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This project considered impulsive systems. Firstly, we investigated a deterministic impulsive
periodic system which is governed by strongly nonlinear evolution equations. We can prove the
existence of a solution of such periodic impulsive system. By an application of the above result, we
can prove the existence a control pair. Secondly, we turned to investigate a stochastic impulsive
system. We considered a fractional Black-Scholes model with jump. We constructed an
approximate model and proved that the approximate model converged in mean square to the
fractional model. For an application, we applied the above results to forecast the price behavior of

an equity in Thai stock market.
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1. Nonlinear impulsive periodic evolution equations.

2. A fractional Black-Scholes model with jump.
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1. Suppose A is a nonlinear monotone operator, f satisfies a growth condition, and F

satisfies a Lipschitz condition. Then equation (3) has a T-periodic solution _ 2

I0<(0~ NJLO= J~_) 95160sRsaRuANNNGERUN 2 YOIMANUIN 0

2. Suppose S(0) is a random variable such that E | S(0)|**® is finite for some & >0.

Then the solution of equation(6) is given

S,(£) = S(0) exp(—%azgz"t +oe W (t)+ [ H,(s)ds+ [log(1+ de(s))
where 0 <o <% and

H.(t)=p+oo £ (t—s+&)'dW(s).
Moreover, the process S, (f) converges to the process S(¢f) in mean square as £ = 0.
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Abstract. In this paper,we introduce an approximate approach to a fractional Black-
Scholes model with jumps perturbed by fractional noise. Based on a fundamental result
on the L%-approximation of this noise by semimartingles, we prove a convergence of
theorem concerning an approximate solution. A simulation example shows a significant
reduction of error in a fractional jump model as compared to the classical jump model.
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1. Introduction

In some recent papers (see for examples [5, 6]), some fractional Black-Scholes
model have been proposed as an improvement of the classical Black-Scholes.
Common to these models is that they are driven by a fractional Brownian mo-
tion and that some stochastic calculus is created by using, for example, Malliavin
calculus or Wick product analysis. Recently, and approximate approach to frac-
tional Black-Scholes model is introduced and investigated in [10]. In this paper
we use this approach to study a fractional Black-Scholes model with jumps.

Recall that a fractional Brownian motion Bf with Hurst index H, is a
centered Guassian process such that its covariance function R(t,s) = EBf BE
is given by

*This work was supported by Suranaree University of Technology, 2005.
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R(t,s) =

N =

(jt" + 18" — |t — s|”), where y=2H and 0 < H < 1.

If H = %, R(t,s) = min(¢, s) and Bf is the usual standard Brownian motion.
In the case 3 < H < 1 the fractional Brownian motion exhibits statistical
long range dependency in the sense that p, := E[Bf (BH ;. — BH] > 0 for all
n=1,2,3,...and 22 ; p, = oo ([9, page 2]). Hence, in financial modelling, one
usually assumes that H € (3,1). Put @ = H — 1.It is known that a fractional

Brownian motion Bf can be decomposed as follows:

1 ¢ N
m[ZtJr/o (t — s)*dW,),

where I is the gamma, function,

0
zi= [ (-9~ oram,

Bff =

and W; is a standard Brownian motion. We suppose from now on 0 < a < %

Then Z; has absolutely continuous trajectories and it is the term By := fot (t -
5)*dW, that exhibits long range dependence. We will use B; instead of B
in fractional stochastic calculus. The fractional Black-Scholes model under our
consideration is of the form

dSt = St(/.tdt"l'O'dBt),OSt ST, (1)
S(0) = Sy,

where S; is the price of a stock, i, and o are constants, and B; as given above.
Now, consider the corresponding approximate model of (1)

dSe(t) = S (t)(udt + 0dB.(t)),0<t < T, (2)
S:(0) = Sy (same initial condition as in (1)),

where B.(t) = f; (t—s+e)H~3dW(s), 1 < H < 1. Referring to the main result
of Thao [10, Theorem 4.2], the solution S.(t) of equation (2) converges to the
solution S; of (1) in L%#(Q) as ¢ — 0.

In this paper, we extend the main result of Thao [10] to a fractional Black-
Scholes model with jumps. We also prove that the solution of our approx-
imate models converges to the solution of the fractional Black-scholes model
with jumps. In summary, this paper is organized as follows: In Sec. 2, we review
the definition of the Poisson random measure and some preliminary notions of
jump-diffusion processes which mostly come from [2]. In Sec. 3, we follow the
general setting of [7, page 143] to consider the stock price model with jumps.
In Sec. 4, we discuss an approximate model for a fractional stock-price model
with jumps. Finally, we give some simulation examples to show the accuracy of
approximations by the fractional Black-Scholes model with jumps as compared
to the classical Black-Scholes model with jumps.
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2. Poisson Random Measures

A Poisson process (N(t),t > 0), with intensity A, is defined as follows:

N(t) =Y Lir.<t,

n>1

n
where T,, = Y 7; and 71, Ty, ... is a sequence of independent, identically exponen-

i=1

tially distributed random variables (defined on some probability space (2, F, P))
with parameter ), that is, P(7; > t) = e~ *. N(t) is simply the number of jumps
between 0 and ¢, i.e.,

N(t) =#{n>1,T, € [0,t]}.
Similarly, if ¢ > s then
N(t) - N(s) =#{n > 1,T, € (s,t]}.

The jump times 71,73, ... , form a random configuration of points on [0, 00)
and the Poisson process N(t) counts the number of such points in the interval
[0,1]. This counting procedure defines a measure N on [0, o) := R™ as follows:
For any Borel measurable set 4 C R™*,

N(w, A) = #{n > 1, Tu(w) € A} = Y 1a(Tn(w)).

n>1

N(w,-) is a positive integer valued measure on Borel subsets of RT. We note
that N(-, A) is finite with probability 1 for any bounded set A C R*. The
measure N(w,-) depends on w; it is thus a random measure. The intensity A of
the Poisson process determines the average value of the random measure N(-, 4},
that is

E[N(, A)] = AlAl,

where |A| is the Lebesgue measure of A.

N(w,-) is called a Poisson random measure associated with the Poisson process
N(t). The Poisson process N(t) may be expressed in terms of the random
measure N in the following way:

N(w,t) = N(w,[0,t]) = N(w, ds).
[o.t]
Conversely, the Poisson random measure N can also be viewed as the “deriva-
tive” of a Poisson process. Recall that each trajectory ¢ — N(w,t) of a Poisson
process is an increasing step function. Hence its derivative (in the sense of dis-
tributions) is a positive measure on o—algebra of Borel sets of R*. In fact, it
is simply the superposition of Dirac masses located at the jump times:

d
%N(w,t) => or,w() = Nw,"),
n>1
hence, for any predictable process f(w,s), the stochastic integral with respect
to the Poisson random measure N admits, for any ¢t € RT, the form
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t N(,t)
/ FONCds) = 3 (T ey () = 3 AT
0 n>1 n=1
or in a more compact form
N{(t)
/ f&)dN(s) = 3 A(T, 3)
n=1

We now assume that the T},’s correspond to the jump times of a Poisson process
N(t) and that Y,, is a sequence of indentically distributed random variables with
values in (—1,00). Let S(t) be a predictable process. At time T, the jump of
the dynamics of S(t) is given by

S(T) — S(Tn~) = S(Tp—=)Yr, (4)

which, by the assumption Y,, > —1, leads always to positive values of the prices.
If £(S,t) is a C{?}-function (this means that f is C? in the first variable
and C? in the second variable), then it follows from (3) that

N(t)

/O [F(S(s=)(1+Y5), )= f(S(s=), $)]dN () = Y _[f(S(T0), Tn) = F(S(Tn =), T)]

n=1
(5)
where Y; is obtained from Y,, by a piecewise constant and left continuous time
interpolation. An application of equation (5) to the function f(S,t) = S for
S > 0 yields

¢ N()
| 18600+ 2) = S(s-1an(s) = Y_1S(Th) - S(T-)]
or t NGO
| ste-ane = 3 (8@ - S@-) (©)
1t then follow from equations (4) and (6) that
N(t)
/S(s VYodN(s) = ZST )Y (7)

The following lemma is an Ito’s formula for jump-diffusion process. Its proof
can be found in [2, p. 275].

Lemma 1. Let X be a diffusion process with jumps, defined as the sum of drift
term, a Brownian stochastic integral and a compound Poisson process:

N(t)
X(t) = X(0) + / b(s)ds + / o(5)dW () + S AX,.

n=1

Here b(t), o(t) are continuous nonanticipating processes with
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E UOT 02(t)dt] < 00,

and AX, = X(T) — X(Tn—) are the jump sizes. Then, for any C??* function,
F:Rx[0,T] = R, the process Y (t) = f(X(t),t) can be represented as:

1.0 - 1500 = [ |Z 0, 9006) + Fx(3)9) s

+% /0 02(3)%(X(s),s)ds+ /0 g—i(X(S),S)U(S)dW(S)

N{t)

+ Z [f(X(Tn)aTn) + f(X(Tn“)’Tn)] .

3. Stock Price Model with Jumps

Let us consider a probability space (Q,F,P) on which we define a standard
Brownian motion (W {t),t > 0), a Poisson process (NN (t),¢ > 0) with intensity A
and a sequence (Y,,n > 1) of independent, identically distributed random vari-
ables taking values in (—1, +00). We will assume that the o-algebras generated
respectively by (W(t),t > 0), (N(¢),t > 0) and (Y,,n > 1) are independent.
The objective of this section is to model a financial market in which there is
one riskless asset (with price S°(t) = e*!, at time t) and one risky asset whose
price jumps at the proportions Y1,...,Y,,..., at some times 17, ... ,Ty,... and
which, between any two jumps, follows the Black-Scholes model. Moreover, we
will assume that the 7},’s correspond to the jump times of a Poisson process.
The dynamics of S(t), the price of the risky asset at time ¢, can now be
described in the following manner. The process (S(¢),t > 0) is an adapted,
right-continuous process such that on the time intervals [T, T541),

dS(t) = S(t)(udt + cdW(¢)),0<t<T (8)
while at t = T,,, the jump of S(¢) is given by
AS, = 8(T,) ~ S(Th-) = S(T,—)Ya.

Thus
S(Ty) =S(T—)(1+Y,).

By using the standard It6 formula, the solution of (8) on the interval [0, T}) is
S(t) = S(0) exp ((u - g23)15 + 0W(t)) .
Consequently, the left-hand limit at Ty is given by
S(ri-) = Jim 5 = 50 (s - ST + W (1))

and
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S(13) = 5O + ¥ exp (=5 )7 + WT))
Then, for t € [T1,T2),

o2
S(t) = S(h) exp(p — 5)(t = T) + o (W(t) - W(Th))

o2
= 5(0){1 + Y1) exp ((,u - 7)t + O'W(t)) .

Repeating this scheme, we obtain

S(t) = 5(0) [H n=1(1+ m} e ((u=Fr+aw) )

N(t)
with the convention [[n = 1 = 1. Using equation (3), S(¢) can be given in the
0

following equivalent representations

2 N(t)
S(t) = S(0)exp |{(u— -(-72—)75 + oW (t) + log (H (1+ Yn))}

ne=l

2 N(t)
= S5(0)exp | (pu— %—)t +oW(t) + Z log(1 + Yn)}

=1

= S0)exp [(u— Tt +aW (o) + [ o1+ v)an(s)|

where Y; is obtained from Y,, by a piecewise constant and left continuous time
interpolation.

The process (S(t),t > 0) in equation (9) is right-continuous, adapted and
has only finitely many discontinuities on each interval [0, ¢]. We can also prove
the following,.

Theorem 1. For allt > 0, (S(t),t > 0) in equation (9) satisfies:

t N(t)
P as. S()=5(0) +/0 S(s)(uds + cdW (s)) + Z S(T,—)Y, (10)

n=}1
or, in differential form

P as. dS(t) = S(t)(udt + odW (b)) + S(t—)YidN (). (11)

Proof. Let AS,, = S(Ty,) — S(T,—) = S(T,,—)Y,. Then (10) can be written in
the following form:

¢ N(t)
P as. S()=5(0) +/ S(s) (pds +odW(s)) + Z n=1AS,, (12)
0
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We choose the function f(z,s) = log z. Direct calculation shows that
1 1
f:z: = ;,fxm = _;'2‘ and fs =0

We note that f(z,t) is aC??! function if x > 0. Assume that S(¢) in (10) is
nonnegative. Applying the Ité formula for jump-diffusion processes (see Lemma
1) to f(z,t) = log =, we obtain

N(t)

log S(t) = log S(0)(u — 5r;—)t +oW(s) + Z log(1+7Y,).
Thus,
N(t) o2
S(t) = 5(0) [H 1+ Yn)} exp ((,u - —2-—)15 + O’W(t)> .

Hence, we obtain (9) as asserted.

4. A Fractional Stock Price Model with Jumps

We use the same setting probability spaces as in Sec. 3. The objective of this
section is to construct an approximate model for a financial market in which
there is one riskless asset (with price S°(¢) = /!, at time t) and one risky as-
set whose price jumps in the proportions Yi,...,Y,,...at some random times
Ty, T3, ..., T, ...and which, between two jumps, follows the fractional Black-
Scholes model.for a fractional process B(t). These descriptions can be formalized
on the intervals [Ty, Tp+1) by letting:

dS(t) = S(t)(udt + 0dB(t)),0 <t < T. (13)
At t = Ty, the jump of S(¢) is given by

AS, = S(T,) — S(Tn—) = S(Tp—) Y.
Now, we consider a fractional Black-Scholes model with jumps which is defined

similarly to equation (11) by the following stochastic differential equation

dS(t) = S(t)(udt + cdB(t)) + S(t-)YidN(2), (14)
S(t)]e=0 = S(0).

Here B(t) = fot(t — 5)*dW(s) where 0 < a < 1.
The corresponding approximate model of (14) is defined for each £ > 0 by

dS.(t) = Se(t)(udt + 0dBe(t)) + S (t—)Y:dN(t), (15)
Se(t)|t=0 = S(0) (same intial conditon as in (14)),

where B, (t) = fg’ (t—s+¢€)*dW (s). One can prove that B.(t) is a semimartingale
and B (t) converges to B(t) in L?(2) when € — 0. This convergence is uniform
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with respect to ¢ € [0, T (see [10, Theorem 2.1}). We need the following Lemma
considered as a consequence of the L% —convergence of B.(t) to B(t).

Lemma 2. B(t) converges to B(t) in LP(Q) for any p > 2, uniformly with
respect to t € [0,T].

Proof. The proof of this Lemma is due to Nguyen Tien Dung [8].

Theorem 2. Suppose that S(0) is a random variable such that E|S(0)|?>*? is
finite for some & > 0. Then the solution of (15) is given by:

S.(t) = S(0) exp (_%ngzat + oe®W(t) + /Ot H.(s)ds + /Ot log(1 + YS)dN(s)> ,

where 0 < a0 < —;—, and
H.(t) = p+aoc /Ot(t —~ s +¢€)* 1 dW (s).
Furthermore, the stochastic process S« (t) defined by
S.(t) = S(0) exp (,ut +oB(t) + /Ot log(1 + Ys)dN(s))

is the limit in L2()) of Sc(t) as € — 0. This limit is uniform with respect to
te(0,T].

Proof. Letting @(t) = fot(t — 5+ €)*"1dW(s), and substituting dB(t) =
ape(t)di + e*dW (t) into equation (eqnlb), we obtain
dSc(t) = [ + aope (t)])Se (t)dt + oS (£)dW (t) + Se(t—)Y:dN (), (16)
or,

d.Si E(S;) = [u+ aope(t))dt +0e®dW (t) + (

Se (t*)
Se(t)

Se(t—)
Se(t)

) Y. dN(t) (17)

) YidN(2)

= H(t)dt + gs"‘dW(t) + (

where H(t) = p + aope(t). Moreover, we can write equation (eqnl6) into
an integral form as

/O dS.(t) = /0 H.(s)S. (s)ds + /0 oS, ()W (s) + /O S.(s—)Y,dN(s).
Thus,

Se(t) = S(0) + /Ot H.(s)Sc(s)ds +/O e 8 (8)dW (s) —I—/O Se(s—)Y,dN(s).



A Fractional Black-Scholes Model with Jumps 9

Using the formula (7), Sc(t) can be given in the following equivalent represen-
tations

t ¢ N(t)
S.(t) = S(0) + /0 Ho(5)S. (s)ds + /O 0e%S.(s)dW (s) + 3 Se(Tn=)Yn- (18)

Since AS(T,) = Se(Th) — Se(Tn—) = Se(T,,—)Y, then equation (18) becomes

t t N(t)
S.(8) = S(0) + /0 H.(5)S-(s)ds + /O oe2 S ()W (s) + 3 ASL(T).

n=1
Choosing the function f(z,s) = logx for x = S.(t) > 0, direct calculation shows
that
1 1
fx = Eafa::z: = —E:—Z— and fs =0

An application of the Ité formula for jump-diffusion processes (see Lemma 1)
gives:

log 5. (t) = log S(0) + /O t (o + (51@) - (Ha(s)Se(s))> ds

\

4 %/:(aea)zsez(s) <_S€1(s)) o
+ /ot (3_1(737) (0%)Se(s)dW (s)

N(t)
+ 3 [log(Se(Tn—) + AS:(T)) — log(Se(Tn—))]

n=1

= log S(0) + /Ot H.(s)ds — % /Ot(oe"‘)st + /Ot oe*dWKs)
3 o (M)

n=1

— log S(0) + /O (He(s)ds +o0=>dW () - /O (0e*2ds  (19)
N(?)
+ Z log(1+Y,)

n=1

Using formulae (7) and (17), equation (19) can be given in the following equiv-
alent representations



10 P. Sattayatham, A. Intarasit, and A. P. Chaiyasena

log Se(t) = log S(0) +/0 (He(s)ds + oe*dW (s)) — %/0 (0e™)?ds

+ /Ot log(1 + Y, )dN(s)
=log S(0) + ( 45 (s) /Ot <§f—(—8—~—)> stN(s)> - %U%zat

o Se(s) Se(s)
+/0 log(1 +Y,,)dN(s)
= log S(0) + ; C.lSk'S;E(S) - %0252%-1—/0 log(1 + Y,,)dN(s)

t
Se(s—) )
— Y.dN(s).
[ Cs5 )
Here Y; is obtained from Y,, by a piecewise constant and left continuous time
interpolation. Thus

LdS.(s) Se(i) 102 20, [ o s " (Se(s2) s
o S0 BE0) tTe /olg(HY")dN( )+/0 (Se(s) >YSdJ\go))'

Equating (20) and (17), we get

Sa(t) 1 @ ! ¢ SE(S_)
log 50y * so%” t—/o log(l—**Yn)dN(S)’*'/(; ( XD )YSdN(s)

= /Ot H(s)ds + oe*W (t) + /Ot (SE:?L;)) YsdN(s).

Hence, the solution of (15) is

S.(£) = S(0) exp (—%(asa)2t+a£°‘W(t) + /O Ho(s)ds + /O log(1 +Yn)dN(s))

(21)
We note that,

t t
/ H.(s)ds =p+ ao/ we(s)ds.
0 0
By application of the stochastic Theorem of Fubini, we get
t
1 (a3
[ wels)ds = = (B.0) - W (o).
0

Therefore .
/ H.(s)ds = ut + 0B.(t) — ce*W(t).
0
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Substituting the value of fot H_.(s)ds into equation (21), we get
1, ¢
S (t) = S(0) exp (,ut - E(aea)% + 0B (t)+ / log(1+ Yn)dN(s)) .
0

We note that £(ce*)’t — 0 as € — 0 and B.(t) converges uniformly to B(t) in
L%(Q) when € — 0. This motivates us to consider the process S, (t) defined by

S« (t) = S(0) exp ()ut + oB(t) + /Ot log(1 + Y’n,)dN(S)) .

We try to show that S,(t) is the limit of S.(¢t) in L?(£2) as ¢ — 0. We observe
that

S.(t) — S.u(t) =S(0) exp <ut - -;—(gea)% +oB.(t) + /O log(1 + Yn)dN(s)>
— 5(0)exp <,ut + oB() + /O Jog(1 + Yn)dN(s)>
= 5(0) exp (u_t + oB(t) + /O t log(1+Yy,)dN (s))
[exp (-%(aaa)% +o(Be() - B(t))> - 1}
— S(0) exp (ut + o B(t)) - exp ( /0 “log(1 + Yn)dN(s)>
{exp (-%(aea)% +o(Ba(t) - B(t))) - 1] .

Putp=1+ %and q > 1 such that }D + % = 1. It follows from Holder’s inequality
that

1548 = S. 01 < SOl exp st + B0 -exp ([ 1051+ ¥2)an ()
jexp (- 5ot + o (Be(0) = BO) ) =1]
< SO assll xp ut -+ oB(0) exp ([ 01 +Yo)aN(0) )
0
I exp (—5 o=t + 0B - BE) ~1] (22)
In order to calculate the norm ||S: (¢) — Si(t)]]2, we firstly note that
Il exp (ut + o B(t)) exp (/0 log(1 + Yn)dN(s)> Ilag

< |l exp (ut + o B(5)) llsqll exp ( / log(1 + mdzv(s)) Iog<oo
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To see this we note that, for each ¢, B; is a Gaussian random variable with zero
mean and variance 72 for some real numbers ;. Then

llexp (ut + o B()) |lsq = exp(ut)[Ee®7PM] 3 = exp(ut)e?” 7" < oo,

Moreover

exp (/Ot log(1 + Yn)dN(s))

N(t) N(t)
= |lexp Z log(1 4+ Y5) = Z(l +Y,)
8¢ n=1 n=1

8¢

where K is a constant. This is due to the fact that there is a finite number of
jumps in the finite interval [0, 7T7.
Finally, we compute the last term on the right hand side of (22). It follows from
the relation e4 — 1 = A + o(A) that we have

{exp (—%(oe“)% 4+ o(B.(t) - B(t))) - 1]

4q

. ”‘%w‘)% +o(B.(0) ~ BE)| + lo(—5(0e")t + o(Ba(t) ~ B®)

4q 4q

< 5@+ 0 1Be(t) = BO)lgy + llo(5(06%)2% + o(Be8) — BE))lag

By application of Lemma 2, we have ||B.(t) — B(t)||4q — 0 as € — 0 (uniformly
ontecl) T]\ Hence

TR LS SIE N FRRE A2 8 L0~

[exp (-%(asa)% +o(Ba(t) - B(t))) _ 1]

4q

The right hand side of the above inequality does not depend on ¢ and approaches
zero when ¢ — 0. Therefore, one can see from (22) and (23), that Sc(t) — S.(t)
in L%(Q) as ¢ — 0 and the convergence is uniform with respect to .

5. Simulation Examples

Let us consider the Thai stock market. Figure 1 shows the daily prices of a
data set consisting of 150 open -prices of the Thai Petrochemical Industry (TPI)
between June 9, 2004 and January 7, 2005. The empirical data for these stock
prices were obtained from http://finance.yahoo.com.

o(~5(0e)t + o(B-(2) ~ B(2)

1
< 5(06“)2T +0[Be(t) — B(t)llag+

4q
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Fig. 1. Price behavior of TPI, between June 4, 2004 and January 7, 2005
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Fig. 2. Price behavior of TPI, between June 4, 2004 and January 7, 2005,
compared with a scenario simulated from a Black-Scholes model with jumps

(solid line:= empirical data, dashed line:= simulated by s(t)=
N(t)

S(0) exp((u—°—22—)t+aW(t)+ > (1+Y,))), ARPE(2) = 23.69%, and variance = 0.02656)

n=1
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Figure 2 shows the empirical data of TPI open-price as compared to the
price that was simulated by a Black-Scholes pricing model with jump. In the
simulation process, we use the algorithm that appeared the paper of Cyganowski,
Grunce and Kloeden [3]. The simulated model is S(t) = S(0) exp({s — e )t +

oW(t) + Z (1 +Y,). The model parameters p = —0.0000725, ¢ = 0.3025 and

parameter ?or jumps as p; = 0.00007624, o; = 0.0003679, A = 55.46, v = 1 are
fixed. For comparative purposes, we compute the Average Relative Percentage

Error( ARPE). By definition, ARPE= (1/N) Z ———Xﬂ .100, where N is the

number of price, X = (Xk)k>1 is the market prlces and ¥ = (Yi)r>1 is the
model prices. We worked out 500 trails and computed ARPE. We denote the
ARPE of Figure 2 and and Figure 3 by ARPE(2) and ARPE(3) respectively.

Figure 3 shows the empirical data of TPI open-price as compared to the price
that was simulated by a fractional Black-Scholes pricing model With jumps The

simulated model is Se(t) = S(0) exp((1 — 3((0e*)?)t + o Be(t) + Z (1+Yo)).

The value of i, o and the parameters for jumps are the same as in Flgure 2. For
the remaining data, we choose H = 0.50001, £ = 0.000001.
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Fig. 8. Price behavior of TPI, between June 4, 2004 and January 7, 2005,
compared with a scenario simulated from a fractional Black Scholes model

with jumps (solid line := empirical data, dashed line := simulated by
N(t)
Se (t)=5(0) exp((u— 3 ((0*)?)t+0Be (t)+ Y, (14Yn)).

n=1
ARPE(3) = 19.64%, and variance = 0.01546)
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By comparing ARPE and varience of Figure 2 and 3, one can see that in

case of TPI, the sample path from a fractional Black-Scholes pricing model with
jumps gives a better fit with the data than Black-Scholes pricing model with
jumps.

References

1.

10.

E. Alos, O. Mazet, and D. Nualart, Stochastic calculus with respect to fractional
Brownian motion with Hurst parameter less than %, Stochastic Processes and their
Applications 86 (2000) 121-139.

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman &
Hall/CRC 2004.

S. Cyganowski, L. Grunce, and P. E. Kloeden, MAPLE for jump-diffusion stochas-
tic differential equations in finance, Available at http://www.uni-bayreuth.de/ de-
partments/ math/~ lgruene/papers, 2002.

T.E. Duncan, Y.Z. Hu, and B. Parsik-Duncan, Stochastic calculus for fractional
Brownian motion 1, Theory, STAM J. Control and Optim. 38 (2000) 582-615.

. R.J. Elliot and J. Van der Hoek, A general white noise theory and applications

to finance, Math. Finance 13 (2003) 301-330. :
Y. Hu and B. Oksendal, Fractional white noise calculus and applications to finance,
Infin. Dimens. Anal. Quantum probab. Relat. 6 (2003) 1-32.

D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to
Finance, Chapman & Hall, 1996.

Nguyen Tien Dung, A class of fractional stochastic equation, Institute of mathe-
matics, Vietnam Academy of Science and Technology, 2007.

108

. B. Oksendal, Fractional Brownian Motion in Finance, Preprint Department of

Math, University of Oslo 28 (2003) 1-35.
T.H. Thao, An approximate Approach to fractional analysis for Finance, Nonlin-
ear Analysis: Real world Applications7 (2006) 124-132.



21

MANUIN U



Nonlinear Impulsive Periodic Evolution
FEquations

P. Sattayatham, S. Sujitjorn
Suranaree University of Technology, Thailand

Abstract

In this paper we consider the question of the existence of periodic
solutions of nonlinear impulsive differential equations monitored by the
strongly nonlinear evolution equations &(t) + A(t, z(t)) = g(t,z(¢)), 0 <
t <T. Here V < H < V" is an evolution triple, A: I XV — V* is a
uniformly monotone operator, and g : I x H — V* is a Caratheodary
mapping.

Keywords. Nonlinear impulsive evolution equations; Nonlinear monotone
operator; Evolution triple.

1 Introduction

In recent years, impulsive periodic systems have attracted much attention since
many evolution processes are subject to short term impulsive perturbations. In
this paper, we consider the following periodic boundary value problem of an
impulsive differential equation

#(t) + A(t, z(t)) = g(t,z(t), t#t;, 0<t < T, (1a)
z(tF) —z(t;)) = Fi(z(t)), i=1,2,..,n, (1b)
z(0) = =z(T), (Lc)

where 0 = tg < t; <t < ... < tp, < T, A is a nonlinear monotone operator, g
is a nonlinear nonmonotone perturbation in a Banach space, Az(t;) = z(t]) —
z(t7) = z(t]) — z(t:), i = 1,2, ...,n and F)s are some operators. The impulsive
condition (1b) represents the jump in the state z at time ¢;; with F; determining
the size of the jump at time t; (for the definitions of the operators A, g, and
F; will be given in Section 2). Some interesting examples of impulsive periodic
systems can be found in the modelling of nanoelectronic devices (see for instance
[6, page 307]).



Impulsive evolution equations with an unbounded linear operator A of the
form

() + A(t) = g(t,z(t)), t >0, t #t;
Ax(t) = Fi(z(t)), t=1,2,..,n
2(0) = =(T),

have been considered by Hinpang [3]. The questions of the existence and reg-
ularity of solutions have been discussed. However, these questions still open
when the operator A is nonlinear.

The purpose of this paper is to study the existence of periodic solutions of
the strongly nonlinear impulsive evolution equations on (0, 7) and we will apply
these results to impulsive control of periodic systems.

2 System descriptions

The mathematical setting of our problem is the following. Let H be a real
separable Hilbert space, V' be a dense subspace of H having the structure of a
reflexive Banach space, with the continuous embedding V' «» H < V*, where
V* is the topological dual space of V. The system model considered here is
based on this evolution triple. Let the embedding V <> H be compact.

Let (z,y) denote the pairing of an element x € V* and an element y € V.
If z,y € H, then < z,y > = (z,y), where (z,y) is the scalar product on H.
The norm in any Banach space X will be denoted by || - || x.

Let T = (0,T) be a finite subinterval of the real line and I = [0,T}]. Let
p,q > 1 be such that ;7 + % =1 where 2 < p < +o00. For p, q satisfying the
preceding conditions, it follows from reflexivity of V' that both L,(I,V) and
L,(I,V*) are reflexive Banach spaces and the pairing between L,(I,V) and
Lo(I,V*) is denoted by <,> .

Define .
Wpe(I) = Wpe(0,T) = {z: x € Ly(I,V), & € Ly(I,V™)},

and

Iz llw,gn=I = llo,vy + | € |z, @zve),

where © denotes the derivative of z in the generalized sense. Furnished with the
norm || - lw,, (1), the space (Wpq(I), || - llw,,(r)) becomes a Banach space which
is clearly reflexive and separable. Moreover, the embedding Wp,(I) — C(I, H)
is continuous. Let us assume further that there is an embedding constant 0 <
n <1 such that ||z||c7, 7 < ||:1:[|WM(I). If the embedding V — H is compact,
the embedding W,q(I) < L,(I, H) is also compact (see [7] Problem 23.13(b)).

For a partition 0 < #; < t3 < ... < ¢, < T on (0,7}, we define the set
PWpe(0,T) = {x € Wpe(ts,tiz1),% = 1,2,...,n where tg = 0, t,41 = T'}. More-
over, for each & € PWpy(0,T), we define ||  |[pw,,(0,1) = Dim1 | € IWpq(tirtinn)-
As a result, the space (PWpy(0,T), || - ||pw,,(0,7)) becomes a Banach space.
Let PC([0,T}, H) = {z : z is a map from [0, T into H such that z is continuous
at every point t # t;, left continuous at ¢ = ¢;, and possesses the right-hand



there exists a constant L;(p) such that

| Fi(z1) ~ Fi(z2) |u< Lilp) I 21 — 22 ||
for all || z1 ||a, | z2 la<p (=1,2,..,n).

It is sometimes convenient to rewrite system (1) into an operator equation. To
do this, we set X = L,(I,V) and hence X* = Ly(I,V*). Moreover, we set

A)(t) = Alt=(1), (2)
G(z)(®) = g(t,2(t)),

for all z € X and for all £ € (0,T). Then the original problem (1) is equivalent
to the following operator equation (see [7, Theorem 30.Al):

z+ Az = G(x),
z(0) = z(T), (3)
A.’E(t@) = FrL(CL' ti)),
fori=1,2,...,n and 0 <3 <ty <..<t, <T.
Remark It follows from Theorem 30.A of Zeidler 7] that equation (3) defines

an operator A : X — X™* such that A is uniformly monotone, hemicontinuous,
coercive, bounded, and satisfied

l|Az|x- < 7 llellf

for some constants v > 0 and for all z € X. Moreover, by using hypothesis
(G)(3) and using the same technique as in Theorem 30.A, one can show that
the operator G : L,(I, H) — X* is also bounded and satisfies

NG (w)llx- < ollully

L,(I,H)

for some constants § > 0 and for all u € L,(I, H).

3 Existence of a periodic solution

In order to get a periodic solution of Eq.(1) in the space PWp,(I), we firstly
consider the following Cauchy problem

a(t) + At z(t)) = g(t,2(t)),
z(0) = o € H, 4)
Dx(t;) = Fi(z(t)),

where i = 1,2, ...,n and 0 < t; < t3 < ... < t, < T. By a solution of system (4),
we mean a function z(t) as defined in Definition 1 except that x(t) must satisfy
the initial condition z(0) = zo.



Lemma 1. Under assumptioms (A),(F) and (G), the system (4) has a unique
solution x € PWp,(0,T) N PC([0,T], H) and the solution depends continuously
on the initial condition.

Proof. The existence of the solution of system (4) follows from [5] Theorem B.
We can use hypothesis G(2) in proving the solution’s uniqueness. To see this,
suppose that system (4) has two solutions 1, o € PW,,(0,T) N PC([0,T}], H).
Then it follows from the integration by parts formula and monotonicity of A(t, z)
that

lle1(8) = 22(8)|[5 1121 (0) ~z2(0)] 1% = 2/0 (Z1(5) = &2(s), m1(s) —2(s)) v+ v ds

= 2 / (1(5) — #2(5), 31(5) — 22(5)) ye_vds
0
+2 [ o(a,21(9) = a6, 22(5), 1(5) = aa()v-—vs

< 2 [ tals,m(6) = o, a1 ) — ax(oDy- vl
< 2 [ ot ma(o) = o5, 2Dy s 6) — aa(olly s
< 20 [ 1lma(s) - 22l hea() — (el

< 22e [ liea(s) - maly ds,

for some positive constant c. By Gronwall’s lemma, we get
[121(8) = 22(®) 17 < Ilo1(0) — 22 (0)] 220, (5)

Note we can derive the uniqueness result for the system (4) by simply setting
z1(0) = z2(0) and using equation (5). Furthermore, equation (5) also implies
that the solution of the system (4) depends continuously on the initial condition.
This proves Lemma 1.

Definition. For each y € H, we write z(¢; 0,7) to mean the solution of equation
(4) corresponding to the initial condition z(0) = y.

Corollary to Lemma 1. The map y — z(t;0,y) is well defined and is contin-
uous from H into H.
Proof. The proof follows immediately from Theorem 1.

Lemma 2. Assume p = 2 and k = 1. Let r > 0 and zy € H. If ||zg]| < r
then ||z|| o7,y < 7 Where z is the solution of (4) corresponding to the initial
condition xg.



Proof. Let z be the solution of (4) corresponding to the initial condition z(0) =
xo then z € Wpe(I). Let X = L,(I,V) and X* = L,(I,V*), it follows from
equation (3) that
< 5,z >+ < A,z > = < G(z), x> .
Since A is coercive (Hypothesis (A)) then
allzly <<G@)z>-<z,3>.

Using integration by part, Holder inequality, and Hypothesis (G), we get

allely < <G> — 5 [le@Ih - O]

< ( [ 1ot dt) " ( [ nw(wn’é) "
-5 (=@ - 1)1
T 1/a 1
< o ( / (|\m<t>ttH>th) (al) + 3 IO
< eullallzyumlallx + 5 =0
< eslizlln,amllelly + 5 12O Lp(L,V) = Ly(I, BT, page 407)
< esllally + 5 IO

for some constants cs > 0. We finally get cs ||z||% < cs]|z||% + 3 [|z(0)]|. Sub-
stituting p = 2, we get

5 =)

By choosing some suitable constants ¢z and c5, we can assume that c3 —c5 > 1.
Hence

(s — es)llelk <

2]l < (——%—) (O < 3 IOl (6)

It follows from equation (6) that if ||z(0)|| < r then |jz]|x < (1/v/2)r for each

fixed 7 > 0. Next, we shall estimate ||z||. Let ¢ € X; then it follows from
equation (3) that

L T,0 >+ K A@Z), 0> =< G(z),9>.

Applying Holder inequality, we get
[6(8)] < 14@)x- 1911 + 1C@)lx- I9llx -
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By using Remark at the end of section 2, we have

[o(@)| < (2l + 8 12lE, {1y ) o - (7)

Then, by substituting p = 2,k = 1 into (7) and by choosing sufficiently small v -
and §, we get

Lyrs<s ©)
e =7,

V2 ~4

Hence, for a given r > 0, we get from equation (6) and (8) that

lzll < v llzllx +6 <A

. 1 1
palD) x* = _2 4 :
o,y = llallx + 2], < Zzr+ 37 <
Finally, we note that the embedding W,,(I) — C[I, H] is continuous; then

lzllog,m < nlzlw,, 0

since we assume that the embedding constant 0 < n < 1 then

lzlog,m <

The assertion follows.

Theorem 1. Let condition (A), (F) and (G) hold. Then equation (1) has a
T-periodic solution if and only if there exists xg € H such that

2(T) = @o = 2(0) (9)

Proof. The necessary condition is obvious.
Sufficienty: Consider the following Cauchy problem

£(t) + A, (1)) = g(t2(t))
z(0) = =g (10)
Azx(t) = Fie(t)), i=12,..,n

It follows from Lemma 1 that the system(10) has a solution on [0, T']. Since con-
dition(9) is satisfied then this solution must be a T- periodic impulsive solution.

Lemma 3. (Bohl-Brower fixed point theorem) Let B be a non-empty compact
convex subset of R™ and let the operator U : B — B be continuous. Then U
has a fixed point € B.

We are now ready to prove the existence of a periodic solution of the system

(1) in the special case that H = R™



Theorem 2. Let the following conditions hold.

1. Conditions (A), (F), and (G) are met.

2. Assumptions of Lemma 2 are met.
Then equation (2) has a T-periodic solution z € PW,,(0,7) N PC([0,T], H).
Proof. Let t,s € (0,T] be such that s <t < T and y € H and z(t;5,y) be

the solution equation (3) for which z(s*;s,y) = y (i.e., the initial condition is
z(sT) = y). We define the operator U(t,s) : H — H by the formula U(t, s)y =
z(t; s,y). It follows from Lemma 1 that the operator U(t, s) is defined uniquely
for each y € H. Let z(t) = z(¢;0,y) be the solution of (3) corresponding to
the initial condition z(0) = y € R™. Let t > 0 a positive real number and let
D = clB(0,r) (cIB(0,r) = closure of the ball in R™ centered at the origin and
of radius r) which is a compact subset of R™. Define an operator U = U(T,0) :
D — R™ as follows:
Uly) = =(T;0,y).

By Lemma 1, the solution of (2) is unique and hence the operator U is well
defined and continuous. It follows from Lemma 2 that the operator U : D — D.
Hence Lemma 3 implies that there is a point zg € D such that

U(T, 0}(-'170) = Zg Or :D(T;O,:L’O) = xp.

Hence z(0) = zp = z(T") and, by Theorem 1, the system (2) has a periodic
solution.

4 Control of impulsive periodic systems

In this section, we study the existence of admissible control pairs. We model
the control space by a separable reflexive Banach space E. By P¢(E) (Ps.(F)),
we denote a class of nonempty closed (closed and convex) subsets of E. Recall
that (see for example [4]) a multifunction I' : I — P¢(FE) is said to be graph
measurable if

Gr(U) = {(t,v) € I x E v € Ut)} € B(I) x B(E),

where B(I) and B(FE) are the Borel c—fields of I and F respectively. For2 < ¢ <
+o0, we define the admissible space Us,q to be the set of all L,(I, E)—selections
of T'(-), i.e,

Uag = {u € Lg(I,E) s u(t) € I'(t)u — a.e. on I},

where it is the Lebesque on I. Note that the admissible space Ugg # ¢ if I :
I — P;(E) is graph measurable and the map

t = |0(0)] := sup{|loll : v € ()} € Ly ().



The control problem (P) under consideration is the following:

() + Alt,2(t)) = g(t,z(@t))+But), t#t, 0<t<T, (1la)
a(tf) —2(t:) = Fila(t)), i=1,2,.,n, (11b)
2(0) = «(T), (11c)

Here we require the operators A, g, and F s of equation (11) to satisfy hypothe-

ses (A),(G), and (F), respectively, as in section 2. We now give new hypotheses
for the remaining data.

(U) U : I — Py.(E) is a measurable multifunction such that the map
t = U(8)] = sup{llullz : v € U(t)}

belong to Ly(I).

(B B € Lo(I,L(E,H)) where by L(E, H) we denote the space of all
bounded, linear operators from V into H.

By using the same notation as in Eq (3), we can rewrite the control system
(11a)-(11e) into an equivalent operator eqution as follows:

i+ A@) = Ga)+B),0<t<T, (12a)
CE(O) = zp€& H, (12b)
Ax(t) = Fi(z(t)), (12¢)

where i = 1,2,...,n (0 < t; < 3 < ... < t, < T) and the operators A, G and
F; (i = 1,2,...,n) are the same as in Eqn. (4). We set B(u)(t) = B(t)u(t).

This relation defines an operator B : L,(I, E) — L,(I, H) which is linear and
continuous.

It follows immediately from hypothesis (U) that the admissible space U,q #
@ and U,q is a bounded closed convex subset of L,(I,E). Any solution z
of Egs (12a)-(12c) is referred to as a state trajectory of the evolution system
corresponding to u € U,q and the pair (z,u) is called an admissible pair. Let

A = {(z,u) € PWpg(I) x Usq : (x,u) is an admissible pair},
Xaa = {x € PWpe(I): 3u € Uyq such that (z,u) € Aaq}-

Theorem 3. Assume that the hypotheses (A),(G),(B), and (U) hold. Then

the admissible set Aqq # ¢ and X4 is bounded in PWp(I) N PC(I, H)
Proof. Let u € U,g, define

gu(t, ) = g(t,z) + B(t)u(t).

Since B € Loo(I,L(E,H)) then one can see that g, : I x H — V* satisfies
hypothesis (G). Hence, by virtue of Theorem B, Eqn(12) has a solution.



Next, we shall show that X,q is bounded in PW,(I) by considering each case
separately. Let x € Xyq.
Case 1: t € (0,t1). By Lemma 2, ||z|| is bounded in Wp,(0,t;).Hence,

Hzllw,,(0,6) < My and ||zl co,64), 1) < Ma.

Case 2: t € (t1,t2).Since ||z(0)||z and ||z(t1)||z < Mi,then, by hypothesis
(F), we have

() e llz@EOlla + 1 F (=) a

<
< My[1+ 2Ly (My)] + ||F(2(0))]] 7,

where L(M;) is real constant depending on M;. Hence, ||z(t])]|x is bounded.
Using Lemma 2 again, we have

)W, (0,t2) < Mz and ||z||ci, ta1,1) < Ma.
After a finite step, there exists M > 0 such that
llzllw,q0,ry < M and ||2ll o7,y < M

Hence, Xoq is bounded in PW,,(0,T) N PC(I, H).
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