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Chapter 1

Introduction

Wavelet theory originated from signal theory which has the goal to repre-
sent functions that are local in time and frequency. The classical method used in
signal theory is the Fourier transform which transforms a signal function f(#) in

the time domain to another function f(w) in the frequency domain.

Assuming that f is integrable, its Fourier transform is given by
Ff(w) = f(w) /f e 2Tt dt. (1.1)
If f is also integrable, then we can reconstruct f from its Fourier transform f by
Ff( / Fw)e?™ duw (1.2)

at all points where f is continuous. The integral (1.2) is called the inverse Fourier
transform of f . Additional details and proofs can be founded in Gasquet and
Witomski (1998).

The Fourier transform provides information on the frequency content over
the whole duration of the signal. It does not tell what frequencies occur when in
time. To overcome this disadvantage, Gabor (1946) modified the Fourier trans-

form by multiplying the signal function with a translated window function 1
(w,b) = /f ¥t — b)e 2mtdt. ' (1.3)

This method is known as the windowed Fourier transform. One can shift this

time window to any point ¢ in time by means of the translation parameter b.



Gabor showed that if ¢» € L2(R), then f can be recovered from its windowed

Fourier transform by the weak integral

f(t) / G f(w, b)Y (t — b)e* ™ dwdb. (1.4)
R2

R

Equation (1.4) is called the inversion formula for the windowed Fourier transform.
In general, the window function v should be smooth and resemble a char-
acteristic function 9= X[ 4,4) closely, so that f is windowed by the time window

s

b— A <t < b+ A and its transform Gf(w,b) provides information about the
frequency decomposition of f on that time window. )

However, this method still has a drawback in that the size of the window is
fixed, and since this fixed window is used for all frequencies in the transformation,
there is a limit to how well the signal can be localized in time.

In 1984, Grossmann and Morlet defined an integral transform which is
now often called as the wavelet transform. It is similar to the windowed Fourier
transform but uses a two-parameter family of functions ,(t) = |a|=*/?¢ (% — b),

comprising both translations by real numbers b and dilations by positive real

numbers a. The wavelet transform of a square integrable function f is given by

W f(a,b) = |a|” 1/2/f <——b> (1.5)

This wavelet transform can be expressed as an inner product W f(a, b) = (f,¥as)
in L?(R), and Grossmann and Morlet (1984) showed that it is directly related
with the theory of group representations as follows.

Let G be a locally compact group whose left Haar measure is ¢, and let 7, :
G — U(H) be a unitary representation of G on a Hilbert space H. Given a vector
¥ € H, the collection {71} of vectors in H is called a family of wavelets and v

is called the mother wavelet. The mapping Wy, taking f € H to a continuous



function on G, defined by

Wy f)(g) = {fimg¥)n (1.6)

is called the wavelet transform of f with respect to 1.

One of the goals in wavelet theory is to investigate under which conditions
reconstruction formulas, or inverse wavelet transforms, exist. By using Duflo
and Moore’s theory-of square integrable representations, Grossmann and Morlet
(1984) showed that if the representation 7 is square integrable, then there exists

.t

a dense set of vectors 1 in H such that

Wy fllzze) = Veullflln (1.7)

for some constant cy, i.e. the wavelet transform W), associated with 1) is a multiple
of an isometry mapping H into L?(G). Equality (1.7) then gives a reconstruction

formula which is valid as a weak integral, by

f=L / (W f)(9) 7ot dilg). (1.8)
Cy

G

Initially, numerous authors have studied the theory of the wavelet trans-
form on L%(IR) as defined by (1.5) from the point of view of square integrable group
representations [Grossmann and Morlet (1984), Daubechies (1992), Heil and Wal-
nut (1989)]. Later on, the generalization to higher dimensions was explored b}"
many authors [Bernier and Taylor (1996), Fiihr (1996), Weiss et al. (2002)]. As
a generalization of (1.5), these authors considered the affine group G", formed as
the semi-direct product of R* with GL,(R) and denoted by GL,(R) x R*, and

the unitary representation 7 of G* on L*(R™) given by translations and dilations:

-,

W(a’g)l/)(f) = |det a|~1/21/,(a—1f— b) = wa,g(f) (1.9)

where (a,0) € GL,(R) x R* and ¢ € L*(R*). The wavelet transform of f €



L?(R") with respect to the mother wavelet 1) becomes

-1 — b)dZ. (1.10)

Wu) ) = i) = s [ 1@

The question now is: Given a closed subgroup D of GL, (R) and the corresponding
closed subgroup G = D x R™ of G*, is reconstruction formula (1.8) valid?

To answer this question, one usually works with the Fouri'er transform.
Since the Fourier transform I : f — f constitutes a unitary operator on L2 (R™),

]

the map
p=FnF (111)

is also a representation of G* on L?(R"), and it turns out that

—~

Pap?(F) = | det a2 *TT%(Fa) = ¢, 5(7) (1.12)

for all ¢ € L2(R"), where elements § of R* are now written as row vectors.

Formula (1.5) for the wavelet transform becomes

(Wu)(a8) = (f, papy¥) = / F@)b(Fa)e® | det af'/2dF. (1.13)
En

Bernier and Taylor (1996) proved that if there exists an open free D-orbit U
in R”, then the representation py of G obtained by restricting p to the subspace
L2(U) of L*(R™) is square integrable. Thus, the restriction my of 7 to Hy =
F(L?(U)) is also square integrable, so that Duflo-Moore’s theorem applies. In,
particular, there exists a dense set of functions ¥ in Hy so that reconstruction
formula (1.8) is valid for all functions f in Hy. Note that open free D-orbits U in
R™ can only exist if the group D has the structure of an n-manifold which limits
the choices of D.

Fiihr (1996) generalized this to open orbits U which are not necessary free,
and proved that py is square integrable if and only if the stabilizers associated to

points of U are compact.



For a long time it was not clear whether square integrability of the repre-
sentation m was required for the validity of the reconstruction formula. Recently
a numbers of authors [Schulz and Taylor (preprint), Weiss et al. (2002)] showed
that this is not required and proved the existence of the reconstruction formula
in a variety of cases where 7 is not square integrable.

In general, given a dilation subgroup D of GL,(R), the reconstruction
formula (1.8) exists for all f € L?(R") if and only if the mean square values of "

L

over the orbits are essentially identical, that is,

/[{Z)\(i‘a)|2 du(a) = const '(1.14)

D
for almost all £ € R*. We call such a ¢ an admissible function, and we call the
dilation group D admissible if there exists 1 € L%(R") satisfying this condition.
In the preprint by Schulz and Taylor, the dilation subgroup D of GL,(R) is
of the simplest form, namely the image of a continuous or discrete one-parameter

matrix group. That is,
D={A'=e"®:teR B c M,(R)}

or
D={A*:keZ,Ac GL,(R)}

respectively. The corresponding representation 7 of D x R" is never square in-
tegrable when n > 2. However, by analyzing the orbits for the discrete action
Z — TAF on R", they have shown that there exists a cross-section S of finite
measure if and only if |det A| # 1 and that the characteristic function xs of
S is admissible for both the discrete and where defined, the continuous one-
parameter group. Furthermore, they have shown that D is admissible if and only
if |det A| # 1.

Weiss et al. (2002) have proved necessary and some sufficient conditions

for a general matrix group D to be admissible as follows:



a) If D is admissible, then there exists a € D such that A(a) # |det(a)| where
A denotes the modular function on D. Furthermore, the stabilizer of T is

compact for almost every £ € R".

b) Conversely, if there exists a € D such that A(a) # |det(a)| and if there
exist compact local stabilizers, that is, for a.e. £ € R® 3¢ > 0 such that the

e-stabilizer DS of Z is compact, then D is admissible.

In this thesis,‘;‘we extend the results by Schulz and Taylor'to groups g.en-
erated by two matrices. Furthermore, we construct explicit admissible functions
with nice smoothness properties.

More precisely, we study the following matrix groups D.

Case 1: D is the image of a discrete two-parameter group of matrices. That is,

there exist commuting invertible matrices A and B such that
D= {A*B': k,l € Z}.

Case 2: D is the image of a continuous two-parameter group of matrices. That

is, there exist commuting matrices A and B such that
D={A’B": s,t e R}

where A = eM and B = eV for some M, N € M,(R).
Case 3: D is a non-abelian group of 2 X 2 matrices.

By using the results by Weiss et al. (2002) we investigate the existence of
admissible functions in each of the above cases. In low dimensions we obtain a
complete characterization. Moreover, in two dimensions we are able to construct
admissible functions which are smooth and vanish at infinity.

This thesis is divided into 4 chapters as follows. Chapter II mainly intro-
duces the notation and provides references to well known facts on the wavelet

transform. Chapter III deals with the abstract characterization of admissible



groups of Weiss et al. (2002). Chapter IV contains the main results, and dis-
cusses the existence of admissible functions for matrix groups generated by two
matrices in general, and of smooth and rapidly vanishing admissible functions in

two dimensions.



Chapter 11

The Continuous Wavelet Transform

This chapter is devoted to the theoretical background of the cqntinuous
wavelet transform vx;ilich will be used throughout this thesis. With a few exc;ep—
tions all results are stated without proof. Additional details and proofs can be
found in Apostol (1997), Cohn (1980), Folland (1999), Jones (1993), and G;isquet

and Witomski (1998).

2.1 Topological Spaces

Definition 2.1. Let X be a set. A topology on X is a family O of subsets of X

such that

1. Xe0,0e0,
2. if F is an arbitrary collection of sets that belong to O, then | JF € O, and

3. if F is a finite collection of sets that belong to O, then ((F € O.

A topological space is a pair (X, ©), where X is a set and O is a topology on X.’

The sets belonging to O are called open sets.

Definition 2.2. Let X and Y be topological spaces. A function f : X — Y is
called continuous if f~1(U) is an open subset of X whenever U is an open subset
of V.

A function f : X — Y is called a homeomorphism if it is a bijection such that
f and f~! are both continuous. The spaces X and Y are homeomorphic if there

exists a homeomorphism of X onto Y.



Definition 2.3. A topological space X is Hausdorff if for each pair z,y of dis-

tinct points in X there exist open sets U, V such thatz € U,y € V,and UNV = .

Definition 2.4. Let A be a subset of the topological space X. An open cover of
A is a collection F of open subsets of X such that A C |JF. A subcover of an
open cover F is a subfamily of F that is itself an open cover of A. .
The set A is compact if each open cover of A has a finite subcover.
A compact set A C*' X is called a compact neighborhood of z € X if 3 O g X

open such that z € O C A.

-1

Definition 2.5. A topological space X is called locally compact if it is Hausdorff,
and each of its points has a compact neighborhood.
A topological space is o-compact if it is the union of a countable collection of

compact sets.

Note that R™ is both locally compact and o-compact in the usual topology.

2.2 The Lebesgue Integral

Definition 2.6. Let X be a set. A collection M of subsets of X is called a

o-algebra if the following hold:
1.0e M, X e M,
2. S € M implies X \ S € M,

3. 51,8, € M implies |J S, € M.

n=1
The elements of M are called measurable sets and the pair (X,M) is called a

measurable space.

Definition 2.7. Let F be a collection of subsets of X. There exists a smallest

o-algebra containing F, called the o-algebra generated by F.
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Definition 2.8. Let X be a topological space. The o-algebra generated by the
family of open sets O is called the Borel o-algebra on X, denoted Bx. Its elements

are called B-measurable sets or Borel sets.

Definition 2.9. Let M be a o-algebra of subsets of X. A measure on M is a

function p : M — [0, co] having the following properties:

2. if {E,}%2, is a sequence of disjoint measurable set, then
o0 [e¢]
p(UE) = ulE).
n=1 n=1

The triple (X, M, u) is called a measure space.

A measure space (X, M,pu) is called complete if whenever E C A € M and
p(A) = 0, then E € M (and therefore u(E) = 0).

(X, M, p) is called a o-finite measure space if there exists a countable collection

{E,}>., C M such that p(E,) < oo and X = |J E,.

n=1
The measure which we will be working with is the Lebesgue measure on

R™, defined as follows.

Definition 2.10. An n-dimensional interval in R" is defined by
I=0LxIhx---x1I,

where I;, I, ..., I, are intervals in R. I is called open (or closed) if each I; is open

(or closed) in R. If I is bounded, then its n-dimensional volume is defined by

n

vol(I) = [ [(b: — @)

=1

where a;, b; are the left and right end points of I;.
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Definition 2.11. Let £ C R® be an arbitrary set. Then

A(E) = inf{ ivol(li) : I; is an open n-interval, £ C G Ii}

=1 i=1
is called the Lebesgue outer measure of E. A set A C R" is called A\*-measurable

if for every E C R*,

A(E) = X(E N A) + M (En A°).

Proposition 2.1. Let My = {A C R" : A is A*-measurable} and set A(A) =

A (A) VA e M,y. Then
1. M, is a o-algebra,
2. (R*, My, A) is a complete measure space,
3. Brn C M.

We note that ) is called the Lebesgue measure and M the set of Lebesgue
measurable subsets of R*. Next we define the notions of measurable function and

Lebesgue integral.

Definition 2.12. Let (X, M, 1) be a measure space, S C X with S € M. Let
R* = RU {~o00,00}. Then a function f : S — R* is called a M-measurable

function ifVt € R,
{zeX: flz) <t} eM.

A complex-valued function f : S — C is called a M-measurable function if Re f

and Im f are M-measurable.

Definition 2.13. (Lebesgue integral): Let (X, M, u) be a measure space.
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n 1 if z € Ag
1. Let ¢ = 3 axxa, where x4,(z) = , Ax € M are disjoint,
k=1

ar > 0. ¢ is called a simple measurable function. Its integral is defined to

be

/cpdu = Z api(Ag).

% k=1

This integral is independent of the choice of the sets A.

2. Let f: X — [0,00] be M-measurable. By the structure theorem for mea-
surable functions, there exists an increasing sequence {y,} of non-negative
finite-valued measurable simple functions converging pointwise to f. We

define the integral of f by

/f du = le /(pndu.
X X
This integral is independent of the choice of the functions .

3. Let f : X — R* be Lebesgue measurable and set f* = max{0, f},f~ =
—min{0, f}. Then f*, f~ are measurable and non-negative. The Lebesgue

integral of f is defined by

)[fdu=!f+du—!f‘du

provided that [ f*du, [ f~dp are not both co.
X X

We call f integrable if [ f*dp < oo and [ f~du < oo.
X X

4. A function f : X — C is called integrable iff Re f and Im f are integrable.

The integral of f is defined by
/fduz/Refdu—i—i/Imfdu.
X X X

If EC X € M,then [ fdp= [ fxedp.
E X
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Definition 2.14. A set E C M is called a set of measure zere, or null set if

w(E) =0.

Let P be a statement about the elements of X, and let A € M. We say

that P holds p-almost everywhere on A if there exists £ € M so that
1. {x € A: P does not hold} C FE.
2. p(E) =0.

Note that if (X, M,u) is complete, then this is equivalent to u{z € A :
P does not hold} = 0.

Next we define the spaces of functions used in this thesis. Let (X, M, u) be
a measure space. If f,g: X — C, define f ~ g iff f(z) = g(z) a.e. on X. Then

~ " defines on equivalence relation on the complex vector space of measurable

functions.

Definition 2.15. Let (X, M, u) be a measure space and let 1 < p < co0.Then
LP(X, M, ) is the set of equivalence classes of M —measurable function f: X —
C such that |f[? is integrable. If f ~ g, then [ |f|Pdu = [ |g|Pdp. For ease of no-
tation, we usually confuse a function f with ifs equivaleri:e class in LP(X, M, p),

and simply write

L”(X,M,,u,)z{f:X—)C:/|f]pd,u<oo}.
X

Then the number

150 = ([ 17Pa) ™

is a norm on LP(X, M, ).

From now on, we will only consider the measure spaces (R*, My, ) and

(R*, Bgn, \)

. We will call a Bgn-measurable function. Borel measurable, and an

j THE CENTER FOR LIBRARY RESOURCES AND PRUCATIONAL MEDTA ;

l SURANARLEE UNIVERSTUV 0 THUENGLOGY
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M measurable function simply measurable. Note that by proposition 2.1 every
Borel measurable function f is Lebesgue measurable. Every Lebesgue measurable

function is equal almost everywhere to a Borel measurable function. We often

write [ f(&)dZ instead of [ fd\.
Rn Rn

Definition 2.16. Let 1 < p < co. Then L? (R") is the set of Lebesgue mea-

loc

surable function f : R* — C such that |f|P is integrable on compact sets. That

is,

/]fl”d)\ < oo
K

for any K C R" compact.

Definition 2.17. Assume that f : R* — C is continuous. The support of f,

denoted by supp(f), is

supp(f) = {Z € R* : f(Z) # 0}.

Definition 2.18. A function f : R®* — C is said to be decay rapidly at infinity,

or be rapidly decreasing, if for all p € N,

lim ||z|lP|f(z)] = 0.
llzl|—o0
We will use the following spaces of continuous functions.
Definition 2.19. Let p € {0,1,2,...}. Then
L. CP(R*) = {f : R* — C: f is p times continuously differentiable}.
2. C2(R™) = {f € C?: f has compact support}.

3. C®(R*) = {f : R* — C: f is infinitely differentiable}.

4. Ce(RY) = {f € C>: f has compact support}.
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5. S(R*) = {f € C*°(R") : f and all of its derivative decay rapidly}.

The space S(R") is called the Schwartz class.

Next let us introduce some terminology used in product measures.

Let X and Y be sets, and let E C X x Y. Given z € X , we set
E,={yeY:(sy) €k}

called the z-section pf E. Given y € Y, set
E¥={zec X :(z,y) € E}

called the y-section of E.
Similarly, if f is a function on X x Y, then given z € X, define a function on Y

by

f(y) = f(z,y) VyeVY

and given y € Y, define a function on X by
fU=z) = flz,y) VrzeX

Theorem 2.2. Let (X, A, p), (Y, B,v) be o-finite measure spaces. Let A® B be
the o-algebra of subsets of X x Y generated by rectangles A x B, A € A and

B € B. Then there ezists a unique measure i X v on AQ® B such that
(nxv)(Ax B) = u(A) - v(B)

Jfor all measurable rectangles AxB, A € A and B € B. Furthermore, the measure
of any E € A® B is given by

(1 x v)(E) = / v(Ey) du(z) = / u(EY) du(y).

X Y

Remark 2.1. The measure i X v is called the product measure of p and v, and

(XxY,4® B, 1 x v) is called the product measure space.
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Theorem 2.3. (Fubini’s Theorem for Nonnegative Functions) Let (X, A, p),

(Y, B,v) be o-finite measure spaces, and b : X xY — [0, 00] be A® B-measurable.

Then

1. The function

he dv is A-measurable, and
hYdy s B-measurable.

2. Furthermore

/hduxyz//hasydudu //h(mydp,dl/
Y

XxY

Note that the above theorem is also called Tonelli’s theorem. The following

theorem is the general Fubini’s theorem.

Theorem 2.4. (Fubini’s Theorem for Integrable Functions) Let (X,.A,p),

(Y, B,v) be o-finite measure spaces, and h € L'(X x Y, A® B, x v). Then

1. hy € LYY, B,v) pu-almost everywhere on X,
hY € LY(X, A, u) v-almost everywhere on Y.

That s

flz)= /hzdy is defined p — a.e. on X,
¥

= /hydu is defined v — a.e. onY.
e

2. Furthermore

—
>
=
=
X
=
I
—
=
3
U
=
Il
~<\
2
Y
QU
A

That is

/ hd(p xv) = //h(x,y)dl/d,u://h(x,y)dudu.

XxY Y
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Now we discuss the derivative of functions from R" to R".

Definition 2.20. Let U C R" be open and let F' : U — R®. We say that F' is
differentiable at &y € U if there exists an n x n matrix 7', depending on %, such

that

o WF@) = F(Zo) —TE-2)ll _

-

T—Zo “.’f Q?o”

It is easily seen that if the components of F' are fi, ..., f, and if F' is differentiable
at T € U, then the partial derivatives gz% exists for any %,j € {1,...,n} and are

given by the entries of the matrix 7"

P =7 = (51@),

We call the matrix F'(Zo) the Jacobian matriz. Its determinant
Jp(&o) = det(F"(Zy))

is called the Jacobian of F at Tp. F is continuous differentiable on U if the

function F'(Z) is continuous.

Theorem 2.5. (Change of Variables): Let U C R™ be open, and F : U — R
be continuously differentiable, injective, with Jp(Z) # 0 for all T € U. Set V =
FU). If f: V — C is Lebesgue measurable, then fo F : U — C 1s Lebesgue

measurable. Furthermore

[ t@ax@ =

in the sense that if one of these integral ezists, then both erist and are equal.

(f o F)(&)|Jr(Z)| dA(Z) (2.1)

—

Note: If F itself is a linear map, F' : R — R", and if A is the matrix

associated with F, then F' = A and (2.1) becomes

/f(a?) d/\(:i‘):/f(A:E‘)ldet AldA(E).
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Definition 2.21. Let f € L. _(R"). For 2, € R*,7 > 0, set

loc

, 1 oy
Ar f(Zo) = NB.(F)) / F(Z)dXN ().
)

Br(fO

A, f is called the average value of f on the open ball B,(Zo) centered at Zp with

radius 7.

Proposition 2.6. For each f € L}, ,(R"),

loc
lim 4, f(Z) = f(2) |
for almost all T € R".

A point & where this equation holds is called a point of differentiability
for f.
The proof of these results and more information about differentiation in

R" can be found in Folland (1999).

2.3 The Fourier Transform in Higher Dimensions
Definition 2.22. The Fourier transform of f € L*(R™*) N L*(R") is defined by
Ff(&)=f(@) = [ [@)e ™ 7d7

J R

where # denotes an element of R® written as a row vector, and 4 an element of
R™ written as a column vector. In this notation, the dot product &7 is simply
multiplication of a row vector with a column vector. Similarly, the inverse Fourier

transform of f € LY(R*) N L?(R") is given by

Fi@) =) = | f@eiaz

Rn
Since F and F preserve the L*-norms, and LY(R™Y) N L*(R™) is dense in
L2(R"), the maps I and T extend to unitary operators on L*(R"). Plancherel’s

theorem savs that [ is the inverse operator of F'ole. Fif = fforall f € LA(R").
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Theorem 2.7. The Fourier transform F and its inverse Fourier transform F

are linear one-to-one maps from S(R™) onto S(R").

2.4 The Real Jordan Normal Form

Definition 2.23. A real Jordan block is an upper triangular square matrix [a;;]

of one of the following forms
( a 1 (0) \ .

A= S with o € R,

or

A= D= o,BE€R with I, =

I, -8 «a 01

\ © D)

By a suitable changing of basis, every matrix can be brought into a block

diagonal form with blocks as above, as follows:

Theorem 2.8. Let A be an n x n real matriz. Then A is similar to a block
diagonal matriz of the form J = Diag(Jy, Ja, ..., Jm) with each Ji being a real
Jordan block.

The Jordan blocks are determined by the eigenvalues \ of A. A real eigenvalue
gives rise to a real Jordan block of the first type while a complex pair oo £ 18 of
eigenvalues gives rise to a real Jordan block of the second type. The matriz J s

called the real Jordan normal form of A.

For the proof of this theorem we refer to Brown (1988).
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2.5 Exponential Matrices

Definition 2.24. Given an n x n matrix M we define the ezponential e to be

the m X n matrix given by the convergent matrix series

© ark
M M
e’ = _—.
k!
k=0

Note that this definition implies e? = I, where O is the zero matrix, and

'

I the identity matrix.

Proposition 2.9. Let M and N be two commuting n x n matrices: MN = NM.

Then we have

Note that since the matrices sM and tN commute for all scalars s and ¢,

we have

esM tN — esM+tN.

e

Obviously, every exponential eM is invertible, as eMe™ = € = I. It

follows immediately from definition 2.24 that if M = SMS-1, then
M = SMS™H — gMg-1, (2.2)

Definition 2.25. Let M = [a;;] be an n x n matrix. The trace of M, tr M is

defined by

n
tr M = Z Qi
i=1
Proposition 2.10. Let M be an n X n matriz. Then

det eM = ™M, (2.3)
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For the proof, note that if M is in Jordan normal form, then one easily
sees that (2.3) holds. Since the trace of a matrix does not change under a change
of basis, it follows that (2.3) holds for general n x n real matrices.

Note that an invertible matrix whose determinant is negative can not be
an exponential. This can be overcome by the next proposition which is probably

well known, although we have not found a reference.
Proposition 2.11. Let A € GL,(R). Then A? is an exponential matriz.

Proof. By (2.2) we may assume that A* is in Jordan Normal Form. That is;*A?

is a block diagonal matrix, a block corresponding to a real eigenvalue a; of A? is

of the form
; 1 (0)
) A=
1
(0) Q;

while a block corresponding to a complex pair of eigenvalues a; £ 13; is of

the form
D, I, (0)
. 6% Bi 10
(2) Af = Di = with IQ =
]2 “ﬁi Q; 0 1
(0) D;

Now let M be the block-diagonal matrix whose blocks M; are determined
by those of A% as follows:

The block of M corresponding to a block of A2 of type (1) is



Note that this is well defined since the real eigenvalues of A2 ‘are all posi-

tive. Furthermore, the block of M corresponding to a block of A of type (2) is

\ )

(k1

\ ©)

with p;

.Ui}

© )

I

F,-)

In ¢;.

M i

—Yi M

where p;,7; are chosen so that o; & i8; = e#¥,

In this basis, e is also a block diagonal matrix, and a block corresponding to a

block of M of type (3) is

(/\i/\?f

Ai

\ ©)

.S
(m—1)!

(m-2)!

/\i/

where \; = e* = "% = g

and a block corresponding to a block of M of type (4) is

where \; = e and F =

( NE ME ME
ME AE
NE

cosy;  sinvy;

—siny; cosy;
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So that

cos7y;  sin-y; a; B
MNE = e ’ =
—siny; cosvy; B o
By changing the basis through a suitable matrix S, e™ can be brought

into Jordan normal form again. A simple computation show that a block of eM

corresponding to a real eigenvalue A\; = ¢; is then of the form
«; 1 (0) \ '

SeMig1 = - .
S ,

(0) &
and a block corresponding to a pair of complex eigenvalues a; & i = et is

then of the form

D, I, (0)
TR Q; ,Bi
S@Mis_l = Di =
h I -Bi o
(0) D;
It follows from (2.2) that
A2 — SeMS_l — GSMS"l.
That is, A? is an exponential matrix. O

2.6 Group Theoretical Foundations

In this section, we briefly review the important group-theoretical concepts

needed in this thesis. We begin with some definitions.

Definition 2.26. A topological group is a set G which is both a group and topo-

logical space, such that the group operations (g, h) — gh from G x G into G and
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g+ g~ ! from G into itself are continuous in this topology. Any subgroup of a
topological group G becomes a topological group in the relative topology of G.
A locally compact group is a topological group whose topology is locally

compact and Hausdorff.
Let us consider some examples of topological groups:

1. The set R™ with its usual topology and with addition as the group operation

is a locally compact group. '

2. The set Q of rational numbers, with the subspace topology induced from
R and with addition as the group operation is a topological subgroup of R,

but it is not locally compact.

3. GL,(R), the group of n x n real-invertible matrices.
Let M,(R) denote the set of all n x n matrices with entries in R. M, (R) is
a finite dimensional normed linear space, isomorphic to R**. Give GL,(R)
the relative topology of M,(R). Then GL,(R) is a multiplicative locally

compact topological group.

Definition 2.27. A homomorphism & : R¥ — GL,(R) is called a k-parameter

group.
Examples: Let N € M,(R) be fixed. For any r € R we define
AT =,

Then @ : R — GL,(R) is a continuous one-parameter group.

Fix a collection {N;}%_, of commuting matrices in M, (R). Set 4; = ¢™i. Then
D (ry,7g,. .., T) > ATVAR - ATk = eniNitmaNat AN

1s a continuous k-parameter group.

If ® is one-to-one, then we often identify ® with its image D = ®(RF).
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Definition 2.28. Let G be a locally compact group and H be a Hilbert space.

A representation m of G on H is a mapping satisfying:
1. m: G = U(H). (U(H) is the group of unitary operators on H),
2. m is a homomorphism: 7y, = m,my, for all g, h € G,

3. m is continuous with respect to the strong operator topology of U(H), that

is g — m,& is continuous for each £ € H. , .

ry

A representation 7 of a locally compact group G on a Hilbert space H is called
irreducible if {0} and H are the only closed subspaces of H which are invariant

under 7, for each g € G.

Definition 2.29. A representation 7 of a locally compact group G on a Hilbert

space 7 is called square integrable if

1. = is irreducible,

2. there exists a vector 1) € H\{0} such that [, |(¢, 749)[?du(g) < oo where p
is the left Haar measure on G. That is, the function g — (1, m49) is square

integrable. Such a vector 1 is called admissible.

In dealing with representations of locally compact groups, measures and

integrals are important tools.

Definition 2.30. A Borel measure p on a locally compact group G is called left
translation invariant or a left Haar measure provided that for every continuous

compactly supported function f on G and every h € G we have

/G £(hg)du(g) = /G £(9)dulg).

A right Haar measure v is defined similarly. If G is a locally compact group, then

the left and right Haar measures exist and are unique up to a constant factor.
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Given a left Haar measure on G, there exists a unique homomorphism A : G -+ R

such that for any continuous and compactly supported function f on G and h € G,

/f )du(g /fghdu

From this it follows that

Lf@MA%mwwr5LﬂmA*@mmm

which means that y'= A~!y is a right Haar measure. A is called the modular

function on G. Furthermore,

/f )du(g /f HA(gdu(g)-

A locally compact group G is unimodular if its modular function satisfies A(g) = 1

at each g € G. Obviously, every locally compact abelian group is unimodular.

Definition 2.31. Let G be a locally compact group, # Hilbert space, and F' :
G — H continuous. If there exists a vector f € ‘H such that

(1) = [(F (@) k) duts) Vh e

G

then we say that f = [ F(g) du(g) as a weak integral in H.
G

2.7 The Abstract Wavelet Transform

Definition 2.32. Let G be a locally compact group whose left Haar measure is
u, and let my : G — U(H) be a unitary representation of G on a Hilbert space H.
Given a vector 1 € H, the collection {my1} of vectors in H is called the family of
wavelets generated by 1, and 1 is called the mother wavelet. The mapping Wy,

taking f € H to a continuous function on G defined by

Wy f)g) = (f,mg¥)n (2.4)

is called the wavelet transform of f with respect to .
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Numerous authors have studied the theory of wavelets from the point of
view of square integrable group representations. The following important theorem

links the wavelet transform to the theory of square integrable representations:

Theorem 2.12. (Duflo-Moore): If w is a square integrable representation of a
locally compact group G on H, then there exists a unique densely defined operator

K on H, self adjoint and positive which satisfies the following:

i) The set of admissible vectors in H coincides with the domain of K, that is

dom K = {¢ € H : ¢ is admissible }.
i) If 1 is an admissible vector and f is an arbitrary vector in M, then

Wy flize) = Vel flln
where ¢y = ||K9|3.
i) If the group G is unimodular, then K is a multiple of the identity.

Thus, if the representation 7 is square integrable, then there exists a dense

set of vectors v in ‘H such that

Wy flleze) = Veullflln VieH (2.5)

for some constant cy, i.e. the wavelet transform Wy, associated with ) is a multiple
of an isometry from #H into L?(G). It turns out that equality (2.5) is equivalent

to the existence of a reconstruction formula as follows:

Proposition 2.13. (Reconstruction Formula for the Wavelet Transform) Let
be a representation of G on H, and let v € H. Then (2.5) holds if and only if for

all f € H,

f= = [ Wun)o)my dulo (26)
G

as a weak integral in H.
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Proof. (=) Assume that (2.5) holds. By the polarization identity, for all f,g € H

we have

(Wyf, Wyh)p2ay = colfs R (2.7)

Divide by ¢, and rewrite the inner product in L2(G) as
()= o / W () Woh(g) du(o)
= % G/ W £ (9)(h, g} dus(g)
-2 G/ Wiy £ (9)(myth, ) di(g)

_1 / (W f(g)mgth, B du(g).
Cy

G

This means that
1
= — Wwf Wgw dﬂ'(g )
Cy
G

as a weak integral. Thus, the reconstruction formula (2.6) is valid.
(«<=) Assume that the reconstruction formula (2.6) holds in the weak sense. By
going backwards in the above computation, one easily verifies that (2.7) holds,

i.e., Wy is a multiple of an isometry. O

It is natural to ask whether the reconstruction formula exists if the map 7
is not square integrable.
The traditional wavelet transform operates on functions defined on R",

thus we will choose H = L*(R™) from now on.

Definition 2.33. Let G* be the group consisting of pairs (a, E) € GL,(R) x R*

together with the group operation

(v, ﬁ) (a,b) = (aa,a”' B+ b)
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P

and the product topology. G* is called the affine group. This kind of group
construction is called a semi-direct product, and thus G¥ is also called the semi-
direct product of GL,(R) and R", written GL,(R) x R".

If D is a closed subgroup of GL,(R) then G = {(a, b) € Gt a € D,beR'}is a
closed subgroup of G*, and G is the semi-direct product D x R". We call D the

dilation subgroup of G and R" the translation subgroup of G.

Note that the Haar measure du(a,g) on G is simply the.product of the
Haar measure du(a) on D with the Lebesgue measure dA(b) on R*. In fact, for
any f € LY(G),

/f a,5))dv(a, b)://f(aa,a'lg+5>dA(5)du(a)

D R»

://f(a,l;)d)\(g)dﬂ(a)

_ /f(a, Ddv(a, ).

—

This shows that dv(a,b) = dA(b)du(a) is left translation invariant. There

is a natural representation 7 of G* on L*(R") given by

T (7) = | det a|Mp(a™Y = b) = 1, 5(7) (2.8)
for (a, 5) e G' and ¥ € L*[R"). If G is a subgroup of G* as in definition 2.33,

then the wavelet transform Wy, induced by ¢ and the representation 7 becomes

Y — b)d (2.9)

Wol(w,B) = U, bg) = g [ G5

for f € L2(R") and (a,b) € G.

Remark 2.2. We want to find a reconstruction formula for the wavelet transform
(2.9). From the discussion following the Duflo-Moore theorem we know that if

(2.5) holds then reconstruction formula (2.6) follows, which here becomes

= / / W fa.0) ¢, (A D) dpia) (2.10)
D
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in case cy = 1. Thus, we need to investigate under what condition (2.5) holds.

Note that by scaling the function ¥ we may always assume that cy = 1.

Remark 2.3. When discussing the wavetet transform, one usually makes use
of the tools of the Fourier transform. Since the Fourier transform F : f — f

constitutes a unitary operator on L?(R™), 7 induces a representation
p=FnF (2.11)
of G* on L?(R™). Le;f us compute this representation. For ¢ = F ¢ € L?(R") '&;nd
z € R?,
Py ¥ (E) = Fru 5 F(Fy)(@)

= [ (rp) e 745

Rn

_ / | det a|~2(a=17 — B)e%ET dy
Rﬂ.

— / Idet all/Zw(,? _ 5)6—21'7@‘-((1'?) dv
R"’

= | det a|1/2e—2i7r:i:‘-a5/w(,y)e—Zinf-a’y‘ dy

Rn

= | det a|1/26_2i7r£'ag7$(fa)

—~

Yy 5(Z)

where elements T of R™ are now written as row vectors, and 7 are column vectors.
Formula (2.9) for the wavelet transform becomes now

(W’t/!f) (a> g) = (fa ﬂ-(a,(';)’(/)) = <.f1 P(a,g)&;) = (fa {p\a,5>

= |det a|'? | f(@)%(Ta)e* TP dE. (2.12)
R‘n

Definition 2.34. Let D be a closed subgroup of GL,(R), and & € R* be fixed.

i) The set £D = {Za : a € D} is called theD-orbit of Z.

ii) The orbit ZD is called free if £a = % implies a = e, where e denotes the

identity element of D.
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iii) Given € > 0, the set D = {a € D : ||Za — Z|| < €} is called the e-stabilizer

of Zin D.
iv) The set Dz = D2 = {a € D : $a = Z} is called the stabilizer of Z.
We note that D; is a closed subgroup of D and Dy is a closed subset of Ds.

Definition 2.35. Let D be a closed subgroup of GL,(R). A Borel set S C R is

called a Borel cross-section for the action £ — Za (a € D) on R* provided that

1) Ugep Sa =R \N for some set N of measure zero,

ii) Sa; N Say = 0 whenever a; # ay € D.

That is, the cross-section intersects each orbit exactly once, except for some orbits

making up a set of measure zero.
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Characterization of Admissible Groups

One of the goals in wavelet theory is to investigate under which conditions
reconstruction formdias, or inverse wavelet transforms, exist. In this chapt.er,
we review the results from Weiss et al. (2002) which produce a nearly complete
characterization of those subgroups D of GL,(R) which allow for reconstruction

formula (2.10) to hold.

3.1 Admissible Functions

Definition 3.1. Let D be a closed subgroup of GL,(R). We say that D is

admissible if there exists a Borel measurable ¢ € L?(R") such that
col@) = [ 193 duta) = 1 (3.1)
’ D
for almost all £ € R*. We call such a 1 an admissible function for the group D.

Since we will need to work with the Fourier transform 12 of 1, we also call
1; admissible.

The following theorem shows that for a given dilation subgroup D of
GL,(R), the reconstruction formula (2.10) exists for all f € L*(R") if and only if
the admissibitity condition (3.1) holds. As usual, we let G denote the semi-direct

product G = D x R".
Theorem 3.1. The following are equivalent:

1. ¢ € L*(R") is admissible.



Chapter III

Characterization of Admissible Groups

One of the goals in wavelet theory is to investigate under which conditions
reconstruction forrmilas, or inverse wavelet transforms, exist. In this chapt‘er,
we review the results from Weiss et al. (2002) which produce a nearly complete
characterization of those subgroups D of GL,(R) which allow for reconstruction

formula (2.10) to hold.

3.1 Admissible Functions

Definition 3.1. Let D be a closed subgroup of GL,(R). We say that D is

admissible if there exists a Borel measurable ¢ € L?(R"™) such that
col@) = [ [P@a)Pdu(e) = 1 (3.1)
D
for almost all £ € R*. We call such a 1 an admissible function for the group D.

Since we will need to work with the Fourier transform 17)\ of 1, we also call
{/)\ admissible.

The following theorem shows that for a given dilation subgroup D of
GL,(R), the reconstruction formula (2.10) exists for all f € L*(R™) if and only if
the admissibitity condition (3.1) holds. As usual, we let G denote the semi-direct

product G = D x R".
Theorem 3.1. The following are equivalent:

1. ¢ € L*(R") is admissible.
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2. The wavelet transform Wy with respect to 1 is a partial isometry from

3. The reconstruction formula

/ / Wiof (a, B0, (%) db du(a). (3.2)

D R»

holds for all f € L*(R™).

Proof. The equivalence (2) < (3) is precisely proposition 2.13 in chapter II with

-1

01/,:1.

(1) = (2) Note that for all 1,

Wy 2oy = / / () Pdb dp(a)

D R

= [ [ 1.8 du(a
//‘|det a|1/2/f Y D(Fa)e?n b |
//|det a|‘/ 2”’“"dx

where we have set F,(Z) = f(Z)¥(Za). Since both of f(Z) and ¥ (&a) are in
(R

(@)

(a)

L*(R"), the product is in L'(R"). The inside integral is precisely the inverse
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Fourier transform F, of F,, so that

Wy f 22 ://ldet ol | Fo(ab) *db dys(a)

D R»

//|F |dbdu)
=/ ﬂﬂ@hwww

- [ [1i@Pd@ dzdua)

D R»

:/lf(f)|2/|{/;(fa)|2d:ic‘du(a) E

where we have set ¢, (Z) = [ |9(Za)|2dp(a). Now by assumption, ¢, = 1 for
D

almost all Z, so that

Wy fllze) = IF1IE = 1£15-

Hence, W,, is a partial isometry.

(2) = (1) Now suppose that Wy is a partial isometry. Given o € R", let
f € L*(R*) be so that | f(Z)|? = A(B, (o)) "' X8, (7) (¥), where B,(Z) is the open
ball of radius 7 centered at Zy. Then

1115 = 1.

We have by the above computations that

1=w%=mwmh@=/Vm&mmﬁ

X B, (70) (T) o () dE
_/MB(D w(2)d

S / cp(@)di Vi eR'.  (3.3)



It follows from (3.3) that cy is locally integrable, Now let &5 be a point of differ-
entiability for cy. Then

S : 1 o
C¢(.T0) = 11‘1_1"!(1) m / C¢(SE) dx = 1.

Br(%o)

It follows that (3.1) holds almost everywhere, i.e. % is admissible. Thus, the

admissibility condition (3.1) is true and the theorem is proved. a

Remark 3.1. We would like to comment on the relationship between the notians
of admissible vector in definition 2.29 and admissible function as defined abO;e.

Recall that the representation m of G as in (2.8) is called square integrable if i!t s
irreducible, and there exists ¢ # 0 in L*(R™) such that Wy € L*(G). Such a ¢
was called ”admissible vector”). Duflo-Moore’s theorem then establishes that for

each admissible vectors 1,

[IWy Fllze) = Vel FllLzmn) (3.4)

for some ¢y > 0. If we scale Y so that cy =1, then by the above theorem, v is an
admissible function in the sense of (8.1).

This shows that the notions of admissible function in definition 3.1 is a general-
ization of that of an admissible vector in definition 2.29 to representations which

are not square integrable, in the context of subgroups of the affine group.

Remark 3.2. Let D C GL,(R) be a closed subgroup, and let D = c¢Dc™! where

c € GL,(R) is fized. For each E C D, set
E =cEc.

Since conjugation by c is continuous, it 1s clear that E is a Borel subset of D iff

E = cEc™! is a Borel subset of D. Furthermore, if u is a left Haar measure on

D, then
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defines a Haar measure on D. In fact, for all & = cac™ € D we have

v(@E) = v(cac™ (cEc™)) = v(caBc™)
= p(aB) = u(E) = v(E).

Using the definition of measurable functions and integral, one easily verifies that
a function f(-) : D — C is v-measurable iff f(c-c') : D — C is p-measurable,

that f is integrable on D iff f(c-ct) is integrable on D, and that
[ 1@iv@ = [ fleac)auta) (35)
5 D .
The following proposition shows that the admissibility of a group is invari-

ant under a change of basis.

Proposition 3.2. Keep the notations of remark 3.2. Given ¢ € L?(R"), let ¢ be

so that p(Y) = 7:[1\(37c) Then 1 is admissible for D iff ¢ is admissible for D.

Proof. (=) Suppose 1//; is admissible for D. Given ¥ € R", pick ¥ such that

# = gc—*. Then by (3.5),

Since 1 is admissible, the last integral equals one for almost all § € R", so that
[ 1Bk an@ =1
D

for almost all £ = jc~! € R*. Thus, ¢ is admissible for D.

(<) Since D = ¢~1Dc , this implication follows by symmetry. a

The following result will be an essential tool in the proof of the main

theorem in this chapter.
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3.2 Characterization of Admissible Groups
Proposition 3.3. If D is admissible, then A(a) # | det al| for at least onea € D.

Proof. Suppose D is admissible. Let 1 be an admissible function, and set h =

1$|2 € LY(R™). By theorem 3.1, for almost all & € R

/D h(Ea)dpu(a) = 1. (3.6)

We claim that fh Ydy > 0. For suppose, fh df = 0. Then h = 0 almost

.t

everywhere. NOW if B1(0) denotes the unit ball in R, then

0 < MBL() = / Xi,0(3) dF

/ [ o @hizo) dute) dz

R D
~ [ [ o0 @hize) dzduto)
D Rn
by Tonelli’s theorem. Then
0 <AB) = [ [ xo0/@hliw) dEdu(a)
D Rn
= [ [ xou0(@a™)h(@) | det ol dd du(e)
D Rn
=[] v@dg]ideral™ auo).
D 31(6)0.

Since h(y) = 0 almost everywhere, then the inner integral will be zero for all a, so
that the right hand side will be zero, giving a contradiction. Thus, k(%) cannot
be zero almost everywhere. It follows that

[ r@dzo (3.7)

En
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3.2 Characterization of Admissible Groups
Proposition 3.3. If D is admissible, then A(a) # | det al for at least onea € D.

Proof. Suppose D is admissible. Let 9 be an admissible function, and set h =

|$|2 € L'(R™). By theorem 3.1, for almost all € R

/D h(Za)dpu(a) = 1. (3.6)

We claim that fh )dy > 0. For suppose, fh dif = 0. Then h = 0 almost

everywhere. Now if B;(0) denotes the unit ball in R*, then

0 < A(B,(B)) = / X)) 47

/ / Yo 6 (F)h(Fa) dpi(a) di
//XBI(O) h(Za) dZ dufa)

D R»
by Tonelli’s theorem. Then
0<NB®) = [ [ xo0@hlaw) diduto)

D R»

= [ [ xo.0(Ea h@) det ol a2 du(a)
D Rn

= [ [ #@ag]ideta duta
D 31(6)0

Since h(y) = 0 almost everywhere, then the inner integral will be zero for all a, so
that the right hand side will be zero, giving a contradiction. Thus, h(%) cannot

be zero almost everywhere. It follows that

/ @) di > 0 (3.7)
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and the claim is proved.

Now let f(Z) = 2"h(2Z). Then using Tonelli’s theorem again,

/ W) di = / 1(@) di
/ / 7a) du(a)| /(2) d
/ / a™) (&) | det o[~ dF] dp(a)

By setting g(a) := / f(Za™') h(Z) | det a|~* dF we obtain that
Rn

IRGES /D 9(a) du(a) = /D g(a™) Aa™) dys(a)
- /D [ [ F@)h@) | det 42 A(a™)du(a)

- [ [ s@n x]'iefa;”dum).

Thus, if A = |det|, the last equality becomes

/ h(@) di = /R h(@) /D f(&a) dp(a) dF
- / h@en| /D h(25a) du(a)) di

:2"/ hE) - 1d7

since the expression in brackets is 1 almost everywhere. From here it follows that

J h(Z) dZ = 0 which is impossible by (3.7). Hence, A # |det|. O
R

Proposition 3.4. If D is admissible, then Dz is compact for almost every & €

R".

Proof. Suppose, D is admissible. Thus there exists h € L}(R"), h > 0 such that
(3.6) holds for almost all Z. Let Z be so that (3.6) holds, and suppose to contrary
that Djz is not compact.

Let C be any compact subset of D. Then we claim that [ h(Za) du(a) = 0.
c
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Since multiplication is continuous, and thus for any b € D, bCC~! is compact.
We now construct a collection of disjoint compact set {byC}$2, where by € Dy,
it follows that CC~! is also compact. Pick any b; € D;. Since D;z is closed but
not compact, and b;CC~" is compact then Dz € 5, CC~t. Thus, we can pick
by € D; so that by ¢ b,CC~'. In particular, Vey,co € C, by # bicic;' and
thus b,C N b;C = ). This shows that b,C and b,C are disjoint. Continuing this
process we obtain a collection of compact sets {bxC'}2, with b, € Dz\ {b,CC~1U

b,CC~ 1 U ...Uby_1CC1}, and thus the collection {b,C}2, is disjoint.

By disjointness,

1= /h(a’;’a) du(a) > i/ h(Za) du(a)

>

(Za) xp,c(a) dpu(a)
h(Zbra) X, c(bra) dup(a)
h(Zbra) xc(a) du(a)

h(Zbra) du(a).

Since b, € Dz for each k, we have b, = £ and thus

g::/ (Za) du(a).

As the terms in this series are all identical, it follows that [, h(Za) du(a) = 0.
This proves the claim.
Since D is a closed subset of RV, it is o-compact, that is we can write D =

Ure, Ck where C are compact subsets of D. Then by the claim, [.h(Za)dp(a) <
D

Z [ h(Za)dp = 0, so that [, h(Za) du(a) = 0, which contradicts the assumption
k=1C,

that (3.6) holds.

This show that Dz is compact for almost all £ € R". O
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The following theorem is almost a complete characterization of admnissible

groups D.

Theorem 3.5. (a) If D is admissible, then there ezists a € D such that A(a) #
| det (a)| where A denotes the modular function on D. Furthermore, the stabilizer
of T is compact for almost every & € R*.

(b) If there ezists a € D such that A(a) # |det (a)| and if for a.e. T € R*

Je = €(Z) > 0 such that the e-stabilizer DS of ¥ is compact, then P is admissible.

Proof. Part a) of the theorem was proved in propositions 3.3 and 3.4. The details
of the proof of part b) are quite technical so we only sketch the main idea. The
detailed proof can be found in Weiss et al. (2002).

Step I: By the second hypothesis, the set,
Qo = {7 € R” : D is non-compact for all € > 0}
has measure zero. Given an open ball B, one now defines a function fp by

fa(d) = nlfa € D: da € BY) = [ xp(ze) du(a).

Loosely speaking, fp "measures” how much of the orbit Oz of & intersects with
B, the measure being the Haar measure of D transfered onto the orbit. Note that
fe(Z) = fp(Za;y) Yay € D, that is, fp is constant on each orbit. One then shows
that £ € Qp iff each open ball B which intersects the orbit Oz intersects it in a

set of "infinite measure”, i.e.
fB(Z) =00 VBs.t. BN Oz # 0.

Next one chooses a countable family of open balls covering R", say {B;};en ,the
collection of open balls in R* having rational center and positive rational radius,

and sets

Q= J{FeR :0< f5 <0}

721
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Then U =R".

Next one sets

W ={FcR":0< fp,(F) <00}, Qe ={F€R":0< fp,(£) < oo} \,..,

Qj = {fe R*:0< fBJ(.’l_f) < OO} \ {Ql U Q... UQj_l},...

Then {€2;}%2, is a disjoint collection of Borel sets whose union is Q.
By hypothesis, 0y has measure zero, therefore (2° C {2y also has measure
zero. We now construct a Borel measurable function g : R* — [0, 00) which is

zero on this set of measure zero by

—; —o

XQ.’E .1?

x5 (&)
where g;(Z) = f—Bj_(ET

Then

x5, (Za) )
[ FH—du(a) = 7= [ x5, (o) du(a) =1 if F€Q; CQ

/g(a’c‘a)du(a) _J fB;(Za) I8, ( )D j

D 0 if £eQ°

Step II: The function g need not be integrable. We now use the first hypothesis

in b) to modify ¢ into an integrable function h still satisfying
/h(fa) du(a) =1 for almost all & € R". (3.8)
D

The idea is to shift g along orbits, by setting
Ej={T€R":2 < |7 <2/*' and 2* < g(&) < 2"}
for j,k € Z, and decomposing g into functions g = gxg,,, so that

= Z g;x(Z) for & #0.

7,k€EZ

Since Ej has a finite measure and since by the second hypothesis, there exists

b € D such that A(b) # |det b, we can find I(j, k) € Z such that

A(m (4,k) 9k+1/ (Ejkb*l(j»k)) < 2~ (IR
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Now, we set

Z A(b l(J, xbl(.? k))

7,kEZ

Then any function ¢ with ]7:[;|2 = h is an admissible function, since it is easy to

verify that 0 < h € L'(R™) and (3.8) holds. O

Remark 3.3. In the proofs of proposition 3.3, 8.4 and theorem 8.5 we have only
made use of the fact ‘that D C GLyn(R) is o-compact, locally compdct and acts on
R™ by matriz multiplication. ,

It follows that if D is any o-compact, locally compact group, and if o : D —

GL,(R) is a continuous homomorphism, then the above proofs still apply. In this

situation, theorem 3.5 can be restated as follows

a) If D is admissible, i.e. if there ezists 1 € L*(R") such that
/zZmr N|Pdu(a) = ge.f€R"
D

then there ewist a € D such that A(a) # |det(w(a))|. Furthermore, the

stabilizer Dz = {a € D : Zw(a) = T} is compact for almost every T € R™.

b) If there exists a € D such that A(a) # |det(n(a))], and if for almost all
T € R” there ezists € > 0 such that Di={a€ D:||Z—Zr(a)|| <€} is

compact, then D is admissible.
In the following chapter, D will be a two-parameter group.

Remark 3.4. In practice, the above construction of the admissible function 1 is
difficult, because we have to compute countably many functions g;.- The question
of how to obtain simple admissible functions given an admissible group D still

remains, and will be discussed at the end of the next chapter.



Chapter 1V

Problem Formulation and Main Results

We now turn to matrix groups generated by two matrices both commuta-
tive and non commutative. We study which groups are admissible, and investigate

the existence of admissible functions with nice smoothness properties.

4.1 Problem Formulation

Generally speaking, we will consider matrix groups which depend on two
parameters. We will study the following 3 particular cases:
Case 1: D is a discrete abelian group generated by two matrices. That is, there

exist commuting invertible matrices A and B such that
D= {A*B': k,l € Z}.

Case 2: D is a continuous abelian group generated by two matrices. That is,

there exist commuting matrices A and B such that
D= {A°B': s,t ¢ R}

where A = eM and B = e for some M, N € M,(R).
Case 3: D is a non-abelian group depending on two continuous or discrete pa-
rameters.

In each of these cases we will investigate the existence of admissible func-
tions for the group D. As it is very complex to give a complete characterization

of all possible groups, we will focus our attention to subgroups of GL,(R) and
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GL3(R), and in case 3, we only investigate the particular simple cases of 2 x 2
matrix groups.
Let us turn to the first two cases. Note that in the first case, D is the

image of a discrete two-parameter group
U:Z xZ — GL,(R)

and in the second case, D is the image of a continuous two-parameter group

t

®: R x R = GL,(R).

Thus, one may consider these two-parameter groups instead of their images
D in GL,(R). The corresponding e-stabilizers and stabilizers of a point £ € R*
are
Ve ={(k,) eZXZ:||Z- TA*B!|| < €}

Uy ={(k,]) €Z x Z: 7 =FA*B'}

in the first case, and
¢ = {(s,t) e Rx R: ||T — TA°BY|| < €}
dz = {(s,t) ERxR: T = FA*B'}

in the second case. As discussed at the end of chapter II, the wavelet transform

Wy associated with ¢ € L?(R") is

-,

WI/Jf(S’ t,b) = (f, %DAth,g)

~sB-tf — by d¥  (4.1)

1 "
= W RZ f(@)y(4
for f € L%(R") with (s,t) € Z X Z or (s,t) € R x R, respectively. Since Z x
Z is discrete, the Haar measure is simply the counting measure, so that the
reconstruction formula (2.10) in case 1 becomes

F@=>>" /Wwf(k,l,l;) Ve gy () db (4.2)

keZ leZ Rn



for all f € L?(R™). The Haar measure on R x R is simply the Lebesgue measure,

so in case 2 the reconstruction formula (2.10) is

///Wwf s,t,b) w(Ath b)(x) db ds dt. (4.3)

R R»

By theorem 3.1 in chapter III, the reconstruction formulas (4.2) and (4.3) are

valid if and only if the following admissibility conditions hold,

S S wEArBh ) =1 : (4.4)

k€Z leZ

//l Y(TA*BY) dsdt = 1, (4.5)

respectively, for almost all £ € R".

and

Our question is now, for what choices of A and B, respectively M and N,
are the two-parameter group ¥ and ® are admissible.

We know by proposition 3.2 in chapter III that admissibility is invariant
under a change of basis. In the discrete case (case 1), we thus may choose a basis
so that the matrix A is in real Jordan form. In the continuous case (case 2), we
choose a basis so that the matrix M of the exponent is in Jordan form. In order
to list all possible groups, we then need to classify all commuting matrix pairs.

Since Z x Z and R x R are abelian, the modular function is trivial, and

using theorem 3.5 we need only to investigate whether
1. there exist compact e-stabilizers ¥5 and @5 for almost all 7,

2. there exists d € D such that |detd| # 1.

Note that det (eM) = " (M) Then

det (esM+tN) — es-tr(M)+t~tr(N)

Thus in case 2, |detd| # 1 for some d iff tr (M) # 0 or tr (N) # 0.
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4.2 Admissibility Conditions for Groups Generated by

Two Matrices

4.2.1 Two-Parameter Groups Generated by Two 2 x 2 Commut-

ing Matrices

We start with 2 x 2 matrix groups. Let us begin w'ith the case
of a continuous two-parameter group, ® : (s,t) — A’ Bt where s,t € R a}ld
A=eM B =¢V and M,N € My(R). As discussed above, we may bring the
matrix M into real Jordan normal form, and then we need to find all inve_rt‘i“ble
matrices N which commute with M. According to the classification of 2 x 2 two
commuting matrices in appendix A, there are three distinct cases

Case 1 Both matrices are simultaneously diagonalizable,

a 0 a 0
M= and N =
0 B 0 b
Case 2 Both matrices have only one real eigenvalue and at least one matrix, say

M, is not diagonalizable. Then in the Jordan basis of M,

a 1 a b
M = and N =

0 o 0 a

Case 3 At least one matrix, say M, has complex eigenvalues,

a B a b
M = and N = where [ # 0.
-8 « —-b a
The corresponding continuous matrix groups D = {A*B = esMFINY

generated by M, N are:
4

eas+at
CaseAl:D:ﬁ s, teR
0 eﬂs+bt
;
1 s+ bt
Case A2: D = { exstot s, teR
0 1
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cos(fs + bt sin(fs + bt
Case A3: D= eostat ( ) ( ) :s,t € R p where 8#0.

—sin(Bs + bt) cos(Bs + bt)
Since the e-stabilizers ®5 are closed in R?, in order to show that &% is
compact, we only need to show that it is bounded.

It turns out that only in the first two case the groups is admissible:*

Theorem 4.1. Let @ : R? —» D = {AsBt = esMHN 1 5.t € R} be a continuous
two-parameter matriz group, with A = eM and B = eV € GLy(R). Then ®
is admissible iff both M and N have real eigenvalues and one of the following

conditions holds:
1. D is as in case A1, and ab— af3 # 0.
2. D is as in case A2, and ab—a # 0;

Proof. The idea of the proof is as follows. In each case where the group is
admissible, we prove this by showing that there exist compact e-stabilizers ®.
On the other hand, in case where the group is not admissible, we show that ¢ has
a non-trivial kernel Ker ®. Since every non-trivial subgroup of R? is unbounded
it follows that Ker ® is non-compact, hence the stabilizer @z are never compact.
We treat each of the 3 cases separately and start with the two cases where both

M and N have real eigenvalues.

eas-l-at O

Case Al: D = :s,teR
0 eﬂs-l—bt

The e-stabilizer of & = (z1,2) € R? is

T

€ = {(s,t) € R? : 22(e*t9t — 1)2 4 22(ef M — 1)? < 62} (4.6)
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Suppose now that ab — af # 0. We show that ®; is compact provided that
71,22 # 0 and € < min{@, @} .

In fact, if (s,t) satisfy (4.6), then in particular

le¥stat — 1] < — < 1 and lefsHt — 1] < — <
l 2 .’EQ'

These 2 inequalities are equivalent to

—In2 < as+at < In3—-1n2

. (4.7)
" —ln2 < Bs+bt < In3—In2. '
We thus have the system of equations
as+at = k;
(4.8)

Bs+bt = ko
where ki, k2 € [—In2,In3—1n2]. The set of pairs (s, t) satisfying (4.8) is bounded
since ab— af # 0 and thus, ®% is compact. We have shown that for almost all Z,
there exist compact e-stabilizers.

On the other hand, suppose that ab — a8 = 0. Then (s,t) € Ker ® iff

as+at = 0
(4.9)

Bs+bt = 0.

But as ab — af = 0, the solution set of this system of equations forms a non-zero
subspace of R?. Thus, Ker ® is not compact. Since ®z D Ker ®, it follows that
®; is never compact. Note that ab — af # 0 implies that at least one of M, N

has nonzero trace. We conclude that ® is admissible iff ab — af8 # 0.

1 s+bt
Case A2: D = { eostat :s,teR

0 1

The e-stabilizer of & = (z1,z2) € R? is

2
e = {(s,t) € R : p2(ee — 1)2 + ($1(s+ b)es et 4 gy (eostat — 1)) < 62}

(4.10)



49

Suppose that ab — a # 0. We show that ®% is compact provided that z;,z, # 0
and € < min{j%l, 13231} )

In fact, if (s,t) satisfy (4.10), then in particular,

(1) |eas+at_1| SﬁS%

1
(2) |2(s + br)eostat 4 eoret — 1] < (& < L

€
2]

The first inequality js equivalent to
—In2< as+at< In3-1In2 (4,11)

and the second inequality implies that

|z, 1 1 1
i bt as+at < astat 1< = =1
|x2|‘3+ le _.2+|e <5+5
|s + bt| < e‘<as+at>@ < o2l _ 1 <o (4.12)
|z1] Tzl

(4.11) and (4.12) show that every (s,t) € ®% must be a solution of the system of

equations

as+at = ky (4.13)

s+bt = kg

where k; € [~In2,In3 —In2] and k; € [-L,L]. Now the set of pairs (s,t)
satisfying (4.13) is bounded since ab—a # 0, and hence, @5 is compact. We have
shown that for almost all &, there exist compact e-stabilizers.

On the other hand, suppose ab — a = 0. Then (s,t) € Ker ® iff

as+at = 0
(4.14)

s+b = 0.

But as ab — a = 0, the solution set of this system forms a non-zero subspace of
R?, so that Ker ® is not compact. Hence ®z D Ker ® is not compact for all .

We conclude that ® cannot be admissible. Note that ab — a # 0 implies that
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at least one of M, N has nonzero trace. We have shown that ® is admissible iff
ab—a #0.

Now let us consider the case where M has complex eigenvalues.

cos(fBs + bt) sin(Bs + bt)
Case A3: D= exstet :s,t € R » where §#0.

—sin(Bs + bt) cos(fs + bt)

It is easy to see that (s,t) € Ker @ iff

et cos(Bs + bt) = 1
et sin(Bs + bt) = 0.

This certainly holds if

as+at =0 (4.15)

and Bs+ bt =2kmw, keLZ. (4.16)

If ab — a3 = 0, then the solution set of (4.15) and (4.16) forms a non-zero linear

subspace of R?. If ab — a3 # 0, then the solution set of (4.15) and (4.16) is

2kam «
{(S,t) .S = Clﬂ—_ag,t: —ES‘. k € Z}

which is unbounded. Thus, Ker ® is unbounded. Since Ker ® C &z, ®; is never
compact for all Z. We conclude that ® is not admissible.
This shows that if one of M or N has complex eigenvalues, then & is not

admissible. d

Remark 4.1. The proof of the above theorem gives us a complete characterization
of 2 x 2 continuous two-parameter groups that are admissible. We would like to
have a basis free characterization for the matrices M and N. A straightforward
computation shows that the conditions ab — af = 0, respectively ab —a = 0 are
equivalent to M and N being scalar multiples of another.

Thus we can rephrase the theorem as follows
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Corollary 4.2. Let ® : R2 — D = {A°Bt = esM*!V . 5.t € R} be a continuous
two-parameter matriz group, with A = €™ and B = V. Then ® is admissible iff

both M and N have real eigenvalues and are not constant multiples of each other.

Corollary 4.3. Let ® : R* — D = {A°Bt = &*M+V . 5.t € R} be a continuous
two-parameter matriz group generated by two 2 X 2 commuting matrices. Then

the following are equivalent:

1. ® is admissible
2. The stabilizer ®z is compact for almost all T € R".

3. @ is one-to-one.

Proof. (1) = (2) This follows from proposition 3.4.

(2) = (3) Pick an Z such that ®z is compact. Since Ker® C @z and Ker @ is
closed, it follows that Ker ® is compact also. But any non-trivial subgroup of R?
is unbounded, thus Ker ® = {0}.

(3) = (1) In the above proof we have shown that whenever @ is not admissible,

then Ker ® is non-trivial. Thus, if Ker ® is trivial, then ® must be admissible. U

Remark 4.2. In corollary 4.2, we have formulated admissibility conditions in
terms of the matrices M and N. We would like to formulate conditions in term
of the matrices A and B. In general there is the difficulty that the exponential
map is not one-to-one, so that one cannot always recover M and N from A and
B. However, we will show now that this is not a problem.

Note that in case Al,

A= and B =
0 €f 0 e

The conditions that ab — af8 # 0 now becomes

e%e # eteP.
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Since the real exponential function is one-to-one, we can easily recover o, B from

A and a,b from B, that is, there exists a unique pair of matrices M, N with real

eigenvalues such that A =eM B = e".
In case A2,
e e® e® be®
A= and B =
’ 0 e° 0 e s
and after changing to the Jordan basts of A, '
u 1 z
A= and B =
0 u 0y
_ _ _ be?
where u = €%,y = e and z = .
Since b= £ = %, the condition that ab — a # 0 now becomes

ab#a

(lnu)-z—.—gyélny
Yy
y-lny#z-u-lnu.

Again, we can recover a,b, o from u,y and z, that is, there exists a unique pair

of matrices M, N with real eigenvalues such that A = eM B=¢l,

In case A8,

cosf  sinf cosb sinb
A=¢e" and B =e°
—sin 8 cosf3 —sinb cosb
with B # 0. Note that we cannot recover 8 and b from A and B since the trigono-
metric functions are periodic.

The eigenvalues of A and B are e®*(cos 8 £ isin 8) and B = e*(cosb £ isinb), re-

spectively. Note that 3 and b are both multiples of 2kw iff A and B have positive
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eigenvalues, in which case A and B can be considered matrices as in case Al.
Otherwise, if at least one of A and B has negative or complex etgenvalues, then

N

any pair of matrices M, N such that A =¢eM B =¢e" must be as in case AS.

The above discussion shows that case 1 and case 2 hold precisely if both
A and B have both positive eigenvalues. We summarize this as folloys.
Proposition 4.4. Let A and B be the commuting invertible 2 x 2 matrices. Then
N

there exists matrices M and N such that A = e™ and B = eV,  and the typo-

parameter group
D : (s,t) = AB' =M™

is admissible iff both A and B have only positive eigenvalues, and one of the

following s true:

1. A and B are simultaneously diagonalizable,

u 0 y 0
A= and B =
0 v 0 =z

with u -z #v-y.

2. A and B have each only one eigenvalue, and one of the two matrices, say

A is not diagonalizable,
1
A= and B =

andy-Iny # z-u-Inu.

Furthermore, M and N are unique.

Results for discrete two-parameter groups can be obtained in essentially
the same way as above. We will not do this in order to avoid a repetition of the
arguments. Instead, the next proposition shows how the results for the continuous

case can he used to discuss the discrete case.
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Proposition 4.5. Let A, B be in the ezponential group of GL,(R) with AB =
BA and let ¢p € L*(R™).

1. Ifv is an admissible function for the discrete two-parameter group generated by
A and B, then it is also an admissible function for the continuous two-parameter
group generated by A and B.

2. If1 is an admissible function for the continuous two-parameter gro‘up generated
by A and B, then there ezists {/; € L2(R™) which is admissible for tl‘ze discrete tz{)o-

ry

parameter group generated by A and B.

Proof. 1. Assume that 1 is an admissible function for the discrete two-parameter

group. Then by theorem 3.1, E; = {gje R : Y S [B(FA*BY? # 1} is a set of
I€Z kel

measure zero.
We claim that for almost all £ € R*, 3= 3 [(£4°BtA*BY))? = 1 for

IEZ kEZ
almost all (s,t) € [0,1] x [0,1] =: [0, 1]%. Set

E={(Z(s0) eR* x [0,1]: Y D" [$(ZA°B'A*B")|” # 1}.

l€Z keZ

Then E is A, X A\o-measurable, where ), denotes the Lebesgue measure on R* and
Ao the Lebesgue measure on [0,1]%. It follows from the definition of the product

measure and theorem 2.2 that

O % A)(E) = / An(EEDY dro(s, 1) (4.17)

[0,1]?

where

EGY = {Z e R": (Z,s,t) € E}

={TeR : > S [Y(EFAB'ABY £1}.-

leZ keZ

- ElA_sB—t

Hence, A (E®Y) = A, (FE;)|det A|7*|det B|™* = 0. It follows from (4.17) that
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(An X A2)(E) = 0. By theorem 2.2 again,

so that A\y(Ez) = 0 for almost all £. That is, for almost all 7 € R",

SO>S T W(FAB'A*BY)P =1 for almost all (s,t) € [0,1]% (4.18)
l€Z keZ
This proves the claim.

Now if Z is so that As(FEz) = 0, then using Tonelli’s theorem

/ / BEABY Pdsdt =3 % / v / - |1Z(93‘Ath)|2d;dt
l k

R R I€Z keZ

=>"3 j /1 | (ZAHE B2 dsdt

IEZ keZ Yy

= / 1 / 1 SN (@A B Pdsat
0J0

leZ keZ

_ / 1 / 1 S° 3 [$(zABLA* BY Pdsdt
0J0

I€Z keZ
11
= / / l1dsdt =1.
0Jo
The last equality is valid since (4.18) holds.
2. Assume that 1 € L?*(R") is an admissible function for the continuous

two-parameter group. Then [, [o [(ZASBY)|2dsdt = 1 for almost all ¥ € R".

Define a function 1; by
~ Lopel 1/2
P(F) = ( /0 /0 |¢(fASBt)|2dsdt) .

Then ¢ (&) > 0 and using Tonelli’s theorem again,

/|@Z(f)|2df:/[/1/111/[1\(§:'A3Bt)|2d3dt] dz

- /1 j L/ |1Z(:E‘Ath)12df} dsdt
= /1/1|det A|™*| det B|™ U 1&(5)2@} dsdt < 0.
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Hence, ¢ € L2(R™). Furthermore,

(£A*B'A°BY)|*dsdt

<)

(fAS+kBt+l)[2d8dt

41 pktl '
= / / [ (ZA° BY)|*dsdt
l k

| = / |p(ZA°BY)|dsdt = 1.
R

<)

Thus, the inverse Fourier transform of VZ is admissible for the discrete two-

parameter group. (]

In the discrete case, the matrices A and B need not be exponentials. How-
ever, proposition 2.11 shows that the matrices A% and B? are always exponential
matrices. It follows from proposition 4.5 that the result of proposition 4.4 also
applies to the discrete two-parameter group generated by A? and B2

We now show that this is sufficient to determine whether the discrete pa-

rameter group generated by A and B is admissible.

Proposition 4.6. Let A, B be commuting matrices in GL,(R). Then the discrete

two-parameter group
U:7% - {A*B' k1l e Z)
s admissible iff
Uy 22— {(ADH(BYH ke Z)
15 admissible.

Proof. (=) Let ¢ € L*(R") be admissible for W. Let ¢, be the inverse Fourier
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transform of ¢ (%) = ‘v,b(f)

DI ACETRERDIE

l€Z keZ

4 ’J(m)’z + {{p\(j’B)’z n W@AB)F‘ Then

( Id) (A% B2 l '1/) —*A2k+1BQl)

~A2szl+1 l 4 1{5(5142“1 B2l+1)

)

20
Er

NMENM

IJ *A’“Bl)lz —1

+

for almost all £ € R™. This shows that 1) is admissible for the group ¥;.

(«=) Let ¢ be admissible for the group ¥;. Set

Fp={ZeR: 3. [9@AN B # 1)
l€Z keZ
so that A(Ep) = 0. Then set
E =E,UE,A""UE,B ' UFE,A"'B™!

so that A(E) = 0 also. If £ ¢ E, then

SN [BEAB(AHBH)[ =1 Vi=0,1, j=0,1

I€Z keZ
so that
1A—¢k 2k 2z ~ kil pai |
5 [wsteats| =S (fpatan] e
I€Z keZ IeZ kel
n 11”[;(5/4%321“) 2 n l,(l;(a—:*AZk#—lBQHl) 2)
1
= Z(1+14+14+1) =1

Hence, 31 is admissible for W. O

In proposition 4.4 we have formulated admissibility conditions for the con-
tinuous two-parameter group generated by commuting invertible matrices A and

B. Now we would like to formulate conditions for discrete two-parameter group.
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Proposition 4.5 state that if A and B are exponential matrices, then the
continuous two-parameter group generated by A and B is admissible iff the dis-
crete two-parameter group generated by A and B is. Since A? and B? are expo-
nentials, and it follows that, the continuous two-parameter group generated by
A = A? and B = B? is admissible iff the discrete two-parameter group generated
by A and B is admissible. Let us investigate how A and B must look like. By
proposition 4.4, A and B must be as follows:

1. A and B are simultaneously diagonalizable,

~ u 0 ~ y 0
A= and B =
0 v 0 =z
with u - z # v - y. Since u,v,y,z > 0, one easily verifies that A and B must be of

the form

¢c 0 e 0
A= and B =

0 d 0 f
where ¢ = +/u,d = £/v,e = £,/y, and f = £/2.
The condition u - 2z # v - y is equivalent to |c- f| # |e - d|.
9. A and B have each only one eigenvalue, and one of the two matrices, say Ais

not diagonalizable,

~ u 1 ~ Yy z
A= and B =

0 u 0 y

and y-Iny # z - u - Inu. It is easy to verify that A and B must be of the form

c L d Z
A= 2 and B = 2d
0 ¢ 0 d

where ¢ = ++/u,d = £,/y. After a change of basis,

1
A= and B =
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where w = 95. The above condition now becomes
2 dw
d*-2Inl|d| # —c - 21n|c|
d-Inld|#w-c-Injc|.

Corollary 4.7. Let A and B be the commuting invertible 2 X 2 matrices. Then

two-parameter group
: U (k1) — A*B

is admissible iff both A and B have only real eigenvalues, and one of the following

18 true:

1. A and B are simultaneously diagonalizable,
A= and B =

with |u - z| # v - yl.

2. A and B have each only one eigenvalue, and one of the two matrices, say

A 1s not diagonalizable,
A= and B =
andy-Inly| # z-u-Injul.
4.2.2 Two-Parameter Groups Generated by Two 3 x 3 Commut-

ing Matrices

Let M,N € M;(R) be non-zero matrices with MN = NM and
suppose, at least one of M, N has non-zero trace. As before, we bring M into
real Jordan normal form and classify all matrices N commuting with M. After

exchanging M and N if necessary, there are six cases as listed in appendix B:
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( a 00 a 00
Case1: M= | o S 0 | commutes with N=1 0 b 0
\ 0 0 7 00 c

R
—
o
Q
SH
o

Case 22 M=| 0 o 1 | commuteswith N=] 0 a b
\ 0 0 o 00a
a'l 0 a b d '
Case 3: M = 0 o O commutes with N = 0 a 0 | where a 7& c
0 0 « 0 0 ¢ |
and d # 0.
a 1 0 a b dy
Cased: M=| 0 o 0 | commuteswith N=| 0 o 0
0 0 « 0 di a
a 1 0 a b 0

Case 5: M=| 0 o 0 | commutes with N=| ¢ q 0 | where a#j.

0 0 8 0 0 c
a [ 0 a b 0
Case6: M=| -8 o 0 | commuteswithN=1 —p a 0 where § # 0.
0 0 v 0 0 ¢

We start with the continuous two-parameters group ® : R* — GL3(R)
determined by matrices A = eM and B = ¢" where M, N are as above. Then

the corresponding images, D = {A*B! = ¢*™**N} in GL3(R) are

eas+at 0 0

Case B1: D = 0 eBs+bt 0 :s,t e R

0 0 et



61

1 s+ bt gizbtﬁJrct

Case B2: D = {e¥*o} o 1 s+ bt s,teR
0 0 1
1 s+t &_ai_ctc-ﬂ
Case B3: D = {e¥t| o 1 0 :5,t € R} where a # c
0 0 ect—at
and d # 0. ,~
1 bt+ 9%t 45 dyt
Case B4: D = { e¥t| 1 o |:s,teR
0 dt 1

eas+at eas+at(5 + bt) O

Case B5: D= 0 eastat 0 :s,teR
0 0 eﬁs+ct
where a# 0.
e®stat cos(Bs +bt) e sin(fs + bt) 0
Case B6: D=1 | —e**9sin(Bs + bt) et cos(fs+0bt) O :s,t€R
0 0 e’ys+ct
where S # 0.

Theorem 4.8. Let ® be a continuous two-parameter matriz group generated by
two commuting matrices A = eM and B = e as above, and suppose that at least
one of M and N has non-zero trace. ® is admissible if and only if one of the

following holds
1. D is as in case B1 and at least one of the following holds: ~

e ab— fa #0.

e ac— vya # 0.
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e Jc—~vb#£0.
2. D is as in case B2 satisfying the condition: ¢ # 0 or ab —a # 0.
3. D is as in case B3.

4. D is as in case B4 and at least one of the following holds:
i) do #0
it) ab—a # O’:
i) a # 0 and d; # 0.

. D is as in case B5 and one of the following holds:

(2

e ab—a#0.
e fJa— ac#0.
o fb—c#0.

6. D is as in case B6 satisfying the condition: ya — ac # 0.

Proof. The proof proceeds similar to the 2 x 2 case. We show that under the
above assumptions, there exist bounded, and hence compact e-stabilizers for
almost all Z € R®, which implies that ® is admissible. On the other hand, if
the above assumptions do not hold, then the stabilizers ®z are not compact for

almost all 7, so that ® can not be admissible.

Cncs+at O 0

Case B1: D = 0 ePs+bt 0 cs,te R

0 0 evte

The c-stabilizer of 7 = (z1. 79, z3) € R® is
1- T2, T3

Pl = {é’s. Py ok

;J\j

et )2 2P 1) g k(e = 1) < 62}.
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Suppose, 1,2, 23 # 0, choose € > 0 such that ¢ < min {l%l, ]“7’2—21, ]%[} We claim

that ®% is compact.

In fact, if (s,t) € ®%, then we obtain the three inequalities

(1) |eas—+—at _ 1| S I$€_1| S %
() lef ~ 1 < iy < 4
()l -1 < gy < &

These inequalities are equivalent to

—~In2 < as+at < In3—1In2
—In2 < fBs+dt < In3—1In2 (4.19)

—In2 < ys+ct < In3—-1In2

The system of inequalities (4.19) can be written as

as + at = k;
Bs+ bt = ks (4.20)
vs + ct = k3

where ki, ko, and k3 € [~1n2,In3 — In2]. The pairs (s,t) which satisfy system

(4.20) remain in some bounded set provided that at least one of the following

holds:
ab— fBa#0
ac — ya # 0. (4.21)
Be — b # 0.

Thus, ®% is bounded if at least one of the inequalities in (4.21) holds. This proves

the claim.
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On the other hand, suppose that none of the three conditions in (4.21)

hold. Note that the kernel of ® is the solution set of the system

as+at =0
Bs+bt =0 (4.22)
vs+ct =0.

Since none of the conditions in (4.21) holds, the set of pairs (s,t).solving (4.22)
forms a non-zero subspace of R?. That is, Ker ® is unbounded. Since Ker ® C @3,

it follows that @z is unbounded for all ¥ € R3. Thus, ® can not be admissible.

1 s+ bt @%bﬁ—i—ct

Case B2: D=(e*™ | o 1 s+ bt :s,teR

0 0 1

The e-stabilizer of & = (21, T2, 73) € R® is

¢

€
T

= {(s, t) e R x R:a?(e®t —1)" + [21€2°+4 (s + bt) + o (e*F% — 1))
bt)?
+ [xm"‘”“t (&S—%—)— + ct) + 201 (s + bt)
2
+ $3(6a5+at _ 1)} S 62 )
Suppose, T1,Ta, 3 # 0, and choose € > 0 such that ¢ < min {J—ZZ—‘l, J%zl, J_z%[} We

claim that @5 is compact.

In fact, if (s,t) € ®%, then we obtain the three inequalities
(1) ’eas-l—at_ 1l S € S

(2)

gc_leas+at(8 + bt) + eas—l—at _ 1‘ S _€_ S
T2

_17_160LS+(LL<(S+2()L)2 + Ct> + %eas+at(s + bt) +eas+at__ 1] < _€ < %

T3

(3)
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By calculation, inequality (1) is equivalent to
—In2<as+at<In3—1n2. (4.23)

Then inequality (2) implies that

1 1 1
eas+atl8+bt| < §+|eas+at__1|§ _2_+_:1

B
2

T2

|s +bt| < e” “”‘”)

< 2| = L. (4.24)
From inequalities (4.23) and (4.24) we obtain the system of equations

as+at = Kk

where k; € [-1n2,In3 —In2] and k; € [-L, L].

The third inequality implies that

bt)? 1 |
}ﬂeaﬁ—at((s'*' ) +Ct)l < _+|$2 as_’ati8+bt|+|€as+at—1|
I3 2 2
1
<5talelies
2
and thus
2
w+ct‘ < (1_*_:9).\% L> T3 e—(as+at)
2 Iy
(Y] =
bt L?
ICtISK1+E+—2')—<K +-é_ = K.

Hence, t must lie in some bounded set if ¢ # 0. On the other hand, if ¢ = 0, we
come back to system (4.25), and see that ¢ is in some bounded set if ab —a # 0.
In both cases it follows from (4.25) that s remains in some bounded set also, so

that ®¢ is bounded. This proves the claim.
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On the other hand, suppose that ¢ = 0 and ab — a = 0. Note that the

kernel of @ is the solution set of the system

as+at =0
s+bt=0 (4.26)
2

Since ¢ = 0 and ab — a = 0, the set of pairs (s,t) solving (4.26) forms a non-zero
subspace of R?. Thus Ker & is unbounded and then @z is unbounded VZ € R3.

Hence, @ is not admissible.

Case B3: D = (et | o 1 0 :s,t €R ) where a # ¢

and d # 0.

The epsilon stabilizer of Z = (1,22, z3) € R® is
&= {(S,t) € R x R:z?(exte — 1)

2
+ [merstet(s 4 bt) + mae ot - 1)

d(1l — ct—at 2
( € ))+x3(eas+ct__1)] S62}-

+ [mleas—{—at (
a—~¢C

Suppose, 1,22, 73 7 0 and (¢ — a)z3 + dv; # 0. For any € > 0, if (s,t) € D, we

Rl

have in particular,

(1) o™ = 1) <e

D fos sy ] <
) ‘xQI

T <M>eas+at + (eas+ct o 1)] S }_E_‘
z3

(3)

T3 a—=cC
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Since d # 0, given § > 0 we can choose ¢ = €(§) > 0 such that e <

min { dsfeal sl |,

By the first inequality, we get for (s,t) € ®5,

S|zs(a — o)
astat 1N <e<
|fl?1(€ )| S Q‘dl
or
xld as+at ‘ o
_ -1 < = : 4.
v ‘.’1)3((1 —¢) (e )| < 2 : ( 27)
It follows from the third inequality that
T:1d as+at ct—at as+ct i € é
1-— -1 < —< =
la:g,(a——c)e (1= ) 4e STm T2
or
z1d as+at as+ct xld | ¢
_— l—-——) -1 < =
‘11;3(@—0)6 e ( :cg(a-—c)) — 2
xld as+at as+et .'173(0, - C) - £L'1d | )
_— -1} < = 4.2
‘xg(a——c)e Te ( z3(a —¢) ) — 2 (4.28)
Consider
z1d z3(a —c¢) — x1d
-1 as+ct |
\:1;3(a—c) te ( z3(a — ¢) )
< ‘ T d z1d as+at T1d as+at
- ——e
“lzz(a—c)  z3(a—c¢) z3(a —¢)
as+ct :Ug(a, — C) — z1d ‘
-1
e ( z3(a —¢) )
< ‘ z1d eQstat + eas+ct(x3(a - C) - xld) _ 1‘
z3(a — ) z3(a — ¢)
l‘ld
1-— as+at
‘.’133((1 - c)( ¢ )
)
< gty = 6 by (4.27) and (4.28).
Rewriting the left hand side,
.’133(& - C) — xld Ieas+ct _ ll < 5
z3(a — c)
‘eas+ct . 1| < 5 .’E3((L — C) (429)

z3(a —¢) — zyd !l
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z3{a—c)—z1d z1d

We now choose ¢ so that 0 < § < %min{

}- By (4.27) and

z3(a—c) | 2z3(a—c)
(4.29) we get

1

astat __ 1<z

e 1] < 3

1

as+ct __ 1l < =

e -1 < 5,

so that s and t must solve the system of equations
as+at =k
v , (4.30)
as+ct = kz
where ki, ks € [-1n2,In3 —In2]. By the assumption a # ¢, the set of pairs (s, t)
satisfying (4.30) is bounded. We have shown that for almost all Z € R3 there

exists € > 0 such that ®% is compact, so that @ is admissible.

1 bt + D22 45 dyt
Case B4: D = { e®*%] g 1 o |:s,teR

0 dyt 1

The e-stabilizer of Z = (z1, T2, 73) € R® is

dydat?

oL = {(s, HHeRxR: o2 (e T —1)2+ [a:leas“t (bt + + s) +3a(etat _1)

2 2
+ $3d1t608+a’t] + [xldzte"”“t + z3(e* 7t — 1)] < 62}.

Suppose, 71, T2, 3 7 0 and choose € > 0 such that ¢ < min {'—?—', I—%ﬂ, “73'} _ We

claim that ®¢ is compact for almost all such Z, under the given assumptions on
the entries of the matrices.

In fact, if (s,t) € @, then we obtain the three inequalities

1 1 3
1 as+tat —1 = = i< as+at < =
(1) le | < l | 9 5 = ¢ — 2
(2) ‘x—l— e (bt -+ d2t2 ) as—{—at _ 1) + Bd1t6a5+at < & < l
To I l$2| -2
T € 1
3 21a t6a5+at + eas+at _ 1‘ < —
( ) I3 2 B I l 2
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By calculation, inequality (1) is equivalent to
—In2<as+at <In3—1n2. (4.31)

Inequality (2) together with (1) implies that

2
““(m+m?t+ﬂ+§%mﬁm

S l+|eas+at__l| S 1
T 2

e

d1gat®
tl‘l( 161122 ) +:z:3d1t‘ < |zale™@*) < fap|2 = K (4.32)

and inequality (3) together with (1) implies that,

I
_d2t6a5+at

S l_*_ Ieas"rat ___ 11 S 1.
T3 2

If dy # 0, we have

|t| < \ l —(as+at) < 2‘ ‘ — I
doTy daT1
Thus, ¢ is bounded and by inequality (4.32), s is also bounded.

If dy = 0, then inequality (4.32) becomes
|(b331 + dl.’E3)t + 1518' S K. (433)

Hence, by inequalities (4.31) and (4.33) we get the system of equations

as+at = k
(4.34)

18 + (bxl + dll’3)t = k)g
where k; € [~In2,In3 — In2] and k; € [-K,K]. The set of pairs (s,¢) which
satisfy (4.34) is bounded if a(bz; + dizs) — azy # 0, or equivalently, (ab— a)zy +
adizs # 0. Now the set of vectors & such that (ab — a)z; + adizs = 0 is a set

of measure zero iff ab — a # 0 or ad; # 0. Hence, the set of pairs (s, t) satisfying

(4.34) is bounded for almost all 7 if one of the following holds:

i) dp #0
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ii) d =0 and ab — a # 0.
iii) dy = 0 and a # 0 and d; # 0.

That is, ®% is compact for almost all 7 in these 3 cases. This proves the claim.
On the other hand, suppose that none of conditions in i)-iii) holds. Let

# € R® be arbitrary. Note that

didyt?
Oy = {(s,t) e R x,R: FA Bt = e*stat (:m, (bt + = 22 + s)xl + T2 + ditzs,

dgtxl + 1133) = (1121,11,'2,.%‘3)}.

.t

Thus, if
as+at=0
(bt + hdat” | §)71 + ditzs =0 (4.35)
dotz1 =0

then (s,t) € ®z. But since dy = 0 and ab—a = 0 and either « = 0 or d; = 0,
the set of pairs (s, t) satisfying (4.35) forms a non-zero subspace of R?. Thus, @z

is not compact for all T € R®.

eas+at eas+at(8 + bt) 0

Case B5: D = 0 eastat 0 :s,t € Ry where a#p.

0 0 ehstet
Let & = (1, T9,73) € R*. The epsilon stabilizer is

s = {(s,t) € R x R: 22(e®+% — 1) + 21+ (s + bt) + za(e>* ™ — D)?

+zi(efote —1)2 < 62}.

Suppose 1,2, T3 # 0 and choose ¢ > 0 such that € < min{@, %, @} We

claim that @ is compact. In fact, if (s,?) € @5 then in particular



= < eas+at <

(1) Ieas+at_1| Slz_edsé

[N [+

1
2

(2) _:_;eas+at(3+bt) +eas+at -1 S l_g_ S %

z2|

= < eﬁs-{-—ct <

[ 1[4}

(3) lefstet — 1 < 5 <

[z3]

[
N

Inequalities (1) and (3) are equivalent to

—In2 < as+at < In3—1In2

' _In2 < Bs+ct < In3—In2

Inequality (2) together with (1) implies that

1
T1lgastat |5 4 pt|< % + |exstet — 1] < 5t % =1
)
|s + bt|< e~(esta) ﬁ{ <2| 22| = L.
Ty I

From inequalities (4.36) and (4.37) we obtain the system of equations

as+at = k
,38 +ct = kz
s+ bt = k3

71

(4.36)

(4.37)

(4.38)

where ki, k, € [~In2,In3 — In2] and ks € [~L, L]. The set of pairs (s,t) which

satisfy system of equation (4.38) is bounded iff at least one of the following holds:

i) ab—a #0.
ii) Ba —ac#0.
iii) Bb—c#0.

Thus, ®% is compact if at least one of i)-iii) holds. This proves the claim.
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On the other hand, suppose that none of conditions in i)-iii) holds. Note

that the kernel of @ is the solution set of the system

as+at=10
s+bt=0 (4.39)
Bs +ct =0.

Since none of conditions in i)-iii) holds, the set of pairs (s,t) satisfying (4.39)

forms a non-zero subspace of R2. Thus, &z D Ker @ is not compact.

Case B6:
et cos(fBs + bt) e*Tsin(fs+bt) 0
D= —exstatgin(Bs + bt) e*tcos(Bs+bt) 0 s,teR
0 0 grset
where § # 0.

Let # = (1,72, 73) € R*. The epsilon stabilizer is
oS = {(s, t) € R X R: [z1(e*+% cos(Bs + bt) — 1) — 72e*+* sin(Bs + bt))?

+ [z,e% 9 sin(Bs + bt) + zo (e cos(Bs + bt) — 1))

1

|z1] |z2] [z

Suppose, T1,T2,r3 # 0 and choose € > 0 such that ¢ < min {—;—I, 5H, T} We
claim that ®% is compact.

In fact, if (s,t) € D%, then we obtain 3 inequalities

(1) |2 (e**** cos(Bs +bt) — 1) — etatgin(Bs 4 bt)| < 5 <

[z2]

N j—

IA
N |—

(2) le*s*atsin(Bs + bt) + $2(e**T* cos(Bs + bt) — 1)| < 5

E2Y

(3) Jertet 1] < £ <



Inequality (3) is equivalent to
—In2<~vs+ct<In3—-In2.

By combining inequalities (1) and (2) we get

Iy T
— 4=

le*t cos(Bs +bt) — 1| <1
T2 Ty

11311132
Iy I+ -”3%

le®ste cos(Bs + bt)

Clearly, K is strictly less than 1, and thus
0<1—K <e*cos(Bs+bt) <1+ K.

By inequality (2) and (4.41) we have

1
5+ ‘E‘Iea”“t cos(Bs + bt) — 1|

le®s T sin(Bs + bt)| <
1
= K=1
<3|
Squaring inequalities (4.42) and (4.43) we obtain

(1 — K)? < eXestaD cos?(Bs + bt) < (1 + K)?

0 < eXostal gin?(Bs + bt) < L2
By combining (4.44) and (4.45), we get

0<(l-K)?<eosted) < [24 (14 K)?= K*

2In(1 - K) < 2(as+at) < 2InK”

From inequalities(4.40) and (4.46) we obtain the system of equations

vs+ct = k

as+at = ko

where k; € [—1n2,In3 — In2] and k2 € {In(1 — K).In K*].
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(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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The set of pairs (s, t) which satisfy the system of equation (4.47) is bounded
if ya — ac # 0. Thus, D% is compact if ya — ac # 0. This proves the claim.
On the other hand, suppose that ya — ac = 0. Note that the kernel of ® is

the solution set of the system

as+at =0 : (4.48)
Bs+ bt =2kw where k € Z (4.49)
‘ ys+ct=0 ' (4.50)

Since ya — ac = 0, the solution set of (4.48) and (4.50) forms a non-zero linear
subspace of R?, that is, either a line passing through the origin or R? itself. Since
B # 0, the solution of (4.49) is a countable family of parallel lines [j.

Now if ab — a3 = 0, then the line [y coincides with the solution set of (4.48) and
(4.50), so the solution set of (4.48) - (4.50) is a one-dimensional linear subspace.
If ab—aB # 0, then each line [, intersects the line (or plane) determined by (4.48)
and (4.50). Thus, the solution set of (4.48) - (4.50) is at least countably infinite
and unbounded. This show that Ker ® is an unbounded subset of R? and that

®z O Ker ® is never compact. O

Corollary 4.9. Let ® be a continuous two-parameter matriz group generated by

two 3 x 3 commuting matrices. Then ® is admissible iff ®z is compact.

Proof. (=) This follows from theorem 3.5.
(<) In the above proof, whenever ® is not admissible, we have shown this by

showing that ®z is not compact. It follows that if ®z is compact, then ¢ must be

admissible. d

Remark 4.3. In the 2 x 2 case we could strengthen this statement to "® is ad-
missible iff it is one-to-one”. In the 3 x 3 case this is no longer true, because of

the case B4.



Consider the situation in case B{ where ® is not admissible because da

0,ab—a =0 and a =0. Then
1 s+bt 0
D={AB'=0 1 o0]:s5teR
0 dit 1

Hence, Ker® is the solution of the system

s+bt=0 )

dit = 0.

Now if di # O then this system has only the trivial solution, so in this case P

one-to-one, but the stabilizers ®z are non-compact.
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18

Discrete two-parameter groups can now be discussed just as in the 2 x 2

case, using proposition 4.5 and proposition 4.6.

4.2.3 Two-Parameter Groups Generated by Two Commuting

Matrices in Higher Dimensions

In dimension greater than 3, there is a great variety of commuting

matrix pairs M and N, and so one can not hope to obtain a nice classification

all two-parameter groups.

of

However, if there exists a Jordan basis of M in which M and N are de-

composed into blocks of equal dimensions,

My (0) N, © )
M2 N2




76

with M; being a Jordan block of M and N; a corresponding block of N, then

we can apply the idea of the earlier sections to discuss admissibility of the two-

parameter group generated by M and V.

It turns out that these ideas can be used even if M and N are not in block-

diagonal form. All that is needed is that the first few columns resemble those of

an upper triangular matrix. In fact, we suppose that there exists a basis in which

M and N are commuting n X n matrices as follows:
4

Case H1:

Case H2:

Case H3:

where | =

0
p
0

(%)

() )

, N=
(+)
(+)
. N=
(+)
() )
, N=
(+)
B #0, and E; =

() )
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D, and E, are either scalars, i.e., Dy = a and Ey = a2, or 2 x 2 matrices of the

%] ,62 ag b2

form, Dy = , o =
—52 87] —by ay

Case H4:
DL () - (¥ B B (1) o (3) )
0 D 0 E

M=1o0 o0 N=1]1 0 0

0 0 (% (*) 0 0 (¥ (*) ,
o B 1 O a; bl

where D = B F£0 L= VB = ,1=1,2.
—ﬁ a 01 —bi a;

So, let A =¢eM and B = eV where M, N € M,(R) are commuting matrices
as above. If one of M and N has non-zero trace, then by theorem 3.5, in order
to discuss admissibility of the continuous two-parameter group @ : R? - D =
{AsB! = esM*tN 1 5 ¢ € R} generated by M, N, we only need to investigate the
existence of compact local stabilizers. First let us consider some special situations

of case H3 and H4.

Lemma 4.10. Let M, N be commuting matrices of the form

Dy (0 E;y (0
e | PO =Y )
0) D2 0) Es
ay By a, by
where Dy = B #0, and By = ,
-8 o b, ag
D, and Ey are either scalars, i.e., Dy = g and Es = ag, or 2 X 2 matri-
Gy B Q2 by
ces of the form, Dy = By =

— 32 (6] - [)2 a»
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Then
®:R?> —» D={A*B" =MV . 5 ¢t € R}
is admissible if
1. Dy = ay and E, = ay are scalar and aqay — aga1 # 0.

2. Dy and E, are 2 X 2 matrices and ayas — aeay 7 0.

4

Proof. In case where Dy = o and E; = a, are scalar, we refer "co the proof‘ of
theorem 4.8, case B6 which shows that @ is admissible iff oqay — apa; # 0.

Now assume that Dy and F, are 2 X 2 matrices and ajas — aza; # 0.
Note that the condition ajay — asaq implies that one of M or N has non-zero

trace. Direct computation shows that A°B?! is of the form

exstatcogf,  estotgin g, 0 0 \
—emstaitgin g, ettt cogf, 0 0
(4.51)
0 0 ex2staet oogf,  e¥25tatgip g,
\ 0 0 —e2staztgin g, 225+t oo, )

where 6; = B;s + bit,1 =1, 2.

Let # € R™ with z; £0Vi=1,...,4. Set € < m‘m{% f = 1,...,4}. If (s, 1) lies

in the e-stabilizer
Ps = {(s,t) e RxR: [|§:‘Ath —Z|| < €} (4.52)

then similar to the proofs in the 2 x 2 and 3 X 3 cases we obtain the following

four conditions on (s, 1):

(1) |(emstertcosfy — 1) 2 — er*Fatsin b,

IA
IN
[N

2]

aystait o3 ays+art ___ Z2 _€_ 1
(2) le sinf; + (e cost —1)2| < = < 5
(3) [(e™F %2  cosfy — 1) 72 — e®2*H 2 sinfy| < & < L
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t o +ast
(4) |ec2s+atsinfy + (€22°T% cos by — 1) T < 7 <

N—=

In the proof of theorem 4.8, case B5, we showed that the first two inequalities

give us
0 < K; < eMloastad) < [, (4.53)

and the last two inequalities give us
0< L, < eXeestat) < [, (4254)
for some constants Ky, K, L; and Lo.

From (4.53) and (4.54) we get the system of equations

o8 + Cl,lt =M
(4.55)

QS + aot = N

where M € [ln K—2i,ln —Ig—z] and N € {ln %l,ln %]
The set of pairs (s, t) satisfying (4.55) is bounded since ayaz —azar # 0. Therefore

@< is compact for almost all Z and small ¢, so that & is admissible.

Lemma 4.11. Let M, N € My(R) be commuting matrices of the form

a B 1 0 ap b oay b

-8 a 0 1 -b a1 —by a

M = and N=| 7
0 0 a g 0 0 a b

0 0 —6 (8 0 0 —bl ay

with aay — ay # 0. Then
d:R = D={AB =M 5t e R}

15 admaissible.
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Proof. Note that the condition ca; — a; # 0 implies that one of M and N has

non-zero trace. Direct computation shows that A®B?! is of the form

/ cos® sinf  (s+ast)cosf — batsing (s + ast)sin + byt cosd \

—sinf cosf —[(s+ ast)sinf +bytcosh] (s+ ast)cosd — bytsinb

as+ait

0 0 cosf sin §

K 0 0 —sind cos 8
a ' (4:56)

where 6 = s + b;t.

¢

Let £ € R® with z1,29 # 0. Set € < min{J%"I D= 1,2}. If (s,t) lies in the

e-stabilizer
oS = {(s,t) e Rx R : |FA*B ~ Z|| < ¢} (4.57)

then similar to the proofs in the 2 x 2 and 3 x 3 cases we obtain the following

four conditions on (s,t):

D[

+art _ _ pastat g e
(1) ‘(e"s “tcosf — 1)T — e sme‘ < <

eastaitgin @ + (e*stotcosf — 1)%2) < &
z1 lz1] —

B [—

(2)

(3) |es+a1?[(s + ast) cos@ — bytsinBlz; — e**F*1[(s + ast) sin § + byt cos Olze +

(eas+a1t cosf — 1)$3 — e¥start gip 01}4' <e

(4) |e@**1t[(s + aat) sin O + byt cos B)zy + e*+41¥[(s + ast) cos 0 — byt sinb]zy +

e®statsin Oy + (et cos§ — 1)ay| < €

In the proof of theorem 4.8, case B5, we showed that the first two inequalities

give us

0 < K, < eXestat) < gy (4.58)
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for some constants K, Ko.

By taking 1(3)1 + |(4) and using (4.58) we obtain

et (s + ast) cos B — bot sin 9]( + = ) + (e*t* cosh — 1)(963 + E4—)

T T2 Ty
+eas+“‘tsin9(—ﬂ+£3—) §—6—+ <1
Ty T lza| |1

or using (4.58),

T
|e***e1¥| (s + ast) cos f — bgtsm0|'—1+——2 <1+ |e*tottcosd — 11’— + —
T1%2 1
+ exstart| sm0|} - — + —| <L
Iyt
|(s + agt) cos§ — bytsin 0] < Ly D12 . e~(ostart) . T
17T T2

(4.59)
JORO)

z1| l —Za|’

Again, taking ol we get

— e®sta1t] (s 4 ayt) sin § + byt cos 0](—2—2— + %) 4 (e*to1tcosf — 1) (i—g — %)
1 2 1 2

—e‘)‘”‘“tsin@(E + 2 1 < —+——<
rr I2 |$1l |*~T2|

Similar to the above calculation, we get
(s + ast) sin 8 + bot cos ] < Lo. (4.60)
By multiplying (4.59) by |cos@ | and (4.60) by |sin8 |, we get
(s + agt) cos? 6 — byt sin 6 cos ] < Li|cosf) < Ly (4.61)
|(s + agt) sin® 6 + byt cos O sin f] < Ly|sinf| < L, (4.62)
Combining (4.61) and (4.62),
ls + agt| < Li+L,=1L. (4.63)
Together with (4.58) we get the system of equations

as+at =M
(4.64)
s+ast =N
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where M € [ln £ In %2] and N € [-L, L}.
The set of pairs (s,t) satisfying (4.64) is bounded since aay — a1 # 0. Therefore

@< is compact for almost all Z and small ¢, so that ® is admissible. O

Theorem 4.12. Let & : R? —» D = {A*B' = *M+N . 5t ¢ R} where M, N
are commuting matrices as in cases HI to Hj. If at least one of M and N has

non-zero trace, and
1. M,N are as i, case H1 with ab—aB #0, or
2. M,N are as in case H2 with ab—a # 0, or
3. M, N are as in case H3 with ayas — agay # 0, or
4. M,N are as in case Hj with aaz — a1 # 0,
then @ is admissible.

Proof. Case H1: Direct computation shows that

exstat 0 (%) ... (%)
0 ettt (x) (%)
AB'=| 0 0

\ 0 0 () ... (%
Let £ € R"® with z;,z5 # 0. Pick € < min {J”‘T' st =1, 2}. Proceeding exactly as
in the proof of theorem 4.1, case A1, one shows that if (s,t) lies in the e-stabilizer

35 = {(s,t) e Rx R: ||ZA’B' — &|| < ¢} (4.65)
then (s,t) must solve the system of equations

as+at =k
(4.66)
BS + bt = kg
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where k;, k; € [~ In2,1n3—1n2]. The set of pairs (s, t) satisfying (4.66) is bounded
since ab — a8 # 0. Therefore, ®% is compact for almost all Z and small ¢, so that
® is admissible.

Case H2: Direct computation shows that

1 bt+s (x) ... (%)

0 1 (x) o (%)
A;s'Bt — ea.s+at 0 O

\0 0 (*) ... (¥
Let # € R* with 21,29 # 0. Set € < min {]ﬂl 1 =1, 2}. Proceeding exactly as

2

in the proof of theorem 4.1, case A2, one shows that if (s, t) lies in the e-stabilizer
% = {(s,t) ER xR : |ZA°B' — || < ¢} (4.67)
then (s,t) must solve the system of equations

as + at = ky ( )
4.68

S+bt:k2

where k; € [~In2,In3 —In2] and k; € [— 2%,2%} The set of pairs (s,t)
satisfying (4.68) is bounded since ab— a # 0. Therefore, &% is compact for almost
all Z and small €, so that ® is admissible.

Case H3a: If D, and E, are scalar, direct computation shows that A Bt equals

eaistait oos(@,) e 5@t sin(f;) 0 (%) () \
_emstaitgin(,)  emstat cos(f)) 0 (%) (*)
0 0 earstast  (x) (%)
(5 () ()
0 0 (=) (%) (%)
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Let £ € R* with 21,29,2z3 # 0. Pick € < rnin{]%l 1= 1,2,3}. Proceeding
exactly as in the proof of theorem 4.8, case B6, one show that if (s,) lies in the

e-stabilizer
d% = {(s,t) e Rx R: ||ZA°B' — Z|| < ¢} (4.69)
then (s,t) must solve the system of equations

a 018 + dlt = kl .
(450)
QoS + ast = kz

_t

where ki € [~102,1n3 — In2] and kp € | In(1 — K), 3 In(L? + (1 + K)?)|, K =
2

T — 1 lz2|
e L= o Tl

The set of pairs (s, t) satisfying (4.70) is bounded since oy a3 —aaq # 0. Therefore,
@ is compact for almost all & and small ¢, so that @ is admissible.
Case H3b: If both D, and E, are 2 X 2 matrices, then direct computation shows

that ASB! equals

where K is as in (4.51).
Let £ € R® with z1,z2 # 0. Pick € < min{J%l D1 = 1,2}. If (s,t) lies in the

e-stabilizer
g = {(s,t) ERx R: [FA'B' — 7| < ¢} (4.71)

then considering the first four components z1,...,z4 of Z, we see that the four
conditions (1)-(4) of lemma 4.10 must hold

It follows from the proof of lemma 4.10 that the set of pairs (s, t) is bounded
since a,ay — asar # 0. Therefore, ®% is compact for almost all Z and small € , so

that @ is admissible.
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Case H4: Direct computation shows that

(E KE (+) ... (%)
© B () ()
AB = 0 0 () @)

\© © & ... )

4

S+ ast  bet ( cosf sinf
whereK:( , E= , 0= s+ bt.
—bot s+ ast —sinf cos@
KE
That is, the top left block is exactly as in (4.56).

© 5
Let © € R with z;,z5 # 0. Pick € < min{IZ—"' D= 1,2}. If (s,t) lies in the

e-stabilizer
0% = {(s5,t) ERxR: |FA*B' — Z|| < ¢} (4.72)

then looking at the first four components Z1, ..., T4 of Z, one sees that inequalities
(1)-(4) of lemma 4.11 must be satisfied.

It follows from the proof of lemma 4.11 that the set of pairs (s, t) is bounded
since aay — ay # 0. Therefore, @, is compact for almost all # and small €, So that

® is admissible. ]

Remark 4.4. In section 4.2.2 regarding 3 x 3 matriz groups, we discussed one
possibility where the matriz N does not appear to be of the above form, namely
case B4. Note, however, that after a change of basis, the matrices M and N in

case B4 can be brought into the above form, namely to

aOi al%
M = 0 a 0 , N = 0 a d; (if dy #0)

0 0 « 0 0 «
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or
a 0 1 a 1 b
M=10ao0 |, N=]0a 4 (if d2 = 0).
0 0 o 0 0 a

Thus, all of the admissible matrices 2x 2 or 3x 3 matriz pairs discussed in theorem

4.1 and 4.8 fall into the classes of matrices discussed in this theorem.

4.2.4 Non-Commuting 2 x 2 Matrix Groups ' "

In this section, we present some examples of two dimensiohal
non-commuting matrix subgroups of GL;(R) determined by two parameters.

First, we start with subgroups determined by continuous parameters.

a t
Example 1: Let D = (d= ca€RT,teR) where r € R is

0 a

fixed. If r = 1, this group is abelian and falls into the types of groups discussed

in section 4.2.1, so we will assume that r # 1. Note that in general, setting

a = € we can consider D the image of a two-parameter continuous map
es t . . .

d : (s, t) — , so this is the non-commutative analogue of the
0 eT'S

two-parameter groups discussed in section 4.2.1.
We can identify D topologically with R* x R through the map d ~ (a,t). The

group operation on D is then
dy - dy = (a1, 1) - (a2, t2) = (@102, a1tz + ajta).

We note that the topology on D is equivalent to that of Rt x R. The left and

right-Haar measures are as follows:

1. dur(d) = Zdadt is a left Haar measure on D where dadt denotes the

product Lebesgue measure on RT x R. To see this, note that for f € Cc(D)
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and every d; € D we have
SN
/f(d1 . dg) d,LLL(dQ) = //f(alag, CL1t2 + 042151)? da2 dtz.
D R R+ ?
By theorem 2.5 of changing variables, setting wu(az,t2) = aiaz, and
v(ag, t2) = arty + ajt;, we have

/f(dl‘dz) d/LL(d2)://f(u,v)%dudv.

R Rt

Y

2. In a similar way, one shows that dur(d) = —4rdadt is a right Haar measure

t

on D.

3. A(d) = a"! is the modular function. In fact,
1
A(dg) /f(dl . d2) dﬂL(dl) = a;_l / / f(alaz, a1t2 + agtl)g da1 dtl
1
D

R R+

By changing variables, u(ay,t1) = a1a9,v v(ay, t1) = arte + ajty, we have

dz/fdl do) dpup(dy) = f/fuv dudv—/fdldmdl

R R+
Since |det d| = a’*!, it follows that |det d| # A(d) for all a # 1. So if we want
to use theorem 3.5 to establish admissibility for this group, we only need to show
that DS is compact for almost all 7 € R? and for some € > 0.

Given ¥ € R", the e-stabilizer is the subset
5= {(a,t) eR" xR: (a—1)2% + [to; + (" — 1) < 62} (4.73)

of Rt x R. To show that it is compact we need to show that DS C [a, B] x [c, d]
for some closed interval in Rt x R. So let ¥ € R? with z; # 0. Choose ¢ so that

0 < € < |z1]. If (a,t) satisfy (4.73), then in particular

1) ja—1]< & <1

fz1]

(2) |tz + (0" — 1)zo] < e
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From the first inequality, we obtain that

0<leo S <a<i4——
|$1| 1931|

so that a € [a, f] Witha:l_lﬁ‘l’ﬂzl“'ﬁ'
From the second inequality it follows that

It < — + |2

a” — 1|,

T

so that t also lies inthe closed interval [—c, c|,c = IT:TI +

2—?‘ - B7, Therefore D5
is compact. We have shown that D is admissible.

.t

a t
Note: If r = 0, then D = ¢ d = ca € Rt,te R} is called the first
01
Galilei group.
a O
Example 2: Let D = {d= cac€ Rt teR) where r € R is
t a"

fixed.

Computations as in example 1 show that the left Haar measure is dur(d) =
—srdadt while the right Haar measure is dur(d) = Zzdadt, and the modular
function is A(d) = a'~". Hence |det d| = a™*! # o'~ for all @ # 1 unless r = 0.
In case 7 = 0, A(d) = |detd| for all d € D and we conclude that D is not
admissible. Thus we will assume that r # 0. If r = 1, then D is abelian and falls
into the groups discussed in section 4.2.1.

Similar to example 1, we need only investigate whether compact local sta-

bilizer DS exist for almost all 7. Given T € R? with z, # 0, pick € such that

0 < € < |zg|. Then
¢ ={(a,t) € RY xR:[(a — D)z1 +tza)’ + (a” — 1)%z] < €} (4.74)
If (a,t) € DS then in particular,

(1) [(a— 1)z +tzo] <
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2) la" -1 < & < 1.

[E2

Since r # 0, the second inequality implies that

e \Ur € \Ur
0<(1———) <a<(1+—) .
|22 1]

1/2
So that a lies in the closed interval [@, ] C Rt. with o = (1 € ) and

E]
1/2
B = (1 + IleI) . From the first inequality it follows that
€

|2

€+ IIL'1| .‘Bl/r

) < .
[t < 2] i

+]2la-11<
so that ¢ also lies in some closed interval. Therefore D is compact. It follpws
that D is admissible iff = # 0.

The remaining two examples are devoted to semi-discrete subgroups of
GLy(R). That is, we consider images of continuous maps @ : Z x R — GLy(R).

As for the discrete abelian case, it would be natural to consider groups such as

for example,

2"t
D=

0 47
with n € Z and t a dyadic rational, t = It for some £ € Z and m an odd integer
or m = 0, since this is the smallest discrete analogue to the case discussed in
example 1. However, this group D is not closed in GL3(R), so that theorem 3.5
does not apply.

Thus, we still require that the parameter ¢ be continuous.
Example 3: Fix a >0, a # 1, and r € Z. Consider the subgroup D of GL,(R)
D=(¢d= ckeZ,teR
0 ark

We can identify this group topologically with Z x R, where group operation is

given by

dy - dy = (k1,t1) - (ko,t2) = (k1 + kg, taa™ 4 ta7%?).
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Note that D is a closed subgroup of the group considered in example 1.
The left Haar integral is given by 5 [ f(k,t)2¢dt, and the right Haar

kEZR
integral is 3 [ f(k,t)-}edt, and the modular function A(d) = a*=1 . Since

a # 1 we l;fazv]i |det d| = a*C+D #£ oFr-D) = A(d) for k # 0. It is left to
show that D is compact for almost all Z. Note that Dg = {(k,t) € Z xR :
(a* — 1)222 + [tz + (a™F — 1)zo]* < €’} is homeomorphic with 5 = {(d*,t) €
R* x R : (aF —1)%z3 + [tz1 + (a™F — 1)z,}* < €*}. As shown in example 1, 5 is
compact in Rt x R for almost all £ provided that € is sufficiently small. He'hce,
D5 is compact in Z x R, so that D is admissible. o

In a similar way, one can discretize the parameter a in example 2:

Example 4: Fix a >0, a # 1 and r € Z. Consider the subgroup D of GLy(R)

0
D={d= ckeZ,teR
t ark

This group carries the topology of Z x R.
The left Haar integral is Y [ f(k,t)-%dt, and the right Haar integral is

kEZLR
dur(d) = 3 [ f(k,t)Xdt, and the modular function A(d) = a®(1=r) Thus,

if r = 0, :}if |det d| = a**+D) = g¥1-" = A(d) and we conclude that D
is not admissible. Suppose that r # 0. Note that D = {(k,t) € Z xR :
[(a* — D)2y + tzo]? + (a™ — 1).2:1:% < ¢?} is homeomorphic with D = {(a*, ) €
R+ x R : [(a* — 1)z + tzo)? + (a™ — 1)%23 < €°}. As shown in example 2, Dis
compact in Rt x R for almost all £ provided that e is sufficiently small. Hence,
D¢ is compact in Z X R, so that D is admissible iff 7 # 0.

We note that it is not difficult to verify that in all the above examples, we

may also permit a < 0, that is a € R\ {0}. The Haar measures are identical, with

a replaced by |al.



91

4.3 Admissible Functions

In section 4.2, we obtained admissibility conditions for two-parameter
groups generated by two-commuting matrices A and B, and for groups in two
and three dimensions we had a complete characterization. Let us now construct
admissible functions for each admissible group in two dimensions explicitly.

We will consider both the continuous and discrete case. Note that by
proposition 2.11, A? 'énd B? are exponentials, and by proposition 4.6 an admissible
function for the discrete group generated by A and B can be constructed f}rom
an admissible function for the discrete group generated by A? and BZ2. "Thus,
we only need to consider matrix groups generated by commuting exponential

matrices which we will do from now on.

Proposition 4.13. Let ® : R? —» D = {A°B': 5,t € R} be an admissible two-

parameter group where A = eM, B = elN. So its range D = ®(s,t) is one of the

following:
eas+at 0
Case A1: D = s,t € R} where ab— af # 0.
0 e,@s+bt
1 s+bt
Case A2: D = { eoste s,t € R} where ab—a # 0.
0 1
Then

St = {(&1,%1)} is a cross-section for ® in case AL

Sy = {(£1,1)} is a cross-section for ® in case A2.

Proof. Note that clearly S} and Sj are Borel sets.

Case Al: Set P = {f € R? : 21,2, # 0}. Then
fAth — (eas+atx1’ eﬂs—}—bth).

Given & € P we want to find a unique pair (s,t) € R x R so that £A*B* € S1.
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Obviously, TA*B! € S iff

eas+at — _1_
|z1]
eﬁs-{—bt — _1_
|72
or equivalently,
as + at = —In |z,

Bs + bt = —In|z,|.

By the assumption that ab — a8 # 0, this system has the unique solution

_aln|zo| —bln |z

S ap (4.75)
_ Bln|zy| — aln |z
= (4.76)

that is, there exists a unique pair (s,t) such that FAB! € S}. Conversely, if
7 = (£1,41) € S}, then FA° B = (>, +efs+") € P. Since P¢ has measure
zero, we conclude that S is a Borel cross-section.

Case A2: Set P = {7 € R?* : z; # 0}. Then
fAth = 6as+at(IL'1, (S + bt)$1 + .'132).

Given 7 € P we want to find a unique pair (s,t) € R x R so that £A°B* € S;.
Obviously, ZA*B! € S} iff

1

|1

eas+at —

(S + bt)xl + To = |I1|
or equivalently,

as + at = —In |z

5+bt:‘—:§1l—_ﬂ.
I
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By the assumption that ab — a # 0, this system the unique solution

~ (b1 zs] + & (1ol - )
s = - (4.77)
‘= In l$1| + H(lel - 1:2), (478)

ab—a

that is, there exists a unique pair (s,t) such that ZASBt € S). Conversely, if
# = (£1,1) € Sy, then FASBt = (£ e*t%, (1£(s+ bt))e*stet) € P. Since P°

has measure zero, we conclude that S is a Borel cross-section. d
E

Next we consider cross-sections for discrete admissible two-parameter
groups ¥ : Z? — D = {A*B' : k,l € Z} where A = eM and B = eV. Then

D is in one of the following:

_ eak+al
Case Al: D={ A*B'= . k,l € Z p where ab—aB# 0.
0 bkl
~ 1 k+bl
Case A2: D={ AFB! = e**td . k,l € Z 3 where ab—a # 0.
0 1

Proposition 4.14. Let S' denote the cross-section for the continuous two-
parameter group @ : R — {A°B': st € R} as in proposition 4.13. Set
S = {joA*B! : 4o € 5,5, € [0,1)}. Then S is a cross-section for the discrete
two-parameter group ¥ : Z? — {A¥B' : k,l € Z}.
Proof. Keep the notation of the proof of the above proposition. Clearly, if ¥ =
GoA*Bt € S, then jARB! = GoA*tF B! € P. Now let £ € P. Since S’ is a
cross-section for the continuous action, there exist unique 7,q € R and % € S’
such that

T = yjoA"BY.
Now there exist unique k,[, s,t with

r=k+s where k€Z and s€[0,1)

g=1+t where l€Z and t€(0,1).
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Set i1 = §oA*B! € S. Then 71 A¥B! = Z. Since #i1,k,l are unique, we conclude

that S is a cross-section for the discrete action. O

Remark 4.5. The cross-section S gives rise to an admissible function ¢ in a
natural way. Choose 1 € L*(R?*) so that {j; =xs . Then for all ¥ € P, ZA*Ble S
for ezactly one pair (k,1). Thus for almost all Z,

S BEABYP =33 [xs@A B[ =1

l€Z ke&Z l€Z keZ

so that ¢ is an admissible function.

It follows from propositions 4.6 and 4.14 that we have an easily constricted
admissible function for both the discrete and continuous actions. Unfortunately,
since {p\ is the characteristic function of some Borel set S, ¥ is not smooth. Our
next goal is thus to construct an admissible functions ¢ which is smooth and has
compact support. Our construction is adapted from a preprint by Schulz and
Taylor. Since any admissible function for the discrete action is also admissible for
the continuous action, we need only consider the discrete case. We start with the

cross-section in proposition, 4.14.
S = {goAth e S s, teD 1)},
and modify S to a slightly larger set
Ss = {gASBt .7eS st < 5}
so that
S5 = {gOASBt e S, s, te[=61+ 5]}

where we chose 6 so that 0 < § < %
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Lemma 4.15. Let W : Z2 — D = {AFB' : k,l € Z} C GLy(R) be admissible as
in the proof of proposition 4.14. Then for all Ty € P, there exist a neighborhood
U of T such that

£A*B' € S;
for at most 4 pairs (k,l) and all T € Y.

Proof. Keep the notation of the previous propositions. Let S’ = S}, or Sy, de-
pending on the types of matrices A and B.

Note that if £ = (z1,z2) € P, then as shown in the proof of proposition 4.13,
there exist unique real numbers s = s(%) and t = ¢(Z) such that ZA*B* € S'.

Then

T =yA B for some f; € S’

fAkBl — g*OAk—sBl—t
So if ZAFB! € S; then

—§<k-s<1+494

—5<I-t<1+5,

or equivalently

V)
—~
8y
S
|
(&%)
IN
>
AN

s(Z) + (1 +9)
(4.79)
HE)~6 < I < @)+ (1+9).

Now formulas (4.75) and (4.76), respectively (4.77) and (4.78) for the functions

s,t show that the map
7 e P (s(Z),t(x))

is continuous. Thus, given a fixed ¥y € P, there exists an open neighborhood
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U(Zy) of Zp in P so that

s(Zo) =61 < s(Z) < s(@o)+6
(Zo) — &1 (Z) (Zo) + 61 (4.80)
t(.’i"o) - 5] < t(f) < t(ffo) + 51
for all & € U(T), where we have picked ¢; so that 0 < §+46; < % Since P is open

in R?, U(Z,) is also open in R2.

Now if £ € U(Z;) and TA*B' € Sy then by (4.79) and (4.80),
(F) — 61— 6 < k < s(Eo) +1+06+6,
HFo) — 61— 6 <1 < (@) +1+8+6
so that

1 3
S(.’fo) — 5 <k <S(f0)+§

1
t(fo) — '2— <l< t(fo) +

B W

This shows that there exist at most 4 pairs (k, ) so that ZA*B' € S5, independent

of the choice of T € U(Z)). a

The goal now is to construct an admissible function 1) whose Fourier trans-
form 1//)\ is smooth and has compact support. The following theorem shows the

construction of {/; explicitly.

Theorem 4.16. Let ¥ : Z2 — GLy(R) be a discrete admissible two-parameter

group. Then there exists an admissible function v such that {p\ € C*(R?).

Proof. Let D = {A*B' : k,l € Z}. Fix 0 < § < 3, an let S and S; be as above.

First we construct a function f € C*°(R?) which is supported on S5 and such that
0<f<1, f(@=1 forallzesS.

Case A1l : We split S5 into the four parts which lie in the four quadrants.

In fact, if

S’ - {51752753)3_54}
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where &; = (1,1),%; = (-1,1),T5 = (-1,—1) and Z4 = (1, 1), set
St = {#;A°B":0<s,t <1}
and
St ={#FHA*B': =6 < 5,1 <1+ 4}

Next we construct diffeomorphisms from R? onto each of the four quadrants Q);.

In fact, the maps
gi R > Q;
given by
gi(5, 1) = ZAB! = (e, 1)

are injective since ab — af # 0, surjective and infinitely differentiable. Indeed,
formulas (4.75) and (4.76) show that the inverse maps g; 1. Q; — R? are given

by

alnjv] —blnju| Bln|u|— aln |v|)
ab—af ab— af

g7 (u,v) = (
which are clearly infinitely differentiable.
In particular, we observe that g; maps the unit square [0,1] x [0, 1] onto S?, and
[—6,1+ 6] x [6,1 + 6] onto S;. Now by Jones (1993) pp. 175-180, there exists a
function f, € C®(R?) such that 0 < fo < 1, supp (fo) C [=6,1+ 6] x [-6,1 + )
and fo(Z) =1 V& € [0,1] x [0,1]. Since 4,1 +6] x [-4,1 + 8] is compact, and
each g; is continuous, each S§ is compact in @;. Since @; is open on R?, St is also

compact in R2. Set

fi = foo gt i=1,..,4.

Then f; : Q; — [0,1] is infinitely differentiable and has support contained in S§ =

0:([=6,1+ 8] x [=6,140]),0 < fi < land fi(%) =1 V& € S' = g;([0,1] x [0, 1)).
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Next we extend each f; to R? by setting f;(Z) =0 VI ¢ Q.
We need to verify that f is in C®°(R?). Suppose, o € R? \ Q;. Then since S}
is closed in R? and 7, ¢ Si, we can find an open neighborhood U(#,) such that
U(G,) N Si = @. Then f;(§) =0 V7§ € U(i), so that obviously, f; is infinitely
differentiable at #,. This shows that f € C*(R?), supp (f;) C S;, 0 < f; <1 and
fil@) =1 VZes '
Then f = i‘ fiis th’ei desired function.
Case A2:1;7t7e proceed similarly:

If §' = {&, 25} with Z; = (1,1) and & = (=1,1), then we set
St = {7;A°B': 0 < 5,t < 1}
and
Si = {Z;A°B': -6 <s,t <1446} i =1,2.
Let Q; and @, denote the open half planes

le{f€R21$1>0}

Q={feR: 1, <0}
respectively. Then the maps
hi 1 R — Q;
given by
hi(s,t) = HAB! = (£ e*, (1 & (s + bt))e****)

are injective since ab — a # 0, surjective and infinitely differentiable. Indeed,
formulas (4.77) and (4.78) show that the inverse maps h; ENAY 5 R are given

by

hit(u,v) = (

3y

_(bln|u| + &(jul — v)) In |u| + 2(Jul - U)>

ab—a ab—a
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which are clearly infinitely differentiable.

Keep fo as in case Al, set
fi= fooh;! i=1,2.

Then f; € C*(Q:), 0 < f; < 1, supp (fi) C S}, and f;(F) =1 VT € S*.
Arguing as in case Al, one can extend the functions f; to C* functions defined

on R?, by setting
fil) =0 VzZ ¢ Q;,
then f = f, + fo is the desired function.
Now set

0@ =33 (f@A*BY))*: zeP (4.81)

leZ keZ

By lemma 4.15, V2, € P, we can find a neighborhood U of 5 so that the terms
in this summation (4.81) are zero for all except at most 4 pairs (k,l), which are
independent of Z, say (k;,l;) :i=1,...,4. That is, for & € U(Zo), (4.81) is a finite

o(Z) = (F(@AR B2))? + ... + (f(zAMBY))”.

Since each term on the right hand side is infinitely differentiable at Zp, it follows
that o is infinitely differentiable at Zo, that is, o € C*(P). Since 0 < f < 1,
f(Z) =1for Z € S, and S is a cross-section, at least one term in this sum is equal

to one, so that

for all & € U(zy). Set

[
8
A
~
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Since f € C*(R?) is supported on Ss, and since as shown above, Ss is a compact
subset of P, there exists an open set O containing P¢, so that O N S; = 0. Since
f(£) = 0 for £ € O, we conclude that {b\ is infinitely differentiable on O, and

hence ¢ € C°(R?). By construction, for all Z € P,

SIS wEABY =), a;ikl;) =1 . (482)

leZ kel leZ keZ

Since P¢ has measure zero, the inverse Fourier transform of 1 is the desired

"N

admissible function. |



Chapter V

Conclusion

The objective of this thesis was to investigate what matrix groups which
depend on two para’r;leters are admissible for wavelet analysis, and to constrict
explicit admissible functions. The tools used are mainly from the Work§ of
Weiss et al. (2002) and the preprint by Schulz and Taylor. We have obtained

the following results

1. In proposition 4.4 we have given a complete classification of commuting
matrix pairs A, B € GLy(R) so that the continuous two-parameter group

®: (s,t) € R? — A*B! is defined and is admissible.

9. In corollary 4.7 we have given a complete classification of commuting matrix
pairs A, B € GL,y(R) so that the discrete two-parameter group ¥ : (k1) €

72 —» A*B! is defined and is admissible.

3. In examples 1-4 we have investigated classes of non-abelian subgroup of
GLy(R) depending on two parameters, and have classified which of these

group are admissible.

4. Tn theorem 4.16 we have constructed admissible functions for the admissible

two-parameter groups in 1 and 2 which lie in the Schwartz class.

5. In propositions 4.5 and 4.6 we have clarified the relationship between genera-
tors A, B of discrete and of continuous two-parameter groups. In particular,

we have shown that every admissible function for the discrete two-parameter
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group is admissible for the continuous two-parameter group, and every ad-
missible function for the continuous two-parameter group can be modified
to be admissible for the discrete two-parameter group. Furthermore, in the

discrete case, we may assume that A and B are exponential matrices.

6. In theorem 4.8 we have given a complete classification of commuting ma-
trix pairs A,B € GL3(R) so that the continuous two-parameter group

® : (s,t) € R? +» A°B! is defined and is admissible.

7. In theorem 4.12 we have presented a large classes of commuting matrices
M,N € GL,(R) so that the continuous two-parameter group ® : (é,t) €

R? — AsB! is defined and is admissible.

The goal of classifying all two-parameter matrix groups which are admis-
sible is far from complete, because it is not easy to classify all commuting n X n
matrix pairs M and N for n > 3. It is also interesting to study what matrices
give rise to admissible n-parameter groups.

In the examples of non-commuting 2 x 2 matrix group, we omitted the
case where both parameters are discrete because the tools provided by theorem
3.5 can no longer be applied. It would be an interesting question to investigate
whether such groups can be admissible at all.

Finally, for practical computations, one requires admissible functions which
are in the Schwartz class. We have been able to find these in the case of 2 x 2
matrix groups only. In higher dimensions such admissible functions do not always
exist as shown in the preprint by Schulz and Taylor, so one needs to classify for

what groups such functions do exist.
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Appendix A

Classification of Commuting 2 X 2 Matrix Pairs

Let A, B € M,(R) with AB = BA. We bring matrix A into real Jordan

normal form. There are 4 possibilities for A.

1. A is diagonalizable and has only one real eigenvalue,

A= .
0 «
Because A is a multiple of the identity, every 2 x 2 matrix B commutes with

A and by a change of basis leaving A unchanged, we can bring B also into

Jordan normal form as follows:

a O
(1a) B is diagonalizable, B =

0 b

(1b) B has only one real eigenvalue but is not diagonalizable, B =

a 1
0 a
_ a b
(1c) B has complex eigenvalues, B = where b # 0.
-b a
L a 0
2. A is diagonalizable and has distinct real eigenvalues, A = |. , o F
0 B
8.
a 0

Every matrix B commuting with A must be of the form B =
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a 1
3. A has one real eigenvalue and is not diagonalizable, A = . Then
0 «
a b
every matrix B commuting with A is of the form B =
0 a
a B .
4. A has complex eigenvalues, A = with 8 # 0. Every matrix B
-8 «
‘ a b .
commuting with A is of the form B =
-b a

We can summerize the above as follows: After exchanging A and 'B, if
necessary, and an appropriate change of basis, exactly one of the following holds:

Case 1 Both matrices are simultaneously diagonalizable,

a 0 a 0
A= and B =

0 B 0 b

Case 2 Both matrices have only one real eigenvalue and at least one, say A, is

not diagonalizable. Then in the Jordan basis of A,

a 1 a b
A= and B =

0 o 0 a

Case 3 At least one matrix, say A, has complex eigenvalues,

a pf a b
A= and B = where 8 # 0.

-8 « —b a



Appendix B

Classification of Commuting 3 x 3 Matrix Pairs

L

Let A, B € M;(R) with AB = BA. Bringing matrix A into real Jordan

normal form we distinguish between 4 possibilities for A as follows:

1. A has exactly one eigenvalue o which is real.

a 0 0
(1a) A has 3 Jordan blocks, A=1 0 o 0

0 0 «o
Since A is a multiple of the identity, every matrix B € M3(R) commutes

with A, and by a change of basis leaving A unchanged, we can also bring

B into real Jordan normal form. There are 5 possibilities for B:

aOO\\

(1a.1) B has 3 real Jordan blocks, B=1 0 b 0

(1a.2) B has 2 real Jordan blocks, B=1| 0 a 0

o
o
<o

a 1 0
(1a.3) B has one real Jordan block, B=| 0 4 1

0 0 «a
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(1a.4) B has one complex and one real Jordan block,

a b 0
B=1{| —b a 0 b#0.
0 0 ¢
a1l 0
(1b) A has 2 real Jordan blocks, A=} 0 « 0 |. Then
a 0 0 «

a b d2
(Ibl) B=1] 0 a 0

0d1 C

]

where a # c.

Note that by a change of basis which leaves A unchanged, we can

bring B into the form B =

b+ L.
a b d2
(Ib2) B=]0 a 0

0 d1 a
(1c) A has 1 real Jordan block,
a 1 0
A=]10 o 1 |,then B=
0 0 «

a b d
0 a 0 | where d = dydy,b' =

0 0 ¢

a b ¢
0 a b

0 0 a

2. A has two distinct eigenvalues o # 8 which are real.

(2a) A has 3 real Jordan blocks,

a1
where By=

by

az

ba
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We can bring B; into real Jordan normal form leaving A unchanged.
Then there are 3 possibilities,

a 0 0
(2a.1) B=1| 0 b 0 | where B; has 2 real Jordan blocks.

\ 0
(a 1 0\

(2a.2) B=] 0 @ 0 | where B; has 1 real Jordan block.

.\000)

[ew}

C

a b 0
(2a.3) B=| —b q 0 | where By has a complex pairs of eigenvalues
0 0 ¢
and b # 0.
a1l 0
(2b) A has 2 real Jordan blocks, A = 0 a 0 |. Every matrix B
0 0 8
a b 0
commuting with A must be of the foorm B=| g 4 0
0 0 ¢
3. A has 3 distinct real eigenvalues «;, 3, 7.
a 0 0
A= 0 A 0 |- Every matrix B commuting with A must be of the
0 0 v
a 00

formB=| 0 b» 0

0 0 ¢

4. A has one real eigenvalue and a complex pairs of eigenvalues,
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a B O
A=] -8 a 0 B # 0. Every matrix B commuting with A must be of
0 0 ~«
a b O
the form B = -b a O
0 0 c

We can summanze this into 6 distinct cases as follows: After exchanging A

and B if necessary, and choosing an appropriate basis, exactly one of the followmg

holds:
(aO 0 a 00
MA=|o0opgo0|.B=]00b0
\0 0 v 0 0 ¢
a 1 0 a b c
2)A=]| 0 o 1 ,B=10 a b
\ 0 0 o 00 a
a 1 0 a b d
B3YA=|0a 0 |, B=]0a0
0 0 « 0 0 ¢

where a # ¢,d # 0 (if d = 0, this can be reduced to case (5) by exchanging

A and B and changing basis.

a 1 O\ a b d2
4 A=| 0 a0 | B=]0 a 0

0 0 o 0 d1 a

a 1 0\ a b 0
5)A=|0 a0 | B=]0a0 where o # .
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a [ 0 a b 0
6) A=| -8 a 0 | B=] =b a 0 where 8 # 0.

0 0 v 0 0 c
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