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ในวิทยานิพนธฉบับนี้ไดมีการศึกษาคุณสมบัติเชิงกลบางอยางของ SiC GaN InN ZnO และ 

CdSe โดยวิธีคํานวณแบบแอบ อินิธิโอ ภายใตสภาวะปกติ พบวา สารเหลานี้มีโครงสรางผลึกแบบ
เวิรตไซต ภายใตสภาวะความดันสูงสารเหลานี้สามารถเปลี่ยนโครงสรางผลึกไปเปนโครงสรางผลึก
แบบรอคซอลตได และไดคํานวณคาความดันสมดุลสําหรับการเปลี่ยนโครงสรางผลึกของ
สารประกอบเหลานี้ นอกจากนั้นแลวความเคนแบบแกนเดี่ยวยังสามารถทําใหผลึกเวิรตไซต เปลี่ยน
โครงสรางไปเปนผลึกเวิรตไซตที่มีระนาบผลึกไมโคงงอได  โดยพบวาความเคนที่สามารถทําใหเกิด
การเปลี่ยนโครงสรางดังกลาวคือความเคนกดแบบแกนเดี่ยวตามทิศทาง[0001]และความเคนดึงแบบ
แกนเดี่ยวตามทิศทาง [0110] ซ่ึงไดคํานวณคาความเคนวิกฤติสําหรับกรณีตาง ๆ ไวดวยแลว   
นอกจากนั้นยังพบอีกวาความเคนดึงแบบแกนเดี่ยวตามทิศทาง [0001]สามารถทําให ZnO เกิดการ
เปลี่ยนโครงสรางผลึกไปเปนผลึกแบบเตตระโกนอลที่มีอะตอมอยูตรงกลาง (BCT-4)  ซ่ึงเปน
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การเปล่ียนโครงสรางที่คํานวณไดนี้สอดคลองเปนอยางดีกับผลจากการคํานวณและการทดลองที่มี
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studied using ab initio calculations method. Under ambient conditions, these compounds 

have the wurtzite (WZ) structure. Under large hydrostatic pressure, the transformation into 

the rocksalt (RS) structure can take place. The equilibrium transformation pressures are 

calculated. Moreover, uniaxial stresses can cause the transformation into an unbuckled 

wurtzite structure (HX) under uniaxial compressive stress along the [0001] crystalline 

direction or uniaxial tensile stress along the [0110]  crystalline direction and the critical 

stresses are calculated. In addition, the novel structure, a body centered tetragonal (BCT-4) 

structure was predicted for ZnO under uniaxial tensile stress along [0001] direction. The 

predicted equilibrium transformation pressures and stresses are in good agreement with 

available theoretical and experimental results. The stability of each crystal structure is 

studied by analyzing enthalpy as a function of lattice parameters c/a and b/a.  The behavior 

of the elastic constants as a function of pressure, which related to the WZ-to-RS phase 

transformation, is also studied for above compounds.  
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CHAPTER I 

INTRODUCTION 

 

      One-to-one binary compounds that obey the octet rule, i.e., I-VII, II-VI, III-V, or 

IV-IV materials, are generally semiconductors or insulators. Although these AB 

compounds have the same chemical formula units, their crystal structures under 

ambient conditions can be vary different, depending on their bond ionicities. While 

highly ionic compounds, such as CsCl (I-VII), prefer dense crystal structures with a 

coordination number of 8 (C.N.= 8), compounds with lower degrees of ionicity, such 

as NaCl (also I-VII), gravitate toward the rocksalt structure (RS, 3Fm m  space group) 

with C.N.= 6.  As the degree of ionicity decreases (shifting toward the covalent 

bonding character), compounds, such as ZnO (II-VI), GaN (III-V) and SiC (IV-IV), 

stabilize in wurtzite (WZ, 36P mc ) or zincblende (ZB, F43m ) structures with C.N.= 4. 

In wurtzite (or zincblende), the valence electron counting is satisfied, i.e., each bond 

contains two electrons. However, in compounds with higher degrees of ionicity such 

as CsCl and NaCl, the strong cation-anion attractions lead to the formation of the 

structures with higher C.N.  Nevertheless, bond is not the only factor that determines 

the crystalline structure. The intrinsic factors such as band structures, valence 

electrons, bonding states and structural symmetries also play their rules. Extrinsic 

factors such as loading and temperature also play significant roles. 
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      Calculations and experiments have been carried out to study the structural 

stabilities of materials. Over two decades ago, first principles calculations have been 

used to evaluate the formation energies of different crystalline structures (see for e.g., 

Chan et al., 1986 and Fahy et al., 1986).  X-ray diffraction experiment is the main 

tool to determine the natural occurring structures.  The stable crystalline structures 

under ambient conditions are well established. For a comprehensive review, see 

Mujica et al., 2003. Furthermore, advances in experimental techniques, such as the 

use of intense and tunable x-ray from synchrotron radiation, also allowed x-ray 

diffraction analyses under external loadings. For hydrostatic compression, it is 

observed that most materials with low C.N. (e.g., WZ and ZB) transform into a more 

compressed crystalline form with higher C.N. structures (e.g., RS) (Bates et al., 1962; 

Cline and Stephens, 1965; Xia et al., 1993; Yoshida et al., 1993; Ueno et al., 1994; 

Xia et al., 1994; Desgreniers, 1998; Kusaba et al., 1999; Jiang et al., 2000; Mujica et 

al., 2003; Wu et al., 2005). First principles and empirical potential calculations have 

yielded phase equilibrium pressures that are comparable but almost always lower than 

the transformation pressures measured from experiments (Jaffe and Hess, 1993; 

Christensen and Gorczyca, 1994; Karch et al., 1996; Côté et al., 1997; Jaffe et al., 

2000; Limpijumnong and Lambrecht, 2001a; 2001b; Zaoui and Sekkal, 2002; Mujica 

et al., 2003; Limpijumnong and Jungthawan, 2004; Serrano et al., 2004). The higher 

experimental values are attributed to the existence of an energy barrier between the 

phases for each transformation. This finding is supported by, for example, the 

observation that critical pressure for the upward WZ→RS transformation is higher 

than the critical pressure for the downward RS→WZ transformation (Mujica et al., 

2003; Limpijumnong and Jungthawan, 2004) or the trapping of nanocrystallite ZnO in 

the RS phase under ambient condition after a high heat-high pressure treatment 
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(Decremps et al., 2002).  If there was no transformation barrier, the upward and 

downward transformations would occur at the same point and there should be no 

trapping of the meta-stable high pressure phase. The study of strain is also important 

because many electronic devices use epitaxial growth film. It is well known that, at 

the thin film interfaces, lattice mismatched is inevitable and it degrades the devices’ 

properties. It is necessary to study the behaviors of crystals under strain deformations. 

These properties have been partially studied in both theoretical side, for e.g., the first 

principles full-potential linear muffin-tin orbital calculations of elastic constants and 

related properties in BN, AlN, GaN, and InN (Kim et al., 1996) and experimental 

side, for e.g., the study of strain in InN thin film by Raman measurements (Wang et 

al., 2006) or the study of the lattice parameters of GaN epitaxial layers on different 

substrates by X-ray-diffraction measurements (Shan et al., 1996). 

      This thesis employed first principle (also known as ab initio) method to study 

mechanical properties of some semiconductors in group IV (SiC), group III-V (GaN 

and InN), and group II-VI (ZnO and CdSe). We will first give a brief description of 

the calculation methods used (Chapter II). Then the calculated structural parameters 

under ambient conditions in comparison with available experimental results are 

reported and the brief description for the phase stability (in thermodynamics picture), 

phase transition under pressure, elastic constants are also presented as well (Chapter 

III).  The calculated results of this work are constituted as follow, In Chapter IV, the 

relative phase stabilities between the wurtzite (WZ), unbuckled wurtzite (HX), and 

rocksalt (RS) phases of these compounds under different loading conditions will be 

presented. For ZnO, the novel structure was found and named as body center 

tetragonal (BCT-4) phase. In Chapter V, the relationship between the previous phases 
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for ZnO (from Chapter IV) with this new structure is summarized. Finally, the 

continuations work about the study of elastic constants under pressure (up to the 

transition pressure) of above mentioned five compounds and future works of interest 

are presented (Chapter VI). Note that the conclusions of Chapter IV – V are located at 

the end of each chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER II 

THEORETICAL APPROACH 

 

      One often models solid by starting from an ideal crystal at zero temperature.        

A unit cell of a crystal may contain several atoms (at specific crystallography 

positions). To model a realistic crystal, the unit cell is repeated with periodic 

boundary conditions. Then the electronics structure of the entire crystal is solved 

quantum mechanically. In addition to electronically properties the electronic structure 

is also responsible for other properties such as relative stability, relaxation of atoms 

and phase transitions, etc.  In this chapter, we will briefly discuss about the theories 

approximations, methods, and software used in this work. Details information can be 

found in the respective literatures provided throughout the chapter. 

 

2.1 Density Functional Theory 

      2.1.1 The Hohenberg and Kohn Theorem 

      The basic principle of density functional theory (DFT) is to describe the 

complicated many-body electron wavefunction,Ψ, with a simple quantity, that is the 

electron density, ( )Kn r  (Parr and Yang, 1989). Hohenberg and Kohn (Hohenberg and 

Kohn 1964)  proposed that, the ground-state energy and all electron properties of the 

many electron wavefunction in the presence of an external potential can determined 

from the electron density, ( )Kn r . They showed that for Coulomb-interacting particles 

moving in an external potential ( )extV rK , the ground state energy can be obtained by
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minimizing the energy functional. The ground-state energy of a many electron 

wavefunction is written as (Hohenberg and Kohn, 1964), 

 3[ ( )] ( ) ( ) [ ( )],extE n r V r n r d r F n r= +∫
K K K K  (2.1)

where ( )extV rK  is the “external” potential generated by the nuclei acting on the 

electrons. [ ( )]F n rK  is a universal functional of the electron density, independent of the 

external potential ( )extV rK . The functional [ ( )]F n rK  includes all kinetic energy and 

electron-electron interaction terms (Parr and Yang, 1989).   

 

      2.1.2 Kohn and Sham Equation 

      Kohn and Sham (Kohn and Sham, 1965) proposed that the Hohenberg and Kohn 

expression in Eq. 2.1 can be written as, 

 
2

3 3 3( ) ( )[ ( )] ( ) ( ) [ ( )] [ ( )]
2ext s xc
e n r n rE n r V r n r d r d rd r T n r E n r

r r
′

′= + + +
′−∫ ∫∫

K KK K K K K
K K  (2.2) 

where 
2

3 3( ) ( )
2
e n r n r d rd r

r r
′

′
′−∫∫

K K
K K  is the electron-electron Coulomb energy, also called 

Hartree energy. [ ( )]sT n rK  is the kinetic energy of a non-interacting system with the 

same density. Note that, [ ( )]sT n rK is not the exact kinetic energy functional ( [ ( )]T n rK ). 

Konh and Sham proposed that, the difference between [ ( )]T n rK  and [ ( )]sT n rK  is 

generally small and can be included in exchange-correlation energy, [ ( )]xcE n rK  (Parr 

and Yang, 1989). Exc is the exchange-correlation energy.      

      Thus the Kohn-Sham (KS) - effective potential can be written as, 

 2 3 [ ( )]( )( ) ( ) .xc
eff ext

E n rn rV r V r e d r
r r n

δ
δ

′
′= + +

′−∫
KKK K

K K  (2.3) 
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      Hence, the one-particle Schrödinger equation or Kohn-Sham (KS) equation (Kohn 

and Sham, 1965) can be written as, 

 
2

2 ( ) ( ) ( ).
2 eff i i iV r r r

m
ψ εψ

⎡ ⎤
− ∇ + =⎢ ⎥
⎣ ⎦

= K K K  (2.4) 

The electron density for this system of electrons is given by (Kohn and Sham, 1965), 

 2

1
( ) ( ) ,

N

i
i

n r rψ
=

=∑K K  (2.5) 

where  N  is the number of electrons.       

      Equation 2.4 has to be solved self-consistently. Initially, a guess of ( )n rK  is used to 

construct Veff , which is used as input quantities to solve Eq. 2.4 for the iψ . Then an 

improved ( )n rK is calculated from iψ  based on Eq. 2.5. The new ( )n rK is then used 

instead of the guessing  ( )n rK  to construct Veff. This routine is repeated until 

convergence is reached, that mean the new ( )n rK as output is equal to the old ( )n rK as 

the input. 

 

      2.1.3 The local density approximation (LDA)  

      Out of three terms in the effective potential (Veff), Eq. 2.3, only the exchange-

correlation energy [ ( )]xcE n rK  is not exactly known. To solve the one-particle 

Schrödinger equation (Eq. 2.4), [ ( )]xcE n rK  must be approximated. The most popular 

approximation for approximating [ ( )]xcE n rK  is the local density approximation (LDA).  

      Under LDA, [ ( )]xcE n rK  depends solely on the value of electron density at each 

point in space. The most successful local approximation to [ ( )]xcE n rK  is the one 

derived from homogeneous electron gas model which was first formulated by Kohn 



 

8

and Sham (Kohn and Sham, 1965) The local density approximation for exchange 

correlation energy can be written as (Parr and Yang, 1989; Kohn, 1999), 

 3[ ( )] ( ) [ ( )] ,
xc

LDA
xcE n r n r n r d rε= ∫

K K K  (2.6) 

where [ ( )]xc n rε K  is the exchange correlation energy per particle of a homogeneous 

electron gas with the density ( )n rK . The [ ( )]xc n rε K can be written in the combination 

form between exchange and correlation energy as (Parr and Yang, 1989), 

 [ ( )] [ ( )] [ ( )],xc x cn r n r n rε ε ε= +K K K  (2.7) 

where the exchange energy term, [ ( )]x n rε K  are known from an analytic form of 

homogeneous electron gas as proposed by Dirac (Dirac, 1930) and can be written as 

(Parr and Yang, 1989),  

 
1/3

1/3 3 3[ ( )] ( ) , .
4x x xn r C n r Cε

π
⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

K K  (2.8) 

 
For the correlation energy term, [ ( )]c n rε K  was first calculated by Wigner (Wigner, 

1938). However, an analytic form of this energy is known only under the high (Gell-

Mann and Brueckner, 1957; Carr and Maradudin, 1964) and low (Carr, 1961; 

Nozieres and Pines, 1966) density limit (Parr and Yang, 1989). There is the 

correlation energy values obtained from a quantum Monte Carlo method by Ceperley 

and Alder (Ceperley and Alder, 1980). Then, Vosko, Wilk, and Nusair (Vosko et al., 

1980) presented the analytic form of [ ( )]c n rε K  by interpolating the values from 

Ceperley and Alder. In addition, there are other forms of [ ( )]c n rε K  that can be used for 

[ ( )]xc n rε K  (von Barth and Hedin, 1972; Perdew and Zunger, 1981; Perdew and Wang, 

1992).  
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      The LDA work well for the system with slowly varying in density. Some of 

successes and failures to use LDA to approximate [ ( )]
xc

E n rK  have been discussed by 

Jones and Gunnarsson (Jones and Gunnarsson, 1989).  

 

      2.1.4 The generalized gradient approximation (GGA) 

      The generalized gradient approximation (GGA) is introduced to take into account 

the variation of electron density in space. Under GGA, the exchange-correlation 

energy Exc is a functional of the local electron densities, ( )n rK  and their gradients, 

( )n r∇ K  (Kohn, 1999), 

 3[ ( )] [ ( ), ( )] ( ) .GGA
xcE n r f n r n r n r d r= ∇∫

K K K K  (2.9) 

The GGA improve the ground state properties, it reduces errors in energy of light 

atoms in small molecules. In general it tends to produce larger equilibrium lattice 

parameters than those obtained from LDA. The improvement of GGA with respect to 

LDA is not clear in the applications of solid. Sometimes the GGA overcorrect the 

LDA results. The comparison of GGA and LDA for some semiconductors can be 

found in Ref. (Filippi et al., 1994; Khein et al., 1995). There are many forms of GGA 

functional for the exchange correlation energy, [ ( )]GGA
xcE n rK .  The most widely used 

are proposed by Becke (Becke, 1988), which is known as B88, Perdew and Wang 

(Perdew and Wang, 1992), which is known as PW91 and Perdew, Burke, and 

Enzerhof (Perdew et al., 1996), which is known as PBE. 

 

 

 

 



 

10

2.2 Plane waves  

      In this thesis, plane waves (PWs) are employed as a basis set, for the solutions of 

the KS equation (Eq.2.4). The starting point for  PWs calculation is an expression of 

the wave functions in terms ik re
K Ki , time a function of periodic function, ( )nku rK

K  ( Kittel, 

1996), 

 ( ) ( )ik r
nk nkr e u rψ =

K KiK K
K K  (2.10)     

where 

 ( ) ( ).nk nku r R u r+ =K K
KK K  (2.11) 

 
Equation 2.10 and 2.11 are known as Bloch’s theorem, where rK  is the position in the 

crystal, R
K

 is the lattice translation vector in the crystal, k
K

 is the wave vector, n is the 

band index representing the different solutions that have the same wave vector, k
K

. 

( )nku rK
K  has the same periodicity as the potential. Using the Fourier transform of a 

periodic function to reciprocal space, the wave function in Eq. 2.10 can also be 

written in the sum of PWs in the following form (Kittel, 1996),  

 ( )( ) ( ) i k G r
nk nk

G
r u G eψ +=∑

K K KiK K
KK  (2.12) 

where G
K

 is the reciprocal lattice vector. This allows the calculations to be done in the 

reciprocal space. In practice, the numbers of G
K

 vectors used in the sum are limited. 

The kinetic energy of PWs used in the calculations have to be smaller than the cutoff 

energy, Ecutoff, (Martin, 2004), 

 
2

2 .
2 cutoffk G E

m
+ <

=  (2.13) 

      From the Bloch’s theorem, the wavefunction of an infinite number of wave 

vectors, k
K

 in the first Brillouin zone (BZ) need to be solved (Martin, 2004). In 
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practice, it is impossible to do the calculations with the infinite number of k-points. 

However, the wavefunctions are quite similar for k-points in the same vicinity.  

Therefore, it is possible to sampling a limited number of k-points to represent the 

entire BZ. There are various sampling methods to calculate the set of k-points  see for 

e.g., (Monkhorst and Pack, 1976). The set of “special” k-points chosen to 

appropriately describe the BZ employed in this work is based on the Monkhorst-Pack 

method (Monkhorst and Pack, 1976). 

 

2.3 Pseudopotentials  

      In materials, electrons can be divided into two types: core electrons and valence 

electrons. Core electrons are strongly localized in the inner atomic shell. Valence 

electrons are electrons in the outer shell, participating in bondings. PWs with a limited 

Ecutoff are not suitable for describing the core region. Since a large number of PWs 

would be required to accurately describe the fast oscillation wavefunctions in the core 

regions (Heine, 1970). To solve the problem, the strongly core potential is replaced by 

a smooth pseudopotential ( PS( )V rK ) as shown in Figure 2.1. This effectively removes 

the core electrons from the calculations. It does not seriously affect the results because 

the core electrons remain almost unchanged. The corresponding set of pseudo 

wavefunctions PS( )rψ K  and the all electron wave functions ( )rψ K are matched outside a 

selected core radius rc. Inside rc, PS ( )rψ K  does not have the fast oscillation features 

that required high energy cutoff. The pseudo wavefunctions vary smoothly inside rc, 

as shown in Figure 2.1. 
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Figure 2.1 Illustrations of the pseudopotential and pseudo wavefunction. The dash 

lines show the real wavefunction, ( )rψ K , and real potential, ( )V rK . The solid lines show 

the corresponding pseudo wavefuncions, PS ( )rψ K , based on the pseudopotential, 

PS ( )V rK . The cutoff radius rc represents a radius at which the all electron and pseudo 

quantities match. (The figure is reproduced from Ref. (Wolfram Quester Source, 

www, 2006))         
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      2.3.1 Norm-conserving pseudopotentials 

      Pseudopotentials used in the electronic structure calculations are generated based 

on all electron KS calculations of isolated atoms. The radial KS equation is used 

because isolated atoms have the spherical symmetry. The pseudopotential should be 

nodeless (Martin, 2004; Beyer, 2006).  

      One important requirement is that the pseudopotentials have to meet the norm-

conserving conditions. This is to ensure that the integration of pseudo and all electron 

(real) charges within the core radius are equal (Hamann et al., 1979). The norm-

conserving pseudopotentials are defined from the following list of conditions (Martin, 

2004; Beyer, 2006; Carlsson, www, 2009) 

      1. All electron and pseudo wavefunctions (should be smooth and nodeless) are 

matched outside the cut-off radius, rc, i.e., 

 ( ) ( ),     .AE PS
l l cr r r r= >ψ ψ  (2.14) 

 
      2. The eigenvalues should be conserved. 

 AE PS
l lε ε=  (2.15) 

      3. Inside the core, the integration of pseudo charge density is equal to that of all 

electron charge density. This condition is the norm-conservation criteria, i.e. 

 2 2

0 0

( ) ( ) .
c c

AE PS
l l

r r

r dr r drψ ψ=∫ ∫  (2.16) 

      4. The logarithmic derivatives of all electrons and pseudo wavefunctions and their 

first energy derivatives agree at rc. 

      The logarithmic derivative for an angular momentum l, can be written as 

 
( ; )( ) ln ( ; ) ,
( ; )

c

l c
l l

r l c

rdD r
dr r

′
= =

ψ εε ψ ε
ψ ε  (2.17) 
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where ( ; )l rψ ε is a solution of the radial KS equation for a fix potential and fixed 

energyε .  

      The pseudopotential generation steps can be presented as follow. First, the all 

electron wavefunction AEψ  is replaced by an arbitary smooth nodeless 

wavefunction ( )PS rψ  which satisfied the conditions mentioned above. Based on the 

pseudo wavefunction ( )PS rψ  and its corresponding energy PS AE
l l=ε ε , the norm-

conserving pseudo potential is obtained by solving the radial KS equation. 

      The norm-conserving pseudopotentials, PSV can be separated into a local potential 

, ( )PS
locV r and a nonlocal potential, ( )PS

nl l l l
l

V r V=∑ β β  (Kleinman and Bylander, 

1982), 

 ( ) ( ) ( ) .PS PS PS PS
loc nl loc l l l

l
V V r V r V r V= + = +∑ β β  (2.18) 

The nonlocal part is the deviation from the all electron potential and is confined inside 

rc. The projector, lβ , acts only on the wavefunctions with angular momentum (l), 

which is localized within rc.  

      Accuracy and transferability generally lead to the choice of a small cutoff radius 

(rc) and “hard” potentials. This is to give the wavefunction as accurate as possible in 

the region near the atom. However, to benefit from the pseudopotential, one needs 

soft potentials that result in the smooth wavefunctions. The smoothness of the 

pseudopotentials generally leads to the choice of a large cutoff radius (rc). (Martin, 

2004).  
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      2.3.2 Ultrasoft pseudopotentials 

      The elements with 2p and 3d valence electrons are difficult to treat within 

pseudopotentials scheme (Meyer, 2006). These valence electrons are strongly 

localized near the ionic core region. Many plane waves are required to represent the 

accurate wave functions, which is not an efficient way to perform in the calculations. 

To solve this problem, ultrasoft pseudopotentials (USPP) is introduced (Vanderbilt, 

1990).  

      The norm conserving requirements has been relaxed in USPP, to obtain smoother 

wave functions. Instead of using the plane waves to describe the full valence wave 

function, only a small portion of the wave function is calculated within the USPP 

scheme. This allows one to reduce substantially the plane wave cutoff energy in the 

calculations (Meyer, 2006). 

 

      2.3.3 Projector augmented waves 

      The projector augmented waves (PAW) method is proposed by Blöchl (Blöchl, 

1994). In this method a smooth wavefunction ( �ψ ) is created.  There exists a linear 

transformation which relates the all electron wave function (ψ ) to this smooth 

wavefunction ( �ψ ) by the transformation operator τ  through the relationship: 

 .= �ψ ψτ  (2.19) 

 
Utilizing the linear transformation of PAW method, the all electron wavefunction (ψ ) 

can be written as 

 ( ) ,m m m
m

pψ ψ ψ ψ ψ= + −∑� � ��  (2.20)     
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where mψ  is a localized all electron partial wave for state m, m�ψ  is a localized smooth 

partial wave for state m, and mp�  is the localized projection operator. The 

transformation operatorτ  can be written as 

 ( ) .1 m m m
m

p−= +∑ � �ψ ψτ  (2.21) 

From Eq. 2.21 the transformation operator τ  can be used to add back the core 

potential of the all electron wavefunctions to the smoothed wavefunctions. Moreover, 

Eq. 2.21 can be applied equally well to core and valence states so that all electron 

results can be derived by applying Eq. 2.21 to all electron states (Martin, 2004). 

 

2.4 The Full Potential Linear Muffin Tin Orbital Method 

      In full potential linear muffin tin orbital (FP-LMTO) method, the unit cell is 

divided into atom centered muffin tin spheres and an interstitial region outside these 

spheres.  Inside the muffin tin spheres, the potentials can be solved numerically by 

means of expansions in spherical harmonics (Methfessel, 1988). In the interstitial 

region, the potential is calculated by using numerical integration which results in the 

matrix elements (Methfessel et al., 2000), 

 ( ) *( ) ( ) ( )IR
ij i j

IR

V H r V r H r dr= ∫
K K K K  (2.22) 

where ( )IR
ijV is the matrix element potential in the interstitial region, the functions 

( )iH rK (or ( )jH rK  ) is the envelop functions, which are augmented inside the muffin 

tin sphere to obtain the final basis function, ( )KV r  is the interstitial potential and IR 

denoted the interstitial region. The results also depend on how the suitable interstitial 

region is chosen.  The general way in obtaining the interstitial region is presented as 

follow.  The basis functions and the interstitial potential are smoothly extended through 
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the atomic sphere in some manner. Then these smooth functions are replaced into Eq. 

2.22 to integrate for the potential of the interstitial region. Finally, the unwanted 

contributions inside the spheres are subtracted in conjunction with the augmentation step.  

In FP-LMTO, the smooth extension must be built for the sphere on which the function 

is the centered by matching an analytical expression (i.e. a polynomial) at the sphere 

radius (Methfessel et al., 2000). Alternatively, Hankel functions can be used to 

represent interstitial quantities. These functions make basis function quite similar to 

the real basis functions.  Moreover, a smoothed Hankel functions that are bended 

more than normal Hankel functions near the muffin tin sphere, is introduced.  This 

smoothed Hankel functions lead to the smaller basis functions. A different approach 

(to the interstitial potential matrix elements) is to re-expand the product of any two 

envelopes as a sum of an auxiliary atom-centered basis function. The matrix element 

in Eq. 2.22 then reduces to a linear combination of integrals of the auxiliary atom-

centered basis function times the interstitial potential. In this way the three-center 

integrals in Eq. 2.22 can be reduced to a sum of two-center integrals (Methfessel et 

al., 1988). The expansion can be obtained approximately by using Gauss’s theorem to 

fit on the surfaces of the muffin-tin spheres (Methfessel et al., 1988; Methfessel et al., 

2000).  For further details, see Ref. (Methfessel et al., 2000).  

 

 

 

 

 

 

  



 

18

2.5 The Vienna Ab initio Simulation (VASP) Package 

      The calculations are performed with the Vienna Ab initio Simulation Package 

(VASP), developed by Kresse, Hafner, and Furthmüller (Kresse and Hafner, 1994; 

Kresse and Furthmüller, 1996a; 1996b).  VASP uses planewaves (PWs) as a basis set 

to describe electron wavefuntions.  The ultrasoft pseudopotentials (USPP) 

(Vanderbilt, 1990) and PAW (Blöchl, 1994) potentials needed for the calculations are 

included in the package.  In this thesis, the ultrasoft pseudopotentials are mainly 

employed.  So the fewer plane waves are needed in comparison to traditional 

pseudopotential methods. The k-point samplings are based on the Monkhorst-Pack 

approach (Monkhorst and Pack, 1976). The main computational part for solving the 

KS-equation self-consistently is obtained by using an iterative matrix-diagonalization 

scheme such as, a conjugate gradient scheme (Teter et al., 1989; Bylander et al., 

1990) and block Davidson scheme (Davidson, 1983). The Broyden/Pulay mixing 

scheme (Pulay, 1980; Jonhson, 1988) is used for calculating of charge density.  There 

are two main loops in VASP calculations.  The charge density is optimized in the 

outer loop. In the inner loop, the wave functions are optimized by solving KS 

equation in a self consistent algorithm (Kresse and Furthmüller, 1996a; 1996b).  

 



CHAPTER III 

CRYSTAL PROPERTIES 

 
3.1. Crystal structure 

      The natural form of all five materials studied is wurtzite, as shown in Figure 3.1 

with the top view and side view in the middle and bottom row, respectively. This 

structure is quantified customarily by the lattice constant a, the c/a ratio, and the 

internal parameter u which specifies the relative distance ratio along the c-axis 

between the two hexagonal close-packed cation and anion sublattices. To describe the 

unbuckled-wurtzite (HX) (Figure 3.2) and the rocksalt (RS) structures (Figure 3.3) 

and the transformation from WZ to each of these phases, an extra lattice parameter b 

and an internal parameter v are introduced (Limpijumnong and Lambrecht, 2001a; 

2001b). The parameter v defines the relative horizontal distance along the b-axis 

between the cation and anion sublattices. Out of five parameters (a, b, c, u, and v) 

illustrated in Figure 3.1, only three external ones (a, b, and c) can be directly 

manipulated by applying external stresses. The two internal parameters (u and v) 

cannot be directly controlled. These two internal parameters are determined such that, 

for any given configuration, the net forces on all atoms in the unit cell vanish. It is 

found that u depends mainly with c/a and v with b/a. An analysis of the variations of u 

with c/a and v with b/a can be found in Ref. (Limpijumnong and Lambrecht, 2001a; 

2001b). The three crystal structures are significantly different, with c/a ≈1.63 and b/a 

≈ 1.73 for WZ, c/a ≈ 1.20 and b/a ≈ 1.73 for HX and c/a ≈ 1.00 and b/a ≈ 1.00 for RS.             
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The ideal values of c/a, b/a, u, and v for WZ, HX, and RS under no load and zero 

temperature are listed in Table 3.1. All parameters are determined from the geometry 

of each structure, for instant, perfect tetrahedral coordination for WZ and perfect 

cubic for RS. This is with an exception of the c/a value for HX, which is obtained via 

enthalpy minimization and the approximated value is listed. Actual values of these 

parameters can deviate from those in Table 3.1, depending on the material, loading 

conditions and temperature.  The calculations values of lattice parameters compare 

with other calculations and experimental results are shown in Table 3.2, 3.3, 3.4, 3.5, 

and 3.6 for SiC, GaN, InN, ZnO, and CdSe, respectively. These values are in good 

agreement with the experimental data and other theoretical values from the literature 

(see Table 3.2 – 3.6). 

 

Table 3.1 Ideal lattice parameters for WZ, HX and RS crystalline structures. 

Parameters WZ HX RS 

c/a 8 / 3 ≈1.63 1.20 1.00 

u 3/8 ≈ 0.37 0.50 0.50 

b/a 3 ≈1.73 3 ≈1.73 1.00 

v 1/3 ≈ 0.33 1/3 ≈ 0.33 0.50 
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Figure 3.1 Crystal model of the WZ structure: small spheres represent anions and 

large spheres represent cations. The top figure shows the perspective view. The 

middle and bottom figures show top view and side view, respectively. The distances 

described by crystal parameters a, b, c, u, and v are indicated.  
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Figure 3.2 Crystal model of the HX structure: small spheres represent anions and 

large spheres represent cations. The top figure shows the perspective view. The 

middle and bottom figures show top view and side view, respectively The distances 

described by crystal parameters a, b, c, u, and v are indicated.  
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Figure 3.3 Crystal model of the RS structures: small spheres represent anions and 

large spheres represent cations. The top figure shows the perspective view. The 

middle and bottom figures show top view and side view, respectively. The distances 

described by crystal parameters a, b, c, u, and v are indicated.  

 

 

 

 

 



 

24

Table 3.2 Lattice parameters for WZ, HX and RS SiC under their equilibrium loading 

conditions. Values in parentheses are taken from literature. 

WZ HX RS 
Parameters 

0 GPap =  eq 60.5 GPacσ− =  eq 64.9 GPap =  

a (Å) 3.05  
(3.06,a 3.08b) 

 

3.32 
4.00 

(3.68,a,b 3.84c) 
 

b (Å) 5.28 5.74 4.00 

c (Å) 4.97 3.98 4.00 

 
2

abcV =  (Å3) 40.0 37.9 32.0 

c/a 1.63 1.20 1.00 

b/a 1.73 1.73 1.00 

u 0.38 0.50 0.50 

v 0.35 0.33 0.50 

aDFT (LDA) calculations by Karch et al. (Karch et al., 1996).  
bSynchrotron ADX by Yoshida et al. (Yoshida et al., 1993). 
cDFT (LDA) calculations by Hatch et al. (Hatch et al., 2005). 

 

 

 

 

 

 

 



 

25

Table 3.3 Lattice parameters for WZ, HX and RS GaN under their equilibrium 

loading conditions. Values in parentheses are taken from literature. 

WZ HX RS 
Parameters 

0 GPap =  eq 30.5 GPacσ− =  eq 44.1GPap =  

a (Å) 3.15  
(3.19,a 3.16,b,c 3.10d) 

 

3.43 
4.16  

(4.01,a 4.10,b4.07e) 
 

b (Å) 5.46 5.94 4.16  

c (Å) 5.11 4.12 4.16 

 
2

abcV =  (Å3) 44.0 42.0 36.0 

c/a 1.62  1.20 1.00 

b/a 1.73 1.73 1.00 

u 0.38 0.50 0.50 

v 0.35 0.33 0.50 

aSynchrotron EDXD experiment by Xia et al. (Xia et al., 1993).  
bXRD experiments by Xie et al. (Xie et al., 1996).  
cDFT (LDA) calculations by  Kim et al. (Kim et al., 1996).  
dDFT (LDA) calculations by Yeh et al. (Yeh et al., 1992). 
eXRD experiments by Lada et al. (Lada et al., 2003). 
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Table 3.4 Lattice parameters for WZ, HX, DHX, and RS InN under their equilibrium 

loading conditions. Values in parentheses are taken from literature. 

WZ HX                DHX RS 
Parameters 

0 GPap =  eq 9.6cσ− = GPa eq 14.7bσ = GPa eq 12.2 GPap =

a (Å) 
3.54  

(3.53,a 3.54,b,c 3.52 d) 
 

3.82 3.48 
4.64 

(4.67,e 4.62d) 
 

b (Å) 6.13 6.62 7.66 4.64 

c (Å) 5.70  4.59 4.35 4.64 

 
2

abcV = (Å3) 61.9 58.1 58.0 50.0 

c/a 1.61 1.20 1.25 1.00 

b/a 1.73 1.73  2.20 1.00 

u 0.38 0.50 0.51 0.50 

v 0.35 0.33 0.31 0.50 

aDFT (LDA) calculations by  Kim et al. (Kim et al., 1996). 
bDFT (LDA) calculations by Yeh et al. (Yeh et al., 1992). 
cXRD calculations by Osamura et al. (Osamura et al., 1975). 
dDFT (LDA) calculations by Furthmüller et al. (Furthmüller et al., 2005). 
eADX experiments by Ueno et al. (Ueno et al., 1994). 
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Table 3.5 Lattice parameters for WZ, HX, DHX, and RS ZnO under their equilibrium 

loading conditions. Values in parentheses are taken from literature. 

WZ HX                DHX RS 
Parameters 

0 GPap =  eq 6.0 GPacσ− = eq 10.8 GPabσ =  eq 8.2 GPap =  

a (Å) 
3.21 

(3.20,a 3.25,b,c  
3.26d) 

 

3.49 3.24 
4.24 

(4.28,b 4.27c,e) 
 

b (Å) 5.54 6.03 6.46 4.24 

c (Å) 
5.15  

(5.17,a 5.22d) 
 

4.19 4.20 4.24  

 
2

abcV = (Å3) 
45.7 

(46.69,e 47.24,f 
47.98d) 

 

44.1 44.0 
38.1 

(39.03,e 

38.16f) 
 

c/a 1.61 
(1.59f) 

 

1.20 1.30 1.00 

b/a 1.73 1.73 2.00 1.00 

u 0.38 
(0.38a,d,f) 

 

0.50 0.50 0.50 

v 0.33 0.33 0.31 0.50 

aDFT (LDA)  calculations by Malashevich and Vanderbilt. (Malashevich and 
Vanderbilt, 2007).  

bSynchrotron EDX experiments by Desgrenier (Desgreniers, 1998). 
cXRD experiments by Karzel et al. (Karzel et al., 1996). 
dEXAFS experiments by Decremps et al. (Decremps et al., 2003). 
eDFT (GGA) calculations by Jaffe et al. (Jaffe et al., 2000). 
fDFT (GGA) calculations by Ahuja et al. (Ahuja et al., 1998). 
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Table 3.6 Lattice parameters for WZ, HX, DHX, and RS CdSe under their 

equilibrium loading conditions. Values in parentheses are taken from literature. 

WZ HX                     DHX RS Parameters 
0 GPap =  eq 3.75 GPacσ− = eq = 5.8 GPabσ  eq 2.2 GPap =  

a (Å) 4.27 
(4.30a) 

 

4.66 4.18 
5.54 

(5.58,a 5.71b) 
 

b (Å) 7.39 8.06 8.78 5.54 

c (Å) 6.96 5.59 5.44 5.54 

 
2

abcV =  (Å3) 109.8 105.0 99.9 85.0 

c/a 1.63 1.20 1.30 1.00 

b/a 1.73 1.73 2.10 1.00 

u 0.38 0.50 0.50 0.50 

v 0.35 0.33 0.31 0.50 

aDFT calculations by Benkhettou et al. (Benkhettou et al., 2004). 
bXRD experiments by Wickham et al. (Wickham et al., 2000). 
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3.2 Stability of the crystal structures 

      Under ambient pressure, the natural form of all five materials studied is WZ 

structure which belongs to the P63mc space group as shown in Figure 3.1. Under 

sufficiently large hydrostatic compressive RS is observed. HX can be stabilized under 

uniaxial compression loading along [0001] direction and under uniaxial tensile 

loading along [0110] direction particularly for InN, ZnO, and CdSe (Sarasamak et al., 

2008).  Under uniaxial tensile loading along [0110] , the stabilized structure does not 

have hexagonal symmetry (the structure is elongated along b-direction). The structure 

will be referred to as distorted HX (DHX). Figure 3.4 shows the total energy as a 

function of volume at zero external loading for WZ, RS, HX and DHX structure for 

all five compounds. Since the HX and DHX structures are stable only under specific 

uniaxial loadings, the curves for them are produced based on two types of uniaxial 

stresses. (1) By keeping a uniaxial stress along [0001] direction (fix c/a = 1.2 and b/a 

= 1.73 for all five compounds), green curves (corresponding to HX structures) are 

obtained. (2) By keeping a uniaxial tension along [0110]  direction (fix c/a = 1.25 and 

b/a = 2.2 for InN, fix c/a = 1.3 and b/a = 2.0 for ZnO, and fix c/a = 1.3 and b/a = 2.1 

for CdSe), blue curves (corresponding to DHX structures) are obtained. 

      For each structure, the energies associated with at least four different unit cell 

volumes are calculated. The continuous energy-volume curves are obtained by a third-

degree polynomial fit. As shown in Figure 3.4, WZ is the most stable structure with 

the lowest energy, HX has second highest energy, and RS has the highest energy 

(except for CdSe, where RS has a lower energy than HX).  Figure 3.4 also shows that, 

HX, DHX, and RS are not stable under ambient conditions.  
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Figure 3.4 Total energy as a function of the volume for WZ, RS, HX and DHX 

structures  (black, red, green, and blue curves represent WZ, RS , HX and DHX 

structure, respectively) for (a) SiC, (b) GaN, (c) InN, (d) ZnO, and (e) CdSe with 

LDA calculations.  
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3.3 Thermodynamic stability 

      Let us start with the fundamental quantities of materials: energy (E, in the unit of 

eV), pressure (P, in the unit of GPa), and bulk modulus (B, in the unit of GPa). The 

relationship between them can be written as (Martin, 2004), 

 

2

2

( ),

,

.

E E V
dEP
dV

dP d EB V V
dV dV

=

= −

= − =

  (3.1) 

      Because some quantities are macroscopic, they are determined for a fixed number 

of atoms, for e. g., in crystal, E is the energy per unit cell of volume V = Vcell (V is in 

the unit of Å3). 

      The following steps are performed to determine the equilibrium volume V0, (for P 

= 0 and T = 0), and bulk modulus B of particular material with known crystal 

structure.  First the energy (E) for several values of the volume (V) are calculated, and 

fit to an analytic form such as Murnaghan’s equation of state (Murnaghan, 1944). For 

a sufficiently small range of volume, the E-V curve can be fitted by a simple 3rd 

degree polynomial. The minimum point gives the predicted volume V0 and its total 

energy. The second derivative at that point is the bulk modulus (B). 

      When  P ≠  0 and/or T ≠  0, the stable phase is the one with the lowest Gibbs free 

energy G.  The Gibbs free energy is defined as (Martin, 2004) 

 ,= + − = −G E PV TS H TS  (3.2) 

where E is the internal energy (in the unit of eV), P is pressure (in the unit of GPa), V 

is volume (in the unit of Å3), T is temperature (in the unit of K), S is the entropy (in 

the unit of eV/ K), and H is the enthalpy (in the unit of eV). 
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      The large pressure that can be obtained in high pressure experiments may cause 

volume reductions. Here, we focus on the T = 0 cases. The Gibbs free energy is the 

simply enthalpy H and given by 

 H E PV= +  (3.3) 

At a given pressure, the thermodynamically stable phase is the one with the lowest 

enthalpy. 

      Although, the zero-temperature theory often results in a good agreement with 

experiment, the effects of finite temperature in some cases can be significant. For 

example, when the temperature is increased it becomes easier to overcome the 

energetic barriers of the transformation, so that the hysteresis is reduced (Mujica et 

al., 2003).  

 

3.4 Mechanical properties  

      3.4.1 Phase transition under pressure 

      Solid-solid phase transition driven by high pressure can be divided into (1) 

reconstructive transitions, which involve significant changes at the transition 

including the bond breakings and bond formations, and (2) displacive transitions, in 

which the positions of atoms changes by fairly small amounts at the transition (often 

accompanied by some strains) (Mujica et al., 2003). Alternatively, phase transitions 

can be classified according to their thermodynamic “order”, which is the order of the 

derivative of Gibbs free energy (G E PV TS= + − ). However, in this work, only 

pressure induced phase transitions is the main interest. In this case, Gibbs free energy 

is reduced to only the enthalpy term ( H E PV= + ).  At T = 0, the stable structure (at 

constant pressure P) is the structure that gives the minimum enthalpy. The transition 
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pressure can be determined by calculating E(V) and constructing the common tangent 

line between the E(V) curves the for two phases. The slope of the line is the transition 

pressure.  

      Figure 3.5 shows the energy versus volume for their crystal structures of ZnO  that 

we obtained from ab initio DFT calculations (Sarasamak et al., 2008). The local 

density approximation is used for the exchange correlation. The computation code 

(VASP) (Kresse and Hafner, 1994; Kresse and Furthmüller, 1996a; 1996b) is based 

on plane wave (ultrasoft) pseudopotential method. The stable structure at P = 0 is 

wurtzite structure, and ZnO is predicted to transform to the rocksalt structure at the 

pressure indicated by the slope of the tangent line, ≈ 8.22 GPa which is in a good 

agreement with other theoretical and experimental works (for e.g. , Ahuja et al., 1998; 

Jaffe et al., 2000). A five-fold coordinated unbuckled wurtzite phase which is found to 

be stable under uniaxial compression along the [0001] crystalline direction (green 

curve which corresponding to HX structures) or uniaxial tension along the [0110] 

crystalline direction (blue curve which corresponding to DHX structures) are also 

shown in this figure (more details for WZ to HX or DHX structure are given in 

Chapter IV). 
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Figure 3.5 Energy versus volume for four ZnO structures. The transition pressure is 

given by the slope of the common tangent lines between the two phases. For example, 

the dashed line shows the common tangent line between the WZ- and RS- structures. 

The slope of the line gives the equilibrium transition pressure of 8.22 GPa (Sarasamak 

et al., 2008).  

 

      3.4.2 Elasticity  

      Solids are generally deformed when subject to an applied mechanical stress.  For 

small deformations, most solids behave in an elastic manner following Hooke’s law 

which states that the stress, σij (i, j = x, y, z), and strain, eij (i, j = x, y, z), are directly 

proportional to each other. The linearity in elastic response with an applied stress is 

applicable only in a limited range of deformation. For large deformations, the elastic 

response becomes non-linear. The non-linear response is a direct consequence of the 

anharmonicity of interatomic potentials that dominates at large displacements. The 

stress-strain relations are studied by applying external forces to the solid. The size or 
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shape of a solid can be changed under an applying external force since the stress 

defines the force acting on a unit area in the solid. The stress in the solids is expressed 

by a (3 3× ) matrix where the nine elements are the stress on various directions, 

( , , , ),ij i j x y zσ =  

 
xx xy xz

yx yy yz

zx zy zz

σ σ σ
σ σ σ σ

σ σ σ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. (3.4) 

Note that the subscript, i and j, in the stress component is used to indicate the 

direction of the force and the plane which the force is applied. For example, xxσ  

means a force applied in the x direction to a unit area which its normal vector lies in 

the x direction (this type of stress is known as normal stress); xyσ  means a force 

applied in the x direction to a unit area which its normal vector lies in the y direction 

(this type of stress is known as shear stress). The nine components of stress are 

reduced to just six independent components because the constraint of zero totals 

torque (Kittel, 1996; Elliott, 1998) which gives, 

 ; ;xy yx yz zy zx xzσ σ σ σ σ σ= = = . (3.5) 

The general form of stress matrix in Eq. 3.4 can be transformed to the stress matrix 

which has only diagonal components (in a new set of coordinate , ,x y z′ ′ ′ ) 

 
0 0

0 0 ,
0 0

′

′

′

⎛ ⎞
⎜ ⎟′ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

x

y

z

σ
σ σ

σ
 (3.6) 

where ′xσ , ′yσ , and ′zσ , are the principal stresses. Furthermore the mean stress can 

be extracted from the principal stresses such that Eq. 3.6 can be written as (Elliott, 

1998)  
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0 0

0 0

0 0

0 0 0 0 ( ) 0 0
0 0 0 0 0 ( ) 0 ,
0 0 0 0 0 0 ( )

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x x

y y

z z

σ σ σ σ
σ σ σ σ

σ σ σ σ
 (3.7) 

where the mean stress, 0σ , is given by 

 0 ( ) / 3x y zσ σ σ σ= + + . (3.8) 

Eq. 3.7 shows that the stress tensor is the sum of a pure hydrostatic term which tends 

to change the volume and a pure shear or deviatoric stress term which tends to distort 

the shape (Elliott, 1998). The stress in the first term causes the solid to change volume 

but not the shape because the applying stresses (force per unit area) in all principal 

directions are equal in magnitude. Another term causes the solid to change the shape 

while the volume remains constant. The change in shape is the result from an unequal 

applying force among principal directions. The constant volume is the result from 

zero trace of shear stress tensor where as the sum of stress components is  

 0 0 0( ) ( ) ( ) 0.− + − + − =x y zσ σ σ σ σ σ  (3.9) 

In other words, the mean stress components are zero. Figure 3.6 shows the 

representation of the deformed solid shape under both types of stress.  
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Figure 3.6 Representation of (a) uniform compression resulting from a purely 

hydrostatic compressive stress and (b) pure shear deformation (The figure is 

reproduced from Ref. (Elliott, 1998)). 

 

      By considering Hooke’s law for the solids, within a small deformation limit, the 

stress components, ijσ (i, j = x, y, z), can be expressed as linear combinations of the 

strain components, ije (i, j = x, y, z). The relationship between stress and strain can be 

written in the matrix form as (Elliott, 1998),  

 

13 15 1611 12 14

23 25 2621 22 24

33 35 3631 32 34

43 45 4641 42 44

51 52 5453 55 56

61 62 6463 65 66

⎛ ⎞ ⎛⎛ ⎞
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜= ⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎝ ⎠ ⎝

xx xx

yy yy

zz zz

yz yz

zx zx

xy xy

eC C CC C C
eC C CC C C
eC C CC C C

     eC C CC C C
C C CC C C e
C C CC C C e

σ
σ
σ
σ

σ
σ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.10) 

where the proportional constant Cλα (λ, α = 1, 2, 3,…, 6) is elastic constants which are 

in the unit of GPa and the indices 1 to 6 are defined as (Kittel, 1996), 

 1 ; 2 ; 3 ; 4 , ; 5 , ; 6 ,xx  yy  zz  yz zy  zx xz  xy yx≡ ≡ ≡ ≡ ≡ ≡ . (3.11) 
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      Among 36 elastic constants in Eq. 3.10, there are only few constants that are 

independent when considering the symmetry of the crystal structure. For example, in 

the case of cubic crystal structure, there are 3 independent elastic constants, C11, C12, 

and C44 (for more details, see Ref. (Tinder, 2008)). In the hexagonal crystal structure 

(such as the wurtzite structure studied here), there are six independent elastic 

components which are C11, C12, C13, C33, C44, and C66, where 66 11 12
1 ( )
2

C C C= − , the 

independent elastic constants for the wurtzite structure can be written in the matrix 

form as (Tinder, 2008), 

 

11 12 13

21 11 13

13 13 33

44

44

66

00 0
00 0
00 0
000 0 0
00 0 0 0

0 0 0 0 0

C C C
C C C
C C C

     
C  

C 
C  

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (3.12) 

 

      3.4.3 Elastic energy 

      Under small distortions, the interatomic displacement is small and the interatomic 

potentials can be considered to be harmonic. The elastic energy is expressed as the 

quadratic function of the strains. The expression for the elastic energy per unit volume 

can be written as (Kittel, 1996), 

 
6 6

1 1

1
2

U C e eλα λ α
λ α= =

= ∑∑  (3.13) 

where the number indices 1, 2, 3,…, 6 are defined in the same way as Eq. 3.11.  The 

elastic constants, Cλα can be obtained from the derivative of U with respect to the 

associated strain components (Kittel, 1996).  
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      In our work, the energy (E) is calculated for difference configurations of traceless 

(volume conserving) strain, (exx, eyy, ezz, ezy, ezx, exy). For each configuration, E is also 

calculated at a few values of the strains (e) (Wright, 1997; Prikhodko et al., 2002). 

Then, the energy-strain curve for each strain configuration is obtained by fitting to a 

third-degree polynomial function. The second derivative of energy with respect to 

strain gives us the elastic constants. 

      For example, a traceless strain in a strain configuration D1 = (0, 0, e, 0, 0, 0) is 

introduced to calculate the elastic constant component C33 for a WZ structure. The 

elastic energy can be written in a matrix 

 ( )

11 12 13

21 11 13

13 13 33
1

44

44

66

00 0 0
00 0 0
00 01 0 0 0 0 0 .
000 0 0 02
00 0 0 00

0 0 0 00 0

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

C C C
C C C
C C C e

U e        
 C  
 C 
C  

 (3.14) 

The multiplication product of Eq. 3.14 gives the elastic energy for this strain 

configuration as U1 = 2
33

1
2

C e . The energy is then calculated for several values of the 

strains (e). Then the energy-strain curve is fitted to a third-degree polynomial. The 

second derivative of the energy with respect to the strain gives us C33. The other 

elastic components can be obtained by similar steps.  

 



CHAPTER IV 

STABILITY OF WURTZITE, UNBUCKLED WURTZITE, 

AND ROCKSALT PHASES OF SiC, GaN, InN, ZnO, AND 

CdSe UNDER LOADING OF DIFFERENT DIRECTIONS 

 
4.1 Introduction 

      The recent synthesis of quasi-1D nanostructures such as nanowires, nanobelts and 

nanorods of GaN, ZnO and CdSe (see, for e.g., (Pan et al., 2001; Bae et al., 2002)) 

necessitates understanding the response of such compounds to external uniaxial 

loading. These nanostructures are mostly single-crystalline and nearly defect-free. 

Therefore, they are endowed with high strengths and the ability to undergo large 

deformations without failure. In addition, their high surface-to-volume ratios enhance 

atomic mobility and promote phase transformations under loading. We have 

computationally identified a novel five-fold coordinated unbuckled wurtzite phase 

(HX) within the 36P m mc  space group in [0110] -oriented ZnO nanowires under 

uniaxial tensile loading (Kulkarni et al., 2006; Kulkarni et al., 2007). The stability of 

this novel phase and the stabilities of WZ and RS phases of ZnO under uniaxial 

tension along the [0110]  direction as well as hydrostatic compression were analyzed 

through enthalpy calculations. It is found that the HX structure can not be stabilized 

by applying hydrostatic pressure. Instead, first principles calculations showed that 

transformation into the HX structure can occur under either tensile loading along the 
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[0110] direction or compressive loading along the [0001] direction of sufficient 

magnitude. For this WZ→HX transformation, the uniaxial stress deforms the crystal 

in only one direction. Since the unit cell of HX is significantly shorter than the unit 

cell of WZ in the c- or [0001] direction (details later), either compression along the c-

direction or tension along the perpendicular [0110]  direction can cause the 

transformation. For compression along the c-direction, the corresponding contribution 

to enthalpy by mechanical work is linearly proportional to c cσ− Δ , with cσ  and cΔ  

being the compressive stress and the change in unit cell size in the c-direction, 

respectively. For tension along the b-direction, the corresponding contribution to 

enthalpy by mechanical work is linearly proportional to b bσ Δ , with bσ  and bΔ  being 

the tensile stress and the change in unit cell size in the b-direction, respectively. For 

the WZ→RS transformation, the hydrostatic pressure uniformly compresses the WZ 

crystal in all directions and causes it to collapse into the RS phase which has a lower 

equilibrium unit cell volume. The mechanical work contribution to enthalpy is p VΔ , 

with p and VΔ  being the external pressure and volume reduction, respectively. The 

discovery of the novel HX phase has subsequently been confirmed in [0001]-oriented 

ZnO nanoplates (Zhang and Huang, 2006) and nanowires (Zhang and Huang, 2007).  

      To gain insight into the existence of the WZ, HX, and RS structures in binary compounds 

with different ionicities, we analyze here the energetic favorability of these phases for ZnO 

and CdSe (groups II-VI), GaN and InN (III-V) and SiC (IV-IV) under uniaxial loading 

along the [0110]  and [0001] crystalline axes as well as under hydrostatic compression 

(Sarasamak et al., 2008). The possibility of transformations from WZ into HX or RS and 

the effort under loading of different directions on the transformations are analyzed.  
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4.2. Computational method 

      First principles calculations are carried out to evaluate the total energy of each 

compound in its natural and deformed states. The calculations are based on the 

density functional theory (DFT) with local density approximation (LDA) and ultrasoft 

pseudopotentials (Vanderbilt, 1990), as implemented in the VASP code (Kresse and 

Furthmüller, 1996). Here we are interested only in the energy differences between 

phases. Zinc 3d, gallium 3d, indium 4d and cadmium 4d electrons are treated as 

valence electrons. Cutoff energies for the plane wave expansion are 400 eV for ZnO, 

180 eV for CdSe, 350 eV for nitrides and 300 eV for SiC. The k-point sampling set is 

based on a 7 7 7× ×  division of the reciprocal unit cell based on Monkhrost-Pack 

scheme (Monkhorst and Pack, 1976) with the Γ-point included, which gives 

approximately 100 inequivalent k-points.   

      The stability of each crystal structure and compound can be determined by 

analyzing enthalpy as a function of c/a and b/a. The enthalpy per a wurtzite unit cell 

under uniaxial loading is 

 ( / , / ) ( , , , , ) jk i iH c a b a E c b a u v A qσ= − × , (4.1) 

where E is the formation energy per (wurtzite) unit cell, σi is the stress along the i 

direction, qi is the lattice parameter in the i direction, Ajk is the cross section area of 

the unit cell perpendicular to the stress direction, and jk i iA qσ×  (summation not 

implied) is external work. For tension along the b axis, i b= ,  / 2acA ac=  and bq b= , 

with bσ  being the tensile stress.  For compression along the c axis, i c= ,  

/ 2abA ab= , and cq c= , with cσ−  being the compressive stress.  
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      For hydrostatic compression, the enthalpy is 

 ( / , / ) ( , , , , )H c a b a E c b a u v pV= + , (4.2) 

where p and / 2V abc=  are the pressure and unit cell volume, respectively.  Under 

ambient pressure, the enthalpy is equal to the internal formation energy. Note that a 

wurtzite unit cell contains two cation-anion pairs and occupy the volume, / 2V abc= . 

      For each c/a and b/a pair, the internal parameters u and v and the unit cell volume 

V are allowed to relax so that the configuration that yields the minimum H is obtained. 

For a given load condition, the minima on the enthalpy surface with c/a and b/a as the 

independent variables identifies the corresponding stable and metastable structures. 

For the analyses at hand, the parameter ranges used are [1.00, 1.63] for c/a and [1.00, 

1.73] for b/a, with the increments of 0.05 for c/a and 0.10 for b/a. This meshing of the 

structural space results in approximately 170 strained configurations. For tensile 

loading along the b-direction, additional configurations with b/a up to 2.30 are also 

investigated, increasing the number of total configurations to 200. Out of these 170 or 

200 configurations, those around (c/a, b/a) ≈ (1.63, 1.73), (1.2, 1.73) and (1.00, 1.00) 

are more carefully analyzed since these three parameter sets define the neighborhoods 

of WZ, HX and RS structures, respectively, for the given load condition. 

      For each strained configuration (each c/a-b/a pair), the energies associated with at 

least four different unit cell volumes (V) are calculated. An equation of state (energy-

volume relation) is obtained by a 3rd-degree polynomial fit. Under loading, the 

volume that minimizes H is not the same as the volume that minimizes E. The 

equation of state allows the minimum enthalpy for each combination of c/a-b/a pair 

and loading condition to be obtained. As an illustration, the energy and enthalpy are 

shown in Figure 4.1 as functions of volume for WZ ZnO (c/a =1.61 and b/a =1.73) 
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under hydrostatic pressure. At ambient pressure ( 0p ≈ ), the energy and enthalpy are 

equal and the minimum enthalpy is equal to 0( )E V , with 0V  being the equilibrium 

volume of WZ in a stress-free state. At 1p p= , the minimum enthalpy occurs at 

1V V=  for which 1/dE dV p= − . 

 

 

Figure 4.1 Energy (solid curve) and enthalpy (dashed curve) as functions of volume 

for wurtzite (c/a = 1.61 and b/a = 1.73) ZnO.  At hydrostatic pressure p1=8.22 GPa, 

the volume that minimizes enthalpy (V1) is smaller than the volume at ambient 

pressure (V0). (The figure is a reproduction of Figure 2 in our published paper 

(Sarasamak et al., 2008).) 
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4.3 Results and discussions 

      4.3.1 Ambient conditions (stress-free state) 

      Figure 4.2(a) shows the energy (or enthalpy at zero external loading) landscape 

for ZnO.  The global minimum occurs at the wurtzite structure with (c/a, b/a) = (1.61, 

1.73). The sections of the surface along b/a = 1.73 (solid line) and 1.00 (dash line) are 

shown in Figure 4.2(b). By virtue of symmetry, b/a is fixed at 3 1.73≈  for WZ and 

HX and at 1.00 for RS. Clearly, in stress-free state, WZ is the most stable structure 

with the lowest energy, HX has higher energy and is not stable (no local minimum), 

and RS structure is metastable with high energy. For SiC, GaN, InN and CdSe, the 

shapes of the energy landscapes are similar to that of ZnO as shown in Figure 4.3(a), 

(b), (c), and (d), respectively and their 2-D sections at b/a = 1.73 and 1.00 are shown 

in Figure 4.4(a), (b), (c), and (d), respectively. The energy difference between HX and 

WZ ( HX-WZEΔ ) and that between RS and WZ ( RS-WZEΔ ) are tabulated in Table 4.1. 

For some low pressure or low stress conditions, the enthalpy surface might not have 

HX local minimum. In such cases, the c/a and b/a defining the HX phase is taken 

from the first metastable HX at higher presser or stress. The energies of the three 

phases for all compounds except CdSe follow the order of RS HX WZE E E> > .  For 

CdSe, RS HXE E< . This exception can be attributed to the fact that for compounds 

such as CdSe with high ionicity, the energy differences between RS, HX and WZ are 

relatively small. Therefore, other effects, such as energy cost for bond distortions, can 

affect the ordering in energies. 
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Figure 4.2 (a) Energy (E) landscape for ZnO (in eV per wurtzite unit cell which 

contains 2 cation-anion pairs). Each point on the surface represents the minimum 

energy for a given combination of c/a and b/a. To obtain each minimum energy, u, v, 

and V are allowed to relax while c/a and b/a are kept constant. Energy levels above 

−20.5 eV are truncated as they are not of interest in the discussions here. (b) 2-D 

sections of the energy surface for b/a = 1.73 (solid line) and 1.00 (dashed line). 
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Figure 4.3 Energy surface map (in eV/2 pairs) for a wurtzite unit cell of (a) SiC, (b) 

GaN, (c) InN, and (d) CdSe. Each point on the surface represents the minimum 

energy for a given combination of c/a and b/a. To obtain each minimum energy, u, v, 

and V are allowed to relax while c/a and b/a are kept constant. Energy levels above a 

certain value for each plot are truncated as they are not of interest in the discussions. 
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Figure 4.4 2-D sections of (a) SiC, (b) GaN, (c) InN, and (d) CdSe energy surfaces 

for b/a = 1.73 (solid lines) and 1.00 (dashed lines). 

 

Table 4.1 Energy difference (eV per 2 pairs) between HX (or RS) and the WZ 

structure. The Phillips’ ionicity parameters (fi) are also listed. (Phillips, 1970) 

Compounds  Phillips’ fi  EHX-EWZ (eV)   ERS-EWZ (eV) 

SiC 0.177 2.53 2.74 

GaN 0.500 1.32 1.74 

InN 0.578 0.61 0.78 

ZnO 0.616 0.26 0.41 

CdSe 0.699 0.44 0.30 
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Figure 4.5 Correlation between the formation energy differences (ΔE) and the 

ionicity as quantified by Phillips’ fi for SiC, GaN, InN, ZnO and CdSe. RS WZE −Δ  is 

shown with the solid line and HX WZE −Δ  is shown with the dashed line. For all 

compounds, WZ has the lowest energy and RS has the highest energy, except for 

CdSe whose RS phase has a slightly lower energy than HX phase. 

 

      Τhere are significant variations of HX WZE −Δ  or RS WZE −Δ  among the compounds, 

partly reflecting differences in the ionicity. Several indexes are available to describe 

the ionicity of materials. Phillips’ ionic scale (fi)  (Phillips, 1970) which has the range 

between 0 (the least ionic) and 1 (the most ionic) is used here by choice.  The values 

of fi for the compounds studied here are listed in Table 4.1.(Phillips, 1970) The 

variations of HX WZE −Δ  and RS WZE −Δ  with fi are shown in Figure 4.5.  For RS, 

 RS WZE −Δ  (solid line) decreases monotonically as fi increases. For HX, HX WZE −Δ  

(dashed line) decreases monotonically with fi (except for CdSe). This is expected 
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because compounds with higher levels of ionicity can significantly lower their 

energies through increases in C.N. While ionicity is not the only factor that 

determines the relative stability of crystal structures, it clearly affects the stability of 

structures. For covalent compounds (e.g., SiC and GaN), the structure with four-fold 

coordination is highly favored, resulting in the large differences between the 

formation energies of RS (6-fold) and WZ (4-fold) and between HX (5-fold) and WZ. 

On the other hand, for a compound with higher level of ionicity, the differences in 

formation energies among RS, HX and WZ are lower. In this paper, only some ionic 

compounds that have four-fold coordinated structures (WZ) under ambient conditions 

are studied.  

 

Table 4.2 Percentage changes in V (volume), lattice parameters b and c as the crystal 

structure changed from WZ to HX and WZ to RS for all five compounds. The 

conditions that stabilize each phase are given in parentheses. 

WZ ( 0σ = ) HX ( eq
cσ σ= − ) WZ (p = 0) RS (p = peq) 

Compounds 

ΔV (%) Δb (%) Δc (%) ΔV (%) Δb (%) Δc (%) 

SiC -5.0 8.7 -19.9 -20.0 -24.2 -19.5 

GaN -4.5 9.0 -19.4 -18.2 -23.8 -18.6 

InN -6.1 7.9 -19.5 -19.2 -24.3 -18.6 

ZnO -3.4 8.8 -18.6 -16.5 -23.5 -17.7 

CdSe -4.4 9.1 -19.7 -22.6 -25.0 -20.4 
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Figure 4.6 Schematic illustrations of the WZ, HX, and RS structures: small spheres 

represent anions and large spheres represent cations. The middle and bottom rows 

show top view and side view, respectively. Parameters a, b, c, u, and v are indicated.  

For realistic rendering, the images shown are drawn to scale using parameters for ZnO 

at equilibrium conditions, i.e., ambient pressure for WZ, eq
cσ σ= −  for HX and p = peq 

for RS.  ΔV, Δb, and Δc are the percentage changes in V (volume), b and c relative to 

the same quantities for WZ. (The figure is a reproduction of Figure 1 in our published 

paper (Sarasamak et al., 2008).) 
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      4.3.2 Hydrostatic compression 

      Sufficiently high pressures can cause the WZ structure to collapse into the denser 

RS phase. As shown in Figure 4.6, the volume of the RS structure is ~17% smaller 

than the volume of the WZ structure (ΔV ≈ −0.17V0, with V0 being the equilibrium 

volume of WZ). Although, the figure uses ZnO as an illustrated case, other 

compounds show similar changes in the volume (see Table 4.2). For a given constant 

pressure p, the difference in contributions to enthalpy by mechanical work between 

RS and WZ is approximately pΔV  (neglecting the difference in bulk moduli of the 

two phases). If  p is sufficiently high, mechanical work can overcome the formation 

energy difference, driving the transformation forward. Figure 4.7 shows 

RS WZ RS WZH H H−Δ = −  and HX WZ HX WZH H H−Δ = −  as the functions of p for the five 

compounds studied. The rather linear trends confirm that the bulk moduli of the WZ, 

HX, and RS phases are quite comparable. The slight deviation from linearity of 

RS-WZHΔ  reflects the fact that the bulk modulus of RS is somewhat higher 

(approximately 25%) than that of WZ.  Note that the slope of the RS-WZHΔ  line is ~5 

times that of the HX WZH −Δ  line, consistent with the fact that the volume decrease 

associated with the WZ→RS transformation (17%) is approximately 5 times of that 

associated with the WZ→HX transformation (3.6%).  

      The equilibrium pressure peq between the WZ and RS structures (the pressure at 

which the enthalpies of RS and WZ become equal) can be obtained by examining the 

enthalpy surfaces at several pressures. This pressure is identified with the intercept of 

the enthalpy curve with the horizontal axis in Figure 4.7.  From the figure, the 

HX WZH −Δ  line does not intercept the horizontal axis for all five compounds over the 
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pressure range analyzed. Obviously, HX is not a thermodynamically stable structure 

under hydrostatic compression. 

 

 

Figure 4.7 Enthalpy differences (ΔH), in the unit of eV/2-pairs, between RS and WZ 

(solid line) and between HX and WZ (dashed line) as a function of hydrostatic 

pressure for (a) SiC, (b) GaN, (c) InN, (d) ZnO and (e) CdSe. As the pressure reaches 

the equilibrium point (peq, indicated by solid dots), the enthalpies for RS and WZ 

become equal. Above peq, RS turn to be more stable. Note that HX is never stable 

under hydrostatic loading. 
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Figure 4.8 Enthalpy surface maps (in eV/2 pairs) for a wurtzite unit cell of (a) SiC, 

(b) GaN, (c) InN, (d) ZnO and (e) CdSe at their respective RS-WZ equilibrium 

pressures (peq). 
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Figure 4.9 2-D sections of the enthalpy surface maps in Figure 4.8 for b/a = 1.73 

(solid lines) and 1.00 (dashed lines). 

 

      The enthalpy surfaces of SiC, GaN, InN, ZnO and CdSe at their equilibrium 

pressure, peq, are shown in Figure 4.8 and their corresponding 2-D sections are shown 

in Figure 4.9.  At p < peq, WZ has the lowest enthalpy. As p is increased above peq, RS 

has a lower enthalpy than WZ.  peq depends strongly on the ionicity of the compound.  

This is expected because the initial energy difference between WZ and RS 

( RS WZ RS WZE E E−Δ = − ) depends on the ionicity of the compound (from RS WZE −Δ  = 

2.74 eV for SiC to 0.30 eV for CdSe). SiC has the highest RS WZE −Δ  and therefore the 

highest peq (64.9 GPa). CdSe has the lowest RS WZE −Δ  and therefore the lowest peq (2.2 

GPa). The equilibrium pressures of the five compounds are listed in Table 4.3.  Our 

calculated equilibrium pressures are in good agreement with other calculated results 

in general.  To compare with experiments, one should not directly compare the 
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calculated equilibrium pressure with either the critical pressures of the upward or 

downward WZ to RS transformations.  This is because there is a transformation 

barrier between the two phases that causes the upward critical pressure to be higher 

(and the downward critical pressure to be lower) than the equilibrium pressure. 

(Mujica et al., 2003; Limpijumnong and Jungthawan, 2004)  The averages between 

the upward and downward critical pressures, shown as pt in Table 4.3, are shown as 

an approximate experimental equilibrium pressures and are in good agreement with 

the corresponding calculated equilibrium pressures.   
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Table 4.3 Equilibrium pressure, transformation barrier, and stresses for SiC, GaN, InN, 

ZnO and CdSe for the WZ→RS and WZ→HX (WZ→DHX) transformations. peq is the 

hydrostatic pressure that establishes the equilibrium between the WZ and RS structures 

and pt (exp) is the corresponding experimental value. eq
cσ−  ( eq

bσ ) is the value of the 

compressive (tensile) force per unit area along the c-direction (b-direction) at which the 

WZ and HX (DHX) structures are in equilibrium. For CdSe, although eq 3.8 GPacσ− =  

provides equilibrium between the WZ and HX phases, the RS phase has lower enthalpy 

(hence more stable) under this condition. The transformation enthalpy barrier in eV/2-

pairs between the WZ and RS phases at a given equilibrium pressure are given in 

square brackets following peq in the same column.  

RS HX              DHX 

Compounds eq  (GPa)p  

(present) 

eq (GPa)p  

(other) 

pt (GPa) 

(exp) 
eq  (GPa)cσ−  eq (GPa)bσ  

SiC 64.9 [1.26] 60,a 66.6,b 66,c 92d 67.5e 60.5 - 

GaN 44.1 [0.76] 51.8,f 42.9g 52.2,h 31i 30.5 - 

InN 12.2 [0.51] 21.6,f 11.1g 10,j 12.1h 9.6  14.7 

ZnO 8.2 [0.30] 6.6,k 9.3,l 8.0m 5.5,n 8.5o 6.0  10.8 

CdSe 2.2 [0.40] 2.5p 2.1q 3.8 5.8  

 aDFT (GGA) calculations by Miao and Lambrecht (Miao and Lambrecht, 2003). 
 bDFT (LDA) calculations (of zincblende to RS) by Karch et al. (Karch et al., 1996). 
 cDFT (LDA) calculations (of zincblende to RS) by Chang and Cohen (Chang and Cohen, 1987). 
 dDFT (B3LYP) calculations (of zincblende to RS) by Catti (Catti, 2001). 
 eSynchrotron angle dispersive x-ray diffraction (ADX) experiment by Yoshida et al. 

(Yoshida et al., 1993). 
 fDFT(LDA) calculations by Christensen and Gorczyca (Christensen and Gorczyca, 1994). 
 gDFT (LDA) calculations by Serrano et al. (Serrano et al., 2000). 
 hADX experiment by Ueno et al. (Ueno et al., 1994). 
 iSynchrotron energy-dispersive x-ray diffraction (EDX) by Xia et al. (Xia et al., 1993).  
 jSynchrotron EDX experiment by Xia et al. (Xia et al., 1994). 
 kDFT (LDA) calculations by Jaffe et al. (Jaffe et al., 2000). 
 lDFT (GGA) calculations by Jaffe et al. (Jaffe et al., 2000).  
 mDFT (GGA) calculations by Ahuja et al. (Ahuja et al., 1998). 
 nSynchrotron EDX experiment by Desgreniers. (Desgreniers, 1998). 
 oSynchrotron EDX experiment by Recio et al. (Recio et al., 1998). 
 pDFT  (LDA) calculations by Côté et al. (Côté et al., 1997). 
 qEDX experiment by Cline and Stephens (Cline and Stephens, 1965). 
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      To gain insight on the transformation enthalpy barrier, we extracted the 

homogeneous transformation barrier (in the unit of eV/2-pairs) of these five 

compounds and tabulated in Table 4.3 inside the square brackets.  The barrier for ZnO 

of 0.30 eV/2-pair is the same as previously reported value. (Limpijumnong and 

Jungthawan, 2004)  The barrier for SiC and GaN of 1.26 and 0.76 eV/2-pairs are in 

good agreement with the calculated values reported by Miao and Lambrecht (Miao 

and Lambrecht, 2003) (for SiC) of 1.2 eV/2-pairs and by Limpijumnong and 

Lambrecht (Limpijumnong and Lambrecht, 2001a) (for GaN) of 0.9 eV/2-pairs.  We 

can see that the magnitude of the barrier increases with the zero pressure energy 

difference between phases ( RS WZE −Δ ), hence, the ionicity.  The detail investigation of 

the barriers will be a subject of further study on more compounds in the future.    
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Figure 4.10 Correlation between equilibrium hydrostatic pressure (peq) and the difference 

in energy (ΔE) between the RS and WZ phases of the five compounds. peq is the pressure 

at which the WZ and RS structures are in equilibrium as illustrated in Figure 4.7 and 

tabulated in Table 4.3. The energy difference RS WZ RS WZE E E−Δ = −  is calculated under the 

conditions of zero external loading and is tabulated in Table 4.1.  

 

      Figure 4.10 shows the relationship between equilibrium pressure and the initial 

energy difference. An approximately linear dependence of peq on RS WZE −Δ  is seen.  

The linear fit gives  

 eq RS WZ25.97( ) 4.68p E −≈ Δ −  (4.3) 

with the units of peq and RS WZE −Δ  in GPa and eV/2-pairs, respectively. This approximate 

universal relationship can be used to estimate the difference in formation energy of the 

RS and WZ phases when the equilibrium pressure is known, or vice versa.      
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      4.3.3 Uniaxial compression along the [0001] direction 

      HX has a lattice constant c significantly shorter (~19%) than that of WZ in the 

[0001] direction as illustrated in Figure 4.6. Although, the figure uses ZnO as an 

illustrated case, other compounds show similar changes in lattice constant c (see 

Table 4.2). This difference allows WZ to transform into HX via compression in the c-

direction. Under constant compressive stress −σc (negative sign indicates 

compression), the mechanical contribution to the enthalpy difference between WZ 

and HX is ab cA cσ− × Δ , where Δc ≈ −0.19c. A sufficiently high −σc would allow 

mechanical work to offset the energy difference between HX and WZ, leading to the 

transformation into the HX structure.  

      The stability of the HX phase can be analyzed through the enthalpy difference 

HX WZ HX WZH H H−Δ = −  as a function of the compressive stress along the c-direction 

(dashed lines in Figure 4.11). If the elastic moduli of HX and WZ along the c-

direction are assumed to be equal, ΔH would vary linearly with −σc with an 

approximate slope of AabΔc ≈ −0.19 (abc/2) ≈ −0.19V.  Figure 4.11 also shows the 

enthalpy difference between RS and WZ, RS WZ RS WZH H H−Δ = − (solid lines). Note 

that HX WZH −Δ  and RS WZH −Δ  show similar trends, with similar slopes. This is because 

for the WZ→RS transformation Δc/c ≈ 18%, while or the WZ→HX transformation 

Δc/c ≈ 19%.    
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Figure 4.11 Enthalpy differences (ΔH) between the RS and WZ (solid line) and HX 

and WZ (dashed line) as a function of c-direction stress ( cσ− )  for (a) SiC, (b) GaN, 

(c) InN, (d) ZnO and (e) CdSe. As the magnitude of the stress reaches the equilibrium 

value ( eq
cσ− , indicated by solid dots), enthalpies of the HX and WZ structures become 

comparable. At stresses above eq
cσ− , the HX phase is more stable. 
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Figure 4.12 Enthalpy surface maps (in eV/2 pairs) for a wurtzite unit cell of (a) SiC, 

(b) GaN, (c) InN, (d) ZnO and (e) CdSe at their respective HX-WZ equilibrium c-

direction stresses ( eq

cσ− ).  
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Figure 4.13 2-D sections of the enthalpy surface maps in Figure 4.12 for b/a = 1.73 

(solid lines) and 1.00 (dashed lines). 

 

      The shapes of the enthalpy surfaces for SiC, GaN, InN, ZnO and CdSe at their 

respective equilibrium compressive stress eq
cσ−  are shown in Figure 4.12 and their 

corresponding 2-D section are shown in Figure 4.13. For all compounds except CdSe, 

HX WZH −Δ  is always lower than RS WZH −Δ , indicating that HX is more stable than RS 

under compression in the c-direction. For CdSe, where initially (i.e., under no load 

condition) the RS phase has slightly lower energy than HX , RS WZH −Δ  is always 

lower than  HX WZH −Δ , indicating that RS is the preferred structure over HX under 

uniaxial compression along the [0001] direction. As a result, the enthalpy surface at 

eq
cσ− of CdSe (Figure 4.12(e)) is qualitatively different from those of other four 

compounds, i.e. the RS phase has lower enthalpy.  The equilibrium stress for the 

transformation ( eq
cσ− ) of each compound is shown in Figure 4.12.  At stresses 



 

64

below eq
cσ− , WZ phase is stable. At stresses above eq

cσ− , HX is stable (RS for CdSe). 

The values of eq
cσ−  depend on the initial energy difference (ΔE) between WZ and HX 

and are listed in Table 4.1. For SiC, HX WZE E EΔ = − = 2.53 eV, the stress required to 

cause the HX→WZ transformation is high ( eq 60.5cσ− =  GPa).  On the other hand, for 

ZnO, ΔE = 0.26 eV and eq 6.0cσ− =  GPa which is only 1/10th of the stress level 

required for SiC. This linear trend is clearly seen in Figure 4.14 which shows eq
cσ−  as 

a function of ΔE for the compounds analyzed.  The linear fit gives 

 eq HX WZ25.72( ) 4.56.c Eσ −− ≈ Δ −  (4.4) 

      The coefficients in the equation are based on the units of eq
cσ−  and HX WZE −Δ  in 

GPa and eV/2-pairs, respectively. The similarity in the numerical values of 

coefficients of Eq. 4.4 and Eq. 4.3 is fortuitous. Note that the WZ-HX homogeneous 

transformation enthalpy barrier is significantly lower than that of WZ-RS, i.e. always 

less than 0.1 eV/2-pairs for all compounds studied except SiC. (For SiC the barrier is 

only slightly higher, i.e. 0.13 eV/2-pairs.)   
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Figure 4.14 Correlation between equilibrium stresses ( eq
cσ−  and eq

bσ ) and the 

difference in energy (ΔE) between the HX and WZ phases for the five compounds.  

eq
cσ−  ( eq

bσ ) is the equilibrium value of the c-direction compressive stress (b-direction 

tensile stress) for the HX (DHX) and RS structures (see Table 4.3). The energy 

difference  HX-WZ HX WZΔ = −E E E  is calculated under conditions of zero external 

loading and is tabulated in Table 4.1. 
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      4.3.4 Uniaxial tension along the [0110]  direction. 

      The HX structure has a longer dimension in the [0110] direction compared to the 

WZ structure (longer by approximately 9%, see Figure 4.6 middle column). Although, 

the figure uses ZnO as an illustrated case, other compounds show similar changes in 

lattice constant b (see Table 4.2). This difference allows WZ to transform into DHX 

via tension in the b ([0110]) direction. Note that the difference in b between the two 

structures is only about half of the difference in c. Accordingly, the mechanical 

enthalpy contribution ac bA bσ× Δ  is roughly half of the case of c-compression for the 

comparable stress magnitude. Only three  (InN, ZnO and CdSe)  out of the five 

compounds studied have a local minimum corresponding to the DHX structure under 

tensile loading along the b direction.  The enthalpy surfaces for these three 

compounds at their equilibrium tensile stresses eq
bσ  are shown in Figure 4.15 and their 

2-D section plots are shown in Figure 4.16. The plot between the enthalpy differences 

DHX-WZ DHX WZH H HΔ = −  as functions of tensile stress bσ are shown in Figure 4.17. 

The equilibrium tensile stress eq
bσ  (14.7, 10.8 and 5.8 GPa for InN, ZnO and CdSe, 

respectively) is approximately twice the equilibrium compressive stress eq
cσ−  for the 

c-direction. Empirical potential based molecular dynamic (EP-MD) simulations have 

shown that under tensile loading, [0110]-oriented ZnO nanowires can indeed 

transform into the DHX structure under tensile loading (Kulkarni et al., 2006). The 

nanowires can sustain tensile stresses up to 14 GPa before failure, which is well above 

the equilibrium stress eq
bσ  predicted here. The equilibrium transformation stress of 

eq
bσ  = 5.8 GPa for CdSe is the lowest among the compounds studied. For 
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nanostructures, other factors such as surface effects may contribute to facilitate the 

WZ→HX transformation (Grunwald et al., 2006).  As a result, HX can emerge as an 

intermediate phase during a WZ→RS transformation in CdSe nanorods (Grunwald et 

al., 2006), even though it does not have the lowest enthalpy in the bulk calculations. 

The relationship between eq
bσ  and DHX WZ DHX WZE E E−Δ = − is shown Figure 4.14. 

Note that the tensile stress eq
bσ of  CdSe may be higher than its fracture strength.   

 

 

Figure 4.15 Enthalpy surface maps (in eV/2 pairs) for a wurtzite unit cell of (a) InN, 

(b) ZnO and (c) CdSe at their respective DHX-WZ equilibrium stresses along b-

direction ( eq
bσ ). 

 

 

Figure 4.16 Sections of the enthalpy surface maps in Figure 4.15 for two b/a values 

that cut through the DHX and WZ structures. 
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Figure 4.17 Enthalpy differences (ΔH) between the DHX and WZ phases of (a) InN, 

(b) ZnO and (c) CdSe as a function of b-direction stress ( bσ ).  As the applied stress 

reaches the equilibrium point ( eq
bσ , indicated by solid dots), the enthalpy of DHX 

equals that of WZ.  At stresses above eq
bσ , the DHX phase is more stable. 

 

      A local minimum for DHX is not observed in the enthalpy surfaces for SiC and 

GaN, even at extremely high theoretical levels of bσ  (60 GPa for SiC and 30 GPa for 

GaN). The enthalpy surfaces plots for SiC and GaN at their ultimate strengths, UTSσ  

values (60 GPa for SiC and 30 GPa for GaN) are shown in Figure 4.18. The lack of 

transformation in these compounds can be attributed to the fact that their equilibrium 

transformation stresses are higher than their respective ultimate tensile strengths 

( eq
b UTSσ σ ). Indeed, EP-MD simulations have shown that for GaN nanowires 

30UTS ≈σ GPa,(Wang et al., 2007) only a fraction of the rough estimation of 

equilibrium stress of eq 60bσ ≥  GPa. The eq
bσ  of SiC is even higher since it has a 

higher energy difference between WZ and HX, making it more likely to have 

fractured before reaching its theoretical equilibrium stress of  eq 120bσ ≥  GPa.     
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Figure 4.18 Enthalpy surface maps (in eV/2 pairs) for (a) SiC and (b) GaN at the 

tensile stress along b-direction ( bσ ) of 60 GPa and 30 GPa, respectively. 

 

4.4 Conclusions 

      First principles calculations are carried out to study the stability of the wurtzite 

(WZ), rocksalt (RS) and unbuckled wurtzite (HX) phases of SiC, GaN, InN, ZnO, and 

CdSe under loading of different directions. The relative energies between phases of 

the compounds correlate with their ionicity. At ambient conditions, WZ has the lowest 

energy, HX has the second highest energy and RS has the highest energy (with the 

exception of CdSe whose RS phase has a lower energy than its HX phase). All five 

compounds have the four-fold wurtzite structure as their stable and naturally 

occurring phase. Under hydrostatic compression, the compounds can transform into 

the six-fold coordinated rocksalt (RS) structure. Under uniaxial compression along 

the [0001] direction and uniaxial tension along the [0110] direction, the compounds 

can transform into the five-fold coordinated unbuckled wurtzite (HX) structure. The 

equilibrium conditions for the transformations are outlined.                             
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      For the WZ→RS transformation, the equilibrium hydrostatic pressure (peq) is 

predicted to be 64.9, 44.1, 12.2, 8.2 and 2.2 GPa for SiC, GaN, InN, ZnO, and CdSe, 

respectively. These values are in good agreement with other theoretical calculations 

and experimental measurements. For the WZ→HX transformation under uniaxial 

compression along the [0001] direction, the equilibrium stress ( eq
cσ− ) is 60.5, 30.5, 

9.6 and 6.0 GPa for SiC, GaN, InN and ZnO, respectively.  For CdSe, uniaxial 

compression along the [0001] direction induces a WZ→RS transformation at a stress 

of 2.4 GPa instead of the WZ→HX transformation because the formation energy of 

RS is lower than HX for CdSe. For the WZ→DHX transformation under uniaxial 

tension along the [0110] direction, the equilibrium transformation stress ( eq
bσ ) is 14.7, 

10.8, and 5.8 GPa for InN, ZnO and CdSe, respectively.  The stress level for CdSe is 

close to its fracture limit. No transformation is observed for SiC and GaN under 

tension along the [0110] direction due to the fact that their theoretical equilibrium 

transformation stresses are well above their respective ultimate fracture strengths. The 

magnitudes of peq, eq
cσ− , and eq

bσ  are approximately linearly dependent with the 

formation energy differences between the relevant phase of the compounds. Based on 

the calculations of five compounds, we established a general linear function between 

peq and RS-WZ energy difference that could be useful for predicting the difference in 

formation energy of the RS and WZ phases of other materials when the equilibrium 

pressure is known, or vice versa. 
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CHAPTER V 

FIRST PRINCIPLES STUDY OF  

ZnO POLYMORPHS 

 

5.1 Introduction 

      There are three well known polymorphs of ZnO; including wurtzite (WZ), 

rocksallt (RS), and zincblende (ZB) structures.(Ozgur et al., 2005) WZ structure is the 

natural state under ambient conditions. RS structure is stable under high hydrostatic 

pressures. ZB structure can only be grown on certain crystalline surfaces of cubic 

crystals. So far, the existence of polymorphs other than WZ, RS, and ZB under 

various loading conditions has not been extensively studied. Recently, HX structure in 

[0110] -orientated nanowires (Heussinger and Frey, 2006) and a body-centered- 

tetragonal phase (hereafter referred to as BCT-4) in [0001]-oriented nanowires (Wang 

et al., 2007) under uniaxial tensile loading are  observed. The similar structures (to 

BCT-4) have been reported for carbon (Schultz and Stechel, 1998) and lithium 

aluminum oxide (Marezio, 1965). However, for a binary compound this structure is 

first studied by us (Wang et al., 2007; Kulkarni et al., 2008). In Chapter IV, the phase 

transformation from the WZ-to-RS and the WZ-to-HX(DHX) structure in ZnO has 

been reported. This chapter is devoted to the phase transformations from WZ - to - 

BCT-4. Based on first principles calculations, the BCT-4 ZnO is stable under uniaxial 
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tensile stress along [0001] direction. This chapter focused on the crystallographic 

changes and critical loading condition for the WZ-to-BCT-4 transformation.  

 

5.2 Computational Method 

      First principles calculations are carried out to evaluate the total energy of ZnO in 

the WZ, BCT-4, and their deformed structures. The calculations are based on the 

density functional theory (DFT) within the local density approximations (LDA) and 

ultrasoft pseudopotentials (Vanderbilt, 1990), as implemented in the VASP code 

(Kresse and Furthmüller, 1996). Zinc 3d electrons are treated as valence electrons. 

Cutoff energy for the plane wave expansion is 400 eV. The k-point sampling set is 

based on a 7 7 7× ×  division of the reciprocal unit cell according to Monkhrost-Pack 

scheme (Monkhorst and Pack, 1976) with the Γ-point included, which gives 

approximately 100 inequivalent k-points.   

      The stability of each crystal structure can be determined by analyzing enthalpy as 

a function of c/a and b/a. The enthalpy per a wurtzite unit cell under uniaxial loading 

is defined as (Sarasamak et al., 2008) 

 ( / , / ) ( , , , , ) ,jk i iH c a b a E c b a u v A qσ= − ×  (5.1) 

where E is the formation energy per wurtzite unit cell, σi is the stress along the i 

direction, qi is the lattice parameter in the i direction, and Ajk is the cross section area 

of the unit cell perpendicular to the stress direction.  Therefore, jk i iA qσ×  is external 

work. For tension along c axis, i c= ,  abA ab= , and cq c= , with σ c  being the tensile 

stress. Note that, in the WZ-to-BCT-4 transformation, a unit contains 8 atoms or 4 Zn-

O pairs (V abc= ) is used for the calculations.   



 

73

      For each c/a and b/a pair, the internal parameters u and v and the unit cell volume 

V are allowed to relax so that the configuration that yields the minimum H is obtained. 

For a given load condition, the minima on the enthalpy surface with c/a and b/a as the 

independent variables identifies the corresponding stable structures. However, for 

WZ-to-BCT-4 transformation, b/a is fixed at 1.73. This is because both WZ and BCT-

4 share the same b/a = 1.73. Therefore, only c/a is varied in the range from 1.4 – 2.0.  

 

 

Figure 5.1 (a) Crystallographic transition trough breaking and formation of bonds and 

differences in bond angles between the wurtzite (WZ) and and body-centered-

tetragonal (BCT-4) structures and (b) WZ and BCT-4 structures. The red dash box 

lines show the cell size with 8 atoms (four Zn-O pairs), for the WZ and BCT-4 

structures used for the calculations.       



 

74

5.3 Results and discussions 

      The WZ to BCT-4 transformation occurs through a combination of: (1) The 

breaking of every other Zn-O bonds along the [0001] direction (bonds labeled with A 

in Figure 5.1(a)) and (2) The formation of an equal number of Zn-O bonds next to the 

broken bonds along the same direction (bonds labeled with B in Figure 5.1(a)).  

      This bond-breaking and bond-formation process repeats on alternate planes along 

the [0110]  direction. The transformed phase keeps the tetrahedral coordination with 

each Zn/O atom at the center and 4 O/Zn atoms are at the vertices of a tetrahedron. 

The geometry of the tetrahedron can be characterized through the O-Zn-O bond 

angles (αi, i = 1–6), as shown in Figure 5.1(a). For WZ, all bond angles are 

approximately equal (αi ≈ 109°). For BCT-4, however, the formation of 4-atom rings 

results in three distinct bond angles (α1 ≈ 90°, α2 ≈ 114°, and α3 ≈ 112°).  

      As can be seen from Figure 5.1(b), the transformed phase consists of 4-atoms      

(2 Zn and 2 O) rings one arranged at the center (of the figure) and another ring at the 

corner rotated by 90° relative to the first ring. In each 8-atom, BCT-4 unit cell, there 

are two 4-atom-ring clusters (one of each orientation) positioned in a simple 

tetragonal primitive lattice. The corresponding cell of 8 atoms for the WZ is shown 

for a direct comparison with the BCT-4 cell as well. Figure 5.1(b) shows the lattice 

parameters a, b, and c for the WZ and BCT-4 structures. 
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      Their respective values as obtained from the first principles calculations at various 

stress levels are listed in Table 5.1 along with the corresponding cell volumes. For 

WZ, the c/a and b/a ratio are 1.61 and 1.73, respectively. Throughout the 

transformation, the b/a ratio remains at its initial value of 1.73, reflecting the 

symmetries of the loading and the lattice. By increasing tensile stress along the c-axis 

σc, the c/a ratio increases. The stability of the BCT-4 structure under the tensile 

loading along [0001] direction can be explained by its higher c/a ratio compares to 

that of WZ. Table 5.1 shows the equilibrium unit cell volume = 91.4 Å3 and 95.2 Å3 

(per 4 Zn-O pairs) for the WZ and BCT-4 structure, respectively. The unit cell volume 

of the BCT-4 is 4.2% larger than that of the WZ, with the elongation along the [0001] 

direction being the primary reason for this volume difference. The ideal BCT-4 

structure with lattice parameters a, b, and c is presented in Figure 5.2. 
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Table 5.1 Lattice parameters for WZ and BCT-4 ZnO under tensile loading along 

[0001] direction for  σc  = 0, 4, 7 and 10 GPa. 

WZ BCT-4 Parameters 

p = 0 GPa σc= 0 GPa σc= 4 GPa σc= 7 GPa σc=10 GPa

a (Å) 
3.21 

(3.20,d 3.25,b,c 
3.26,f 3.29g) 

 

3.17  
 (3.24g) 

 

3.13 
 

3.09 
 

3.06 
 

b (Å) 5.54  
(5.67g) 

 

5.48  
 (5.58g) 

 
5.42 5.35 5.32 

c (Å) 
5.15 

(5.17,d 5.22,f  
5.17 g) 

 

5.48  
 (5.52g) 

 
5.71 5.87 5.98 

V=abc (Å3) 
91.4 

(93.4,a 94.5,e       
96.0,f 96.4g) 

 

95.2  
 (99.8g) 

 
96.9 97.0 97.3 

c/a 1.61 
 (1.59e) 

 

1.73  
 (1.71g) 

 
1.82 1.90 1.95 

b/a 1.73 
(1.73g) 

 

1.73  
 (1.72g) 

 
1.73 1.73 1.73 

aDFT (GGA) calculations by Jaffe et al. (Jaffe et al., 2000). 
bSynchrotron EDXD experiments by Desgreniers. (Desgreniers, 1998).  
cXRD experiments by Karzel et al. (Karzel et al., 1996). 
dDFT (LDA) calculations by Malashevich and Vanderbilt (Malashevich and   
Vanderbilt, 2007).  

eDFT (GGA) calculations by Ahuja et al. (Ahuja et al., 1998). 
fEXAFS experiments by Decremps et al. (Decremps et al., 2003). 
gMD simulation by Wang et al. (Wang et al., 2007). 
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Figure 5.2 Crystal model of the BCT-4 structure: small spheres represent anions and 

large spheres represent cations. The top figure shows the perspective view. The 

middle and bottom rows show top view and side view, respectively. The distances 

described by crystal parameters a, b, and c are indicated.  
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Figure 5.3 Enthalpy (eV/ 4 Zn-O pairs) as a function of c/a obtained from first 

principles calculations for b/a = 1.73 at tensile stresses of (a) σc = 0 GPa, (b) σc = 4 

GPa, (c) σc = 7 GPa and (d) σc = 10 GPa.  The minimum enthalpy curve for each plot 

is shown with the thick solid green line. 
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      The relative favorability of the two structures is studied by calculating the 

enthalpies. Because both WZ and BCT-4 share the same b/a ratio at 1.73, it is not 

necessary to vary this parameter for the study of relative phase stability. The 

enthalpies are shown by the 2-D section plot at b/a=1.73. Figure 5.3 shows the 

enthalpy values for both the WZ and BCT-4 structure with b/a = 1.73 at the tensile 

stresses of σc=0 GPa, 4 GPa, 7 GPa and 10 GPa. At any stress level, each structure 

has its own enthalpy minimum. The first minimum ( WZ
minH ), at σc=0 GPa is in the 

vicinity of c/a ≈1.6 which corresponds to the WZ structure and the second minimum 

( BCT 4
minH − ) is in the vicinity of c/a ≈1.7-1.9 which corresponds to the BCT-4 structure. 

At zero stress, the WZ is stable crystal structure and its enthalpy is lower than that of 

the BCT-4 by 0.3 eV as shown in Figure 5.3(a).  Because the two phases (WZ and 

BCT-4) are differed by the vertical bonds formations, the transformation from WZ-to-

BCT-4 involves the bond-breaking and bond-formation that are the internal change 

inside the cell and are not directly affected by the changes in external parameter c/a. 

Varying c/a alone does not cause the spontaneous transformation from WZ to BCT-4. 

Therefore, in the calculations, both phases can be stabilized at the same c/a (for e.g. 

c/a in the range 1.6 – 1.8). In reality, there would be a transformation to the lower 

enthalpy phase, providing that the transformation barrier can be overcome. The 

minimum enthalpy curve for each plot in Figure 5.3 is shown with the thick solid 

green line. The kink is the expected transformation point. In reality, there might exist 

considerable hysteresis (the transformation occurs after the change in c/a passed the 

kink point in both forward and backward transformation) due to the large barrier 

associated with the bond-breaking/formation processes. As the stress is increased to 4 

GPa (Figure 5.3(b)), the difference in enthalpies decreases, and at a stress of 7 GPa 
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(Figure 5.3(c)), the two minima, WZ
minH and BCT 4

minH − become comparable, indicating that 

the WZ and BCT-4 are equally favored. However, as mentioned above, there is a 

transformation barrier (expected to be large due to the bond breaking/formation) 

prohibiting the spontaneous transformation. This value of stress corresponds to the 

equilibrium transition stress for the two structures. At the stress of 10 GPa (Figure 

5.3(d)), the enthalpy of the BCT-4 is lower, and this structure is clearly favored.  

 

5.4 Conclusions 

      The first principles calculations are carried out to study the stability of the 

wurtzite (WZ), the rocksalt (RS), the unbuckled wurtzite (HX) and the BCT-4 phases 

of ZnO under different loading conditions. The stability of the RS and HX structures 

has been presented in Chapter IV. This chapter focused on the stabilities of WZ and 

BCT-4 structures. We found that the WZ to BCT-4 transformation can occur under 

uniaxial tension along the [0001] direction and estimated the equilibrium transition 

stress ( eq
cσ ) to be about 7 GPa. A large hysteresis in the upward/downward 

transformation is expected due to a large barrier in bond breaking/formation during 

the transformation. The identification of the BCT-4 crystalline structures and the 

characterization of the WZ-to-BCT-4 phase transformations lead to a more complete 

understanding of the nature of polymorphism in ZnO.  

 

 
 



 

 

CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

 

      In this thesis, some mechanical properties of some semiconductors in group-IV 

(SiC), group-III-V (GaN and InN), and group-II-VI (ZnO and CdSe) are calculated by 

utilizing the first principles (or ab initio) method. The crystal properties such as the 

phase stability and phase transformations under different loading conditions are 

calculated for the aforementioned materials. The results from our study are illustrated 

as following: 

      The stability of the wurtzite (WZ), rocksalt (RS), and unbuckled wurtzite (HX) 

phases of SiC, GaN, InN, ZnO, and CdSe under different loading directions is 

investigated. The phase transformations from WZ-to-RS structure and WZ-to-HX 

structure are systematically studied by considering the enthalpy surfaces and enthalpy 

barriers between the different structures. Under ambient conditions, the WZ-structure 

has the lowest energy for these compounds, the HX-structure has the second highest 

energy and the RS-structure has the highest energy. This is with the exception of 

CdSe, where the RS-structure has a lower energy than the HX-structure. Under 

sufficiently large hydrostatic compression, the WZ-structure can transform into the 

RS-structure. Under a uniaxial compression along the [0001] crystalline direction or a 

uniaxial tension along  [0110] crystalline direction, the WZ-structure can transform 

into the HX or DHX structure. 
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      Based on first principles calculations, the critical pressures of transformation are 

calculated and found to be in good agreement with available experimental results.  

The equilibrium conditions for the transformations are outlined.  

      For the WZ→RS transformation, the equilibrium hydrostatic pressures (peq) are 

predicted to be 64.9, 44.1, 12.2, 8.2 and 2.2 GPa for SiC, GaN, InN, ZnO, and CdSe, 

respectively. These values are in good agreement with other theoretical calculations 

and experimental measurements (Sarasamak et al., 2008).  

      For the WZ→HX transformation under uniaxial compression along the [0001] 

direction, the equilibrium stresses ( eq
cσ− ) are 60.5, 30.5, 9.6 and 6.0 GPa for SiC, 

GaN, InN and ZnO, respectively.  For CdSe, uniaxial compression along the [0001] 

direction induces a WZ→RS transformation at a stress of 2.4 GPa instead of the 

WZ→HX transformation because the formation energy of RS is lower than HX in this 

particular compound. 

      For the WZ→DHX transformation under uniaxial tension along the [0110] 

direction, the equilibrium transformation stresses ( eq
bσ ) are 14.7, 10.8, and 5.8 GPa 

for InN, ZnO and CdSe, respectively. No transformation is observed for SiC and GaN 

under tension along the [0110] direction due to the fact that their theoretical 

equilibrium transformation stresses are well above their respective ultimate fracture 

strengths (Wang et al., 2007; Sarasamak et al., 2008). The magnitudes of peq, eq
cσ− , 

and eq
bσ  are  linearly promotional with the formation energy differences between the 

relevant phases. 

      For ZnO, a novel structure, body-centered-tetragonal with 4 atoms ring (BCT-4) is 

predicted to be stable under tension along [0001] direction. This structure has never 
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been reported for a binary compound before. For the WZ→BCT-4 transformation 

under uniaxial tension along the [0001] direction, the equilibrium stress ( eq
cσ ) is 

approximately 7 GPa. The identification of the BCT-4 structure and the 

characterization of the WZ-to-BCT-4 phase transformation lead to a more complete 

understanding of the nature of polymorphism in ZnO.             

      There is another ongoing project on the study of pressure dependences of the 

elastic constants in compounds with the WZ-structure. In our calculations, the 

elasticities under pressures are carried out by using the linear muffin tin orbital 

(LMTO) codes developed by M. Methfessel et al. (Methfessel et al., 2000). The codes 

are based on the full potential linear muffin tin orbital method (FP-LMTO) in local 

density approximations. The energy as a function of various strains is calculated. 

Application of traceless (volume conserving) strains in the various directions provides 

the elastic constants. The six independent elastic constants for wurtzite structure are 

extracted. The calculations are repeated for varied unit cell volumes, and from the 

calculated pressure-volume relation, the elastic constants are obtained as a function of 

pressure (details in the elastic properties such as the stress-strain relation in WZ-

structure can be seen in Chapter III). 

      The focus is on the behavior of the elastic moduli (Cij) as a function of pressure. 

The two longitudinal modes, C11 and C33, are increased with pressure as shown in 

Figure 6.1 (left column). For the shear modes, there is no common trend. The trends 

are varied depending on compounds as shown in Figure 6.1 (right column).  

Moreover, we observed that the high pressure crystal phase transformation from 

wurtzite to rocksalt relates to an orthorhombic strain with two components (1) a 

traceless compression along the [0001] axis corresponding to the longitudinal mode 
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and (2) a traceless compression along [0110] direction corresponding to the shear 

mode.  

      To study the elastic constants under pressure, first we calculated six elastic 

constants in WZ-structure for each compound at the equilibrium volume. The 

agreement between the calculated value and experiment is satisfactory (Table 6.1). 

For the structures under pressures, the elastic constants are calculated at several 

reduced volumes, each of which corresponds to the system under pressure. The 

corresponding pressure is obtained from the slope of the energy-volume curve at each 

volume used for the calculation. 
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Table 6.1 The bulk modulus 0( )B and the elastic constants (Cij)  in unit of GPa, of    

WZ – SiC, GaN, InN, ZnO, and CdSe at P = 0 GPa. 

  

C
om

po
un

ds
 

SiC GaN InN ZnO CdSe 

B0 
229 

(220a) 
207 

(210,b 207,c 202d) 
151 

(147,c 141d) 

162 
(131.5,e 162.3,g 

133.7g) 

60.1 
(53.4i) 

C11 
541 

(501a) 
367 

(390,b 396,c 367d) 
232 

(271,c 223d) 
228 

(231,e 207f) 
80.5 

(74.9,h 74.6i) 

C12 
117 

(111a) 
135 

(145,b 144,c 135d) 
115 

(124,c 115d) 
133 

(111,e118f) 
47.2 

(46.09,h 46i) 

C13 
61.1 
(52a) 

98 
(106,b 100,c 103d) 

95.8 
(94,c 92d) 

118 
(104,e 104f) 

39.9 
(39.26,h 39i) 

C33 
586 

(553a) 
409 

(398,b 392,c 405d) 
239 

(200,c 224d) 
232 

(183,e 209f) 
91.9 

(84.51,h 81i) 

C44 
162 

(163a) 
97.9 

(105,b 91,c 95d) 
52.4 

(46,c 48d) 
40.0 

(72,e 44.1f) 
14.9 

(13.15,h 13i) 

C66 
212 

(195a) 
116 

(122.5,b 126,c 116d) 
58.8 

(73.5,c 54d) 
47.1 

(60,e 44.5f) 
16.7 

(14.41, h14i) 

a(Kamitani et al., 1997) 
b(Polian et al., 1996) 
c(Kim et al., 1994; Kim et al., 1996) 
d(Wright, 1997)  

e(Zaoui and Sekkal, 2002) 
f(Carlotti et al., 1995) 
g(Jaffe et al., 2000) 
h(Cline et al., 1967) 
i(Rabani, 2002) 
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Figure 6.1 The elastic constant as function of pressure in WZ-SiC. GaN, InN, ZnO, and 

CdSe. The black, red, blue, and green color represented C11, C33, C44, and C66, respectively. 
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      This work improves current understanding of the elastic constants under pressure. 

The results show that both of the longitudinal modes, C11 and C33, increase with 

pressure for all compounds, as shown in the left side of Figure 6.1. For SiC, GaN, and 

InN, C44 monotonously increase with pressure. On the other hand, for ZnO and CdSe, 

C44 is slightly decreased with pressure. The depending with pressure of C66 is more 

complicated. For SiC and GaN, C66 increase with pressure at low pressure and drops 

at high pressures. For InN, ZnO, and CdSe, C66 tend to decrease with pressure. For all 

compounds studied, C44 and C66 curves are crossed (show with red solid dots in the 

right side of Figure 6.1). We observed that the crossing point of C44 and C66 occurs 

near the WZ-RS equilibrium transformation pressures but on the higher side.  The 

crossing points are 130, 65, 18, 8.3, and 4.8 GPa, for SiC, GaN, InN, ZnO, and CdSe, 

respectively. These values are larger than the calculated equilibrium transition 

pressures, except for ZnO, where the value is comparable. However, for GaN, InN, 

ZnO, and CdSe the actual transformation pressures observed experimentally are 

generally higher than the calculated values (Ueno et al., 1994; Kumar et al., 2007; 

Wang et al., 2007). This has been attributed to the transformation barrier (Mujica et 

al., 2003). As a result, the experimental transformation pressures occur close to the 

C44-C66 crossing point. In SiC, the crossing point is about two times larger than our 

calculated equilibrium transformation pressure.  However, this value is quite close to 

the value from recent ab-initio study by Durandurdu (Durandurdu, 2007), where the 

pressure induce phase transition in WZ-to-RS is found to be 100 GPa. Since high 

quality WZ-SiC is difficult to grow, the WZ-RS phase transition has not been 

experimentally studied.  However, there is some experimental studies in the pressure 

induce phase transition of SiC by x-ray diffraction measurements. For example, 
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Yoshida et al. found that SiC can transform from zincblende (ZB) to RS at the 

pressure ~100 GPa (Yoshida et al., 1993).  

      There is another project being carried out on the investigation of the phase 

transformation in LiAlO2.  The total energies has been calculated by the projector 

augmented wave (PAW) method (Blöchl, 1994)  as implemented in the VASP code 

(Kresse and Furthmüller, 1996; Kresse and Furthmüller, 1996; Kresse and Joubert, 

1999). The codes are based on density functional theory within the generalized 

gradient approximation (GGA). This lithium compound has potential applications in 

the energy industry as lithium battery cathodes (Ceder et al., 1998) and electrolyte 

tiles for molten carbonate fuel cells (MCFC) (Takizawa and Hagiwara, 2002). It has 

been reported that LiAlO2 has at least four different types of crystal structures, the 

hexagonal α-phase (Marezio and Remeika, 1966), the monoclinic β - phase (Marezio 

and Remeika, 1966; Zou et al., 2006), the tetragonal γ-phase (Marezio, 1965), and the 

tetragonal δ - phase (Li et al., 2004). The γ - LiAlO2 is a promising substrate for GaN-

based laser diodes. This is because the lattice mismatch between LiAlO2 and GaN is 

only 1.4% (Xu et al., 1998). We investigate the γ - and δ - phases. The illustrations of 

both phases are shown in Figure 6.2. The unit cells used for the calculations are 

shown in Figure 6.3. The properties of both phases and the equilibrium transformation 

pressure between them are briefly summarized as follow.  
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Figure 6.2 Schematic illustration of the γ-LiAlO2 and δ-LiAlO2 structures:  The 

middle row and the bottom row show the side view and top view, respectively.  The 

crystal parameters a  and c are indicated. 
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Figure 6.3 Unit cells of γ-LiAlO2 and δ-LiAlO2 used in the calculations 

 
 

 

Figure 6.4 The total energy as a function of volume for γ- and δ-phase and the 

common tangent construction. 
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Table 6.2 The calculated lattice constant a, bulk modulus B, and pressure derivation 

of the bulk modulus B′ , and equilibrium volume V0, for γ-LiAlO2, and δ- LiAlO2. 

parameters γ - LiAlO2 δ- LiAlO2 

a (Å) 5.229 (5.169a) 3.924 (3.887b) 

c (Å) 6.332 (6.268a) 8.398 (8.300b) 

B (GPa) 92.2 156 

B′  3.84 3.89 

V0 (Å3) 173 129 (-25.3%) 

aXRD-experiment (Marezio, 1965) 
bA shock compression technique (Li et al., 2004) 

       

      First, we present the results for γ - LiAlO2 and δ - LiAlO2, separately. In the 

calculations of both phases, c/a and volume are allowed to relax. The relaxed crystal 

parameters and the total energies are shown in Table 6.2. δ-LiAlO2 has a smaller 

volume than the γ –phase.  Under ambient conditions, the γ -phase is found to be 

lower in energy than the δ-phase. The calculated γ –LiAlO2 crystal parameters are in 

agreement with the values by Marezio (Marezio, 1965). The energy-volume curve, i.e. 

the equation of states for each phase is calculated. The energy-volume curves for both 

phases are shown in Figure 6.4. Based on the equation of states, the bulk moduli, its 

derivative, and the equilibrium transformation pressure between the γ – and the δ –

phase are calculated. The equilibrium transformation pressure is calculated from the 

common tangent between the two equation of states curves. The equilibrium 

transformation pressure is 3.3 GPa.  

      Our results agree quite well with the x-ray diffraction (XRD) study, where they 

estimated the minimum pressure required for the γ – to δ – phase transition to be 
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about 2 GPa under static compression. (Lei et al., 2008). However, another 

experimental results from Li et al. (Li et al., 2004), based on a shock recovery 

technique found a much higher transformation pressure, i.e. at pressures above 9 GPa. 

The larger pressure of the actual transformation compare to the equilibrium 

transformation pressure, especially for the shock wave experiment, is expected and 

can be attributed to the transformation barrier. Further experimental results can help 

to improve understands of the transformation  

      All of the results in this thesis show that the first principles calculation can be 

used to study many mechanical properties, such as the stability of different crystal 

phases, the equilibrium phase transformation pressures, and other properties such as 

the elastic constants. The approaches illustrated in this thesis can be applied to study 

other materials as well.  
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