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ABSTRACT : A simple predictive model, referred to as Structured Cam Clay (SCC), was proposed recently by the 
authors.  SCC was formulated for representing the mechanical behaviour of natural soils.  In this paper, the main 
concepts and the formulation of the SCC are described and an extension of SCC for predicting the behaviour of 
artificially cemented clays is also presented.  SCC is then used to predict the behaviour of structured soils in ‘single 
element’ compression and shearing tests.  It is seen that the new model provides satisfactory qualitative and quantitative 
modelling of many important and unique features of the behaviour of structured soils.  By using this model in finite 
element calculations, the response of footings founded on structured soils to loading is obtained.  Some guidelines are 
also given to identify the importance of the structural features of the soil in determining the response of the footing.  
The new model is shown to be a powerful tool for geotechnical practitioners engaged in engineering design. 
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1. INTRODUCTION 
Most of the constitutive models used in geotechnical 
engineering computations were developed to describe the 
behaviour of soils reconstituted in the laboratory, where 
the soil structure is usually standardised by the sample 
preparation method.  However, soils in situ usually 
possess natural structure and consequently behave 
differently from the same material in a reconstituted state 
(e.g., Burland 1990; Leroueil and Vaughan 1990; 
Cuccovillo and Coop 1999; Carter et al. 2000).  Indeed, 
significant difficulties have been encountered in cases 
where the structural features of the soil dominate its 
engineering behaviour.  The low driving resistance of 
piles observed in carbonate soils at the North Rankin 
offshore gas production platform, Australia (King and 
Lodge 1988) and the subsidence induced during 
hydrocarbon extraction from reservoirs at Ekofisk, North 
Sea (Potts et al. 1988) are but two well-known examples.  
For natural soils, the structure may arise from many 
different causes.  Various geological processes as well as 
loading can cause a loss of soil structure either by 
inducing yield (damaging the bonding or permanently 
rearranging the particles) or by removing bonding agents.  
Nevertheless, the effects of soil structure on the 
mechanical behaviour have been shown to be similar 
(Gens and Nova 1993; Leroueil and Vaughan 1999; Liu 
and Carter 1999).  It is therefore possible to unite the 
mechanical behaviour of various natural soils into a 
consistent theoretical framework. 

Recently, there have been important developments in 
understanding the mechanics of structured soils.  At a 
fundamental level, there have been useful advances in 
formulating constitutive models incorporating the 
influence of soil structure, such as those proposed by 
Gens and Nova (1993), Whittle (1993), Rouainia and 
Muir Wood (2000), Kavvadas and Amorosi (2000).  The 
main objective of the formulation of the SCC model by 
Liu and Carter (Liu and Carter 2002; Carter and Liu 
2005) was to provide a relatively simple constitutive 
model suitable for the solution of boundary value 
problems encountered in geotechnical engineering 
practice.  The model is a rational extension of the well-
known Modified Cam Clay (MCC) model and has 
relatively few parameters, each of which has a clear 
physical meaning and can be conveniently identified.  
SCC has also been used to predict the behaviour of a 
variety of structured natural soils in both compression 
and shearing tests.  It has been demonstrated that the SCC 
model captures well the main features of the behaviour of 
natural clays in both single element tests and boundary 
value problems, under both drained and undrained 
conditions. 

This paper contains the following four parts: (1) a 
summary of the concepts and formulation of the 
Structured Cam Clay model; (2) the extension of the 
model for artificially cemented clays; (3) investigation of 
the capacity of the model for describing laboratory single 
element tests; and (4) a description of the capability of 
the model for solving boundary value problems. 
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The stress and strain quantities used to describe soil 

behaviour are defined in the following section.  The 
properties of a reconstituted soil are called the intrinsic 
properties, and are denoted by the symbol * attached to 
the relevant symbols. 
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Figure 1 Material idealisation 

 
 

2. STRESS AND STRAIN PARAMETERS 
The stress and strain quantities used in the model 
formulation are defined as follows.  The mean effective 
stress is given by 
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in which σ′ij are the Cartesian components of an effective 
stress state. 

The stress ratio η is defined as 
q
p
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′
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The corresponding incremental volumetric and 
deviatoric strains are defined as 
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3. FORMULATION OF THE STRUCTURED 
CAM CLAY MODEL 

In the formulation of the Structured Cam Clay model, it 
is assumed that the behaviour of soil in a reconstituted 
state can be described adequately by the Modified Cam 
Clay model (Roscoe and Burland 1968), which is 
employed as a basis for formulating the Structured Cam 
Clay model. 

The formation and development of soil structure often 
produces soil anisotropy.  Destructuring usually leads to 
the reduction of anisotropy.  However, for simplicity, 
only the isotropic variation of the mechanical properties 
associated with soil structure is described in this 
theoretical framework. 
 
3.1 Influence of soil structure on isotropic virgin 

compression 
Research on the compression behaviour of soils by 

Liu and Carter (1999 and 2000a) is employed here as a 
starting point for including the effects of soil structure in 
the model.  The material idealisation of the isotropic 
compression behaviour of structured clay is illustrated in 
Figure 1.  In this figure e represents the voids ratio for a 
structured clay, e* is the voids ratio for the corresponding 
reconstituted soil at the same stress state during virgin 
yielding, p′y,i is the mean effective stress at which virgin 
yielding of the structured soil begins, and e, the 
additional voids ratio sustained by soil structure, is the 
difference in voids ratio between a structured soil and the 
corresponding reconstituted soil at the same stress state.  
Hence, the isotropic virgin compression behaviour of a 
structured soil can be expressed simply as 

*e e e= +               (6) 
A general form of the equation describing the 

additional voids ratio during the isotropic virgin 
compression of natural clays was proposed as (Liu and 
Carter 1999, 2000a) 
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where b is a parameter quantifying the rate of 
destructuring, termed the destructuring index, and c is 
that part of the additional voids ratio sustained by 
structure that cannot be eliminated by an increase in 
stress.  Parameters a, b and c satisfy the following 
condition 
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and 

ia e c=  −               (9) 

where ei is the initial additional voids ratio at p′ = p′y,i, 
where virgin yielding of the structured soil begins (Figure 
1).  Residual additional voids ratio c is associated with 
meta-stable structure of soil, which normally will not be 
altered by loading.  A detailed study of the behaviour of 
soil with meta-stable structure can be found in the paper 
by Cotecchia and Chandler (1997). 
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3.2 Yield surface for structured clay 
In the proposed model, the behaviour of clay is 

divided into virgin yielding behaviour and elastic 
behaviour by its current yield surface, i.e., the structural 
yield surface, which is defined by the current stress state, 
voids ratio, stress history, and soil structure.  Similar to 
the original proposal by Roscoe and Burland (1968), the 
yield surface of a structured soil in p′-q space is assumed 
to be elliptical in the first instance and to pass through the 
origin of the stress coordinates (Figure 2).  The aspect 
ratio for the structural yield surface is Μ*, the critical 
state stress ratio of the reconstituted soil. p′s, the value of 
the p′ coordinate where the ellipse again intersects the 
axis, represents the size of the structural yield surface.  
The yield surface is thus given by the yield function f, 
where 
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Figure 2 Yield surface for soils 

 
3.3 Virgin yielding along general stress paths 

According to Critical State Soil Mechanics (Schofield 
and Wroth 1968), both virgin yielding and elastic 
compression behaviour of reconstituted clay are linear in 
e - lnp′ space, with gradients λ* and κ* respectively.  
Thus, isotropic virgin compression line for the 
reconstituted soil is given by 

pee IC ′−= ln*** λ            (11) 
where e*IC is the voids ratio of the reconstituted soil 
when p′  = 1 kPa during virgin isotropic compression.   

We seek now to generalise equation (11) for a soil that 
possesses structure.  There are two basic assumptions in 
the derivation.  The first one is that both the hardening 
and the destructuring of natural clay are dependent on 
plastic volumetric deformation.  The second is that the 
elastic properties of a soil are independent of soil 
structure. 

On substituting equations (11) and (7) into equation 
(6), the following expression for the variation of the 
voids ratio is obtained 
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According to Critical State Soil Mechanics, for 
loading along a general stress path the volumetric 
deformation of a reconstituted soil, defined by λ*ln p′ in 
the above equation, can be divided into two parts.  The 
elastic part is defined by κ*ln p′, which is dependent on 
the current mean effective stress.  The plastic part is 

given by (λ*-κ*)ln p′s, which is dependent on the size of 
the yield surface.  Thus equation (12) can be rewritten as 
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Based on the volumetric-dependent hardening and 
destructuring assumption, the plastic part of the voids 
ratio change is dependent on the size of the current yield 
surface, not the mean effective stress or shear stress (a 
comprehensive study of the volumetric dependent 
hardening of reconstituted and naturally structured clays 
can be found in papers by Liu and Carter 2000b and 
2003).  Because the elastic properties of soil are assumed 
to be independent of soil structure, the deformation 
associated with the additional voids ratio sustained by 
soil structure is plastic.  Hence p′ in the third term of 
equation (13) should also be substituted by the size of the 
current structural yield surface, p′s.  As can be seen from 
equation (10), for isotropic compression the size of the 
yield surface is equal to the value of the current mean 
effective stress, therefore equation (13) can be rewritten 
as 
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Equation (14) describes the change of voids ratio and 
it contains three basic terms that vary with stress state.  It 
is valid for loading along general stress paths.  Taking the 
differential form of equation (14) and dividing both sides 
by (1+e), the following equation for the total volumetric 
strain increment is obtained 
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e is the current value of the additional voids ratio 
sustained by soil structure for loading along general 
stress paths.  It is necessary to add the sign function <> to 
the term (e - c) in equation (15) because, as noted 
previously, the voids ratio component c cannot be 
reduced by an increase in compressive stress. 

The first part of equation (15) represents elastic 
deformation, and the second part represents the plastic 
deformation.  If the effect of shearing on destructuring is 
also considered, a modification to the derived volumetric 
strain increment is required and the final equation 
proposed for the SCC model is as follows 
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where γ is a model parameter.  It is seen from the above 
equation that the effect of shearing on destructuring is 
directly proportional to the value of γ. 
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The plastic strain increment dεp

v can therefore be 
expressed as 
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The plastic volumetric deformation is made up of two 
parts, viz., the part associated with the intrinsic properties 
of the soil and that associated with soil structure. 
 
3.4 Deviatoric deformation for virgin yielding 

The structure of soil also has an influence on the flow 
rule.  It is observed that a structured clay with positive e 
generally has a lower value for the strain increment ratio 
dεp

d/dεp
v than the corresponding reconstituted soil at the 

same virgin yielding stress state (e.g., Graham and Li 
1985; Cotecchia and Chandler 1997).  Based on a trial 
and error method, one form of the new flow rule is 
proposed for naturally structured clays as 
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where ω is a model parameter, |x| represents the absolute 
value of the quantity x, and p′e is the size of the 
equivalent yield surface for a structured soil, which is 
defined as the yield surface for the same soil in a 
reference state with the same voids ratio and the same 
stress state.  The size of the equivalent yield surface, 
denoted by p′e, is given by 
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As can be seen from the above equation, this reference 
state is different from a reconstituted state for soils with 
c ≠ 0. 

The deviatoric strain increment during virgin yielding 
is thus obtained as 
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3.5 Elastic behaviour 

For stress excursions within the current virgin 
yielding boundary, only elastic deformation occurs.  The 
elastic deformation of a structured soil is assumed to 
follow Hooke’s law, and to be independent of soil 
structure.  The elastic deformation can be written as 
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where ν* is Poisson’s ratio and E* is the Young’s 
modulus.  E*, ν*, p′, and the elastic swelling index κ* are 
related by 
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The adoption of equations (22), (23) and (24) to 
describe elastic deformation allows the selection of either 
constant swelling index κ* or constant Young’s modulus 
E*.  The selection of constant E* indicates a linear e – p′ 
relationship for elastic deformation, as observed for some 
natural clays (e.g., Wong 1980; Lagioia and Nova 1995; 
Carter et al. 2000).  For this selection, the reduction in 
voids ratio associated with plastic deformation of 
reconstituted clay is no longer linear in the spe ′− ln  
space, and neither is the critical state line.  Consequently, 
equations such as those given by (11), (17) and (21) 
represent only an approximation of actual soil behaviour 
by assuming a linear ln se p′−  relationship for plastic 
deformation of soil in reconstituted states. 

A constraint on the value of the elastic deformation 
parameter κ* is proposed so that the Young’s modulus 
E* will not be infinitesimal as p′ approaches zero, i.e., 
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The adoption of this constraint avoids numerical 
problems.  For example, the softening behaviour of 
highly overconsolidated soil can thus be predicted, 
because the situation where elastic deformation is much 
larger than the corresponding plastic deformation during 
softening is avoided. 
 
3.6 Softening and crushing of soil structure 

For stress states on the yield surface and with η > Μ*, 
softening occurs.  As is the situation for most models of 
the Cam Clay family, during a softening process, soil 
behaves as a virgin yielding material and the stress state 
remains on the yield surface.  As previously suggested 
(Liu and Carter 2002), the volumetric deformation of a 
structured clay during softening is described by the same 
equation as for virgin yielding, i.e., equation (17).  
However, the sign of the plastic deviatoric strain 
associated with destructuring has to be changed, so that 
the strain increment vector will always point outside the 
yield surface, i.e., 
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It may be noticed that for both virgin yielding and 
softening behaviour, the soil may reach a state with 
η = Μ* but with e ≠ 0.  As is indicated in the flow rule, 
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i.e., equation (19), in such cases the resistance of the soil 
to continuous shear deformation is not zero.  Clearly, the 
critical state of deformation has not been achieved at this 
stage, even though the stress state has reached the Critical 
State Line (CSL) in p′ - q space.  In a continuing shearing 
test, the soil will experience a transition from its current 
state to the critical state of deformation. During the 
transition to the critical state of deformation, soil 
experiences re-arrangement of its structure and plastic 
deformation will be produced.  It is assumed that during 
the process of the crushing of structure, soil behaves as a 
virgin yielding material and that the stress state remains 
on the yield surface.  It is also assumed that during this 
transition the effective stress state of the soil always stays 
on the CSL but may travel along the line either upwards 
or downwards, i.e., hardening or softening. 

The stress and strain relationship for this transition 
process is described by the following set of equations 
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There are now three equations for the three unknown 
quantities: dp′, dq and dεv

p, and consequently the stress 
strain relationship for the critical state transition is fully 
defined.  During this process of structural adjustment, the 
additional voids ratio of the soil continues to decrease 
until it reaches the residual additional voids ratio c, and at 
the end of the process the soil reaches a critical state of 
deformation, irrespective of its original structure. 
 
3.7 Modification of the virgin yielding locus 

In order to model accurately the influence of the 
initial soil structure on the virgin yielding boundary, a 
simple modification is proposed, so that the initial 
structural yield surface is allowed to possess a shape 
different from the elliptical yield surface associated with 
stress history. The modification is relatively 
straightforward and involves extension of the concept of 
virgin yielding. 
 

Suppose that the initial structural yield surface may be 
expressed as 

( ), , 0s if p q′ =                         (28) 
Suppose the initial state of a soil be denoted as point A 
and the soil is loaded along stress path AB (Figure 3).  
When the current stress state reaches the initial structural 
yield surface fs,i at point C, virgin yielding occurs.  For 
continuing loading, the virgin yielding boundary is made 
of the two areas defined by the initial structural yield 
surface fs,i and p′c,max.  p′c,max is the maximum size of the 
stress yield surface the soil has ever experienced, which 
is defined by equation (10). The value of p′c,max 

corresponding to stress state B for stress path AB is 
shown in Figure 3.  If the stress state of the soil turns 
inside the current yielding boundary, the soil behaves as a 
purely elastic material, and the boundary remains 
unchanged. 

 q

p'

A

Initial structural yield surface 
f

B

C

p' c,max

 
Figure 3 Virgin yielding boundary 

 
The virgin yielding boundary is described by p′c,max 

completely when the initial structural yield surface fs,i is 
contained within the surface defined by p′c,max.  After that 
the initial structural yield surface no longer has any 
influence on the soil behaviour.  It is also assumed that 
the moment softening occurs the initial structural yield 
surface is destroyed.  The current yield surface is 
identical to the virgin yielding boundary. 
 
Table 1  Properties of Structured Cam Clay 

Symbol Description 

Reconstituted soil properties 
λ* gradient of the normal compression line in e-

lnp′ space 
κ* gradient of the unloading and reloading line 

in e-lnp′ space 
M* critical state stress ratio 
ν* Poisson’s ratio 

e*
cs void ratio at the p′ = 1 on the CSL in e-lnp′ 

space 
Additional parameters defining soil structure 

b destructuring index 

ei additional voids ratio sustained by soil 
structure (= a + c) 

c additional voids ratio sustained by soil 
structure at very large confining pressures 

p′y,i size of the initial (structural) yield surface 

γ parameter defining the plastic potential 

ω flow rule parameter 

 
It is obvious that the concept of yielding introduced 

above is valid no matter if the initial structural yield 
surface and the elliptical yield surface associated with 
loading are identical or not. 
 
3.7 Model parameters 
Ten parameters define the Structured Cam Clay model, 
and they are Μ*, e*IC, λ*, κ*, ν*, b, c, γ, ω and p′y,i (or 
the initial structural yield surface fs,i), as listed in Table 1.  
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The first five parameters, denoted by the symbol *, are 
intrinsic soil properties.  They are independent of soil 
structure.  These five intrinsic parameters are the same as 
those adopted in the Modified Cam Clay model (e.g., 
Muir Wood 1990). 

The new parameters, viz., b, c, γ, ω and p′y,i (or fs,i) are 
introduced to describe the influence of soil structure on 
its mechanical behaviour.  A detailed study of parameters 
b and p′y,i on the compression behaviour of natural clays 
can be found in the paper by Liu and Carter (2000a).  
Parameter c is a measure of the ultimate separation of the 
isotropic compression line for a structured soil and the 
same soil in a reconstituted state.  It can be seen that 
these three parameters have clear physical meaning, and 
can be determined conveniently from an isotropic 
compression test or an oedometer test on an intact soil 
sample. 

Parameter γ describes the reduction of the additional 
voids ratio sustained by soil structure associated with 
current shear stress.  The total plastic volumetric 
deformation associated with the additional voids ratio is 
described completely in terms of four material 
parameters, i.e., Μ*, b, c and γ.  The first three 
parameters can be determined independently from 
experimental data.  Consequently, parameter γ can be 
identified independently by studying the variation of e 
with η under virgin shearing.  Parameter ω describes the 
flow rule and can be determined from the measured 
plastic strain increment vector.  Theoretically, all the five 
new parameters can be identified directly from 
conventional tests on structured clays. 

The adoption of an initial structural yield surface fs,i 
different from that described by yield surface function 
(10) is suggested if there is enough experimental 
evidence to justify such a choice.  A detailed study on 
identifying the initial structural yield surface fs,i can be 
found in a paper by Diaz-Rodriguez et al. (1992). 
 
4. EXTENSION OF SCC FOR CEMENTED 

CLAYS 
As previously stated, the major aim of formulating the 
Structured Cam Clay model was to provide a constitutive 
model suitable for the solution of boundary value 
problems encountered in geotechnical engineering 
practice, i.e., a practical tool.  It was therefore necessary 
to keep the model relatively simple.  It is perceived that a 
simple predictive model should possess the following 
features: overall a simple and consistent physical basis 
for the model, an explicitly expressed D matrix, and 
model parameters with clear physical meanings and 
which are identifiable from conventional laboratory tests.  
Following this principle, a simple and straightforward 
modification of the model is made so that the influence of 
cementation is incorporated into the model directly. 
 
4.1 Mechanical properties of cemented clays 

Based on a large body of experimental data (e.g., 
Huang and Airey 1998; Ismail et al. 2002; Rotta et al. 
2003; Horpibulsuk, 2001; Horpibulsuk et al. 2004a and b, 

2005), the following characteristics of cemented clays are 
observed. 

(1) From comparison of the behaviour of clay in 
reconstituted states, naturally structured states and 
cemented states, it is seen that the basic behaviour of an 
artificially cemented clay is similar to that of a naturally 
structured clay (Airey 1990; Liu and Carter 1999; Carter 
et al. 2000).  The voids ratio sustained by an artificially 
cemented clay is higher than that of the same soil without 
cementation.  During yielding, destructuring takes place.  
However, the voids ratio sustained by cementation 
structure is usually much higher than that sustained by 
natural structure, but the rate of destructuring is 
considerably lower than that of naturally structured clays. 

(2) The size of the initial yield surface increases with 
cementation and so does the tensile strength of the soil.  
Also, the elastic region inside the yield surface increases 
with cementation. 

(3) The final strength of cemented clay, both in 
terms of shear stress and stress ratio, is generally higher 
than that of the same soil without cementation.  The final 
shear stress ratio is also improved.  However, the change 
in the final stress ratio is insignificant with cement 
content, provided that the content is above a critical 
value.  The final shear stress and mean effective stress of 
an artificially cemented clay are generally much higher 
than those of the same soil without cementation.  This 
feature is fundamentally different from that of a naturally 
structured clay (Burland 1990). Nevertheless, the 
behaviour of cemented soil is essentially that of a 
frictional material. 

Based on both qualitative and quantitative 
observation, two simple and direct modifications are 
proposed to take into consideration the influence of 
cementation on soil behaviour.  They are a modification 
to the mean effective stress parameter and the modelling 
of the breakdown of cementation. 
 
4.2 Modified mean effective stress parameter 

Based on the analysis of experimental data 
(Horpibulsuk 2004b; Kasama et al. 2000), it is concluded 
that the behaviour of cemented clays principally follows 
rules of cohesionless soils provided the effect of 
cementation is taken into consideration as a boost to the 
mean effective stress.  Therefore, a modified mean stress 
parameter is proposed as follows 

*
Cp p′ ′= + Μ               (29) 

where Μ* is the critical state strength of the soil, and C is 
a parameter related to the shear strength contributed by 
cementation.  The stress ratio is modified accordingly 

p
q
′

=η             (30) 

 
4.3 Breakdown of cementation 

For simplicity, the breakdown of the cementation, i.e., 
the crushing of soil structure, is assumed to occur as the 
soil approaches the final critical state of deformation.  As 
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discussed in section 3.6, during crushing of the structure 
the stress state stays on the critical state line.  By a 
process of trial and error it has been suggested that the 
function describing the breakdown of cementation should 
be 

2
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where Cin is the value of the initial cementation strength. 
The general stress and strain relationships describing 

this process are proposed as 

( )
( ) ( )
















′
′−ν−ω

εη
+

′







+
κ

ν−
ν+

=ε

ε+
′
′








+
κ

=ε

−′Μ=

s

o

p
v

d

p
vv

p
p

d
p
dq

e
d

d
p
pd

e
d

dCpddq

121

2
1219

12
1

*

        (32) 

For cemented soils the following compression 
equation is proposed 

( ) , ** y i
i

Cp
e e e c c

p

 ′ + Μ = +  − +
′ 

 
         (33) 

and the yield surface is now given by 
( )2 * 0sf q p p p′ ′ ′= −Μ − =                       (34) 

where p′s is the size of the yield surface.  As illustrated in 
Figure 4, the yield surface for the cemented soil is 
effectively shifted to the left along the p′ axis by a 
distance of */ΜC . 
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Figure 4 Yield surfaces 

 
In the model for cemented soil, the slope of the 

crushing envelope and the critical state line are assumed 
to be the same (Wissa et al. 1965; Clough et al. 1981; 
Kasama et al. 2000) and equal to M*.  The size of the 
initial yield surface, p′s,i, is linked to the initial mean 
effective yield stress, p′y,i, by the following equation 

, , *s i y i
Cp p′ ′= + Μ            (35) 

 
4.4 Strain relationships 

With the modifications introduced to describe the 
effect of cementation, the following incremental stress 

and strain relationship for a cemented clay during virgin 
yielding can be obtained 
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   (36) 

5. MODEL EVALUATION 
The validity of the Structured Cam Clay model and its 
generalization for cemented clays is investigated in this 
section by comparing the predictions of these models 
with some of the available data obtained from single 
element tests on structured soils. 
 
5.1 Compression behaviour of two clays 

Two sets of compression tests on different soils were 
simulated and for these tests only the volumetric 
deformation has been computed.  As can be seen from 
equation (17), the volumetric deformation is not 
influenced by the values of parameters ν* and ω.  Hence, 
for the present purpose there is no need to determine or 
specify values for these parameters. 
 
5.1.1 Leda clay 

The first group of test data includes five compression 
tests on natural soft Leda clay performed by Yong and 
Nagaraj (1977) and Walker and Raymond (1969).  The 
two oedometer tests on the natural and reconstituted Leda 
clay reported by Yong and Nagaraj (1977) were used to 
identify soil parameters, and their values are listed in 
Table 2.  The initial state of the structured soil is defined 
by σ′v = 20 kPa and e = 1.96.  As shown in Figure 5, the 
compression behaviour of Leda clay is well simulated by 
the model. 
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Figure 5 Behaviour of Leda clay in an oedometer test 

(Test data after Yong ang Nagaraj 1977) 
 

Three tests performed by Walker and Raymond 
(1969) were used to evaluate the model’s predictions.  
Although all the specimens tested by both Yong and 
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parameter ω was determining by curve fitting.  Since E* 
is assumed here to be a material constant, κ* is calculated 
from equation (24).  This value of κ* is used in 
calculating the plastic deformation in equations (17), (21) 
and (25). 
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Figure 9 Isotropic compression test on a calcarenite (Test data 

after Lagioia and Nova 1995) 
 
Table 4  Model parameters for a natural calcarenite 

Μ* λ* E* (kPa) e*IC ν* 
1.45 0.208 76,923 2.383 0.13 

b c ω γ  
30 0 4 2.1  

Initial structural yield surface: ellipse with p′y,i = 2,400 kPa 
and aspect ratio = 1.12. 

 
In all, eight drained shearing tests were considered 

with the confining pressure σ′3 ranging from 25 kPa to 
3,500 kPa. A comparison between test results and the 
predictions for three tests are shown in Figures 10 to 12.  
For the test with σ′3 = 3,500 kPa, the initial stress state is 
much larger than the size of the initial structural yield 
surface.  According to the proposed model, the structure 
of the soil at σ′3 = 3,500 kPa is effectively completely 
destroyed since the soil has a very high destructuring 
index, i.e., b = 30.  Thus, the soil behaved essentially as a 
reconstituted material throughout this test.  Destructuring 
of this sample was confirmed by Lagioia and Nova 
(1995). 

Considering the wide range of initial stresses, it is 
seen that the proposed model provides successful 
predictions of the behaviour of this natural and highly 
structured calcarenite. It is also observed in the 
simulations and in the experimental data (Figure 11) that 
both the deviatoric and the volumetric strains increase 
virtually at constant stress at the moment when virgin 
yielding commences, and that a large amount of plastic 
deformation is accumulated at the end of this process.  
These simulations are consistent with experimental 
observations of natural soil behaviour where the soils 
have a very sensitive structure (e.g., Westerberg 1995, 
Rouainia and Muir Wood 2000; Arces et al. 1998).  It is 
also seen that for this particular soil, the proposed 
material idealisation, e.g., purely elastic behaviour for 
loading within the current structural yield surface, 
represents the soil accurately (see Figures 10 and 11). 
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Figure 10 Shearing behaviour of a calcarenite at 

σ'3 = 1300 kPa (Test data after Lagioia and Nova 1995) 

0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5

Deviatoric strain εd

D
ev

ia
to

ric
 s

tre
ss

 q
 (k

P
a)

Exp. data
Simulation

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5
Deviatoric strain εd

V
ol

um
et

ric
 s

tra
in

 εv

Exp. data
Simulation

(a) Deviatoric stress and strain relationship

(b) Volumetric strain and deviatoric strain relationship
 

Figure 11 Shearing behaviour of a calcarenite at σ'3 = 25 kPa 
(Test data after Lagioia and Nova 1995) 

  
Nagaraji (1977) and Walker and Raymond (1969) were 
Leda clay, they were obtained from different locations in 
the same area.  It is assumed that these specimens 
differed only in the size of the initial yield surface, i.e., 
the different Leda clay samples possessed the same 
mineralogy and type of structure but may have had 
different degrees of structure.  The three compression 
tests were with η = 0, 0.63 and 1 respectively.  The 
experimental data for the test with η = 0 were used to 
identify the size of the yield surface, and it was found 
that p′co = 265 kPa.  It is seen in Figures 5 and 6 that the 
model gives an approximate but reasonable description of 
the compression behaviour of natural Leda clay. 
 
Table 2  Model parameters for Leda clay 

Μ* λ* κ* e*IC b 
1.2 0.223 0.03 2.338 1 
c γ p′y,i (kPa)   
0 0 168.6   
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Figure 6 Compression behaviour of Leda clay (Test data after 

Walker and Raymond 1969) 
 
5.1.2 Bangkok clay 

The second group of test data includes the results of 
five compression tests on weathered Bangkok clay 
performed by Balasubramanian and Hwang (1980). 
Values of the model parameters are listed in Table 3.  
The one-dimensional compression curve for the 
reconstituted soil type was estimated by the empirical 
method suggested by Burland (1990), based on which 
parameters λ* and e*IC were estimated.  The simulated 
behaviour of Bangkok clay is shown in Figure 7.  It may 
be noticed that the compression behaviour of the 
Bangkok clay is well simulated in this case. 

The predicted compression behaviour of Bangkok 
clay with η = 0.16, 0.43, 0.6 and 0.75 is shown in Figure 
8.  These test specimens were obtained from the field and 
some variation in the their initial structure would 
normally be expected.  It may be seen that the initial soil 
states for the five specimens may be divided into three 
groups, i.e., the test with η = 0, the test with η = 0.16, 
and tests with η = 0.43 and 0.6 and 0.75.  It is assumed in 
the simulations that the differences in the initial states of 
the soil can be represented adequately by the differences 
in the sizes of the initial structural yield surfaces.  It may 
be seen from the compression curve that the initial stress 

state for the test with η = 0.16 is on the yield surface, i.e., 
p′co = 67.6 kPa.  The size of the initial yield surface for 
the other three specimens is 45 kPa (the test with 
η = 0.43 is used to identify the value of this parameter).  
Overall, it is seen that the proposed model gives a 
reasonably good approximation of the compression 
behaviour of weathered Bangkok clay. 
 
Table 3  Model parameters for Bangkok clay 

Μ* λ* κ* e*IC b 
0.9 0.4 0.1 3.82 0.5 
c γ p′y,i (kPa)   
0 0 35   

1.5

2

2.5

3

3.5

10 100 1000
Mean effective stress p ' (kPa)

V
oi

ds
 ra

tio
 e

Data
Simul
Simul

ICL*  (estimated)

 
Figure 7 Compression behaviour of Bangkok clay (Test data 

after Balasubramanian and Hwang 1980) 
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Figure 8 Compression behaviour of Bangkok clay (Test data 

after Balasubramanian and Hwang 1980) 
 
5.2 Drained behaviour of natural calcarenite 

Results of experimental work carried out by Lagioia 
and Nova (1995) on a natural calcarenite have been 
compared with the model predictions.  The natural 
calcarenite was formed by marine deposition.  It is a 
coarse-grained material with a high degree of uniformity 
and calcareous inter-particle cement.  An isotropic 
compression test on the cemented soil was used to 
identify soil parameters and their values are listed in 
Table 4 (Figure 9).  The value of Poisson’s ratio and the 
critical state strength for the natural calcarenite were 
reported by Lagioia and Nova (1995).  The initial state 
for the structured soil is defined by p′ = 147 kPa and 
e = 1.148, and so the initial value of the additional voids 
ratio due to soil structure is ei = 0.15.  The value of 
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parameter ω was determining by curve fitting.  Since E* 
is assumed here to be a material constant, κ* is calculated 
from equation (24).  This value of κ* is used in 
calculating the plastic deformation in equations (17), (21) 
and (25). 
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Figure 9 Isotropic compression test on a calcarenite (Test data 

after Lagioia and Nova 1995) 
 
Table 4  Model parameters for a natural calcarenite 

Μ* λ* E* (kPa) e*IC ν* 
1.45 0.208 76,923 2.383 0.13 

b c ω γ  
30 0 4 2.1  

Initial structural yield surface: ellipse with p′y,i = 2,400 kPa 
and aspect ratio = 1.12. 

 
In all, eight drained shearing tests were considered 

with the confining pressure σ′3 ranging from 25 kPa to 
3,500 kPa. A comparison between test results and the 
predictions for three tests are shown in Figures 10 to 12.  
For the test with σ′3 = 3,500 kPa, the initial stress state is 
much larger than the size of the initial structural yield 
surface.  According to the proposed model, the structure 
of the soil at σ′3 = 3,500 kPa is effectively completely 
destroyed since the soil has a very high destructuring 
index, i.e., b = 30.  Thus, the soil behaved essentially as a 
reconstituted material throughout this test.  Destructuring 
of this sample was confirmed by Lagioia and Nova 
(1995). 

Considering the wide range of initial stresses, it is 
seen that the proposed model provides successful 
predictions of the behaviour of this natural and highly 
structured calcarenite. It is also observed in the 
simulations and in the experimental data (Figure 11) that 
both the deviatoric and the volumetric strains increase 
virtually at constant stress at the moment when virgin 
yielding commences, and that a large amount of plastic 
deformation is accumulated at the end of this process.  
These simulations are consistent with experimental 
observations of natural soil behaviour where the soils 
have a very sensitive structure (e.g., Westerberg 1995, 
Rouainia and Muir Wood 2000; Arces et al. 1998).  It is 
also seen that for this particular soil, the proposed 
material idealisation, e.g., purely elastic behaviour for 
loading within the current structural yield surface, 
represents the soil accurately (see Figures 10 and 11). 
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Figure 10 Shearing behaviour of a calcarenite at 

σ'3 = 1300 kPa (Test data after Lagioia and Nova 1995) 
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Figure 11 Shearing behaviour of a calcarenite at σ'3 = 25 kPa 
(Test data after Lagioia and Nova 1995) 
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Figure 12 Shearing behaviour of a calcarenite at 

σ'3 = 3500 kPa (Test data after Lagioia and Nova 1995) 
 
5.3 Emmerstad clay 

The behaviour of a natural sensitive Norwegian 
marine clay, Emmerstad clay, was simulated and the 
predictions compared with data from undrained triaxial 
tests performed by Lacasse et al.  (1985) (from Burland 
1990).  Both compression and extension tests are 
compared.  In all tests, intact soil specimens were sheared 
from an anisotropic stress state, which was close to the in 
situ condition.  The intrinsic isotropic compression line 
(ICL*) for the Emmerstad clay was estimated from the 
general intrinsic normal compression line proposed by 
Burland (1990).  The ICL* for the reconstituted soil is 
expressed as 

* 0.821 0.066lne p′= −           (37) 
The additional voids ratio sustained by soil structure 

was estimated from an oedometer test and the known 
ICL*.  Values of the model parameters used in these 
simulations are listed in Table 5.  Poisson’s ratio of the 
soil skeleton ν* is assumed as 0.25, as is commonly used 
in geotechnical practice for a clay skeleton.  Parameters 
ω and γ were determined by curve fitting. 

The initial state of the clay was (σ′1 = 41.5 kPa, 
σ′2 = σ′3 = 23.5 kPa, e = 1.155).  The initial structural 
yield surface was assumed to be an ellipse with the aspect 
ratio being Μ*.  The initial vertical yield stress measured 
from the oedometer data is 110 kPa, which gives 
p′y,i = 98 kPa, based on an empirical equation suggested 
by Liu and Carter (2002).  To give an overall picture of 
the undrained behaviour of this clay, an additional 
simulation of the conventional triaxial extension test with 
OCR = (p′co/ p′i) = 1.6 is also made. 

 
Table 5  Model parameters for Emmerstad clay 

Μ* λ* κ* E*IC ν* 
1.37 0.066 0.006 0.821 0.25 

b C ω γ  
0.4 0.35 1.8 0.1  

Initial structural yield surface: ellipse with p′y,i = 98 kPa and 
aspect ratio = Μ*. 
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Figure 13 The behaviour of Emmerstad clay (Test data after 

Lacasse et al. 1985) 
 

A comparison of the simulations and the experimental 
data for undrained triaxial shearing is shown in Figure 
13.  Overall, the proposed model gives a reasonably good 
description of the behaviour of the natural soft 
Emmerstad clay, which was sheared from an anisotropic 
stress state to failure. 

The following observations are made regarding the 
soil behaviour and the model simulations. 

(1) The strengths of the soil in triaxial extension 
stress states have been significantly over-predicted.  This 
arises, at least in part, from the adoption of the Von 
Mises failure criterion, rather than the Mohr-Coulomb 
criterion. 

(2) Laccase et al. (1985) observed that Emmerstad 
clay is extremely sensitive, with the sensitivity index 
varying from 60 upwards.  This is confirmed by the 
simulations which predict the final strength of the soil as 
being almost negligible. 
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 (3) Unlike most very soft clays, Emmerstad clay 

exhibits a significant amount of negative excess pore 
pressure when it softens, which is usually a feature of 
stiff clay behaviour (e.g., Vaughan 1994).  This particular 
feature has been captured well by the SCC model through 
assigning a low value of γ and a high value of c relative 
to the initial value of the additional voids ratio ei.  As a 
result, the modified SCC model predicts greater 
sensitivity to the destructuring caused by increasing shear 
stress at states near the critical state than by increasing 
mean stress.  Consequently, at the beginning of softening, 
the plastic volumetric deformation is controlled by the 
softening mechanism and is thus expansive, which leads 
to the development of negative pore pressure.  The major 
portion of the additional voids ratio sustained by soil 
structure is reduced only near the end of the softening 
process when the current stress ratio approaches Μ* and 
a large amount of positive pore pressure is produced 
during this part of the process, as can be inferred from the 
simulations. 
 
5.4 Dogs Bay carbonate sand 

Experimental data observed for this sand were 
reported by Golightly and Hyde (1988).  The maximum 
and minimum voids ratios for the carbonate sand are 1.83 
and 0.98, respectively.  Results have been reported for 
ten conventional triaxial undrained tests, each at a 
constant confining pressure.  The initial voids ratio for all 
the tests was 1.0.  All the samples were prepared by a 
similar method, involving the sand being dry-pluviated 
from a fixed height. 

The model parameters identified for Dogs Bay 
carbonate sand are listed in Table 6.  The size of the 
initial structural yield surface is 400 kPa and its shape is 
elliptical with the aspect ratio being M*.  Values of 
parameters M*, λ*, e*IC and p′y,i were determined from 
the experimental data reported by Golightly and Hyde 
(1988).  The value of Poisson’s ratio ν* was assumed 
according to common practice in geotechnical 
engineering.  The values for parameters E*, b, ω and γ 
were determined by curve fitting.  The value of the initial 
additional voids ratio ei can be calculated from equation 
(6) as the initial states of the soil specimens are known.  
The values of ei for all the tests are negative. 
 
Table 6  Model parameters for Dogs Bay carbonate sand 

Μ* λ* E* (kPa) e*IC ν* 
1.75 0.135 100,000 1.87 0.25 

b c ω γ  
0.25 0 0.1 0.2  
Initial structural yield surface: ellipse with p′y,i = 400 kPa 

and aspect ratio = Μ*. 
 

Comparison between the theoretical simulations and 
the experimental data for four of the ten tests is shown in 
Figure 14.  It is seen that overall the behaviour of the 
carbonate sand under monotonic shearing has been 
simulated reasonably well by the proposed SCC model 
and the main features of the complicated behaviour of 

this sand are satisfactorily captured. The following 
observations are made. 

(1) Although the relative density for the Dogs Bay 
carbonate sand tested was as high as 97%, the soil with 
the initial mean effective stress greater than 400 kPa 
behaves like a virgin yielding material. 

(2) The soil shows a special feature in p′ - q space 
(Figure 9a).  For normally consolidated and lightly over-
consolidated sand, the effective stress paths reach a 
strength of the critical state shear stress ratio through 
virgin yielding, and for heavily over-consolidated sand, 
the effective stress paths reach a strength given by the 
critical state shear stress ratio through softening.  After 
that, the effective stress paths for all the samples travel 
upwards along the critical state line until the sand finally 
reaches the critical state of failure.  During the last stage, 
large strength increase is achieved. This type of 
behaviour has also been observed for some other sands 
(e.g., Ishihara 1993). 

(a) Effective stress paths

(b) Stress and strain relationship
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Figure 14 Undrained behaviour of Dogs Bay carbonate sand 

(test data after Golightly and Hyde 1988) 
 

It can be seen that the SCC model has successfully 
captured the significant trends in the complicated 
behaviour of the carbonate sand.  However, considerable 
quantitative discrepancies are observed between the 
simulations and the experimental data.  Similar to that of 
the Modified Cam Clay model (Muir Wood 1990), the 
quantitative performance of the Structured Cam Clay 
model needs further improvement for describing in detail 
the behaviour of natural sands with various types and 
degrees of structure.  It may also seen that the assumption 
of purely elastic deformation inside the virgin yield 
boundary is approximate for some materials, and hence 
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for those materials is only applicable for situations where 
soil deformation within the boundary is not the main 
concern. 
 
5.5 Cemented Ariake clay 

The undrained behaviour of cemented Ariake clay 
observed in tests performed by Horpibulsuk et al. (2004b) 
is simulated by the SCC model extended to include 
cementation effects.  The tests were conventional triaxial 
tests at different confining pressures.  The cement content 
for all tests was Aw = 9% by weight.  Values of the model 
parameters identified are listed in Table 7. 
 
Table 7  Model parameters for cemented Ariake clay 

Μ* λ* E* (kPa) e*IC ν* 
1.85 0.44 20,000 4.37 0.25 

b C ω γ C (kPa) 
0.6 1.8 1.2 1 80 

Initial structural yield surface: ellipse with p′y,i = 210 kPa 
and aspect ratio = Μ*. 

(a) Effective stress paths
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Figure 15 Stress and strain relationship for cemented Ariake 

clay for Aw = 9% (Test data from Horpibulsuk 2004b) 
 

Four tests were simulated with the initial confining 
pressure being 50, 200, 400 and 600 kPa.  A comparison 
of the undrained effective stress paths from the 
experimental data and model simulations is shown in 
Figure 15(a).  A comparison of the stress and strain 
relationships of the clay is shown in Figure 15(b).  
Overall, the behaviour of cemented clay has been 
simulated highly satisfactorily considering that all model 

parameters were essentially identified according to their 
definitions, i.e., the triaxial test data were not back-fitted. 
The development of the pore pressure in this cemented 
clay is analyzed in detail here. 

For cemented clay in a normal or lightly over-
consolidated state, i.e., when the soil exhibits virgin 
yielding at low stress ratio, the undrained effective stress 
path in p′ - q space first rises before bending towards the 
CSL, which indicates the development of positive pore 
pressure.  Then it reaches a peak strength state.  
However, this peak strength state is not sustainable and 
instability occurs.  The strength of the soil drops 
accompanied by the development of positive pore 
pressures and the breakdown of cementation.  Finally, the 
soil reaches the ultimate failure state and thus becomes 
stable.  During this process, the stress ratio is basically 
constant and the failure of the soil contributes to the 
production of positive pore pressure. 

For cemented clay with a high over-consolidation 
ratio, the undrained effective stress path initially rises 
approximately vertically, which indicates elastic 
behaviour, and reaches a peak value; then softening 
occurs with the stress path moving to the right and 
towards the critical state line and with decreasing stress 
ratio.  This indicates the generation of negative excess 
pore pressures.  However, before reaching the final 
failure state the stress path changes its direction and 
travels downwards and approaches the critical state line 
from above, which indicates the generation of positive 
excess pore pressures (see the insert in Figure 15(a) for 
the test with σ′3 = 100 kPa).  This pattern of soil 
behaviour is usually not observed in reconstituted clays 
and hence most models of the Cam Clay family, 
developed for reconstituted soils, are generally incapable 
of describing such behaviour. 

The structure of the soil created by induced 
cementation is very strong and the soil can sustain much 
higher voids ratio than the uncemented soil.  For the 
Ariake clay in the tests, the initial voids ratio is over 4.  
For Ariake clay in a reconstituted state with much lower 
voids ratio, the corresponding critical state strength 
measured is close to zero.  However, the final strength of 
the cemented clay is significant and also increases with 
cement content.  This indicates that part of the structure 
associated with artificial cementation is meta-stable and 
thus cannot be removed by conventional loading.  This 
very important and positive effect of cementation is well 
represented in the proposed model. 
 
6. MODEL PREDICTIONS IN BOUNDARY 

VALUE PROBLEMS 
The Structured Cam Clay model has been incorporated 
into the finite element program AFENA (Carter and 
Balaam 1995) and used to solve a variety of boundary 
value problems.  In this section the application of the 
model to the prediction of the bearing behaviour of 
circular footings is considered.  Parametric studies have 
been performed by Liyanapathirana et al. (2003a; 2003b; 
2008) to identify which of the model parameters are most 
significant in determining the response of a footing on 
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structured soil, and therefore which of the parameters 
requires the most accurate determination.  The results of 
the parametric study have also been summarized in the 
form of design guidelines, expressed as closed form 
expressions for predicting footing response. 
 
6.1 Undrained bearing resistance 

One of the important features of the mechanical 
behaviour of structured soils is the occurrence of a 
destructuring phase as these soils are loaded.  During this 
phase, the structure of the soil may be completely or 
partially lost and only a small change in stress state may 
cause very large strains.  Consequently, significant errors 
in prediction of foundation behaviour can arise if the 
influence of soil structure is not incorporated into these 
predictions. 

Well-established formulae for determining the 
undrained bearing capacity of shallow circular 
foundations have been proposed by Terzaghi and Peck 
(1967), Davis and Booker (1973), Salençon and Matar 
(1982), Kusakabe et al. (1986) and Tani and Craig 
(1995).  These take into account the foundation shape, 
size, depth of embedment and variation of soil properties 
with depth, but they do not directly take into account the 
influence of soil structure on the bearing resistance. 

Geotechnical engineers have long experience in the 
use of a factor of safety in design, and generally they 
have been successful in designing shallow foundations on 
natural and man-made soils using this approach.  The 
methods used generally ignore the effects of soil structure 
on its bearing behaviour.  However, for special cases, 
such as offshore structures, where there is often less 
experience, incorporating the complex behaviour of 
structured soils directly in bearing capacity predictions 
may be very important.  Therefore, the main objective of 
this section is to examine the significance of soil structure 
on the undrained bearing capacity of shallow foundations 
resting on the surface of structured soil deposits. 

In particular, a series of numerical simulations have 
been carried out to investigate the influence of soil 
structure on the undrained (or immediate) load-
displacement response of shallow foundations.  Based on 
these numerical simulations, guidelines are provided to 
identify when the structural features of the soil become 
important in assessing the undrained (short-term) bearing 
capacity of shallow circular foundations.  The factor, Nc, 
used in the classical bearing capacity theory, has been 
modified by incorporating directly the structural features 
of the soil to quantify the undrained bearing capacity. 
 
6.2 Finite element model 

The finite element mesh used for the analysis 
consisted of fifteen-noded cubic strain triangles, and a 
16-point Gaussian quadrature was performed.  According 
to Sloan and Randolph (1982), this element is capable of 
accurate computations in the fully plastic range during 
undrained loading in problems which involve axial 
symmetry.  In all analyses presented in this paper, it is 
assumed that the contact between the footing and the soil 
is perfectly rough. 

6.3 Effect of soil structure on bearing capacity 
To study the effect of soil structure on the bearing 

capacity, a parametric study was carried out by varying 
the footing diameter and the model parameters which 
govern the structural features of the soil for typical 
examples of both stiff and soft clays.  The values of other 
parameters were kept constant and they are the same as 
those given in Table 8. 

 
Table 8 Properties of stiff and soft clay 

Property Stiff clay Soft clay 

λ* 0.161 0.22 

κ* 0.033 0.022 

M* 1.0 1.3 

ν* 0.2 0.4 

e*
cs 2.75 2.86 

B 4.0 4.0 

γ 0.5 0.5 

ω 1.0 1.0 

γ′ (kN/m3) 8.19 7.19 

 
For reconstituted soils loaded under both drained and 

undrained conditions, it was found that for a unique value 
of the combined parameter */ coB pγ ′ ′ , the non-
dimensional bearing pressure */av coq p′  plotted against the 
non-dimensional footing settlement δ/B was almost the 
same, irrespective of the individual values of each 
variable.  Here, qav is the average applied footing 
pressure, δ is the footing settlement, B is the footing 
diameter and γ′ is the effective unit weight of the soil. 

e

ln(p' ) p' *
co

 p' co1  p' co2  p' co3

 ei3

 ei2

 ei1

gradient = κ ∗

gradient = λ ∗

c

 
Figure 16 Variation of p′co with ei for structured soils 

 
For a particular soil, the size of the yield surface of the 

structured soil, cop′ , is always greater than the size of the 

yield surface of the reconstituted soil, *
cop′ , due to the 

additional voids ratio sustained by the soil structure, ei.  
The variation of cop′ depends on κ*, λ* and ei, as 
illustrated in Figure 16, and is given by 
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* exp
* *

i
co co

ep p
λ κ
 ′ ′=  − 

          (38) 

Therefore, for a particular soil the degree of structure 
with respect to the reconstituted soil can be defined by 
using either *

coco p/p ′′  or ( )* *ie λ κ − .  It was found 
that the influence of γ, ω and the destructuring index, b, 
do not have a significant influence on the undrained 
bearing capacity.  Thus, in the parametric study the 
influence of soil structure has been studied by varying 
only ( )* *ie λ κ − . 
 
6.4 Bearing capacity of stiff structured clay 

Figure 17 illustrates the influence of the degree of soil 
structure on the undrained bearing response of a 2 m 
diameter circular footing.  Clearly, the bearing capacity 
reaches an ultimate value during undrained loading, in 
contrast to the approximate bilinear load-displacement 
response observed during drained loading of similar 
materials, as demonstrated later in this paper and by 
Liyanapathirana et al. (2003a, 2003b).  This indicates that 
for these undrained cases the soil beneath the footing 
should fail in the general shear failure mode. 
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Figure 17 Variation of q′ay with ei/(λ*-κ*) for a 2m diameter 

circular footing on stiff clay 
 

With an increase in the degree of soil structure, the 
bearing capacity increases significantly, e.g., when 

( )* *ie λ κ −  increases from 1.07 to 2.16, there is a 
four-fold increase in the bearing capacity of the footing.  
If the undrained bearing capacity is calculated based on 
the reconstituted soil properties, neglecting the structural 
properties of the soil, the predicted bearing capacity can 
be a very low value compared with the true theoretical 
load carrying capacity of the footing. 

Figure 18 shows the non-dimensional bearing 
capacity, *

av coq p′ , obtained from the finite element 
analysis for different values of degree of soil structure, 

( )* *ie λ κ − , and */ coB pγ ′ ′  for stiff clay.  For the range 
of */ coB pγ ′ ′  considered in the parametric study, it can be 
seen that the degree of soil structure has a significant 
influence on the bearing capacity of the foundation.  
Based on the above observation, an equation for the 
bearing capacity calculation can be formulated based on 

the critical state and structural parameters of the soil, as 
follows 

* *exp 1.3
* *

n

av i

co co

q e B
p p

γ
λ κ

 ′ =   ′ ′−  
         (39) 

where 
0.25

0.23
* *

ien
λ κ

− =  − 
. 

The new equation takes into account the influence of 
soil structure on the bearing capacity.  
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Figure 18 Variation of q′ay/p′co with ei/(λ*-κ*) for a 2m 

diameter circular footing on stiff clay 
 
6.5 Influence of degree of soil structure on 

undrained shear strength 
The undrained shear strength of the soil, Su, is an 

important parameter in determining the short term or 
undrained bearing capacity.  However, the undrained 
shear strength is not a direct input parameter of the 
Structured Cam Clay model.  For the Modified Cam Clay 
model, which simulates the constitutive behaviour of 
reconstituted soil, the undrained strength can be derived 
from the following equation (e.g., Zdravkovië and Potts 
2003) 

( ) ( ) ( )( )

( )
( ) ( )

2

*/ *

2

cos 1 2 1
6

2 1 2

1 2 1

NC
u o
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o
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o

OCRS g K B

K

K OCR B

κ λ

θ θ= + + ×

 +
 
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        (40) 

where 1 sinNC
oK φ′= − , sinOC NC

o oK K OCR φ′=  and 

( )
( ) ( )

3 1

30 1 2

NC
o

o NC
o

K
B

g K

−
=

− +
. 

θ is the Lode angle, OCR is the overconsolidation ratio, 
and NC

oK  and OC
oK  are the coefficients of earth pressure at 

rest for a normally consolidated and an overconsolidated 
soil, respectively.  If we assume a circular yield surface 
in the deviatoric plane, g(θ) can be replaced by M*/ 3 . 

For a structured soil ( )* *
ie λ κ −  increases with the 

degree of soil structure and p′co is related to ei according 
to Equation (38).  The OCR of the soil is also related to 
soil structure and according to Equation (40), Su increases 
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with OCR.  Therefore, the influence of the degree of soil 
structure can be incorporated into the undrained shear 
strength of the soil via equation (40). 
 
6.6 Bearing capacity of stiff clay 

Figure 19 shows the variation of Su with depth in the 
structured soil deposit for different values of 

( )* *ie λ κ −  and the corresponding OCR.  In each case 
it is assumed that OCR is independent of depth.  The 
ultimate bearing capacity of a surface foundation, qu, is 
normally expressed in the form 

ouccu SsNq =             (41) 

where sc is the shape factor, Suo is the undrained shear 
strength of the soil at the ground surface, and Nc is the 
bearing capacity factor.  
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Figure 19 Undrained shear strength profiles for stiff clays 

 
Based on plasticity theory, several authors have 

recommended values for Nc and sc (or their product) as 
functions of kB/Suo, where k is the gradient of Su over the 
depth of the soil deposit, e.g., Salençon and Martar 
(1982), Kusakabe et al. (1986), Tani and Craig (1995) 
and Davis and Booker (1973).  In Figure 20, reproduced 
from Liyanapathirana et al. (2003b), the bearing capacity 
obtained from selected plasticity solutions and the finite 
element analysis of the structured soil are compared.  
According to Terzaghi and Peck (1967), the value of Nc is 
5.14 for a soil of uniform strength.  Three other 
recommended values are also plotted in Figure 20.  In 
these solutions, qu/Suo increases with kB/Suo.  However, 
according to Figure 20, in addition to kB/Suo, qu/Suo 
depends on the individual values of Suo or in other words 
on the OCR of the soil.  Liyanapathirana et al. (2003a, 
2003b) suggested that to sufficient accuracy this effect 
can be incorporated into the bearing capacity calculation 
as follows 

3.25ln 13.2
n

u uo
c c

uo a uo

q S kBN s
S p S

    
= = +    

    
        (42) 

where 
0.2

0.14 uo

a

Sn
p

−
 

=  
 

 and pa is atmospheric pressure 

(≈ 100 kPa).  If a value of Suo is available for the intact 
undisturbed soil, i.e., the peak strength of the structured 
soil, then equation (39) can be used to obtain the ultimate 
bearing capacity.  This may be more convenient than 
using the alternative, equation (40), which requires direct 
knowledge of the structural parameters of the soil. 
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Figure 20 Comparison of bearing capacity obtained from SCC 

model with solutions based on plasticity theory 
 
6.7 Bearing capacity of soft clay 

Usually soft clay deposits have a crust above the 
ground water table and are close to normally consolidated 
below the water table.  In this section the influence of a 
surface crust is studied for a shallow 2 m diameter 
circular foundation, and it is assumed that the water table 
is 2 m below the ground surface.  The undrained shear 
strength profiles for the four cases considered by 
Liyanapathirana et al. (2003a and b) are shown in Figure 
21.  In the case of OCR = 1, there is no surface crust.  In 
the other three cases, the OCR values at the ground 
surface are 3, 6 and 9, respectively, and each has a 
polynomial variation of strength above the water table.  
Below the water table however, it is assumed OCR = 1 
for all four cases.  Usually in soft clays, this surface crust 
provides the necessary strength to carry surface loading 
(e.g., Zdravkovië and Potts 2003).  In each case, ei was 
allowed to vary through the crust and values were 
calculated using equation (39), assuming p′*co = 10 kPa.  
Below the surface crust ei was assumed to have constant 
value of 0.1. 

Figure 22 shows the average bearing pressure with 
footing displacement predicted by Liyanapathirana et al. 
(2003a and b) for the cases given in Figure 21. The 
presence of the crust significantly increases the bearing 
capacity of the footing.  When the OCR at the surface of 
the crust is 6, the bearing capacity has nearly doubled 
compared to the capacity without a crust.  Unlike the stiff 
clay, for these soft clays, the bearing capacity does not 
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6.8 Failure mechanisms 
Figures 24a and b show, respectively, the incremental 

soil displacements for stiff and soft clay deposits when 
the cumulative displacement of the footing is 7.5% of the 
footing diameter as predicted by Liyanapathirana et al. 
(2003s and b). The footing considered has a diameter of 
2 m.  The stiff clay deposit considered has an OCR of 6 
throughout the soil deposit and the soft clay deposit 
considered has an OCR of 6 at the ground surface. 

It can be seen that in stiff and soft clays, the failure 
mechanisms are not the same.  In stiff clay, soil beneath 
the centre of the footing moves predominantly in the 
vertical direction, but towards the outer edge of the 
footing soil movement is predominantly in the radial 
direction and the soil heaves around the footing, similar 
to a general shear failure. 

In soft clay, the soil flow pattern shown in Figure 24 
(b) is different to that observed for stiff clay.  Soil flow 
beneath the footing is predominantly in the vertical 
direction confined largely to a zone beneath the footing.  
Although some vectors are at an angle to the vertical, 
they do not show a flow pattern in a radial shearing zone.  
According to the load displacement response shown in 
Figure 22, no visible collapse is observed and a 
continuous increase in the vertical load is needed to 
maintain the footing movement in the downward 
direction.  Therefore, it can be concluded that the 
deformation of the structured soft clay beneath the 
footing occurs predominantly as local shear failure under 
undrained conditions. 
 
6.9 Long-term bearing resistance of structured soils 

Accurate assessment of the bearing resistance of the 
ground is an important step in the process of evaluation 
of the stability and economy of structures.  The bearing 
capacity of a footing is often mobilised as a shear failure 
that occurs within the soil supporting the footing.  It is 
generally recognized that there are three principal modes 
of shear failure: general shear failure, local shear failure 
and punching shear failure. 

Numerical analyses have also been carried out by 
Liyanapathirana et al. (2003a and b) to investigate the 
possible modes of failure for structured soils deforming 
under fully drained conditions. Figure 25 shows a 
normalized plot of the mobilized bearing pressure against 
the footing settlement for a 5 m diameter rigid circular 
footing resting on a typical structured soil deposit.  No 
visible collapse is observed and a continuous increase in 
vertical load is needed to maintain the footing movement 
in the downward direction.  Figure 26 shows the 
cumulative displacement vectors at a displacement of 
10% relative to the diameter of the footing.  The 
displacement vectors are predominantly in the vertically 
downward direction.  Although a few vectors are at an 
angle to the vertical, they do not show a flow pattern in a 
radial shearing zone.  Therefore, it can be concluded that 
the deformation of the structured soil beneath the footing 
occurs predominantly as a punching shear failure under 
fully drained conditions. 

 

Figure 19:  Mobilisation of bearing resistance with footing 
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Figure 25 Mobilization of bearing resistance with footing 
movement 

 
Figure 26 Cumulative displacement vectors beneath the 

footing at a displacement of 0.1B 
 
6.10  Prediction of drained bearing response curve 

Since failure of the soil beneath the footing occurs as a 
punching shear, the mobilised bearing pressure 
continuously increases with the footing movement, 
apparently without reaching an ultimate bearing capacity, 
at least within the bounds of a small displacement 
approach.  For punching shear, the bearing pressure 
mobilized at a displacement of 10% of the footing 
diameter is often defined as the “bearing capacity”.  
However, this is an arbitrary value.  Sharp and Seters 
(1988) and Islam (1999) showed that for punching shear, 
bearing pressure curves can be approximated by bilinear 
relationships.  Although both sections of the curve 
involve elasto-plastic behaviour, the first section of the 
curve represents predominantly elastic penetration of the 
footing and the second represents predominantly plastic 
penetration of the footing.  Therefore the first section of 
the curve is termed as ‘elastic’ and the second section is 
termed as ‘plastic’.  If gradients of the elastic (Fr) and 
plastic (Gr) parts and the yield point (Yr), as shown in 
Figure 25, are known, an approximate curve of 
dimensionless bearing pressure */ coav pq ′  versus 
dimensionless displacement (δ/B) can be predicted, 
where qav is the average applied footing pressure, *

cop′  is 
the intercept of the current structural yield surface on the 
mean effective stress axis, δ  is the footing settlement and 
B is the footing diameter.  Hence, the bearing pressure 
can be obtained for any vertical movement of the footing, 
instead of assigning an arbitrary value as the ultimate 
bearing capacity. 

  
reach an ultimate value but continues to increase slowly 
with increasing footing displacement. 
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Figure 21 Undrained shear strength profiles for soft clays 
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Figure 22 Effect of surface crust on bearing resistance 

(B = 2 m) 
 
For soft clay deposits, it is not possible to compute qu 

using the methods proposed by Salençon and Matar 
(1982), Kusakabe et al. (1986) and Tani and Craig 
(1995), because in all these methods the bearing capacity 
is a function of kB/Suo.  For these soft clays, the 
distribution of Su is not a simple linear increase with 
depth, as assumed in the derivation of those methods.  
Therefore, the finite element results have been compared 
only with the predictions of the Terzaghi and Peck (1967) 
method. 

Figure 23 shows the bearing capacity obtained from 
the finite element analysis by Liyanapathirana et al. 
(2003a and b) when the footing displacement is 10% of 
the footing diameter, and from the Terzaghi and Peck 
(1967) method. In the Terzaghi and Peck method 
(equation 24), the bearing capacity has been calculated 
using the undrained shear strength at the ground surface 
and the average undrained shear strength over the depth 
interval equivalent to the diameter of the footing.  It is 

clear that where there is a crust with OCR greater than 
about 3, the bearing capacity equation proposed by 
Terzaghi and Peck (1967) significantly over predicts the 
load carrying capacity of the foundation.  However, if the 
OCR at the surface is less than or equal to about 3, the 
bearing capacity calculated using the Terzaghi and Peck 
equation matches reasonably well with the finite element 
results. 
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Figure 17:  Bearing capacity for different OCR values at the surface of the soft clay 
 

Figure 23 Bearing capacity for different OCR at surface of soft 
clay deposit 

 
 
 

 
 

Figure 24 Incremental displacements 
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6.8 Failure mechanisms 
Figures 24a and b show, respectively, the incremental 

soil displacements for stiff and soft clay deposits when 
the cumulative displacement of the footing is 7.5% of the 
footing diameter as predicted by Liyanapathirana et al. 
(2003s and b). The footing considered has a diameter of 
2 m.  The stiff clay deposit considered has an OCR of 6 
throughout the soil deposit and the soft clay deposit 
considered has an OCR of 6 at the ground surface. 

It can be seen that in stiff and soft clays, the failure 
mechanisms are not the same.  In stiff clay, soil beneath 
the centre of the footing moves predominantly in the 
vertical direction, but towards the outer edge of the 
footing soil movement is predominantly in the radial 
direction and the soil heaves around the footing, similar 
to a general shear failure. 

In soft clay, the soil flow pattern shown in Figure 24 
(b) is different to that observed for stiff clay.  Soil flow 
beneath the footing is predominantly in the vertical 
direction confined largely to a zone beneath the footing.  
Although some vectors are at an angle to the vertical, 
they do not show a flow pattern in a radial shearing zone.  
According to the load displacement response shown in 
Figure 22, no visible collapse is observed and a 
continuous increase in the vertical load is needed to 
maintain the footing movement in the downward 
direction.  Therefore, it can be concluded that the 
deformation of the structured soft clay beneath the 
footing occurs predominantly as local shear failure under 
undrained conditions. 
 
6.9 Long-term bearing resistance of structured soils 

Accurate assessment of the bearing resistance of the 
ground is an important step in the process of evaluation 
of the stability and economy of structures.  The bearing 
capacity of a footing is often mobilised as a shear failure 
that occurs within the soil supporting the footing.  It is 
generally recognized that there are three principal modes 
of shear failure: general shear failure, local shear failure 
and punching shear failure. 

Numerical analyses have also been carried out by 
Liyanapathirana et al. (2003a and b) to investigate the 
possible modes of failure for structured soils deforming 
under fully drained conditions. Figure 25 shows a 
normalized plot of the mobilized bearing pressure against 
the footing settlement for a 5 m diameter rigid circular 
footing resting on a typical structured soil deposit.  No 
visible collapse is observed and a continuous increase in 
vertical load is needed to maintain the footing movement 
in the downward direction.  Figure 26 shows the 
cumulative displacement vectors at a displacement of 
10% relative to the diameter of the footing.  The 
displacement vectors are predominantly in the vertically 
downward direction.  Although a few vectors are at an 
angle to the vertical, they do not show a flow pattern in a 
radial shearing zone.  Therefore, it can be concluded that 
the deformation of the structured soil beneath the footing 
occurs predominantly as a punching shear failure under 
fully drained conditions. 

 

Figure 19:  Mobilisation of bearing resistance with footing 
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Figure 25 Mobilization of bearing resistance with footing 
movement 

 
Figure 26 Cumulative displacement vectors beneath the 

footing at a displacement of 0.1B 
 
6.10  Prediction of drained bearing response curve 

Since failure of the soil beneath the footing occurs as a 
punching shear, the mobilised bearing pressure 
continuously increases with the footing movement, 
apparently without reaching an ultimate bearing capacity, 
at least within the bounds of a small displacement 
approach.  For punching shear, the bearing pressure 
mobilized at a displacement of 10% of the footing 
diameter is often defined as the “bearing capacity”.  
However, this is an arbitrary value.  Sharp and Seters 
(1988) and Islam (1999) showed that for punching shear, 
bearing pressure curves can be approximated by bilinear 
relationships.  Although both sections of the curve 
involve elasto-plastic behaviour, the first section of the 
curve represents predominantly elastic penetration of the 
footing and the second represents predominantly plastic 
penetration of the footing.  Therefore the first section of 
the curve is termed as ‘elastic’ and the second section is 
termed as ‘plastic’.  If gradients of the elastic (Fr) and 
plastic (Gr) parts and the yield point (Yr), as shown in 
Figure 25, are known, an approximate curve of 
dimensionless bearing pressure */ coav pq ′  versus 
dimensionless displacement (δ/B) can be predicted, 
where qav is the average applied footing pressure, *

cop′  is 
the intercept of the current structural yield surface on the 
mean effective stress axis, δ  is the footing settlement and 
B is the footing diameter.  Hence, the bearing pressure 
can be obtained for any vertical movement of the footing, 
instead of assigning an arbitrary value as the ultimate 
bearing capacity. 
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Figure 27 Influence of ei/(λ*-κ*) on the bearing response 
(B = 5 m). 
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Figure 28 Variation of Elastic gradient, Fs, with ei/(λ*-κ*) 
and γ'B/p'*co. 
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Figure 29 Variation of Yield point, Ys, with ei/(λ*-κ*) and 

γ'B/p'*co. 
 

Figures 28 and 29 show the combined influence of 
e′i and *

coB pγ ′ ′  on the yield point, Ys, and the elastic 
gradient, Fs.  When e′i ≤ 1, the influence of soil 
structure on the bearing response can be ignored.  For e′i 
> 1, the influence of soil structure on bearing resistance is 
significant and should be incorporated in the 

determination of the bearing response.  Also, the 
influence of soil structure is more significant for larger 
values of *

coB pγ ′ ′ .  Based on Figures 28 and 29, the 
variations of the elastic gradient and yield point with 

*
coB pγ ′ ′  and e′i are given by 
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6.10.4 Influence of destructuring index on bearing 

response 
The destructuring index, b, of a structured soil defines 

the rate at which soil structure is lost during yielding.  
For soils with higher values of destructuring index, the 
structure is completely lost with only a small change in 
the stress state beyond first yield.  Figure 30 shows the 
influence of the destructuring index on bearing response 
for a 5 m diameter surface circular footing when the 
degree of soil structure, e′i, is 1.5.  It can be seen that b 
has an influence on the bearing capacity only beyond the 
yield point where the soil behaviour is predominantly 
plastic. 
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Figure 30 Influence of destructuring index, b, on the bearing 

response (B = 5 m). 
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Figure 31 Variation of Plastic gradient, Gs, with ei/(λ*-κ*) 

and γ'B/p'*co. 
 

  
In the following sections, a method is outlined to 

obtain the long-term (fully drained) bearing response of 
circular footings resting on structured soil deposits.  First 
the bearing response is predicted for the same soil in the 
reconstituted state, neglecting the structural properties of 
the soil.  After that, this curve is modified to obtain the 
bearing response for the structured soil, incorporating the 
structural properties of the soil. 
 
6.10.1 Bearing response of reconstituted soil 

In an earlier study, Liyanapathirana et al. (2008) 
demonstrated that the drained bearing response curve for 
reconstituted soils could be approximated by closed-form 
expressions. Only three equations are needed to represent 
the combined influence of the critical state parameters on 
Fr, Yr and Gr, which define the complete bearing response 
of the reconstituted soil.  Subsequently, the influence of 
structural properties of the soil will be incorporated into 
these three equations to obtain expressions for Fs, Ys and 
Gs, which describe the response of a structured soil. 

A simple multiplicative technique has been used to 
derive equations for Fr, Yr and Gr incorporating the 
influence of all reconstituted soil properties and the 
dimensionless parameter *

coB pγ ′ ′ .  For the elastic 
gradient, Fr, only κ*, ν* and *

cse  have a significant 
influence.  Since the influence of κ* on the bearing 
response was derived assuming ν* = 0.25 and *

cse  = 1.8, 
an expression for Fr that incorporates other values of ν* 
and *

cse  is derived assuming that the effect of each 
parameter is multiplicative, as follows 
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=          (43) 

By substituting appropriate expressions for 
( ) *rF

κ
, ( ) *rF

ν
 and ( ) *

csr eF , Lyanapatirana et al. (2008) 
showed that the elastic gradient, Fr, can be represented in 
terms of *

copB ′′γ , κ*, ν* and *
cse  and  as follows 
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        (44) 

In the derivation of Equation (44), it has been 
demonstrated that the influence of λ* and M* on the 
elastic gradient, Fr, is small enough to be ignored.  The 
accuracy of this approach will be demonstrated later in 
the paper. 

The yield point, Yr, varies only with M* and *
copBγ ′′  

and is given by 
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where m = ( ) 75.0*25.0 −M . 
The plastic gradient, Gr, varies with three parameters 

λ*, M* and *
cse .  Therefore, similar to Fr, an equation for 

Gr can be derived as shown below 
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Equations (44), (45) and (46) can be used to obtain 

values for Fr, Yr and Gr for a circular footing of any 
diameter if the intrinsic soil properties κ*, λ*, M*, ν* 
and e*cs are known. 
 
6.10.2 Bearing response of structured soil 

The influence of soil structure on the long-term (fully 
drained) bearing response is now studied by varying the 
parameters, which govern the structural features of the 
soil, i.e., b, ei, ω and cop′  for different values of 

*
coB pγ ′ ′ . 

As shown in Figure 16, for a given structured soil, the 
size of the yield surface, cop′ , and the parameter 

( )* *
ie λ κ −  are linked and their values can be related 

to the size of the yield surface for the same soil in a 
reconstituted state, *

cop′ , as shown previously in equation 
(38). 

Hence, the parameter ( )* *ie λ κ −  takes into 
account the combined influence of both ei and cop′  for a 
particular soil and can be used to define the degree of soil 
structure with respect to the same soil in a reconstituted 
state.  It is convenient to define an additional parameter, 
e′i, as follows 

( )/ * *ie e λ κ′ =  −            (47) 
Finite element analyses carried out show that the 

influence of ω on the long-term bearing capacity is not 
significant.  Therefore, in this section the influence of soil 
structure on the bearing response of a particular footing is 
studied by varying only the destructuring index, b, and 
the degree of soil structure defined by e′i. 
 
6.10.3 Influence of degree of soil structure on 

bearing response 
Figure 27 shows the influence of e′i on the bearing 

capacity for a 5 m diameter surface circular footing when 
b is 0.25.  As e′i increases, the soil shows much stiffer 
response. For example, when ( )/ * *ie e λ κ′ =  −  
changes from 1.5 to 2.5, the bearing resistance at a 
footing displacement equivalent to 12% of the footing 
diameter shows a three fold increase.  If soil structure is 
not taken into account, the predicted bearing resistance is 
only about half of that obtained for a structured soil for 
which e′i is 1.5.  According to Figure 27, e′i has a 
significant influence only on the elastic gradient, Fs, and 
the yield point, Ys, of the bearing response curve for 
structured soils.  For different values of e′i the plastic 
portions of each curve are virtually parallel to each other, 
and so the influence of e′i on the plastic gradient can be 
ignored. 
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Figure 27 Influence of ei/(λ*-κ*) on the bearing response 
(B = 5 m). 
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Figure 28 Variation of Elastic gradient, Fs, with ei/(λ*-κ*) 
and γ'B/p'*co. 
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Figure 29 Variation of Yield point, Ys, with ei/(λ*-κ*) and 

γ'B/p'*co. 
 

Figures 28 and 29 show the combined influence of 
e′i and *

coB pγ ′ ′  on the yield point, Ys, and the elastic 
gradient, Fs.  When e′i ≤ 1, the influence of soil 
structure on the bearing response can be ignored.  For e′i 
> 1, the influence of soil structure on bearing resistance is 
significant and should be incorporated in the 

determination of the bearing response.  Also, the 
influence of soil structure is more significant for larger 
values of *

coB pγ ′ ′ .  Based on Figures 28 and 29, the 
variations of the elastic gradient and yield point with 

*
coB pγ ′ ′  and e′i are given by 
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6.10.4 Influence of destructuring index on bearing 

response 
The destructuring index, b, of a structured soil defines 

the rate at which soil structure is lost during yielding.  
For soils with higher values of destructuring index, the 
structure is completely lost with only a small change in 
the stress state beyond first yield.  Figure 30 shows the 
influence of the destructuring index on bearing response 
for a 5 m diameter surface circular footing when the 
degree of soil structure, e′i, is 1.5.  It can be seen that b 
has an influence on the bearing capacity only beyond the 
yield point where the soil behaviour is predominantly 
plastic. 
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Figure 30 Influence of destructuring index, b, on the bearing 

response (B = 5 m). 
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Figure 31 Variation of Plastic gradient, Gs, with ei/(λ*-κ*) 

and γ'B/p'*co. 
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Figure 31 shows the variation of plastic gradient with 

the logarithm of b for a range values of *
coB pγ ′ ′ .  For all 

values of *
coB pγ ′ ′ , the plastic gradient reduces with 

increasing b and the change in plastic gradient with b is 
significant only when b ≤ 4.  The finite element 
predictions given in Figure 31 can be fitted quite well to 
the following equation 

( ) ( )
( ) 14.022.1

36.04
b

co
bs p

BbG 







′
′

= − γ
          (50) 

 
6.10.5 Bearing response curve for structured soil 

Previously a method was suggested to obtain the 
bearing response curve for any reconstituted soil based 
on the intrinsic soil parameters, neglecting the influence 
of soil structure.  In this section, expressions derived for a 
reconstituted soil are modified by incorporating the 
influence of soil structure. 

According to the previous results, only the degree of 
soil structure has an influence on the elastic gradient and 
the yield point and this influence can be described to 
sufficient accuracy by 

( )
( ) ( )

0

exp 0.5i

i

s es
i

r s e

FF e
F F

′

′ =

′= =                  (51) 

The plastic gradient of the bearing response curve is 
influenced significantly only by the destructuring index, 
b.  According to Figure 27, when b is 0.25, the plastic 
gradients are nearly the same for all values of 
e′i = ( )** κλ − ie , in which case the influence of b on 
plastic gradient of the bearing response curve for a 
structured soil can be represented by 

( )
( ) ( )

0

expi

i

s es
i

r s e

YY e
Y Y



′ =

′= =            (52) 

When applying this method, first Fr, Yr and Gr have to 
be calculated using Equations (44), (45) and (46) 
respectively, based on the intrinsic properties of the 
reconstituted soil.  If e′i ≤ 1, the influence of degree of 
soil structure on bearing resistance can be ignored.  If 
e′i > 1, equations (51) and (52) can be used to compute 
Fs and Ys.  Finally, Equation (50) can be used to 
incorporate the influence of the destructuring index, b, on 
the plastic gradient of the bearing response curve, Gs. 
 
6.11 Validation of the method for predicting 

drained bearing response 
In order to validate the capability of the proposed 

method for predicting the long-term or drained bearing 
response of surface circular footings, plate load tests 
carried out by Consoli et al. (1998) have been considered.  
These tests were carried out in homogeneous lightly 
cemented residual soils in Southern Brazil.  The upper 
surface soil at this site consisted of 4 m of lightly 
cemented homogeneous sandy silty red clay.  Below that 
there was a 2 m thick layer of highly cemented red silty 
clay.  The tests were carried out using rigid circular steel 
plates to load the soil at a depth of 1.2 m below the 

ground level.  There were no embedment effects on the 
footing response because the upper 1.2 m of soil was 
removed over a large area of the test site. 

Circular plate load tests carried out for 45 cm and 
60 cm diameter plates have been simulated using the 
finite element method and the approximate method 
described previously.  The values of soil parameters used 
to simulate these tests are given in Table 9.  Figures 32 
and 33 show, respectively, the results of plate load tests 
for 60 cm and 45 cm rigid steel plates. 

 
Table 9  Model parameters for Dogs Bay carbonate sand 

Μ* λ* κ* e*cs ν* 
1.72 0.22 0.002 3.2 0.4 

b c ω γ ei 
0.08 0 1 0 0.5 

Initial structural yield surface: At ground surface p′co = 400 
kPa and dp′co/dz = 10 kPa/m, bulk unit weight = 20 kN/m3 
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Figure 32 Predicted bearing response using the new method 

for 60 cm diameter footing 
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Figure 33 Predicted bearing response using the new method 
for 45 cm diameter footing 

 
When using the new method, firstly the gradients and 

the yield pressure are calculated assuming reconstituted 
soil properties.  Next, based on the degree of soil 
structure and the destructuring index, the gradients and 
the yield pressure for the structured soil can be obtained.  
Finally, these values can be used to obtain the bearing 
response of the circular footing on the structured soil. 
According to the parameter values given in Table 9, the 
degree of soil structure, e′i = ( )** κλ − ie , for the 
cemented soil is 2.3.  Since e′i > 1, the influence of 
degree of soil structure on the bearing response is 
significant and it should be incorporated into the values 
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calculated for Fs and Ys.  Also, the influence of the 
destructuring index, b, has to be incorporated into the 
value selected for Gs. 

Equations (44), (45) and (46) can be used to obtain Fr, 
Yr and Gr, respectively.  For the cemented soil, when B = 
0.45 m, it is found that Fr = 2.6, Yr = 160 and Gr = 20, 
and when B = 0.6 m, Fr = 310, Yr = 1.7 and Gr = 20.  
Next, based on the structural properties of the soil, Fs/Fr, 
Ys/Yr and Gs/Gr can be obtained from Equations (52), (51) 
and (50), respectively.  These ratios are independent of 
footing size.  Therefore, for B = 0.45 m and B = 0.6 m, 
Fs/Fr = 3.1, Ys/Yr = 9.9 and Gs/Gr = 1.8.  Figures 32 and 
33 show the bearing response obtained for the footings 
using the new approximate method.  Only displacements 
up to 20 mm have been plotted in order to see more 
closely the level of agreement between elastic gradients 
obtained from the new method, finite element results and 
the field tests.  The bilinear approximation predicted for 
the structured soil from the new method agrees well with 
the bearing pressure curve obtained from the finite 
element analysis and the experimental results of the plate 
load test. 
 
7. CONCLUSIONS 
An advanced constitutive model, the Structured Cam 
Clay, has been introduced in this paper.  The SCC is a 
relatively simple predictive constitutive model suitable 
for the solution of boundary value problems encountered 
in geotechnical engineering practice.  The model is 
formulated within the framework of critical state soil 
mechanics.  It has successfully unified the mechanical 
properties of clays in reconstituted states, naturally 
structured states and artificially cemented states into one 
consistent theoretical framework, the Structured Cam 
Clay theoretical framework.  The applicability of the 
model for predicting the mechanical behaviour of a range 
of structured soils in both single element tests and 
boundary value problems has been described.  It has also 
been shown that SCC can be extended for complicated 
material behaviour such as that of artificially cemented 
clays. 

The influence of soil structure on the bearing response 
of circular footings under both undrained and fully 
drained conditions has also been investigated using this 
model.  It was found that for undrained conditions the 
ultimate bearing resistance depends on the properties 
defining soil structure at the stress-strain level.  Under 
fully drained conditions, deformation of the soil beneath 
the footing occurs as punching shear.  A parametric study 
has been carried out by varying those parameters which 
characterize the structural features of the soil.  A novel 
method has been presented to obtain the relationship 
between the bearing pressure and footing displacement 
for a circular footing resting on a structured soil deposit.  
Application of the new method has been demonstrated 
using field plate load tests carried out on cemented 
residual soil in Southern Brazil.  The bilinear bearing 
pressure curves predicted using the new method show 
very good agreement with the field plate load tests and 
finite element simulations.  This suggests that the 

approximate method presented in this paper could be 
quite useful for predicting the bearing response of 
footings on structured soil. 
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