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ABSTRACT IN ENGLISH

The Roper resonance N*(1440), the lowest nucleon excited state, has been
subject to intense discussions since its discovery in 1964. In the three-quark picture
the Roper resonance had been commonly assigned to a radial excitation of the
nucleon since its gquantum numbers are the same as the nucleon’s. But detailed
studies found that it is very diflicult to interpret the resonance as a three quark
state due to its low mass and strange coupling constants with nucleon and meson.
Because of the failure of the three-quark picture, various other models have also
been suggested, but none is very successful.

In this work we study the nature of the Roper resonance via its decay
processes. We go along with the argument that the Roper resonance is a state
of three quarks and one transverse-electric (TE) gluon. A nonrelativistic quark-
gluon model is employed, where the dynamics of GgG is described in the effective
35, vertex in which a quark-antiquark pair is created (destroyed) from (into) a
gluon. The wave function of the Roper resonance has been constructed to properly
establish the gluonic degree of freedom, which has been a fascinating challenge in
nowadays non-perturbative QCD physics.

The ratios of the decay widths of the reactions N*(1440) - Np, Nn, No,
Am to the one of the reaction N*(1440) — N, have been derived in the work
with only one free parameter which tells how the Roper resonance is made up by
the two components |>N,} (spin 1/2 three quark core plus a gluon) and [*N;) (spin
3/2 three quark core plus a gluon). The theoretical predictions are consistent with

experimental data and suggest that the Roper resonance is likely to take the form

[2Ng) — I*Ng)-
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CHAPTER 1

INTRODUCTION

All matter consists of atoms. Atoms in turn are built up by nuclei and
electrons orbiting around. Nuclei are bound states of protons and neutrens by the
strong interaction. Proton and neutrons possess a further substructure of even
smaller constituents, the quarks. QQuark has not been observed in experiments as
isolated objects, but only as clusters such as mesons (quark-antiquark system) and
baryons (three quark system). Quark model of hadrons (baryons and mesons) has
made a considerable success and been widely accepted, but it is still a challenge to
understand the natures of all the observed baryons and mesons in various quark
models.

The study of baryon excitation states plays an important role in under-
standing of the nucleon internal structure, the quark model and hence the nature
of the strong interaction. Information is usually extracted from the properties of
nucleon excitation state N*'s, such as their mass spectrum, various production
and decay rate{Burkert, 1994). Since the late 1970’s, very little has happened
in experimental N* baryon spectroscopy (Moorhouse and Roper, 1974). Con-
sidering its importance for the understanding of the baryon structure and for
distinguishing various picture of the nonperturbative regime of quantum chromo-
dynamics (QCD), a new generation of experiments on N* physics with electro-
magnetic probes has recently been started at new facilities such as Continuous
Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLAB),

Electron Stretcher Accelerator (ELSA) at Bonn, Grenoble Anneau Accelerateur



Laser (GRAAL) at Grenoble.

The contribution of the lowest-lying baryon resonance, the A(1232), to a
wide range of nuclear phenomena has been extensively studied (Ericson and Weise,
1988). This resonance (J =3/2,1 = 3/2, P = +1) is the dominant feature of the
pion-nucleon scattering amplitude at low energy. As such, it strongly influences
the creation, propagation and absorption of 7 in the nuclear medium and acts as
an independent degree of freedom of nuclear dynamics at energy scales of the order
of a few hundred MeV.

The next baryon resonance, the Roper resonance or N*(1440), has the
same quantum numbers as the nucleon (J = 1/2,1 = 1/2, P = +1) and is there-
fore regarded as its first intrinsic excitation, at an energy of about 500 MeV. The
structure of this excitation appears rather complex and its properties could have
profound consequences on the understanding of the baryon spectrum. The under-
standing of the Roper resonance has been a long-standing problem in N* physics.
Its very small branching ratios of electromagnetic decay modes, unusual couplings
to the Nn and No channels, and its low mass together make it is difficult to
identify the resonance as a simple three-quark bound state.

The N*(1440) is a very wide resonance with a full width of (350£100) MeV
while the neighboring nucleon excitation states N*(1520) and N*(1535) are twice
as narrow (Groom, 2000). It is found that N*(1440) couples strongly (60-70%) to
the m-nucleon channel and significantly (5-10%) to the g-nucleon (more properly
(r —m)522 ..-nucleon) channel (Groom, 2000). There are no data on its coupling
to the vector meson-nucleon channels, except for an upper limit of 8% to the p-
nucleon channel. The branching ratios to radiative final states (0.035-0.048% for

py and 0.009-0.032% for nvy) are unusually small (compared for example to the

branching ratio of 0.52-0.60% for A — N+). The general impression one gets from



these data is that the transition of the nucleon to the N*(1440) (or vice-versa) is
induced mainly by scalar fields (7 and ¢) and very little by vector fields.

We consider the coupling of the N*(1440) to the N« channel. From the
partial decay width of the N*(1440) into the Nw channel, Ty« n, = (228 +
82) MeV, one can deduce the values of the coupling constants g, yn+ and fryn«
characterizing the strength of the 1 NN* pseudoscalar coupling and pseudovector
coupling, respectively. We find g2y n. /47 = 3.4 £ 1.2 and f2 . = 0.011 & 0.004.

The coupling constant g,ny~ depends on the ¢ mass and on the width
[omn{m?) of the o-meson at the peak of the resonance. The ¢-meson of relevance
in the many-body problem is the effective degree of freedom accounting for the
exchange of two uncorrelated as well as two resonating pions in the scalar-isoscalar
channel. It is expected to have mass of the order of 500-550 MeV and to be a broad
state. It can be shown that g,nn- depends weakly on the value of I, (ml)
but rather strongly on m2. The latter effect is a consequence of the coincidence
between the o mass and the difference between the mass of the N*(1440) and of the
nucleon, which determines the phase space limit for the N*(1440) — Nar decay.
Fixing Iy rn(m2) = 250 MeV, we obtain for example, g2y y. /47 = 0.34£0.21 for
md = 500 MeV and g2y /47 = 0.56 £ 0.35 for m2 = 550 MeV.

Comparing the #x NN* and ¢ NN* coupling constants to the corresponding

values for the TVN and o NV vertices, we have

m * 1 o * 1
GnNN" 2 and JoNN™ ., 2
grNN 2 gonn 4
This seems to depart somewhat from the scaling law
grNN* GoNN+ GuNN*  _ GpNN*

H
JrNN GoNN GuNN GoNN



often used on the basis of constituent quark model arguments. There are however
large uncertainties.

To have more constraints on the couplings discussed above, it is useful to

rmake meson-exchange models of simple processes in which the Roper resonance
is excited and compare to the coupling constants needed to understand the data
on these processes to their values derived from the N*(1440) partial decay widths.
One should keep in mind however the limits of such determinations: the exchanged
mesons are effective degrees of freedom and meson-baryon vertices involve not only
coupling constants but also form factors which may affect significantly the strength
of the couplings.

In the simple three-quark picture of baryons the Roper resonance would be
the first radial excitation state of the nucleon if one considers only its quantum
numbers. But we will find that the resonance possesses a too low mass to be a
radial excitation state.

In a simple model where quarks are confined in an oscillator potential whose
slope is independent of the flavor quantum numbers, the Hamiltonian of a three-

quark system may take the form

1

A R TR PRI SIS SRPC LA L
H“_+—+—+§#w(?”2—7”3)+§uw(r1—r2)+§uw(r3—r1). (1.1)

T 9m 2m 2m

Here we have supposed all quarks involved have the same mass, Introducing the

Jacobi coordinates

7= (Fl—f'g), Y (F1+F2—2F3)7 ﬁcm: (F1+7:‘2+—’3), (1‘2)
V2 V6

and eliminating the center-of-mass motion, the Schédinger equation of the Hamil-



tonian in eq (1.1) gives the wave function of a three-quark system,
Wy gty = W31, ) govin—avor—color (13)

with the spatial wave function ¥*P243! taking the form

poretial — g (D V), (1.4)
where

Y1, (0) = R, (0) V1, (), (1.5)

Yy (N) = Rty (Wt (A). (1.6)

The energy of a state is specified by the quantum number N

3
Ey = (N+§) ., N = Np—l—N,\:(an-f-lp)-t- (2ny + L), (1.7)

and parity P = (~1)* The N = 1 states have mixed symmetry:

(o) = Por(Poo(N), (1.8)
U(A) = ?,Doo(ﬁ)%l’ol(x)y (1.9)

and parity P = —1. These states are not corresponding to the parity of the Roper
resonance.

For the Roper resonance with positive parity, the only possibility is

n,=1, ny=0, l,==0 or n,=0, ny=1, [,=1,=0.



In this case the Roper resonance has N = 2 band in a harmonic oscillator basis.
The lightest of these states with a totally symmétrical spatial wave function is
usually attributed to the Roper resonance. Its low mass has present some problems
for simple three-quark picture as these models are not able to describe the right
level ordering of positive and negative parity states (Groom, 2000; Hggaasen and
Richard, 1983). Indeed, various quarks models (Liu and Wong, 1983; Isgur and
Karl, 1978; Hagaasen and Richard, 1983) met difficulties to explain its mass and
electromagnetic couplings.

The N* is not visible as a well-defined peak in the total pion-nucleon cross
section. It is established as a pion-nucleon resonance in the FPj; channel only
through detailed partial wave analyzes (Cutkosky et al., 1979; Cutkosky and
Wang, 1990). In contrast to the negative parity baryon resonance observed in
the 1500-1700 MeV range, which can be described by constituent quark models
with harmonic confining potentials (Isgur and Karl, 1978). The Roper resonance
has been considered a good candidate for a collective excitation and interpreted
as a breathing mode of the nucleon in bag models (DeGrand and Rebbi, 1978). A
recent coupled-channel calculation (Schiitz et al., 1998), involving the N, 7A and
oN channels, suggest that the N*(1440) could be explained as a dynamical effect,
without an associated genuine three-quark state. It has therefore been suggested
to be a gluonic excitation state of the nucleon, i.e., a “hybrid baryon”.

The aim of the whole project is to investigate if the Roper resonance could
be reasonably interpreted as a bound state of three-quark and one-gluon through
studying all its decay modes such as to Na, N7wmw, Np, An and Nvy. The work
services as a pioneer study to pave the way for the whole project. We will first
construct the wave function of the Roper resonance to properly include the gluon

freedom in the nonrelativistic regime, then evaluate the transition amplitude of the



process N*(1440) — N7 in a very general method which could be used, without
modification, to other decay channels. In the work we will mainly employ nonrel-
ativistic quark-gluon models where the dynamics of the quark-gluon interaction
is described by the effective vertex S in which a quark-antiquark pair is cre-
ated/destroyed from/into a gluon and the wave functions of the Roper resonance,
nucleon and mesons are nonrelativistic.

The work is structured as follows: in Chapter 2 the wave functions of
mesons, nucleons, and the Roper resonance are worked out in a quark-gluon model
with aid of group theory. In Chapter 3 we introduce the *S; model for the descrip-
tion of the decay process. The transition amplitude for the decay of the Roper
resonance is evaluated in Chapter 4. Finally, Chapter 5 gives our results of the

decay widths of the Roper resonance to various channels.



CHAPTER 2

WAVE FUNCTIONS

In this chapter we provide some details on how to construct the wave func-
tions of mesons and baryons in the quark model with the aid of group theory. The
wave function of the Roper resonance is properly constructed to include the gluon

freedom in the nonrelativistic regime, which is a pioneer work as we know.

2.1 Flavor SU(3) Symmetry

The fundamental assumption of the quark model for hadrons is that mesons
are quark-antiquark bound states and that baryons are three-quark states. The
observed hadrons are eigenstates of the Hamilton operator for the strong interac-
tion H,. We begin by considering a world with only three quarks u, d and s and
make the following assumptions:

(1) Flavor university of strong interaction, that is, the strong forces should act in
the same way on quarks with different flavors.

(2)Equality of the masses of u, d and s quarks:
My, = Mg = My, (2.1)

The Hamilton operator of the strong interaction H is then invariant under SU(3)
transformation of the quarks u, d and s. In the framework of the flavor SU(3)

symmetry, u, d and s quarks form the fundamental representation of the group.



Quark states |g) are transformed according to

) = Ulg), (2.2)

with
Uty = uut =1, (2.3)
detU = 1. (2.4)

The unitary, animodular matrix U can be written in the form

where A\; with i = 1,...,8 are linearly independent, hermitian and traceless 3 x 3
matrices. Conveniently, the matrices are chosen to be the Gell-Mann matrices

(Close, 1981)

(01 0) (0 = o\ (1 0 0
M= 100, M= L0 0] A=10 -1 0 {,
\ 0 00 \0 0 0 \0 0 0
(00 1) (00 —i ) (000
M= 000 |, As=100 0 |, d=|00 1|,
\ 1 00 \i0 0 ) \0 1 0
(00 0 10 0
Moo= 100 -] As=i% 01 0 (2.6)

0 0 -2

)
<

\ 0



2.2 Spin-Flavor Wave Functions of Mesons

10

In the framework of the flavor SU(3) symmetry, u, d and s quarks and

their anti-objects form nine lightest pseudoscalar and nine lightest vector mesons,

see Table. 2.1. Those mesons are the ground states of the Hamiltonian of the

quark-antiquark strong interaction.

Table 2.1 Meson nonet

Charge Strangeness Examples
ud +1 0 at  pt
di -1 0 T pT
wil 7 o°
dd } 0 } 0 7’ W
88 nfﬁ ¢0
u3 +1 K+ K**
ds 0 -1 K K"
8 -1 K- K*

L =" e
ds 0 K° K+

In the language of group theory, the fundamental representation of SU(3)

is denoted by the Young tableaux

E

while the conjugation representation in which the antiquark states are transformed

is depicted by

H.

The Young tableaux for mesons are formed as follows:

e H

J@@,
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Table 2.2 Flavor wave functions of the pseudoscalar and vector meson nonets

Pseudoscalar | Vector Flavor
rt pt ud
m P du
70 p° \—}i(dd — u)
™ wy ﬁ(uﬁ + dd + 53)
8 ws | plul+ dd — 255)
K+ K+t us
K° K0 ds
K- K*~ -~ §1L
K° K+ sd
with the corresponding dimensions being:
3@3 = 8941l (2.7)

The ¢ mesons build a nonet (one singlet and one octet) of the flavor SU(3) group.
Since each quark or antiquark can be in a spin-up or spin-down state,
namely S, = :i:%, the two states form a fundamental representation of the SU(2)

group in spin space. The representa,tioﬂs of mesons in spin space are
202 = 3a@1, (2.8)

where the spin wave functions of mesons can take the well-known singlet (spin
S = 0) or triplet (spin S = 1) form. The possible spin-flavor conjugation for
mesons are

(1,1), (1,8), (8,1), (83). (2.9)

The nine lightest pseudoscalar and the nine lightest vector mesons which have been

observed and their corresponding flavor wave functions are listed in Table.2.2
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2.3 Spin-Flavor Wave Functions of Baryons

Baryons are three-quark bound states of the strong interaction in the quark
model. The total wave function of a baryon must be antisymmetric since it is a
system of three identical fermions. All particles observed are color singlet, that
is, the color part of the wave function of a hadron is antisymmetric. Therefore,
the spatial-spin-flavor part of the wave function of a baryon must be symmetric.
For the baryons in the ground state of the strong interaction Hamiltonian, the
spatial wave functions are usually S-states, hence symmetric. The spin-flavor wave
function of a*baryon in the ground state is required to be symmetric so that its
total wave function is antisymmetric.

Taking the SU(3) fundamental representation (uds) and combining it with
the SU(2) (T]) one can form a six-dimensional fundamental representation of
SU®6), wu T,dt,s1,ul,d], s ] Physically in the quark model the intrin-
sic SU(3) degrees of freedom will be multiplied by the SU(2) spin of the quarks.
We will quote the following rules for combining states of different permutation
symmetry and verify it by writing out the states explicitly. Denoting symmetric,
mixed and antisymmetric states by S, M, A respectively, the symmetry properties

that arise are shown in the matrix

S M A

n

S M A

M| M| SMA| M

Recalling that in SU(3) we found 10g, 83, 1.4, while in SU(2) 45 and 2y
emerged, then the above rules imply, for instance, that the 10 with spin % (4 in

SU(2)) will be totally symmetric; the 10 with spin £ (2 in SU(2)) will be totally

mixed and so forth.
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To classify under SU(6) we collect together those states which are symmet-
ric, then those which are mixed and finally those Wwhich are antisymmetric. These
are listed below together with their subgroup dimensionalities. The total number

of such states is given on the right.

S:(10,4) +(8,2) = 56 (2.10)
M:(10,2) + (8,4) + (8,2) + (1,2) = 70 (2.11)
A: (8,2) +(1,4) = 20 (2.12)

We can immediately verify these results by using the Young tableaux as

Moz el =0EEle ;% e ez

The corresponding dimensions are

62626 = 56@70@ 70 20, (2.13)

hence the 565, 70y 5, 707, 4, and 204 representation are seen. After this a mixed-
symmetric wave function will be labelled by the superscript A and p for mixed-
antisymmetric wave function. In table.2.3, we list, for completeness, the spin-flavor

wave function of various permutation symmetries.

2.4 The Spatial Wave Functions of Mesons and Baryons

The spatial wave functions of hadrons are very much model dependent
since the interaction among quarks is still an open question. What has been

comrnonly accepted is that the interaction must confine the quarks as clusters



14

Table 2.3 Spin-flavor wave functions of a baryon classified according to permu-
tation symmetry

56 (3)

(10,4) : $5x5 (8,2) : (¢°x" + ¢*x )/ V2
20 (A)

(1,4) @ ¢*x° (82) : (¢*x" — ¢x*)/V2
70 (p)

(10,2) : 5% (84) : ¢°x*

(82) : (X" +¢'x)/V2 (1L2) : ¢*x”
70 ()

(10,2) : ¢° (8,4) : ¢*x°

(82) : (¢"x" —'x")/V2 (1,2) : ¢*x?

since experiments have never observed any free quark. The most simplest but well
accepted form of the interaction is the harmonic oscillator potential. In this work
we will employ the harmonic oscillator approximation for the quark interaction
in setting up the quark cluster wave function of the mesons and baryons. The
wave functions in the approximation take analytical forms both in coordinate and
momentum spaces.

With the oscillator potential

V(ir)= %uw2r2, (2.14)

where p is the reduced mass of the quark-antiquark pair and r is the relative
coordinate, the momentum space wave function for s-wave and p-wave mesons

take the form

®,(p) = Nyexp (_-b2 2) 7_‘1- (2.15)

8,07 = N,(bp) exp( 2} Y1 (5), (2.16)
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where §' is the relative momentum with

— 1 — —_
p= 5(101 —Pz),

and
26%/?
Ny, = v
9 1/23,3/2
N, - (2/3)1 b ,
w1/4
with 2 = L.

o

For the three-quark objects we assume, as for mesons, that the interaction
between quarks are well represented by the harmonic oscillator potential. The

Schrodinger equation for the three-quark system takes the form

2

pi P, P
E(7, 7, 75) = (-é—;;+2—;;+§7;) (7, 7, 73)

1 1
+ li-z-mwg(f“l = FQ)Z + E'ﬂw.)g('f'g — Fg)Z
1
+"2'an2(7—;;3 — Fl)z] \I’(Fl, ’FQ, 'Fg), (217)

where the three guarks have the same mass m for simplicity. We introduce the

Jacobi coordinates

£ = %62 (2.19)
R = Tl*;”’? (2.20)
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In these new coordinates the Schrodinger equation is rewritten as

1 Lo L
VEI + %VEQ] U(é1,62, R)

1

D oo o= 1
BUEERD = |g-Vi+ o

+ Emw’*gf + %mwzgg] V(£ &, R), (2.21)

where pgp = 3m and gy = gy = m. The solution for the ground state in the center

of mass system is

V(& &) = Npexp (—5(1;5512) exp (—5(1;563) , (2.22)

where a? = 1/(3mw) and Np = 3¥4/(x%243). The solution in momentum space

is obtained by Fourier transformation as follows

1 PL— P2 . 1 D1 + P2 — 23 ?
(2.23)

where Np, = (3%44®) /n%/2,
The root-mean-square radii for mesons and baryons might be defined in
terms of the size parameters as follows (Yan, 1994):

For a s-wave meson

(P = 2B

1 /3
= —/=b~0, . 2.24
2\/;6 0.5 fm (2.24)

For a p-wave meson

v ((I)plrzl(bp)
\/Eb ~ 0.64 fm. (2.25)

B3] e DO
o]
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For the nucleon

N
(2.26)

Here we have used @ = 3.1 GeV~! and b = 4.1 GeV™! (Maruyama et al., 1987;
Gutsche et al., 1989), which are determined by fitting to the nucleon and meson

sizes and nucleon-nucleon, nucleon-antinucleon and pion-nucleon reactions.

2.5 The Nucleon Wave Function

In the quark model, a nucleon is composed of three quarks, with totally

antisymmetric wave function and should take the form

¢ = Djj Spatial © I———]:l:l Spin—Flavor b @
Color

The spin-flavor part takes the form:

Cu)lm) 1@\ %"

—_ ®_ ®_.

2 T2 )y ),
2z

Flavor
1 (2)) 1
S ®s )@= (2.27)
(2 2 ), 2/,

- 1
N Spin—Flavor  _ _~_
" P

2z

'The color singlet wave function of the nucleon is given by

Z fijkl@l)i'%)j'@@)ka (2-28)

4,3,k

lN)color — %
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where ¢;;;; is the totally antisymmetric Levi-Civita tensor. For the harmonic oscil-
lator interaction

Vir)= 1m(,ug?"2, (2.29)

the spatial wave function in momentum space takes the form

V2
exny | L2 (Pt P2 — 2P ’
e p[ 5 (—Mwu\/g ) } (2.30)

where Ny = (33d%)/x2, with a = 1/v3nw.

— — 2
b e = }. _
‘I’(Pl,Pz:Ps) = Nyexp [—§a2 (pl Pz) ]

Then putting all the parts together, one obtains the total wave function of
nucleon as

N L (m-—a\] o] 1, (Ai+tm-25)
Uy = _ﬂexp[m_az (Pﬁpz)]exp —§a2 (IH f;g 103)}

1 1@ 1O\ | /10 @ 1®
5 @3 )J‘% : @ °3 )ﬁ"ﬁ

4
352

J=0,1

1
“\/—“é eiklgr)ila)slasde. (2.31)
i gk

2).?,
2.6 The m Meson Wave Function

In the quark-antiquark interaction of harmonic oscillator type, m-meson is

s-wave meson and the wave function in momentum space is written as

1
v = N e (~ 56 (232

-

where 7 is the relative momentum with § = (1 — ps), and N wove — 2b3 /w’ff

with b = 1/{pw).
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The spin-flavor part of the m-meson can be written in form:

1 (1) 1(2) spin 1 ) 1 (2) flavor
(5 ®3 ) (5 ® 5 ) (2.33)

00 1t

',ﬂ_>spin—ﬂavor —

The color singlet wave function of 7-meson is

3
= = S @bl (2.34)

The s-meson wave function is then

| S
‘ij == Nn’ exp [““'ébz (Pl ““"‘102)2]

ftavor
11 1@ NE,
' (5 ®3 ) 73 Z |7 )dah, (2.35)

1%, =1

where N, = Ne~¥ave /[T == (b/m)3/2

2.7 The Roper Resonance Wave Function

Hybrid resonances (¢*G and ¢gG) have been studied mainly in bag model.
A general conclusion of those studies is that the hybrid states should have their
rooms in nature. It has also been concluded that the confined gluon might be both
TE (transverse electric) and TM (transverse magnetic) modes, and a TE mode
is the lowest eigenmode. Considering its low mass, we presume that the Roper
resonance is composed of three valence quarks and a TE gluon, denoted by ¢°G.

Three quarks states and hybrid states may have the same quantum num-
bers; a study of the spectroscopic assignments will therefore not be sufficient to
discriminate between the ¢® and ¢°G states. A hybrid state is excited in the spin-

flavor space, and has an SU(6) spin-flavor wave function orthogonal to that of the
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nucleon, where as the spin-flavor wave function of a radial excited state is identi-
cal to that of the nucleon. The gluon is in the color octet representation of SU(3)
(Perkins, 1986). In analogy with the (flavor) octet of mesons in Table.2.2 we can

write the color-anticolor states of the 8 gluons as follows:

7 —bb 77 bb — 2g7
vZ i V6

rb, 77, b3, bF, g7, gb, T (2.36)

With 3 colors and 3 anticolors, we expect 3% = 9 combinations, but one of
these is a color singlet and has to be excluded.

Let ¢, x and ¢ denote flavor, spin, and color wave functions for three
quarks and let superscripts 9, p, A and a denote the permutation symmetry ( S/a
is totally symmetric/antisymmetric under any exchange among the three quarks,
and A/p is symmetric/antisymmetric under the exchange of the first two quarks).
The quantum number of the ¢°G states are dictated mainly by the requirements
that the three-quark state transform as a color octet. The totally antisymmetric
¢*G states are explicitly (Li et al., 1992; Li, 1991)

PN,y = = [(¢°x" — ') P — (7 + &) DN @ 1G),  (2.37)

V) = S [@w o) el (2.38)

[Nl

where superscript 2 and 4 denote the total quark spins as 25 + 1. In the spin-
flavor-color wave functions |*N,) and [*N,) above, the color components of the

three-quark core take the form

Ph = % Z g3 )i A - €mlan)ela)i, (2.39)

1,7,k,1
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¥y = % Z (lndilaz); + la)slae)i)AG - €5mlga)s, (2.40)
i3k

where A% are the Gell- Mann matrices. One may write |*N,) and |2N,) explicitly

1 1@ 103)
G 23 )% )0
5170123

(Vimy (1 + Pa+ 03—~ 3RPy) ® elms)1m’2 }

INYy = b
|N9>—\/§|:

spin

1 gn
ErSz

100 1@ 1 @) faver
- ® = @ — T 2 Zolor
{H (2 2 )1 2 >%,T;’ \/gza:w Ig)

1 1@ (@) faver 4 o ol
N R T — Syt | Y (241
” (3 @3 )e3 >%7T:\/§§aj¢ ) (2.41)
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(1(1) 1(2)) 13
s @ &= &
2 2 I 2 N

3,723

PN = 3304 (-

spin

(Vim, (D1 + P2 + 03 — 3R Pt) @ €1m,) 1 }

1 on
E!S:’.

flavor
1{1 1(2)) 1) 1
— &= ® - - E wplg>color
' (2 2 Ji 2 \/g ~ o o

1
B 1Tz

(1(1) 1(2)) 1(3)>
- ®= - ® ®
2 2 2

1=Jiz %1m123

(Vym, (01 + P2+ 3 - 3RP1) @ €1m, )1y ]

spin

s
Aavor
1 1(2)> 1(3) 1
5 95 ® 5 —= ) valg)ar | p(242)
l (2 2 Jiz 2 %'Tzﬂ \/gza:

The total wave function of the Roper resonance is the linear combination

of the [*N,} component and the |*N,) one, taking the form

PN (1440) _ q’?\l;fzilim) [A|2Ng) + B|4Ng)] , (2.43)
with

In the approximation of the harmonic oscillator interaction among quarks and
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gluon, the spatial part T8 - may take the form
N+(1440) &Y

gvatial N 1, (ﬁl “ﬁz)z 1, (ﬁ1 + py 2ﬁ3)2
. = «exXp |—=—a exp |—=a” | —————=
N*(1440) N* €XP 2 NG p 5 NG

> 4 L g N
exp [_%azdz (Pl + P2 + 3 Rm) } (2.45)

V12

where Ny« is the normalization factor, d = 4/(1 + 3R) and R is the ratio of the
quark mass to the gluon one, R = mg,/m,.
Then, the total wave function of the Roper resonance can be written as
L, (A=m)
Wn+(1a10) = Nyeexp ‘iaz ( 7 )

1 — -‘v M2~4 2
exp |- =a? (pl + P2 pa) ]

2 V6

_lff(ﬁ+@+%*ng2
2 /12

Vim, (B1 + P2 + 3 — 3RM) [APN)) + BI'N))],  (2.46)

exp
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with

1 11
Py = 5 5 0 (ahStmaalst - )
Mni123,My

C (1115 (8] ~ maga)ma (5] — migz — ™))

spin
10 1@ 1®
Si|G ez ), ez ) om
12 75123 %'S;f
flavor
1M 1(2)) 13} 1
- @ R — (_1)J12m 1,bp|g)m]°r
(2 2 ) 2 [y \/gg alg)a
spin
( (1(1) 1(2)) 1(3)>
- = & = & - €1m,
K ? ’ 1=ha 2 3.m123 1
2’ 'g'ng

flavor
1M 1(2)) 16) 1
5 ®53 ®5 —= > galg)er | b, (2.47)
(2 2 T 2 V8 ~ G (

1 ’
2 7T;.
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! 1 13 " "
|4Ng) = E Z C(Eil;SzmI%(Sz—mlgg))

123,M1

C (11]., (S: - mmg)ml(S;’ — M3 — m1))

( (1(1) 1(2)) 1(3)>Spin )
s ®= ® - €1m,
2 2 )12 /s

10 1@ 13 flaver color
{ (‘2— ®§ ) ®§ > “ﬁzwglg)aoo

1 L1y a

1 1@ 1 1y N v eolor
- ®: | ®% —= > alga ™ p. (248)
(2 2 )o 2 >%,T;’ \/gza: |

where the first Clebsch-Gordon coefficients in both eq. (2.47) and (2.48) come

from the coupling between the spin of the three-quark core and the total angular
momentum of the TE gluon, and the second from the coupling between the spin

and orbital angular momenta of the gluon.



CHAPTER 3

THE INTERACTION OPERATORS

In this chapter, we provide some detail on how to construct the interaction
operator for the decay of the Roper resonance. First, we discuss the relevant ¢gg
dynamics, as defined in the so-called 5; model. Then we work out the interaction
operator of our model in the nonrelativistic approximation.

The dynamics of a gdg vertex is effectively described by vector 25y interac-
tion. We start with the quark-antiquark-gluon vertex, which can be deduced from

the interaction Lagrangian density
Y A%
Lint = gy A#?¢) (3.1)

where g is the strong coupling constant, % is the SU(3) generators, Af s the
gluon fields (o = 1,...,8) and ¥ is the quark field. The gluon field A might be

rewritten as

AT = A%A,;

with A® responsible for only the color sector. For free quarks, ¢ are just the

four-momentum eigensolutions of Dirac’s equation, taking the form

Y = u(p)e”?, (3.2)

where u is a four-component spinor independent of z.
For the transition, depicted in Fig. 3.1, of a quark with momentum g; into

an antiquark with momentum g and a gluon with Lorentz index p and color label
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Figure 3.1 Diagram for the quark-antiquark-gluon vertex

a (= 1,...,8), the Lagrangian is simply

) )\C! — 0 -
Lint = 0(py)e™! mg’Y“ApAa“z—U(Pi)em‘ “

(3.3)

where the Dirac spinors for the quark (u;) and antiquark (vs) are defined as

- E,4+m Xi
wlfh, 6i) = Sm v ) : (3.4)
Ui pPi )
By +m Xi
G5Bl o
ve(By, Fy) = me & , (3.5)
X
with
vy =vM,

where y and ¥ are 2-component spinors respectively for quark and antiquark,



28

defined as:
1 0
x(spin up) = ,  x(spin down) = ,
0 1
(3.6)
0 -1
X(spin up) = , ¥(spin down) =
-1 0
The vector potential A, is given by a plane wave:
Az, k) = sp(E)Nk (e_ik'”’ + €Y, (3.7)

where eu(E) is the polarization vector of gluon and N is the normalization con-

- stant. The general polarization vectors of gluon is given by

- k-2 k-2 -
- 4 . 3.8
£.(K) (m_,, , £+ mg(k0+mg)’“) (3.8)

We choose only one direction of the gluon then eq.(3.7) is reduced to
Au(z, k) = e, (k) Ny, (e7<). (3.9)

Substituting eq.(3.9) in eq.(3.3) gives

[+4

N T ”’aAzm—im
Lint = U(py)e™ Q’Ypeu(k)A Pizg ik u{p;)

—

A 1 . —k)z —+
= BB AT ey ). (3.10)

The interaction Lagrangian in eq.(3.10) can be written out explicitly using
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the following representation of the Dirac 4 x 4 matrices

A0 = , A= ‘ , (3.11)

where o'(i = 1, 2, 3) is the indicated Pauli matrix, 1 denotes the 2 x 2 unit matrix,

and 0 is the 2 x 2 matrix of zeroes.

Now
Yeu =20~ 5 &, (3.12)
hence
=( 0 =& o a’\a i(p+pp—k)e, (=
Liw = 0(fr)g (%0 —7-€,) A 5¢ u(p;)
E-2\
— ol 0 all ilpitpr—k)z,, (=
u(Pr)gy — Ace u(pi)
k-8 o) LA
—w(5Ng7 - | 4 e E Y Ael ilpitps—k)a,, 7,
(pf)gﬂn( +mg(k0+mg) ) 2 (p)

s }:;'g )\a i — kY. =)
= U(Pf)970 ( )A“_é.e {Pi+ps—k) Tu(p;)

— f e Aﬂ’ i —k)\x —
~o(pr)g7 - EA‘”?e‘(”‘“’f B u(p;)

k¢
mg(k'o + mg)

= = I a)\a i(petpr—k)z,, (=
B \/Ef +m [Ei+m_;

ol T R I B i AW N P
2m 2m f Ef"’f“m Ez+m Ef+m E,,;-l—m
NS DAY k& 27
7e (Ef-i—m) (Ei—i—m) (mg(kg+mg))

- E} gA"‘%—ei(p‘“f'k)"“xi. (3.13)
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The interaction is given by

Wﬁ == / ﬁmt(fl £Z

= X'WVpxi, (3.14)

with

Ve = \/Ef+m E,4+m Ef'ﬁf+3£‘@ . Gy Py G - Ds g7
i 2m 2m Ey+m  Ei+m Efyt+m) \E+m

= = 5 - Py i - Ps k-& I
—_— -k
gE (Ef+m) (Eg+m) (mg(ko-i-mg))g
— Aa —
—& k} 9A"-8(5i + Py — k). (3.15)

In the nonrelativistic quark model, the quark-antiquark-gluon transition
operator corresponds to the nonrelativistic quark-antiquark-ghion interaction of
lowest order QCD, where the created ¢g carries the quantum number 25+ L; = 35,.
In the nonrelativistic approximation, namely E =~ m, ko ~ my, and |gi| = || =
|k| = 0, we have

Wi = x5 WViixo (3.16)

with

A® =
Vi = —gA"‘?& - E6(p; + Py — k)
AY o
= Q'Aa*g(—l)““ff“f-pfs(ﬁi + Py — k). (3.17)
Here we have used
A. B =) (-1)*A.B_,, (3.18)

n
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with
A= —(A+iay),
V2
Ay = A,
Ay = (A, —iA). (3.19)

It can be easily proven that

Bloa) = —VZu0,.1,
(blo'la) = Vb,

(b|o*|a) ~/26,58, _1, (3.20)

2

where a and b are spin states of quark and antiguark respectively and o* are

defined as

1
ol = ——=(c®+idY),
50 +ia)
o = ]
-1 Ll gl
ot = —(o°—1iaY). (3.21)

The operation of the & could be understand as that it operates a quark state
to an antiquark state, or that it projects a quark-antiquark pair onto a spin-1 state.

We may write eq. (3.20) in the form
(0,010%11%: ® Xslom) = (—=1)M V285200, (3.22)
7

For the flavor a quark-antiquark pair which annihilates into a gluon must have
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zero isospin. So we may introduce an unit operator 15; with the property
(0,0i5)7, 1) = V281,061, 0- (3.23)
The operation of the £ which operates on the unit vector of gluon can be in form
(0, 0le-plesm, ) = 0-pm,. (3:24)

Finally one may write the S, operator in the form
F Aa —_ =d =
Vi = g3 (-l 15e_, A S0P+ P — k), (3.25)
i

where g is the effective coupling strength, and the two body matrix elements given

by

(0, 0loli|[%: @ xslume) = (=1)M+/26 5,100, pus (3.26)
<070|1F|T3TZ) = \/§5T,05T,,O: (3.27)

(0,0le—ulesm,) = 0-pm, (3.28)



CHAPTER 4
TRANSITION AMPLITUDE OF N*(1440)

DECAY

The transition amplitude of the Roper resonance decay into nucleon and
pion is evaluated in hybrid baryon picture. The method developed in the chapter
is general, and could be applied to other decay channels without modification. The
whole transition amplitude is derived by calculating the spatial part, spin-flavor
part and color part separately.

The transition amplitude for the decay of the Roper resonance N*(1440)

into nucleon and m-meson is defined as

g
Tsayevn = [ T] i3 OFic-om (41)
=1

where ¥y, and W y+(3440) are the final and initial wave functions, respectively. The

5
: ?:N

»
9

Figure 4.1 Feynman diagram for N*(1440) — N#

N*(1440)

W A =
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momenta p; are labelled as in Fig. 4.1. The operator O is defined as

O = §(F) — Fs)8(Fr — Do )6(s — Po)Vik(3Sh), (4.2)

with the ®S, interaction vertex

[0

AY L L .
Vi(*51) = g ) (=11, A T35 + ; — k). (4.3)
#

In order to evaluate the transition amplitude for a certain final state, we

expand the tafal transition amplitude in partial waves

TN=(1440) N7 = Z Ly Vi, (D), (4.4)

tmy

where J is the spherical harmonics with [ and my denoting the total orbital
angular momentum and its projection of the final N7 state.
The partial wave transition amplitude Ty, for the N*(1440) decay into

nucleon and m-meson takes the form

T'lm; = g Z -leg

m1,M123

A 11
“2“0 ("2'51; ST mags(S] — mws))

C (1115;,(87 — man3)ma(S) — miaz — my)) Gh

(1 31' Sy mygs(S) — mm))

B
50\ 33h%%

\/_
O (111, (Sg e mmg)ml(S;' - Trl193 — ml)) QQJ y (45)

with
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9 2 — — 2
- = - a” (Ps—Ps
Py = NN*NNNw/dpEdp,;y;m[(p) - exp [_"2"( 5\/5 ) }
a® (P + P — 257\ 8o,
L exp [__2_ (Pi_it%) exp [mg (Ps — pg)zjl

B—-5\’ a® [Py + P — 205\
0(Ps + Ps — D) exp [—7( 7B ) }GXP [—? (W\/ﬁ— ) ]

1 i+ + Py — 3R P\
. exp [Miazdz (P1+P2 + D3 m)

5 (7 + Po + P + F0) 6 (71 —
il (Pr + Po + s + a) 8 (Py — Ps)

6 (Pr — Ps) 0 (D5 — Do) 6 (P — P7 — Ps)

Vi, (D1 + P2 + P3 — 3R Py), (4.6}
Q]_ = <\I’%);n_ﬁavm_m]0r|Ospin—ﬂavor—color|2N;> ’ (47)
and
Q2 = <\I’?ai,rn_ﬂavorécmor‘Ospin——ﬂavor—color|4N;> ’ (48)
where

spin

P = 3

Ji2

(1(1) 1(2)) 1(3)>

- ®= B = C1m

2 T2 2 :
J12 %,mlza

1 Y]
757

flavor
1M 1@ 13 el
(3 3 ), 3 ) V™S
Jiz -21-,T"
3 spin
(1(1) 1(2)) 1)
- o @+ & = €1m,
2 72 Jigy 2/,
L 771123 %‘Sir

flavor

10 1(2)) o
= ®= ® - Palg)? | o, (49)
| (2 2 Ji1z 2 ] TH' \/_ Z

and
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10 1@ 18 spin
ldN;) = (5 ® 5 ) ®§ €1ms,
1 3
7 R123 %,S;’
flavor
1) 1(2)) 13 1
S ®s ) ez —= ) Yhlgyer

(2 2 1 2 %,Té’ \/_8- Za:

10 1@ 1(3)>ﬂa"°r 1 N
(2 ®-= ® - — A gyeoter 4.10
(2 2 >o 2 [y \@;Tﬁ o (10

After a tedious evaluation we derive the partial-wave transition amplitude

for N*(1440) decay,

A (11
Timy = g Z B, [50 (551;32”1123(55—%23))

m1,1123

C (111, (S’;’ r— m123)m1(S;' — Mgz — ml)) 1

B 13
+ﬁc (551, S;’mm(S;' - m123))

C (1115 (S — maag)m (Sy — Moz —my)) Qz]

A ! B !
S+ 75@2} , (41)

= 9ds,,5001, 10t Pimy

with
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1 11
<(“§);(§§)O’TTZ
2

1 11
(o), (33), ’TT">
2

1 1
§T:’OO TTZ> <§m123, 1(Sz — m123) SSZ>

1 11 1 i1

1= | TT, { 1= s == TT,
<( 2)%’(22)0, ( 2)% (22)1 >

1 11
(3), (55)0’53z>
TTZ> <%m123, I(Sz - m123) SS;>}
11 1 i
(“2“2*1;327”123(52 _m123))
(1115 (S maga)(—-mu)(Sy =~ mnazs -+ mu)), (4.12)
;22 1 LY 1 11
% - “‘s‘"mm<(la);(5§)o” (15)%’('2‘5)1*TT2>
1 11 1 11
<(1§).;: (33),55 (*5).;.’ (éé)o’ssz>

<%T:': 00 TTz> <g‘m123: l(Sz - m123) SSz>
13 T H
C ('2”2'1; S, mags(S; — m123))
C (111, (S;’ — m123)(—mg)(S;’ — Myg3 + mg)) N (413)
P, = (-1)™pp exp(wapz) (4.14)

where « and 3 are constants consist of the size parameters ¢ and b, the normal-

ization factors Ny-, Ny and Ny, and the mass ratio R = my/m,.



CHAPTER 5

N*(1440) DECAY WIDTHS

We are now ready to evaluate the partial decay widths of the various de-
cay processes of N*(1440). With the the transition amplitude of the reaction is

expressed in the partial wave expansion

T=> Tim Y (5.1)

trmy

the partial wave amplitudes Tj,, are derived in the previous section, for example,
for the reaction N*(1440) — N#. The decay width of the process N*(1440} — N

can be evaluated in the formula

ENEfrp
My

I'ne(1440)Nm = 2 / ds? FTN*(144O)—»NWI21 (5.2)

where Tn+(1240)—nx 1S the total transition amplitude and p the magnitude of the
final momentum of w or N. Integrating over the solid angle 2 of the final particle
N or 7w and averaging over the initial states, one derives the unpolarized decay

width in the partial wave transition amplitudes

E' E.pl
I'ne(1aa0)one = ;} pZZZ|Tlm:|
N* 208
ENEn'pl 2
= T
2 MN! z ;' 1m!|
ENEr 5.9 3 B
= 271’m—g B exp ( —2ap?) ZZ (=)™ EQQ

8. my
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where the factor % comes from the average over the initial states. It is found that
the Roper resonance decays into N7 through only the [ = 1 channel in the hybrid

picture.

5.1 Results

Shown in Table 5.1 are the model predictions for the ratios of the decay
widths of the reactions N*(1440) — Np, Nn, No, Aw to the one of the reaction
N*(1440) — Nw. The experimental data?((Amsler, 2008)) are listed in the last
row of the table. In our calculation we have employed a = 3.1 GeV™!, b = 4.1
GeV! and R = m,/m, = 1 and considefed various combinations of the mixing
parameters A and B. Numerical calculations show that the theoretical results are
independent of the effective coupling constant ¢ and insensitive to the parameter
R = m,/mg, and the size parameters @ and b. The theoretical predictions with

A= —B = 1/+/2 are consistent with experimental data.

Table 5.1 N*(1440) decay width ratios with various A and B combinations.

A=0 A=1 Azﬁ A——~71§ Data,
B=1 B =40 B = :15 B= —-%
FNp/FN'Jr 0.027 0.018 0.016 0.021 < 0.15
Tnn/Tns 0.784 0.196 0.577 0.124 —
| NS 1.812 0.065 0.179 0.392 0.27 — 0.55
I'no/Thn 0.508 0.115 0.396 0.057 0.05 —0.10

5.2 Conclusions

In this work we have evaluated the transition amplitudes of the decay pro-
cesses of the Roper resonance N*(1440) to Nw, Np, N7, No and A7 in a nonrel-

ativistic quark-gluon model. The Roper resonance is treated as a hybrid, that is,
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composed of three valence quarks and a gluon of the TE (transverse electric) mode
(a TE mode is the lowest eigenmode). The wave fanction of the Roper resonance
has been constructed to properly establish the gluonic degree of freedom, which
~ has been a fascinating challenge in nowadays non-perturbative QCD physics.

The theoretical results, for the ratios of the decay widths of the reactions
N*(1440) — Np, N7, No, Ar to the one of the reaction N*(1440) — N,
have been derived with only one free parameter, A/B which tells how the Roper
resonance is made up by the two components |2N,) and |*N,). The experimental
data prefer a Roper resonance of the form |?N}) — [*N).

The hybrid picture of the Roper resonance in the work is in line with ex-
perimental data. Indeed, it has been indicated in the study of photoproduction of
baryons ((Li, 1991)) that not only the Roper resonance but also other lower-lying
baryons like N and A may have a component of gluon. To confirm or rule out the
argument, a systematical study for the strong process of those baryons are essen-
tial. The presence of the gluonic degrees of freedom may solve the long-standing
puzzle of the Roper resonance, and hopefully provide an explanation of the obser-
vation that the spin content of nucleon is not carried dominantly .By valence quarks.
It might be argued that nucleon may also include glunic degrees of freedom since
¢ and ¢ states could be strongly mixed in physical baryon resonances because
of the quark-gluon coupling. The gluonic components of nucleon do not change
the isospin and flavor structure, and therefore the ratio of the magnetic moments

will be the same as in the conventional ¢° picture, namely, p,/p, = —3/2.
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Decay of Roper resonance in hybrid baryon model

N. Supanam, K. Khosonthongkee, Y. Yan
School of Physics, Institute of Science,

Suranaree University of Technology, Nekhon Ratchasima 30000, Thailand

In this work we study the structure of the Roper resonance via its decay processes.
We go along with the argument that the Roper resonance is a state of three quarks and
one transverse-electric (TE) gluon. A nonrelativistic quark-gluon model is employed,
where the dynamics of antiquark-quark-gluon is described in the effective 351 vertex
in which a quark-antiquark pair is created (destroyed) from {into) a gluon. The wave
function of the Roper resonance is properly constructed to take account into the
gluon freedom in the nonrelativistic regime. The branching decay widths of Roper

resonance to the Nupi, N-rho, N-eta, N-pi-pi and Delta-pi channels will be shown.
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N*(1440) decays in a hybrid baryon model*
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In this work we study the nature of the Roper resonance via its decay processes. We
go along with the argument that the Roper resonance is a state of three quarks and
one transverse-electric (TE) gluon. A nonrelativistic quark-gluon model is employed,
where the dynamics of §gG is described in the effective %S vertex in which a quark-
antiquark pair is created (destroyed) from (into) a gluon. The wave function of the
Roper resonance is properly constructed to take account into the gluon freedom in the
nonrelativistic regime. The evaluated decay width ratios I'w- (1440)—~p/T N+ (1440)—N= and
T N+ (1440)—Nn/T ¥+ (1440)— N= aTe in good agreement with experimental data.

1. INTRODUCTION

The study of baryon excitation states plays an important role in understanding of
the nucleon internal structures, the quark model and hence the nature of the strong
interaction. Information is usually extracted from the properties of nucleon excitation
state N*'s such as their mass spectrum, various production and decay rate [1].

The understanding of the Roper resonance has been a long-standing problem in N*
physics. Its very small branching ratios of electromagnetic decay modes, unusual couplings
to the Nr and No channels and its low mass together make difficult to identify the
resonance as a simple three-quark bound state. The Roper resonance has been considered
a good candidate for a collective excitation and interpreted as a breathing mode of the
nucleon in bag models [2]. A recent coupled-channel calculation [3] involving the N, Ax
and No channels, suggest that the N*(1440) could be explained as a dynamical effect,
without an associated genuine three-quark state. It has therefore been suggested to be a
gluonic excitation state of the nucleon, t.e., a “hybrid baryon”.

The aim of this work is to investigate if the Roper resonance could be reasonably inter-
preted as a bound state of three-quark and one-gluon, hybrid baryon, through studying
ity decay modes such as to Na, Np and Nn. We will first construct the wave functions of
the mesons, nucleon and the Roper resonance to properly include the gluon freedom in the
nonrelativistic regime. Then, we introduce the 35 interaction vertex for the description

*This work was supported in part by the Suranaree University of Technology grant SUT 1-105-47-24-23

0375-9474/$ - see front matter © 2007 Elsevier BV, All rights reserved.
doi: 10.1016/.nuctphysa.2007.03.087
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of the decay process and evaluate the transition amplitudes. The decay width ratios and
conclusions are shown in the last section,

2. WAVE FUNCTIONS

The wave functions of mesons, nucleons and the Roper resonance are worked out in a
quark-gluon model. The spatial wave function of hadrons are very much model dependent
since the interaction among quarks is still an open question. The most simplest but well
accepted form of the interaction is the harmonic oscillator potential. In this work we will
employ the harmonic oscillator approximation for the quark interaction in setting up the
quark cluster wave functions of the mesons and nucleons.

The nucleon wave function in momentum space is given by

— —Ya¥ ({1 -h)? - Lo® (Fr -+ —27)?
!\I})N = Npye’d e 12 )

1
\ R

'!],
(1 m 1 (2)) 1@ >5P*“
— ® — ® —
2 2 /., 2 L5z

10 1@ 1 (33 faver
(5 ®3 ), %3 > o
Jig
and s-wave meson wave functions in momentum space take the form

3Tz
1w g (2))> (1 (1) 1(2))>
= B ~ ®= (2)
(2 2 sI\2 "2 )/,

where Ny and Ng are the normalization factors for the nucleon and meson, Tespectively.
The size parameters a = 3.1GeV ™' and b = 4.1 GeV ™}, determined by fitting to the
nucleon and meson sizes and nucleon-nucleon, nucleon-antinucleon and pion-nucleon re-
actions [4,5].

The wave function of the Roper resonance is properly constructed to include the gluon
freedom in the nonrelativistic regime. The confined gluon might be both the TE (trans-
verse electric) and TM (transverse magnetic) modes, with the TE mode the lowest eigen-
mode. Considering its low mass, we presume that the Roper resenance is composed of
three valence quarks and a TE gluon, denoted by ¢*G.

Let ¢, v and ¢ denote flavor, spin and color wave functions for the three quarks and
let superscripts S, g, A and A denote the permutation symmetry. (S/A4 is totally sym-
metric/antisymmetric under any exchange among the three quarks, and A/p is symmet-
ric/antisymmetric under the exchange of the first two quarks). The quantum number
of the ¢*G states are dictated mainly by the requirements that the three-quark state
transform as a color octet. The totally antisymmetric ¢*G states are explicitly [6,7]

€ijk [ ); |f12)j l93)
%

Jyg=0,1

Lirem g2 1 2
[P = Noe #0223 1) o)
meso ‘\/5 1=1

P,y = % [(#x" = ) ¢ — (975 + *¥%) ¥*] 8 |G) (3)
I4Ng> = % [(05'\):”“ ¢ x*) ?,DS] ® |G) (4)

where superscript 2 and 4 denote the total quark spins as 25 + 1. In the spin-flavor-color
wave functions |2N,) and [*N,) above, the color components of the three-quark core take
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where A® are the Gell-Mann matrices. The total wave function of the Roper resonance is
the linear combination of the [*N,) and |*N,) ones, taking the form

QN (1440) _ ll,?\[.r)iszilzlm) [A |2Ng> + B |4Ng>] (7)

with A% + B*=1.
In the approximation of the harmonic oscillator interaction among quarks and gluon,
spatial

the spatial park ¥y 1,4 may take the form

f o e e 2 2 o o -
‘I’?{?f‘fﬂw) = Ny. e~ 19 (1-72)" o~ 50" (P47 25)? o3 Ry (PP Ba-3 R )

, (8)

where Ny« is the normalization factor and R is the ratio of the quark mass to the gluon
one, R = my/my,. 5 (with ¢ = 1,2, 3) is the momentum of the ith quark in the Roper
resonance while gy is the momentum of the gluon.

3. THE INTERACTION OPERATOR

We start with the quark-antiquark-gluon vertex, which can be deduced from the inter-
action Lagrangian density

- A
L = Doy A3 ©)

where g is the strong coupling constant, A*/2 are the SU(3) generators, A7 are the
gluon fields and + is the quark field. In the nonrelativistic quark model, the quark-
antiquark-gluon transition operator corresponds to the nonrelativistic quark-antiquark-
gluon interaction of lowest order QCD, where the created g carries the quantum number
25+1],; = 35,. It can be easily shown that the interaction is given by W; = %! Vi;x; with

AY L p
Va(51) = 9 3 (-1l Lo wA® S0+ 75— F) (10)

where E“(E) is the polarization vector of the gluon. p; and p; are the momenta of quark

and antiquark created from the gluon of momentum k. The ¢y in the vertex can be
understood as an operator projecting a quark-antiquark pair onto a spin-1 state. Then
the transition amplitude for the process N*1440 — N7 takes the form

T = (Nn| Vii(35)) [N*(1440)) (11)

With the wave functions of meson, nucleon and the Roper resonance and the interaction
operator above, one is ready to evaluate the decay width of the reaction N*(1440) — Nr.
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4. RESULTS AND CONCLUSIONS

There are in the model five free parameters, the effective coupling constant g, the size
parameters ¢ and b, the mass ratio R = m,/m,, and the parameter (A or B) describing the
mixture of the states |*N,} and |*N,}. The length parameters a and & may be determined
by fitting to the nuclecn and meson sizes and nucleon-nucleon, micleon-antinucleon and
pion-nucleon reactions. We take in the work @ = 3.1GeV™! and b = 4.1GeV™! as
determined in [4,5].

Table 1
The decay width ratio for N*(1440) decay in some channel for different A and B.

A=0 A=1 A:—% A:% Data,
B=1 B=0 B=2 B=-2
'+ (1440)— Np/ T N+ (1440)— 0.010 0.003 0.008 0.002  35DOL
T v (1440) =N/ T v+ (1440)— N 0.165 0.041 0.122 0.026 23000

The experimental data are given in [8].

The decay width ratios FN*(IMO)—-»N,D/ '+ (1440)— v« and FN*{1440)—»N71/ [ s (1440)vr ATE
evaluated in the work. The effective coupling constant g has no effect on the ratios, but
there are still two free parameters, that is, the mass ratio R = m,/m, and the wave
mixture parameter A or B. 1t is found that the results is independent of the mass ratio
R. The dependence of the model results on the wave mixture parameter is shown in Table
1. Comparing our theoretical predictions for the decay width ratios with the experimental
data in Table 1, one finds that the results are quite reasonable when A = ~B = 1//2
which are the same as the ones used in work {7]. One may conclude at this stage that the
hybrid baryon model for the Roper resonance is promising.
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