.

Table 4.6 C;; coefficients for KN.

K=p K%
K™p |2 1
K% |1 2

The details of full Lagrangian calculation for six channels coupling strength
are shown in Appendix D.

For the KN systems, the six physical states defined in Eq. (4.10), (4.11),
(4.18), (4.19), (4.20), and (4.22) are expressed as linear combinations of the I = 0,

1, and 2 states according to Table 4.7.

Table 4.7 The particle basis and isospin basis related for KN, 7% and 7A.

Index Particle Bases Isospin Bases

1 | K~ p) = 55 |[KN(1) = KN(0))

2 |KOn) = 55 |KN(1) + KN(0))

3 |as0) = /2175(2) - & I72(0))

4 [T ET) = % 1m5(2)) — 5 [7E(1)) + & [7X(0))
5 |mt %) = 75 175(2)) + 7 [7E(1)) + 55 [75(0))
6 |mOA) = |7A(1))

Substituting these physical states back into the Lagrangian (only in KN sector)

Eq. (4.61), we get

LTy = 3KN(0)K;KN(0) + 1IKN(1)K;KN(1) + ..., (4.62)

where K7 is the interaction kernel in isospin basis. Similar to the physical state,

the coupled interactions must be related to the coupling strength (C;;) coefficient.
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For example, K~ p — K~ p channel, the interaction can be written as

(K~p| K |K p) = C[7°(KN(0)| Ko |[KN(0)) + CLH(KN(L)| Ky [KN(1))

= (3)%K? + (U%K} (4.63)

We define K = kl + Ko where Kl is an operator for the isospin 1 states with
eigenvalue K7, Ko is an operator for the isospin 0 states with eigenvalue K9. The
coefficients obtained in Eq. (4.63) are called the coupling strength.

The coupling strength Cj; for I = 0 and I = 1 states are collected in the

matrices below
1 -1 —,/2

2
3 —y/8
Cl=0 = oot = 1 o2 0 |, (4.64)
4

i
’ ~JE 0 0
where channel 1 is KN, channel 2 is 7%, and channel 3 is 7wA.

Thus we can rewrite the interactions for each channels related to the cou-
pling strength in term of linear combination (decomposition) of the potential in
isospin basis by using ¢ and j as the channel indices.

The interaction obtained in this chapter will be added into the numerical
method that be calculated by NAG Fortran program. The results of the scattering

properties are shown in the next chapter.



CHAPTER V
RESULTS, DISCUSSIONS AND

CONCLUSIONS

This chapter is devoted to report our numerical results of the kaonic hy-
drogen atoms with realistic interactions and compare our theoretical results with
the experimental data. In this study, only real potentials is considered. Finally,

the discussions and conclusions are also given.

5.1 Numerical Results with phenomenological KN poten-

tial

In this section we calculate the cross section of the reaction KN — KN
with the famous potential taken from Akaishi and Yamazaki (Akaishi and Ya-

mazaki, 2002). The potential takes the general form as follow

Visr) = Vigewl- (7)) (5.1)

where o and [ stand for a various channel, and [ are isospins taking values 0 and
1. The range parameter b = 0.6 fm. The potential (V! ;) on the right side of the
above equation take the values as shown in Table 5.1

The cross sections of the reactions KN — KN, mA, 7% can be derived by
solving the radial Lippmann-Schwinger equation. In Fig. 5.1 shown that the cross

sections of the reactions K~p — K~p, K°n derived for the phenomenological
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Table 5.1 The reanalyzed of the existing data of K~ atoms, deduced an optical
potential with a strongly attractive.

‘ VI:O VI:l

KN — KN | -436 MeV  -62 MeV
KN — 7Y | -412 MeV  -285 MeV
KN —7A | 0 MeV -62 MeV

potentials (Akaishi and Yamazaki, 2002). The solid line is the theoretical results
obtained from our calculations of coupled-channel Lippmann-Schwinger equation.
The square represent the experimental data (Ciborowski et al., 1982). It is found
that the theoretical results can fit to the experimental data in the range between
200-350 MeV /c in laboratory frame momentum. For other phenomenological po-
tentials, the theoretical results are similar to the potential employed here. We
then conclude that better potentials, which could reproduce the low-energy KN

scattering data and kaonic hydrogen atom data, should be developed.

5.2 Discussions and conclusions

In this work we have derived the dynamical Lippmann-Schwinger equation
for the coupled-channel K N systems. In the s-wave low energy strong interaction,
it easily to transform into the isospin basis because of the conservation law. The
radial part of the out scattered wave function consists of the interaction term,
related to the initial and final states of the scattering process. All of the possible
channels that can produce A(1405) are evaluated in isospin states I = 0. The
interactions between different channels are related to each others by the coupling
strength. In Figures 5.1 we show the cross sections of the reactions KN — KN,
that are evaluated with the phenomenological KN potentials of Akaishi and Ya-

mazaki . The comparison of the theoretical results and the experimental data
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Channel : K—p — K™p
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Figure 5.1 Total cross sections of the reaction K~p — K~ p, K1 derived with
the famous potentials (Akaishi and Yamazaki, 2002). The experimental data are
taken from Ciborowski (Ciborowski et al., 1982; Sakitt et al., 1965).

show some differences in the range outside 200-350 MeV /c. This suggests that
one could develop a better version of K N potentials to fit the entire experimental
data.

The final goal of our work is to derive, in the framework of the SU(3) chiral

symmetry, a version of interactions for coupled KN system in coordinate space.
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The potentials are expected to reproduce both low-energy KN scattering data

and K N exotic atom observable data.
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APPENDIX A

THE SATISFICATION GREEN’S FUNCTION

The formal solution of the Lippmann-Schwinger equation for outgoing

scattered waves takes the form
0ulT) = 0ul(@) + [ ETGE T Was D7), (A1)

This equation is of Helmholtz type.

Let us consider specifically the position basis and work with ket-equation
of Lippmann-Schwinger equation, which is the independent of particular represen-
tations.

To make any progress we must first evaluate the kernel of the integral

equation defined by

B2 1 ,
ey s e U (A.2)

Provided that (V? + k*)G(7,7) = 63(7 — 1), using the Fourier representation of

the delta function, we get

§(z) = L / dke™*® (A.3)

5 () = — / e (A4)

P = / Bl (A.5)



95

We see that

1 S | P
e A 31/ —ik.(F—7")
G(7, ) = VI / PR e . (A.6)
However, we see again that V2 + k? is a singularity, as is evidenced by the

fact that the denominator in the integrand is zero whenever k> = k?. Therefore

we include a term ie and write &' - r = k'rcos 0 as follow

1 g 1 T =
/2 3 —ik! .7
) = Gy /d e

co w 2w

/ / / k/2 sin (9 k/Q i —zk’rcos@dédedk/

S ] y

2 ! —ik'rcosf

2/k dk /dcose—kQ—iniae
0

1

12 3710 —ik'rx
27r /k dk/ k’zizse

2 1 1 —ik'r ik'r
~ 2n)? / Ay v G
0

[e.9]

1 1 1 iy
= —— R ——" A7
(2m)?2 / irk? —k2F iae (A7)

—0o0

The purpose now of i€ is to move the poles off of the real axis. Thus,

[e.o]

: / /i 1 eik’r
_W / ir [k — (k £ 22'_2)][/4 — (kT 5_2)] 0 . (A.8)

—0o0

Since r > 0 we need to close the contour above. Using the residue theorem, we

see that the result will contain either e*" (outgoing waves) or e~**" (incoming

—1Et

waves), where we recall a time dependence of e . Incoming waves represent

a problem for this particular setup, since they source disturbances in the future,
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so we demand that G(r) ~ e*" . The pole that contributes is k + ie, so the

appropriate Green’s function is

1 1 1 .
CH() = — ——— — ik e
(") = =i 7k gpe
1 ikr
Thus, we get
Gi — AN ]' iik(?*f"’) A 10
(7“ - T ) = —me . ( : )

Recalling that Hy = % , therefore we can also write Eq. (A.2) as

1 2m 1 +ik(7—7)

- = - Al
oy T Ly S T (A-11)



APPENDIX B

MANUSCRIPTs PROGRAM FORTRAN

The radial part Lippmann-Schwinger equation for the out scattered wave
can be evaluated by solving the integral term described in Chapter III. We first
classify the equation into a kind of the integral equations. In this case it is a linear
non-singular Fredholm integral equations of the second kind with smooth kernel.
We set up all dynamical functions as a kernel and use Gaussian-Legendre method
to solve the integral term and evaluate all terms in the equation (include the term
of incoming wave) with the iteration method. Then the given results are in form
of matrix depend on the executable input values. The obtained eigenvalues and
eigenstates with the diagonalize matrix codes are shown in the section B.1.

For the interaction (kernel) term inside the integral, they consist of the
spherical Bessel function that depend on the range of the scattering. We write the
code of subroutine and respective functions to support the main program (see in

the section B.2).

B.1 The radial parts evaluation Fortran codes

*Written by Mr.Wanchaloem Poonsawat
Program MAIN
* .. Global Parameter Declaration ..
INTEGER N, I, J, D, NMAX, IFAIL, M kr
INTEGER IA, IB, IC
INTEGER IAA, IBB
PARAMETER (NMAX=2000,JA=NMAX,IB=NMAX,IC=NMAX,JAA=NMAX,IBB=NMAX)
INTEGER NIN, NOUT
PARAMETER (NIN=5NOUT=8)
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REAL jj, yi, Ji, yi, jip, yip, jjp, yjp
. Local Scalars ..
DOUBLE PRECISION LOW, UP, Wj(NMAX), Xj(NMAX), Xi(NMAX), JO(IB,1)
DOUBLE PRECISION A(IA,NMAX),j1(IB,1),besj(nmax),besy(nmax),besjj(nmax),besyy(nmax)
DOUBLE PRECISION vlow, vhigh , R(IC,1), WKSPCE(NMAX),AA(IAA,NMAX),BB(IBB,NMAX)
REAL v, k,u,mk,mn,mm
. External Functions ..
EXTERNAL GAULEG, SPHBES, FO4AAF, FUNCJ, FUNC
* .. Output File ..
OPEN(UNIT=74,FILE="RESULT1’,STATUS =’NEW’)
OPEN(UNIT=73,FILE="RESULT’,STATUS =’NEW’)
. Executable Statements ..
low=0
up=>50
N=1800
mn=0.938272
mk=0.493677
mm=(mn*mk)/(mn+mk)
kr=10
k=0.2
vlow=0
vhigh=10
* .. Compute Gaussian Points ..
CALL GAULEG(LOW,UP,Xj,Wj,N)
do 200 i=1,n
CALL SPHBES(0,Xj(I),ji,yi,jip,yip)
* .. Compute Spherical Bessel Function ..
* call spherical bessel by sending Xj(I) to get
* ji bessel function for T
* yi neumann function for I
* jip and yip are using in this subroutine
besj(i)=ji
besy (i)=yi
200 continue
* .. running the first index I ..
DO300I=1,N
* .. setting JO as a spherical bessel function of order zero ..
JO(I,1) = FUNCJ(Xj(I))

. running the second index J ..



DO 400 J =1, N
* .. get the values for index J ..
* .. set delta function ..
IF (LEQ.J) THEN
D=1
ELSE
D=0
END IF
* .. set potential ..
IF (Xj(J).LT.kr) then
u=(2*mm*vhigh)
else
u=(2*mm*vlow)
end if
* .. set matrix elements ..
IF (Xj(3) LTXj(1)) A(LI) = D-(wj(j)*besj(j) *besy (i) *uxiG)*i(j)/ (k)
IF (Xj(3).GT-Xj(1)) A(LJ) = D-(wi(j)*besj i) *besy (1) u*Xj (3)*X; )/ (k*K))
IF (Xj(1).EQ.Xj(I)) A(L,J) = D-(wj(j)*besj(i)*besy (i) *u*Xj(J)*Xj(j)/ (k*k))
400 CONTINUE
300 CONTINUE

* .. CALCULATE WAVE FUNCTION using NAG Fortran Library FO4AAF (RESULT) ..

IF (N.GE.0O .AND. N.LE.NMAX) THEN
M=1
IFAIL =0
CALL FO4AEF(A,IA,J0,IB,N,M,R,IC,WKSPCE,AA IAA,BB,IBB,IFAIL)
WRITE (NOUT,*) * Solution’
DO 700 1=1,N
WRITE (73,99998) xj(I),R(I,1)*xj(I)
WRITE (*,99998) xj(I),R(I,1)*xj(I)
700 CONTINUE
ELSE WRITE (NOUT,99999) 'N is out of range: N =’, N
END IF
STOP
99999 FORMAT (1X,A I5)
99998 FORMAT (1X,e15.4,¢15.4)

END

* .. END OF MAIN PROGRAM ..

99



B.2 The subroutines of Fortran codes

SUBROUTINE GAULEG(x1,x2,x,w,n)
INTEGER n
DOUBLE PRECISION x1,x2,x(n),w(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.d-14)
INTEGER i,j,m
DOUBLE PRECISION pl,p2,p3,pp,xl,xm,z,z1
m=(n+1)/2 xm=0.5d0*(x2+x1)
x1=0.5d0*(x2-x1)
do 112 i=1,m
2=c0s(3.141592654d0* (i-.25d0) / (n-+.5d0))
113 continue
pl=1.d0
p2=0.d0
do 111 j=1,n
p3=p2
p2=pl
p1=((2.d0*j-1.d0)*z*p2-(j-1.d0)*p3) /]
111 enddo
pp=n*(z*pl-p2)/(z*2z-1.d0)
z1=z
z=z1-p1/pp
if(abs(z-z1).gt.EPS)goto 113
x(1)=xm-x1*z
x(n+1-1)=xm+x1*z
w(i)=2.d0*x1/((1.d0-z*z)*pp*pp)
w(n+1-i)=w(i)
112 continue
return
END
SUBROUTINE POINT (x1,x2,x,n)
INTEGER n,i
DOUBLE PRECISION x1,x2,x(n)

DO 222 i=1n



x(1)= (i*(x2-x1)/n)+x1
222 CONTINUE
RETURN
END
SUBROUTINE SPHBES(n,x,sj,sy,Sjp,syp)
INTEGER n
DOUBLE PRECISION x
REAL sj,sjp,sy,syp
REAL factor,order,rj,rjp,ry,ryp, RTP102
PARAMETER (RTPI02=1.2533141)
if(n.1t.0.0r.x.le.0.) pause
order=n-+0.5
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry
sjp=factor*rjp-sj/(2.*x)
syp=factor*ryp-sy/(2.¥x)
return
END
SUBROUTINE bessjy (x,xnu,rj,ry,rjp,ryp)
INTEGER MAXIT
REAL rj,rjp,ry,ryp,xnu, XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30, MAXIT=10000,XMIN=2.)
PARAMETER (PI1=3.141592653589793d0)
INTEGER i,isign,],nl
DOUBLE PRECISION a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli
DOUBLE PRECISION dr,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,gammi
DOUBLE PRECISION gampl,h,p,pimu,pimu2,q,r,rjl,rjll,rjmu,rjpl,rjpl
DOUBLE PRECISION rjtemp,ryl,rymu,rymup,rytemp,sum,suml,temp,w,x2
DOUBLE PRECISION xi,xi2,xmu,xmu2,x
if(x.le.0..or.xnu.1t.0.) pause 'first condition’
if(x.1t.XMIN)then
nl=int(xnu+.5d0)
else
nl=max(0,int(xnu-x+1.5d0))
endif



xmu=xnu-nl
xmu2=xmu*xmu
xi=1.d0/x
xi2=2.d0*xi
w=xi2/PI
isign=1
h=xnu*xi
if(h.1t. FPMIN)h=FPMIN
b=xi2*xnu
d=0.d0
c=h
do 11 i=1,MAXIT
b=b+xi2
d=b-d
if(abs(d).1t.FPMIN)d=FPMIN
c=b-1.d0/c
if(abs(c).1t.FPMIN)c=FPMIN
d=1.do/d
del=c*d
h=del*h
if(d.1t.0.d0)isign=-isign
if(abs(del-1.d0).1t.EPS) goto 1
11 enddo
pause
1 continue
rjl=isign*FPMIN
rjpl=h*rjl
rjll=rjl
rjpl=rjpl
fact=xnu*xi
do 12 1=nl,1,-1
rjtemp=fact*rjl4rjpl
fact=fact-xi
rjipl=fact*rjtemp-rjl
rjl=rjtemp
12 enddo
if(rjl.eq.0.d0)rjl=EPS
f=rjpl/rjl
if(x.1t.XMIN) then

x2=.5d0*x



pimu=PI*xmu
if(abs(pimu).1t.EPS)then
fact=1.d0

else

fact=pimu/sin(pimu)
endif

d=-log(x2)

e=xmu*d
if(abs(e).1t.EPS)then
fact2=1.d0

else

fact2=sinh(e)/e

endif

call beschb(xmu,gaml,gam2,gampl,gammi)
ff=2.d0/PT*fact*(gam1*cosh(e)+gam2*fact2*d)
e=exp(e)

p=e/(gampl*PI)
q=1.d0/(e*PT*gammi)
pimu2=0.5d0*pimu
if(abs(pimu2).1t.EPS)then
fact3=1.d0

else
fact3=sin(pimu2)/pimu2
endif
r=PI*pimu2*fact3*fact3
c=1.d0

d=-x2*x2

sum=ff+r*q

suml=p

do 13 i=1,MAXIT
fi=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i

p=p/(i-xmu)
q=q/(i+xmu)
del=c*(ff+r*q)
sum=sum-del
dell=c*p-i*del
suml=suml+dell
if(abs(del).lt.(1.d0O+abs(sum))*EPS) goto 2

13 enddo



pause

2 continue
rymu=-sum
ryl=-sum1*xi2
rymup=xmu*xi*rymu-ry1l
rjmu=w/(rymup-f*rymu)
else
a=.25d0-xmu2
p=-.5d0*xi
q=1.d0
br=2.d0*x
bi=2.d0
fact=a*xi/(p*p+q*q)
cr=br+qg*fact
ci=bi+p*fact
den=Dbr*br+bi*bi
dr=br/den
di=-bi/den
dlr=cr*dr-ci*di
dli=cr*di+4-ci*dr
temp=p*dlr-g*dli
q=p*dli+qg*dlr
p=temp
do 14 i=2 MAXIT
a=a+2%*(i-1)
bi=bi+2.d0
dr=a*dr+br
di=a*di+bi
if(abs(dr)+abs(di).1t. FPMIN)dr=FPMIN
fact=a/(cr*cr+ci*ci)
cr=br+cr¥*fact
ci=bi-ci*fact
if(abs(cr)+abs(ci).lt. FPMIN)cr=FPMIN
den=dr*dr+di*di
dr=dr/den
di=-di/den
dlr=cr*dr-ci*di
dli=cr*di4-ci*dr
temp=p*dlr-q*dli

q=p*dli+q*dlr
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p=temp
if(abs(dlr-1.d0)+abs(dli).lt.EPS)goto 3
14 enddo
pause
3 continue
gam=(p-f)/q
rjmu=sqrt(w/((p-f)*gam+q))
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ryl=xmu*xi*rymu-rymup
endif
fact=rjmu/rjl
rj=rjll1*fact
rjp=rjpl*fact
do 15 i=1,nl
rytemp=(xmu+i)*xi2*ryl-rymu
rymu=ryl
ryl=rytemp
15 enddo
ry=rymu
ryp=xnu*xi*rymu-ry1l
return
END
SUBROUTINE beschb(x,gam1,gam2,gampl,gammi)
INTEGER NUSE1,NUSE2
DOUBLE PRECISION gaml,gam?2,gammi,gampl,x
PARAMETER (NUSE1=5NUSE2=5)
REAL xx,c1(7),c2(8),chebev
SAVE cl,c2
DATA ¢1/-1.142022680371168d0,6.5165112670737d-3,3.087090173086d-4,
* -3.4706269649d-6,6.9437664d-9,3.67795d-11,-1.356d-13/
DATA ¢2/1.843740587300905d0,-7.68528408447867d-2,
*1.2719271366546d-3,-4.9717367042d-6,-3.31261198d-8,
* 2.423096d-10,-1.702d-13,-1.49d-15/
xx=8.d0*x*x-1.d0
gaml=chebev(-1.,1.,c1,NUSE1,xx)
gam2=chebev(-1.,1.,c2,NUSE2,xx)

gampl=gam2-x*gam1



gammi=gam2+x*gam1l
return
END

* .. FUNCTIONS ..
FUNCTION chebev(a,b,c,m,x)
INTEGER m
REAL chebev,a,b,c(m),x
INTEGER j
REAL d,dd,sv,y,y2
if ((x-a)*(x-b).gt.0.) pause
d=0.
dd=0.
y=(2.*x-a-b)/(b-a)
y2=2.%y
do 16 j=m,2,-1
sv=d
d=y2*d-dd+c(j)
dd=sv

16 enddo
chebev=y*d-dd+0.5%c(1)
return
END
DOUBLE PRECISION FUNCTION FUNCJ(x)
DOUBLE PRECISION x
FUNCJ = SIN(x)/x
RETURN
END
DOUBLE PRECISION FUNCTION FUNC(x,v,k)
DOUBLE PRECISION x
REAL v,k
FUNC = (vFx**2) /k**2
RETURN

END



APPENDIX C

CLEBSCH-GORDAN COEFFICIENTS

As an example of the use of the Clebsch-Gordan coefficients table, we choose
the case of combining two angular momenta j; =1, m; =1 and j, = 1, my = —1.

By looking at the entry for combining angular momenta 1 x 1, we get

d1(1,1) (1 \/7;@20 \[@z)lo \[qpoo

This tells us how two particles of angular momentum (or isospin) equal to one
combined and form the states of angular momentum j = 0,1 or 2. Alternatively,
a state of particular j, m can be decomposed into constituents. Thus 7 =2,m =0
can be decomposed into products of state with j = j1+j2 = 2 and m = m;+my =

0. The fourth column of the 1 x 1 Clebsch-Gordan’s table gives

¥(2,0) \/>¢111¢21—1 f¢110¢210 \/>¢1 1)ga(1,1).

The sign convention used in the table follows Condon and Shortley (1951).



Table C.1 Clebsch-Gordan coefficients for the addition of j; = % and jy = %

ji= 1 1 0 1
m= +1 0 0 -1

mi My
+3 +3 1
4 !

Table C.2 Clebsch-Gordan coefficients for the addition of j; = 1 and j, = %

_ 3 3 1 3 1 3
J = 2 2 2 2 2 2

mp My = +% —i—% —i—% —% —% -g
+1 +3 1

1 1 2
o Vi Vi

1 2 1
0 +3 \/; \@

1 2 1
0 -3 3 \/3

1 1 2
Lo+ 5 "\/3
1 -

[
—_
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Table C.3 Clebsch-Gordan coefficients for the addition of j; =1 and j, = 1.

j= 2 2 1 2 1 0 2 1 2
m; Mo M +2 +1 +1 0 0 0 -1 -1 -2
+1 +1 1
+1 0 : :
0 +1 s —1/3

o
)
= $\$y
o
I
Wl ﬁy wl

-1+l —\/3
0 Ry
10 e
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APPENDIX D

COUPLING STRENGTH COEFFICIENTS

The Weinberg-Tomozawa Lagrangian is given by

Lwr =Tr (Bm“ [(90,® — 0,9P)B — B(99,P — aﬂqxp)]) : (D.1)

1
4f?

The octet pseudoscalar meson is defined by

Mmooy om o +
\% + \/% T K
o= T \/ié — \7;—% Ky ) (DQ)
K~ Ky - %77
and the octet Baryon is defined by
A 4 X oyt
7t \/% by P
_ - A _ %
== =5 —-\/2A

Considering the Lagrangian in the particle basis, we get

LW particle = Z C;;B;®;Kp ®;B;, (D.4)

1,3
where 7 and j are the outgoing and incoming particles, C;; is the coupling strength
of the Weinberg-Tomozawa interaction and sz is the interaction kernel in particle

basis.

Putting Eq. (D.2) and (D.3) into Eq. (D.4), we get the Lagrangian in the particle
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basis as
Lwr partice = —2nK°KpK°n — pK°Kp K% + 22°K° Kp K°Z° +
EK'KpK'Z- — S K°Kp K%~ + SYKOKp KOSt — 3AKOKpnA —

SIAKp K'n + LaK'Kpn®A + LA°KpK'n + 3AnKp K="

P

BATOKp K20 + VBaKOKpny® — laK'Kpr'2® + 3E0KOKppA —

BEOKOKpr0A — LEKOKpns® + 120K Kpr0%0 + 350 Kp Kon —

L0750 Kp Ko — 850 Kp K920 + 15070 Kp K20 — | [3pn~ Kp KOA —

\/EAKO Kprp — Lpr KpKOS0 — LSOKO [, 7p + \/EM* KpKS- +

73 73
150 Kp K2 — ™ Kp KOS~ + \[ “KOKpn A + 15K Kpr%0 4

S5 KO KpnE™ — L5 K Kpn®S™ — 5K Kpron + \fz KO Kpn= —
LS K KprZ" — aKYKpK'p — pKOKpK'n + DK KpK*E- -

V2EOKY Kp K¥E~ + 27K+ Kp K20 — 25K+ Kp K% — \/gm Kp K'St +

L Kp KOS+ 2°K° Kpn S5 + VOO Kp KOSt — | [355% Kp KO +
UK Kppr® + Snm Kp K°2° + V2ETKOKp K30 4+ 2aK° Kp Kon +

K Kp Kop+nK- Kp K n+2pK  Kp K p—=K- Kp K =0 —an~ Kpm n+

pT Kpﬂ'_p—l-éoﬂ'_ KPT('_EO—T_T,KJ'_ KpK+n—2ﬁK+ KPK+p+EOK+ KPK+EO—|—

K+ Kp K2~ + S KtKpK*tS~ + fartKpntn — pntKprtp —

Bt Kprnt 20420t Kpnt 2= 428 7t Kpnty—43 nKOKpnA—l— An Kp Kn—

\/Tg’flROKPﬂ'OA - \/TEAWOKPKOn - %AUKPEORO + \/TEI\T('OKPEOKO

BaROKpn2® + IaK0Kpn's® — 22°K°Kp K= — 3=0KOKppA +

VRO KprdA + LEOROKpns — 120ROKpa'S0 — V5% Kp Kon +

L2070 Kp KOn 43520 Kp K020 15070 Kp KOZ04-35K~ KpnA+3An Kp K~ p+

ol

g

LK~ Kpm'A + LAOKp K p + YpK- Kpn2® + L1pK~ Kpn0%0 +

AK° Kp K p+pK~ Kp Kn+¥35% Kp K~ p+ 15970 Kp K~ p—+/2am® Kp 7 p—
V2pr~ Kpnn + \/gﬁK_Kpﬂ'_A + \/gliK_pr_n — \/gAW_KpK_EO —

LK Kpr 50—\ 120K~ Kpr A+ L20K Kpr 30 -

\/Liioﬂ'i KpK™n+
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S0 Kp K 2% — 3AK~ KpnE~ — YAK™ Kpr'Z~ — 2K~ Kp K°Z~ —
BSOK Kpn~ — 10K Kpn®Z~ + V220 Kpm'2™ + [k~ Kpys~ +
nK~ Kpm®S™ + V25K~ Kp K°S™ — 25% Kp 7S~ — 32 nKp KA —
B0 Kp KA — L= Kp KX — 12 Kp K50 — = KOKp K =° +
V2E ' Kpn 2" — 2 K°Kp K2~ — 25" K~ KpK =~ — En Kpn 27 —
\@E—f(o KpnS~ + L5 ROKpn®S™ — 2K~ Kpn £ + \/gi—n KpKn+

LS Kp Kon+ VIS KO Kp K50 — 95710 Kpr 50 — 3570 Kp KYZ- +

S

Ly " Kp K2 — S 7 Kp K E= + S K'Kp K'Y~ — S K- Kp K™%~ —

S

o051 Kpn S~ — 3pmKpKtA — 3AK*Kpnp — Lpr®KpKTA —
BAKtKpn® — LinKp K™ — Lpn®Kp K50 — SYOKT Kpnp —

ISOKT Kpn® + 3AnKpKtE™ + LAOKp KTE™ + VS0 Kp KtE~ +

15070 Kp K¥E~ — \/gmesz— — S Kp Y K+ + 32Kt KpnA +

BE K Kpr®A + BE K4 Kpns + §5 K+ Kpn®s® — /35 K+ Kpan —

2

\/%i‘K*KpWOn + V2t Kpn + V2pr’ Kprntn + \/gﬁKOKPW+A +
\/§M+ Kp K% + LpK° Kprts0 + L350+ Kp K% — \/§Af(0 Kprts— —
VOEI Kprt=E— — TZOKOK atE 4+ AK'KpatY™ + 2270 Kprty— —
V2E"mt Kp =" — (/327 Kp KOA —

T Kp K'Y + 2571t Kp 00 4

\[\_4 T
Sort Kp Kon — \/gﬁw Kpath — \J3NK* Kpntn + \[3Ant Kp K20 +

LKt Kprts® + \/§§0K+ KpatA — LK+ Kprts + L50K* Kprtn -

V2 2

2T Kp KYE0 + = KM Kpn*S™ + S nt Kp KT=~ + \/;ﬁKO Kpnst —
5’ Kp KOS — [320 Kp K" — 52070 Kp K34 — V22 KO Kp K57 +
2510 Kpn~ ST 4+ pK- Kpn Xt + (/2E°KT KpnZt + f_ﬂw Kpm'st —

S00t Kp KOS — 2507+ Kpa0St — pEt Kpntnt + \/;z:ﬂy Kp K% —
LSt Kp KOp— 357K~ Kpni® — 557K~ Kp 020 — V2SS K~ Kp K050+
05t Kpn%0 4 St Kp K p + ﬁE*nKp K+ 4 LS+n0 Kp K20 —

22+7T+KP7TOZO - E+KOKP7T+EO - i+7T+KPK+p - 2+ROKPKOE+ +
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STK-Kp K-St + 25 Tn Kpn XT — StKY Kp KYYT — 2840t Kpnt ot

where the underline show the six coupled-channel terms considered in this thesis.
We substitute the term of particle basis with the isospin basis in the Lagrangian

by using these transformations

Kp = SlEN() - | EN (), (D.5)
K — %|KN(1))+%|KN(O)), (D.6)
%0 = ém(z»-%mz(o», (D.7)
T = %mz(z»—%mzu)w%mz(o», (D.3)
N = %mz(z»+%\72(1)>+%\w2(0)>, (D.9)
™A = 7A(1)), (D.10)
K20 = %M(E(l)}—%ﬁ(E(O)), (D.11)
K= = —%|KE(1))—%|KE(O)) (D.12)

The Lagrangian in the isospin basis then takes the form

L _isospin =

3K N(0)KKN(0) — \/§KN(0)KI7TZ(0) + L RN (0)K mA(0) +4r5(0) Km5(0)
VESOKEN©)  +  \[SOKKE0) + SZnA0)KEN©O) -
A0V KE(0) +/3KZ(0) Kims(0) — S K2(0) K mA(0) +3KZ(0) K KZ(0) +
KN()EKN(1)— KN K r5(1 \[ RN(1) KA1 \f EN(MWKmE(1) -

AWK AN 2r8(1)KrS(1) + 72(1)KE(1) — \[m\( VK KN(1) —

VERMOEEQ) = IS KK KN (1) = /3150 K20) + 2(1)Kms(1) -
f 1)K mA(1 \/>Xz YKmE(1) + Z(1) K E(1) + ...
Note that we consider the Lagrangian in the S = —1 sector only.

Therefore, the coupling strength (C;; coefficients) of the Weinberg-
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Tomozawa interaction in particle basis and isospin basis can be written in the

Table D.1, D.2, and D.3.

Table D.1 Cj; coefficients of Weinberg-Tomozawa interaction in particle basis

(Cji = Cij)-

Kp K 7°A 7°%° pA X0 #t¥- 7%t
Kp| 2 1 ¥ 13 ¥ 1
K 2 ¥ 1 3 _¥ 0
oA o 0 0 o0 0 0
w050 0 0 0 2 2
nA 0 0 0 0
70 0 0 0
Tte- 2 0
Tt 2

Table D.2 C/=° coefficients in isospin basis for I = 0 (CJ=° = C/=).

KN 7% 1nA
7 3 3
KN | 3 —/3 G
T 4 0
nA 0

Table D.3 /=" coefficients in isospin basis for I =1 (CJ=" = C/=).

KN ¥ 1A Ny
EN| 1 -1 i /3
T 2 0 0
A 0 0
ny 0
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Abstract
Finding that the /1 (1405) consist of KN bound state with only a small admixture of elementary three-

quark state suggests a reasonable model is possible with the K, N, Y and 7™  as elementary particles

interacting via potentials or meson-exchange. The work is part of a project which is to work out potentials which

would reproduce the low-energy KN scattering data, kaonic hydrogen atom data, and transition amplitudes
predicted by other theoretical approaches. Unlike interactions in momentum space derived in the framework of

quantum field theory, such a potential would be conveniently applied to multi-particle systems.
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Introduction

The exploration for quasibound antikaon-nuclear states has become a hot subject in nuclear physics.
Recently, definite information about the strong- interaction level shifts of the kaonic hydrogen atom was obtained

from the experiment KpX at KEK [1,2], which indicates a repulsive-type for the 1s orbit. For heavier nuclei,
Batty et al. [3,4], reanalyzed all of the existing data of K atoms, including a density-dependent term for the

KN scattering length, and deduced optical potential with a strongly attractive real part and also a strongly
absorptive imaginary part. The reason for such a highly attractive potential, despite the fact that the strong-

interaction shifts appear to be negative, comes from the assertion that the /A (1405) state is not an elementary

particle, but the bound state of /& + [N . From such a potential one expects deeply bound nuclear states in heavier
nuclei, but their widths are estimated to be on the order of 100 MeV or if their potential parameters are strictly
applied, and thus such nuclear states may not be identified as discrete state.

Calculations of strong binding of antikaons in a nuclear medium based on chiral SU(3) dynamics have a

long history [5,6,7,8,9,10]. The recent revival of this theme was prompted by Akaishi and Yamazaki [10,11],
who used a simple potential model to calculate bound states of few-body systems such as K pp, K pn, and

K~ pnn. However, it is noted that the predictive power of all such investigations is limited because the

interactions are constrained just by the scattering processes but the energy range of the KNV interaction relevant

for deeply bound kaonic nuclei lies far below the KN threshold. For variational calculations of few-body

systems involving anti-kaons, one must use a realistic effective K IV interaction, preferentially in the form of a
potential. This potential is in general complex and energy dependent. It must be constrained to reproduce the
scattering amplitude in vacuum, and it must encode the full coupled-channel dynamics. A number of attempts in

this direction, using a schematic effective interaction, have been reported in [12,13,14].

However, we have found that all versions of the KN interactions give unreasonably large decay widths

for the kaonic hydrogen atom. Here we would like to derive an effective interaction which reproduce not only the

KN scattering amplitudes but also the kaonic hydrogen atom data. This work is just the first step of the whole

project with which such a potential is expected to be worked out.

Dynamical Equations for Coupled KN Systems

We start from the Lippmann-Schwinger equation

0)=16,)+—

—V, % 1
E—H, +ic “d|w”> w

where Va 5 1s the interaction between the (v and [ channels, and | ¢Q> satisfies the homogeneous equation.

(E—H,)|,)=0 )

The formal solution of the Lippmann-Schwinger equation for outgoing scattered waves takes the form

U,(7)=¢,(7)+ f dFG(F ), (7 )i, (") (3)

— = . . . . .
where G( r,T ) is the Green's function, satisfying the equation,
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(V' + & )G(7,7) =6 (7 -7). (4)

By solving the above equation, one derives the appropriate Green's function for scattering processes

1 -
G(F, F/) _ ezk\rfr\

4 |7 =7

In the

JMLS > basis, we derive the Lippmann-Schwinger equation for the radial part of the scattered
wave,
a,J s
RL’S’,LS(ka’r) - Jz(kr)éa,ﬁéu’és 5/ (5
2 aB,J 8,J 5
+ 3 [ ridn, g,k Vg (1) R (R,

's"

where ¢ and (3 are channels of the system, L( L ) and S ( s’ ) are total orbital angular momentum and spin

of initial(final) states, and J is the total angular momentum. k’a and ke are the momenta of channels < and

. . . . Jr— af,J
0, respectively. g,is the radial component of the Green's function G ( T, ) and V

L’S;.L”S” is the radial part of

the interaction from the channel 3 to «v.

Numerical Results with phenomenological KN potential

In this section we show the quality of the most popular phenomenological KN potentials. As an example,

we calculate the cross section of the reaction KN — KN with the potential taken from Akaishi and Yamazaki

[11]. The potential takes the general form

Vi (r)=V] ewp[- % ] 6)

where ¢ and ﬂ stand for channels, [ are isospins taking values O and 1. The length parameter b = 0.6 fm.

The Va[ 5 on the right side of the above equation take the values as follows:

Viley = =436 MeV, Vil = —62 MeV
for the EN — EN channel,
VI =—412 MeV, VL =285 MeV

for the EN — w2 channel, and
VIZU =0 MeV, Vit = —285 MeV

KN A KN,zA

for the KN — w/A channel.

The cross sections of the reactions KN — KN s 7T/1, 73] can be derived by solving the radial
Lippmann-Schwinger equation (5). Shown in Figure below are the cross sections of the reactions
Kp— Kp, K'n , derived for the phenomenological potentials [11]. It is found that the theoretical results

have quite large discrepancies from the experimental data. For other phenomenological potentials the theoretical
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results are similar to the potential employed here. One may conclude that better potentials, which would reproduce

the low-energy KN scattering data and kaonic hydrogen atom data, should be developed.

Channel : K™p — K™ p

100 T T T T
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FIG. 1
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FIG. 2

Figure 1-2 Cross sections of the reaction J{ p— K~ D, [? ﬂn derived with the potentials [11]. The experimental data taken

from J. Ciborowski [16].
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Interaction with Chiral Symmetry

By considering in the framework of SU(3) flavor symmetry where the strong interaction is invariant

under the unitary transformation of %, d and § quarks, the interactions among the channels KN , w3 and

7/ are related with each other. One may express the relations in the isospin basis with the following matrices,

B N
o = 2 cl=| —1 2 0 %0
ij 3 K

Ny —% 0 0

where C; is the couple strengths for ] = (0 and I = 1, for KN (channel 1), 7Y (channels2) and
7/ (channel 3).
The interactions for the various channels in the particle basis can be derived from the isospin-based

interactions as follows:

Table 1
.
Kp K'n ¥
K lCI:ﬂVU(,)+£CI:1V;(,_) 7101:0VU(_)+101:4V1(,,) 7iC':”V”(‘)7iC’:/V'(‘)
p 9 u T 9 u T 9 u T Pl r \/Z 12 T 912 T
_ 1 ooy i, 1 oy Lo,
K'n 5(7” V(7)+§C”V(7) ﬁc,g V /’)’;C/,»L (r)
.
m Legovei)+dervi)
b
Y
A
Table 2
s 50 B
™
- 1 im0y 1 ety 1 -0y 1 et
Kp 7ﬁ(/‘“ V(r)+§C“‘/(r) ﬁ(/'“ Vi(r) ECUV{T}
_, L iy 4 Lo, L oo,
K'n N (r)+50.V(r) A (r) 0
o
X écfu V(r) 7écilevl(r) *%C;:V v'(r) +é(u: Vir) 0
|
o Lepove)+dervi) ~Lorovir)+derv) 0
3 2 - 3 - 3 -
050
w2 é("j’;” Vo(r) 0
P
A
" 0

Table 1-2. Particle based potentials in terms of isospin based ones.
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The isospin based potentials V(}( T ) and VI( T ) may be determined by adjusting to experimental data
of the reactions KN — KN , AT and KN exotic atoms.

Discussion

In this work we have derived the dynamical equations for the coupled-channel KN system. The cross

sections of the reactions KN — I?N are evaluated with one of the most popular phenomenological KN

potentials and the theoretical results indicate that it is necessary to develop better versions of XN potentials.

The final goal of our work is to derive, in the framework of the SU(3) chiral symmetry, a version of

interactions for coupled KN system in coordinate space. The potentials are expected to reproduce both the low-

energy KN scattering data and K N exotic atom observables.
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