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CHAPTER 1

INTRODUCTION

In general, not only ordinary differential equations but also delay ordinary
differential equations are used to describe various physical phenomena. Delay or-
dinary differential equations, or DODEs, are similar to ordinary differential equa-
tions, but their evolutions involve past values of the state variables. In this thesis,

the following general simple form of second-order DODESs

y' = flz,y,y-,9,y.) (1.1)

is focused on, where y = y(x), v = ¢/(x),y, = y(x — 7) and ¢/ = ¢/'(z — 7).
DODE:s play a major role in physical, biological and medical modeling: the
two-body problem of electrodynamics (Driver, 1977), prey and predator popula-
tion models (Driver), mixing of liquids(Driver), evolution equations of a single
species (Gopalsamy, 1991, quoted in Kolmanovskii and Myshkis, 1992), coexis-
tence of competitive micro-organisms (Freeman, So, Waltman, 1988, quoted in
Kolmanovskii and Myshkis), mathematical models of the sugar quantity in blood
(Shvitra, 1989, quoted in Kolmanovskii and Myshkis), models of arterial blood
pressure regulation (Godin, Kolmanovskii and Stengold, 1990, quoted in Kol-
manovskii and Myshkis ), mathematical models of learning(Shimbell, 1950, quoted
in Kolmanovskii and Myshkis), vision processes in the compound eye (Hadeler,
1976, quoted in Kolmanovskii and Myshkis), optimal advertising policies (Pauwels,
1977, quoted in Kolmanovskii and Myshkis), models of fishing processes (Kot,
1979, quoted in Kolmanovskii and Myshkis), river pollution control (Lee and Li-

etmann, 1988, quoted in Kolmanovskii and Myshkis ), etc.



Although DODEs are widely applied to many branches of science, exact
solutions are not yet known for most of them. Throughout the years, many meth-
ods for obtaining exact solutions of differential equations instead of approximating
solutions have been developed. One of them is group analysis.

Group analysis was initially introduced in the 1870s by a Norwegian mathe-
matician, Sophus Lie (Ovsiannikov, 1978). He found a new method for integrating
differential equations. This method is universal and effective for solving nonlinear
differential equations analytically. It involves the study of symmetries of differen-
tial equations, with the emphasis on using the symmetries to find solutions. The
theory of group analysis has been applied to both ordinary and partial differential
equations.

One of its applications to differential equations is the problem of group
classification of differential equations. Group classification means to classify given
differential equations with respect to arbitrary elements. The group classification
problem of differential equation was first formulated by Lie (Ibragimov, 1996). He
gave a classification of ordinary differential equations in terms of their symmetry
groups, thereby identifying the full set of equations which could be solved or
reduced to lower-order equations by this method. In 2002, group analysis was
applied systematically to delay differential equations (Tanthanuch and Meleshko,
2002). The method for constructing and solving the determining equation are
shown in Tanthanuch and Meleshko (2003).

Even though the group classification for second-order ordinary differential
equation has been studied, group classification for DODEs has not been fully
developed yet. This research deals with the classification problem of second-order
delay ordinary differential equations.

The purpose of this thesis is to classify a family of second-order delay ordi-



nary differential equations (1.1) according to their symmetries.

The thesis is designed as follows. Chapter II reviews the definitions of func-
tional and delay differential equations and some of their applications. Moreover,
existence theorem of a solution of DDEs is also presented. Chapter III provides
an introduction to the concept of a group of point transformations, their cor-
responding infinitesimal generators and definition of symmetry group of DDEs.
Complete group classification of second-order DODESs is revisited in Chapter IV.

The conclusion of this thesis is presented in the last chapter.



CHAPTER 11
FUNCTIONAL AND DELAY DIFFERENTIAL

EQUATIONS

A more general type of differential equations called functional differential
equation is frequently found in modern scientific and engineering research publi-
cations. Although this type of equation plays a key role in many branches, the
theory for functional differential equation is still being developed.

In this chapter, definitions of functional differential equation, delay differ-
ential equation and some mathematical models which are described by these types
of equations are given. The existence theory for delay differential equation is also

presented.

2.1  Functional Differential Equations (FDEs)

Definition 2.1. (FDE). An equation involving functionals* of independent vari-
ables, dependent variables and derivatives of dependent variables with respect to

one or more independent variables is called a functional differential equation.

Consider an FDE with aftereffect,
W™ () = ™ (& — by (2)), o u™ (@ — hy(2)), (2.1)

where u(z) € R", u(™) is the m;-order derivative of u with respect to = and all

*Some familiarity with the concept of “functional” and related concepts is assumed but a
review is included in A.1, Appendix A. One may find the definition and its concepts from

textbooks, e.g. Kreyszig (1978).



In the literature, equation (2.1) is called

e a functional differential equation of retarded type or retarded differential equa-

tion (RDE), if max{my,...,my} < m;

e a functional differential equation of neutral type (NDE), if

max{my,...,my} = m; and

e a functional differential equation of advanced type (ADE), if

max{my,...,mg} > m.

FDEs are widely applicable in biology, physics, engineering and economics. Expe-
rience in mathematical modeling has shown that the evolution equations of actual
process with aftereffect are almost exclusively RDEs and NDEs. The following are
some examples of them.

Coexistence of competitive micro-organisms. The following model
of competing micro-organisms surviving on a single nutrient and with delays in
birth and death process has been described in (Freeman, So and Waltman, 1988,

quoted in Kolmanovskii and Myshkis):

io(t) = 1—wxo(t) — 21(t) fi(wo) — 22(t) f2(20),
i1(t) = [filzo(t — 7)) — Ui (1),
io(t) = [fa(wo(t — 12)) — 1za(?).

Here x is the nutrient concentration, x;, xs are the concentrations of competing
micro-organisms 7; > 0 are (constant) delays, and f;(0) =0, f;(z) > 0 for x > 0.

Mathematical models of the sugar quantity in blood. FDEs can
be efficiently used to describe various processes in living organizations. Various

heredity models have been proposed to describe the functioning of the thyroid



gland, the system of maintaining the sugar level in blood, and blood production.
Certain parameters in these models can be regulated (temperature, diet, drugs,
etc.) E.g., the control model for the sugar level in blood has the form (Shvitra,

1989, quoted in Kolmanovskii and Myshkis)

T1(t) = ar{agxs(t) + aslagzrs(t) — agxa(t)] — asz (t — 7)1 (),
{['Q(t) = a6{a2x4(t) + blu(t) — a7[a2x4(t) — CL5JZ1(7§)] — CL4I2(t)}ZE2(t),
t3(t) = ag{asz1(t) + bau(t) + aglasz1(t) — asxa(t)] — aroxs(t) }as(t),

4(t) = an{l +u(t) + an[l — agza(t)] — agwa(t) pay(t).

Here, x1(t) is the amount of insulin produced by the pancreas, z5(t) is the amount
of active insulin in the blood, z3 is the total amount of insulin in the blood,
x4(t) is the amount of sugar in the blood (all at time t); as, a4, as, aip are the
averages of these amount; the delay 7 characterizes the finite time needed for
production of insulin, and a; is the rate of insulin production; ag, ag, a1 reflect
the increase of insulin, total amount of insulin and sugar in the blood; finally,
by > 0, by > 0, a3, a7, ag, a1z are feedback coefficients. The control wu(t) is
fulfilled by choice of a diet, and may affect the amount of sugar in the blood.
Models of lasers. (Stats, de Mars, Wilson and Tang, 1965, quoted in Kol-
manovskii and Myshkis ) FDEs are widely used to model the dynamic properties

of a laser

21(t) = wvr(t)[z2(t) — 1 —m — amax(t — 7)] + vUy,

To(t) = Ko— K(t)[x1(t) + 1],

where x1(t) is the radiation density and z5(t) the amplification coefficient. The
other parameters are constants depending on the properties of the laser.
Mathematical models of learning.(Shimbell, 1950, quoted in Kol-

manovskii and Myshkis) The following model has been proposed to describe the



behavior of the central nervous system in a learning process

©(t) = Klz(t) —x(t— ][N —z(t)], t>0,

z(t) = 0, (=1<t<0), =z(0)=ux.

Here, K and N are positive constants, 0 < xg < /N.
Model of survival of red blood cells. A model for the survival of red
blood cells in an animal has been described (Wazewska-Czyzevsia and Lasota,

1988, quoted in Kolmanovskii and Myshkis ) by the equation
i(t) = —ax(t) + be Tt > ¢,

where z(t) is the number of red blood cells at time ¢, a is the probability of death
of a red blood cell, b, v > 0 are constants related to the production of red blood
cells per unit time, and the delay 7 > 0 is the time required to produce a red
blood cells.

River pollution control. Let z(¢) and ¢(¢) be the concentrations per unit
volume of biological oxygen demand (BOD) and dissolved oxygen (DO), respec-
tively, at time ¢. It is assumed that the flow rate discount, water is well mixed, and
there exists 7 > 0 such that BOD and DO concentrations entering at time ¢ are
equal to the corresponding concentrations 7 time units ago. Using mass balance
concentration, the following equations have been derived (Lie and Leitmann, 1989,

quoted in Kolmanovskii and Myshkis)

At) = —ki(t)z(t) + v Qu(m + wi (1) + Qz(t — 7) — (Q + Q1)z(t)] + v (1),
q(t) = —ka(t)2(t) + ka2(t)[go — ()] + v [Qq(t — 7) — (Q + Q1)a(t)] + ua(t) + va(t).
Here, k;(-) denote the BOD decay rate, the BO re-action rate, and the BOD

deoxygenation rate; qp is the DO saturation concentration; ) and (), are the

stream flow rate and the effluent flow rate; v is the constant volume of water



under consideration; u;(t) are controls; v;(-) are random disturbances affecting the
rates of change of BOD and DO; and m is a constant.
Similarly to the classification of differential equations by order, we classify

FDEs according to the order of the highest derivative appearing in the equation.

Definition 2.2. The order of a FDE is the order of the highest derivative of the

unknown function entering in the equation, when written in the form of (2.1).

Definition 2.3. A solution of an FDE in some region R of the space of the inde-
pendent variables is a function that has derivatives and functionals of derivatives
appearing in the equation in some domain containing R and satisfies the equation

everywhere in ‘R.

2.2  Delay Differential Equations (DDEs)

Definition 2.4. (DDE). Delay differential equations with one independent vari-

able, or functional differential equations of retarded type, are of the form

u'(x) = f(x,u(gl(x)), ) u(gq(x)))’ (2'2)

where x € [xg,3), u : [y,z] — D, D is an open subset in R", u and f are n-vector-
valued, sufficiently time differentiable functions, f : [zg,3) x D? — R™, and for

each A=1,...q, v <g\(x) <z, for zqg<z<f.
Note that g; is usually chosen to be the identity mapping.

Definition 2.5. A solution of equation (2.2), with the initial condition 6(z) de-
fined on [, z¢], is a continuous function u : [y, 8;) +— D, for some 3, € (xg, (] such

that

1. u(z) =0(x) for vy <z <z, and



2. W (x) = f(z,u(g1(x)), ..., u(gy(z))) for zg <z < f.

Remark. The derivative of u at the point x( is considered only from the right-
hand side.

Definitions 2.4 and 2.5 indicate that initial values of DDEs have to be satisfied
for the whole interval considered. In other words, they are of non-local differential

equation type.

2.3 Existence Theory of a Solution of a DDEs

Consider a delay differential equation system
u'(x) = flz,u(gr(x)), ..., u(gy(x))). (2.3)
By definition 2.4, we may assume that
r—7<g\(z)<zx for x>z, A=1,...,q,
for some constant 7 > 0. The initial condition takes the form
u(z) =0(x) for zo—7 <z < x)

here O(z) is a given function. Note that system (2.3) is reduced to a system of
ODEs if 7 = 0. It is assumed that f is defined on [zg,3) x D? — R™ for some
[ > xo and some open set D C R"™.

Since the notation of system (2.3) is cumbersome, it would be better to
have a simpler notation.

If w is a function defined at least on [z — 7, 2] — R™, then we define a new

function u, : [—7,0] — R™ by

uz(0) =u(r+o) for —7 <o <0.
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From another point of view, u, is obtained by considering only u(s) for x — 7 <
s < z and then translating this segment of u to the interval [—7,0]. If u is a
continuous function, then u, is a continuous function on [—7, 0].

Let real numbers 7 > 0 and xg be given and let o < § < oo. Let D be an
open set in R, and let F' be defined on [z, ) x Cp — R™, where Cp is the set of

all continuous functions mapping [—7,0] — D, i.e. Cp = C(|—7,0], D). Define

F(z,uy) = f(z,u(gi(x)), ..., u(gy(2))).

Then system (2.3) can be written as

Given any ¢ € Cp, we seek a continuous function u : [xg — 7, 31) +— D for

some (3, € (xo, ] such that system (2.4) is satisfied on [x¢, #;) and

Uzy = O. (2.5)

For the existence of solutions of system (2.4), it is sufficient to require the

following conditions on F'.

Definition 2.6. A function F'(z, u,) satisfies the Continuity Condition if F(z,u,)

is continuous with respect to x in [xg,3) for any given continuous function u :

[$0_77/8) — D.

If F satisfies the Continuity Condition then a continuous function u :
(20, f1) — D is a solution of equations (2.4) and (2.5) if and only if

oz — x0) for zg—7 <z <ux,
u(x) = (2.6)

»(0) + f;i) F(s,us)ds for xy <z <[
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In order to define a Lipschitz condition, a means for measuring the magni-
tude of elements of Cp is required.

For a function ¢ € Cp,

[l- = sup |(o)].

—7<0<0

Definition 2.7. Let F' : [xg,5) x Cp — R™ and let £ be a subset of [xg, 5) x Cp.

If there exists K > 0 so that

whenever (z,v) and (z,v) € &, we say that F satisfies a Lipschitz condition (or

F is Lipschitzian) on € with Lipschitz constant K.

Definition 2.8. A functional F : [z¢,5) X Cp — R™ is locally Lipschitzian if for

each given (Z,v) € [x¢, 3) x Cp there exist numbers a > 0 and b > 0 such that

£

([F—az+a Nz, B)) x{¢ €Cp: ¢ =] < b}
is a subset of [zg, 3) X Cp and F is Lipschitzian on .
Remark. The Lipschitz constant for F' depends on the particular set £.

Theorem 2.1 (Local Existence, Driver, 1977). Let F : [xq,3) X Cp — R™ satisfy
the Continuity Condition and be locally Lipschitzian. Then, for each ¢ € Cp,

equations (2.4) and (2.5) have a unique solution on [xog — T,x0 + A) for some

A > 0.



CHAPTER III

GROUP ANALYSIS

Before moving on to the main discussion of this thesis in the next chapter,
it is useful to review some basic concepts from group analysis. Group analysis
was initially introduced in 1870 by a Norwegian mathematician, Sophus Lie. Lie
group analysis provides general methods for integration of linear and nonlinear
differential equations using their symmetries. It is a universal and effective method
for solving nonlinear differential equations analytically.

The purpose of this chapter is to present preliminary knowledge of group
analysis for differential equation: definition of a one-parameter Lie group and cor-
responding infinitesimal generator, prolongation formula, Lie-Backlund represen-
tation, Lie algebra of operators, definition of determining equation and symmetry

group for delay differential equations.

3.1 Lie Group of Point Transformations

Let © = (z1,...,x,) be n-tuples of the independent variables and u =

(u',...,u™) be m-tuples of the dependent variables. Consider invertible transfor-

mations of x and wu

T=(T1,...,2Ts) = (Pi(T050), ..., Pl us0)) = 0" (2, u;0),
(3.1)

U= (ﬂl, ™) = (oY (T a), .. o0 (T usa)) = @t (x,u;a),
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depending upon a real continuous parameter a, which lies in an open symmetric

interval S, with conditions

oi(z,u;0) = x;, i=1,...,n,
(3.2)
wu(x,u;0) = u®, a=1,...,m.
These transformations are assumed to be sufficiently differentiable with respect to
the variables x; and u®, and to be analytic functions of the parameter a.
It is said that these transformations form a one-parameter group G if the

successive action of two transformations is equivalent to the action of another

transformation of the form (3.1), i.e.

0" (2, 4;0) = ¢ (" (2, u; a), " (2, u;0);0) = ©*(x,u; 0+ ),
(3.3)

0" (2, u;b) = (0" (2, u;a), 9" (w,u;0);b) = " (x, u;a + ).
In practice, it often happens that the group property is valid only locally, i.e. only
for |al, |b] and |a| + |b| sufficiently small. In this case, G is referred to as a local
one-parameter transformation group. In group analysis, local groups are used,

which for brevity are simply called groups.

The transformations (3.1) are called point transformations, and the group
G is called a group of point transformations. It is readily seen from formulas (3.2)
and (3.3) that the inverse transformation can be obtained by changing the sign of

the parameter:

r=¢*(Z,u,—a), u="(Z,u,—a) (3.4)

Let T, denote the transformation (3.1) of a point (z,u) into the point (z,u), I
denote the identity transformation, T, ! denote the transformation inverse to T,
and T, T, denote the composition of two transformations. Then one may summarize
properties (3.1)-(3.4) as follows:

A set G of transformations T, is a group of point transformations if

the following hold:
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1. Ty=1¢€qa,
2. T/, =Ty, €G, abes,
3. lf ae S and T, ((z,u)) = (z,u) for all (z,u), then a = 0.

The functions ¢” and " can be represented via their Taylor series expan-
sions with respect to the parameter a in the neighborhood of the expansion point

0 and thus the transformations in (3.1) can be written as follows:

T = pi(x,u;a) =z + &§(w,u)a+ - -

u* = po(x,u;a) = u® +n%(x,u)a+ -,

or
T = x; + &(z,u)a, u® = u® +n%(x,u)a, (3.5)
where
09 (7, usa) o _ 0vu(x,u;a)
£z<x7 U) - 8(1 _07 77 (I‘, U) - aa i

Given an infinitesimal transformation (3.5), the corresponding group can be com-
pletely determined by the following system of differential equations, called Lie

equations, with appropriate initial conditions:

d_zgz(sp , P )7 2 = Ty,
a a=0 (3.6)
dSOZ . a( x u) u _ ua
dCL - 77 90 7@0 ) QOa a=0 - .
Consider the first-order differential operator
0 0 1 0 m 0
X = 51(%16)8—% + -+ §n($=u)a—% +1n (%U)% +- 47 (%U)au_m' (3.7)

Sophus Lie called the operator (3.7) a symbol of the infinitesimal transformation
(3.5). In this thesis, the words infinitesimal generator, infinitesimal operator,

group generator, group operator and Lie operator are used interchangeably.



The first-order differential operator (3.7) is written briefly as

X =¢&(x,u) 0

oz, +n%(x,u)

ou®’
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(3.8)

where the repeated index ¢ means summation with respect to ¢ from ¢ = 1 to n

and the repeated index o means summation with respect to o from a = 1 to m.

3.2 Change of Variables
Let G be an one-parameter group of transformations

T = ¢"(z,y;a), y=¢Y(z,y;0)

with corresponding generator

0 0

Consider an invertible (nonsingular) change of variables:
r=n(r,y),  y=g(y),

and its inverse

(3.9)

(3.10)

(3.11)

with the Jacobian A = hzg; — gzhy # 0. Substituting (3.10) into ( 3.11), we obtain

the identities

(3.12)
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Solving these equations for h,, hy, g, and g,, one obtains

TN 95(Z,9) BT 0. 6% T :_By(fa?)
hm(h(xay)vg( ) ))_ A(f,yj)’ h?J(h( 7y)7g< 7y)) } A(f,g)’ (313)
9:(,7) hz(Z, )

0:(0(7.9),9@.0) = =377 9(E:9).9@.9) = L5 (319)

Under the change of variables (3.10) the differential operator (3.9) is transformed

as follows:

_ 0 0

Here £(Z,%) and 7(Z, §) are obtained by the action of differential operator X on

the function h, g, the results are written as a function of new variables z, , i.e.,

{0 = Xhizw)|
= [e@ ha(a.y) + @ y)hy (.y)]
= |&(h@. ). 902 ) ha(hw,9), 32, ) + n(h(E,9), 32, 5) by (A, 9), 9(2,9))]
(#.9) = X(g(@v)|

- [é(w,y)gx(fcay) +77(x>y)9y(x’y>}

Rl

x=h, y=g

= [e(h(@,9). 3(2,9))0.(h(@,9), 9(3, 9)) + n(h(z. 7). 3z, 7)) g (h(7,9), 9(. 7))

Hence, from (3.13) and (3.14), &, 7 are rewritten as follows

3.3 Prolongations

By definition, groups of point transformations act only on the space of (z, u)
of n + m variables. However, to apply these groups to differential equations, one
needs the transformations of derivatives. Thus it is necessary to extend a group of

point transformations acting on the (z, u)-space to groups of point transformations



acting on the (z,u, 11L)—space, (x, u,zf,g)—space, .

7(a Rt
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,u)-space, s > 1,
S

for a given differential equation with order s. These groups are called the first

prolongation group, the second prolongation group, ...

group, respectively, where the transformations are of the form

z

I~}

—

» |

AS)

O (z,uya) =2+ &(x,u)a+ -

o (z,u;a) =u+n(z,u)a+---

)

71l<$7u77v15; CL) = QIL + C(l)(x,u,llc)a+ T

S

, the s-times prolongation

:u—i—C(S)(m,u,?lL,...,u)ajL---

The prolongation transformation formulas® of the components {u%} of u are de-

termined by

(.’L‘,U,Tib;a) Dlﬁpu(xaU;a)
(z,u, Ui a) _ Dy (z,u;a)
(x,u, u; a) D, " (x,u;a)

where A™! is the inverse (assumed to exist) of the matrix

Dip7 Dipy -+

Dyp? Doy - -

Dngt Dngh -+

*See more details in Ovsiannikov (1978)

Dy,

Doy

Dy,
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and the prolongation transformations formulas of the components {u% , } of @

Vi1 ls s

are determined by

UG, iy 1 (@g)%-..i5,11($7 Uy Uy ooy U5 a)
— u
u?lél_..i5712 . (SOS)%---Z'S_Q(:C’ u, 111’7 s 718117 CL)
u,olfl"'is—ln_ _(QO%)?I__Z-S_IH(LU,U,TIL, 7g7a)_

Dl[(gps_l)%mis,l(iauv?? 759170')]

| DA @ )
u
Dn[((p871)%---is_1 (l’, u, 7{7 R 'Z_j/ 7&)]
The formulas of the coefficients, ¢f*, ..., (. ; , of the infinitesimal generator

are determined by
¢t = Di(n") — Uf;-Di(fj);

7;0;1'2 = DZQ( ’LOI) - u,O:1]D22(€.7)7

szs = D ( z‘of-.z‘s,l) - U,C;l--.is,ljDis (fy)
Thus, the first prolonged generator of (3.8) is

0 0 0 0
XO o x o e~ g o
TG ous & ox; o ou® TG ous’

and the s-times prolonged generator is written recurrently as:

0
x () — x(s=1) a
ils Gy

Ji10s

3.4 Lie Algebras of Operators

The theory of Lie algebras is one of the well-developed fields of modern
mathematics. A rigorous treatment of this subject can be found in the specialized

literature.
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Consider any pair of first-order linear partial differential operators

X; :fj(x,u)ﬁ—knj(x,u 0 (3.18)

0 0

ox ou’
Definition 3.1. The commutator [X;, X;] of operators (3.18) is the linear partial

differential operator defined by the formula

or equivalently

X0 X)) = (X&)~ X,(60) oo+ (Xuln) = X)) o (3.19)

Definition 3.2. (Lie algebra). Let L, be an r-dimensional vector space spanned

by r linearly independent operators of the form (3.18),
X=0X1+0CXo+---+C.X,,

C1,C,, ..., C, are constant. The space L, is called a Lie algebra if it is closed under
the commutator, [X,Y] € L, whenever X,Y € L,. The operators X;, Xo,..., X,
provide a basis of the Lie algebra L,.. We also say that L, is a Lie algebra spanned

by Xl,XQ,...,XT.

The Lie algebra is denoted by the same letter L, and the dimension dimZL
of the Lie algebra is the dimension of the vector space L. We shall use the symbol
L, to denote an r—dimensional Lie algebra.

It follows from (3.19) that the commutator is bilinear:
[Cle + CQXQ, X] = Cl[Xl, X] + CQ[XQ, X],

[X, 01X1 + CQXQ] = Cl[X, Xl} —|— CQ[X, Xg],

skew-symmetric:

(X1, Xo] = —[Xa, X,
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and satisfies the Jacobi identity:
(X1, [Xo, Xs]] + [Xa, [ X5, Xa]] 4 [X3, [ X0, X5]] = 0.

Definition 3.3. (Isomorphism). A linear one-to-one map f of a Lie algebra L onto
a Lie algebra K is called an isomorphism (and L and K are said to be isomorphic)
if

J([X1, Xo]n) = [f(X1), f(X2)lk
where the indices L and K are used to denote the commutators in the correspond-

ing algebras. An isomorphism of L onto itself is termed an automorphism.

Definition 3.4. (Subalgebra). Let L, be a Lie algebra spanned by X, Xs, ..., X,.
A subspace L, of the vector space L, spanned by a subset of the basis operators
X1, X, ..., X, 8 <, is called a subalgebra of L, if [X,Y] € L for any X, Y € Ly.

Furthermore, Ly is called an ideal of L, if [X,Y] € L, whenever X € L,,Y € L,.

3.5 Lie-Backlund Representation

Let A denote the space of differentiable functions of all finite orders. This
space is a vector space with respect to the usual addition of functions. Further-

more, it has the important property of being closed under the differentiation given

0
by D; = & — e .
Y 9z, T ioue T iges T
Consider an operator of the form
0 o O 8 0
X = 51 aa : mzaa +..., (3.20)

L1192

where &;, n® € A are infinitely differentiable functions, and
Cia = ( 5] )+€J ,J1)

_D D ( 6] )_‘_5] Ji1ia (321>

2112

fSee more details in Ibragimov (1999)
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Operator (3.20) with coefficients given by equations (3.20) and (3.21) is called a

Lie-Bdicklund operator. In fact, the operator (3.20) is the infinite prolongation* of

0 0
XZ&@*’UQ

oo Gt EA (3.22)

Lemma 3.1. The Lie-Bdcklund operator (3.22) satisfies the commutation relation
This is proved by straightforward computation.

Lemma 3.2. Fvery operator

0 0 0
X" =¢&D; =& + &u + &u + ... (3.23)

“om TS g T g
with arbitrary analytic coefficients & is a Lie-Bdcklund operator. The set of

operator (3.23) is an ideal in the Lie algebra of all Lie-Bdicklund operators with

product [X,Y] = XY - Y X.

It is often advantageous to work with the factor algebra of all Lie-Béacklund
operators by its ideal L* of operators (3.23) rather than the full algebra. Accord-
ingly, two Lie-Backlund operators, X and Y will be said to be equivalent whenever
X —Y € L*. In particular, every operator (3.22) is equivalent to a Lie-Bécklund

operator with coordinates & =0 (i = 1,...,n); namely
XY = X —&Di = (" — &) 2 +
g ou®
Definition 3.5. A Lie-Bécklund operator (3.22) of the form
X = nﬂa— n’eA (3.24)
auﬂ7 Y

is called a canonical Lie-Bdcklund operator.

!The concept of the prolongation group and prolonged generator has been given in Section

3.3
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For such operators the prolongation formulas (3.21) acquire a simple form:

i Dy (7). (3.25)

From Lemma 3.1 it follows that the canonical Lie-Béacklund operators commute
with the differentiation operators D;. Conversely, the condition that operator
(3.20) (with & = 0) commutes with operator D; implies that (3.25) are satisfied.

Although the shift from (3.22) to equivalent canonical operator (3.24) is
convenient in many problems, there are cases in which it leads to a loss of geometric

transparency. This is first of all true for groups of point transformation. For

example, the infinitesimal generator X = of the simplest one-parameter group

axi
of point transformations - the translations z; = x; +a along the z;-axis - is reduced
to the canonical form (3.24), namely Y = uf‘ﬂ +....
u

3.6 Symmetry Group for Differential Equations

Lie groups are related with differential equations through the following idea.

Definition 3.6. (Admitted group). A symmetry group of a system of differential
equations is a group of transformations mapping every solution to another solution
of the same system. A symmetry group is also termed the group admitted by the
system, or an admitted group, and that system of differential equations is said to

be invariant under the symmetry group.

Consider a system of differential equations,

F(z,u, Uy ,u) = 0. (3.26)

S

Let u = v(z) be a solution of system (3.26) and let the transformations depending

on a parameter a, T = ¢*(x,u;a), u = p"(x,u;a), belong to a group admitted by
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system (3.26). Therefore, by the definition of an admitted group, the transformed

variables
T = ¢*(z,v(z);a),
u = ¢"(x,v(r); a),
must be another solution of system (3.26). Hence
F(:E,a,z} e ,g) =0, (3.27)

whenever u satisfies system (3.26). This implies that system (3.27) is invariant

with respect to the group parameter a:
6F(:f,ﬂ,1¥,--- , )
oa

Il
e

(3.28)

a=0, (3.26)

Another representation of Equation (3.28) in generator form is

X®F(z,a, =0.

(3.26)

—~

,...’ﬂ)
S

Definition 3.7. Equation (3.28) is called the determining equation of differential

equation (3.26).

3.7 Group Classification Problem of DEs

Lie algebras connected by a change of variable are called similar or equiva-
lent. When one equation is transformed into another by a change of variables, the
algebras admitted by the two equations are similar.

The group classification of ordinary differential equation is based upon the
enumeration of all possible nonequivalent Lie algebras of operators admitted by
the chosen type of equations.

The investigation of the problem of group classification was carried out by

Lie for second-order ordinary differential equations. He gave his classification in
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the complex variable domain. The result of the enumeration of all nonsimilar
algebras (under complex changes of variables) and of invariant equations can be
seen in Ibragimov (1996).

The great success in integration using symmetries provided Lie with an
incentive to begin the classification of all ordinary differential equations of an
arbitrary order in terms of symmetry groups.

There is a considerable literature on the group classification of differential
equations while are of interest in physics. These results are presented in Ovsian-
nikov (1978), Ibragimov (1996) and the literature referenced there in.

For ordinary differential equations of second order with one dependent vari-
able, group classification was obtained using the following strategy. First, all Lie
algebras on the plane that were nonequivalent with respect to a change of the
variables were constructed. Differential invariants of second-order prolongations
were obtained. Lie algebras admitted second-order ODEs were chosen. Using the
invariants of these algebras, the representation of second-order equations were ob-
tained. These equations compose a group classification of second-order ordinary

differential equations. This classification is presented in Table 3.1.
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Lie group classification of second-order ODEs in two real variables domain up to

change of variables. Let p = 0/0x and ¢ = 0/0y.

Table 3.1 Lie group classification of second-order ODEs in two real variables

domain
No. Lie algebra Representative Equations
1 Xi=p y' = f(v.y)
2 Xi=p Xo=g¢q y' = fy)
3 Xi=gq, Xo=ap+yq. zy" = f(y)
4 Xi=p Xo=q, y' = CeV
Xz =ap+ (z+y)g.
5 Xi=p, Xo=4q, y”:Cy/Zj, a# 0, %, 2
X3 =2ap+ ayq.
6 Xi=p Xo=gq, y' = C(1 + y?)zeborctany/
X5 = (bz +y)p+ (by — z)q.
T Xi=gq Xo=1xp+yg xy" = Cy® — 3y
X3 = 2zyp + 9.
8 Xi=gq, Xo=ap+yq, wy" =y + P+ C(1 4 y?)*?
X3 = 2zyp + (y* — 2%)q.
9 Xi=gq, Xo=ap+yq vy’ =y —y*+ O —y?)*"?
X3 = 2zyp + (v* + 2%)q.
10 Xy = (1+a%)p+ xyq, y'=C %]?ﬂ
Xo = zyp + (1 +y%)q,
X3 =yp—aq.
11 Xy =p, Xo=g¢q, X3=2q, y' =0

Xy =uzp, X5 =1yp, X¢=1yq,

X7 =a*p+ zyq, Xs = zyp+ v’q.
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Nesterenko’s classification provides a classification of all Lie algebras in the space
of two real variables (Nesterenko, 2006). The results are presented in the table

below

Table 3.2 Classification of all finite dimensional Lie algebra on the real variable

domain

No. Lie algebra basis

1 0,
Oy, Oy
O, YOy
4 Oy, 20, + yo,
Oy, 10,
Oy, x0y, & (x)0,
7 0Oy, YOy, Oy
8 e "0y, Oy Oy
9 0y, O w0,
10 0Oy, Op, 20, + (x +y)0y
11 e ™0, —ze "0y, Oy
12 0y, 0y, 0y + Y0,
13 0y, 20y, Yo,
14 0., 0y, 0, +aydy, 0<la| <1l,a#1
15 e %0, e *0,, 0;, 0<|a|<1l,a#1
16 Oy, Oy, (bx+y)0y + (by —x)0,, b>0
17 e "sinzd,, e " cosxdy, Oy, b>0
18 Oy, 20y + Y0y, (2% —y?)0, + 22yd,
19 90,4 9,, x0, + y0,, 120, + y*9,

20 O, x0, + %y(()y, 220, + xyd,
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No. Lie algebra basis

21 0,, 20y, 220,

22 yd, — 20, (1+2%—y*0y + 22y0,, 22y0, + (1 4+ y* — 2?)9,
23 0y, 20y, &i(x)0y, &(2)0,

24 0y, 20y, 0y, YO,

25 e %0y, O, Oy, Yo,

260 e "0y, —xe "0y, O, O,

27 €70y, e 0, Oy, 0y, 0<]a| <1l,a#1

28 e "sinxd,, e " cosxdy,, Oy, Oy, b>0

29 0, 20y, YO, 220, + xyd,

30 Oy, Oy, X0y, 20,

31 9, —xd,, 32°0,, 0,

32 e*9,, e 9, —axe®d,, O,

33 e *0,, —x0,, 0y, Oy

34 e *d,, —axe "9, sx’e "0, 0,

35 0Oy, x0,, & (x)0y, yo,

36 e 9,, e ", e %0, Oy, —1<a<b<l, ab#0
37 e 9, e "sinxd,, e " cosxd,, Oy, a >0

38 Oy, Oy, 10y, 10, + (2y + 22)0,

39 0y, Oy, 20y, (1+b)xd, +y0,, |bl <1

40 0y, — x0y, O, YO,

41 0y, Oy, 20, + Y0y, YO, — x0,

42 sinxdy, coszdy,, YOy, Oy

43 0y, Oy, 20y — YOy, YO0y, 0,

44 0y, 0y, 20y, YOy, Y0,, 0,

45 0y, Oy, 10y + Y0y, Y0y — 10y, (2* — y*)0, — 22y0,, 22yd, — (y* — 2*)d,
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No. Lie algebra basis

46 9y, Oy, 20y, yd,, 20, 20,

AT By, Oy, ©0y, Y0y, YOy, w0y, 220y + xyd,, Y0y + 120,
48 8, 20, E1(2)d,,..., &(2)d,, r >3

49 yd,, 8, ©d,, E1(2)dy, ..., &(2)Dy, T > 2

50 Oy, MmOy, ..., n(x)0y, 7 >4
51 Ou, YOy, MmOy, ..., n(x)0y, >3
52 Oy, Oy, 20y + cydy, x0y,..., 70y, 7> 2
53 Oy, Oy, 0y, ..., 2710, x0p + (ry +27)0,, 7 >3
54 Oy, 10y, YOy, Oy, x0y,..., 270y, 7 >1
55 Oy, Oy, 220, +ryd,, x?0, + rayd,, xd,, ¥?0y,..., 70, r>1
56 Oy, 10y, Y0, ¥20y + raydy, 0y, 10y, %0y, ..., x70,, r >0
The functions 1, x, &,...,&,. are linearly independent. The functions 7q,...,n,

form a fundamental system of solutions for an r-order linear ordinary differential

equation with constant coefficients n™(z) + ¢;n™~V(z) + -+ + ¢,n(z) = 0.
3.8 Symmetry Group for DDEs

For delay differential equations, the definition of an admitted Lie group
and the algorithm for constructing, and solving the determining equations were
expressed in 2002 by S. Meleshko and J.Tanthanuch.

For the sake of simplicity, the definition of admitted Lie group for a delay
differential equation with one independent variable is described.

Consider a system of delay differential equations (2.4),

E(z,u) = — F(z,u,) = 0. (3.29)
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Let G be a one-parameter Lie group of transformations
T = ¢*(x,u;a), u=@“(z,u;a)

with the infinitesimal generator

0

X zé(x,u)a— m

o+

Definition 3.8. (Admitted group). A one-parameter Lie group G of transfor-
mation (3.1) is a symmetry group of the delay differential equations or symmetry

group admitted by the delay differential equation (3.29) if G satisfies

(XE) (2, u(z))) = 0 (3.30)

for any solution u(z) of equation (3.29).
Here the operator X is the prolongation of the canonical Lie-Backlund

operator equivalent to the generator X given by
X =C"0u+C"0u, + ...

where (* =n —u,&, (** = D,.(" and D, is the total derivative with respect to z.
A symmetry group is also termed the group admitted by the system, or an
admitted group, and the system of differential equations is said to be invariant

under the symmetry group.

Definition 3.9. Equation (3.30) is called the determining equation for delay dif-

ferential equation (3.29) .



CHAPTER IV
GROUP CLASSIFICATION OF
SECOND-ORDER DELAY ORDINARY

DIFFERENTIAL EQUATIONS

The purpose of this chapter is to give a complete classification of second-

order delay ordinary differential equations of the form

y' = flz,y,y-.9,y.) (4.1)

admitting the Lie algebra.

4.1 Strategy for Obtaining a Complete Classification of

DODEs

This section is devoted to explain the strategy for obtaining a complete

classification of second-order DODEs (4.1) admitting a Lie group.

4.1.1 Properties of an Admitted Generator

Assume that the infinitesimal generator

is admitted by a second-order DODE (4.1). The corresponding canonical Lie-

Backlund operator has the form

X =¢(z,y,9)0,, (4.3)
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where ( = 1 — y’£. For obtaining determining equations of second-order DODEs,
one has to prolong the canonical Lie-Backlund operator to the six-dimensional

space of variables (z,v,y., v, y.,y"):
XB = (Y0, + (¥ 0,, + Cy/ay’ + Cy;ay’f + Cy”ay”’ (4.4)
where

¢,y y) = nlx,y) — y'&(z,y),
@y yy) = e =7y ) = e = 7yr) — Y@ — 7y,
¢ (@, y,9,y") = D(CY) = na(,y) + [y(2,y) = &l )]y’ — & (2, 9)(0)° = &z, 9)y",
(@, yr, v 0) = ¢V = Ty 0 Y = ma(@ = 7ye) + [y (2 — 7, yr)
—&o(w = Toyo)lyr — & (@ —7yn)(yr)* — E(x — 7 y0)yy,
¢ (2,99, y") = D(CY) = Nua(,y) + (200 (2, Y) — Eaal(z, )Y/
gy (2, y) = 260y (2, 9)](1)? = &y (2, ) ()
+iny(@,y) — 26 (2, y))y" — 38 (2, 9)y'y" — &(z, 9)y”,

D is the operator of the total derivative with respect to x, i.e. D = 0, +y'0y+---.

The determining equation for the second-order DODE is

~0. (4.5)

(4.1)

XB (y// - f<x7y7y7'7 y,7 y;))

Equation (4.5) has to be satisfied by any solution of equation (4.1). Substituting

Y = fo Sy 4 Yok 4 fy Yy v = fand ¢ = f,. the determining

equation (4.5) is rewritten as

_fyy(y,)g + (nyy — 28y + fyfy’)(y/)2 + f;fyé (y;)Q + (2779:3/ — &)Y + (& — ny>fy’y/
_3£yfy/ + Moz — nxfy/ + (77y - 2€x)f - ﬂ;fy; + (5; - n;T)fy;y; - fwf - fy77

_anyT + (ST - f)fyry; + (67 - g)foy’T = 07 (46)

where fT = f(l' - T, y‘hy?ﬂy‘,rvyéT)? Yor = y(SL' - 27—) and yéT = y/(l' - 27—)
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By virtue of the Cauchy problem, one can account the variables x, v, y,,
Y Y., yor and 5, in (4.6) as arbitrary variables.

For the case f,, # 0, we can split the determining equation (4.6) with
respect to yh.. This implies £ = 7.

If f,, = 0, then the assumption of DODE implies f must depend on the
delay terms, i.e. f, # 0. Splitting (4.6) with respect to y., we also get £ = .

This shows the periodic property of &, i.e.,

f(l‘, y) = f(l‘ - T, yT)' (47)

Because this property is satisfied for any solution of the Cauchy problem, then
(4.7) implies function £ does not depend on y, i.e., { = 0. Moreover, property

(4.7) allows us to rewrite the determining equation (4.5) in the form

X(y” - f<x7 Y, Yr, yla y;—)) ‘(4 1 = 07 (48)

where

X = Xg+ED = €0, + 00y + 170, + 1" 0y + 1V 0y + 1Y yn,
n(z,y) = n(z,y),
n' (., y-) = n(z —7,y;),
1 (2,9,9) = na(@,y) + y(2,y) — &z, 0)ly — & (2,9) (),
(2, yr, yl) = 0 (@ = 7oyr, ) = ez — 7,y0) + [ny(x — 7 yr) — &z — 7,90 ]y
—&y(x —7,y-)(y)?,

1 (2,9, 9, Y") = Naa(@,Y) + (200 (2, Y) — Lo (@, 9)]Y + [y (2, y) — 260y (2, )] (¥)?

&y (2, ) (W) + [y (2, y) — 28 (z, vy — 38, (z, 9)y'y",

D is the operator of the total derivative with respect to x. The difference between

the generator X and Xp is the following. The generator X acts in the space of
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variables (z,v,y,,y,y.,y"), whereas the coefficients of the operator Xp include
the derivatives y” and y".

Notice that equation (4.8) means the manifold defined by equation (4.1) is
an invariant manifold of the generator X. Because of the invariant manifold theo-
rem, any invariant manifold can be represented through invariants of the generator
X.

Hence, for describing equations admitting the generator X, one needs to
find all invariants of the generator X.

Another property of admitted generator, which allows developing a method
for classifying all second-order DODEs is the following. Direct calculations show
that if two generators X; and X, are admitted by equation (4.1), then their com-
mutator [X7, Xs] is also admitted by equation (4.1). This property allows stating
that the set of infinitesimal generators admitted by equation (4.1) composes a Lie

algebra on the real plane.

4.1.2 The Strategy

As it was explained in section 3.7, there is a complete description of all finite
dimensional Lie algebras on the real space (Nesterenko, 2006). The classification
is obtained up to a nonsingular change of the variables  and y, and consists of
a list of 56 Lie algebras (See Table 3.2). Since the set of generators admitted by
a second-order DODE composes a Lie algebra, then this algebra is equivalent to
one of these 56 Lie algebras.

In order to complete classification of second-order DODESs, we need to carry

out the following steps for each class of 56 Lie algebras:

(a) change the variables z and y
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(b) find invariants of the Lie algebra in the space of changed variables
(2,9, 9,9, 9.9"),
(c) use the found invariants to form a second-order DODE.

Applying this strategy we will obtain representations of all second-order

DODEs admitting a Lie group.

4.2 Illustrative Examples

This section gives examples which illustrate an application of the above
strategy. Complete results of the classification are presented in the next section.
Here the notation L7 is used to denote the n-dimensional Lie algebra of the

number j from Table 3.2.

Example 4.1. Let us consider a three-dimensional Lie algebra L3, which is gen-

erated by the generators
X1 = 8:5, XQ = 8y, X3 = x@x + (ZL‘ + y)ay (410)

Changing the variables, * = h(Z,¥), ¥ = §(z,7) and using equation (3.16), the

first components fl are :

which have to satisfy the conditions (&); = 0 and &(z) = &(z — 1) based on (4.7),
(i=1,2,3). These conditions imply that (&); = 0, (&); =0, (&)y = 0. Equations
(£2); = 0 and (&3)y = 0 lead us to the restrictions hy = 0 and h(z) — h(Z — 7) =
¢, where ¢ is an arbitrary constant. Then A = ﬁjgg. Using equation (3.15),

generators (4.10) become

o5 +

h+ §)hs: — hiz
T s Zhgey iy
hzgy

>
8
<
<
&=
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We consequently solve equations for invariants which are related with the

prolonged generators X1(2)7 X'z(z), X§2):

X®y=0 xPis=0, ,XPJ=0, (4.12)

where )_(i@) ,(i =1,2,3) is the second prolongation of the generator X;.

To find invariants with respect to X; we have to solve the equation
S(2) /= -
X I, 9,57, 7. 5") = 0, (4.13)

where

= &(2)0: + 7 (7.9)0; + 7 (,5,5)0p +7 (2.5.7)0  (4.14)
+ﬁ1(i‘ - T, gT)aﬂ-r + ﬁiT (‘f -7, g’ra g;—)aﬂﬁ.
For integrating equation (4.13) one has to solve the characteristic system
of equations
dz dy dy dyj” dy, dy’

— = T. (4.15)
51 T 7]1 7]1 T 77?1”

This characteristic system is cumbersome to solve. However, one may note that the
first part of this system (without last two equations containing the variables related
with delay) is equivalent to the system which corresponds to the prolongation of
the original generator X with the variables (z,v,y', y"):

dr dy dy  dy’
1 0 0 0

(4.16)

Differential invariants of the last system are easily obtained, i.e. y, v/, 3”. Hence,

we found three invariants of equation (4.13):

_ Dlatz.0)
)

(
D(h(z

/—\Q\

7.9.9))
I

where D is the operator of the total derivative with respect to z. The other two

invariants are chosen as follows

Jf = Jl(‘f -7, gT)’ J; = J2(:Z - T, gﬂg;) (418>
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Direct calculations show that (4.17)-(4.18) compose the universal differential in-

variant of the generator X'l(z). Hence, the general solution equation (4.13) is
O = d(Jy, J], Jo, Jg, J3). (4.19)

At this step, the function ®(y1,y2, Y3, Y4, ys) is an arbitrary function.

For solving the other two equations

XPr=0, XPJ=o0, (4.20)

we have to find the function ®(y1,y2,ys, y4,ys) which satisfies the equations

XP®(1, J7, o, I3, J5) =0, (4.21)
Xy, J7, Iy, J3, J3) = 0. (4.22)

Equation (4.21) becomes
o, + P, = 0. (4.23)

The general solution of this equation is

= Y(y1 — Y2, Y3, Ya, Ys) (4.24)

where the function (21, 22, 23, 24) is an arbitrary function.
For solving equation (4.22), we have to find the function (21, 22, 23, 24)

which satisfies the equation

wzg + ¢Z3 + len - Z4w24 = 0. (425)

This equation was obtained by substituting J = ¢ (J; —J7, Jo, J3, J3) into equation

(4.22). The general solution of this equation is
= H(zy — 23,216 %2, 24€*), (4.26)

where H is an arbitrary function.
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Thus, the universal invariant of the Lie algebra L3, consists of the invariants
Jo—J3, (Ji—JDe 2, Jge2 (4.27)

The set of equations admitting the Lie algebra L3, can be expressed as the form
Js = e 2 f(Jy — J3, (Jy — J])e™72). (4.28)

Because of the meaning of the functions J, J7, Jo, J and J;, we represent

this equation in Table 4.1 as

y' =e VY —yl, (y—yr)e V). (4.29)
Example 4.2. The representation of second-order DODEs admitting L3,

Xlzaxa )(2:a

Y

X3 =20, X4=y0,, (4.30)

can be found as the follows. Changing the variables x = h(Z,7) and y = §(z, )
under the condition & = &7, (i = 1,2,3,4) leads to hy; = 0, h(Z) — h(Z —7) = c.

7

The transformed generators are

1 Gz 1 _ hz -
= — 0,0, Xo=—0, Xy=-0;- P S 2.9, (4.31)

< h
' hz hzgy 9y hz hzgy 95

Suppose (21, 22, 23, 24) is an arbitrary function. Like the previous example, in-

variant function
® = ¢(y1 — Y2, Y3, Ya, Y5) (4.32)

admitting generators X; and X, are obtained. Next, we will find the function

(21, 29, 23, 24) Which satisfies

Xy = T, o, I, Js) = 0, (4.33)

XPU(y — I, Ja, I3, J5) = 0. (4.34)
Equation (4.33) becomes

221/},22 + 231/123 - 224%4 = 0. (435>
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The general solution of this equation is

) = H(zl, = (22)2) (4.36)

Z2 24

Here H is an arbitrary function. Lastly, for solving (4.34) we have to find function

H (vy,v9,v3) which satisfies
Ulel + U3Hv3 =0. (437)
This equation was obtained by substituting

_ T J; (‘]2)2
w_H(Jl—Jl,TQ,TS). (4.38)

into equation (4.34). The general solution of this equation is

H= G(vg, ﬂ). (4.39)

U3

Here G is an arbitrary function. Thus the universal invariant of the Lie algebra

L3, consists of invariants
g3 J(S = J7)
Jy’ (J2)?

The set of equations admitting the Lie algebra L3, can be expressed the form

2 T
Js = JEJ—Q)J{fG_Z)’

where f is an arbitrary function of ‘;—2;
Because of the meaning of the functions Ji, J7, Jo, J] and Js, in Table 4.1,

we represent this set of equations as

g = W) f(y—T) (4.40)
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4.3 Second-Order Differential Invariants

Here, we present the results of calculations which are collected in Table 4.1.

4.3.1 Lie Algebra L]

The generator X; = 0, in new variables has the representation

o — 0y 9z
X = —= — 35 + — - (9—.
' gihg - gghf gaéhg - gghi Y

Differential invariants up to second-order of this generator X{m are defined in

(4.17)-(4.18):
h(@g), J(@9), LEyy), JS@0.7), SE9.9.9) (441)
The set of equation admitting the generator X is
J3 = f(J1, J7, J2, J3). (4.42)
In table 4.1, this set of equations is written as

v = [y, yr vy (4.43)

4.3.2 Lie Algebra L3

This algebra is defined by the generators

After changing the variables, the generators become

S —0y Jz S
Xl = - = — 8:7: + — 7 — = afa X2 =
gi’hzj - gghf gazhg - g@hi Y

Invariants of the first generator are (4.41). Applying the second generator )_(2(2) to

the function ®(y1, Yo, Y3, Ya, ys) by letting

n=JD, pp=J7, ys=1Jo, yu =J3, ys = Js,
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we obtain

o, + @, =0.

Thus, the universal invariant of this algebra is
J—=J], Jo, Jy, Js. (4.44)
The set of equations admitting the generator L3 is
J3=f(J1 = J], Ja, J3). (4.45)
In table 4.1, this set of equations is written as

v =fly—y-y,y.). (4.46)

4.3.3 Lie Algebra L3
This algebra is defined by the generators
X =0, Xo =190,
which after changing the variables, the generators become

X1:

|-

317, XQ - 8*.

~
@D"|Q|

Y
Invariants of the first generator are (4.41). Applying the second generator )_(2(2) to

the function ®(y1, Yo, y3, ya, ys) by letting
i ="Ji, ya=J7, ys=Jo, ya=Jg, ys = Js,

we obtain
(Y3)* Py + (y4)° Py, + 3ysys Byy = 0.
Thus, the universal invariant of this algebra is

11 J

Ji, J{, — — —, ——.
1, 1> J2 J5-7 (J2)3

(4.47)
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The set of equations admitting the generator L2 is

1 1
:]3 - (J2)3f<J1’J{’72 — J_é7'> (448)

In table 4.1, this set of equations is written as

1 1
3
y' =) f(y, Yo 7~ y—,) (4.49)

4.3.4 Lie Algebra L?
This algebra is defined by the generators
Xy = 0y, Xo =20, +y0,,
which after changing the variables become

=0y
T Gzhy — gghs !

_ —hgytghy |, MG —ghs
gahg — Ggha  Gshy — gyhs
(4.41). Applying the second generator X, ) ¢

the function ®(y1, Y2, ys, Y, ys) by letting
= ‘]17 Yo = J{: Ys = J27 Yg = ‘]27 Ys = J37
we obtain
1Py, + y2Py, — ysPy, = 0.

Thus, the universal invariant of this algebra is

Ji

JT’ J2> Jza J1J3 (450)

The set of equations admitting Lie algebra L2 is

_ —f<JT, Ja, JT> (4.51)

In table 4.1, this set of equations is written as

——f( ). (4.52)



42

4.3.5 Lie Algebra L2

This algebra is generated by
X1 = 8m7 Xy = xa:v

which after changing the variables, the generators become

87 _ ﬁgi 8*

1 s _ h
= =0, -9, Xy=-— .
T ha T hagy "

X
YT he T hagy ”

Invariants of the first generator are (4.41). Applying the second generator )_(2(2) to
the function ®(yy, Yo, y3, Ys, ys) with substituted

h = ‘]17 Y2 = ‘]{7 Ys = J27 Ya = J;a Ys = J37
we obtain

yg(I)y3 + y4<I>y4 + 2y5<I>y5 =0.

Thus, the universal invariant of this algebra is

Jo s
J, J, =, —. 4.53
1 1> Jg7 (J2)2 ( )
The set of equations admitting the generator L2 is
2 T ‘]g
Iy = () f(Jl,Jl,T). (4.54)
2
In table 4.1, this set of equations is written as
y/
y' = y’2f<y, Yrs j) (4.55)

4.3.6 Lie Algebra L}

This algebra is defined by the generators

X = 3y, Xy = xay; X3 = él(x)ay
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which after changing the variables become

_ o h, oo h
X1 - _—8@, X2 - _—8g, X3 - gl( )8g
9y 9y

Y _

9y
Invariants of the first generator are h(z), J1—J7, Jo, J3, Js. Applying the second

generator )_(2(2) to the function ®(y1, yo, Y3, ya,ys) by letting
y=h, y2=J = J, ys="Jo, ya=1J5, ys = J,

we obtain

C(I)y2 + (I)ys + q)y4 =0,

where ¢ is an arbitrary constant. The invariant function is ® = (21, 29, 23, 24)

where 1) is an arbitrary function,

21 =Y1, 22 = CY3z — Y2, 23 = Y3 — Y4, 24 = Y5.

Next, applying the generator X’éz) to the function ¢(h, cJo — Jy + J7, Jo — J3, J3),
we find

(€l — & + &)z, + (& — & )sy + &2, = 0.

Thus, the universal invariant of this algebra is
hy (€ = &) ek = L+ ) = (e =&+ ) (R = J5), (& &) = &/(J2 = J3).
The set of equations admitting the generator L3 is

3 =

£ (B (& = &) (eo = I+ J7) = (€he = &+ €)= Jp) + E1(J = J3)
€& —¢) |

In table 4.1, this set of equations is written as

1

y:

Fo (& =& ey —y+) = (Ee—a+ D — 1) + €0 —v))
€ —) |
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4.3.7 Lie Algebra L3

This algebra is defined by
Xl - al‘? X2 = 8y7 X3 = ya:w
which after changing the variables become

v 1 9z - 1 S g
X — ——((95 - #a— X — 76—, X — 78—.
! hz hjgg Y ? 9y Y ’ gy Y

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, Y3, Ys, ys) with substituted

ylz‘]b yQ:J{7 93:J27 y4:J;a y5:<]37

we obtain

®,, + ,, = 0.
The invariant function is ® = (21, 29, 23, 24) where ¥ is an arbitrary function and
R1 =YL — Y2, 22 = Y3, 23 = Y4, 24 = Y5.
Next, applying the generator XéQ) to the function (J; — J7, Jo, J3, J3) , we find
2z + 220z, + 2302 + 2210z, = 0.

Thus, the universal invariant of this algebra is

h—=J Jy I3

22 28 4.56
S PR (4.56)
The set of equations admitting the generator L3 is
Jp—=J7 J]
Js = Df( 2. 457
o= Bf (R (457)
In table 4.1, this set of equations is written as
Y=Y Yy
= y’f( s ?) (4.58)
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4.3.8 Lie Algebra L3
This algebra is defined by the generators
X1 =0, Xo=0,, Xg=¢€70,
which after changing the variables become

7 - 1 B —h
X, =—0; — fg—,af Xo=—0y Xz= e__a@-

hzgy * Gy Gy

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, y3, Ys, ys) with substituted

i ="Ji, Y2 =J0, ys=Jo, ya=J3, ys = Js,
the invariant function is ® = (21, 29, 23, 24) where 9 is an arbitrary function and

R1 = Y1 — Y2, 22 = Y3, 23 = Y4, 24 = Y5.
Applying the generator Xéz) to the function (J; — J7, Jo, JI, J3), we find
(1= E)bey — oy — ko + 2aths, = 0,

where k£ > 0 is constant. Thus, the universal invariant of this algebra is

k(Ji —J)+ (1 —k)J5, kJy— J3, Jo+ Js. (4.59)
The set of equations admitting the generator L3 is

Js = f(kdo — I3 k(Jy — J] — J3) + J3) — Ja. (4.60)
In table 4.1, this set of equations is written as

y' = f(ky’ —ynk(y—y- —y) + y’T) -y (4.61)
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4.3.9 Lie Algebra L

This algebra is defined by the generators
X1 = 836, X2 = 8y, X3 = [an

which after changing the variables become

- 1 Jz - 1 _ h
X1 =0z — =05 Xo=—05 Xz=—0y
hz hz gy ! 9y Y 9y Y
Invariant of the first generator are (4.17). Applying the second generator X;Q) to

the function ®(yy, Yo, y3, Ys, ys) with substituted
i ="1Ji, ya=J7, ys =Jo, ya=Jg, ys = Js,
The invariant function is ® = (21, 29, 23, 24) where 1 is an arbitrary function and
R1 = Y1 — Y2, 22 = Y3, 23 = Y4, 24 = Y5.
Applying the generator Xéz) to the function (J; — J7, Jo, JI, J3), we find
Pz + U2y + 10z =0,
where ¢ is constant. Thus, the universal invariant of this algebra is
Jy—J3, ey — (Jy = J]), Js. (4.62)
The set of equations admitting the generator L is
J3 = f(Jo—J5, ¢cJo— J1 + J7). (4.63)
In table 4.1, this set of equations is written as

V' =fy —v, v —y+uy-). (4.64)
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4.3.10 Lie Algebra L3;

This algebra is defined by the generators
X, = 855, Xy = 8y, X3 = J}az + (IL‘ + y)ay

which after changing the variables become

_ 1 s _ 1 __h
Xi=—0; — 20, Xo=—0, X3=—
Yhe T hegy U g T ke

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, y3, Ys, ys) with substituted
i ="Ji, ya=J7, ys=Jo, ya=Jg, ys = Js,
The invariant function is ® = (21, 29, 23, 24) where 1 is an arbitrary function and
R1 = Y1 — Y2, 22 = Y3, 23 = Y4, 24 = Y5.
Applying the generator Xéz) to the function (J; — J7, Jo, JI, J3), we find
Az + Ve + U2y — 2athz, = 0.
Thus, the universal invariant of this algebra is
Jo—J3, (Jo— JD)e™ 2, Jse2. (4.65)
The set of equations admitting the generator L3 is
Jy = e~ f(J2 gL (- J{)e‘b). (4.66)
In table 4.1, this set of equations is written as

y'=eVf (y’ — Y, (y— yr)e’y')- (4.67)
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4.3.11 Lie Algebra L3,
This algebra is defined by
X1 =0, Xo=¢€70y, Xg=—2€"0,.

which after changing the variables become

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, ys, Ys, ys) with substituted

y1 = Ji, 92:J1T> Yz = Ja, y4:J2Ta ys = J3,

we obtain

Y1Py, — ysPy, + k(Py, + Py,) + Oy = 0.
The invariant function is ® = (v, v, v3,v4) where 1 is an arbitrary function and
v =y1+Ys, v2=Ys+Ys, V3= kY1 — Y2, va= Y2+ Ya.

Applying the generator X{” to the function ¢(Jy + Jo, Jo + Js, kJy — JT, JT + J3),

we find
wvl - 1%2 + kCZ/JUS + k'wm =0.

Thus, the universal invariant of this algebra is
J3+2Jy+ Ji, k(S + o) — (J] — J3), ke(Jy+ Jo) — kJy + J].
The set of equations admitting the generator L3, is
Jy = F(R( + J2) = (J] 4 J5), kel + ) = ki + J7 ) = (25 + ).
In table 4.1, this set of equations is written as

y' = f(k(y +y) = (yr + ), kely +y') — ky + yT> — 2y +y).
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4.3.12 Lie Algebra L3,

This algebra is defined by the generators
Xl = 856, X2 = ay, X3 = l'ax + y8y

which after changing the variables become

o —Jy gz % hy ha
X = — —— 0 + — —0;, Xo=— — 0 — —— —— 0,
! gfhg - gﬂhi gfhg - ggh:z Y ? gxhg - gyhi gi‘hg - gzjhi‘ Y
 _hgy+ghy . hgs— ghs
Xy = Ty N9 00 5
gzhy - ggh@ Qihg - Qgh:z

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, y3, Ys, ys) with substituted
n=Ji, yp=Ji, y3="Ja, ys = J3, ys = J3,

the invariant function is ® = (2, 29, 23, 24) where 9 is an arbitrary function and

21 =Y1 — Y2, 22 = Y3, 23 = Y4, 24 = Y5.

Applying the generator X§2) to the function ¢(J; — J7, Jo, JI, J3), we arrive at

len - 24%4 = 0.

Thus, the universal invariant of this algebra is
Jo, J3, (J1 — J7)Js. (4.68)

The set of equations admitting the generator L3, is

1

J3 = —r
(- J)

f(J2, J3). (4.69)

In table 4.1, this set of equations is written as

g = 1o v (4.70)

Yy—Yr
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4.3.13 Lie Algebra L3,
This algebra is defined by
X1 = 6y, XQ = xéy, X3 = yay

which after changing the variables become

_ 1 _ h _ q
Xi==0;, Xo=-—0; X;=-=2o,

9y 9y 9y

Invariants of the first generator are h(z), §—g", Ja, J, Js. Applying the second

generator )_(2(2) to the function ®(yi, ye, ys, Y4, ys5) with substituted
p=h, yo="Ji—J], ys="Jo, yu=J3, ys = J,
we obtain
C(I)yz + (I)ys + be4 =0,
where ¢ is an arbitrary constant. The invariant function is ® = (21, 29, 23, 24)
where 1) is an arbitrary function and
21 = Y1, 22 =Y3 — Y4, 23 = CY3 — Y2, 24 = Y5.

Next, applying the generator )_(352) to the function ¢(h, Jo — JJ, cJo — Jy + J7, J3),
we arrive at

22¢22 + Z3¢Z3 + Z4,¢)Z4 - 0

Thus, the universal invariant of this algebra is

FL CJQ_J1+J{— Jg

) bl . 47]_
(=75 (=) )
The set of equations admitting the generator L3, is
—cJo— S+ J]
Js = (Jy— JI (h—) 472
In table 4.1 this set of equations is written as
" ! / Cy/ -y + Yr
v =y =y f (v ), 4.73
AN 47)
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4.3.14 Lie Algebra L3,

This algebra is defined by the generators
X1 =0, Xo=0,, Xg=20,+ayd,, 0<la] <1, a#1

which after changing the variables become

o 1 Jz > 1 S
X, ==—0; — =20, Xo=—0; X;=
' hz hzgy Y 2 g; ' ’

S

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, y3, Ys, ys) with substituted

i ="Ji, ya=J7, ys=Jo, ya=Jg, ys = Js,
the invariant function is ® = (21, 29, 23, 24) where 9 is an arbitrary function and
R1 = Y1 — Y2, 22 = Y3, 23 = Y4, 24 = Y5.
Applying the generator Xéz) to the function ¢(J; — J7, Ja, JJ, J3), we obtain
az ¥z, + (@ — Dz, + (o — 1)z, — (0 — 2) 2., = 0.
Thus, the universal invariant of this algebra is

SAN Clnlc) JQ 8 (i;
Talh =)L S Ty (4.74)

The set of equations admitting the generator L3, is

(a—2) J a
Ty = I (G Rl = D)), (4.75)

In table 4.1, this set of equations is written as

(‘7' 2) y‘l’ (1—a)
y" =y 1>f( =Yy —y-) e ) (4.76)
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4.3.15 Lie Algebra L,
This algebra is defined by the generators
X1 =0, Xo=€70,, Xg=e%0,, 0<l|a|#0, a#1
which after changing variables become
g B, T g

O — 05 Xo=—0;, Xz=—0,

Xi
hz hzgy 9y 9y

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, ya, ys, Ys, ys) with substituted
y=Ji, yo=J], y3=1Jo, yu=J3, ys = Js,

we obtain

Y1 Py, — ysPy, + k(q)yz + (I)y4) + @, = 0.
The invariant function is ® = ¥ (vy, ve, v3, v4) Where 1 is an arbitrary function and
V1 =1+ Y3, V2 =Ys+Ys, U3 =Ky1 — Y2, Vs =Y2+ Ya

Applying the generator )_(éQ) to the function ¢ (J; + Jo, Jo + Js, kJy — J], JT — J),

we find
(1 - a)l/JUl + CL(CL - 1)%2 + (k - ka)%s + ka(l - aﬁ% =0.
Thus, the universal invariant of this algebra is

Js+ (1+a)ds+aldy, k(S + Jo) — (JT + J3),

(k—k*)(J1+ J2) — (1 —a)(kJy + J]).
The set of equations admitting the generator L3 is

Jy = £ (K + ) = (7 +48). (k= k) (h + ) = (1 = a) (ks = J))

—[(T+a)y" + ayl.
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In table 4.1, this set of equations is written as

y' = f(k“(y +9y') =y + ), (k=k)(y+y)— (1 —a)(ky - y7)>

—((1+a)y +ay).

4.3.16 Lie Algebra L,

This algebra is defined by the generators
X1 =0, Xo=20,, X3=(bx+y)0,+ (by — x)0,.
After changing the variables under conditions
&)y =0 and &) =& —71), i=1,2,3. (4.77)

It leads us to hy; = gz = 0. This contradicts to the assumption A # 0.

4.3.17 Lie Algebra L3,

This algebra is defined by the generators
X1 =0,, Xo= et sinxd,, X3 = e cosxdy, b>0

which after changing the variables become

_ 1 Gz _ —bh gin(h B —bh i
fimlo- Bg g o), o s,
hz hzgy Gy 9y

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, Y3, Ys, ys) with substituted
i ="J1, Yo =J0, ys=Jo, ya=J3, ys = Js,

we obtain

—kPe1 @y, + Dy, + K" (c + ber) @y, — 200, = 0.
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The invariant function is ® = (v, ve, v3,v4) where 1) is an arbitrary function and

V1 = Y1, V2 = Y5 + 2by3, v3 = C1ys + (02 + bq)yz, Vg = kbclyz + y2.

Next, Applying the generator X 352) to the function
O(J1, Js + 2bJs, 103 + (ca + c1b) 7, KPer o + J7,)

we arrive at
¢v1 - (b2 + 1)1/1112 + kbwvg + kb(CZ - b01)¢v4 == 0
Thus, the universal invariant of this algebra is

Js +2bJ5 + (b* + 1)y,

[1 = k'bjl - [Cng + (CQ + bCl>J{],

Iy = (cy — bey)[er J + (co + bey) JT] — [kPey Jo + JT).

The set of equations admitting the generator L3, is
Js = (I 12) = ((2bJ5 + (B2 + 1)),
In table 4.1, this set of equations is written as

Y = f([l, 12) — (2by + (B + 1)y).

4.3.18 Lie Algebra L3,

This algebra is defined by the generators

Xy =0, Xo =20, +y0,, Xz= (2> —y*)0, + 220,

(4.78)
(4.79)

(4.80)

After changing the variables under conditions (4.77). The results is also h; = g; =

0. This contradicts to the assumption A # 0.



4.3.19 Lie Algebra L3,

This algebra is defined by the generators

which after changing the variables become

1 Oz 1
X1 ==—0; + (—= + — Oz
! hz ( higg 937) Y

h hiz | §
Xo=70i+(—7—+ =)0y
’ hz hz3g 7 !

B B2 }‘12% §2
X - ——853 "— T ‘l‘ - 8*.
’ hz ( hzgy 917) !

Differential invariant up to second-order of the first generator is

h—g, W =g, Ja, Jg, Ja. (4.81)

Applying the second generator XéZ) to the function ®(y1, Y2, y3, Ya, y5) with sub-
stituted

yl:;_l_*]h yzzﬁT—J{’ 3/3:J27 y4:‘]5—7 y5:J37

we obtain
yl(pyl + qu)yz - y5(1)y5 = 0

The invariant function is ® = (2, 29, 23, 24) where ¥ is an arbitrary function and

Y2

21 = y_’ 22 = WN1Ys, 23 = Y3, 24 = Y4.
1

Applying the generator X}EQ) to function w(%, J1Js, Jo, J3), one gets

21(1 - zl)wn - 223%3 - 22124%4 + (—322 + 223(Z3 - 1))%2 =0.

Thus, the universal invariant of this algebra is

. . h—J7N2 (Jy— J7)?
h—Ji)Js(J2) 2, . — L —2)( S+ 1), (4.82
( 1)J3(J2) 2<J1_J17> BV {WAE 2(J2 + 1) (4.82)

95
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The set of equations admitting the generator L3, is

(J2)*? h=J7 o (JI=0)?

Jo = —=2 J. — —2)5(o+1) .

: (h—ﬁ)j(QQq—Jﬂ’Jﬂh—Ly> 224 1)
In table 4.1, this set of equations is written as

y y/3/2

_ ey <f<y/(;-__y;)2’ (yr — y)22> B 2y/(y/ + 1))

yr( —y)
4.3.20 Lie Algebra L3,

This algebra is defined by

1
X1 =0,, Xo=120,+ §y6’y, X5 = 220, + Y0y

which after changing the variables become

v _ 19 _ G 9
by 4 (_hiz | G\
2= Bia + ( hzgy + 2!737>8y
_ h? h%gz | hg
3= 100+ (Chg 50

7

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to
the function ®(yy, Yo, ys, Ys, ys) with substituted

= Jl? Yo = J{v Ys = J27 Yg = Jga Ys = J37
we obtain

1Py, + 2Py, — y3Py; — Y1 Py, — 3ysP,, =0

The invariant function is ® = v (vy, v, v3, v4) wWhere 9 is an arbitrary function and

o Y2 o Ya . 3 o
v =, v =, v3 = (1)"Ys, Vs = Yol
Y1 Y3
Then, Applying the generator X§2) to the function ¢(J1T
find

L %7 (J1)* T3, JT Js) , we

U4¢v4 + (Ul - U2)¢v2 = 0.
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Thus, the universal invariant of this algebra is

JT
Ji

J o J3 3
T Jg(Jl - 72> ()3 . (4.83)

The set of equations admitting the generator L3; is

JT J§)>.

gy = (2 (5 (- 22

In table 4.1, this set of equations is written as

3,.(Yr Yr  Yr
y' =y 3f(—, Y'y-(= — —,))-
y y oy

4.3.21 Lie Algebra L3

This algebra is defined by the generators
X1 = 81,, X2 = ZE8$, X3 = ZL’28£.

After changing the variables, they become

Gz - hgz _ h? h%g.
Lo 9o, =T 1y %= - af
X = hz hagy © 0 ha hegy O 0 ha hzg

(2) ¢

/—\ ;;“\| I

Invariants of the first generator are (4.17). Applying the second generator X,

the function ®(yy, Yo, ys, Ys, ys5) with substituted
=", ya=J], ys=1Jo, ya=J3, ys = Js,

we obtain Y3 Py, +ya®y, +2ysP,, = 0.
The invariant function is ® = (v, v, v3,v4) where 1) is an arbitrary function and

Ys Ys
U1 =Y1, V2 =Y2, U3 = (ya)? Vg = (Y22

J3 J3
(J3)%7 (J2)

Then, applying the generator )_(éQ) to the function ¢ (Jy, J7, 5) , we found

USw’Ug + U4,¢U4 =0

N\ 2
Thus, the universal invariant of this algebra is J, J7, (j—i) , which has no second-
order derivative term. Hence the set of equations admitting the generator L3,

cannot be constructed.
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4.3.22 Lie Algebra L3,

This algebra is defined by the generators
X1 =y0, — 20, Xo=(1+ v* — )0, + 20y0y, X3 = 2xyd, + (1 + y* — xz)ﬁy.
After changing the variables under conditions
(&) =0 and &(7)=&(@—7), i=1,23.

It leads us to hy; = gy = 0 which contradicts to the assumption A # 0.

4.3.23 Lie Algebra L3,
This algebra is defined by the generators
X1 = ay, XQ = l'ay7 X3 = fl(x)ﬁy, X4 = §g(x)8y

which after changing the variables become

&2(h)

. 1 _ h - h -
K= 20y, K=o, %=y g, o

9y 9y ] 9y

From Lie algebra L}, invariant of generator Xl(Q), XQ(Q), X§2) is an arbitrary

0y,

function G(wy,wy, ws) where wy = h, wy = (& — &) Js — &/ (Jo — Jf), wy =
(& — &N ey — Jy + J7) — (€ — & + &) (Jo — J3). Applying generator X to
function G(wy, we, ws) with substituted

wi = h, wy = (& =& ) Js — & (S — J5),

wy = (& — & (el — Ju+ J7) — (§e — & + &) (2 — J3),

lead us to

[erer — &) + €46 — €| Gy

+{ (€18 — &7&) + (&7 — &)(& — &) + (& — &)(& — EI)]GW = 0.



59

Thus, the universal invariant of this algebra is h,

(€7 — &) + (& —EME& — &) (cda = Ty + J7) — (Ele — & + &) (T2 — J3)] -

(€165 — &76) + (&7 — €1)(62 — &) + (& — &N(& — EDIIE — & )T — &/(J2 = ).
The set of equations admitting the generator L3, is

(12 = £®) g0, a7

J — 7 / 9
PTG - s (G —¢)

where

Ly = [€/(&5 — &) +&(& — &NIIE — & ) (el — Ji+J])
—(Ge—&+ &) (L — 7)),
g = [e(§185 — &7&) + (&7 — &) (&2 — &) + (& — &)(& —&D)]-

In table 4.1, this set of equations is written as

<]12 B f(x)) 'y —yl)

YT G-

4.3.24 Lie Algebra L3,

This algebra is defined by the generators
X1 = (993, X2 = 8y, X3 = ZE&T, X4 = yﬁy

which after changing the variables become

1 75 v 1 > ij — q
= — 0~ 20, Xe=—0, Xy=—0i— 20, Xi=0,

% h
! hz hz3y Jy hz hzgy 9y

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, ys, Ys, ys) with substituted

= Jl? Yo = J{v Ys = J27 Yg = Jga Ys = J37
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we obtain

o, + @, =0.

The invariant function is ® = (v, ve, v3,v4) where 1) is an arbitrary function and
V] = Y1 — Yo, Uy = Y3, U3 = Y4, Vg = Y5. Then, Applying the generator X:gQ) to the

function ¢ (J; — J7, Jo, J3, J3), one gets

/021/)1)2 + U3¢”D3 - 2”47%4 = 0.

Solving for invariant function, one obtains ¢ = H(z1, 22, 23) where H is an arbi-

trary function and z; = vy, 29 = é’—é, 25 = (ys)

. Finally, applying the generator

X to function H(J, — J7, %’ (?3)2)’

Zlel + Z’:),[’IZ3 =0.

Thus, the universal invariant of this algebra is

(=) 5

B2 hy (4.84)

The set of equations admitting the generator L3, is

2 T
Js = A%ZHG—Z)-

In table 4.1, this set of equations is written as

12

Y Y,
r=Li (%)
Yy —Yr Yy

4.3.25 Lie Algebra Lj;

This algebra is defined by the generators
X1 = 035, X2 = 8y, X3 = G_Ia?ﬁ X4 = yay

which after changing the variables become

Gs B 1 _ —h 3 —
Oz — O, Xo=—0y, 3= 6_—(9@77 Xy = -2317'

hz 95 9y 9y 9y

X1:

|-
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Invariant of the first generator are (4.17). Applying the second generator Xf) to

the function ®(y1, y2, ys, Ys, ys) with substituted

y1 = Ji, ?J2:J1T> y3 = Jo, y4:J27, ys = Js.

The invariant function is ® = (21, 22, 23, 24) where 1 is an arbitrary function and

21 = Y1 — Yo, 2o = Y3, 23 = Y4, 24 = Ys5. Applying the generator X:EQ) to the

function i (J; — J7, Jo, J3, J3), one gets

(1= E)thsy — oy — ko + s, = 0.

Solving for invariant function, one obtains ¢ = H(vy, va, v3) where vy = (k—1)ys—

v, vy = kys —y4 and vs = y3 + 5. Finally, applying the generator X f) to function

H((k? - 1)J2 — Jl + J{,kJQ - JQT, J2 -+ Jg), then
UIHvl + UQHU2 + U3Hz3 = 0.

Thus, the universal invariant of this algebra is

Js + J kJy — J3
kJy —J57 ((k—1)Jy — (Jy — J)))’

The set of equations admitting the generator L3, is

h:%h—£ﬁ< WJo = Jy )—h

(k—1)Js — Ji + J7

In table 4.1, this set of equations is written as

k:y’—y’
"o__ r T o
y' = (ky yT)f((k_l)y,_eryT) Y.

4.3.26 Lie Algebra Lj,

This algebra is defined by the generators

X1 =0, Xo=0,, Xg=¢"0,, X4 =—xe "0,

(4.85)



which after changing the variables become

_ 1 Gs _ 1 _ ~h _ —he™®
X1==—0; — ﬂ—_ag, Xo=—05 Xz= e_—aga = _e
hs hz3g 9y 9y 9y
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From Lie algebra Lj., invariant of the generators Xl(Q), Xz(z) and X§2) is

) = H(vy,v2,v3) where H is an arbitrary function and

Ulz(k—l)?/?)—yﬁryz, vy = kY3 — Ya, U3 = Y3 + Ys.

Applying the generator Xf) to function H[(k —1)Jy — Jy + J], kJy — J5, Jo + J5],

then

(ke—k+1)H,, + kcH,, + H,, = 0.

Thus, the universal invariant of this algebra is

(ke =k +1)(Jzs+ J2) = (k=1)Jy — (J1 = J]),

The set of equations admitting the generator Ljg is

7 :f(13)+(k—1)J2—J1+J{_J
’ (ke —k+1) >

In table 4.1, this set of equations is written as

//_f(]3)+(k_1)y/_y+y7 /
(ke —k+1) v

4.3.27 Lie Algebra L3

This algebra is defined by the generators
X1 =0, Xo=0,, Xsg=€70y, Xy =€ %0,, 0<|a|#1, a#1

which after changing the variables become

1 _ efh efah

X1 =70z — —g_i_a‘ Xz = _—aga 3= __agjv XP4 = _—ag-

hagy " 9 9 9
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From Lie algebra Lj., invariant of the generators Xf), Xf) and X?EQ) is ¥ =

H (vy,v9,v3) where H is an arbitrary function and
vy = (k—1)ys —v, vo = kys — ys, v3 = y3 + ¥s.

Applying the generator )_(f) to function H[(k —1)Jy — Jy + J7, kJy — J3, Jo + J5],
then

(k* —ak+a—-1)H,, +a(k* —k)H,, +ala —1)H,, = 0.
Thus, the universal invariant of this algebra is

(k" = k)(Js + J2) = (a = D[(kJ2 = J3)],

L= (k" —ak +a—1)(kJo — JJ) — alk® — k)[(k — 1)Jo — Ji + J7].

The set of equations admitting the generator L3, is

1

NG

(F(1) + (= Dk = J5)) = .
In table 4.1, this set of equations is written as

o (ray @Dy -w)

v (k" — k) — Y

4.3.28 Lie Algebra Lijq
This algebra is defined by
X1 =0, Xo=0,, X5= e b® sinxdy, X4 = e b cosxdy, b>0

which after changing the variables become

- 1 7 - 1 - ~bh gin(h - ~bh cos(h

Xy =05 = 79_78?7 Xo=—05 Xz= " sin(h) )6g, X, = (_jos( )8y
hs hz gy 9y 9y y

Invariants of the first generator are (4.17). Applying the second generator XQ(Q) to

the function ®(y1, y2, ys, Ys, ys) with substituted

n=JD, pp=J7, ys=1Jo, yu =J3, ys = Js,
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the invariant function is ® = (2, 22, 23, 24) where 9 is an arbitrary function and
21 = Y1 — Yo, 22 = Y3, 23 = Y4, 24 = Y5. Applying the generator X’ém to the

function ¢ (J; — J7, Jo, JJ, J3), we find
Vo, 4+ k(o + bey )., — 200, + KPcitp,, = 0.

Solving for invariant function, one obtains ¢ = H(vq, v, v3) where H is an arbi-
trary function and vy = y5+2bys, va = c1ys—(cot+ber) (y1—y2), vs = kbcryz—y1+7s.

Finally, applying the generator X f) to function
H (Js + 20,1 J5 = (e + ber) (o = J7), KoerJy = Jy + 7).
then
—(b* + 1)H,, + [k — (bey + c2)|Hy, + [k (co — bey) — 1]H,, = 0.

Thus, the universal invariant of this algebra is

[k’b — (CQ + bCl)HJg + QbJQ] + (b2 + 1)[61Jg — (Cg + bCl)(Jl — J{)],
Is = [kP(cy — bey) — 1][erJs — (e + bey)(Jy — JT)]

+[I€b — (CQ + bCl)][k601J2 — (Jl — J{)]

The set of equations admitting the generator Lig is

1

s = (kP — (bey + c2)]

(F) = (7 + 1) (015 — (ea + b))y — J7))) — 20

In table 4.1, this set of equations is written as

y fs) = (0 + 1)[eryl — (co +ber)(y — yr)] )
o kb — (bey + ¢2) 2y

4.3.29 Lie Algebra Lj,

This algebra is defined by the generators

X1 = 8x, X2 = x@z, X3 = yﬁy, X4 = 372(91 + xyay



which after changing the variables become

] g R g
Xl 8— 317, X2 - 7_8* — T _ 8@,
h:c hxgy ha’c h:?:.gyj
% g % h? BQQi g
X :Ta‘7 X :—_aj‘i‘ — - 8—
e T ha ( hzJy gg)

From Lie algebra L2, invariants function of the generators Xf), X2(2)

& = 1)(21, 29, 23, 24) Where 1) is an arbitrary function and

J2 y <4 (JQ)Q'

-
21:J17 22:J17 3 =

Applying the generator X?EQ) to the function ¢ (Jy, J7, ? , ﬁ)

lezl + Zszz - Z4¢Z4 =0
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Solving for function v, we obtain ) = H(v1, v2,v3) where H is an arbitrary function

and vy = 2 vy = 23, vz = 2124. Finally, applying the generator generator X
function H (Z- 7 ,§—22 (‘]}2‘;3), one gets

(Ul — UQ)HUZ - 2U3Hv3 = 0.

Thus, the universal invariant of this algebra is

JT A

N (-

The set of equations admitting the generator L3, is

w5

In table 4.1, this set of equations is written as

yT y yT yT
()5 (L)
ysy Ny )

7 (2) to

(4.86)



66

4.3.30 Lie Algebra Lj,

This algebra is defined by the generators
X1 = 896, X2 = Oy, X3 = x@x, X4 = [L’an

which after changing the variables, they become

o1 s o1 _

h hgs h? h? gz
hi“gy 9y hz h;fgg

ag X4 — B—@aa—; - ——8g.

hzgy
Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, ys, Ys, ys) with substituted
1 = ‘]1) Yo = ‘]{7 Ys = J27 Ya = Jga Ys = J37

we obtain o, + P, =0.

The invariant function is ® = (v, ve, v3,v4) where 1) is an arbitrary function and
UL =Y1— Y2, V2 =103, U3 = Y4, V4 =Y5.
Then, applying the generator )_(552) to the function ¢(J; — J7, Jo, J3, J3), we find
Va1, + U3y, + 20470y, = 0.

The invariant function is ) = H(z1, 22, 23) where H is an arbitrary function and

V4 V4
21 = VU1, 2 = 75, R3 — .
(v3)? (v2)?
Finally, applying the generator )_(f) to the function H(J; — J7, ( J‘?)Q, 0 i3)2), one
gets
ZgHZ3 + ZQHZ2 =0.
N\ 2
Thus, the universal invariant of this algebra is J; — J7, (%) , which has no

second-order derivative term. Hence, the set of equations admitting the generator

L3, cannot be constructed.



4.3.31 Lie Algebra L},

This algebra is defined by the generators

1
<X1:e%,x5:4%,Ag::—w%,xg::?ﬂay
which after changing the variables become
o1 I _ - —h _—
Xi==0; =05 Xo=—0; Xs=—0; Xus=_-0;
Yk hagy ’ 9y ’ g 295 "

Invariants of the first generator are (4.17). Applying the second generator XQ(Q)

the function ®(y1, Y2, ys, Ys, ys) with substituted
="Ji, Ya=J7, ys="Jo, ya=J3, ys = Js,

we obtain

(I)yl + q)yz =0.
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to

The invariant function is ® = (21, 29, 23, 24) Where ® is an arbitrary function and

21 = Y1 — Yo, 22 = Y3, 23 = Y4, 24 = Y5. Next, applying the generator )_(§2) to the

function ¢ (J; — J7, Jo, J3, J3) , we find

cwm + wZQ + ¢Z3 =0.

Solving for function ¢, one obtains ¢» = H(vy,ve,v3) where H is an arbitrary

constant and v; = 271 — ¢2zy, Vs = 29 — 23, V3 = 24. Finally, applying the generator

Xf) to function H(J; — J] — ¢Jo, Jo — J3, J3), then
2
vsH,, +cH,, — EHUI = 0.
Thus, the universal invariant of this algebra is
C(JQ — Jg) + 2[(y — J{) — CJQ], JQ — J; — CJ3.

The set of equations admitting the generator L3, is

chzb—g—ﬂmhﬂm—4b+g»
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In table 4.1, this set of equations is written as

cf =y —y, — f<2(y —yr) —cly + yé))-

4.3.32 Lie Algebra L3,

This algebra is defined by the generators
X1 = 896, X2 = e_xay, X3 = —xe_mﬁy, X4 = G_bxay

which after changing the variables become

B 1 Gs B —h B —h —h B —bh
Xi=—0 -0, Xo="0, Xi= 0, Xi==
hz hzGg 9y 9y 9y

0y.
From Lie algebra L3, invariants of the generator X 52), Xg(z), X:)EQ) is & =
(wy, wy, ws) where wy = k(yr +ys) — (42 — ya), w2 = ys5 + 2y3 + 31 and
ws = ke(yr + y3) — kyi + yo. Applying the generator Xf) to the function
O (wy, we, ws) with substituted
yi=4Ji, ya=J7, ys="Jo, ya = J3, ys = Js,

we obtain

(b— 1) (K" — E)thw, + (b — 1)*u, + (K* — bek + ck — k)b, = 0.
Thus, the universal invariant of this algebra is

(b= 12[k(1 + o) = (JT = J)] = (b= 1)(K® = k)[J5 + 22 + ],

Is = (K* — bek + ck — k) <k(y +Jy) — (JT — J;))
(b= 1)(k> — k) (k:c(y ) — ky + J{).

The set of equations admitting the generator L3, is

1

A YTy

<f(f6) — (=1 (k(Jy + Jo) = (J] — J;))) —[2J2 + L1

In table 4.1, this set of equations is written as

y' = = 1)21& vy (f(fﬁ) —(b=1*ky+y) — (y- — yi))) — 2y +y).
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4.3.33 Lie Algebra L3,
This algebra is defined by the generators
Xl = 85,;, Xg = 8y, X3 = —a:é?y, X4 = e_“”@y

which after changing the variables become

1 Gz | . —h . —h
- ——355 - —g—ag, X2 - 78@, X3 - Tag, X4 - 67—65

hz hz3g 9y 9y 9y

X
Invariants of the first generator are (4.17). Applying the second generator X2(2) to

the function ®(yy, Yo, y3, Ys, ys) with substituted
n=Ji, yp=J], y3="Jo, ys = J3, ys = J3,

we obtain

o, +d, =0

The invariant function is ® = (21, 29, 23, 24) where ¥ is an arbitrary function and
21 = Y1 — Yo, 22 = Y3, 23 = Y4, 24 = Y5. Next, applying the generator X§2) to the

function ¢(J; — J7, Jo, J], J3) , we find

c¢z1 + wzg + ¢23 =0.

Solving for function ¢, one obtains ¢» = H(vy,ve,v3) where H is an arbitrary
function and v; = 21 — czy, vy = 25 — 23, v3 = 24. Finally, applying the generator

Xf) to function H(J; — J] — ¢Jo, Jo — J3), J3, then
Hy,+(c—k+1)H, +(k—1)H,, =0.
Thus, the universal invariant of this algebra is
(k—1)Js—Jo+Jy, I =(k—=1)(J1 = J] —clo)+ (k—c—1)(Jo — J3).

The set of equations admitting the generator L3, is

= 1)f(f7) + (J2 — y3).
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In table 4.1, this set of equations is written as

V=G 1)f(l'7) + -y

4.3.34 Lie Algebra L3,
This algebra is defined by
—x —X 1 2 —x
X1 =0, Xo=¢€70y, Xg=—xe"0y, X4:§x e "0,

which after changing the variables become

_ 1 Jz % - 7 —he ™" X hPe
Xl = r(?@ - *g_,a@ X2 == e__aga X3 = —e 837 X4 = e_
hz hzgg 9y 9y 2gg

From Lie algebra L3, invariant of the first three generators X1(2), XQ(Z), Xéz) is

0.

(wy, wy, ws) where wy = k(y1 + y3) — (y2 — ya), w2 = ys + 2ys +y1 and w3 =
kc(yr +ys) — kyr +y2 . Applying the generator )_(f) to the function ®(wy, we, ws)

with substituted
Y1 = Jl? Y2 = J{7 Y3 = J27 Yy = Jg7 Ys = J37

we obtain
k‘2
ke®,, + Py, + 362%3 = 0.

Thus, the universal invariant of this algebra is

k(Ji+ Jo) = (J] + J3) — kel Js + 2J2 + 1],

]8 == C[]{?(Jl + JQ) - (J{ + Jg)] — Q[kC(Jl + Jg) + le — Jﬂ

The set of equations admitting the generator L3, is

Jy = —kic <f(]8) —k(Ji + o)+ (JT + J;)) —(2Js+ 1)

In table 4.1, this set of equations is written as

! 1

y' = —E(f(fs) —k(y+9)+ (yr +yi)> — 2y +y).
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4.3.35 Lie Algebra Li;
This algebra is defined by the generators
Xl - aya X2 - l’ay, XS = fl(x)aya X4 = yay
which after changing the variables become

-1 _ h _ g _ h
Y= 0 =10 Xu-Lo x-H
: _

0.

9y

y 9y
Invariants of the first generator are h(z), Jy—J7, Jo, J3, Js3. Applying the second

generator X'Z(Q) to the function ®(y1,y2, Y3, ¥, ys) with substituted
y1 = h, Yo=1J1—J], ys=Jo, ya=J3, ys = Js,

we obtain

<I)y3 + (I)y4 =0.

The invariant function is ® = ¢ (vy, ve, v3, v4) Where 1) is an arbitrary function and

V1 = Y1, U2 = Y2, U3 = Y3z — Y4, Vg = Ys5.

Next, applying the generator )_(352) to the function ¢(h, J, — J7, Jo — JI,J3), one
finds

/021/)’02 + U3¢U3 + 'U477Z}v4 - O

The invariant function is 1) = H(z1, 22, 23) where H is an arbitrary function and

V2 Uy
21 ="V, 22 = —, 23 = —.
Vs V2
J1—Jf Js

> Jo—J30 Jl—J_f)a one obtains

Finally, applying generator X f) to the function H(h
_(Z2)251H22 + éiles =0.

Thus, the universal invariant of this algebra is

&5 = &(2 = J7)

h
! Jy— J7

(4.87)
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The set of equations admitting the generator L3, is

(s = J5) + (h = S ()

Js = g (4.88)
In table 4.1 this set of equations is written as
7 r .
=S @)y —y7) + (y — yr) fl2) (4.89)

§i()

4.3.36 Lie Algebra L3

This algebra is defined by the generators
X1 =0, Xo=¢70,, Xs=€e"0,y, Xy = e’b’“"@y, —1<a<b<l, ab#0

which after changing the variables become

e _ —he™h e~ bh
X, =

L. G . -
_—8— — _—a—, X = 7—8—7 X — — 8—,X i
hz ha‘:gg Y ? i Y ’ 9y P 9y

0.

From Lie algebra L3, invariant of the first two generators X1(2), X2(2) is
P (wy, we, w3, wy) where wy = Y1 +y3, w2 = ys+ys , ws = ky1 —y2 and wy = Yo+

Applying the generator X§2) to the function ®(wy,wsy, w3, wy) with substituted
n="Ji, a=J7, y3="Jo, yu=J5, ys = Js,
we obtain
(1—a)®P,, +(1—a)k*®,, +ala—1)Dy, + (kK — k*)P,, = 0.

Solving for function ®, one gets ® = 1)(z1, 29, z3) where 9 is an arbitrary function
and 2, = k%w; — wy, 22 = aw; + wy, 23 = (k — kY)wy — (1 — a)k®ws. Finally,
applying the generator X f) to function (21, 29, 23) with substituted y; = Ji,

yo = J7, y3=Jo, ya = J3, ys = J3, then

(K*—k1) (b—1)ab,, +(b—1)(b—a)tb., +[—kak, —k"bk+k bk +k k+-akk, —kk |1, = 0.
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Thus, the universal invariant of this algebra is

(b—1)(b—a)[k*(J, + Jo) — (JT + J5)] — (b— 1)(k® — k1) [Js + (1 + @) J» + ay],
Iy = [—kPaky — KOk + Kbk, + Kok + akky — kky)[k*(Jy + J2) — (JT + J3)]
— (K" = k) (0 = D)[(k = k) (JT + J5) — (1 — a)k*(kJ, — J7)].

The set of equations admitting the generator L3y is

Js = g (0 = DO = Q)R+ 1) = (] +J5)) = (1))

—(a(Jy + J2) + J2).

In table 4.1, this set of equations is written as

v = e (0= DO - )k +y) = (u- + ) = f(1))

—(aly+y)+y).

4.3.37 Lie Algebra Lj;

This algebra is defined by the generators
X1 =0, Xo = "0, X3= e t" sinxdy, X4 = e %% cos z0y, a>0

which after changing the variables become

1 _i‘ _ —ah _ —bh _.: B - —bh B
= —_853 - —g_,ag X2 = 67_78‘1;, X3 = Lm()ag, X4 — € (jOS( )aﬂ

X
hz hz3g 9y 9y 9y

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, y3, Ys, ys) with substituted
h="Ji, o=J7, ys=Jo, yu=J3, ys = Js,

one obtains

®,, + k*®,, — ad,, — ak’®,, + a*®,, = 0.
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Solving for function ®, we obtain ® = (v, vs,v3,v4) where ¢ is an arbitrary

function v; = ay; + y3, v2 = k"Y1 — Yo, v3 = a*y1 — Y5, Va4 = ays + ys. Applying

)

the generator X?EZ to function ¥ (v, ve, v3,v4) with substituted y; = Jy, y2 = J7,

ys = Jo, ys = J3, ys = Js, then
Vo, + k(o + KPeithy, + 200, + (b —a)cy )iy, = 0.

Solving for function ¥ , we reach v = H(wy,wy, w3) where H is an arbitrary
function and w; = vz — 2bvy, wy = vy — [ca + (b — a)cy]ve, wy = kPcyvy — vo.
Finally, applying generator X f) to function H with substituted y; = Ji, y2 = J7,

ys = Ja, ys = JJ, ys = Js, one finds
[(a—D)? +1]H,, + [k* — k%(co + (b — a)c1)|Hu, + [K0(ca + c1(a — b)) — k| H,, = 0.
Thus, the universal invariant of this algebra is
((a—b)?+1) [kbcl ladi + Jo] — [k, — Jf]]
[k (ea + (b — a)er) — k9] [a2J1 — Jy — 2b(aJ; + JQ)]} ,

Ilg = kb(CQ + (CL — b)Cl) — ka)<Cl(CLJfJ;) — [CQ -+ (b — (I)ClHkaJl — Jﬂ)

—[kb + k%(ci(a —b) — c2)].
The set of equations admitting the generator L3, is

(f(]lo)((a —b)?+1) (k:bcl laJy + Jo] — [k*Jy — J{]))

Jy = T ~ (2(ar + D) + ).

In table 4.1, this set of equations is written as

(f(ho)((a — b + 1) (Kerlay + ') = [ky - y'J)>

y// — [kb(CQ + (b — a)cl) — k‘“] — <2b(ay + y/) + &2y>.
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4.3.38 Lie Algebra Lj,

This algebra is defined by the generators
X1 = (()I, XQ = 8y, X3 = CL’@y, X4 = x@z + (2y + x2)8y

which after changing the variables become

> 1 Jz 5 1
Xy ==—0; — =—0;, Xo=—0;
! hz hzgy Y ? g;
_ h _ h hgz  2g + h?
Xo= Ly, Xy= L4 (-9 9T,
’ gy Y ! hz ( higgj 9y )y

Invariants of the first generator are (4.17). Applying the second generator X’ZQ) to

the function ®(yy, Yo, y3, Ys, ys) with substituted
n="Ji, o=J7, ys="Jo, ya=J3, ys = Js,

the invariant function is ® = (21, 29, 23, 24) where 9 is an arbitrary function and
21 =Y1 — Y2, %2 =1Y3, 23 = Y4, 24 = Ys4. Then, applying the generator X}Ez) to the

function ¢ (J; — J7, Jo, J3, J3), we find

1/}22 + 77DZ;>, - O

Solving for invariant function, one obtains ¥ = H(vy,vs,v3) where H is an arbi-
trary function and vy = 21, vy = 2 — 23, U3 = 24. Applying the generator X f) to

function H(J; — J7, Jo — J3, J3), then
2U1Hv1 -+ UQHUQ -+ 2Hv3 =0.

Thus, the universal invariant of this algebra is

€J3 (Jg — Jg)Q

(=T h =) 20

The set of equations admitting the generator Lig is

Js = In ((J2 - J;W(%)).
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In table 4.1 this set of equations is written as
I a2
y”:hl (y’—y;)2f<(y yr) ) )
Y—Yr

4.3.39 Lie Algebra L3,

This algebra is defined by the generators
X1 =0y, Xo=0,, Xs=120,, X4=(1+0b)z0,+y0,

which after changing the variables become

_ 1 Uz _ 1 _ h
X — ——65 - #a— X — 78—, X — 78—,
! hz h;fgg Y ? 9y Y ’ gy Y
_ (1+b)h hgz: G
X — = 8:@ —|— - b + 1 = _ + - a*.
! hz < ( ) z9y gy) Y

From Lie algebra Lje, invariant function of the generator X1(2), XéQ), X§2) is

(21, 22, 2z3) where 2y = J; — J], 29 = Jy — J] z3 = J3. Applying the generator

Xf) to function ¢(J; — J7, Jo — J3, J3), then

Zﬂ,bzl — ng@/JZQ — (1 + 2b)2’3’¢23 =0.

Thus, the universal invariant of this algebra is

(J5)"

(S = JD)’(Ja = J3), W

(4.91)
The set of equations admitting the generator Lig is
7\2b+1 7\b T 1/
Js = [ = J)PH I = I = )]
In table 4.1, this set of equations is written as

y' = [(y’ — )P flly — u) (Y — yi)]] ”
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4.3.40 Lie Algebra Lj,
This algebra is defined by the generators
Xl = ama X2 = aya X3 = _xaya X4 = yay

which after changing the variables become

—h _ g

_ 1 G _ _ 1 _
g 827, X2 - X2 - g—ag, X3 - Tag7 X4 - Tag.
g _

X, = —0; — =2
' hz hzgy

7 9y

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, y3, Ys, ys) with substituted
n=1Ji, yo=J], y3=1Jo, yu=J3, ys = Js,

the invariant function is ® = (21, 29, 23, 24) where 9 is an arbitrary function and
21 = Y1 — Yo, 2o = Y3, 23 = Y4, 24 = Ys5. Applying the generator X§2) to the

function ¢(J; — J7, Jo, J3, J3), we find

Y2y + sy + by =0
Solving for function ¢, we reach v = H(vy,v9,v5) where v = 25 — cz1, vy =
Zy — 23,v3 = 24 Then, applying the generator Xf) to function H(Jy — ¢(J; —
J7), J2 — J3,J3), one obtains

Ulel -+ /UQHUQ + ’U3Hv3 =0.

Thus, the universal invariant of this algebra is

J3 JQ — C(Jl — Jf)
Jo—JI o —J

The set of equations admitting the generator Lj, is

JQ — C(Jl — J{—)
Jy — JI ‘

J3 = (J2—J§)f<

In table 4.1, this set of equations is written as

z/z(y—y9f<giﬁggﬁﬁ)-

Yy =y



4.3.41 Lie Algebra L},

This algebra is defined by the generators

Xi =0, Xo =0, Xs=20,+y0,, X4=1y0, —x0,.

After changing the variables under conditions

&)y =0 and &) =&@—1), i =

1,....4

lead us to hy = gy = 0. This contradicts to the assumption A # 0.

4.3.42 Lie Algebra L},

This algebra is defined by the generators

X1 = 81, XQ = yf)y, X3 = sinxc?y, X4 = COSIay

which after changing the variables become

X, =

Jz g
(92—7 — = 5’—, X - _—a—, - — 3—, X - — 8—.
hzgy ’ 9y ’ ; ! Y

=

<

Invariants of the first generator are (4.17). Applying the second generator )_(2(2) to

the function ®(yy, Yo, ys, Ys, ys) with substituted

ylz‘]b yQ:J{7 93:J27 y4:J;a y5:<]37

we arrive at

qu)zn + y2®y2 + y3q)y3 + y4q)y4 + y5q)y5 = 0.

Hence, the invariant function is ® = (v, v, v3,v4) where 1 is an arbitrary func-

tion and vy = %= V2 = %, U3 = @, vy =5, Next, applying the generator X§2)
1 Ys U1 Y3
to the function @D(J—l J3 J2 J3

L, %~ Jl’J_z)’ one finds

— 1030y, + (Ca — V2) 1y, + U3ty — V41, = 0.

78
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Solving for function 1, we arrive at v = H(z1, 22, 23) where H is an arbitrary
function and z; = v; + cjv3, 29 = wv3(ca — va), 23 = vzvy. Then, applying the
generator Xf) to function H(z1, 22, 23) with substituted y; = Ji, yo = J7,

ys = Jo, ys = J3, ys = Js3, one obtains
(CQ - zl)HZ1 - (Cl + Z2)Hz2 - (1 + Z3)HZ3 =0.

Thus, the universal invariant of this algebra is

JT J. J.
. Y 1+ 2

Cl—i‘ﬁ—i(CQ—‘J]—g), C1+§—i<02—:]]—§2—)'

The set of equations admitting the generator L, is

J;:L<ﬂhgﬁy+t%@rr%ﬂ}—1>

In table 4.1, this set of equations is written as

/

y' = y(f(]n) [01 + [%(CQ - y—;)H — 1).

y/
4.3.43 Lie Algebra L},
This algebra is defined by the generators
X1 =0, Xo =0y, X3=y0,, X4 =20, Xs=10,—y0,.
After changing the variables under conditions

&)y =0 and &) =& —71), i=1,...,5. (4.92)

It leads us to hy = gz = 0. This contradicts to the assumption A # 0.

4.3.44 Lie Algebra L3},

This algebra is defined by the generators

X1 = 8:,3, X2 = ay, Xg = yar, X4 = .I'ay, X5 = x@x
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After changing the variables under conditions (4.92). The results is also h; = g; =

0 which contradicts to the assumption A # 0.

4.3.45 Lie Algebra L,

This algebra is defined by the generators

Xl = axa XQ = aya X3 = xa:r: + yaw

Xy =y0, — 20y, X5 = (2* —y*)0, — 2xy0,.

After changing the variables under conditions (4.92). The results is also i_zg =gy =

0 which contradicts to the assumption A # 0.

4.3.46 Lie Algebra Lj

This algebra is defined by the generators
Xl = 8&37 X2 = aya X3 = xaﬂ:a X4 = yaya X5 = 1‘281‘;
which after changing the variables, they become

Xl = -1—35: i ag, Xz = %aga X?) = ;‘%af ﬁg_fagv

hz T hzgg  hagg

N, — 49  X.— P9y _ Moy

From Lie algebra L3, (page.66), invariant of prolonged generators X1(2)7)—(2(2)’

)%

XSEQ),XP is an arbitrary function G(wy,ws) where wy = J; — JT,we = (

S

Applying generator )_(5(2) to function G(J; — J7, (22)?), one obtains
lewl = 0.

J
Thus the universal invariant of this algebra is (J—i)Q, which has no second-order
2

derivative term. Hence the set of equations admitting the generator Ljs cannot

be constructed.
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4.3.47 Lie Algebra Lj;

This algebra is defined by the generators
Xl = ax: X2 = aya X3 = xa{ra X4 = yaya X5 = yaﬂv

After changing the variables under conditions (4.92). The results is also h; = g; =

0 which contradicts to the assumption A # 0.

4.3.48 Lie Algebra Li
This algebra is defined by the generators
X1 =20, Xo=10,, X3= fl(iﬂ)ay, Xy = 52(»’17)5’1;7 X5 = fs(x)ay

which after changing the variables, they become

&(h)

&2(h)

_ 1 _h _ h
Xy =—0; Xo=—0y X3:€1()

0.

8@, X4 — 8137 X5 =

gy gy ] 937 gy

From Lie algebra Lj; (page.58), invariant of prolonged generators Xl(Q),)_(Q(z),

Xéz), X f) is an arbitrary function H(v;,vs) where v; = h, and
vy = [€1(& — &) + & (& — ENIIE = &) (edo = I+ J]) = (e — &+ &) (2 — J3)] -
(c(&1&5 — &7&) + (&7 —&D)(& — &) + (& — &)(& — D& — &) — & (L = J3)].

Applying generator X5(2) to function H(vq,v9) lead to the universal invariant of
this algebra is h, which has no second-order derivative term. Hence, the set of

equations admitting the generator L3 cannot be constructed.

4.3.49 Lie Algebra Lj,

This algebra is defined by the generators

X1 = 8y, X2 = SL'ay, X3 = yﬁy, X4 = fl(l')ay, X5 = §2(x)8y
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which after changing the variables become

Xl = iaﬂa XZ = Qagy X:S = _iag, X4 = €1<h) ag, Xg, = §2<h)

: 0.

0] 0l 7l Gy 9y

From Lie algebra L3, (page.71), invariant of prolonged generators X{2)7X.2(2),

X§2),Xi2) is an arbitrary function G(w;,w,) where w; = h, wy = %{}?_m

Applying generator X éQ) to function G/(h, W), we obtain G, = 0. Thus

the universal invariant of this algebra is h, which has no second-order derivative
term. Hence the set of equations admitting the generator L3, cannot be con-

structed.

4.3.50 Lie Algebra L,

Let us consider Lie algebra defined by the generators
X1 = &E, XQ = 771({1])83/, X3 = nQ(x)ﬁy, ceey XrJrl = 7]r<l‘>ay

where the functions 7y, 72, 73,...,n, form a fundamental system of solutions for

an r-order ordinary differential equation with constant coefficients
0 (@) + e (@) + ...+ e (@) + em(x) = 0.

' 3 73 73 73 73 74 74 74 74 74 74 74 74
These Lie algebras are Lg, Ly, Ly,, Lys, Ly7, Lsg, Ls;, Lsg, Lsy, L3y, Las, Ls,, L5,

Ligz, L
e Case r = 2, the Lie algebra defined by the generators
Xy =0y, Xo=m(2)0y, X3 =1n2(x)0,,
where 7y, 1y satisfy the equation

n'(x) = —(an' () + can(x)). (4.93)
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In Table 1 these Lie algebras are L3 L3, L3, L3, and L3.. Changing the

variables (3.10), the generators become

Ve gz Ve h v h
Xl - Elgaf - EZ—%%, XQ = mg(g )8?;, Xg = 772(7 )Gg

The general solution of the function )_(1(2)J = 0 is obtained similar to (4.19).
Applying the generators )_(52), X'?EQ) to the function J = V(yy, Y2, Y3, Y4, Ys, Ys)

with
n=J, yp=J7, y3=Js, yu=Jy, ys = J3, ys = J3,

where J] = J5(Z—7,Yr, U, Y ), we obtain the system of differential equations

mvy, + 773\1[?43 + 77'1'%5 + iV, + niT\I[yzx + 77/1quij =0, (4.94)
Ny, + néqjys + né"lfys + 775\11112 + 779‘% + né’“l’ye =0, (4-95)

where 5] = 1;(A(Z — 7)), 07 = 15i(M(z — 7)), 0" =7 (M7 — 7)), (i = 1,2).
The variables yg is introduced for simplicity of representation of equations
for invariant: for second-order delay ordinary differential equations ¥, = 0.

Substituting n and ;" found from (4.93) into (4.94)-(4.95), they become

mvy, + niqjy:s - (01771 + 02771)\11315 +ny Py, + 7717\11314 - (0177’17 + 6277{)‘11216 =0,

MWy, + Wy — (e + com) Wys + 13 Wy, + 05" Wy, — (c1ny + cang) Uy = 0.
In matrix form, these equations can be rewritten as
¢z -, b+ P77 = 0. (4.96)

Here

mm C2 vy, Uy,

oL
Il
0y
I
Il
K
Bl
Il
2
>
=
|
-

T2 775 &1 \ijs ‘11314
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Since n; composes a fundamental system of solutions of (4.93), ® is a funda-
mental matrix, which has the properties ®(h(z —7)) = ®(h(z))C, det® # 0
with a nonsingular matrix C' = [¢;;]2x2 (Pontriagin, 1974). Multiplying (4.96)

by ®! | system (4.96) is rewritten

or these equations are

\ijl — CQ\IJ% + Clllllyz + Cu‘l’m = 0,

\II?JS — Cl\py5 + CQI\I]yz + C22@y4 = 0.

Since these equations have constant coefficients, one easily obtains the uni-

versal invariant
Js+crdo +coJy, J{ —cnndi — carda, Jg — ciadi — caada.
The invariant equation has the form
Js = f(JlT —cndy — enJa, Jg — crpdJi — 022J2) — (c1Ja + c2h).

Because of the meaning of the functions Jy, J7, Jo, J and Js, we present this

equation as
y' = f(yT —cny — ey, Y, — ciy — CQQ?J/) —(ay + c2y) (4.97)
Case r = 3, the Lie algebra is defined by

Xy =0y, Xo=m(7)0y, X3 =na(1)0y, X4 =n3(7)0,,

where 7y, 19, 13 satisfy the equation

" (x) = —(en’(z) + e (x) + esn(z)). (4.98)
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In Table 1 these Lie algebras are Lig, Ly, Lag, L3y, L3y, L35, L3, L3g and L3,

Changing the variables (3.10), the generators become

Xi=2Lo, - 29, X,= n1(h)

T hz hzgy

8@ X3 — 772_—(7}1)8* X4 - ng(il)

g5 Y 9y Oy-
The general solution of the function )_(1(2)J = 0 is obtained similar to

(4.19). Applying the generators XQ(?’) Xég),f(f) to the function J =

qj(yla Y2,Y3, Y4, Ys, Yo, Y7, yS) with

p=Ji, yp=J7, y3=1Jo, yu=J3,

ys = Js, y¢ = J3yr = Ju, ys = JJ,

D J i'7_,_/7_” T _ _ _ _ _
Jy = PRCIID) = Ji(E = 7 T T T

we obtain system of differential equations

nlqu + 771‘1’:1/3 + ni,\y% + 771”‘1’;;7 + 77{‘1’312 + niﬁrqjyzx + T]YT\I]ZIG + 771”7—\1/?/8 =0,
n2Wy, + 77;‘1’2;3 + T}S‘I’ys + ngl\ljzn + 0¥y, + 779\1'244 + né”‘l’ye + né//T\I/ys =0,

7]3\11?41 + 77:/3\ij3 + ngql% + Ugl‘l’m + 77:73-‘111/2 + WéT‘I’m + 77:/3/7\11% + Ung‘I’yg =0,

where 77 = ni(h(z — 7)), 77 = ni(h(x — 1), 0" = (AT — 7)), W =

",

n!"(h(z—7)), (i = 1,2, 3). Here the variables yg, y7 and ys are introduced for
simplicity of representation of equations for invariant: for second-order delay
ordinary differential equations ¥,, = 0,¥,. = 0, V,, = 0. Substituting 1}’

7 )

and 7™ found from (4.98), the above system of equations in matrix form

OZ— U, T+ O"Z = 0. (4.99)
Here
mom C3 v, v,
®= T2 né 775, ’ ¢= Ca | > 7= \ijs ) 7' = \Ify4 ) o7 = q)(ﬁ(j_T»
13 13 15 € % Uy,
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Since n; composes a fundamental system of solutions of (4.98), ® is a funda-
mental matrix, which has the properties ®(h(z —7)) = ®(h(z))C, det® # 0
with a nonsingular matrix C' = [¢;j]3x3. Multiplying (4.99) by ®~!, as in the
previous case, system (4.99) is rewritten as

7—cv, +C7 =0,

or

‘ijl — Cg\I/y7 + Cllg]yg + Clg\I/y4 + C13\I’y6 = O,
\ij3 — CQ\I’y7 + Cgl\pyz + CQquy4 + 023\11% =0,
‘Ilys — Cl\I]y7 =+ Cglq/yQ + ng\lfy4 + 633\11196 =0.

Solving these equations and using the conditions ®,, = ®,. = 0, the universal

invariant of this Lie algebra
JlT —cnJi — carJa — c31J3, JQT — c12J1 — a2 Jo — 323,

Since second-order delay ordinary differential equations are studied in this
paper, one need to assume (c31)? + (c32)® # 0. The invariant equation has

the form
¢<J1T —ci1J1 —ca1dy — 031J3> JQT — c12J1 — o9 Jy — 032J3) =0,

where ¢(z1,22) is an arbitrary function. Because of the meaning of the

functions Ji, J7, J2, J3 and Js, we represent this equation as
¢<yT —cny —cay —ceny’ YL — oy — ey’ — 032y"> = 0.

Case r > 4, in this case one can proceed in the same manner. The universal

invariant of Lie algebra is

s T

Jf — ZCﬂJi, J;— — Zci2<]i7

i=1 =1
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i—1)

where J; is the y(~1) after change of variables. The set of equations admitting

the generator L3, is

¢<J1T - Zr:Cqu‘, Jy — zr:Csz‘) =0,

i=1 =1

where ¢(z1, 22) is an arbitrary function with respect to
Ci1Qs + Cindp, =0, 1=4,... 1.

Because of the meaning of the functions Ji, J7, J3, JJ and J3, we represent

this equation as
¢<yT = ey, = cﬂy“‘”) = 0.
i=1 i=1

4.3.51 Lie Algebra L},

This algebra is defined by the generators
X1 = 8:5, XQ = nl(x)(?y, X3 = ﬁQ(I)ay, ceey XT_|_1 = n,.(x)ﬁy, Xr+2 = yf)y,
where the functions n;(x),7 = 1,...,r are defined as in Lie algebra LZ,.

e Case r = 2, the Lie algebra defined by the generators
Xl = axa X2 = 771(37)81/7 X3 = 772(3:)61/7 X4 = yay

where 1y, 1y satisfy the equation (4.93). After changing the variables, they

become

B n2(7h>ag, X4 - %8@

hzgy Jy Jy 9y

_ 1 G _ h _
Xl = Taﬁ? - *g aﬂ? X2 = Th( )aga X3 =

From Lie algebra L2, invariant of prolonged generators X 1(2) Xf), X 352) is an

arbitrary function G(z1, 22, 23) where

T T
21 =Js+ s+ ey, vo=J] —cindi —cads, 23 =Jy — ciaJi — caada.
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Applying the generator X f) to the function
G(Js + cidy + v, J| — enJi — car o, Jg — cradi — canlJa),
we find
Zlel + ZQGZQ + Zng3 =0.

Thus the universal invariant function is

J3—|—01J2+02J1 Jf—CHJl —021J2
JT —cioJi — condy’  J5 — craJi — caada

The set of equation admitting this Lie algebra is

JlT —cndi — car o

J3 — ciaJ1 — oo

J3 = (Jg —cr2J1 — 022J2)f< > — (12 + e dy).

Because of the meaning of the functions Jy, J7, Jo, J and Js, we present this

equation as

Yr — C11Y — 021?/
YL — Ci2y — C22Y

Y = (Y. — cray — caoy') f ( ) — (Y + coy).  (4.100)

e Case r > 3, the Lie algebra is defined by the generators
X1 = 8J;, XQ = nl(x)ﬁy, e 7X7»+1 = 777«<I')ay, Xr+2 = y(?y,

which after changing the variables, they become

Sl

z hzgy g 9y

<
<

From Lie algebra L3, invariant of prolonged generators X f2), )_(52), e ,Xﬁ)l is an

arbitrary function G(z1, 22) where

T s

21 = Jf — Zcilji) Z9 = J; - ZCiQJi'

i=1 i=1

Applying the generator Xﬁg to the function

s s

G(Jf — Z CilJi, J; - Z CiQJi);

i=1 i=1
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we find
Zlel + 22G22 =0.

Thus the universal invariant function is

T
T — 2 cadi
i .
J3 =i Cindi

The set of equation is written as
T '
Yr — Z Cily(lil) = 05(:’-/; B Z CiQy(lil))v
i=1 i=1
where c5 is an arbitrary constant with respect to

C5Cj2—Cj1:O, ]:4,,T+1

4.3.52 Lie Algebra L2,

This algebra is defined by the generators
X1 = 893, X2 = 8y, X3 = Zan, X4 = x28y, X5 = Z'8$ + cyﬁy

which after changing the variables, they become

X1 — iaj - 9z 8@, XQ - _Lag Xg - _iag,

hzgy gy gz

X4 - E@g X5 - %aj + (ﬁﬁ - Cj)(%

Jz hzgy 93

Invariant function of the first generator are (4.17). Applying the second generator

)_(2(2) to the function ®(y1,y2, y3, ¥, ¥5) With substituted
U1 = Jl? Yo = J{v Ys = J27 Yg = J;a Ys = J37

we find

qu)w + ygq)yQ = O
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Hence, the invariant function is ® = (v, v, v3,v4) where 1 is an arbitrary func-
tion and vy = Y1 — Yo, Vo = Y3, V3 = Y4, U4 = Y5. Next, applying the generator

X§2) to the function ¢(J; — JJ, Ja, JJ, J3), we obtain

1/1’1)2 + ¢v3 - O

Solving for function 1, we arrive at v = H(z1, 22, 23) where H is an arbitrary
function and z; = vy, 29 = v9 — v3, 23 = v4. Then, applying the generator X f) to
function H(z1, 29, 23) with substituted y; = Ji,yo = J7, y3 = Jo,ys = J3, y5 = J3,
one obtains

2H,, = 0.

The invariant function is H = G(wy, wy) where G is an arbitrary function and w; =
21, Wy = 2. Finally applying the generator XéQ) to function G(J; — J7, Jo — J3),
one gets

cw Gy, + (¢ — DweGy, =0,
where ¢ is an arbitrary constant. Thus, the universal invariant of this algebra is
(Ji = D = I3,

which has no second-order derivative term. Hence, the set of equations admitting

the generator L2, cannot be constructed.

4.3.53 Lie Algebra L2,

This algebra is defined by the generators
X1 = (993, X2 = 8y, X3 = Iﬁy, X4 = x28y, X5 = xax + (3y + $3)ay
which after changing the variables become

Xl =109 — —‘Z—zyag, Xg = gl 6@, X?) = gia%

_g -

O+ (- o=+ g,

hzgg 9y
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From Lie algebra L2,, invariant function of the generators X 1(2), Xf), X?EZ), X f) is
an arbitrary function G(wy,ws) where wy = J; — J],wy = Jo — J3. Applying the

generator XEEZ) to the function G(J; — J7, Jo — JI), we find
lewl =0.

Thus, the universal invariant of this algebra is J, — J3, which has no second-order
derivative term. Hence, the set of equations admitting the generator L2, cannot

be constructed.

4.3.54 Lie Algebra L2,

This algebra is defined by the generators
X1 =0, Xo =0, Xs=20,, X4=y0,, X5=20,

which after changing the variables become

IR LU )

X4 = }:l—Qag, Xg) = %6—

gz

From Lie algebra L2,, invariant function of the generators X§2>,X§2),X§2) is an

arbitrary function G(wi,ws,ws) where wy = J; — J],wy = Jo — JJ, w3 = Js.

Applying the generator )_(f) to the function G(J; — J7, Jo — JJ, J3), we find
lew1 + ngwz + W3Gw3 = 0.

Invariant function is G = V(z1, z2) where V is an arbitrary function and

W2 w3
21 = —, 29 = —.
wq Wa

Finally, applying the generator XéQ) to function V(JZ_J?T Ja

Ji—J7 0 Jo—J]

), we arrive at

Zl‘/z1 + 22‘/;2 = O
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J3J1

Thus, the universal invariant of this algebra is ———————
(2 = J3)?

. The set of equations

admitting the generator L2, is

_JT\2
Jy = M7 (4.101)

i

where c3 is arbitrary constant. In table 4.1 this set of equations is written as

/12
y' = w (4.102)

4.3.55 Lie Algebra L3,

This algebra is defined by the generators

Xi =0, Xo =0y, Xs=20y, X4 =220,+y0,, X5= 220, + Y0y

which after changing the variables become

X1 - i@a—: *gi ag XQ - %8@, Xg - g%ag,

o hzgy

|tm|

X4:%—Zaf+<—%+_i>ag, X5:%af+<—ﬁ+

hzgz 9y hz gz

7)0y.

From Lie algebra L2,, invariant function of the generators XfQ),XZEZ),Xf) is an

Q|
|

arbitrary function G(wi,ws,ws) where wy = J; — J],wy = Jo — JJ, w3 = Js.

Applying the generator Xf) to the function G(J; — J7, Jo — JJ, J3), we find
w1 Gy — WGy — 3w3Gyy = 0.
Invariant function is G = V(z1, z2) where V' is an arbitrary function and
21 = WoW1, 2y = WiW3.

Finally, applying the generator XéQ) to function V ((J1 —JN)(Jo—=J3), (J1— Jf)3J3> :

we arrive at

Zl‘/zl =0.
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Thus, the universal invariant of this algebra is (J; — JJ).Js. The set of equations
admitting the generator L2 is

Cy

Jo—e A
T (- I

(4.103)

where ¢4 is arbitrary constant. In table 4.1 this set of equations is written as

" C4

y = =) (4.104)

4.3.56 Lie Algebra LI,
This algebra is defined by the generators
X, = aa:a Xy = 83/7 X3 = yaya Xy = xax; X5 = x28x

which after changing the variables become

Xl =1 aj; — —i?g@g, XQ — %8@ XS == _iag,

= ha gy

e A > 72
X4 - ;Lh;af, X5 - %ai

From Lie algebra L3 (page.44), invariant function of the prolonged generators

Xl(Q),Xf),X?EQ) is an arbitrary function G(wi,ws,ws) where w; = Jl;f,wg =
%, w3 = j—z Applying the generator )_(f) to the function G(‘h;f, j—i, j—g), we find

wW1Goyy — w3Gyy = 0.
Invariant function is G = V(z1, z2) where V is an arbitrary function and

21 = Wy, 29 = W1W3.

(J1—J7)Js

72)? >, we arrive at

Finally, applying the generator X é2) to function V(%,

—222‘/22 = 0.

T

J.
Thus, the universal invariant of this algebra is J—Q, which has no second-order
2

derivative term. Hence, the set of equations admitting the generator L2, cannot

be constructed.
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Group Classification of Second-Order DODEs

Table 4.1 Group classification of second-order DODESs on the domain of real space

No. Lie algebra Representation of second-order DODEs
1 Ly O v = f(yun v yk)
2 L} 0,0, v = fly—yr ¥, yr)
11
3 LI 0py0, v =y fy,yr, — — —)
vy
4 L} 0,20, +yd, f( YY)
Yr
5 L 0p,20, y' :y’Qf(%yT,?)
1 ,
6 Li 0,20,&(), y' = (2 & = e —y +
(& —¢)
yr) = (Ele—&+€D( —ur) ) +EH (o ~ ) )
3 Y—Yr Yr
T Ly 0Oy, y0y, 0y Y —yf( J ,y,>
8 L e 70,,0.,0, y'=fky =y k(y—yr —yl) + ) — Y
9 L§ Oy O, 20y v =fW — Yy —y+yr)
10 L3y 0y, 00,30, + (x + )9, v =e VY —yh (y—yr)eV)
11 L} e "8y, —ze "9y, 0, y' = f (k(y +v') = (yr +y5), ke(y +9)
—ky + yr> -2/ +v)
/ /
12 L}y 0,0y, 20: + 10, yr = 18 ) l(/y_’ yyf).
cy —y+yr
13 Li Oy, x0y, Yo y' =~ ?J;)f( 7ﬁ)-
(v —yr)
(a—2 r (1—a)
14 L3, 0., 0,20, + ayd,, y"' =y @D 1X}“(Z, Yy —yr) @ )
0<lal<l,a#1
15 Lis e "8y,e "0y, 0y, y' = f(k“(y +9') = (yr +y5), (k= k) (y
0<l|a|<1l,a#1 +y’)—(1—a)(ky—y7))—[(1+a)y’—|—ay]
16 L3, e sinady, e "cosxdy, 0y, Y = f(I1,I2) — (2by + (b* + 1)y)
b>0
Y32 = Yro (Yr —y)?
17 L3y 0p+0y,20, +y0y, 320, +y*0, y' = (f ,
v Y Y Y () — y’T(w—y)Z)

2 + 1)
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No. Lie algebra Representation of second-order DODEs
- Yr y;— T
18 L3y 0p,20: + 3y0y, 220, + 2y0y, Y =y 3f<*, Yy (= — y—))
9 Y y Yy Yy
19 Li,  9y,20,,8,,yd y' =4 (¥
2 e (y—yr) <y’) o
20 L4 6_18,({9@-,8, o //:k/—l Yy —Yr o
25 Y Yy YOy Y ( y[ yT>£<(k_/1)y/_y+yT> Yy
1\ =
21 L%e e 0y, —xe 0y, Oy, Oy "n_ f(Is) ""(]ic — k)—’y— 5 yt+uyr Y
4 x5 —az " F(Ia)+(a=1)(ky' —y7) )
22 L27 e ay,e 8y,8x,8y, y — (kaik) _y .
0<lal <l,a#1
23 Lis e "sinzd,, e cosxdy, Oy, Y = f(15)*(b2+1]3£i1&i;i‘;25b01)(yfyf)] —2by/
0y, 6>0
s 2 Yo\ Y (yr  Ye\?
L A A A
24 L5g Oy, x0p,y0y, 0y + xy0y Yy —f(y) " (y y’)
25 L3y Oy, —x0y, 5270y, 0, =y —y.—f (2(y —yr) —c(y + y’T))
26 Ly e 0y,e 0, —we 0,0, Y = ok (fUs) — (0 = DlK(y
) = (g = )]) - 120/ + )
27 Ll ev0,—x0,.0,,0, V' = ) + (o — 1)
28 L3 e "0y, —we Oy, 5ate "0y, 0p " = —gf(Is) — k(y +¥) + (yr +¥)
—(2y' + )
{(@) Y —yr) + (Y —yo) f(
29 L§5 ay,l‘ay,é-l(x)ay,yay y// — 1( )( &_} (x)(y Y )f( )
1
30 Lig e 9, e*b“f@y, e "0y, O, Yy = 7(/%:17—1@:;)(1;—1) ((b2 —ab+a—0b)(k*(y+
—1<a<b<l,ab#0 y) = (yr+y7) —f(Ig)) —(aly+y)+y)
A s e B <f(110)((a*b)2+1)[kb01[ay+y’]*[k“y*y’]])
31 L3, e %0y, e " sinxdy, 0, = e o—a)er) =]
e " coszdy, a >0 —(2b(ay + ') + a*y)
r 2
2Ly 00y 00,00+ 200, o' = (1 - (LEE))
1/b
33 L%g Oy, Oz, Ty, (1+0)z0; + Y0y, y' = <(y/_yflr)2b+1f[(y_yT)b(yl_y;-)])
b <1
4 " / / y —cly —yr)
34 Ly 0Oy, —x0y, O, y0, y = - yT)f(W)
35 Li, sinzdy,, cosxdy, yoy, Oy Yy’ = y(f([ll)(cl + [%(02 - Z—%)]) - 1)
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No. Lie algebra Representation of second-order DODEs

36 LEE)H aﬂ?anl(x)ay7"‘7n7‘(x)8y7 r Z 4 (I)l(xayayTaylay;ay”)

37 Lg—li—Q axayayanl(x>ay7"'7”7"(1')61/7 r Z 3 q)Q(xayayTaylvyg'ayH)
cs(y —yr)?

38 Lg4 81, xax, yﬁy, (9y, xay y// _
Yy
39 L3 O, 0y, 220, +y0y, 20y, 220, +xyd, Y’ = (‘374)3
Yy —Yr

Here ¢, c3, ¢4, c5 is an arbitrary constant, k = e®, k1 = k¢, ¢1 =sine¢, co = cosc.

I = Ky — [e1; + (c2 + bea )y,
I = (c2 = ber)[eryy + (2 + ber)ye] = [KPery + wel
Iy= ke(yr —y—y' +95) + (k= D(ky' —y),
Iy = (k" —ak+a—1)(ky' —y;) —a(k® = k)[(k - 1)y —y +yr],
Is = [K*(ca — ber) = W[eryr — (ca + ber)(y — yo)] + K — (c2 + b))k 1y — (y — yo)],
Is = (k" = bk + o = ) (k(y + 4/) = (e = 91)) = 0= D& = B) (ke(y + /) = ky + v ),
Ir=k-1)y—yr—cy)+(k—c— 1)y —yp),
Is=clk(y + ) — (yr + ;)] — 2[ke(y +y') + ky — y-],
Iy = [—k"Yac — kYo + PP be + K0T+ ack® — B2k (y + o) — (yr + 91)]
(K — ke)(b — D)[(k — k) (yr +v) — (1 — a)k®(ky — y,),
Lo = k"(ca + (a — b)er) — k%(cr(ayryl) — [e2 + (b — a)er] [k%y — 7))
~[k® + k%(c1(a — D) — c2)],

/
62_1/;4_6197
I = Y Y

11

Yy
Lz = [6/(&5 — &) + & (& - ENNE — &) (e —y+yr) — (Ee— &+ D — v,

Lz = [e(&1€ — €7&) + (&7 — &)(& — &) + (& — &) (& — &),

O (,y, yr, ¥, U5 y") = ¢<yT - iC¢1y(i‘1),y’T - zr: my“‘l)), W=y >4,
such that cj1¢., + cj2¢2, :10, 7 =4, ...,r,l:1

o (2, Y, yr: ¥ yro ¥") = yr — c5y; + ZT:(Cs)cz'z —en)y Y, >3,

i=1
such that cscjo —cj1 =0, j=4,...,r+ 1L



CHAPTER V

CONCLUSIONS

In this research, we provide a complete group classification of second-order

delay ordinary differential equations of the form

v = flz,y,9- Y, v;)

admitting a Lie group. The method for solving this problem was developed. Re-
sults are summarized in Table 4.1.

The algorithm for obtaining second-order DODEs which admit a given Lie
group is as follow. First, for each Lie algebra on the real plane, change the vari-
ables, then find invariants of the Lie algebra in the space of new variables. Last,
a second-order DODE can be formed by using the found invariants.

Results of this research could be extended to higher order DODEs.
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APPENDIX A

SOME MATERIAL FOR REVIEW AND

REFERENCE

A.1 Definition of a Functional

Mapping. Let X and Y be sets and A C X be any nonempty subset. A mapping
(or transformation) T from A into Y is obtained by associating with each z € A

a single y € Y, written y = T'x and called the image of x with respect to T

Operator. In Calculus, the real line R and real-valued functions on R (or on a
subset of R) are usually considered. Obviously, any such function is a mapping
of its domain into R. Generally we consider more general spaces, such as metric
spaces, or normed spaces, and mappings of these spaces.

In the case of vector spaces and in particular, normed spaces, a mapping is

called an operator.

Functional. A functional is an operator whose range lies on the real line R or in

the complex plane C.

A.2 Inverse Function Theorem

Inverse function theorem (Lang, 1997). Let E and F be Euclidean spaces and
U be open in E. Let xg € U, and f : U — F be a C° map. Assume that the
derivative f'(xg) : E — F is invertible. Then f is locally C*-invertible at xqy. If ¢

is its local inverse, and y = f(z), then ¢'(x) = f'(z)~L.



103
A.3 Invariants

Invariant. A function F(z) is called an invariant of a continuous group G of
transformations (3.1) if ' remains unaltered where one moves along any path curve
of the group G. For example, for a one-parameter group of transformations T, (x),
F is an invariant if ' (T,(x)) = F(z) identically for  and @ in a neighborhood of

a=0.

A Basis of Invariants. A one-parameter group G of transformations in R™ has
precisely n — 1 functionally independent invariants. Any set of independent in-
variants, Y1(x),. .., Yn_1(x), is termed a basts of invariants of G. The basis
1s not unique. One can obtain basic invariants, the left-hand sides of n — 1 first

integrals
77[)1([)3) == Ol, ce 7wn_1<ﬁl]) == Cn—l;

from the characteristic system of equations

xX(p) =g g
- dz! — da”
SR TE)

An universal invariant F(x) of G is given by the formula

F= (I)(wl(x)v s 7¢n—1<37))-

See more details and proofs in Ibragimov (1999).

A.4 Periodic Linear Systems

Consider a linear system of n first-order ODE’s in the matrix form

2'(t) = A(t)z(t) + b(t), (A.1)
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where b(t) and x(t) are column vectors of length n.

Periodic Linear System. A linear system of ODE’s (A.1) is called a periodic

linear system with the period T # 0 if

A(t+7) = A(t), b(t+7)=0b(t), Vi

Theorem. For any fundamental matriz ®(t) of a periodic linear system of ODE’s

with period T there is a constant nonsingular matrix C' such that

Bt +7) = B(t)C.

Remark. The matriz C is called a main matriz.



APPENDIX B
GROUP CLASSIFICATION OF LINEAR
SECOND-ORDER DELAY ORDINARY

DIFFERENTIAL EQUATION

In this chapter, a linear second-order delay ordinary differential equation

y'(@) +alx)y'(x) + b(z)y' (x — 7) + c(z)y(x) + d(x)y(z — 7) = g(z),  (B.1)
is studied. Here b* + d* # 0 and the initial conditions are
y(x> = X(m)a VIS (370 - T, :CO)J
y'(z0) = Yo

The initial value problem (B.1) has a solution for any arbitrary value xy and any
arbitrary given function x(z),x € (xg — 7,20) (Driver, 1977).
Equation (B.1) can be simplified. Before discussing equation (B.1), let us

consider a linear second-order ordinary differential equation

y'(x) + a(z)y'(z) + c(z)y(x) = g(x). (B.2)

Let y, be a particular solution of (B.2). By changing variables Z = x and § = y—y,,

equation (B.2) becomes

7'(x) + alx)y (x) + c(2)g(x) + (y,(x) + alz)y, () + c(z)yp(x) — g(x)) = 0.

Because y, is a particular solution of (B.2), the equation is reduced to

7'(%) + a(D)y (%) + c(2)y(2) = 0. (B.3)
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Moreover, the coefficient a(Z) can be reduced by the change § = v(Z)q(Z)

with ¢(Z) satisfying the equation 2¢'(Z) + a(Z)q(Z) = 0. In fact, Substituting

7 = v(Z)q(Z) into (B.3), one gets

v+ up(E) = 0,

/! /
where p(Z) = (¢" +aq’ + cq)‘
q

By the above technique, the coefficients g(z) and a(x) in (B.1) can be

reduced. Thus equation (B.1) is able to be simplified to
y'(x) +b(z)y (x —7) + c(z)y(x) + d(z)y(z — ) = 0.

We consider group classification of linear equation (B.4).

B.1 Constructing Determining Equation
Let G be an admitted Lie group of transformations
T=¢"(x,y56), y="(x,y5€)

and

0" (2, y; €) n(a.y) = 0¥ (x,y;€)

E(x,y) = 5% L 5

where € is a real parameter. The determining equation is

X(z) (y”(l‘) + b(I)y,(l’ _ 7—) + C(x)y(x) + d(x)y<l’ — 7')) ‘ =0,

(B.4)
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where

X®@ = Y9, + U0, + YOy + Y0y + Y Oy,
Gy y) =nx,y) —y'é(,y),
(@) = Cla =7y ) = 0@ = 7yr) = Y@ — 7u0),
¢y v y") = melwy) + Iy, y) = L@, y)ly = &, 9)(Y) = €@, 9)y"
(@, yr, U ) = ¢V = Ty, 0 o) = ma(@ = 7y0) + [y (2 — 7, )
—&olo = Ty, — &2 — 7y ) (47)? — E(o — 7y )y,
¢y, ") = e (2 y) + (200 (2, 9) = Ee (2 9)]Y + [y (2, )
—260y (2, ) = & (2, 9)(Y)° + [y (2, y) — 260 (2, y)]y"

=3¢, (z, y)y'y" — &z, y)y",

where y, = y(z—71), y. =y (x—7) and ¥ = v’ (x — 7). Substituting vy = —by” —
Yo b —cy' —yd —dy, —y.d', y! = —(0"yy, + Ty, +d7ys, ), and y" = —by, —cy —dy,

the determining equation (B.5) becomes

—&yy () + [y — 280y (¥)? + [20y — &ow + 3c€yly’ — & b(y)?
+[V'E = by +bny + 206, — bEL + d(§ — §T)]y, + BT (=€ + €7y,
+bd™ (=& + & )yar + 30+ d)&yry + Yy + d'yr& 4 Now — mycy — nydy;
+npb + 28.cy + 28, dy; — b€y, + by, + en +dn” = 0,

where {7 = {(z — 7,y7), 17 = n(z — 7,y;), Yor = y(x — 27), ¥, = y'(z — 27),
b = blx — 1), ¢ = c(r —7) and d” = d(xr — 7). Because of the arbitrariness
of zy and x(z), the variables y, y, and their derivatives can be considered as
arbitrary elements. Since the determining equation is written as a polynomial of
variables and their derivatives, the coefficients of these variables in the equations

must vanish.



B.2 Splitting Determining Equation
Consider the coefficients of the following variables,
Yor -
(y7)* -
V€= bny —my, ) + 266 — bE7 + d(§ =€)

: _fyy = 07

Yy,

Yor -

bb" (=€ +¢7) =0,

—bg, =0,

My — 25:01/ =0,
: 277xy - garar + Sgy(cy + dy’r)
DM + b0+ en 4 dn” + (dE — dny + 2dE, — b (E—€7))y,

+(€ — eny + 28,0)y =0,

3¢, (b+d) =0,

bd" (= +¢7) = 0.

108

(B.12)

(B.13)

By equation (B.6), {(z,y(x)) = &{(x — 7,y(xz — 7)), i.e., £ and & are functions of

x which implies that { does not depend to y, §{ = £/ = 0. This condition and

equation (B.10) imply that 7 is a linear function with respect to y,

n(x,y) = B(x)y + (),

where [, v are arbitrary functions of . Equations (B.8) and (B.11) are simplified

to

b(B = p7) = b'§+ D,

(B.14)

(B.15)
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respectively. Substitute &, 7 into the determining equation, and then split the

equation again with respect to y and y,. One finds

B = —d€—2c€, (B.16)
V' ==yl — ey — dy, (B.17)
d(B—p7) =dE+ b8 +2¢d. (B.18)

By integrating (B.15), one finds § = £'/2 + C}, where C} is an arbitrary constant.

Since £ = £7, it implies § = (7. Hence, integrating equation (B.14) one has
b = s, (B.19)
where (5 is an arbitrary constant. Equation (B.18) is written as
! ! b "
dé+28d= —55 . (B.20)
The solution of this equation depends on the values of b and d:

e Case b #0,d #0.
Substituting  into equation (B.16) and integrating yields

6/2
g’ — 5 + 2¢€% = (5, (B.21)

where (3 is an arbitrary constant.

If Cy # 0, then from equations (B.19), (B.20) and (B.21), one obtains

Oy Cy 1,
§= 50 =Y (7(3) +01> + 7,
AL, 3., WY )
€=3 {055 —§<3) +2_b} ) d—§+C’4b )
where Cy is an arbitrary constants, C5 = C3/Cy, and 7(z) is an arbitrary

solution of (B.4). Since & = {7, the the coefficient b has to satisfy the same

property, i.e., b = b". The infinitesimal generator obtained is

1 IR
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If Cy =0, then £ =0, n = Cyy + v and all coefficients are arbitrary. The

infinitesimal generator is

Case b# 0,d = 0.
Solving equations (B.18), (B.19), (B.20) and (B.16), one obtains 57 = Cj,
b = Cy, &€ = Cha + Cy, c€% = Cy, where Cy, Cr, Cs, Cy are arbitrary con-

stants. Since & = ¢7, then C; = 0.

If Cg#0, then

Co Cs
=—, b=—. B.24
The infinitesimal generator of the admitted Lie group is
X = Cs0; + (Coy + 7). (B.25)

If Cg =0, then £ =0, n = Cgy+, b and ¢ are arbitrary, 7(x) is an arbitrary

solution of (B.4). The infinitesimal generator is

X = (C'ﬁy + 7)8y

Case b =0,d # 0.
From equation (B.20), one finds £2d = C}g, where Cj, is an arbitrary con-

stant. Hence,

Cio\"* Cio d'
£ = (%) ; U:—(%dg,ﬂ‘l'cl)y*"% (B.26)

If Cyp # 0, then equation (B.21) implies

(B.27)

c

1[C . d 1.4,
o Zar 2y,
2{010 +2d+8<d2)]

The infinitesimal generator obtained is

Cio Cig’d
X =50+ <_W +C1+7 | 0, (B.28)
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If Cyp =0, then £ = 0,0 = C},n = Cyy + v and the coefficients ¢ and d are

arbitrary functions. Hence, the infinitesimal generator is

— (Cry+ )0, (B.29)

The result for the group classification of linear second-order DODEs (B.1) is ex-

pressed as the following.

Table B.1 Lie group classification of linear second-order DODEs

No. b(z),d(z),c(z) Generators
1 bz) # Xi=yd,, Xo=10,+Y (1) 0,
d(z) = 1% (2), X3 =10,
c@>%ww 552 + 5l
2 b(x) £0,d(z) =0,c(x) = ks Xy =0, Xy =y0,, X3=n0,
3 blz)=0,d(z) #0, X1 = 2505, Xo=—55540,,
dw%[u+%wa%m X =0,

k, ko, k1, ko, C1,Co, Cs are arbitrary constants and ~(zx) is an arbitrary solution of

(B.4).



APPENDIX C
GROUP CLASSIFICATION OF THE WAVE

EQUATION WITH A DELAY

In this chapter, we focus on the wave equation with a delay

U (t, ) — Uy (t, ) = G(uT), (C.1)

where u” = u(t — 7,x), 7> 0, and G’ = ju—ci #0.

C.1 Constructing Determining Equation
Let G be an admitted Lie group of transformations

t=¢'(t,x,ue), T=¢"(tx,ue), ="tz use€)

and
¢ (t, x, u; €) Op™(t, x,u; €)
tr,u) = ———= tr,u) = —————=
é‘( ) ) ) 86 6207 77( ) ) ) 86 6207
0" (t, x, u;€)
t,x = )
C< ’ 7u> aE e=0
For equation (C.1), the determining equation is
y® (utt — Uy — G(uT)> =0,
Ut =Uge+G(uT)
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where

VO = €0, ¢ D 4 (100, (20, + €Dy 4 (00 + (500,

tx xx )

" = ¢ — &ur — nuy,
" = = ETup =T,
¢ = =gty — Mttty — &y — Eu(e)? + G+ Cutty — Nitar — U,
¢" = = (ta)® = Natta — Eutiytla — Extly + Co + Culle — Mo — Uae,
¢ = =2ty — Moty — 20Ut — Tt (1) — 27Ut — Ttz Ugy
26 (ue)® — &y — 28y — Euu(we)® — 3&uuptiy + 2Guts + G + Cun
+Cuu (Ut)2 + Culet — NMUagtr — Ugte§,
¢ = =20 (Uz)? = N (U2)® = BNullaliae — Nawtle — 2Maliae — 2Euatsly

guuut<uz>2 - guutuxx - 2£uumu:rt - gx:put - 2§xuxt + 2Cxuuz + Cuu(uz)2 + Cuuxm

The determining equation for equation (C.1) becomes

— 20Uy — Nerty — 20 Uipt + 20 (U ) — N (W) 1t + M () = Gy
=20, Uit + 20y U Uy + Noply + 20Uz — G'mul + G'nTul — G'uj€
+G'UIE™ — G'CT = 28 (w)? — Euuy — 264G — 28 ugy + 28ttty — Eu(uy)?
+€uuut(ua:)2 — 3&uGuy — 28 Uity + 28 Up Uy + Eoatle + 285Une + 2Cus + Cu
~2Guatly + Guu(ut)® = Cuu(tz)? + GG — Gow = 0.

This equation is written as a polynomial of v and «” and their derivatives. Since

all coefficients are independent from these derivatives, these coefficients are equal

to zero.
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C.2 Splitting Determining Equation

Splitting with respect to the derivative terms uy,ul, Uyz, Ugt, Uz, - . ., ONE

finds that the coefficients of the polynomial vanish

uj : Gy (&7 =€) =0, Uy : Gyr(n” —m) =0, (C.2)

Uy + 2(Ne — &) =0, Uyt 2(& — 1) =0, (C.3)
() : T = 0, (w)® : —&uu = 0, (C.4)
(1) s — G = 0, (W) + 26+ G = 0, (C5)
(ug)*Uy + —Nu = 0, g (ug)? : Euy = 0, (C.6)
Uy @ —21, = 0, Uglyy = 26, = 0, (C.7)
Utz —28, =0, Uglyy = 21y = 0, (C.8)
Uty + — 2Ny + 284z = 0, (C.9)

Uy > Ngx — Nt — 2Cu:v - nuG = 0; Uy : f:m: - ftt + 2<ut - Bqu = 07(010>

1: =Gy —26G + G + GG — (e = 0. (C.11)
From (C.2), one gets
E(t,x,u) =&t — 1, 2,u(t — 7,2)),
n(t,z,u) =n(t —7,2,u(t —1,1)),
which imply that &, = n, = 0. Substitute these into (C.5) then
¢tz u) = Gt v)u+ Gt x),

where (3, ( are arbitrary functions. Solving (C.3) for £ and 7, and substituting

it into (C.10), one obtains

n=n"=m(—z)+nt+z),
§=& =mt+z) —m(t— o),

C(t,z,u) = Kyu+ (ot x),
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T

where K is an arbitrary constant. By the virtue of n = 77, one obtains the

periodic conditions for 1; and 7y, i.e.,

m(t) = m(t —7), m(t) = na(t — 7). (C.12)

Hence, (" = Kju™ + (J(t,x). Substituting these functions into the determining
2 g

equation, one obtains

[KluT + Cg]GuT + [2<77§ - 771) - Kl]G + [CQ,xx - C2,tt] = Oa (013)
0? o?
where (2 4, = E)TC; and (a4 = 8_2?22

C.2.1 The kernel of admitted Lie groups

Assume that equation (C.13) is valid for an arbitrary function G. Without

loss of generality, it is possible to consider the particular case
Gu™) = ag + aru” + as(u”)? + as(u”)?,

where oy, a1, ay and agz are arbitrary constants. Substituting G(u”) into (C.13),

the third degree polynomial with respect to u” is obtained,

a1y =t + K1 (u)? + 3G + asl2(my — h) + Kl | (u")?

+2 [04245 + o (nh — ni)]UT + [041(5 + 020y —mh) — Ka] + Qo — Cz,tt} = 0.
Since u” is arbitrary, then the coefficients of the polynomials vanish:
(") 20l —my + K] =0,
(u")?: Bag(s + as2(ny —my) + Ki1] =0,

u” 2] + oa(nh —ny)] =0,

1o i + aol2(my — 1)) — Ki] + Gope — Cote = 0.
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Hence, one gets

Klzoa CQZC;:(L
771(15 — .T) = O11(t — .T) + 012,

ne(t +x) = Cri(t + x) + Co,
which imply
E(t,x,u) =C, n(t,z,u) =Cy ((t,z,u) =0,

where C, Cy, C1q, Cha, Cy, are arbitrary constants. Thus, the kernel of admitted

Lie group is defined by the infinitesimal generators

X1 =08, Xo=0,. (C.14)

C.2.2 Extensions of the kernel
Differentiating (C.13) with respect to u”, one obtains
[Kyu™ + GG +2(n —m)G = 0.
It can be written as

KiA+ B+ 2(ny,—n)C =0, (C.15)

< K1,C2Ta2<77§ - 771) > < -’4’ B,C >= Oa (016)

where A = u"G", B = G", C = G'. Analysis of equation (C.15) is similar to the
analysis given for gas dynamics equation by Ovsiannikov (1978).
Let us consider the vector space V = span{< A, B,C >}.

Case dim(V)=3. If dim(V)=3, then the solution of (C.15) is

Ky =0,¢ =0,n—m=0. (C17)
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These imply that

m(t,z) = Cu(t —z)+ Chy, (C.18)

ne(t,x) = Ci1(t + x) + Coaa, (C.19)

where C'1, C5 and Cy are arbitrary constants. By the virtue of n = n", one gets

C11 = 0. Thus relations (C.17)-(C.19) lead to the kernel
E(t,x,u) = Cs, n(t,z,u) = Cy, ((t,z,u) =0,

where C3 and () are arbitrary constants.
Case dim(V)=2. In this case, there exists a nonzero constant vector

< «, 3,7 > which is orthogonal to V, i.e.
aA+ BB+ ~C = 0.
The equation can be rewritten as
(au™ + )2 + vz =0, (C.20)

where z = G'.

Case a = 0. The assumption a = 0 implies that 5 # 0 and
2 = Koe K

where Ky # 0, K are arbitrary constants. Since the integration of function z
depends on K, one needs to consider two subcases : K =0 and K # 0.

Case K = 0. For this case, the function G(u™) = Kou™ + K3, where
K is constant. This function contradicts the condition dim(V)=0.

Case K # 0. In this case

K, -
Gu") = —?OefKu + Ky,
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where K is an arbitrary constant. Substituting G(u") into (C.15), then split with

—Ku™

respect to u"e and e 5" we find

Kl = 07
G = wlmt+2) —ni(t —2)],
Goar = Goan + 2K (mplt +2) =i (t = 7)) = 0.
These equations give
Kay(ny —ny) =0.

Since the case Ky # 0 leads to 7, and 7, are constants, which does not extend the
kernel of admitted Lie group, then one needs to consider K, = 0.

For K, = 0 one obtains the admitted infinitesimal generator

2 / /
X = (= m) 0+ (. +12)0s + 7 (75 — 1] 0.

Case «a # 0. In this case, the general solution of (C.20) is

G' = Ky(au™ + )=, (C.21)

Further the integration depends on the value of a/7.

Assuming that a # 7, one finds

K .
G = 10 (OéuT—f-ﬁ)l_E +K11,

where K7 is a constant. Substituting it into (C.13) and differentiating with respect

to u”, one finds
1w +9¢
au” + 3

Differentiate with respect to u™ again,

(GG — BKy) = 0.
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Case 7 = 0. This case implies that G is linear function with respect
to u”, which leads to dim(V)= 0 and contradicts to the assumption.

Case v # 0. In the case v # 0. After splitting the determining equation
with respect to u”, one finds

77, _77/ :7Kl
2 1 20[

From (C.12), one obtains that K; = 0, which does not give an extensions of the
kernel.
Assuming that a = ~, after splitting the determining equation with respect

to u”, one gets

Similar to the previous case, this case also does not give an extension of the kernel.
Case dim(V)=1. The assumption dim(V)=1 implies the existence of

nonzero constant vector («, (3,+) such that
<A B,C>=f(u") <, B,y >, (C.22)

where f is an arbitrary function. Without loss of generality, one can suppose that

v = 1. Then equation (C.22) gives
fu” = a,

which means that « = = 0. Hence, G’ is constant which contradicts to the
condition dim(V)=1.
Case dim(V) = 0. This means that < A, B,C > is a constant vector,
say < «, 3,7 >. Then
WG = a,
G" = B,

G'=~, 7#0.
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These equations imply that o = = 0, and G is a linear function of u7,

G(UT) = K15UT -+ K16-

Substituting G(u") into (C.13), and differentiating with respect to u”, one gets

my —n) = 0.

This implies that n(t,x) = C1,£(t,x) = Cs, where C,Cy are constants. The

remaining determining equation is
Cott — Cowe = KoCy — K1 K. (C.23)
Hence, the infinitesimal generator is
X = C10y + C20, + [Kqu + (o(t, x)]0y, (C.24)

where (o(t, x) is an arbitrary solution of (C.23).

The results for the previous calculations are presented in the following table.

Table C.1 Lie group classification of the wave equation with a delay

No. G(u") Generator
1 G(u") is arbitrary X = 10y + 20,
2 G") =kou” + Kk X = 10 + 20, + (ku+ G(t,x))0,
3 G) = X = (2 =)0+ (m +n2)0; + 7 (11 —17) 0y

Here ¢y,c0,k # 0,ky # 0,k1,m(t — x),me(t + x) are arbitrary and (o(¢,x)

is an arbitrary solution of (;; — (pr = ko(™ — kk;.
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