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CHAPTER I

INTRODUCTION

In general, not only ordinary differential equations but also delay ordinary

differential equations are used to describe various physical phenomena. Delay or-

dinary differential equations, or DODEs, are similar to ordinary differential equa-

tions, but their evolutions involve past values of the state variables. In this thesis,

the following general simple form of second-order DODEs

y′′ = f(x, y, yτ , y
′, y′τ ) (1.1)

is focused on, where y = y(x), y′ = y′(x), yτ = y(x− τ) and y′τ = y′(x− τ).

DODEs play a major role in physical, biological and medical modeling: the

two-body problem of electrodynamics (Driver, 1977), prey and predator popula-

tion models (Driver), mixing of liquids(Driver), evolution equations of a single

species (Gopalsamy, 1991, quoted in Kolmanovskii and Myshkis, 1992), coexis-

tence of competitive micro-organisms (Freeman, So, Waltman, 1988, quoted in

Kolmanovskii and Myshkis), mathematical models of the sugar quantity in blood

(Shvitra, 1989, quoted in Kolmanovskii and Myshkis), models of arterial blood

pressure regulation (Godin, Kolmanovskii and Stengold, 1990, quoted in Kol-

manovskii and Myshkis ), mathematical models of learning(Shimbell, 1950, quoted

in Kolmanovskii and Myshkis), vision processes in the compound eye (Hadeler,

1976, quoted in Kolmanovskii and Myshkis), optimal advertising policies (Pauwels,

1977, quoted in Kolmanovskii and Myshkis), models of fishing processes (Kot,

1979, quoted in Kolmanovskii and Myshkis), river pollution control (Lee and Li-

etmann, 1988, quoted in Kolmanovskii and Myshkis ), etc.
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Although DODEs are widely applied to many branches of science, exact

solutions are not yet known for most of them. Throughout the years, many meth-

ods for obtaining exact solutions of differential equations instead of approximating

solutions have been developed. One of them is group analysis.

Group analysis was initially introduced in the 1870s by a Norwegian mathe-

matician, Sophus Lie (Ovsiannikov, 1978). He found a new method for integrating

differential equations. This method is universal and effective for solving nonlinear

differential equations analytically. It involves the study of symmetries of differen-

tial equations, with the emphasis on using the symmetries to find solutions. The

theory of group analysis has been applied to both ordinary and partial differential

equations.

One of its applications to differential equations is the problem of group

classification of differential equations. Group classification means to classify given

differential equations with respect to arbitrary elements. The group classification

problem of differential equation was first formulated by Lie (Ibragimov, 1996). He

gave a classification of ordinary differential equations in terms of their symmetry

groups, thereby identifying the full set of equations which could be solved or

reduced to lower-order equations by this method. In 2002, group analysis was

applied systematically to delay differential equations (Tanthanuch and Meleshko,

2002). The method for constructing and solving the determining equation are

shown in Tanthanuch and Meleshko (2003).

Even though the group classification for second-order ordinary differential

equation has been studied, group classification for DODEs has not been fully

developed yet. This research deals with the classification problem of second-order

delay ordinary differential equations.

The purpose of this thesis is to classify a family of second-order delay ordi-
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nary differential equations (1.1) according to their symmetries.

The thesis is designed as follows. Chapter II reviews the definitions of func-

tional and delay differential equations and some of their applications. Moreover,

existence theorem of a solution of DDEs is also presented. Chapter III provides

an introduction to the concept of a group of point transformations, their cor-

responding infinitesimal generators and definition of symmetry group of DDEs.

Complete group classification of second-order DODEs is revisited in Chapter IV.

The conclusion of this thesis is presented in the last chapter.



CHAPTER II

FUNCTIONAL AND DELAY DIFFERENTIAL

EQUATIONS

A more general type of differential equations called functional differential

equation is frequently found in modern scientific and engineering research publi-

cations. Although this type of equation plays a key role in many branches, the

theory for functional differential equation is still being developed.

In this chapter, definitions of functional differential equation, delay differ-

ential equation and some mathematical models which are described by these types

of equations are given. The existence theory for delay differential equation is also

presented.

2.1 Functional Differential Equations (FDEs)

Definition 2.1. (FDE). An equation involving functionals∗ of independent vari-

ables, dependent variables and derivatives of dependent variables with respect to

one or more independent variables is called a functional differential equation.

Consider an FDE with aftereffect,

u(m)(x) = f(x, u(m1)(x− h1(x)), ..., u(mk)(x− hk(x))), (2.1)

where u(x) ∈ Rn, u(mi) is the mi-order derivative of u with respect to x and all

∗Some familiarity with the concept of “functional” and related concepts is assumed but a

review is included in A.1, Appendix A. One may find the definition and its concepts from

textbooks, e.g. Kreyszig (1978).
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mi ≥ 0, hi(x) ≥ 0, i = 1, ..., k.

In the literature, equation (2.1) is called

• a functional differential equation of retarded type or retarded differential equa-

tion (RDE), if max{m1, ..., mk} < m;

• a functional differential equation of neutral type (NDE), if

max{m1, ..., mk} = m; and

• a functional differential equation of advanced type (ADE), if

max{m1, ..., mk} > m.

FDEs are widely applicable in biology, physics, engineering and economics. Expe-

rience in mathematical modeling has shown that the evolution equations of actual

process with aftereffect are almost exclusively RDEs and NDEs. The following are

some examples of them.

Coexistence of competitive micro-organisms. The following model

of competing micro-organisms surviving on a single nutrient and with delays in

birth and death process has been described in (Freeman, So and Waltman, 1988,

quoted in Kolmanovskii and Myshkis):

ẋ0(t) = 1− x0(t)− x1(t)f1(x0)− x2(t)f2(x0),

ẋ1(t) = [f1(x0(t− τ1))− 1]x1(t),

ẋ2(t) = [f2(x0(t− τ2))− 1]x2(t).

Here x0 is the nutrient concentration, x1, x2 are the concentrations of competing

micro-organisms τi > 0 are (constant) delays, and fi(0) = 0, fi(x) > 0 for x > 0.

Mathematical models of the sugar quantity in blood. FDEs can

be efficiently used to describe various processes in living organizations. Various

heredity models have been proposed to describe the functioning of the thyroid
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gland, the system of maintaining the sugar level in blood, and blood production.

Certain parameters in these models can be regulated (temperature, diet, drugs,

etc.) E.g., the control model for the sugar level in blood has the form (Shvitra,

1989, quoted in Kolmanovskii and Myshkis)

ẋ1(t) = a1{a2x4(t) + a3[a2x4(t)− a4x2(t)]− a5x1(t− τ)}x1(t),

ẋ2(t) = a6{a2x4(t) + b1u(t)− a7[a2x4(t)− a5x1(t)]− a4x2(t)}x2(t),

ẋ3(t) = a8{a5x1(t) + b2u(t) + a9[a5x1(t)− a4x2(t)]− a10x3(t)}x3(t),

ẋ4(t) = a11{1 + u(t) + a12[1− a4x2(t)]− a2x4(t)}x4(t).

Here, x1(t) is the amount of insulin produced by the pancreas, x2(t) is the amount

of active insulin in the blood, x3 is the total amount of insulin in the blood,

x4(t) is the amount of sugar in the blood (all at time t); a2, a4, a5, a10 are the

averages of these amount; the delay τ characterizes the finite time needed for

production of insulin, and a1 is the rate of insulin production; a6, a8, a11 reflect

the increase of insulin, total amount of insulin and sugar in the blood; finally,

b1 ≥ 0, b2 ≥ 0, a3, a7, a9, a12 are feedback coefficients. The control u(t) is

fulfilled by choice of a diet, and may affect the amount of sugar in the blood.

Models of lasers. (Stats, de Mars, Wilson and Tang, 1965, quoted in Kol-

manovskii and Myshkis ) FDEs are widely used to model the dynamic properties

of a laser

ẋ1(t) = vx1(t)[x2(t)− 1−m− αmx1(t− τ)] + vU0,

ẋ2(t) = K0 −K(t)[x1(t) + 1],

where x1(t) is the radiation density and x2(t) the amplification coefficient. The

other parameters are constants depending on the properties of the laser.

Mathematical models of learning.(Shimbell, 1950, quoted in Kol-

manovskii and Myshkis) The following model has been proposed to describe the
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behavior of the central nervous system in a learning process

ẋ(t) = K[x(t)− x(t− 1)][N − x(t)], t ≥ 0,

x(t) = 0, (−1 ≤ t < 0), x(0) = x0.

Here, K and N are positive constants, 0 < x0 < N .

Model of survival of red blood cells. A model for the survival of red

blood cells in an animal has been described (Wazewska-Czyzevsia and Lasota,

1988, quoted in Kolmanovskii and Myshkis ) by the equation

ẋ(t) = −ax(t) + be−γx(t−τ), t ≥ t0,

where x(t) is the number of red blood cells at time t, a is the probability of death

of a red blood cell, b, γ > 0 are constants related to the production of red blood

cells per unit time, and the delay τ > 0 is the time required to produce a red

blood cells.

River pollution control. Let z(t) and q(t) be the concentrations per unit

volume of biological oxygen demand (BOD) and dissolved oxygen (DO), respec-

tively, at time t. It is assumed that the flow rate discount, water is well mixed, and

there exists τ > 0 such that BOD and DO concentrations entering at time t are

equal to the corresponding concentrations τ time units ago. Using mass balance

concentration, the following equations have been derived (Lie and Leitmann, 1989,

quoted in Kolmanovskii and Myshkis)

ż(t) = −k1(t)z(t) + v−1[Q1(m + u1(t)) + Qz(t− τ)− (Q + Q1)z(t)] + v1(t),

q̇(t) = −k3(t)z(t) + k2(t)[q0 − q(t)] + v−1[Qq(t− τ)− (Q + Q1)q(t)] + u2(t) + v2(t).

Here, ki(·) denote the BOD decay rate, the BO re-action rate, and the BOD

deoxygenation rate; q0 is the DO saturation concentration; Q and Q1 are the

stream flow rate and the effluent flow rate; v is the constant volume of water
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under consideration; ui(t) are controls; vi(·) are random disturbances affecting the

rates of change of BOD and DO; and m is a constant.

Similarly to the classification of differential equations by order, we classify

FDEs according to the order of the highest derivative appearing in the equation.

Definition 2.2. The order of a FDE is the order of the highest derivative of the

unknown function entering in the equation, when written in the form of (2.1).

Definition 2.3. A solution of an FDE in some region R of the space of the inde-

pendent variables is a function that has derivatives and functionals of derivatives

appearing in the equation in some domain containing R and satisfies the equation

everywhere in R.

2.2 Delay Differential Equations (DDEs)

Definition 2.4. (DDE). Delay differential equations with one independent vari-

able, or functional differential equations of retarded type, are of the form

u′(x) = f(x, u(g1(x)), ..., u(gq(x))), (2.2)

where x ∈ [x0, β), u : [γ, x] 7→ D, D is an open subset in Rn, u and f are n-vector-

valued, sufficiently time differentiable functions, f : [x0, β) × Dq 7→ Rn, and for

each λ = 1, ..., q, γ ≤ gλ(x) ≤ x, for x0 ≤ x < β.

Note that g1 is usually chosen to be the identity mapping.

Definition 2.5. A solution of equation (2.2), with the initial condition θ(x) de-

fined on [γ, x0], is a continuous function u : [γ, β1) 7→ D, for some β1 ∈ (x0, β] such

that

1. u(x) = θ(x) for γ ≤ x ≤ x0, and
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2. u′(x) = f(x, u(g1(x)), ..., u(gq(x))) for x0 ≤ x ≤ β1.

Remark. The derivative of u at the point x0 is considered only from the right-

hand side.

Definitions 2.4 and 2.5 indicate that initial values of DDEs have to be satisfied

for the whole interval considered. In other words, they are of non-local differential

equation type.

2.3 Existence Theory of a Solution of a DDEs

Consider a delay differential equation system

u′(x) = f(x, u(g1(x)), ..., u(gq(x))). (2.3)

By definition 2.4, we may assume that

x− τ ≤ gλ(x) ≤ x for x ≥ x0, λ = 1, ..., q,

for some constant τ ≥ 0. The initial condition takes the form

u(x) = θ(x) for x0 − τ ≤ x ≤ x0,

here θ(x) is a given function. Note that system (2.3) is reduced to a system of

ODEs if τ = 0. It is assumed that f is defined on [x0, β) × Dq 7→ Rn for some

β > x0 and some open set D ⊂ Rn.

Since the notation of system (2.3) is cumbersome, it would be better to

have a simpler notation.

If u is a function defined at least on [x− τ, x] 7→ Rn, then we define a new

function ux : [−τ, 0] 7→ Rn by

ux(σ) = u(x + σ) for − τ ≤ σ ≤ 0.



10

From another point of view, ux is obtained by considering only u(s) for x − τ ≤
s ≤ x and then translating this segment of u to the interval [−τ, 0]. If u is a

continuous function, then ux is a continuous function on [−τ, 0].

Let real numbers τ ≥ 0 and x0 be given and let x0 < β ≤ ∞. Let D be an

open set in Rn, and let F be defined on [x0, β)× CD 7→ Rn, where CD is the set of

all continuous functions mapping [−τ, 0] 7→ D, i.e. CD = C([−τ, 0],D). Define

F (x, ux) ≡ f(x, u(g1(x)), ..., u(gq(x))).

Then system (2.3) can be written as

u′(x) = F (x, ux). (2.4)

Given any φ ∈ CD, we seek a continuous function u : [x0 − τ, β1) 7→ D for

some β1 ∈ (x0, β] such that system (2.4) is satisfied on [x0, β1) and

ux0 = φ. (2.5)

For the existence of solutions of system (2.4), it is sufficient to require the

following conditions on F .

Definition 2.6. A function F (x, ux) satisfies the Continuity Condition if F (x, ux)

is continuous with respect to x in [x0, β) for any given continuous function u :

[x0 − τ, β) 7→ D.

If F satisfies the Continuity Condition then a continuous function u :

[x0, β1) 7→ D is a solution of equations (2.4) and (2.5) if and only if

u(x) =





φ(x− x0) for x0 − τ ≤ x ≤ x0,

φ(0) +
∫ x

x0
F (s, us)ds for x0 ≤ x ≤ β1.

(2.6)
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In order to define a Lipschitz condition, a means for measuring the magni-

tude of elements of CD is required.

For a function ψ ∈ CD,

|ψ|τ = sup
−τ≤%≤0

|ψ(%)|.

Definition 2.7. Let F : [x0, β)× CD 7→ Rn and let E be a subset of [x0, β)× CD.

If there exists K ≥ 0 so that

|F (x, ψ)− F (x, ψ̄)| ≤ K|ψ − ψ̄|τ , (2.7)

whenever (x, ψ) and (x, ψ̄) ∈ E , we say that F satisfies a Lipschitz condition (or

F is Lipschitzian) on E with Lipschitz constant K.

Definition 2.8. A functional F : [x0, β) × CD 7→ Rn is locally Lipschitzian if for

each given (x̄, ψ̄) ∈ [x0, β)× CD there exist numbers a > 0 and b > 0 such that

E ≡ ( [x̄− a, x̄ + a] ∩ [x0, β) )× {ψ ∈ CD : |ψ − ψ̄|τ ≤ b}

is a subset of [x0, β)× CD and F is Lipschitzian on E .

Remark. The Lipschitz constant for F depends on the particular set E .

Theorem 2.1 (Local Existence, Driver, 1977). Let F : [x0, β)× CD 7→ Rn satisfy

the Continuity Condition and be locally Lipschitzian. Then, for each φ ∈ CD,

equations (2.4) and (2.5) have a unique solution on [x0 − τ, x0 + ∆) for some

∆ > 0.



CHAPTER III

GROUP ANALYSIS

Before moving on to the main discussion of this thesis in the next chapter,

it is useful to review some basic concepts from group analysis. Group analysis

was initially introduced in 1870 by a Norwegian mathematician, Sophus Lie. Lie

group analysis provides general methods for integration of linear and nonlinear

differential equations using their symmetries. It is a universal and effective method

for solving nonlinear differential equations analytically.

The purpose of this chapter is to present preliminary knowledge of group

analysis for differential equation: definition of a one-parameter Lie group and cor-

responding infinitesimal generator, prolongation formula, Lie-Bäcklund represen-

tation, Lie algebra of operators, definition of determining equation and symmetry

group for delay differential equations.

3.1 Lie Group of Point Transformations

Let x = (x1, . . . , xn) be n-tuples of the independent variables and u =

(u1, . . . , um) be m-tuples of the dependent variables. Consider invertible transfor-

mations of x and u

x̄ = (x̄1, . . . , x̄n) = (ϕx
1(x, u; a), . . . , ϕx

n(x, u; a)) = ϕx(x, u; a),

ū = (ū1, . . . , ūm) = (ϕu
1(x, u; a), . . . , ϕu

m(x, u; a)) = ϕu(x, u; a),

(3.1)
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depending upon a real continuous parameter a, which lies in an open symmetric

interval S, with conditions

ϕx
i (x, u; 0) = xi, i = 1, . . . , n,

ϕu
α(x, u; 0) = uα, α = 1, . . . , m.

(3.2)

These transformations are assumed to be sufficiently differentiable with respect to

the variables xi and uα, and to be analytic functions of the parameter a.

It is said that these transformations form a one-parameter group G if the

successive action of two transformations is equivalent to the action of another

transformation of the form (3.1), i.e.

ϕx(x̄, ū; b) = ϕx(ϕx(x, u; a), ϕu(x, u; a); b) = ϕx(x, u; a + b),

ϕu(x̄, ū; b) = ϕu(ϕx(x, u; a), ϕu(x, u; a); b) = ϕu(x, u; a + b).

(3.3)

In practice, it often happens that the group property is valid only locally, i.e. only

for |a|, |b| and |a| + |b| sufficiently small. In this case, G is referred to as a local

one-parameter transformation group. In group analysis, local groups are used,

which for brevity are simply called groups.

The transformations (3.1) are called point transformations, and the group

G is called a group of point transformations. It is readily seen from formulas (3.2)

and (3.3) that the inverse transformation can be obtained by changing the sign of

the parameter:

x = ϕx(x̄, ū,−a), u = ϕu(x̄, ū,−a) (3.4)

Let Ta denote the transformation (3.1) of a point (x, u) into the point (x̄, ū), I

denote the identity transformation, T−1
a denote the transformation inverse to Ta,

and TbTa denote the composition of two transformations. Then one may summarize

properties (3.1)-(3.4) as follows:

A set G of transformations Ta is a group of point transformations if

the following hold:
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1. T0 = I ∈ G,

2. TbTa = Ta+b ∈ G, a, b ∈ S,

3. If a ∈ S and Ta ((x, u)) = (x, u) for all (x, u), then a = 0.

The functions ϕx and ϕu can be represented via their Taylor series expan-

sions with respect to the parameter a in the neighborhood of the expansion point

0 and thus the transformations in (3.1) can be written as follows:

x̄i = ϕx
i (x, u; a) = xi + ξi(x, u)a + · · · ,

ūα = ϕu
α(x, u; a) = uα + ηα(x, u)a + · · · ,

or

x̄i ≈ xi + ξi(x, u)a, ūα ≈ uα + ηα(x, u)a, (3.5)

where

ξi(x, u) =
∂ϕx

i (x, u; a)

∂a

∣∣∣∣∣
a=0

, ηα(x, u) =
∂ϕu

α(x, u; a)

∂a

∣∣∣∣∣
a=0

.

Given an infinitesimal transformation (3.5), the corresponding group can be com-

pletely determined by the following system of differential equations, called Lie

equations, with appropriate initial conditions:

dϕx
i

da
= ξi(ϕ

x, ϕu), ϕx
i

∣∣∣
a=0

= xi,

dϕu
α

da
= ηα(ϕx, ϕu), ϕu

α

∣∣∣
a=0

= uα.

(3.6)

Consider the first-order differential operator

X = ξ1(x, u)
∂

∂x1

+ · · ·+ ξn(x, u)
∂

∂xn

+ η1(x, u)
∂

∂u1
+ · · ·+ ηm(x, u)

∂

∂um
. (3.7)

Sophus Lie called the operator (3.7) a symbol of the infinitesimal transformation

(3.5). In this thesis, the words infinitesimal generator, infinitesimal operator,

group generator, group operator and Lie operator are used interchangeably.
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The first-order differential operator (3.7) is written briefly as

X = ξi(x, u)
∂

∂xi

+ ηα(x, u)
∂

∂uα
, (3.8)

where the repeated index i means summation with respect to i from i = 1 to n

and the repeated index α means summation with respect to α from α = 1 to m.

3.2 Change of Variables

Let G be an one-parameter group of transformations

x̃ = ϕx(x, y; a), ỹ = ϕy(x, y; a)

with corresponding generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (3.9)

Consider an invertible (nonsingular) change of variables:

x̄ = h(x, y), ȳ = g(x, y), (3.10)

and its inverse

x = h̄(x̄, ȳ), y = ḡ(x̄, ȳ), (3.11)

with the Jacobian ∆ = h̄x̄ḡȳ− ḡx̄h̄ȳ 6= 0. Substituting (3.10) into ( 3.11), we obtain

the identities

x = h̄(h(x, y), g(x, y)), y = ḡ(h(x, y), g(x, y)). (3.12)

Differentiating with respect to x and y, we have

1 = h̄x̄(x̄, ȳ)hx(h̄(x̄, ȳ), ḡ(x̄, ȳ)) + h̄ȳ(x̄, ȳ)gx(h̄(x̄, ȳ), ḡ(x̄, ȳ)),

0 = ḡx̄(x̄, ȳ)hx(h̄(x̄, ȳ), ḡ(x̄, ȳ)) + ḡȳ(x̄, ȳ)gx(h̄(x̄, ȳ), ḡ(x̄, ȳ)),

0 = h̄x̄(x̄, ȳ)hy(h̄(x̄, ȳ), ḡ(x̄, ȳ)) + h̄ȳ(x̄, ȳ)gy(h̄(x̄, ȳ), ḡ(x̄, ȳ)),

1 = ḡx̄(x̄, ȳ)hy(h̄(x̄, ȳ), ḡ(x̄, ȳ)) + ḡȳ(x̄, ȳ)gy(h̄(x̄, ȳ), ḡ(x̄, ȳ)).
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Solving these equations for hx, hy, gx and gy, one obtains

hx(h̄(x̄, ȳ), ḡ(x̄, ȳ)) =
ḡȳ(x̄, ȳ)

∆(x̄, ȳ)
, hy(h̄(x̄, ȳ), ḡ(x̄, ȳ)) = − h̄ȳ(x̄, ȳ)

∆(x̄, ȳ)
, (3.13)

gx(h̄(x̄, ȳ), ḡ(x̄, ȳ)) = − ḡx̄(x̄, ȳ)

∆(x̄, ȳ)
, gy(h̄(x̄, ȳ), ḡ(x̄, ȳ)) =

h̄x̄(x̄, ȳ)

∆(x̄, ȳ)
. (3.14)

Under the change of variables (3.10) the differential operator (3.9) is transformed

as follows:

X̄ = ξ̄(x̄, ȳ)
∂

∂x̄
+ η̄(x̄, ȳ)

∂

∂ȳ
. (3.15)

Here ξ̄(x̄, ȳ) and η̄(x̄, ȳ) are obtained by the action of differential operator X on

the function h, g, the results are written as a function of new variables x̄, ȳ, i.e.,

ξ̄(x̄, ȳ) = X(h(x, y))
∣∣∣
x=h̄, y=ḡ

=
[
ξ(x, y)hx(x, y) + η(x, y)hy(x, y)

]
x=h̄, y=ḡ

=
[
ξ(h̄(x̄, ȳ), ḡ(x̄, ȳ))hx(h̄(x̄, ȳ), ḡ(x̄, ȳ)) + η(h̄(x̄, ȳ), ḡ(x̄, ȳ))hy(h̄(x̄, ȳ), ḡ(x̄, ȳ))

]

η̄(x̄, ȳ) = X(g(x, y))
∣∣∣
x=h̄, y=ḡ

=
[
ξ(x, y)gx(x, y) + η(x, y)gy(x, y)

]
x=h̄, y=ḡ

=
[
ξ(h̄(x̄, ȳ), ḡ(x̄, ȳ))gx(h̄(x̄, ȳ), ḡ(x̄, ȳ)) + η(h̄(x̄, ȳ), ḡ(x̄, ȳ))gy(h̄(x̄, ȳ), ḡ(x̄, ȳ))

]
.

Hence, from (3.13) and (3.14), ξ̄, η̄ are rewritten as follows

ξ̄(x̄, ȳ) = ξ(h̄(x̄, ȳ), ḡ(x̄, ȳ))
ḡȳ(x̄, ȳ)

∆
− η(h̄(x̄, ȳ), ḡ(x̄, ȳ))

h̄ȳ(x̄, ȳ)

∆
, (3.16)

η̄(x̄, ȳ) = −ξ(h̄(x̄, ȳ), ḡ(x̄, ȳ))
ḡx̄(x̄, ȳ)

∆
+ η(h̄(x̄, ȳ), ḡ(x̄, ȳ))

h̄x̄(x̄, ȳ)

∆
. (3.17)

3.3 Prolongations

By definition, groups of point transformations act only on the space of (x, u)

of n + m variables. However, to apply these groups to differential equations, one

needs the transformations of derivatives. Thus it is necessary to extend a group of

point transformations acting on the (x, u)-space to groups of point transformations
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acting on the (x, u, u
1
)-space, (x, u, u

1
, u

2
)-space, . . ., (x, u, u

1
, u

2
, . . . , u

s
)-space, s ≥ 1,

for a given differential equation with order s. These groups are called the first

prolongation group, the second prolongation group, ..., the s-times prolongation

group, respectively, where the transformations are of the form

x̄ = ϕx(x, u; a) = x + ξ(x, u)a + · · · ,

ū = ϕu(x, u; a) = u + η(x, u)a + · · · ,

ū
1

= ϕ
u
1(x, u, u

1
; a) = u

1
+ ζ(1)(x, u, u

1
)a + · · · ,

...

ū
s

= ϕ
u
s(x, u, u

1
, . . . , u

s
; a) = u

s
+ ζ(s)(x, u, u

1
, . . . , u

s
)a + · · · .

The prolongation transformation formulas∗ of the components {ūα
,i} of ū

1
are de-

termined by




ūα
,1

ūα
,2

...

ūα
,n




=




(ϕ
u
1)α

1 (x, u, u
1
; a)

(ϕ
u
1)α

2 (x, u, u
1
; a)

...

(ϕ
u
1)α

n(x, u, u
1
; a)




= A−1




D1ϕ
u(x, u; a)

D2ϕ
u(x, u; a)

...

Dnϕ
u(x, u; a)




,

where A−1 is the inverse (assumed to exist) of the matrix

A =




D1ϕ
x
1 D1ϕ

x
2 · · · D1ϕ

x
n

D2ϕ
x
1 D2ϕ

x
2 · · · D2ϕ

x
n

...
...

...

Dnϕx
1 Dnϕ

x
2 · · · Dnϕx

n




,

∗See more details in Ovsiannikov (1978)
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and the prolongation transformations formulas of the components {ūα
,i1···is} of ū

s

are determined by



ūα
,i1···is−11

ūα
,i1···is−12

...

ūα
,i1···is−1n




=




(ϕ
u
s)α

i1···is−11(x, u, u
1
, . . . , u

s
; a)

(ϕ
u
s)α

i1···is−12(x, u, u
1
, . . . , u

s
; a)

...

(ϕ
u
s)α

i1···is−1n(x, u, u
1
, . . . , u

s
; a)




= A−1




D1[(ϕ
u

s−1)α
i1···is−1

(x, u, u
1
, . . . , u

s−1
; a)]

D2[(ϕ
u

s−1)α
i1···is−1

(x, u, u
1
, . . . , u

s−1
; a)]

...

Dn[(ϕ
u

s−1)α
i1···is−1

(x, u, u
1
, . . . , u

s−1
; a)]




.

The formulas of the coefficients, ζα
i , . . . , ζα

i1···is , of the infinitesimal generator

are determined by

ζα
i = Di(η

α)− uα
,jDi(ξj),

ζα
i1i2

= Di2(ζ
α
i1
)− uα

,i1jDi2(ξj),

...

ζα
i1···is = Dis(ζ

α
i1···is−1

)− uα
,i1···is−1jDis(ξj).

Thus, the first prolonged generator of (3.8) is

X(1) = X + ζα
i

∂

∂uα
,i

= ξi
∂

∂xi

+ ηα ∂

∂uα
+ ζα

i

∂

∂uα
,i

,

and the s-times prolonged generator is written recurrently as:

X(s) = X(s−1) + ζα
i1···is

∂

∂uα
,i1···is

.

3.4 Lie Algebras of Operators

The theory of Lie algebras is one of the well-developed fields of modern

mathematics. A rigorous treatment of this subject can be found in the specialized

literature.
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Consider any pair of first-order linear partial differential operators

Xi = ξi(x, u)
∂

∂x
+ ηi(x, u)

∂

∂u
, Xj = ξj(x, u)

∂

∂x
+ ηj(x, u)

∂

∂u
. (3.18)

Definition 3.1. The commutator [Xi, Xj] of operators (3.18) is the linear partial

differential operator defined by the formula

[Xi, Xj] = XiXj −XjXi,

or equivalently

[Xi, Xj] =
(
Xi(ξj)−Xj(ξi)

) ∂

∂x
+

(
Xi(ηj)−Xj(ηi)

) ∂

∂u
. (3.19)

Definition 3.2. (Lie algebra). Let Lr be an r-dimensional vector space spanned

by r linearly independent operators of the form (3.18),

X = C1X1 + C2X2 + · · ·+ CrXr,

C1, C2, . . . , Cr are constant. The space Lr is called a Lie algebra if it is closed under

the commutator, [X,Y ] ∈ Lr whenever X,Y ∈ Lr. The operators X1, X2, . . . , Xr

provide a basis of the Lie algebra Lr. We also say that Lr is a Lie algebra spanned

by X1, X2, . . . , Xr.

The Lie algebra is denoted by the same letter L, and the dimension dimL

of the Lie algebra is the dimension of the vector space L. We shall use the symbol

Lr to denote an r−dimensional Lie algebra.

It follows from (3.19) that the commutator is bilinear:

[c1X1 + c2X2, X] = c1[X1, X] + c2[X2, X],

[X, c1X1 + c2X2] = c1[X, X1] + c2[X, X2],

skew-symmetric:

[X1, X2] = −[X2, X1],
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and satisfies the Jacobi identity:

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0.

Definition 3.3. (Isomorphism). A linear one-to-one map f of a Lie algebra L onto

a Lie algebra K is called an isomorphism (and L and K are said to be isomorphic)

if

f([X1, X2]L) = [f(X1), f(X2)]K

where the indices L and K are used to denote the commutators in the correspond-

ing algebras. An isomorphism of L onto itself is termed an automorphism.

Definition 3.4. (Subalgebra). Let Lr be a Lie algebra spanned by X1, X2, . . . , Xr.

A subspace Ls of the vector space Lr spanned by a subset of the basis operators

X1, X2, . . . , Xs, s < r, is called a subalgebra of Lr if [X,Y ] ∈ Ls for any X, Y ∈ Ls.

Furthermore, Ls is called an ideal of Lr if [X, Y ] ∈ Ls whenever X ∈ Ls, Y ∈ Lr.

3.5 Lie-Bäcklund Representation

Let A denote the space of differentiable functions of all finite orders†. This

space is a vector space with respect to the usual addition of functions. Further-

more, it has the important property of being closed under the differentiation given

by Di =
∂

∂xi

+ uα
,i

∂

∂uα
+ uα

,ij

∂

∂uα
,j

+ . . . .

Consider an operator of the form

X = ξi
∂

∂xi

+ ηα ∂

∂uα
+ ζα

i

∂

∂uα
,i

+ ζα
i1i2

∂

∂uα
,i1i2

+ . . . , (3.20)

where ξi, ηα ∈ A are infinitely differentiable functions, and

ζα
i = Di(η

α − ξju
α
,j) + ξju

α
,ji,

ζα
i1i2

= Di2Di1(η
α − ξju

α
,j) + ξju

α
,ji1i2

,

· · ·

(3.21)

†See more details in Ibragimov (1999)
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Operator (3.20) with coefficients given by equations (3.20) and (3.21) is called a

Lie-Bäcklund operator. In fact, the operator (3.20) is the infinite prolongation‡ of

X = ξi
∂

∂xi
+ ηα ∂

∂uα
, ξi, ηα ∈ A. (3.22)

Lemma 3.1. The Lie-Bäcklund operator (3.22) satisfies the commutation relation

XDi −DiX = −Di(ξj)Dj.

This is proved by straightforward computation.

Lemma 3.2. Every operator

X∗ = ξ∗i Di = ξ∗i
∂

∂xi

+ ξ∗i u
α
,j

∂

∂uα
+ ξ∗i u

α
,jj1

∂

∂uα
,j1

+ . . . (3.23)

with arbitrary analytic coefficients ξ∗i is a Lie-Bäcklund operator. The set of

operator (3.23) is an ideal in the Lie algebra of all Lie-Bäcklund operators with

product [X, Y ] ≡ XY − Y X.

It is often advantageous to work with the factor algebra of all Lie-Bäcklund

operators by its ideal L∗ of operators (3.23) rather than the full algebra. Accord-

ingly, two Lie-Bäcklund operators, X and Y will be said to be equivalent whenever

X − Y ∈ L∗. In particular, every operator (3.22) is equivalent to a Lie-Bäcklund

operator with coordinates ξi = 0 (i = 1, . . . , n); namely

X ∼ Y = X − ξiDi = (ηα − ξiu
α
i )

∂

∂uα
+ . . . .

Definition 3.5. A Lie-Bäcklund operator (3.22) of the form

X = ηβ ∂

∂uβ
, ηβ ∈ A, (3.24)

is called a canonical Lie-Bäcklund operator.

‡The concept of the prolongation group and prolonged generator has been given in Section

3.3
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For such operators the prolongation formulas (3.21) acquire a simple form:

ζα
i1...is = Di1 . . . Dis(η

α). (3.25)

From Lemma 3.1 it follows that the canonical Lie-Bäcklund operators commute

with the differentiation operators Di. Conversely, the condition that operator

(3.20) (with ξi = 0) commutes with operator Di implies that (3.25) are satisfied.

Although the shift from (3.22) to equivalent canonical operator (3.24) is

convenient in many problems, there are cases in which it leads to a loss of geometric

transparency. This is first of all true for groups of point transformation. For

example, the infinitesimal generator X =
∂

∂xi

of the simplest one-parameter group

of point transformations - the translations x̄i = xi+a along the xi-axis - is reduced

to the canonical form (3.24), namely Y = uα
i

∂

∂uα
+ . . . .

3.6 Symmetry Group for Differential Equations

Lie groups are related with differential equations through the following idea.

Definition 3.6. (Admitted group). A symmetry group of a system of differential

equations is a group of transformations mapping every solution to another solution

of the same system. A symmetry group is also termed the group admitted by the

system, or an admitted group, and that system of differential equations is said to

be invariant under the symmetry group.

Consider a system of differential equations,

F (x, u, u
1
, · · · , u

s
) = 0. (3.26)

Let u = υ(x) be a solution of system (3.26) and let the transformations depending

on a parameter a, x̄ = ϕx(x, u; a), ū = ϕu(x, u; a), belong to a group admitted by
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system (3.26). Therefore, by the definition of an admitted group, the transformed

variables

x̄ = ϕx(x, υ(x); a),

ū = ϕu(x, υ(x); a),

must be another solution of system (3.26). Hence

F (x̄, ū, ū
1
, · · · , ū

s
) = 0, (3.27)

whenever u satisfies system (3.26). This implies that system (3.27) is invariant

with respect to the group parameter a:

∂F (x̄, ū, ū
1
, · · · , ū

s
)

∂a

∣∣∣∣∣
a=0, (3.26)

≡ 0. (3.28)

Another representation of Equation (3.28) in generator form is

X(s)F (x̄, ū, ū
1
, · · · , ū

s
)
∣∣∣
(3.26)

= 0.

Definition 3.7. Equation (3.28) is called the determining equation of differential

equation (3.26).

3.7 Group Classification Problem of DEs

Lie algebras connected by a change of variable are called similar or equiva-

lent. When one equation is transformed into another by a change of variables, the

algebras admitted by the two equations are similar.

The group classification of ordinary differential equation is based upon the

enumeration of all possible nonequivalent Lie algebras of operators admitted by

the chosen type of equations.

The investigation of the problem of group classification was carried out by

Lie for second-order ordinary differential equations. He gave his classification in
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the complex variable domain. The result of the enumeration of all nonsimilar

algebras (under complex changes of variables) and of invariant equations can be

seen in Ibragimov (1996).

The great success in integration using symmetries provided Lie with an

incentive to begin the classification of all ordinary differential equations of an

arbitrary order in terms of symmetry groups.

There is a considerable literature on the group classification of differential

equations while are of interest in physics. These results are presented in Ovsian-

nikov (1978), Ibragimov (1996) and the literature referenced there in.

For ordinary differential equations of second order with one dependent vari-

able, group classification was obtained using the following strategy. First, all Lie

algebras on the plane that were nonequivalent with respect to a change of the

variables were constructed. Differential invariants of second-order prolongations

were obtained. Lie algebras admitted second-order ODEs were chosen. Using the

invariants of these algebras, the representation of second-order equations were ob-

tained. These equations compose a group classification of second-order ordinary

differential equations. This classification is presented in Table 3.1.
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Lie group classification of second-order ODEs in two real variables domain up to

change of variables. Let p = ∂/∂x and q = ∂/∂y.

Table 3.1 Lie group classification of second-order ODEs in two real variables

domain

No. Lie algebra Representative Equations

1 X1 = p y′′ = f(y, y′)

2 X1 = p, X2 = q. y′′ = f(y′)

3 X1 = q, X2 = xp + yq. xy′′ = f(y′)

4 X1 = p, X2 = q, y′′ = Ce−y′

X3 = xp + (x + y)q.

5 X1 = p, X2 = q, y′′ = Cy′
a−2
a−1 , a 6= 0, 1

2
, 2

X3 = xp + ayq.

6 X1 = p, X2 = q, y′′ = C(1 + y′2)
3
2 eb arctan y′

X3 = (bx + y)p + (by − x)q.

7 X1 = q, X2 = xp + yq, xy′′ = Cy′3 − 1
2
y′

X3 = 2xyp + y2q.

8 X1 = q, X2 = xp + yq, xy′′ = y′ + y′3 + C(1 + y′2)3/2

X3 = 2xyp + (y2 − x2)q.

9 X1 = q, X2 = xp + yq, xy′′ = y′ − y′3 + C(1− y′2)3/2

X3 = 2xyp + (y2 + x2)q.

10 X1 = (1 + x2)p + xyq, y′′ = C
[

1+y′2+(y−xy′)2
1+x2+y2

]3/2

X2 = xyp + (1 + y2)q,

X3 = yp− xq.

11 X1 = p, X2 = q, X3 = xq, y′′ = 0

X4 = xp, X5 = yp, X6 = yq,

X7 = x2p + xyq, X8 = xyp + y2q.
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Nesterenko’s classification provides a classification of all Lie algebras in the space

of two real variables (Nesterenko, 2006). The results are presented in the table

below

Table 3.2 Classification of all finite dimensional Lie algebra on the real variable

domain

No. Lie algebra basis

1 ∂x

2 ∂x, ∂y

3 ∂x, y∂x

4 ∂x, x∂x + y∂y

5 ∂x, x∂x

6 ∂y, x∂y, ξ1(x)∂y

7 ∂y, y∂y, ∂x

8 e−x∂y, ∂x, ∂y

9 ∂y, ∂x, x∂y

10 ∂y, ∂x, x∂x + (x + y)∂y

11 e−x∂y, − xe−x∂y, ∂x

12 ∂x, ∂y, x∂x + y∂y

13 ∂y, x∂y, y∂y

14 ∂x, ∂y, x∂x + ay∂y, 0 < |a| ≤ 1, a 6= 1

15 e−x∂y, e−ax∂y, ∂x, 0 < |a| ≤ 1, a 6= 1

16 ∂x, ∂y, (bx + y)∂x + (by − x)∂y, b ≥ 0

17 e−bx sin x∂y, e−bx cos x∂y, ∂x, b ≥ 0

18 ∂x, x∂x + y∂y, (x2 − y2)∂x + 2xy∂y

19 ∂x + ∂y, x∂x + y∂y, x2∂x + y2∂y

20 ∂x, x∂x + 1
2
y∂y, x2∂x + xy∂y
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No. Lie algebra basis

21 ∂x, x∂x, x2∂x

22 y∂x − x∂y, (1 + x2 − y2)∂x + 2xy∂y, 2xy∂x + (1 + y2 − x2)∂y

23 ∂y, x∂y, ξ1(x)∂y, ξ2(x)∂y

24 ∂x, x∂x, ∂y, y∂y

25 e−x∂y, ∂x, ∂y, y∂y

26 e−x∂y, − xe−x∂y, ∂x, ∂y

27 e−x∂y, e−ax∂y, ∂x, ∂y, 0 < |a| ≤ 1, a 6= 1

28 e−bx sin x∂y, e−bx cos x∂y, ∂x, ∂y, b ≥ 0

29 ∂x, x∂x, y∂y, x2∂x + xy∂y

30 ∂x, ∂y, x∂x, x2∂x

31 ∂y, − x∂y,
1
2
x2∂y, ∂x

32 e−bx∂y, e−x∂y, − xe−x∂y, ∂x

33 e−x∂y, − x∂y, ∂y, ∂x

34 e−x∂y, − xe−x∂y,
1
2
x2e−x∂y, ∂x

35 ∂y, x∂y, ξ1(x)∂y, y∂y

36 e−ax∂y, e−bx∂y, e−x∂y, ∂x, − 1 ≤ a < b < 1, ab 6= 0

37 e−ax∂y, e−bx sin x∂y, e−bx cos x∂y, ∂x, a > 0

38 ∂x, ∂y, x∂y, x∂x + (2y + x2)∂y

39 ∂y, ∂x, x∂y, (1 + b)x∂x + y∂y, |b| ≤ 1

40 ∂y, − x∂y, ∂x, y∂y

41 ∂x, ∂y, x∂x + y∂y, y∂x − x∂y

42 sin x∂y, cos x∂y, y∂y, ∂x

43 ∂x, ∂y, x∂x − y∂y, y∂x, x∂y

44 ∂x, ∂y, x∂x, y∂y, y∂x, x∂y

45 ∂x, ∂y, x∂x + y∂y, y∂x − x∂y, (x2 − y2)∂x − 2xy∂y, 2xy∂x − (y2 − x2)∂y
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No. Lie algebra basis

46 ∂x, ∂y, x∂x, y∂y, x2∂x, y2∂y

47 ∂x, ∂y, x∂x, y∂y, y∂x, x∂y, x
2∂x + xy∂y, xy∂x + y2∂y

48 ∂y, x∂y, ξ1(x)∂y, . . . , ξr(x)∂y, r ≥ 3

49 y∂y, ∂y, x∂y, ξ1(x)∂y, . . . , ξr(x)∂y, r ≥ 2

50 ∂x, η1∂y, . . . , ηr(x)∂y, r ≥ 4

51 ∂x, y∂y, η1∂y, . . . , ηr(x)∂y, r ≥ 3

52 ∂x, ∂y, x∂x + cy∂y, x∂y, . . . , xr∂y, r ≥ 2

53 ∂x, ∂y, x∂y, . . . , xr−1∂y, x∂x + (ry + xr)∂y, r ≥ 3

54 ∂x, x∂x, y∂y, ∂y, x∂y, . . . , xr∂y, r ≥ 1

55 ∂x, ∂y, 2x∂x + ry∂y, x2∂x + rxy∂y, x∂y, x2∂y, . . . , xr∂y, r ≥ 1

56 ∂x, x∂x, y∂y, x2∂x + rxy∂y, ∂y, x∂y, x
2∂y, . . . , xr∂y, r ≥ 0

The functions 1, x, ξ1, . . . , ξr are linearly independent. The functions η1, . . . , ηr

form a fundamental system of solutions for an r-order linear ordinary differential

equation with constant coefficients η(r)(x) + c1η
(n−1)(x) + · · ·+ crη(x) = 0.

3.8 Symmetry Group for DDEs

For delay differential equations, the definition of an admitted Lie group

and the algorithm for constructing, and solving the determining equations were

expressed in 2002 by S. Meleshko and J.Tanthanuch.

For the sake of simplicity, the definition of admitted Lie group for a delay

differential equation with one independent variable is described.

Consider a system of delay differential equations (2.4),

Ξ(x, u) ≡ u′ − F (x, ux) = 0. (3.29)
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Let G be a one-parameter Lie group of transformations

x̄ = ϕx(x, u; a), ū = ϕu(x, u; a)

with the infinitesimal generator

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
.

Definition 3.8. (Admitted group). A one-parameter Lie group G of transfor-

mation (3.1) is a symmetry group of the delay differential equations or symmetry

group admitted by the delay differential equation (3.29) if G satisfies

(
X̃Ξ

)
((x, u(x))) = 0 (3.30)

for any solution u(x) of equation (3.29).

Here the operator X̃ is the prolongation of the canonical Lie-Bäcklund

operator equivalent to the generator X given by

X̃ = ζu∂u + ζux∂ux + . . . ,

where ζu = η − uxξ, ζux = Dxζ
u and Dx is the total derivative with respect to x.

A symmetry group is also termed the group admitted by the system, or an

admitted group, and the system of differential equations is said to be invariant

under the symmetry group.

Definition 3.9. Equation (3.30) is called the determining equation for delay dif-

ferential equation (3.29) .



CHAPTER IV

GROUP CLASSIFICATION OF

SECOND-ORDER DELAY ORDINARY

DIFFERENTIAL EQUATIONS

The purpose of this chapter is to give a complete classification of second-

order delay ordinary differential equations of the form

y′′ = f(x, y, yτ , y
′, y′τ ) (4.1)

admitting the Lie algebra.

4.1 Strategy for Obtaining a Complete Classification of

DODEs

This section is devoted to explain the strategy for obtaining a complete

classification of second-order DODEs (4.1) admitting a Lie group.

4.1.1 Properties of an Admitted Generator

Assume that the infinitesimal generator

X = ξ(x, y)∂x + η(x, y)∂y (4.2)

is admitted by a second-order DODE (4.1). The corresponding canonical Lie-

Bäcklund operator has the form

X = ζ(x, y, y′)∂y, (4.3)
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where ζ = η − y′ξ. For obtaining determining equations of second-order DODEs,

one has to prolong the canonical Lie-Bäcklund operator to the six-dimensional

space of variables (x, y, yτ , y
′, y′τ , y

′′):

X̃B = ζy∂y + ζyτ ∂yτ + ζy′∂y′ + ζy′τ ∂y′τ + ζy′′∂y′′ , (4.4)

where

ζy(x, y, y′) = η(x, y)− y′ξ(x, y),

ζyτ (x, yτ , y
′
τ ) = ζy(x− τ, yτ , y

′
τ ) = η(x− τ, yτ )− y′τξ(x− τ, yτ ),

ζy′(x, y, y′, y′′) = D(ζy) = ηx(x, y) + [ηy(x, y)− ξx(x, y)]y′ − ξy(x, y)(y′)2 − ξ(x, y)y′′,

ζy′τ (x, yτ , y
′
τ , y

′′
τ ) = ζy′(x− τ, yτ , y

′
τ , y

′′
τ ) = ηx(x− τ, yτ ) + [ηy(x− τ, yτ )

−ξx(x− τ, yτ )]y
′
τ − ξy(x− τ, yτ )(y

′
τ )

2 − ξ(x− τ, yτ )y
′′
τ ,

ζy′′(x, y, y′, y′′, y′′′) = D(ζy′) = ηxx(x, y) + [2ηxy(x, y)− ξxx(x, y)]y′

+[ηyy(x, y)− 2ξxy(x, y)](y′)2 − ξyy(x, y)(y′)3

+[ηy(x, y)− 2ξx(x, y)]y′′ − 3ξy(x, y)y′y′′ − ξ(x, y)y′′′,

D is the operator of the total derivative with respect to x, i.e. D = ∂x +y′∂y + · · · .
The determining equation for the second-order DODE is

X̃B
(
y′′ − f(x, y, yτ , y

′, y′τ )
)∣∣∣

(4.1)
= 0. (4.5)

Equation (4.5) has to be satisfied by any solution of equation (4.1). Substituting

y′′′ = fx + y′fy + y′τfyτ + y′′fy′ + y′′τ fy′τ , y′′ = f and y′′τ = fτ , the determining

equation (4.5) is rewritten as

−ξyy(y
′)3 + (ηyy − 2ξxy + ξyfy′)(y

′)2 + ξτ
yτ

fy′τ (y
′
τ )

2 + (2ηxy − ξxx)y
′ + (ξx − ηy)fy′y

′

−3ξyfy′ + ηxx − ηxfy′ + (ηy − 2ξx)f − ητ
xfy′τ + (ξτ

x − ητ
yτ

)fy′τ y
′
τ − fxξ − fyη

−ητfyτ + (ξτ − ξ)fyτ y
′
τ + (ξτ − ξ)fτfy′τ = 0, (4.6)

where fτ = f(x− τ, yτ , y2τ , y
′
τ , y

′
2τ ), y2τ = y(x− 2τ) and y′2τ = y′(x− 2τ).
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By virtue of the Cauchy problem, one can account the variables x, y, yτ ,

y′, y′τ , y2τ and y′2τ in (4.6) as arbitrary variables.

For the case fy′τ 6= 0, we can split the determining equation (4.6) with

respect to y′2τ . This implies ξ = ξτ .

If fy′τ = 0, then the assumption of DODE implies f must depend on the

delay terms, i.e. fyτ 6= 0. Splitting (4.6) with respect to y′τ , we also get ξ = ξτ .

This shows the periodic property of ξ, i.e.,

ξ(x, y) = ξ(x− τ, yτ ). (4.7)

Because this property is satisfied for any solution of the Cauchy problem, then

(4.7) implies function ξ does not depend on y, i.e., ξy = 0. Moreover, property

(4.7) allows us to rewrite the determining equation (4.5) in the form

X̄
(
y′′ − f(x, y, yτ , y

′, y′τ )
)∣∣∣

(4.1)
= 0, (4.8)

where

X̄ = X̃B + ξD = ξ∂x + ηy∂y + ηyτ ∂yτ + ηy′∂y′ + ηy′τ ∂y′τ + ηy′′∂y′′ ,

ηy(x, y) = η(x, y),

ηyτ (x, yτ ) = η(x− τ, yτ ),

ηy′(x, y, y′) = ηx(x, y) + [ηy(x, y)− ξx(x, y)]y′ − ξy(x, y)(y′)2,

ηy′τ (x, yτ , y
′
τ ) = ηy′(x− τ, yτ , y

′
τ ) = ηx(x− τ, yτ ) + [ηy(x− τ, yτ )− ξx(x− τ, yτ )]y

′
τ

−ξy(x− τ, yτ )(y
′
τ )

2,

ηy′′(x, y, y′, y′′) = ηxx(x, y) + [2ηxy(x, y)− ξxx(x, y)]y′ + [ηyy(x, y)− 2ξxy(x, y)](y′)2

−ξyy(x, y)(y′)3 + [ηy(x, y)− 2ξx(x, y)]y′′ − 3ξy(x, y)y′y′′,

D is the operator of the total derivative with respect to x. The difference between

the generator X̄ and X̃B is the following. The generator X̄ acts in the space of
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variables (x, y, yτ , y
′, y′τ , y

′′), whereas the coefficients of the operator X̃B include

the derivatives y′′τ and y′′′.

Notice that equation (4.8) means the manifold defined by equation (4.1) is

an invariant manifold of the generator X̄. Because of the invariant manifold theo-

rem, any invariant manifold can be represented through invariants of the generator

X̄.

Hence, for describing equations admitting the generator X, one needs to

find all invariants of the generator X̄.

Another property of admitted generator, which allows developing a method

for classifying all second-order DODEs is the following. Direct calculations show

that if two generators X1 and X2 are admitted by equation (4.1), then their com-

mutator [X1, X2] is also admitted by equation (4.1). This property allows stating

that the set of infinitesimal generators admitted by equation (4.1) composes a Lie

algebra on the real plane.

4.1.2 The Strategy

As it was explained in section 3.7, there is a complete description of all finite

dimensional Lie algebras on the real space (Nesterenko, 2006). The classification

is obtained up to a nonsingular change of the variables x and y, and consists of

a list of 56 Lie algebras (See Table 3.2). Since the set of generators admitted by

a second-order DODE composes a Lie algebra, then this algebra is equivalent to

one of these 56 Lie algebras.

In order to complete classification of second-order DODEs, we need to carry

out the following steps for each class of 56 Lie algebras:

(a) change the variables x and y

x = h̄(x̄, ȳ), y = ḡ(x̄, ȳ), (4.9)
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(b) find invariants of the Lie algebra in the space of changed variables

(x̄, ȳ, ȳτ , ȳ
′, ȳ′τ , ȳ

′′),

(c) use the found invariants to form a second-order DODE.

Applying this strategy we will obtain representations of all second-order

DODEs admitting a Lie group.

4.2 Illustrative Examples

This section gives examples which illustrate an application of the above

strategy. Complete results of the classification are presented in the next section.

Here the notation Ln
j is used to denote the n-dimensional Lie algebra of the

number j from Table 3.2.

Example 4.1. Let us consider a three-dimensional Lie algebra L3
10, which is gen-

erated by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x + (x + y)∂y. (4.10)

Changing the variables, x = h̄(x̄, ȳ), y = ḡ(x̄, ȳ) and using equation (3.16), the

first components ξ̄i are :

ξ̄1 =
ḡȳ

∆
, ξ̄2 =

h̄ȳ

∆
, ξ̄3 =

h̄ḡȳ − (h̄ + ḡ)h̄ȳ

∆
,

which have to satisfy the conditions (ξ̄i)ȳ = 0 and ξ̄i(x̄) = ξ̄i(x̄− τ) based on (4.7),

(i=1,2,3). These conditions imply that (ξ̄1)ȳ = 0, (ξ̄2)ȳ = 0, (ξ̄3)ȳ = 0. Equations

(ξ̄2)ȳ = 0 and (ξ̄3)ȳ = 0 lead us to the restrictions h̄ȳ = 0 and h̄(x̄)− h̄(x̄− τ) =

c, where c is an arbitrary constant. Then ∆ = h̄x̄ḡȳ. Using equation (3.15),

generators (4.10) become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

h̄x̄

∂x̄ +
(h̄ + ḡ)h̄x̄ − h̄ḡx̄

h̄x̄ḡȳ

∂ȳ. (4.11)
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We consequently solve equations for invariants which are related with the

prolonged generators X̄
(2)
1 , X̄

(2)
2 , X̄

(2)
3 :

X̄
(2)
1 J = 0, X̄

(2)
2 J = 0, , X̄

(2)
3 J = 0, (4.12)

where X̄
(2)
i , (i = 1, 2, 3) is the second prolongation of the generator X̄i.

To find invariants with respect to X̄1 we have to solve the equation

X̄
(2)
1 J(x̄, ȳ, ȳτ , ȳ

′, ȳ′τ , ȳ
′′) = 0, (4.13)

where

X̄
(2)
1 = ξ̄1(x̄)∂x̄ + η̄1(x̄, ȳ)∂ȳ + η̄ȳ′

1 (x̄, ȳ, ȳ′)∂ȳ′ + η̄ȳ′′
1 (x̄, ȳ, ȳ′)∂ȳ′′ (4.14)

+η̄1(x̄− τ, ȳτ )∂ȳτ + η̄
ȳ′τ
1 (x̄− τ, ȳτ , ȳ

′
τ )∂ȳ′τ .

For integrating equation (4.13) one has to solve the characteristic system

of equations

dx̄

ξ̄1

=
dȳ

η̄1

=
dȳ′

η̄ȳ′
1

=
dȳ′′

η̄ȳ′′
1

=
dȳτ

η̄τ
1

=
dȳ′τ
η̄

ȳ′τ
1

. (4.15)

This characteristic system is cumbersome to solve. However, one may note that the

first part of this system (without last two equations containing the variables related

with delay) is equivalent to the system which corresponds to the prolongation of

the original generator X1 with the variables (x, y, y′, y′′):

dx

1
=

dy

0
=

dy′

0
=

dy′′

0
. (4.16)

Differential invariants of the last system are easily obtained, i.e. y, y′, y′′. Hence,

we found three invariants of equation (4.13):

J1 = ḡ(x̄, ȳ), J2 =
D(ḡ(x̄, ȳ))

D(h̄(x̄))
, J3 =

D(J2(x̄, ȳ, ȳ′))
D(h̄(x̄))

, (4.17)

where D is the operator of the total derivative with respect to x̄. The other two

invariants are chosen as follows

Jτ
1 = J1(x̄− τ, ȳτ ), Jτ

2 = J2(x̄− τ, ȳτ , ȳ
′
τ ). (4.18)
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Direct calculations show that (4.17)-(4.18) compose the universal differential in-

variant of the generator X̄
(2)
1 . Hence, the general solution equation (4.13) is

Φ = Φ(J1, J
τ
1 , J2, J

τ
2 , J3). (4.19)

At this step, the function Φ(y1, y2, y3, y4, y5) is an arbitrary function.

For solving the other two equations

X̄
(2)
2 J = 0, X̄

(2)
3 J = 0, (4.20)

we have to find the function Φ(y1, y2, y3, y4, y5) which satisfies the equations

X̄
(2)
2 Φ(J1, J

τ
1 , J2, J

τ
2 , J3) = 0, (4.21)

X̄
(2)
3 Φ(J1, J

τ
1 , J2, J

τ
2 , J3) = 0. (4.22)

Equation (4.21) becomes

Φy1 + Φy2 = 0. (4.23)

The general solution of this equation is

Φ = ψ(y1 − y2, y3, y4, y5) (4.24)

where the function ψ(z1, z2, z3, z4) is an arbitrary function.

For solving equation (4.22), we have to find the function ψ(z1, z2, z3, z4)

which satisfies the equation

ψz2 + ψz3 + z1ψz1 − z4ψz4 = 0. (4.25)

This equation was obtained by substituting J = ψ(J1−Jτ
1 , J2, J

τ
2 , J3) into equation

(4.22). The general solution of this equation is

ψ = H(z2 − z3, z1e
−z2 , z4e

z2), (4.26)

where H is an arbitrary function.
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Thus, the universal invariant of the Lie algebra L3
10 consists of the invariants

J2 − Jτ
2 , (J1 − Jτ

1 )e−J2 , J3e
J2 . (4.27)

The set of equations admitting the Lie algebra L3
10 can be expressed as the form

J3 = e−J2f(J2 − Jτ
2 , (J1 − Jτ

1 )e−J2). (4.28)

Because of the meaning of the functions J1, J
τ
1 , J2, J

τ
2 and J3, we represent

this equation in Table 4.1 as

y′′ = e−y′f(y′ − y′τ , (y − yτ )e
−y′). (4.29)

Example 4.2. The representation of second-order DODEs admitting L4
24

X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, (4.30)

can be found as the follows. Changing the variables x = h̄(x̄, ȳ) and y = ḡ(x̄, ȳ)

under the condition ξ̄i = ξ̄τ
i , (i = 1, 2, 3, 4) leads to h̄ȳ = 0, h̄(x̄)− h̄(x̄− τ) = c.

The transformed generators are

X̄1 =
1

h̄x̄

∂x̄− ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

h̄x̄

∂x̄− h̄ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄4 =
ḡ

ḡȳ

∂ȳ. (4.31)

Suppose ψ(z1, z2, z3, z4) is an arbitrary function. Like the previous example, in-

variant function

Φ = ψ(y1 − y2, y3, y4, y5) (4.32)

admitting generators X1 and X2 are obtained. Next, we will find the function

ψ(z1, z2, z3, z4) which satisfies

X̄
(2)
3 ψ(J1 − Jτ

1 , J2, J
τ
2 , J3) = 0, (4.33)

X̄
(2)
4 ψ(J1 − Jτ

1 , J2, J
τ
2 , J3) = 0. (4.34)

Equation (4.33) becomes

z2ψz2 + z3ψz3 − 2z4ψz4 = 0. (4.35)
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The general solution of this equation is

ψ = H
(
z1,

z3

z2

,
(z2)

2

z4

)
. (4.36)

Here H is an arbitrary function. Lastly, for solving (4.34) we have to find function

H(v1, v2, v3) which satisfies

v1Hv1 + v3Hv3 = 0. (4.37)

This equation was obtained by substituting

ψ = H
(
J1 − Jτ

1 ,
Jτ

2

J2

,
(J2)

2

J3

)
. (4.38)

into equation (4.34). The general solution of this equation is

H = G
(
v2,

v1

v3

)
. (4.39)

Here G is an arbitrary function. Thus the universal invariant of the Lie algebra

L4
24 consists of invariants

Jτ
2

J2

,
J3(J1 − Jτ

1 )

(J2)2
.

The set of equations admitting the Lie algebra L4
24 can be expressed the form

J3 =
(J2)

2

J1 − Jτ
1

f
(Jτ

2

J2

)
,

where f is an arbitrary function of
Jτ
2

J2
.

Because of the meaning of the functions J1, J
τ
1 , J2, J

τ
2 and J3, in Table 4.1,

we represent this set of equations as

y′′ =
(y′)2

y − y′τ
f
(y′τ

y′

)
. (4.40)
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4.3 Second-Order Differential Invariants

Here, we present the results of calculations which are collected in Table 4.1.

4.3.1 Lie Algebra L1
1

The generator X1 = ∂x in new variables has the representation

X̄1 =
−ḡȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ +
ḡx̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ.

Differential invariants up to second-order of this generator X̄
(2)
1 are defined in

(4.17)-(4.18):

J1(x̄, ȳ), Jτ
1 (x̄, ȳτ ), J2(x̄, ȳ, ȳ′), Jτ

2 (x̄, ȳτ , ȳ
′
τ ), J3(x̄, ȳ, ȳ′, ȳ′′). (4.41)

The set of equation admitting the generator X̄1 is

J3 = f(J1, J
τ
1 , J2, J

τ
2 ). (4.42)

In table 4.1, this set of equations is written as

y′′ = f(y, yτ , y
′, y′τ ). (4.43)

4.3.2 Lie Algebra L2
2

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y.

After changing the variables, the generators become

X̄1 =
−ḡȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ +
ḡx̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ, X̄2 =
h̄ȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ − h̄x̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ.

Invariants of the first generator are (4.41). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) by letting

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,
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we obtain

Φy1 + Φy2 = 0.

Thus, the universal invariant of this algebra is

J1 − Jτ
1 , J2, Jτ

2 , J3. (4.44)

The set of equations admitting the generator L2
2 is

J3 = f(J1 − Jτ
1 , J2, J

τ
2 ). (4.45)

In table 4.1, this set of equations is written as

y′′ = f(y − yτ , y
′, y′τ ). (4.46)

4.3.3 Lie Algebra L2
3

This algebra is defined by the generators

X1 = ∂x, X2 = y∂x

which after changing the variables, the generators become

X̄1 =
1

h̄ȳ

∂ȳ, X̄2 =
ḡ

h̄ȳ

∂ȳ.

Invariants of the first generator are (4.41). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) by letting

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

(y3)
2Φy3 + (y4)

2Φy4 + 3y3y5Φy5 = 0.

Thus, the universal invariant of this algebra is

J1, Jτ
1 ,

1

J2

− 1

Jτ
2

,
J3

(J2)3
. (4.47)
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The set of equations admitting the generator L2
3 is

J3 = (J2)
3f

(
J1, J

τ
1 ,

1

J2

− 1

Jτ
2

)
. (4.48)

In table 4.1, this set of equations is written as

y′′ = (y′)3f
(
y, yτ ,

1

y′
− 1

y′τ

)
. (4.49)

4.3.4 Lie Algebra L2
4

This algebra is defined by the generators

X1 = ∂x, X2 = x∂x + y∂y,

which after changing the variables become

X̄1 =
−ḡȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ +
ḡx̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ

X̄2 =
−h̄ḡȳ + ḡh̄ȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ +
h̄ḡx̄ − ḡh̄x̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ.

Invariants of the first generator are (4.41). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) by letting

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

y1Φy1 + y2Φy2 − y5Φy5 = 0.

Thus, the universal invariant of this algebra is

J1

Jτ
1

, J2, Jτ
2 , J1J3. (4.50)

The set of equations admitting Lie algebra L2
4 is

J3 =
1

J1

f
( J1

Jτ
1

, J2, J
τ
2

)
. (4.51)

In table 4.1, this set of equations is written as

y′′ =
1

y
f
( y

yτ

, y′, y′τ
)
. (4.52)
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4.3.5 Lie Algebra L2
5

This algebra is generated by

X1 = ∂x, X2 = x∂x

which after changing the variables, the generators become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
h̄

h̄x̄

∂x̄ − h̄ḡx̄

h̄x̄ḡȳ

∂ȳ.

Invariants of the first generator are (4.41). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

y3Φy3 + y4Φy4 + 2y5Φy5 = 0.

Thus, the universal invariant of this algebra is

J1, Jτ
1 ,

J2

Jτ
2

,
J3

(J2)2
. (4.53)

The set of equations admitting the generator L2
5 is

J3 = (J2)
2f

(
J1, J

τ
1 ,

Jτ
2

J2

)
. (4.54)

In table 4.1, this set of equations is written as

y′′ = y′2f
(
y, yτ ,

y′τ
y′

)
. (4.55)

4.3.6 Lie Algebra L3
6

This algebra is defined by the generators

X1 = ∂y, X2 = x∂y, X3 = ξ1(x)∂y
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which after changing the variables become

X̄1 =
1

ḡȳ

∂ȳ, X̄2 =
h̄

ḡȳ

∂ȳ, X̄3 =
ξ1(h̄)

ḡȳ

∂ȳ.

Invariants of the first generator are h̄(x̄), J1−Jτ
1 , J2, Jτ

2 , J3. Applying the second

generator X̄
(2)
2 to the function Φ(y1, y2, y3, y4, y5) by letting

y1 = h̄, y2 = J1 − Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

cΦy2 + Φy3 + Φy4 = 0,

where c is an arbitrary constant. The invariant function is Φ = ψ(z1, z2, z3, z4)

where ψ is an arbitrary function,

z1 = y1, z2 = cy3 − y2, z3 = y3 − y4, z4 = y5.

Next, applying the generator X̄
(2)
3 to the function ψ(h̄, cJ2− J1 + Jτ

1 , J2− Jτ
2 , J3),

we find

(ξ′1c− ξ1 + ξτ
1 )ψz2 + (ξ′1 − ξτ ′

1 )ψz3 + ξ′′1ψz4 = 0.

Thus, the universal invariant of this algebra is

h̄, (ξ′1 − ξτ ′
1 )(cJ2 − J1 + Jτ

1 )− (ξ′1c− ξ1 + ξτ
1 )(J2 − Jτ

2 ), (ξ′1 − ξτ ′
1 )J3 − ξ′′1 (J2 − Jτ

2 ).

The set of equations admitting the generator L3
6 is

J3 =
f
(
h̄, (ξ′1 − ξτ ′

1 )(cJ2 − J1 + Jτ
1 )− (ξ′1c− ξ1 + ξτ

1 )(J2 − Jτ
2 )

)
+ ξ′′1 (J2 − Jτ

2 )

(ξ′1 − ξτ ′
1 )

.

In table 4.1, this set of equations is written as

y′′ =
f
(
x, (ξ′1 − ξτ ′

1 )(cy′ − y + yτ )− (ξ′1c− ξ1 + ξτ
1 )(y′ − y′τ )

)
+ ξ′′1 (y′ − y′τ )

(ξ′1 − ξτ ′
1 )

.
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4.3.7 Lie Algebra L3
7

This algebra is defined by

X1 = ∂x, X2 = ∂y, X3 = y∂y,

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
ḡ

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

Φy1 + Φy2 = 0.

The invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5.

Next, applying the generator X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3) , we find

z1ψz1 + z2ψz2 + z3ψz3 + z4ψz4 = 0.

Thus, the universal invariant of this algebra is

J1 − Jτ
1

J2

,
Jτ

2

J2

,
J3

J2

. (4.56)

The set of equations admitting the generator L3
7 is

J3 = J2f
(J1 − Jτ

1

J2

,
Jτ

2

J2

)
. (4.57)

In table 4.1, this set of equations is written as

y′′ = y′f
(y − yτ

y′
,
y′τ
y′

)
. (4.58)
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4.3.8 Lie Algebra L3
8

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = e−x∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
e−h̄

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

the invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5.

Applying the generator X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3), we find

(1− k)ψz1 − ψz2 − kψz3 + z4ψz4 = 0,

where k > 0 is constant. Thus, the universal invariant of this algebra is

k(J1 − Jτ
1 ) + (1− k)Jτ

2 , kJ2 − Jτ
2 , J2 + J3. (4.59)

The set of equations admitting the generator L3
8 is

J3 = f(kJ2 − Jτ
2 , k(J1 − Jτ

1 − Jτ
2 ) + Jτ

2 )− J2. (4.60)

In table 4.1, this set of equations is written as

y′′ = f
(
ky′ − y′τ , k(y − yτ − y′τ ) + y′τ

)
− y′. (4.61)
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4.3.9 Lie Algebra L3
9

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

ḡȳ

∂ȳ.

Invariant of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

The invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5.

Applying the generator X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3), we find

cψz1 + ψz2 + ψz3 = 0,

where c is constant. Thus, the universal invariant of this algebra is

J2 − Jτ
2 , cJ2 − (J1 − Jτ

1 ), J3. (4.62)

The set of equations admitting the generator L3
9 is

J3 = f(J2 − Jτ
2 , cJ2 − J1 + Jτ

1 ). (4.63)

In table 4.1, this set of equations is written as

y′′ = f(y′ − y′τ , cy′ − y + yτ ). (4.64)
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4.3.10 Lie Algebra L3
10

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x + (x + y)∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

h̄x̄

∂x̄ +
(h̄ + ḡ)h̄x̄ − h̄ḡx̄

h̄x̄ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

The invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5.

Applying the generator X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3), we find

z1ψz1 + ψz2 + ψz3 − z4ψz4 = 0.

Thus, the universal invariant of this algebra is

J2 − Jτ
2 , (J1 − Jτ

1 )e−J2 , J3e
J2 . (4.65)

The set of equations admitting the generator L3
10 is

J3 = e−J2f
(
J2 − Jτ

2 , (J1 − Jτ
1 )e−J2

)
. (4.66)

In table 4.1, this set of equations is written as

y′′ = e−y′f
(
y′ − y′τ , (y − yτ )e

−y′
)
. (4.67)
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4.3.11 Lie Algebra L3
11

This algebra is defined by

X1 = ∂x, X2 = e−x∂y, X3 = −xe−x∂y.

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ X̄2 =
e−h̄

ḡȳ

∂ȳ X̄3 =
−h̄e−h̄

ḡȳ

∂ȳ

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

y1Φy1 − y3Φy3 + k(Φy2 + Φy4) + Φy5 = 0.

The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 = y1 + y3, v2 = y3 + y5, v3 = ky1 − y2, v4 = y2 + y4.

Applying the generator X̄
(2)
3 to the function ψ(J1 + J2, J2 + J3, kJ1− Jτ

1 , Jτ
1 + Jτ

2 ),

we find

ψv1 − ψv2 + kcψv3 + kψv4 = 0.

Thus, the universal invariant of this algebra is

J3 + 2J2 + J1, k(J1 + J2)− (Jτ
1 − Jτ

2 ), kc(J1 + J2)− kJ1 + Jτ
1 .

The set of equations admitting the generator L3
11 is

J3 = f
(
k(J1 + J2)− (Jτ

1 + Jτ
2 ), kc(J1 + J2)− kJ1 + Jτ

1

)
− (2J2 + J1).

In table 4.1, this set of equations is written as

y′′ = f
(
k(y + y′)− (yτ + y′τ ), kc(y + y′)− ky + yτ

)
− (2y′ + y).
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4.3.12 Lie Algebra L3
12

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x + y∂y

which after changing the variables become

X̄1 =
−ḡȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ +
ḡx̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ, X̄2 =
h̄ȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ − h̄x̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ,

X̄3 =
−h̄ḡȳ + ḡh̄ȳ

ḡx̄h̄ȳ − ḡȳh̄x̄

∂x̄ +
h̄ḡx̄ − ḡh̄x̄

ḡx̄h̄ȳ − ḡȳh̄x̄

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

the invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5.

Applying the generator X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3), we arrive at

z1ψz1 − z4ψz4 = 0.

Thus, the universal invariant of this algebra is

J2, Jτ
2 , (J1 − Jτ

1 )J3. (4.68)

The set of equations admitting the generator L3
12 is

J3 =
1

(J1 − Jτ
1 )

f(J2, Jτ
2 ). (4.69)

In table 4.1, this set of equations is written as

y′′ =
f(y′, y′τ )
y − yτ

. (4.70)
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4.3.13 Lie Algebra L3
13

This algebra is defined by

X1 = ∂y, X2 = x∂y, X3 = y∂y

which after changing the variables become

X̄1 =
1

ḡȳ

∂ȳ, X̄2 =
h̄

ḡȳ

∂ȳ, X̄3 =
ḡ

ḡȳ

∂ȳ.

Invariants of the first generator are h̄(x̄), ḡ− ḡτ , J2, Jτ
2 , J3. Applying the second

generator X̄
(2)
2 to the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = h̄, y2 = J1 − Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

cΦy2 + Φy3 + Φy4 = 0,

where c is an arbitrary constant. The invariant function is Φ = ψ(z1, z2, z3, z4)

where ψ is an arbitrary function and

z1 = y1, z2 = y3 − y4, z3 = cy3 − y2, z4 = y5.

Next, applying the generator X̄
(2)
3 to the function ψ(h̄, J2− Jτ

2 , cJ2− J1 + Jτ
1 , J3),

we arrive at

z2ψz2 + z3ψz3 + z4ψz4 = 0.

Thus, the universal invariant of this algebra is

h̄,
cJ2 − J1 + Jτ

1

(J2 − Jτ
2 )

,
J3

(J2 − Jτ
2 )

. (4.71)

The set of equations admitting the generator L3
13 is

J3 = (J2 − Jτ
2 )f

(
h̄,

cJ2 − J1 + Jτ
1

(J2 − Jτ
2 )

)
. (4.72)

In table 4.1 this set of equations is written as

y′′ = (y′ − y′τ )f
(
x,

cy′ − y + yτ

(y′ − y′τ )

)
. (4.73)
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4.3.14 Lie Algebra L3
14

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x + ay∂y, 0 < |a| ≤ 1, a 6= 1

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

h̄x̄

∂x̄ + (− h̄ḡx̄

h̄x̄ḡȳ

+
aḡ

ḡȳ

)∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

the invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5.

Applying the generator X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3), we obtain

az1ψz1 + (a− 1)z2ψz2 + (a− 1)z3ψz3 − (a− 2)z4ψz4 = 0.

Thus, the universal invariant of this algebra is

J2(J1 − Jτ
1 )

(1−a)
a ,

Jτ
2

J2

, J3J
(2−a)
(a−1)

2 . (4.74)

The set of equations admitting the generator L3
14 is

J3 = J
(a−2)
(a−1)

2 f
(Jτ

2

J2

, J2(J1 − Jτ
1 )

(1−a)
a

)
. (4.75)

In table 4.1, this set of equations is written as

y′′ = y′
(a−2)
(a−1) f

(y′τ
y′

, y′(y − yτ )
(1−a)

a

)
. (4.76)
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4.3.15 Lie Algebra L3
15

This algebra is defined by the generators

X1 = ∂x, X2 = e−x∂y, X3 = e−ax∂y, 0 < |a| 6= 0, a 6= 1

which after changing variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
e−h̄

ḡȳ

∂ȳ, X̄3 =
e−ah̄

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

y1Φy1 − y3Φy3 + k(Φy2 + Φy4) + Φy5 = 0.

The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 = y1 + y3, v2 = y3 + y5, v3 = ky1 − y2, v4 = y2 + y4.

Applying the generator X̄
(2)
3 to the function ψ(J1 + J2, J2 + J3, kJ1− Jτ

1 , Jτ
1 − Jτ

2 ),

we find

(1− a)ψv1 + a(a− 1)ψv2 + (k − ka)ψv3 + ka(1− a)ψv4 = 0.

Thus, the universal invariant of this algebra is

J3 + (1 + a)J2 + aJ1, ka(J1 + J2)− (Jτ
1 + Jτ

2 ),

(k − ka)(J1 + J2)− (1− a)(kJ1 + Jτ
1 ).

The set of equations admitting the generator L3
15 is

J3 = f
(
ka(J1 + J2)− (Jτ

1 + yτ
2 ), (k − ka)(J1 + J2)− (1− a)(kJ1 − Jτ

1 )
)

−[(1 + a)y′ + ay].
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In table 4.1, this set of equations is written as

y′′ = f
(
ka(y + y′)− (yτ + y′τ ), (k − ka)(y + y′)− (1− a)(ky − yτ )

)

−((1 + a)y′ + ay).

4.3.16 Lie Algebra L3
16

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = (bx + y)∂x + (by − x)∂y.

After changing the variables under conditions

(ξ̄i)ȳ = 0 and ξ̄i(x̄) = ξ̄i(x̄− τ), i = 1, 2, 3. (4.77)

It leads us to h̄ȳ = ḡȳ = 0. This contradicts to the assumption ∆ 6= 0.

4.3.17 Lie Algebra L3
17

This algebra is defined by the generators

X1 = ∂x, X2 = e−bx sin x∂y, X3 = e−bx cos x∂y, b ≥ 0

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
e−bh̄ sin(h̄)

ḡȳ

∂ȳ, X̄3 =
e−bh̄ cos(h̄)

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

−kbc1Φy2 + Φy3 + kb(c2 + bc1)Φy4 − 2bΦy5 = 0.
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The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 = y1, v2 = y5 + 2by3, v3 = c1y4 + (c2 + bc1)y2, v4 = kbc1y3 + y2.

Next, Applying the generator X̄
(2)
3 to the function

ψ(J1, J3 + 2bJ2, c1J
τ
2 + (c2 + c1b)J

τ
1 , kbc1J2 + Jτ

1 , )

we arrive at

ψv1 − (b2 + 1)ψv2 + kbψv3 + kb(c2 − bc1)ψv4 = 0.

Thus, the universal invariant of this algebra is

J3 + 2bJ2 + (b2 + 1)y, (4.78)

I1 = kbJ1 − [c1J
τ
2 + (c2 + bc1)J

τ
1 ], (4.79)

I2 = (c2 − bc1)[c1J
τ
2 + (c2 + bc1)J

τ
1 ]− [kbc1J2 + Jτ

1 ]. (4.80)

The set of equations admitting the generator L3
17 is

J3 = f
(
I1, I2

)
− ((2bJ2 + (b2 + 1)J1).

In table 4.1, this set of equations is written as

y′′ = f
(
I1, I2

)
− (2by′ + (b2 + 1)y).

4.3.18 Lie Algebra L3
18

This algebra is defined by the generators

X1 = ∂x, X2 = x∂x + y∂y, X3 = (x2 − y2)∂x + 2xy∂y.

After changing the variables under conditions (4.77). The results is also h̄ȳ = ḡȳ =

0. This contradicts to the assumption ∆ 6= 0.



55

4.3.19 Lie Algebra L3
19

This algebra is defined by the generators

X1 = ∂x + ∂y, X2 = x∂x + y∂y, X3 = x2∂x + y2∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ + (− ḡx̄

h̄x̄ḡȳ

+
1

ḡȳ

)∂ȳ,

X̄2 =
h̄

h̄x̄

∂x̄ + (− h̄ḡx̄

h̄x̄ḡȳ

+
ḡ

ḡȳ

)∂ȳ,

X̄3 =
h̄2

h̄x̄

∂x̄ + (− h̄2ḡx̄

h̄x̄ḡȳ

+
ḡ2

ḡȳ

)∂ȳ.

Differential invariant up to second-order of the first generator is

h̄− ḡ, h̄τ − ḡτ , J2, Jτ
2 , J3. (4.81)

Applying the second generator X̄
(2)
2 to the function Φ(y1, y2, y3, y4, y5) with sub-

stituted

y1 = h̄− J1, y2 = h̄τ − Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

y1Φy1 + y2Φy2 − y5Φy5 = 0.

The invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 =
y2

y1

, z2 = y1y5, z3 = y3, z4 = y4.

Applying the generator X̄
(2)
3 to function ψ(

Jτ
1

J1
, J1J3, J2, J

τ
2 ), one gets

z1(1− z1)ψz1 − 2z3ψz3 − 2z1z4ψz4 + (−3z2 + 2z3(z3 − 1))ψz2 = 0.

Thus, the universal invariant of this algebra is

(h̄− J1)J3(J2)
−3/2, J2

( h̄− Jτ
1

J1 − Jτ
1

)2

,
(J1 − Jτ

1 )2

Jτ
2 (h̄− J1)2

− 2J2(J2 + 1). (4.82)
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The set of equations admitting the generator L3
19 is

J3 =
(J2)

3/2

(h̄− J1)

(
f
(
J2(

h̄− Jτ
1

Jτ
1 − J1

)2,
(Jτ

1 − J1)
2

Jτ
2 (h̄− J1)2

)
− 2J2(J2 + 1)

)
.

In table 4.1, this set of equations is written as

y′′ =
y′3/2

(x− y)

(
f
(
y′(

x− yτ

yτ − y
)2,

(yτ − y)2

y′τ (x− y)2

)
− 2y′(y′ + 1)

)
.

4.3.20 Lie Algebra L3
20

This algebra is defined by

X1 = ∂x, X2 = x∂x +
1

2
y∂y, X3 = x2∂x + xy∂y

which after changing the variables become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ,

X̄2 = h̄
h̄x̄

∂x̄ + (− h̄ḡx̄

h̄x̄ḡȳ
+ ḡ

2ḡȳ
)∂ȳ,

X̄3 = h̄2

h̄x̄
∂x̄ + (− h̄2ḡx̄

h̄x̄ḡȳ
+ h̄ḡ

ḡȳ
)∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

y1Φy1 + y2Φy2 − y3Φy3 − y4Φy4 − 3y5Φy5 = 0.

The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 =
y2

y1

, v2 =
y4

y3

, v3 = (y1)
3y5, v4 = y2y3.

Then, Applying the generator X̄
(2)
3 to the function ψ(

Jτ
1

J1
,

Jτ
2

J2
, (J1)

3J3, J
τ
1 J2) , we

find

v4ψv4 + (v1 − v2)ψv2 = 0.
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Thus, the universal invariant of this algebra is

Jτ
1

J1

, Jτ
1 J2

(Jτ
1

J1

− Jτ
2

J2

)
, (J1)

3J3. (4.83)

The set of equations admitting the generator L3
20 is

J3 = (J1)
−3f

(Jτ
1

J1

, J2J
τ
1 (

Jτ
1

J1

− Jτ
2

J2

)
)
.

In table 4.1, this set of equations is written as

y′′ = y−3f
(yτ

y
, y′yτ (

yτ

y
− y′τ

y′
)
)
.

4.3.21 Lie Algebra L3
21

This algebra is defined by the generators

X1 = ∂x, X2 = x∂x, X3 = x2∂x.

After changing the variables, they become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
h̄

h̄x̄

∂x̄ − h̄ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄3 =
h̄2

h̄x̄

∂x̄ − h̄2ḡx̄

h̄x̄ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain y3Φy3 + y4Φy4 + 2y5Φy5 = 0.

The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 = y1, v2 = y2, v3 =
y5

(y4)2
, v4 =

y5

(y3)2
.

Then, applying the generator X̄
(2)
3 to the function ψ(J1, J

τ
1 , J3

(Jτ
2 )2

, J3

(J2)2
) , we found

v3ψv3 + v4ψv4 = 0.

Thus, the universal invariant of this algebra is J1, J
τ
1 ,

(
Jτ
2

J2

)2

, which has no second-

order derivative term. Hence the set of equations admitting the generator L3
21

cannot be constructed.
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4.3.22 Lie Algebra L3
22

This algebra is defined by the generators

X1 = y∂x − x∂y, X2 = (1 + x2 − y2)∂x + 2xy∂y, X3 = 2xy∂x + (1 + y2 − x2)∂y.

After changing the variables under conditions

(ξ̄i)ȳ = 0 and ξ̄i(x̄) = ξ̄i(x̄− τ), i = 1, 2, 3.

It leads us to h̄ȳ = ḡȳ = 0 which contradicts to the assumption ∆ 6= 0.

4.3.23 Lie Algebra L4
23

This algebra is defined by the generators

X1 = ∂y, X2 = x∂y, X3 = ξ1(x)∂y, X4 = ξ2(x)∂y

which after changing the variables become

X̄1 =
1

ḡȳ

∂ȳ, X̄2 =
h̄

ḡȳ

∂ȳ, X̄3 =
ξ1(h̄)

ḡȳ

∂ȳ, X̄4 =
ξ2(h̄)

ḡȳ

∂ȳ.

From Lie algebra L3
6, invariant of generator X

(2)
1 , X

(2)
2 , X

(2)
3 is an arbitrary

function G(w1, w2, w3) where w1 = h̄, w2 = (ξ′1 − ξτ ′
1 )J3 − ξ′′1 (J2 − Jτ

2 ), w3 =

(ξ′1 − ξτ ′
1 )(cJ2 − J1 + Jτ

1 ) − (ξ′1c − ξ1 + ξτ
1 )(J2 − Jτ

2 ). Applying generator X
(2)
4 to

function G(w1, w2, w3) with substituted

w1 = h̄, w2 = (ξ′1 − ξτ ′
1 )J3 − ξ′′1 (J2 − Jτ

2 ),

w3 = (ξ′1 − ξτ ′
1 )(cJ2 − J1 + Jτ

1 )− (ξ′1c− ξ1 + ξτ
1 )(J2 − Jτ

2 ),

lead us to

[
ξ′′1 (ξ′τ2 − ξ′2) + ξ′′2 (ξ′1 − ξ′τ1 )

]
Gw2

+
[
c(ξ′1ξ

′τ
2 − ξ′τ1 ξ′2) + (ξ′τ1 − ξ′1)(ξ2 − ξτ

2 ) + (ξ′2 − ξ′τ2 )(ξ1 − ξτ
1 )

]
Gw3 = 0.
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Thus, the universal invariant of this algebra is h̄,

[ξ′′1 (ξ′τ2 − ξ′2) + ξ′′2 (ξ′1 − ξ′τ1 )][(ξ′1 − ξτ ′
1 )(cJ2 − J1 + Jτ

1 )− (ξ′1c− ξ1 + ξτ
1 )(J2 − Jτ

2 )]−

[c(ξ′1ξ
′τ
2 − ξ′τ1 ξ′2) + (ξ′τ1 − ξ′1)(ξ2 − ξτ

2 ) + (ξ′2 − ξ′τ2 )(ξ1 − ξτ
1 )][(ξ′1 − ξτ ′

1 )J3 − ξ′′1 (J2 − Jτ
2 )].

The set of equations admitting the generator L4
23 is

J3 =

(
I12 − f(h̄)

)

(ξ′1 − ξτ ′
1 )I13

+
ξ′′1 (J2 − Jτ

2 )

(ξ′1 − ξτ ′
1 )

,

where

I12 = [ξ′′1 (ξ′τ2 − ξ′2) + ξ′′2 (ξ′1 − ξ′τ1 )][(ξ′1 − ξτ ′
1 )(cJ2 − J1 + Jτ

1 )

−(ξ′1c− ξ1 + ξτ
1 )(J2 − Jτ

2 )],

I13 = [c(ξ′1ξ
′τ
2 − ξ′τ1 ξ′2) + (ξ′τ1 − ξ′1)(ξ2 − ξτ

2 ) + (ξ′2 − ξ′τ2 )(ξ1 − ξτ
1 )].

In table 4.1, this set of equations is written as

y′′ =

(
I12 − f(x)

)

(ξ′1 − ξτ ′
1 )I13

+
ξ′′1 (y′ − y′τ )
(ξ′1 − ξτ ′

1 )
.

4.3.24 Lie Algebra L4
24

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

h̄x̄

∂x̄ − h̄ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄4 =
ḡ

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,
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we obtain

Φy1 + Φy2 = 0.

The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 = y1− y2, v2 = y3, v3 = y4, v4 = y5. Then, Applying the generator X̄
(2)
3 to the

function ψ(J1 − Jτ
1 , J2, J

τ
2 , J3), one gets

v2ψv2 + v3ψv3 − 2v4ψv4 = 0.

Solving for invariant function, one obtains ψ = H(z1, z2, z3) where H is an arbi-

trary function and z1 = v1, z2 = y4

y3
, z3 = (y3)2

y5
. Finally, applying the generator

X̄
(2)
4 to function H(J1 − Jτ

1 ,
Jτ
2

J2
, (J2)2

J3
),

z1Hz1 + z3Hz3 = 0.

Thus, the universal invariant of this algebra is

(J1 − Jτ
1 )J3

(J2)2
,

Jτ
2

J2

. (4.84)

The set of equations admitting the generator L4
24 is

J3 =
(J2)

2

J1 − Jτ
1

f
(Jτ

2

J2

)
.

In table 4.1, this set of equations is written as

y′′ =
y′2

y − yτ

f
(y′τ

y′

)
.

4.3.25 Lie Algebra L4
25

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = e−x∂y, X4 = y∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
e−h̄

ḡȳ

∂ȳ, X̄4 =
ḡ

ḡȳ

∂ȳ.
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Invariant of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3.

The invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5. Applying the generator X̄
(2)
3 to the

function ψ(J1 − Jτ
1 , J2, J

τ
2 , J3), one gets

(1− k)ψz1 − ψz2 − kψz3 + ψz4 = 0.

Solving for invariant function, one obtains ψ = H(v1, v2, v3) where v1 = (k−1)y3−
v, v2 = ky3− y4 and v3 = y3 + y5. Finally, applying the generator X̄

(2)
4 to function

H((k − 1)J2 − J1 + Jτ
1 , kJ2 − Jτ

2 , J2 + J3), then

v1Hv1 + v2Hv2 + v3Hz3 = 0.

Thus, the universal invariant of this algebra is

J3 + J2

kJ2 − Jτ
2

,
kJ2 − Jτ

2

((k − 1)J2 − (J1 − Jτ
1 ))

. (4.85)

The set of equations admitting the generator L4
25 is

J3 = (kJ2 − Jτ
2 )f

( kJ2 − Jτ
2

(k − 1)J2 − J1 + Jτ
1

)
− J2.

In table 4.1, this set of equations is written as

y′′ = (ky′ − y′τ )f
( ky′ − y′τ

(k − 1)y′ − y + yτ

)
− y′.

4.3.26 Lie Algebra L4
26

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = e−x∂y, X4 = −xe−x∂y
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which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
e−h̄

ḡȳ

∂ȳ, X̄4 =
−h̄e−h̄

ḡȳ

∂ȳ.

From Lie algebra L4
25, invariant of the generators X̄

(2)
1 , X̄

(2)
2 and X̄

(2)
3 is

ψ = H(v1, v2, v3) where H is an arbitrary function and

v1 = (k − 1)y3 − y1 + y2, v2 = ky3 − y4, v3 = y3 + y5.

Applying the generator X̄
(2)
4 to function H[(k− 1)J2− J1 + Jτ

1 , kJ2− Jτ
2 , J2 + J5],

then

(kc− k + 1)Hv1 + kcHv2 + Hv3 = 0.

Thus, the universal invariant of this algebra is

(kc− k + 1)(J3 + J2)− (k − 1)J2 − (J1 − Jτ
1 ),

I3 = kc(Jτ
1 − J1 − J2 + Jτ

2 ) + (k − 1)(kJ2 − Jτ
2 ).

The set of equations admitting the generator L4
26 is

J3 =
f(I3) + (k − 1)J2 − J1 + Jτ

1

(kc− k + 1)
− J2.

In table 4.1, this set of equations is written as

y′′ =
f(I3) + (k − 1)y′ − y + yτ

(kc− k + 1)
− y′.

4.3.27 Lie Algebra L4
27

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = e−x∂y, X4 = e−ax∂y, 0 < |a| 6= 1, a 6= 1

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
e−h̄

ḡȳ

∂ȳ, X̄4 =
e−ah̄

ḡȳ

∂ȳ.
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From Lie algebra L4
25, invariant of the generators X̄

(2)
1 , X̄

(2)
2 and X̄

(2)
3 is ψ =

H(v1, v2, v3) where H is an arbitrary function and

v1 = (k − 1)y3 − v, v2 = ky3 − y4, v3 = y3 + y5.

Applying the generator X̄
(2)
4 to function H[(k− 1)J2− J1 + Jτ

1 , kJ2− Jτ
2 , J2 + J3],

then

(ka − ak + a− 1)Hv1 + a(ka − k)Hv2 + a(a− 1)Hv3 = 0.

Thus, the universal invariant of this algebra is

(ka − k)(J3 + J2)− (a− 1)[(kJ2 − Jτ
2 )],

I4 = (ka − ak + a− 1)(kJ2 − Jτ
2 )− a(ka − k)[(k − 1)J2 − J1 + Jτ

1 ].

The set of equations admitting the generator L4
27 is

J3 =
1

(ka − k)

(
f(I4) + (a− 1)(kJ2 − Jτ

2 )
)
− J2.

In table 4.1, this set of equations is written as

y′′ =

(
f(I4) + (a− 1)(ky′ − y′τ )

)

(ka − k)
− y′.

4.3.28 Lie Algebra L4
28

This algebra is defined by

X1 = ∂x, X2 = ∂y, X3 = e−bx sin x∂y, X4 = e−bx cos x∂y, b ≥ 0

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
e−bh̄ sin(h̄)

ḡȳ

∂ȳ, X̄4 =
e−bh̄ cos(h̄)

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,
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the invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5. Applying the generator X̄
(2)
3 to the

function ψ(J1 − Jτ
1 , J2, J

τ
2 , J3), we find

ψz2 + kb(c2 + bc1)ψz3 − 2bψz4 + kbc1ψz1 = 0.

Solving for invariant function, one obtains ψ = H(v1, v2, v3) where H is an arbi-

trary function and v1 = y5+2by3, v2 = c1y4−(c2+bc1)(y1−y2), v3 = kbc1y3−y1+y2.

Finally, applying the generator X̄
(2)
4 to function

H
(
J3 + 2bJ2, c1J

τ
2 − (c2 + bc1)(J1 − Jτ

1 ), kbc1J2 − J1 + Jτ
1

)
,

then

−(b2 + 1)Hv1 + [kb − (bc1 + c2)]Hv2 + [kb(c2 − bc1)− 1]Hv3 = 0.

Thus, the universal invariant of this algebra is

[kb − (c2 + bc1)][J3 + 2bJ2] + (b2 + 1)[c1J
τ
2 − (c2 + bc1)(J1 − Jτ

1 )],

I5 = [kb(c2 − bc1)− 1][c1J
τ
2 − (c2 + bc1)(J1 − Jτ

1 )]

+[kb − (c2 + bc1)][k
bc1J2 − (J1 − Jτ

1 )].

The set of equations admitting the generator L4
28 is

J3 =
1

[kb − (bc1 + c2)]

(
f(I5)− (b2 + 1)

(
c1J

τ
2 − (c2 + bc1)(J1 − Jτ

1 )
))− 2bJ2.

In table 4.1, this set of equations is written as

y′′ =
f(I5)− (b2 + 1)[c1y

′
τ − (c2 + bc1)(y − yτ )]

kb − (bc1 + c2)
− 2by′.

4.3.29 Lie Algebra L4
29

This algebra is defined by the generators

X1 = ∂x, X2 = x∂x, X3 = y∂y, X4 = x2∂x + xy∂y
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which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
h̄

h̄x̄

∂x̄ − h̄ḡx̄

h̄x̄ḡȳ

∂ȳ,

X̄3 =
ḡ

ḡȳ

∂ȳ, X̄4 =
h̄2

h̄x̄

∂x̄ + (− h̄2ḡx̄

h̄x̄ḡȳ

+
h̄ḡ

ḡȳ

)∂ȳ.

From Lie algebra L2
5, invariants function of the generators X̄

(2)
1 , X̄

(2)
2 is

Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = J1, z2 = Jτ
1 , z3 =

Jτ
2

J2

, z4 =
J3

(J2)2
.

Applying the generator X̄
(2)
3 to the function ψ(J1, J

τ
1 ,

Jτ
2

J2
, J3

(J2)2
)

z1ψz1 + z2ψz2 − z4ψz4 = 0.

Solving for function ψ, we obtain ψ = H(v1, v2, v3) where H is an arbitrary function

and v1 = z2

z1
, v2 = z3, v3 = z1z4. Finally, applying the generator generator X̄

(2)
4 to

function H(
Jτ
1

J1
,

Jτ
2

J2
, J1J3

(J2)2
), one gets

(v1 − v2)Hv2 − 2v3Hv3 = 0.

Thus, the universal invariant of this algebra is

Jτ
1

J1

,
J1J3

(J2)2(
Jτ
1

J1
− Jτ

2

J2
)2

. (4.86)

The set of equations admitting the generator L4
29 is

J3 = f
(Jτ

1

J1

)(J2)
2

J1

(Jτ
1

J1

− Jτ
2

J2

)2

.

In table 4.1, this set of equations is written as

y′′ = f
(yτ

y

)y′2

y

(yτ

y
− y′τ

y′

)2

.
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4.3.30 Lie Algebra L4
30

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = x2∂x

which after changing the variables, they become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

h̄x̄

∂x̄ − h̄ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄4 =
h̄2

h̄x̄

∂x̄ − h̄2ḡx̄

h̄x̄ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain Φy1 + Φy2 = 0.

The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 = y1 − y2, v2 = y3, v3 = y4, v4 = y5.

Then, applying the generator X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3), we find

v2ψv2 + v3ψv3 + 2v4ψv4 = 0.

The invariant function is ψ = H(z1, z2, z3) where H is an arbitrary function and

z1 = v1, z2 =
v4

(v3)2
, z3 =

v4

(v2)2
.

Finally, applying the generator X̄
(2)
4 to the function H(J1 − Jτ

1 , J3

(Jτ
2 )2

, J3

(J2)2
), one

gets

z3Hz3 + z2Hz2 = 0.

Thus, the universal invariant of this algebra is J1 − Jτ
1 ,

(
Jτ
2

J2

)2

, which has no

second-order derivative term. Hence, the set of equations admitting the generator

L4
30 cannot be constructed.
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4.3.31 Lie Algebra L4
31

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = −x∂y, X4 =
1

2
x2∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
−h̄

ḡȳ

∂ȳ, X̄4 =
h̄2

2ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

Φy1 + Φy2 = 0.

The invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5. Next, applying the generator X̄
(2)
3 to the

function ψ(J1 − Jτ
1 , J2, J

τ
2 , J3) , we find

cψz1 + ψz2 + ψz3 = 0.

Solving for function ψ, one obtains ψ = H(v1, v2, v3) where H is an arbitrary

constant and v1 = z1 − cz2, v2 = z2 − z3, v3 = z4. Finally, applying the generator

X
(2)
4 to function H(J1 − Jτ

1 − cJ2, J2 − Jτ
2 , J3), then

v3Hv3 + cHv2 −
c2

2
Hv1 = 0.

Thus, the universal invariant of this algebra is

c(J2 − Jτ
2 ) + 2[(y − Jτ

1 )− cJ2], J2 − Jτ
2 − cJ3.

The set of equations admitting the generator L4
31 is

cJ3 = J2 − Jτ
2 − f

(
2(J1 − Jτ

1 )− c(J2 + Jτ
2 )

)
.
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In table 4.1, this set of equations is written as

cy′′ = y′ − y′τ − f
(
2(y − yτ )− c(y′ + y′τ )

)
.

4.3.32 Lie Algebra L4
32

This algebra is defined by the generators

X1 = ∂x, X2 = e−x∂y, X3 = −xe−x∂y, X4 = e−bx∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
e−h̄

ḡȳ

∂ȳ, X̄3 =
−h̄e−h̄

ḡȳ

∂ȳ, X̄4 =
e−bh̄

ḡȳ

∂ȳ.

From Lie algebra L3
11, invariants of the generator X

(2)
1 , X

(2)
2 , X

(2)
3 is Φ =

ψ(w1, w2, w3) where w1 = k(y1 + y3) − (y2 − y4), w2 = y5 + 2y3 + y1 and

w3 = kc(y1 + y3) − ky1 + y2. Applying the generator X̄
(2)
4 to the function

Φ(w1, w2, w3) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

(b− 1)(kb − k)ψw1 + (b− 1)2ψw2 + (kb − bck + ck − k)ψw3 = 0.

Thus, the universal invariant of this algebra is

(b− 1)2[k(J1 + J2)− (Jτ
1 − Jτ

2 )]− (b− 1)(kb − k)[J3 + 2J2 + y],

I6 = (kb − bck + ck − k)
(
k(y + J2)− (Jτ

1 − Jτ
2 )

)

−(b− 1)(kb − k)
(
kc(y + J2)− ky + Jτ

1

)
.

The set of equations admitting the generator L4
32 is

J3 = − 1

(b− 1)(kb − k)

(
f(I6)− (b− 1)2

(
k(J1 + J2)− (Jτ

1 − Jτ
2 )

))− [2J2 + J1].

In table 4.1, this set of equations is written as

y′′ = − 1

(b− 1)(kb − k)

(
f(I6)− (b− 1)2

(
k(y + y′)− (yτ − y′τ )

))− (2y′ + y).



69

4.3.33 Lie Algebra L4
33

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = −x∂y, X4 = e−x∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
−h̄

ḡȳ

∂ȳ, X̄4 =
e−h̄

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

Φy1 + Φy2 = 0.

The invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5. Next, applying the generator X̄
(2)
3 to the

function ψ(J1 − Jτ
1 , J2, J

τ
2 , J3) , we find

cψz1 + ψz2 + ψz3 = 0.

Solving for function ψ, one obtains ψ = H(v1, v2, v3) where H is an arbitrary

function and v1 = z1 − cz2, v2 = z2 − z3, v3 = z4. Finally, applying the generator

X
(2)
4 to function H(J1 − Jτ

1 − cJ2, J2 − Jτ
2 ), J3, then

Hv3 + (c− k + 1)Hv1 + (k − 1)Hz2 = 0.

Thus, the universal invariant of this algebra is

(k − 1)J3 − J2 + Jτ
2 , I7 = (k − 1)(J1 − Jτ

1 − cJ2) + (k − c− 1)(J2 − Jτ
2 ).

The set of equations admitting the generator L4
33 is

J3 =
1

(k − 1)
f(I7) + (J2 − yτ

2 ).
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In table 4.1, this set of equations is written as

y′′ =
1

(k − 1)
f(I7) + (y′ − y′τ ).

4.3.34 Lie Algebra L4
34

This algebra is defined by

X1 = ∂x, X2 = e−x∂y, X3 = −xe−x∂y, X4 =
1

2
x2e−x∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
e−h̄

ḡȳ

∂ȳ, X̄3 =
−h̄e−h̄

ḡȳ

∂ȳ, X̄4 =
h̄2e−h̄

2ḡȳ

∂ȳ.

From Lie algebra L3
11, invariant of the first three generators X

(2)
1 , X

(2)
2 , X

(2)
3 is

Φ(w1, w2, w3) where w1 = k(y1 + y3) − (y2 − y4), w2 = y5 + 2y3 + y1 and w3 =

kc(y1 + y3)− ky1 + y2 . Applying the generator X̄
(2)
4 to the function Φ(w1, w2, w3)

with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

kcΦw1 + Φw2 +
k2

2
c2Φw3 = 0.

Thus, the universal invariant of this algebra is

k(J1 + J2)− (Jτ
1 + Jτ

2 )− kc[J3 + 2J2 + J1],

I8 = c[k(J1 + J2)− (Jτ
1 + Jτ

2 )]− 2[kc(J1 + J2) + kJ1 − Jτ
1 ].

The set of equations admitting the generator L4
34 is

J3 = − 1

kc

(
f(I8)− k(J1 + J2) + (Jτ

1 + Jτ
2 )

)
− (2J2 + J1).

In table 4.1, this set of equations is written as

y′′ = − 1

kc

(
f(I8)− k(y + y′) + (yτ + y′τ )

)
− (2y′ + y).
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4.3.35 Lie Algebra L4
35

This algebra is defined by the generators

X1 = ∂y, X2 = x∂y, X3 = ξ1(x)∂y, X4 = y∂y

which after changing the variables become

X̄1 =
1

ḡȳ

∂ȳ, X̄2 =
h̄

ḡȳ

∂ȳ, X̄3 =
ḡ

ḡȳ

∂ȳ, X̄4 =
ξ1(h̄)

ḡȳ

∂ȳ.

Invariants of the first generator are h̄(x̄), J1−Jτ
1 , J2, Jτ

2 , J3. Applying the second

generator X̄
(2)
2 to the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = h̄, y2 = J1 − Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

Φy3 + Φy4 = 0.

The invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary function and

v1 = y1, v2 = y2, v3 = y3 − y4, v4 = y5.

Next, applying the generator X̄
(2)
3 to the function ψ(h̄, J1 − Jτ

1 , J2 − Jτ
2 , J3), one

finds

v2ψv2 + v3ψv3 + v4ψv4 = 0.

The invariant function is ψ = H(z1, z2, z3) where H is an arbitrary function and

z1 = v1, z2 =
v2

v3

, z3 =
v4

v2

.

Finally, applying generator X̄
(2)
4 to the function H(h̄,

J1−Jτ
1

J2−Jτ
2
, J3

J1−Jτ
1
), one obtains

−(z2)
2ξ′1Hz2 + ξ′′1Hz3 = 0.

Thus, the universal invariant of this algebra is

h̄,
ξ′1J3 − ξ′′1 (J2 − Jτ

2 )

J1 − Jτ
1

. (4.87)
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The set of equations admitting the generator L4
35 is

J3 =
ξ′′1 (J2 − Jτ

2 ) + (J1 − Jτ
1 )f(h̄)

ξ′1
. (4.88)

In table 4.1 this set of equations is written as

y′′ =
ξ′′1 (x)(y′ − y′τ ) + (y − yτ )f(x)

ξ′1(x)
. (4.89)

4.3.36 Lie Algebra L4
36

This algebra is defined by the generators

X1 = ∂x, X2 = e−x∂y, X3 = e−ax∂y, X4 = e−bx∂y, −1 ≤ a < b < 1, ab 6= 0

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
e−h̄

ḡȳ

∂ȳ, X̄3 =
−h̄e−h̄

ḡȳ

∂ȳ, X̄4 =
e−bh̄

ḡȳ

∂ȳ.

From Lie algebra L3
11, invariant of the first two generators X

(2)
1 , X

(2)
2 is

Φ(w1, w2, w3, w4) where w1 = y1+y3, w2 = y5+y3 , w3 = ky1−y2 and w4 = y2+y4.

Applying the generator X̄
(2)
3 to the function Φ(w1, w2, w3, w4) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we obtain

(1− a)Φw1 + (1− a)kaΦw4 + a(a− 1)Φw2 + (k − ka)Φw3 = 0.

Solving for function Φ, one gets Φ = ψ(z1, z2, z3) where ψ is an arbitrary function

and z1 = kaw1 − w4, z2 = aw1 + w2, z3 = (k − ka)w4 − (1 − a)kaw3. Finally,

applying the generator X
(2)
4 to function ψ(z1, z2, z3) with substituted y1 = J1,

y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3, then

(kb−k1)(b−1)ψz1+(b−1)(b−a)ψz2+[−kbak1−kbbk+kbbk1+kbk+akk1−kk1]ψz3 = 0.
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Thus, the universal invariant of this algebra is

(b− 1)(b− a)[ka(J1 + J2)− (Jτ
1 + Jτ

2 )]− (b− 1)(kb − k1)[J3 + (1 + a)J2 + aJ1],

I9 = [−kbak1 − kbbk + kbbk1 + kbk + akk1 − kk1][k
a(J1 + J2)− (Jτ

1 + Jτ
2 )]

−(kb − k1)(b− 1)[(k − ka)(Jτ
1 + Jτ

2 )− (1− a)ka(kJ1 − Jτ
1 )].

The set of equations admitting the generator L4
36 is

J3 = 1
(kb−kc)(b−1)

(
(b− 1)(b− a)(ka(J1 + J2)− (Jτ

1 + Jτ
2 ))− f(I9)

)

−(a(J1 + J2) + J2).

In table 4.1, this set of equations is written as

y′′ = 1
(kb−kc)(b−1)

(
(b− 1)(b− a)(ka(y + y′)− (yτ + y′τ ))− f(I9)

)

−(a(y + y′) + y′).

4.3.37 Lie Algebra L4
37

This algebra is defined by the generators

X1 = ∂x, X2 = e−ax∂y, X3 = e−bx sin x∂y, X4 = e−bx cos x∂y, a > 0

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
e−ah̄

ḡȳ

∂ȳ, X̄3 =
e−bh̄ sin(h̄)

ḡȳ

∂ȳ, X̄4 =
e−bh̄ cos(h̄)

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

one obtains

Φy1 + kaΦy2 − aΦy3 − akaΦy4 + a2Φy5 = 0.
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Solving for function Φ, we obtain Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary

function v1 = ay1 + y3, v2 = kay1 − y2, v3 = a2y1 − y5, v4 = ay2 + y4. Applying

the generator X
(2)
3 to function ψ(v1, v2, v3, v4) with substituted y1 = J1, y2 = Jτ

1 ,

y3 = J2, y4 = Jτ
2 , y5 = J3, then

ψv1 + kb(c2 + kbc1ψv2 + 2bψv3 + (b− a)c1)ψv4 = 0.

Solving for function ψ , we reach ψ = H(w1, w2, w3) where H is an arbitrary

function and w1 = v3 − 2bv1, w2 = c1v4 − [c2 + (b − a)c1]v2, w3 = kbc1v1 − v2.

Finally, applying generator X
(2)
4 to function H with substituted y1 = J1, y2 = Jτ

1 ,

y3 = J2, y4 = Jτ
2 , y5 = J3, one finds

[(a− b)2 + 1]Hw1 + [kb − ka(c2 + (b− a)c1)]Hw2 + [kb(c2 + c1(a− b))− ka]Hw3 = 0.

Thus, the universal invariant of this algebra is

((a− b)2 + 1)
[
kbc1[aJ1 + J2]− [kaJ1 − Jτ

1 ]
]

−[kb(c2 + (b− a)c1)− ka]
[
a2J1 − J3 − 2b(aJ1 + J2)]

]
,

I10 = kb(c2 + (a− b)c1)− ka)(c1(aJτ
1 Jτ

2 )− [c2 + (b− a)c1][k
aJ1 − Jτ

1 ])

−[kb + ka(c1(a− b)− c2)].

The set of equations admitting the generator L4
37 is

J3 =

(
f(I10)((a− b)2 + 1)

(
kbc1[aJ1 + J2]− [kaJ1 − Jτ

1 ]
))

[kb(c2 + (b− a)c1)− ka]
−

(
2b(aJ1 + J2) + a2J1

)
.

In table 4.1, this set of equations is written as

y′′ =

(
f(I10)((a− b)2 + 1)

(
kbc1[ay + y′]− [kay − y′]

))

[kb(c2 + (b− a)c1)− ka]
−

(
2b(ay + y′) + a2y

)
.
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4.3.38 Lie Algebra L4
38

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = x∂x + (2y + x2)∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ,

X̄3 =
h̄

ḡȳ

∂ȳ, X̄4 =
h̄

h̄x̄

∂x̄ + (− h̄ḡx̄

h̄x̄ḡȳ

+
2ḡ + h̄2

ḡȳ

)∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

the invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y4. Then, applying the generator X̄
(2)
3 to the

function ψ(J1 − Jτ
1 , J2, J

τ
2 , J3), we find

ψz2 + ψz3 = 0.

Solving for invariant function, one obtains ψ = H(v1, v2, v3) where H is an arbi-

trary function and v1 = z1, v2 = z2 − z3, v3 = z4. Applying the generator X̄
(2)
4 to

function H(J1 − Jτ
1 , J2 − Jτ

2 , J3), then

2v1Hv1 + v2Hv2 + 2Hv3 = 0.

Thus, the universal invariant of this algebra is

eJ3

(J2 − Jτ
2 )2

,
(J2 − Jτ

2 )2

(J1 − Jτ
1 )

. (4.90)

The set of equations admitting the generator L4
38 is

J3 = ln

(
(J2 − Jτ

2 )2f
((J2 − Jτ

2 )2

J1 − Jτ
1

))
.
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In table 4.1 this set of equations is written as

y′′ = ln

(
(y′ − y′τ )

2f
((y′ − y′τ )

2

y − yτ

))
.

4.3.39 Lie Algebra L4
39

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = (1 + b)x∂x + y∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
h̄

ḡȳ

∂ȳ,

X̄4 =
(1 + b)h̄

h̄x̄

∂x̄ +
(
− (b + 1)

h̄ḡx̄

h̄x̄ḡȳ

+
ḡ

ḡȳ

)
∂ȳ.

From Lie algebra L4
38, invariant function of the generator X

(2)
1 , X

(2)
2 , X

(2)
3 is

ψ(z1, z2, z3) where z1 = J1 − Jτ
1 , z2 = J2 − Jτ

2 z3 = J3. Applying the generator

X̄
(2)
4 to function ψ(J1 − Jτ

1 , J2 − Jτ
2 , J3), then

z1ψz1 − bz2ψz2 − (1 + 2b)z3ψz3 = 0.

Thus, the universal invariant of this algebra is

(J1 − Jτ
1 )b(J2 − Jτ

2 ),
(J3)

b

(J2 − Jτ
2 )1+2b

. (4.91)

The set of equations admitting the generator L4
38 is

J3 =
[
(J2 − Jτ

2 )2b+1f [(J1 − Jτ
1 )b(J2 − Jτ

2 )]
]1/b

.

In table 4.1, this set of equations is written as

y′′ =
[
(y′ − y′τ )

2b+1f [(y − yτ )
b(y′ − y′τ )]

]1/b

,
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4.3.40 Lie Algebra L4
40

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = −x∂y, X4 = y∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 = X̄2 =
1

ḡȳ

∂ȳ, X̄3 =
−h̄

ḡȳ

∂ȳ, X̄4 =
ḡ

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

the invariant function is Φ = ψ(z1, z2, z3, z4) where ψ is an arbitrary function and

z1 = y1 − y2, z2 = y3, z3 = y4, z4 = y5. Applying the generator X̄
(2)
3 to the

function ψ(J1 − Jτ
1 , J2, J

τ
2 , J3), we find

ψz2 + ψz3 + cψz1 = 0.

Solving for function ψ, we reach ψ = H(v1, v2, v5) where v1 = z2 − cz1, v2 =

z2 − z3, v3 = z4 Then, applying the generator X
(2)
4 to function H(J2 − c(J1 −

Jτ
1 ), J2 − Jτ

2 , J3), one obtains

v1Hv1 + v2Hv2 + v3Hv3 = 0.

Thus, the universal invariant of this algebra is

J3

J2 − Jτ
2

,
J2 − c(J1 − Jτ

1 )

J2 − Jτ
2

.

The set of equations admitting the generator L4
40 is

J3 = (J2 − Jτ
2 )f

(
J2 − c(J1 − Jτ

1 )

J2 − Jτ
2

)
.

In table 4.1, this set of equations is written as

y′′ = (y′ − y′τ )f

(
y′ − c(y − yτ )

y′ − y′τ

)
.
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4.3.41 Lie Algebra L4
41

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x + y∂y, X4 = y∂x − x∂y.

After changing the variables under conditions

(ξ̄i)ȳ = 0 and ξ̄i(x̄) = ξ̄i(x̄− τ), i = 1, . . . , 4

lead us to h̄ȳ = ḡȳ = 0. This contradicts to the assumption ∆ 6= 0.

4.3.42 Lie Algebra L4
42

This algebra is defined by the generators

X1 = ∂x, X2 = y∂y, X3 = sin x∂y, X4 = cos x∂y

which after changing the variables become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
ḡ

ḡȳ

∂ȳ, X̄3 =
sin(h̄)

ḡȳ

∂ȳ, X̄4 =
cos(h̄)

ḡȳ

∂ȳ.

Invariants of the first generator are (4.17). Applying the second generator X̄
(2)
2 to

the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we arrive at

y1Φy1 + y2Φy2 + y3Φy3 + y4Φy4 + y5Φy5 = 0.

Hence, the invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary func-

tion and v1 =
y2

y1

, v2 =
y4

y3

, v3 =
y3

y1

, v4 =
y5

y3

. Next, applying the generator X̄
(2)
3

to the function ψ(
Jτ
1

J1
,

Jτ
2

J2
, J2

J1
, J3

J2
), one finds

−c1v3ψv1 + (c2 − v2)ψv2 + v3ψv3 − v4ψv4 = 0.
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Solving for function ψ, we arrive at ψ = H(z1, z2, z3) where H is an arbitrary

function and z1 = v1 + c1v3, z2 = v3(c2 − v2), z3 = v3v4. Then, applying the

generator X
(2)
4 to function H(z1, z2, z3) with substituted y1 = J1, y2 = Jτ

1 ,

y3 = J2, y4 = Jτ
2 , y5 = J3, one obtains

(c2 − z1)Hz1 − (c1 + z2)Hz2 − (1 + z3)Hz3 = 0.

Thus, the universal invariant of this algebra is

I11 =
c2 − Jτ

1

J1
+ c1

J2

J1

c1 + J2

J1
(c2 − Jτ

2

J2
)
,

1 + J3

J1

c1 + J2

J1
(c2 − Jτ

2

J2
)
.

The set of equations admitting the generator L4
42 is

J3 = J1

(
f(I11)

[
c1 +

[J2

J1

(c2 − Jτ
2

J2

)
]]
− 1

)
.

In table 4.1, this set of equations is written as

y′′ = y
(
f(I11)

[
c1 +

[y′

y
(c2 − y′τ

y′
)
]]
− 1

)
.

4.3.43 Lie Algebra L5
43

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = y∂x, X4 = x∂y, X5 = x∂x − y∂y.

After changing the variables under conditions

(ξ̄i)ȳ = 0 and ξ̄i(x̄) = ξ̄i(x̄− τ), i = 1, . . . , 5. (4.92)

It leads us to h̄ȳ = ḡȳ = 0. This contradicts to the assumption ∆ 6= 0.

4.3.44 Lie Algebra L5
44

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = y∂x, X4 = x∂y, X5 = x∂x.
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After changing the variables under conditions (4.92). The results is also h̄ȳ = ḡȳ =

0 which contradicts to the assumption ∆ 6= 0.

4.3.45 Lie Algebra L5
45

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x + y∂y,

X4 = y∂x − x∂y, X5 = (x2 − y2)∂x − 2xy∂y.

After changing the variables under conditions (4.92). The results is also h̄ȳ = ḡȳ =

0 which contradicts to the assumption ∆ 6= 0.

4.3.46 Lie Algebra L5
46

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = x2∂x,

which after changing the variables, they become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = 1

ḡȳ
∂ȳ, X̄3 = h̄

h̄x̄
∂x̄ − h̄ḡx̄

h̄x̄ḡȳ
∂ȳ,

X̄4 = ḡ
ḡȳ

∂ȳ, X̄5 = h̄2

h̄x̄
∂x̄ − h̄2ḡx̄

h̄x̄ḡȳ
∂ȳ.

From Lie algebra L4
30 (page.66), invariant of prolonged generators X̄

(2)
1 , X̄

(2)
2 ,

X̄
(2)
3 , X̄

(2)
4 is an arbitrary function G(w1, w2) where w1 = J1 − Jτ

1 , w2 = ( J2

Jτ
2
)2.

Applying generator X̄
(2)
5 to function G(J1 − Jτ

1 , ( J2

Jτ
2
)2), one obtains

w1Hw1 = 0.

Thus the universal invariant of this algebra is (
J2

Jτ
2

)2, which has no second-order

derivative term. Hence the set of equations admitting the generator L5
46 cannot

be constructed.



81

4.3.47 Lie Algebra L5
47

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y, X5 = y∂x.

After changing the variables under conditions (4.92). The results is also h̄ȳ = ḡȳ =

0 which contradicts to the assumption ∆ 6= 0.

4.3.48 Lie Algebra L5
48

This algebra is defined by the generators

X1 = ∂y, X2 = x∂y, X3 = ξ1(x)∂y, X4 = ξ2(x)∂y, X5 = ξ3(x)∂y

which after changing the variables, they become

X̄1 =
1

ḡȳ

∂ȳ, X̄2 =
h̄

ḡȳ

∂ȳ, X̄3 =
ξ1(h̄)

ḡȳ

∂ȳ, X̄4 =
ξ2(h̄)

ḡȳ

∂ȳ, X̄5 =
ξ3(h̄)

ḡȳ

∂ȳ.

From Lie algebra L4
23 (page.58), invariant of prolonged generators X̄

(2)
1 , X̄

(2)
2 ,

X̄
(2)
3 , X̄

(2)
4 is an arbitrary function H(v1, v2) where v1 = h̄, and

v2 = [ξ′′1 (ξ′τ2 − ξ′2) + ξ′′2 (ξ′1 − ξ′τ1 )][(ξ′1 − ξτ ′
1 )(cJ2 − J1 + Jτ

1 )− (ξ′1c− ξ1 + ξτ
1 )(J2 − Jτ

2 )]−

(c(ξ′1ξ
′τ
2 − ξ′τ1 ξ′2) + (ξ′τ1 − ξ′1)(ξ2 − ξτ

2 ) + (ξ′2 − ξ′τ2 )(ξ1 − ξτ
1 ))[(ξ′1 − ξτ ′

1 )J3 − ξ′′1 (J2 − Jτ
2 )].

Applying generator X
(2)
5 to function H(v1, v2) lead to the universal invariant of

this algebra is h̄, which has no second-order derivative term. Hence, the set of

equations admitting the generator L5
48 cannot be constructed.

4.3.49 Lie Algebra L5
49

This algebra is defined by the generators

X1 = ∂y, X2 = x∂y, X3 = y∂y, X4 = ξ1(x)∂y, X5 = ξ2(x)∂y
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which after changing the variables become

X̄1 =
1

ḡȳ

∂ȳ, X̄2 =
h̄

ḡȳ

∂ȳ, X̄3 =
ḡ

ḡȳ

∂ȳ, X̄4 =
ξ1(h̄)

ḡȳ

∂ȳ, X̄5 =
ξ2(h̄)

ḡȳ

∂ȳ.

From Lie algebra L4
35 (page.71), invariant of prolonged generators X̄

(2)
1 , X̄

(2)
2 ,

X̄
(2)
3 , X̄

(2)
4 is an arbitrary function G(w1, w2) where w1 = h̄, w2 =

ξ′1J3−ξ′′1 (J2−Jτ
2 )

J1−Jτ
1

.

Applying generator X
(2)
5 to function G(h̄,

ξ′1J3−ξ′′1 (J2−Jτ
2 )

J1−Jτ
1

), we obtain Gw2 = 0. Thus

the universal invariant of this algebra is h̄, which has no second-order derivative

term. Hence the set of equations admitting the generator L5
49 cannot be con-

structed.

4.3.50 Lie Algebra L5
50

Let us consider Lie algebra defined by the generators

X1 = ∂x, X2 = η1(x)∂y, X3 = η2(x)∂y, . . . , Xr+1 = ηr(x)∂y

where the functions η1, η2, η3, . . . , ηr form a fundamental system of solutions for

an r-order ordinary differential equation with constant coefficients

η(r)(x) + c1η
(r−1)(x) + . . . + cr−1η

′(x) + crη(x) = 0.

These Lie algebras are L3
8, L

3
9, L

3
11, L

3
15, L

3
17, L

4
26, L

4
27, L

4
28, L

4
31, L

4
32, L

4
33, L

4
34, L

4
36,

L4
37, L

5
50

• Case r = 2, the Lie algebra defined by the generators

X1 = ∂x, X2 = η1(x)∂y, X3 = η2(x)∂y,

where η1, η2 satisfy the equation

η′′(x) = −(c1η
′(x) + c2η(x)). (4.93)
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In Table 1 these Lie algebras are L3
8, L

3
9, L

3
11, L

3
15 and L3

17. Changing the

variables (3.10), the generators become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = η1(h̄)

ḡȳ
∂ȳ, X̄3 = η2(h̄)

ḡȳ
∂ȳ.

The general solution of the function X̄
(2)
1 J = 0 is obtained similar to (4.19).

Applying the generators X̄
(2)
2 , X̄

(2)
3 to the function J = Ψ(y1, y2, y3, y4, y5, y6)

with

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3, y6 = Jτ
3 ,

where Jτ
3 = J3(x̄−τ, ȳτ , ȳ

′
τ , ȳ

′′
τ ), we obtain the system of differential equations

η1Ψy1 + η′1Ψy3 + η′′1Ψy5 + ητ
1Ψy2 + η′τ1 Ψy4 + η′′τ1 Ψy6 = 0, (4.94)

η2Ψy1 + η′2Ψy3 + η′′2Ψy5 + ητ
2Ψy2 + η′τ2 Ψy4 + η′′τ2 Ψy6 = 0, (4.95)

where ητ
i = ηi(h̄(x̄ − τ)), η′τi = η′i(h̄(x̄ − τ)), η′′τi = η′′i (h̄(x̄ − τ)), (i = 1, 2).

The variables y6 is introduced for simplicity of representation of equations

for invariant: for second-order delay ordinary differential equations Ψy6 = 0.

Substituting η′′i and η′′τi found from (4.93) into (4.94)-(4.95), they become

η1Ψy1 + η′1Ψy3 − (c1η
′
1 + c2η1)Ψy5 + ητ

1Ψy2 + η′τ1 Ψy4 − (c1η
′τ
1 + c2η

τ
1 )Ψy6 = 0,

η2Ψy1 + η′2Ψy3 − (c1η
′
2 + c2η2)Ψy5 + ητ

2Ψy2 + η′τ2 Ψy4 − (c1η
′τ
2 + c2η

τ
2 )Ψy6 = 0.

In matrix form, these equations can be rewritten as

Φ~z −Ψy5Φ~c + Φτ~zτ = 0. (4.96)

Here

Φ =




η1 η′1

η2 η′2


 , ~c =




c2

c1


 , ~z =




Ψy1

Ψy3


 , ~zτ =




Ψy2

Ψy4


 , Φτ = Φ(h̄(x̄− τ)).
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Since ηi composes a fundamental system of solutions of (4.93), Φ is a funda-

mental matrix, which has the properties Φ(h̄(x̄−τ)) = Φ(h̄(x̄))C, det Φ 6= 0

with a nonsingular matrix C = [cij]2×2 (Pontriagin, 1974). Multiplying (4.96)

by Φ−1 , system (4.96) is rewritten

~z −Ψy5~c + C~zτ = 0,

or these equations are

Ψy1 − c2Ψy5 + c11Ψy2 + c12Ψy4 = 0,

Ψy3 − c1Ψy5 + c21Ψy2 + c22Ψy4 = 0.

Since these equations have constant coefficients, one easily obtains the uni-

versal invariant

J3 + c1J2 + c2J1, Jτ
1 − c11J1 − c21J2, Jτ

2 − c12J1 − c22J2.

The invariant equation has the form

J3 = f
(
Jτ

1 − c11J1 − c21J2, J
τ
2 − c12J1 − c22J2

)
− (c1J2 + c2J1).

Because of the meaning of the functions J1, J
τ
1 , J2, J

τ
2 and J3, we present this

equation as

y′′ = f
(
yτ − c11y − c21y

′, y′τ − c12y − c22y
′
)
− (c1y

′ + c2y) (4.97)

• Case r = 3, the Lie algebra is defined by

X1 = ∂x, X2 = η1(x)∂y, X3 = η2(x)∂y, X4 = η3(x)∂y,

where η1, η2, η3 satisfy the equation

η′′′(x) = −(c1η
′′(x) + c2η

′(x) + c3η(x)). (4.98)
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In Table 1 these Lie algebras are L4
26, L

4
27, L

4
28, L

4
31, L

4
32, L

4
33, L

4
34, L

4
36 and L4

37.

Changing the variables (3.10), the generators become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = η1(h̄)

ḡȳ
∂ȳ, X̄3 = η2(h̄)

ḡȳ
∂ȳ, X̄4 = η3(h̄)

ḡȳ
∂ȳ.

The general solution of the function X̄
(2)
1 J = 0 is obtained similar to

(4.19). Applying the generators X̄
(3)
2 , X̄

(3)
3 , X̄

(3)
4 to the function J =

Ψ(y1, y2, y3, y4, y5, y6, y7, y8) with

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 ,

y5 = J3, y6 = Jτ
3 y7 = J4, y8 = Jτ

4 ,

J4 = D(J3(x̄,ȳ,ȳ′,ȳ′′))
D(h̄(x̄,ȳ))

, Jτ
4 = J4(x̄− τ, ȳτ , ȳ

′
τ , ȳ

′′
τ , ȳ

′′′
τ ),

we obtain system of differential equations

η1Ψy1 + η′1Ψy3 + η′′1Ψy5 + η′′′1 Ψy7 + ητ
1Ψy2 + η′τ1 Ψy4 + η′′τ1 Ψy6 + η′′′τ1 Ψy8 = 0,

η2Ψy1 + η′2Ψy3 + η′′2Ψy5 + η′′′2 Ψy7 + ητ
2Ψy2 + η′τ2 Ψy4 + η′′τ2 Ψy6 + η′′′τ2 Ψy8 = 0,

η3Ψy1 + η′3Ψy3 + η′′3Ψy5 + η′′′3 Ψy7 + ητ
3Ψy2 + η′τ3 Ψy4 + η′′τ3 Ψy6 + η′′′τ3 Ψy8 = 0,

where ητ
i = ηi(h̄(x̄ − τ)), η′τi = η′i(h̄(x̄ − τ)), η′′τi = η′′i (h̄(x̄ − τ)), η′′′τi =

η′′′i (h̄(x̄− τ)), (i = 1, 2, 3). Here the variables y6, y7 and y8 are introduced for

simplicity of representation of equations for invariant: for second-order delay

ordinary differential equations Ψy6 = 0, Ψy7 = 0, Ψy8 = 0. Substituting η′′′i ,

and η′′′τi found from (4.98), the above system of equations in matrix form

Φ~z −Ψy7Φ~c + Φτ~zτ = 0. (4.99)

Here

Φ =




η1 η′1 η′′1

η2 η′2 η′′2

η3 η′3 η′′3




, ~c =




c3

c2

c1




, ~z =




Ψy1

Ψy3

Ψy5




, ~zτ =




Ψy2

Ψy4

Ψy6




, Φτ = Φ(h̄(x̄−τ)).
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Since ηi composes a fundamental system of solutions of (4.98), Φ is a funda-

mental matrix, which has the properties Φ(h̄(x̄−τ)) = Φ(h̄(x̄))C, det Φ 6= 0

with a nonsingular matrix C = [cij]3×3. Multiplying (4.99) by Φ−1, as in the

previous case, system (4.99) is rewritten as

~z − ~cΨy7 + C~zτ = 0,

or

Ψy1 − c3Ψy7 + c11Ψy2 + c12Ψy4 + c13Ψy6 = 0,

Ψy3 − c2Ψy7 + c21Ψy2 + c22Ψy4 + c23Ψy6 = 0,

Ψy5 − c1Ψy7 + c31Ψy2 + c32Ψy4 + c33Ψy6 = 0.

Solving these equations and using the conditions Φy6 = Φy7 = 0, the universal

invariant of this Lie algebra

Jτ
1 − c11J1 − c21J2 − c31J3, Jτ

2 − c12J1 − c22J2 − c32J3.

Since second-order delay ordinary differential equations are studied in this

paper, one need to assume (c31)
2 + (c32)

2 6= 0. The invariant equation has

the form

φ
(
Jτ

1 − c11J1 − c21J2 − c31J3, Jτ
2 − c12J1 − c22J2 − c32J3

)
= 0,

where φ(z1, z2) is an arbitrary function. Because of the meaning of the

functions J1, J
τ
1 , J2, J

τ
2 and J3, we represent this equation as

φ
(
yτ − c11y − c21y

′ − c31y
′′, y′τ − c12y − c22y

′ − c32y
′′
)

= 0.

• Case r ≥ 4, in this case one can proceed in the same manner. The universal

invariant of Lie algebra is

Jτ
1 −

r∑
i=1

ci1Ji, Jτ
2 −

r∑
i=1

ci2Ji,
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where Ji is the y(i−1) after change of variables. The set of equations admitting

the generator L5
50 is

φ
(
Jτ

1 −
r∑

i=1

ci1Ji, Jτ
2 −

r∑
i=1

ci2Ji

)
= 0,

where φ(z1, z2) is an arbitrary function with respect to

ci1φz1 + ci2φz2 = 0, i = 4, . . . , r.

Because of the meaning of the functions J1, J
τ
1 , J2, J

τ
2 and J3, we represent

this equation as

φ
(
yτ −

r∑
i=1

ci1y
(i−1), , y′τ −

r∑
i=1

ci2y
(i−1)

)
= 0.

4.3.51 Lie Algebra L5
51

This algebra is defined by the generators

X1 = ∂x, X2 = η1(x)∂y, X3 = η2(x)∂y, . . . , Xr+1 = ηr(x)∂y, Xr+2 = y∂y,

where the functions ηi(x), i = 1, . . . , r are defined as in Lie algebra L5
50.

• Case r = 2, the Lie algebra defined by the generators

X1 = ∂x, X2 = η1(x)∂y, X3 = η2(x)∂y, X4 = y∂y

where η1, η2 satisfy the equation (4.93). After changing the variables, they

become

X̄1 =
1

h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ

∂ȳ, X̄2 =
η1(h̄)

ḡȳ

∂ȳ, X̄3 =
η2(h̄)

ḡȳ

∂ȳ, X̄4 =
ḡ

ḡȳ

∂ȳ.

From Lie algebra L5
50, invariant of prolonged generators X̄

(2)
1 , X̄

(2)
2 , X̄

(2)
3 is an

arbitrary function G(z1, z2, z3) where

z1 = J3 + c1J2 + c2J1, z2 = Jτ
1 − c11J1 − c21J2, z3 = Jτ

2 − c12J1 − c22J2.
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Applying the generator X̄
(2)
4 to the function

G(J3 + c1J2 + c2J1, J
τ
1 − c11J1 − c21J2, Jτ

2 − c12J1 − c22J2),

we find

z1Gz1 + z2Gz2 + z3Gz3 = 0.

Thus the universal invariant function is

J3 + c1J2 + c2J1

Jτ
2 − c12J1 − c22J2

,
Jτ

1 − c11J1 − c21J2

Jτ
2 − c12J1 − c22J2

.

The set of equation admitting this Lie algebra is

J3 = (Jτ
2 − c12J1 − c22J2)f

(Jτ
1 − c11J1 − c21J2

Jτ
2 − c12J1 − c22J2

)
− (c1J2 + c2J1).

Because of the meaning of the functions J1, J
τ
1 , J2, J

τ
2 and J3, we present this

equation as

y′′ = (y′τ − c12y − c22y
′)f

(yτ − c11y − c21y
′

y′τ − c12y − c22y′

)
− (c1y

′ + c2y). (4.100)

• Case r ≥ 3, the Lie algebra is defined by the generators

X1 = ∂x, X2 = η1(x)∂y, . . . , Xr+1 = ηr(x)∂y, Xr+2 = y∂y,

which after changing the variables, they become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = η1(h̄)

ḡȳ
∂ȳ, . . . , X̄r+1 = ηr(h̄)

ḡȳ
∂ȳ, X̄r+2 = ḡ

ḡȳ
∂ȳ.

From Lie algebra L5
50, invariant of prolonged generators X̄

(2)
1 , X̄

(2)
2 , . . . , X̄

(2)
r+1 is an

arbitrary function G(z1, z2) where

z1 = Jτ
1 −

r∑
i=1

ci1Ji, z2 = Jτ
2 −

r∑
i=1

ci2Ji.

Applying the generator X̄
(2)
r+2 to the function

G(Jτ
1 −

r∑
i=1

ci1Ji, J
τ
2 −

r∑
i=1

ci2Ji),
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we find

z1Gz1 + z2Gz2 = 0.

Thus the universal invariant function is

Jτ
1 −

∑r
i=1 ci1Ji

Jτ
2 −

∑r
i=1 ci2Ji

.

The set of equation is written as

yτ −
r∑

i=1

ci1y
(i−1) = c5(y

′
τ −

r∑
i=1

ci2y
(i−1)),

where c5 is an arbitrary constant with respect to

c5cj2 − cj1 = 0, j = 4, . . . , r + 1.

4.3.52 Lie Algebra L5
52

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = x2∂y, X5 = x∂x + cy∂y

which after changing the variables, they become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = 1

ḡȳ
∂ȳ, X̄3 = h̄

ḡx̄
∂ȳ,

X̄4 = h̄2

ḡx̄
∂ȳ, X̄5 = h̄

h̄x̄
∂x̄ +

(
h̄ḡx̄

h̄x̄ḡȳ
− cḡ

ḡȳ

)
∂ȳ.

Invariant function of the first generator are (4.17). Applying the second generator

X̄
(2)
2 to the function Φ(y1, y2, y3, y4, y5) with substituted

y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

we find

y1Φy1 + y2Φy2 = 0.
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Hence, the invariant function is Φ = ψ(v1, v2, v3, v4) where ψ is an arbitrary func-

tion and v1 = y1 − y2, v2 = y3, v3 = y4, v4 = y5. Next, applying the generator

X̄
(2)
3 to the function ψ(J1 − Jτ

1 , J2, J
τ
2 , J3), we obtain

ψv2 + ψv3 = 0.

Solving for function ψ, we arrive at ψ = H(z1, z2, z3) where H is an arbitrary

function and z1 = v1, z2 = v2 − v3, z3 = v4. Then, applying the generator X
(2)
4 to

function H(z1, z2, z3) with substituted y1 = J1, y2 = Jτ
1 , y3 = J2, y4 = Jτ

2 , y5 = J3,

one obtains

2Hz3 = 0.

The invariant function is H = G(w1, w2) where G is an arbitrary function and w1 =

z1, w2 = z2. Finally applying the generator X
(2)
5 to function G(J1 − Jτ

1 , J2 − Jτ
2 ),

one gets

cw1Gw1 + (c− 1)w2Gw2 = 0,

where c is an arbitrary constant. Thus, the universal invariant of this algebra is

(J1 − Jτ
1 )(1−c)(J2 − Jτ

2 )c,

which has no second-order derivative term. Hence, the set of equations admitting

the generator L5
52 cannot be constructed.

4.3.53 Lie Algebra L5
53

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = x2∂y, X5 = x∂x + (3y + x3)∂y

which after changing the variables become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = 1

ḡȳ
∂ȳ, X̄3 = h̄

ḡx̄
∂ȳ,

X̄4 = h̄2

ḡx̄
∂ȳ, X̄5 = h̄

h̄x̄
∂x̄ +

(
− h̄ḡx̄

h̄x̄ḡȳ
+ 3ḡ+h̄3

ḡȳ

)
∂ȳ.
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From Lie algebra L5
52, invariant function of the generators X̄

(2)
1 , X̄

(2)
2 , X̄

(2)
3 , X̄

(2)
4 is

an arbitrary function G(w1, w2) where w1 = J1 − Jτ
1 , w2 = J2 − Jτ

2 . Applying the

generator X̄
(2)
5 to the function G(J1 − Jτ

1 , J2 − Jτ
2 ), we find

w1Gw1 = 0.

Thus, the universal invariant of this algebra is J2− Jτ
2 , which has no second-order

derivative term. Hence, the set of equations admitting the generator L5
53 cannot

be constructed.

4.3.54 Lie Algebra L5
54

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = y∂y, X5 = x∂x

which after changing the variables become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = 1

ḡȳ
∂ȳ, X̄3 = h̄

ḡx̄
∂ȳ,

X̄4 = h̄2

ḡx̄
∂ȳ, X̄5 = h̄

h̄x̄
∂x̄.

From Lie algebra L5
52, invariant function of the generators X

(2)
1 , X

(2)
2 , X

(2)
3 is an

arbitrary function G(w1, w2, w3) where w1 = J1 − Jτ
1 , w2 = J2 − Jτ

2 , w3 = J3.

Applying the generator X̄
(2)
4 to the function G(J1 − Jτ

1 , J2 − Jτ
2 , J3), we find

w1Gw1 + w2Gw2 + w3Gw3 = 0.

Invariant function is G = V (z1, z2) where V is an arbitrary function and

z1 =
w2

w1

, z2 =
w3

w2

.

Finally, applying the generator X
(2)
5 to function V (

J2−Jτ
2

J1−Jτ
1
, J3

J2−Jτ
2
), we arrive at

z1Vz1 + z2Vz2 = 0.
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Thus, the universal invariant of this algebra is
J3J1

(J2 − Jτ
2 )2

. The set of equations

admitting the generator L5
54 is

J3 =
c3(J2 − Jτ

2 )2

J1

, (4.101)

where c3 is arbitrary constant. In table 4.1 this set of equations is written as

y′′ =
c3(y

′ − y′τ )
2

y
. (4.102)

4.3.55 Lie Algebra L5
55

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = x∂y, X4 = 2x∂x + y∂y, X5 = x2∂x + xy∂y

which after changing the variables become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = 1

ḡȳ
∂ȳ, X̄3 = h̄

ḡx̄
∂ȳ,

X̄4 = 2h̄
h̄x̄

∂x̄ +
(
− 2h̄ḡx̄

h̄x̄ḡx̄
+ ḡ

ḡȳ

)
∂ȳ, X̄5 = h̄2

h̄x̄
∂x̄ +

(
− h̄2ḡx̄

h̄x̄ḡx̄
+ h̄ḡ

ḡȳ

)
∂ȳ.

From Lie algebra L5
52, invariant function of the generators X

(2)
1 , X

(2)
2 , X

(2)
3 is an

arbitrary function G(w1, w2, w3) where w1 = J1 − Jτ
1 , w2 = J2 − Jτ

2 , w3 = J3.

Applying the generator X̄
(2)
4 to the function G(J1 − Jτ

1 , J2 − Jτ
2 , J3), we find

w1Gw1 − w2Gw2 − 3w3Gw3 = 0.

Invariant function is G = V (z1, z2) where V is an arbitrary function and

z1 = w2w1, z2 = w3
1w3.

Finally, applying the generator X
(2)
5 to function V

(
(J1−Jτ

1 )(J2−Jτ
2 ), (J1−Jτ

1 )3J3

)
,

we arrive at

z1Vz1 = 0.
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Thus, the universal invariant of this algebra is (J1 − Jτ
1 )3J3. The set of equations

admitting the generator L5
55 is

J3 =
c4

(J1 − Jτ
1 )3

, (4.103)

where c4 is arbitrary constant. In table 4.1 this set of equations is written as

y′′ =
c4

(y − yτ )3
. (4.104)

4.3.56 Lie Algebra L5
56

This algebra is defined by the generators

X1 = ∂x, X2 = ∂y, X3 = y∂y, X4 = x∂x, X5 = x2∂x

which after changing the variables become

X̄1 = 1
h̄x̄

∂x̄ − ḡx̄

h̄x̄ḡȳ
∂ȳ, X̄2 = 1

ḡȳ
∂ȳ, X̄3 = ḡ

ḡȳ
∂ȳ,

X̄4 = h̄
h̄x̄

∂x̄, X̄5 = h̄2

h̄x̄
∂x̄.

From Lie algebra L3
7 (page.44), invariant function of the prolonged generators

X̄
(2)
1 , X̄

(2)
2 , X̄

(2)
3 is an arbitrary function G(w1, w2, w3) where w1 =

J1−Jτ
1

J2
, w2 =

Jτ
2

J2
, w3 = J3

J2
. Applying the generator X̄

(2)
4 to the function G(

J1−Jτ
1

J2
,

Jτ
2

J2
, J3

J2
), we find

w1Gw1 − w3Gw3 = 0.

Invariant function is G = V (z1, z2) where V is an arbitrary function and

z1 = w2, z2 = w1w3.

Finally, applying the generator X
(2)
5 to function V

(
Jτ
2

J2
,

(J1−Jτ
1 )J3

(J2)2

)
, we arrive at

−2z2Vz2 = 0.

Thus, the universal invariant of this algebra is
Jτ

2

J2

, which has no second-order

derivative term. Hence, the set of equations admitting the generator L5
56 cannot

be constructed.
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4.4 Group Classification of Second-Order DODEs

Table 4.1 Group classification of second-order DODEs on the domain of real space

No. Lie algebra Representation of second-order DODEs

1 L1
1 ∂x y′′ = f(y, yτ , y

′, y′τ )

2 L2
2 ∂x, ∂y y′′ = f(y − yτ , y

′, y′τ )

3 L2
3 ∂x, y∂x y′′ = y′3f(y, yτ ,

1
y′
− 1

y′τ
)

4 L2
4 ∂x, x∂x + y∂y y′′ =

1
y
f(

yτ

y
, y′, y′τ )

5 L2
5 ∂x, x∂x y′′ = y′2f(y, yτ ,

y′τ
y′

)

6 L3
6 ∂y, x∂y, ξ1(x)∂y y′′ =

1
(ξ′1 − ξτ ′

1 )

(
f
(
x, (ξ′1 − ξτ ′

1 )(cy′ − y +

yτ )−(ξ′1c−ξ1+ξτ
1 )(y′−y′τ )

)
+ξ′′1 (y′−y′τ )

)

7 L3
7 ∂y, y∂y, ∂x y′′ = y′f

(y − yτ

y′
,
y′τ
y′

)

8 L3
8 e−x∂y, ∂x, ∂y y′′ = f(ky′ − y′τ , k(y− yτ − y′τ ) + y′τ )− y′

9 L3
9 ∂y, ∂x, x∂y y′′ = f(y′ − y′τ , cy′ − y + yτ )

10 L3
10 ∂y, ∂x, x∂x + (x + y)∂y y′′ = e−y′f(y′ − y′τ , (y − yτ )e−y′)

11 L3
11 e−x∂y,−xe−x∂y, ∂x y′′ = f

(
k(y + y′) − (yτ + y′τ ), kc(y + y′)

−ky + yτ

)
− (2y′ + y)

12 L3
12 ∂x, ∂y, x∂x + y∂y y′′ =

f(y′, y′τ )
y − yτ

.

13 L3
13 ∂y, x∂y, y∂y y′′ = (y′ − y′τ )f

(
x,

cy′ − y + yτ

(y′ − y′τ )

)
.

14 L3
14 ∂x, ∂y, x∂x + ay∂y, y′′ = y

′ (a−2)
(a−1) f

(y′τ
y′

,y′(y − yτ )
(1−a)

a

)

0 < |a| ≤ 1, a 6= 1

15 L3
15 e−x∂y, e

−ax∂y, ∂x,

0 < |a| ≤ 1, a 6= 1

y′′ = f
(
ka(y + y′)− (yτ + y′τ ), (k − ka)(y

+y′)− (1−a)(ky− yτ )
)
− [(1+a)y′+ay]

16 L3
17 e−bx sinx∂y, e

−bx cosx∂y, ∂x,

b ≥ 0

y′′ = f(I1, I2)− (2by′ + (b2 + 1)y)

17 L3
19 ∂x +∂y, x∂x + y∂y, x

2∂x + y2∂y y′′ =
y′3/2

(x− y)

(
f
(
y′(

x− yτ

yτ − y
)2,

(yτ − y)2

y′τ (x− y)2
)

−2y′(y′ + 1)
)
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No. Lie algebra Representation of second-order DODEs

18 L3
20 ∂x, x∂x + 1

2y∂y, x
2∂x + xy∂y y′′ = y−3f

(yτ

y
, y′yτ (

y′τ
y′
− yτ

y
)
)

19 L4
24 ∂x, x∂x, ∂y, y∂y y′′ =

y′2

(y − yτ )
f
(y′τ

y′
)

20 L4
25 e−x∂y, ∂x, ∂y, y∂y y′′ = (ky′−y′τ )f

( ky′ − y′τ
(k − 1)y′ − y + yτ

)
−y′

21 L4
26 e−x∂y,−xe−x∂y, ∂x, ∂y y′′ =

f(I3) + (k − 1)y′ − y + yτ

(kc− k + 1)
− y′

22 L4
27 e−x∂y, e

−ax∂y, ∂x, ∂y,

0 < |a| ≤ 1, a 6= 1

y′′ =

(
f(I4)+(a−1)(ky′−y′τ )

)

(ka−k) − y′.

23 L4
28 e−bx sinx∂y, e

−bx cosx∂y, ∂x,

∂y, b ≥ 0

y′′ = f(I5)−(b2+1)[c1y′τ−(c2+bc1)(y−yτ )]
kb−(bc1+c2)

−2by′

24 L4
29 ∂x, x∂x, y∂y, x

2∂x + xy∂y y′′ = f
(yτ

y

)y′2

y

(yτ

y
− y′τ

y′
)2

25 L4
31 ∂y,−x∂y,

1
2x2∂y, ∂x cy′′ = y′ − y′τ − f

(
2(y− yτ )− c(y′ + y′τ )

)

26 L4
32 e−bx∂y, e

−x∂y,−xe−x∂y, ∂x y′′ = −1
(b−1)(kb−k)

(
f(I6) − (b − 1)2[k(y

+y′)− (yτ − y′τ )]
)
− [2y′ + y],

27 L4
33 e−x∂y,−x∂y, ∂y, ∂x y′′ = 1

(k−1)f(I7) + (y′ − y′τ )

28 L4
34 e−x∂y, −xe−x∂y,

1
2x2e−x∂y, ∂x y′′ = − 1

kcf(I8) − k(y + y′) + (yτ + y′τ )

−(2y′ + y)

29 L4
35 ∂y, x∂y, ξ1(x)∂y, y∂y y′′ =

ξ′′1 (x)(y′ − y′τ ) + (y − yτ )f(x)
ξ′1(x)

30 L4
36 e−ax∂y, e−bx∂y, e−x∂y, ∂x,

−1 ≤ a < b < 1, ab 6= 0

y′′ = 1
(kb−kc)(b−1)

(
(b2−ab+a− b)(ka(y +

y′)− (yτ + y′τ ))− f(I9)
)
− (a(y + y′)+ y′)

31 L4
37 e−ax∂y, e

−bx sinx∂y, ∂x

e−bx cosx∂y, a > 0

y′′ =

(
f(I10)((a−b)2+1)[kbc1[ay+y′]−[kay−y′]]

)

[kb(c2+(b−a)c1)−ka]

−(2b(ay + y′) + a2y)

32 L4
38 ∂x, ∂y, x∂y, x∂x + (2y + x2)∂y y′′ = ln

(
(y′ − y′τ )

2f
((y′ − y′τ )2

y − yτ

))

33 L4
39 ∂y, ∂x, x∂y, (1 + b)x∂x + y∂y,

|b| ≤ 1

y′′ =
(
(y′−y′τ )2b+1f [(y−yτ )b(y′−y′τ )]

)1/b

34 L4
40 ∂y, −x∂y, ∂x, y∂y y′′ = (y′ − y′τ )f(

y′ − c(y − yτ )
y′ − y′τ

)

35 L4
42 sinx∂y, cosx∂y, y∂y, ∂x y′′ = y

(
f(I11)(c1 + [y

′
y (c2 − y′τ

y′ )])− 1
)
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No. Lie algebra Representation of second-order DODEs

36 Lr+1
50 ∂x, η1(x)∂y, . . . , ηr(x)∂y, r ≥ 4 Φ1(x, y, yτ , y

′, y′τ , y′′)

37 Lr+2
51 ∂x, y∂y, η1(x)∂y, . . . , ηr(x)∂y, r ≥ 3 Φ2(x, y, yτ , y

′, y′τ , y′′)

38 L5
54 ∂x, x∂x, y∂y, ∂y, x∂y y′′ =

c3(y′ − y′τ )2

y

39 L5
55 ∂x, ∂y, 2x∂x +y∂y, x∂y, x

2∂x +xy∂y y′′ =
c4

(y − yτ )3

Here c, c3, c4, c5 is an arbitrary constant, k = ec, k1 = kc, c1 = sin c, c2 = cos c.

I1 = kby − [c1y
′
τ + (c2 + bc1)yτ ],

I2 = (c2 − bc1)[c1y
′
τ + (c2 + bc1)yτ ]− [kbc1y

′ + yτ ],

I3 = kc(yτ − y − y′ + y′τ ) + (k − 1)(ky′ − y′τ ),

I4 = (ka − ak + a− 1)(ky′ − y′τ )− a(ka − k)[(k − 1)y′ − y + yτ ],

I5 = [kb(c2 − bc1)− 1][c1y
′
τ − (c2 + bc1)(y − yτ )] + [kb − (c2 + bc1)][kbc1y

′ − (y − yτ )],

I6 = (kb − bck + ck − k)
(
k(y + y′)− (yτ − y′τ )

)
− (b− 1)(kb − k)

(
kc(y + y′)− ky + yτ

)
,

I7 = (k − 1)(y − yτ − cy′) + (k − c− 1)(y′ − y′τ ),

I8 = c[k(y + y′)− (yτ + y′τ )]− 2[kc(y + y′) + ky − yτ ],

I9 = [−kb+1ac− kb+1b + kb+1bc + kb+1 + ack2 − k2c][ka(y + y′)− (yτ + y′τ )]

−(kb − kc)(b− 1)[(k − ka)(yτ + y′τ )− (1− a)ka(ky − yτ )],

I10 = kb(c2 + (a− b)c1)− ka(c1(ayτy
′
τ )− [c2 + (b− a)c1][kay − yτ ])

−[kb + ka(c1(a− b)− c2)],

I11 =
c2 − yτ

y + c1
y′
y

c1 + y′
y (c2 − y′τ

y′ )
,

I12 = [ξ′′1 (ξ′τ2 − ξ′2) + ξ′′2 (ξ′1 − ξ′τ1 )][(ξ′1 − ξτ ′
1 )(cy′ − y + yτ )− (ξ′1c− ξ1 + ξτ

1 )(y′ − y′τ )],

I13 = [c(ξ′1ξ
′τ
2 − ξ′τ1 ξ′2) + (ξ′τ1 − ξ′1)(ξ2 − ξτ

2 ) + (ξ′2 − ξ′τ2 )(ξ1 − ξτ
1 )],

Φ1(x, y, yτ , y
′, y′τ , y

′′) = φ
(
yτ −

r∑

i=1

ci1y
(i−1), y′τ −

r∑

i=1

ci2y
(i−1)

)
, y0 = y, r ≥ 4,

such that cj1φz1 + cj2φz2 = 0, j = 4, ..., r,

Φ2(x, y, yτ , y
′, y′τ , y

′′) = yτ − c5y
′
τ +

r∑

i=1

(c5ci2 − ci1)y(i−1), r ≥ 3,

such that c5cj2 − cj1 = 0, j = 4, . . . , r + 1.



CHAPTER V

CONCLUSIONS

In this research, we provide a complete group classification of second-order

delay ordinary differential equations of the form

y′′ = f(x, y, yτ , y
′, y′τ )

admitting a Lie group. The method for solving this problem was developed. Re-

sults are summarized in Table 4.1.

The algorithm for obtaining second-order DODEs which admit a given Lie

group is as follow. First, for each Lie algebra on the real plane, change the vari-

ables, then find invariants of the Lie algebra in the space of new variables. Last,

a second-order DODE can be formed by using the found invariants.

Results of this research could be extended to higher order DODEs.
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APPENDICES



APPENDIX A

SOME MATERIAL FOR REVIEW AND

REFERENCE

A.1 Definition of a Functional

Mapping. Let X and Y be sets and A ⊂ X be any nonempty subset. A mapping

(or transformation) T from A into Y is obtained by associating with each x ∈ A

a single y ∈ Y , written y = Tx and called the image of x with respect to T .

Operator. In Calculus, the real line R and real-valued functions on R (or on a

subset of R) are usually considered. Obviously, any such function is a mapping

of its domain into R. Generally we consider more general spaces, such as metric

spaces, or normed spaces, and mappings of these spaces.

In the case of vector spaces and in particular, normed spaces, a mapping is

called an operator.

Functional. A functional is an operator whose range lies on the real line R or in

the complex plane C.

A.2 Inverse Function Theorem

Inverse function theorem (Lang, 1997). Let E and F be Euclidean spaces and

U be open in E. Let x0 ∈ U , and f : U 7→ F be a Cs map. Assume that the

derivative f ′(x0) : E 7→ F is invertible. Then f is locally Cs-invertible at x0. If ϕ

is its local inverse, and y = f(x), then ϕ′(x) = f ′(x)−1.
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A.3 Invariants

Invariant. A function F (x) is called an invariant of a continuous group G of

transformations (3.1) if F remains unaltered where one moves along any path curve

of the group G. For example, for a one-parameter group of transformations Ta(x),

F is an invariant if F (Ta(x)) = F (x) identically for x and a in a neighborhood of

a = 0.

A Basis of Invariants. A one-parameter group G of transformations in Rn has

precisely n − 1 functionally independent invariants. Any set of independent in-

variants, ψ1(x), . . . , ψn−1(x), is termed a basis of invariants of G. The basis

is not unique. One can obtain basic invariants, the left-hand sides of n − 1 first

integrals

ψ1(x) = C1, . . . , ψn−1(x) = Cn−1,

from the characteristic system of equations

X(F ) ≡ ξi(x)
∂F (x)

∂xi
= 0,

i.e.

dx1

ξ1(x)
= · · · = dxn

ξn(x)
.

An universal invariant F (x) of G is given by the formula

F = Φ(ψ1(x), . . . , ψn−1(x)).

See more details and proofs in Ibragimov (1999).

A.4 Periodic Linear Systems

Consider a linear system of n first-order ODE’s in the matrix form

x′(t) = A(t)x(t) + b(t), (A.1)
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where b(t) and x(t) are column vectors of length n.

Periodic Linear System. A linear system of ODE’s (A.1) is called a periodic

linear system with the period τ 6= 0 if

A(t + τ) = A(t), b(t + τ) = b(t), ∀t.

Theorem. For any fundamental matrix Φ(t) of a periodic linear system of ODE’s

with period τ there is a constant nonsingular matrix C such that

Φ(t + τ) = Φ(t)C.

Remark. The matrix C is called a main matrix.



APPENDIX B

GROUP CLASSIFICATION OF LINEAR

SECOND-ORDER DELAY ORDINARY

DIFFERENTIAL EQUATION

In this chapter, a linear second-order delay ordinary differential equation

y′′(x) + a(x)y′(x) + b(x)y′(x− τ) + c(x)y(x) + d(x)y(x− τ) = g(x), (B.1)

is studied. Here b2 + d2 6= 0 and the initial conditions are

y(x) = χ(x), x ∈ (x0 − τ, x0),

y′(x0) = y0.

The initial value problem (B.1) has a solution for any arbitrary value x0 and any

arbitrary given function χ(x), x ∈ (x0 − τ, x0) (Driver, 1977).

Equation (B.1) can be simplified. Before discussing equation (B.1), let us

consider a linear second-order ordinary differential equation

y′′(x) + a(x)y′(x) + c(x)y(x) = g(x). (B.2)

Let yp be a particular solution of (B.2). By changing variables x̃ = x and ỹ = y−yp,

equation (B.2) becomes

ỹ′′(x) + a(x)ỹ′(x) + c(x)ỹ(x) + (y′′p(x) + a(x)y′′p(x) + c(x)yp(x)− g(x)) = 0.

Because yp is a particular solution of (B.2), the equation is reduced to

ỹ′′(x̃) + a(x̃)ỹ′(x̃) + c(x̃)ỹ(x̃) = 0. (B.3)
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Moreover, the coefficient a(x̃) can be reduced by the change ỹ = v(x̃)q(x̃)

with q(x̃) satisfying the equation 2q′(x̃) + a(x̃)q(x̃) = 0. In fact, Substituting

ỹ = v(x̃)q(x̃) into (B.3), one gets

v′′ + vρ(x̃) = 0,

where ρ(x̃) =
(q′′ + aq′ + cq)

q
.

By the above technique, the coefficients g(x) and a(x) in (B.1) can be

reduced. Thus equation (B.1) is able to be simplified to

y′′(x) + b(x)y′(x− τ) + c(x)y(x) + d(x)y(x− τ) = 0. (B.4)

We consider group classification of linear equation (B.4).

B.1 Constructing Determining Equation

Let G be an admitted Lie group of transformations

x̄ = ϕx(x, y; ε), ȳ = ϕy(x, y; ε)

and

ξ(x, y) =
∂ϕx(x, y; ε)

∂ε

∣∣∣
ε=0

, η(x, y) =
∂ϕy(x, y; ε)

∂ε

∣∣∣
ε=0

,

where ε is a real parameter. The determining equation is

X̃(2)
(
y′′(x) + b(x)y′(x− τ) + c(x)y(x) + d(x)y(x− τ)

)∣∣∣
(B.4)

= 0, (B.5)
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where

X̃(2) = ζy∂y + ζyτ ∂yτ + ζy′∂y′ + ζy′τ ∂y′τ + ζy′′∂y′′ ,

ζy(x, y, y′) = η(x, y)− y′ξ(x, y),

ζyτ (x, yτ , y
′
τ ) = ζy(x− τ, yτ , y

′
τ ) = η(x− τ, yτ )− y′τξ(x− τ, yτ ),

ζy′(x, y, y′, y′′) = ηx(x, y) + [ηy(x, y)− ξx(x, y)]y′ − ξy(x, y)(y′)2 − ξ(x, y)y′′,

ζy′τ (x, yτ , y
′
τ , y

′′
τ ) = ζy′(x− τ, yτ , y

′
τ , y

′′
τ ) = ηx(x− τ, yτ ) + [ηy(x− τ, yτ )

−ξx(x− τ, yτ )]y
′
τ − ξy(x− τ, yτ )(y

′
τ )

2 − ξ(x− τ, yτ )y
′′
τ ,

ζy′′(x, y, y′, y′′, y′′′) = ηxx(x, y) + [2ηxy(x, y)− ξxx(x, y)]y′ + [ηyy(x, y)

−2ξxy(x, y)](y′)2 − ξyy(x, y)(y′)3 + [ηy(x, y)− 2ξx(x, y)]y′′

−3ξy(x, y)y′y′′ − ξ(x, y)y′′′,

where yτ = y(x−τ), y′τ = y′(x−τ) and y′′τ = y′′(x−τ). Substituting y′′′ = −by′′τ −
y′τb

′−cy′−yc′−dy′τ−yτd
′, y′′τ = −(bτy′2τ +cτyτ +dτy′2τ ), and y′′ = −by′τ−cy−dyτ ,

the determining equation (B.5) becomes

−ξyy(y
′)3 + [ηyy − 2ξxy](y

′)2 + [2ηxy − ξxx + 3cξyy]y′ − ξτ
yτ

b(y′τ )
2

+[b′ξ − bηy + bητ
yτ

+ 2bξx − bξτ
x + d(ξ − ξτ )]y′τ + bbτ (−ξ + ξτ )y′2τ

+bdτ (−ξ + ξτ )y2τ + 3(b + d)ξyy
′
τy
′ + c′ξy + d′yτξ + ηxx − ηycy − ηydyτ

+ητ
xb + 2ξxcy + 2ξxdyτ − bcτξyτ + bcτξτyτ + cη + dητ = 0,

where ξτ = ξ(x − τ, yτ ), ητ = η(x − τ, yτ ), y2τ = y(x − 2τ), y′2τ = y′(x − 2τ),

bτ = b(x − τ), cτ = c(x − τ) and dτ = d(x − τ). Because of the arbitrariness

of x0 and χ(x), the variables y, yτ and their derivatives can be considered as

arbitrary elements. Since the determining equation is written as a polynomial of

variables and their derivatives, the coefficients of these variables in the equations

must vanish.
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B.2 Splitting Determining Equation

Consider the coefficients of the following variables,

y′2τ : bbτ (−ξ + ξτ ) = 0, (B.6)

(y′τ )
2 : −bξτ

yτ
= 0, (B.7)

y′τ : b′ξ − b(ηy − ητ
yτ

) + 2bξx − bξτ
x + d(ξ − ξτ ) = 0, (B.8)

(y′)3 : −ξyy = 0, (B.9)

(y′)2 : ηyy − 2ξxy = 0, (B.10)

y′ : 2ηxy − ξxx + 3ξy(cy + dyτ ) = 0, (B.11)

1 : ηxx + bητ
x + cη + dητ + (d′ξ − dηy + 2dξx − bcτ (ξ − ξτ ))yτ

+(c′ξ − cηy + 2ξxc)y = 0, (B.12)

y′y′τ : 3ξy(b + d) = 0, (B.13)

y2τ : bdτ (−ξ + ξτ ) = 0.

By equation (B.6), ξ(x, y(x)) = ξ(x − τ, y(x − τ)), i.e., ξ and ξτ are functions of

x which implies that ξ does not depend to y, ξy = ξτ
y = 0. This condition and

equation (B.10) imply that η is a linear function with respect to y,

η(x, y) = β(x)y + γ(x),

where β, γ are arbitrary functions of x. Equations (B.8) and (B.11) are simplified

to

b(β − βτ ) = b′ξ + ξ′b, (B.14)

ξ′′ = 2β′, (B.15)
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respectively. Substitute ξ, η into the determining equation, and then split the

equation again with respect to y and yτ . One finds

β′′ = −c′ξ − 2cξ′, (B.16)

γ′′ = −bγ′τ − cγ − dγτ , (B.17)

d(β − βτ ) = d′ξ + bβ′τ + 2ξ′d. (B.18)

By integrating (B.15), one finds β = ξ′/2 + C1, where C1 is an arbitrary constant.

Since ξ = ξτ , it implies β = βτ . Hence, integrating equation (B.14) one has

bξ = C2, (B.19)

where C2 is an arbitrary constant. Equation (B.18) is written as

d′ξ + 2ξ′d = − b

2
ξ′′. (B.20)

The solution of this equation depends on the values of b and d:

• Case b 6= 0, d 6= 0.

Substituting β into equation (B.16) and integrating yields

ξξ′′ − ξ′2

2
+ 2cξ2 = C3, (B.21)

where C3 is an arbitrary constant.

If C2 6= 0, then from equations (B.19), (B.20) and (B.21), one obtains

ξ =
C2

b
, η = y

(
C2

2
(
1

b
)′ + C1

)
+ γ,

c =
1

2

[
C5b

2 − 3

2
(
b′

b
)2 +

b′′

2b

]
, d =

b′

2
+ C4b

2,

where C4 is an arbitrary constants, C5 = C3/C2, and γ(x) is an arbitrary

solution of (B.4). Since ξ = ξτ , the the coefficient b has to satisfy the same

property, i.e., b = bτ . The infinitesimal generator obtained is

X = C1y∂y + C2

(
1

b
∂x +

y

2

(
1

b

)′
∂y

)
+ γ∂y. (B.22)
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If C2 = 0, then ξ = 0, η = C1y + γ and all coefficients are arbitrary. The

infinitesimal generator is

X = (C1y + γ)∂y. (B.23)

• Case b 6= 0, d = 0.

Solving equations (B.18), (B.19), (B.20) and (B.16), one obtains βτ = C6,

bξ = C2, ξ = C7x + C8, cξ2 = C9, where C6, C7, C8, C9 are arbitrary con-

stants. Since ξ = ξτ , then C7 = 0.

If C8 6= 0, then

c =
C9

C2
8

, b =
C2

C8

. (B.24)

The infinitesimal generator of the admitted Lie group is

X = C8∂x + (C6y + γ)∂y. (B.25)

If C8 = 0, then ξ = 0, η = C6y+γ, b and c are arbitrary, γ(x) is an arbitrary

solution of (B.4). The infinitesimal generator is

X = (C6y + γ)∂y.

• Case b = 0, d 6= 0.

From equation (B.20), one finds ξ2d = C10, where C10 is an arbitrary con-

stant. Hence,

ξ =

(
C10

d

)1/2

, η = −
(

C10

4

d′

d3/2
+ C1

)
y + γ. (B.26)

If C10 6= 0, then equation (B.21) implies

c =
1

2

[
C3

C10

d +
d′

2d
+

1

8
(
d′

d2
)2

]
. (B.27)

The infinitesimal generator obtained is

X =
C10

d1/2
∂x +

(
−C

1/2
10 d′

2d3/2
+ C1 + γ

)
∂y. (B.28)
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If C10 = 0, then ξ = 0, β = C1, η = C1y + γ and the coefficients c and d are

arbitrary functions. Hence, the infinitesimal generator is

X = (C1y + γ)∂y. (B.29)

The result for the group classification of linear second-order DODEs (B.1) is ex-

pressed as the following.

Table B.1 Lie group classification of linear second-order DODEs

No. b(x), d(x), c(x) Generators

1 b(x) 6= 0, X1 = y∂y, X2 = 1
b
∂x + y

2

(
1
b

)′
∂y,

d(x) = b′(x)
2

+ k1b
2(x), X3 = γ∂y

c(x) = 1
2
[k0b

2 − 3
2
( b′

b
)2 + b′′

2b
]

2 b(x) 6= 0, d(x) = 0, c(x) = k2 X1 = ∂x, X2 = y∂y, X3 = γ∂y

3 b(x) = 0, d(x) 6= 0, X1 = 1
d1/2 ∂x, X2 = − d′

2d3/2 y∂y,

c(x) = 1
2
[kd(x) + d′(x)

2d(x)
+ 1

8
( d′(x)

d2(x)
)2] X3 = γ∂y

k, k0, k1, k2, C1, C2, C3 are arbitrary constants and γ(x) is an arbitrary solution of

(B.4).



APPENDIX C

GROUP CLASSIFICATION OF THE WAVE

EQUATION WITH A DELAY

In this chapter, we focus on the wave equation with a delay

utt(t, x)− uxx(t, x) = G(uτ ), (C.1)

where uτ = u(t− τ, x), τ > 0, and G′ = dG
duτ 6= 0.

C.1 Constructing Determining Equation

Let G be an admitted Lie group of transformations

t̄ = ϕt(t, x, u; ε), x̄ = ϕx(t, x, u; ε), ū = ϕu(t, x, u; ε)

and

ξ(t, x, u) =
∂ϕt(t, x, u; ε)

∂ε

∣∣∣
ε=0

, η(t, x, u) =
∂ϕx(t, x, u; ε)

∂ε

∣∣∣
ε=0

,

ζ(t, x, u) =
∂ϕu(t, x, u; ε)

∂ε

∣∣∣
ε=0

.

For equation (C.1), the determining equation is

Ỹ (2)
(
utt − uxx −G(uτ )

)∣∣∣
utt=uxx+G(uτ )

= 0,
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where

Ỹ (2) = ζu∂u + ζuτ

∂uτ + ζut∂ut + ζux∂ux + ζutt∂utt + ζutx∂utx + ζuxx∂uxx ,

ζu = ζ − ξut − ηux,

ζuτ

= ζτ − ξτuτ
t − ητuτ

x,

ζut = −ηtux − ηuutux − ξtut − ξu(ut)
2 + ζt + ζuut − ηuxt − uttξ,

ζux = −ηu(ux)
2 − ηxux − ξuutux − ξxut + ζx + ζuux − ηuxx − uxtξ,

ζutt = −2ηtuutux − ηttux − 2ηtuxt − ηuuux(ut)
2 − 2ηuutuxt − ηuuxutt

−2ξtu(ut)
2 − ξttut − 2ξtutt − ξuu(ut)

3 − 3ξuututt + 2ζtuut + ζtt + ζuu

+ζuu(ut)
2 + ζuutt − ηuxtt − utttξ,

ζuxx = −2ηxu(ux)
2 − ηuu(ux)

3 − 3ηuuxuxx − ηxxux − 2ηxuxx − 2ξuxutux

ξuuut(ux)
2 − ξuutuxx − 2ξuuxuxt − ξxxut − 2ξxuxt + 2ζxuux + ζuu(ux)

2 + ζuuxx

+ζxx − ηuxxx − uxxtξ.

The determining equation for equation (C.1) becomes

−2ηtuutux − ηttux − 2ηtuxt + 2ηux(ux)
2 − ηuu(ut)

2ux + ηuu(ux)
3 − ηuGux

−2ηuutuxt + 2ηuuxuxx + ηxxux + 2ηxuxx −G′ηuτ
x + G′ητuτ

x −G′uτ
t ξ

+G′uτ
t ξ

τ −G′ζτ − 2ξtu(ut)
2 − ξttut − 2ξtG− 2ξtuxx + 2ξuxutux − ξuu(ut)

3

+ξuuut(ux)
2 − 3ξuGut − 2ξuutuxx + 2ξuuxuxt + ξxxut + 2ξxuxt + 2ζtuut + ζtt

−2ζuxux + ζuu(ut)
2 − ζuu(ux)

2 + ζuG− ζxx = 0.

This equation is written as a polynomial of u and uτ and their derivatives. Since

all coefficients are independent from these derivatives, these coefficients are equal

to zero.
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C.2 Splitting Determining Equation

Splitting with respect to the derivative terms uτ
t , u

τ
x, uxx, uxt, ux, . . ., one

finds that the coefficients of the polynomial vanish

uτ
t : Guτ (ξτ − ξ) = 0, uτ

x : Guτ (ητ − η) = 0, (C.2)

uxx : 2(ηx − ξt) = 0, uxt : 2(ξx − ηt) = 0, (C.3)

(ux)
3 : ηuu = 0, (ut)

3 : −ξuu = 0, (C.4)

(ux)
2 : 2ηux − ζuu = 0, (ut)

2 : −2ξut + ζuu = 0, (C.5)

(ut)
2ux : −ηuu = 0, ut(ux)

2 : ξuu = 0, (C.6)

utuxt : −2ηu = 0, uxuxt : 2ξu = 0, (C.7)

utuxx : −2ξu = 0, uxuxx : 2ηu = 0, (C.8)

utux : −2ηtu + 2ξux = 0, (C.9)

ux : ηxx − ηtt − 2ζux − ηuG = 0, ut : ξxx − ξtt + 2ζut − 3ξuG = 0,(C.10)

1 : −ζτGuτ − 2ξtG + ζtt + ζuG− ζxx = 0. (C.11)

From (C.2), one gets

ξ(t, x, u) = ξ(t− τ, x, u(t− τ, x)),

η(t, x, u) = η(t− τ, x, u(t− τ, x)),

which imply that ξu = ηu = 0. Substitute these into (C.5) then

ζ(t, x, u) = ζ1(t, x)u + ζ2(t, x),

where ζ1, ζ2 are arbitrary functions. Solving (C.3) for ξ and η, and substituting

it into (C.10), one obtains

η = ητ = η1(t− x) + η2(t + x),

ξ = ξτ = η2(t + x)− η1(t− x),

ζ(t, x, u) = K1u + ζ2(t, x),
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where K1 is an arbitrary constant. By the virtue of η = ητ , one obtains the

periodic conditions for η1 and η2, i.e.,

η1(t) = η1(t− τ), η2(t) = η2(t− τ). (C.12)

Hence, ζτ = K1u
τ + ζτ

2 (t, x). Substituting these functions into the determining

equation, one obtains

[K1u
τ + ζτ

2 ]Guτ + [2(η′2 − η′1)−K1]G + [ζ2,xx − ζ2,tt] = 0, (C.13)

where ζ2,xx =
∂2ζ2

∂x2
and ζ2,tt =

∂2ζ2

∂t2
.

C.2.1 The kernel of admitted Lie groups

Assume that equation (C.13) is valid for an arbitrary function G. Without

loss of generality, it is possible to consider the particular case

G(uτ ) = α0 + α1u
τ + α2(u

τ )2 + α3(u
τ )3,

where α0, α1, α2 and α3 are arbitrary constants. Substituting G(uτ ) into (C.13),

the third degree polynomial with respect to uτ is obtained,

2α3

[
η′2 − η′1 + K1

]
(uτ )3 +

[
3α3ζ

τ
2 + α2[2(η′2 − η′1) + K1]

]
(uτ )2

+2
[
α2ζ

τ
2 + α1(η

′
2 − η′1)

]
uτ +

[
α1ζ

τ
2 + α0[2(η′2 − η′1)−K1] + ζ2,xx − ζ2,tt

]
= 0.

Since uτ is arbitrary, then the coefficients of the polynomials vanish:

(uτ )3 : 2α3[η
′
2 − η′1 + K1] = 0,

(uτ )2 : 3α3ζ
τ
2 + α2[2(η′2 − η′1) + K1] = 0,

uτ : 2
[
α2ζ

τ
2 + α1(η

′
2 − η′1)

]
= 0,

1 : α1ζ
τ
2 + α0[2(η′2 − η′1)−K1] + ζ2,xx − ζ2,tt = 0.
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Hence, one gets

K1 = 0, ζ2 = ζτ
2 = 0,

η1(t− x) = C11(t− x) + C12,

η2(t + x) = C11(t + x) + C22,

which imply

ξ(t, x, u) = C1, η(t, x, u) = C2, ζ(t, x, u) = 0,

where C1, C2, C11, C12, C22, are arbitrary constants. Thus, the kernel of admitted

Lie group is defined by the infinitesimal generators

X1 = ∂t, X2 = ∂x. (C.14)

C.2.2 Extensions of the kernel

Differentiating (C.13) with respect to uτ , one obtains

[K1u
τ + ζτ

2 ]G′′ + 2(η′2 − η′1)G
′ = 0.

It can be written as

K1A+ ζτ
2B + 2(η′2 − η′1)C = 0, (C.15)

< K1, ζ
τ
2 , 2(η′2 − η′1) > · < A,B, C >= 0, (C.16)

where A = uτG′′, B = G′′, C = G′. Analysis of equation (C.15) is similar to the

analysis given for gas dynamics equation by Ovsiannikov (1978).

Let us consider the vector space V = span{< A,B, C >}.
Case dim(V)=3. If dim(V)=3, then the solution of (C.15) is

K1 = 0, ζτ
2 = 0, η′2 − η′1 = 0. (C.17)
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These imply that

η1(t, x) = C11(t− x) + C12, (C.18)

η2(t, x) = C11(t + x) + C22, (C.19)

where C11, C12 and C22 are arbitrary constants. By the virtue of η = ητ , one gets

C11 = 0. Thus relations (C.17)-(C.19) lead to the kernel

ξ(t, x, u) = C3, η(t, x, u) = C4, ζ(t, x, u) = 0,

where C3 and C4 are arbitrary constants.

Case dim(V)=2. In this case, there exists a nonzero constant vector

< α, β, γ > which is orthogonal to V, i.e.

αA+ βB + γC = 0.

The equation can be rewritten as

(αuτ + β)z′ + γz = 0, (C.20)

where z = G′.

Case α = 0. The assumption α = 0 implies that β 6= 0 and

z = K0e
−Kuτ

,

where K0 6= 0, K are arbitrary constants. Since the integration of function z

depends on K, one needs to consider two subcases : K = 0 and K 6= 0.

Case K = 0. For this case, the function G(uτ ) = K0u
τ + K2, where

K2 is constant. This function contradicts the condition dim(V)=0.

Case K 6= 0. In this case

G(uτ ) = −K0

K
e−Kuτ

+ K4,
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where K4 is an arbitrary constant. Substituting G(uτ ) into (C.15), then split with

respect to uτe−Kuτ
and e−Kuτ

, we find

K1 = 0,

ζτ
2 = 2

K
[η′2(t + x)− η′1(t− x)],

ζ2,xx − ζ2,tt + 2K4

(
η′2(t + x)− η′1(t− x)

)
= 0.

These equations give

K4(η
′
2 − η′1) = 0.

Since the case K4 6= 0 leads to η1 and η2 are constants, which does not extend the

kernel of admitted Lie group, then one needs to consider K4 = 0.

For K4 = 0 one obtains the admitted infinitesimal generator

X = (η2 − η1)∂t + (η1 + η2)∂x +
2

K

[
η′2 − η′1

]
∂u.

Case α 6= 0. In this case, the general solution of (C.20) is

G′ = K10(αuτ + β)−
γ
α . (C.21)

Further the integration depends on the value of α/γ.

Assuming that α 6= γ, one finds

G =
K10

α− γ
(αuτ + β)1− γ

α + K11,

where K11 is a constant. Substituting it into (C.13) and differentiating with respect

to uτ , one finds

γK1u
τ + γζτ

2

αuτ + β
− 2(η′2 − η′1) = 0.

Differentiate with respect to uτ again,

γ(ζτ
2 α− βK1) = 0.



119

Case γ = 0. This case implies that G is linear function with respect

to uτ , which leads to dim(V)= 0 and contradicts to the assumption.

Case γ 6= 0. In the case γ 6= 0. After splitting the determining equation

with respect to uτ , one finds

η′2 − η′1 =
γK1

2α
.

From (C.12), one obtains that K1 = 0, which does not give an extensions of the

kernel.

Assuming that α = γ, after splitting the determining equation with respect

to uτ , one gets

η′2 − η′1 =
K1

2
.

Similar to the previous case, this case also does not give an extension of the kernel.

Case dim(V)=1. The assumption dim(V)=1 implies the existence of

nonzero constant vector (α, β, γ) such that

< A,B, C >= f(uτ ) < α, β, γ >, (C.22)

where f is an arbitrary function. Without loss of generality, one can suppose that

γ = 1. Then equation (C.22) gives

βuτ = α,

which means that α = β = 0. Hence, G′ is constant which contradicts to the

condition dim(V)=1.

Case dim(V) = 0. This means that < A,B, C > is a constant vector,

say < α, β, γ >. Then

uτG′′ = α,

G′′ = β,

G′ = γ, γ 6= 0.
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These equations imply that α = β = 0, and G is a linear function of uτ ,

G(uτ ) = K15u
τ + K16.

Substituting G(uτ ) into (C.13), and differentiating with respect to uτ , one gets

η′2 − η′1 = 0.

This implies that η(t, x) = C1, ξ(t, x) = C2, where C1, C2 are constants. The

remaining determining equation is

ζ2,tt − ζ2,xx = K0ζ
τ
2 −K1K16. (C.23)

Hence, the infinitesimal generator is

X = C1∂t + C2∂x + [K1u + ζ2(t, x)]∂u, (C.24)

where ζ2(t, x) is an arbitrary solution of (C.23).

The results for the previous calculations are presented in the following table.

Table C.1 Lie group classification of the wave equation with a delay

No. G(uτ ) Generator

1 G(uτ ) is arbitrary X = c1∂t + c2∂x

2 G(uτ ) = k0u
τ + k1 X = c1∂t + c2∂x + (ku + ζ2(t, x))∂u

3 G(uτ ) = k0e
kuτ

X = (η2−η1)∂t +(η1 +η2)∂x + 2
k
(η′2−η′1)∂u

Here c1, c2, k 6= 0, k0 6= 0, k1, η1(t − x), η2(t + x) are arbitrary and ζ2(t, x)

is an arbitrary solution of ζtt − ζxx = k0ζ
τ − kk1.
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