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In this thesis, some stochastic filtering problems are studied. Stochastic
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CHAPTER 1

INTRODUCTION

Mathematical finance is the important discipline of applied mathematics
concerned with financial markets. It appeared for the first time in 1900 with the
contribution by Louis Bachelier on speculation in markets. More than one century
has passed since then and many substantial achievements on mathematical finance
have been achieved, among them there are some important turning points such as
the discovery of the Black-Scholes Theory of European Options in 1973, Arbitrage
Pricing Theory, Hedging Theory and Term Structures Theory for interest rates
and credit spreads. These achievements play a crucial role in giving decisions
for investing in financial markets such as stock markets, bond markets, currency
markets, derivatives markets, etc. Strong and continuous requirements of real
markets are motivations of mathematical research for establishing suitable financial
models and methods that could be put to practice in more and more efficient ways.

Filtering problems involve the estimation of some quantities that cannot
be observed directly (the signal process or the state process) throughout other
quantities that depend on them and can be observed directly (the observation
process).

In financial modeling it is sometimes the case that not all quantities, which
determine the dynamics of security prices, can be fully observed. Some of the
factors that characterize the evolution of the market are hidden. However, these
unobserved factors may be essential to reflect in a market model the type of dy-

namics that one empirically observes. This leads naturally to filtering methods.



These methods determine the distribution and allow then to compute the expecta-
tion of quantities that are dependent on unobserved factors, for instance, derivative
prices.

On the other hand, when specifying a financial market model, one has also
to specify the model coefficients. The latter may however be only partially known
or depend on stochastic factors that in turn may not be observable. When solving
problems related to financial markets, like portfolio optimization or derivative
pricing and hedging, it is therefore appropriate to exploit all information coming
from the market itself to continuously update the knowledge of the not fully known
coefficients or parameters in the model, and this is where stochastic filtering proves
itself as a very useful technique. In fact, in stochastic filtering, which can be viewed
as a dynamic extension of Bayesian statistics, all not fully known quantities are
considered as random variables or stochastic processes and their distribution is
continuously updated on the basis of currently available information.

The main actors in a financial market are the various assets that may
be classified into two main categories: primary assets (underlying assets) and
derivative assets, where the prices of the latter are “derived” from those of the
primary assets and can be expressed as expectations under a so-called martingale
measure. In a complete market there exists only one martingale measure and so
all prices are fully specified within the model. If however the market is incomplete,
and this corresponds to essentially all practical situations, then there exist more
martingale measures and so, in order to perform the pricing of derivatives that are
not already traded on the market, one has first to infer the prevailing martingale
measure or, equivalently, the so-called market price of risk. This market price of
risk cannot be directly observed on the market so that, again, filtering techniques

may be used to continuously update its knowledge.



The prices of the primary assets as well as those of derivative assets that
are liquidly traded constitute the main information available on a given market
and thus also the basic ingredient of filtering. In this context, the fact that the
prices of the derivative assets, also of those that are liquidly traded, are specified
as expectations under a martingale measure become a major problem since the
actual observations take place under the real world probability measure, under
which the dynamics of the observable in a stochastic dynamic filtering model have
thus to be specified.

The estimation of some financial factors that cannot be observed directly
(for instance the volatility or parameters of some financial models) has to based on
some direct observation process such as stock price S; depending on time ¢, 0 <
t < T. But in reality, the observation can be made only at discrete times t,,, n =
0,1,2,... so the observation process is a stochastic process of discrete times. More
general, the observation can be made at random times Ty(w), 71 (w), ..., Tp(w), ...
So it is natural to use a point process to express such an observation. There are
three ways to introduce a point process:

- by a sequence of random variables,

- by a discrete random measure,

- and by a counting process.

The first major part of this thesis is reserved to the study of filtering prob-
lems based on observation given by a point process introduced by the third way
mentioned above.

One has realized also that various evolutions of many financial factors can
be perturbed not only by white noise as Brownian motion W;, but also by a
fractional process such as fractional Brownian motion WX, where H is the Hurst

index, 0 < H < 1.



Thus, it is very natural to consider fractional filtering problems, where
either the signal process or observation process or both can be perturbed by frac-
tional Brownian motion. Many authors have made some attempts to solve those
problems (refer to Decreusefond, Oksendal, etc) but it seems that their approaches
are too complicated to be applied to the practice of financial markets.

Thus, another major part of this thesis is the study of fractional filtering
problems from an approximation point-of-view that can be more easily applied to

finance than other academic approaches.



CHAPTER 11
INTRODUCTION TO STOCHASTIC

FILTERING THEORY

In this chapter, we introduce the background of stochastic filtering theory.

Most of these results can be found in Chiganski (2005).

2.1 Problems Setting and Definition

2.1.1 Problems Setting

Consider a filtered probability space (2, F, (F;), P). We shall consider two

processes:

1. A signal process {X;};>0, which is not directly observable

2. An observation process {Y;}+>0, whose value depend on the signal process

and can be directly observed.
The signal process is described by a semimartingale
t
Xt :X0+/ HSdS+Wt. (211)
0
and the observation process is given by
t
Y, = / hods + V. (2.1.2)
0

where H,; is some stochastic process, h; is a process such that h, = h(X}),

t
E / h2ds < oo and W;, V; are independent Brownian motions. Denote by FY the
0



o-algebra generated by all random variables (V,,u < t): FY = o(Y,,0 < u < t).

The filtering m(X;) of X; based on information given by F is defined by
7(X,) := E[X\|F)], (2.1.3)
More general, the filter can be defined via a function f € C? by
T(f(X)) = E[f (X.)|F]. (2.1.4)

The problem now is how to find the filter 7(X;) or 7(f(X;)). It is usually
found as a solution of a stochastic differential equation that is called filtering

equation.

2.2 Girsanov Theorem

Theorem 2.2.1. (Girsanov Theorem). Let Wy be Brownian motion process and

X, be an Fi-adapted process, defined on (0, F,{F}, P) and satisfying
t
/ XPdt < 0o a.s. (2.2.1)
0

and define
t 1 t
Zy = exp(/ X dW, — 5/ X2ds) (2.2.2)
0 0
Assume that EZ; = 1 holds for all t and define the probability measure Q) by

d@
ﬁ(w)

= Zy(w) (2.2.3)

Then

t
V=W, - / X.ds (2.2.4)
0
1s a Brownian motion process with respect to F; under Q).

Proof : Clearly V; has continuous paths and Vi = 0. Thus it is left to verify

Eolexp{i(Vi — VJ)}F = exp{—%)\z(t _8)), s<t (2.2.5)



dQ

Since Pl = Zy is the restriction of Randon-Nykodym derivative on F, C F,
Fi
then

Eplexp{iA(V; — V5)} Z4| F]
Ep[Zi|F]
Eplexp{iAVi} Zi| 7]
Ep|Z|F]
Eplexp{iA\V;} Z;| F]
exp{iAV;} Ep|Z4| F]

Eglexp{i\(V; = Vi) }F] =

= exp{—i\V}

By the Ito formula Z; satisfies
dZt - ZtXtth (226)

or

t
Zy = Zy+ / Z, X udW, (2.2.7)

It follows from the martingale property of the Ito integral, that the process Z; is
a martingale, that is

Ep|Z,|F,] = Z, (2.2.8)

The It6 formula applied to the process Y; := exp{iAV;}Z; yields

)\2
dY; = —?Y}dt + (INY: + Y X)) dWy (2.2.9)
which implies
t/\2 t
Y, =Y, — / ?Yudu + / Y. (iA + X,)dW, (2.2.10)
and in turn
t>\2
EelVii] = EplYilF) ~ [ 5 EplY|Fdu (2.2.11)

where the martingale property of the stochastic integral has been used. This linear

equation is explicitly solved for E[Y;|Fs]

Ep[Vi|7] = Yoexp{—5 Nt )} (2.2.12)



Hence

exp{iAVi} Z, exp{—3\3(t — )}
exp{iAV;}Z,

= exp{—g Nt~ 5))

Eqlexp{iA(Ve — Vi) }HF]

This proves that the process V; is a Brownian motion process with respect to F;

under Q).

2.3 Innovation Processes

Definition 2.3.2. (Innovation process).
t
my =Y, — / m(hs)ds (2.3.1)
0

is called an innovation process of the observation process Y;, where w(hs) =

Elh|FY].
Theorem 2.3.3. m; is a Brownian motion with respect to F, .
Proof : Substituting (2.1.2) into (2.3.1), we have
¢
my = / (hs — m(hs))ds + V. (2.3.2)
0
Forany 0 < s <t
t
Elmd ) = me = B[ (= w(bu))du+ (Vi = V)L
t
= B[ (hu— w())dul 7)) + EV; - Vi)

— B[ {B0IFY) - ()}dul ) + ELEIV; - VAF) A

= 0

by properties of conditional expectations and properties of Brownian motion

process V;. Therefore, m; is a martingale with respect to F}. And the quadratic



variation

(m,m)y =(V,V); =t. (2.3.3)

By virtue of a Levy’s Theorem on characterization of Brownian motions, m; is a

Brownian motion with respect to FY.

Theorem 2.3.4. Every martingale M; with respect to the filtration {F)} admits

a representation of the form

t
M, = My + / K.dm, (2.3.4)
0

t
where K; is F) -measurable and satisfies / K2%ds < o0 a.s.
0

Proof : Set

7, — exp (- /Otw(hs)dms - %/Ot 7r2(hs)ds) (2.3.5)

is FY -martingale. According to the Girsanov Theorem, the process
t
Y, =my +/ 7(hs)ds (2.3.6)
0

is a Brownian motion with respect to FY under the new probability measure @

defined by
aQ

= Z;. 2.3.
Y =z (23.7)

7

Next, we define

‘: exp (/Otw(hs)dms+%/ot7r2(hs)ds>
- en( [ w3 [ w(h)ds)

and notice the “likelihood ratio”

)
P

. dP

— 7, — A 2.3.8
=% g, N (23.)
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And the processes Z; and A; satisfy the equations

t
Z - 1- / Zor(ha)dm,
0

t
A = 1+/ Ay (hy)dY,
0

Because of Bayes formula and M;, Z; are FY -martingales. We found that, for any

s<t
Ep[A:M, Z,|FY]

— AM,, 2.3.9
EnlZ 7 (2.3.9)

EQ[AtMAst] =

that is A;M; is F -martingale under probability ). Then there exists the process

\I[t that

t
AtMt - AOM0+/ \IISdY;
0

t
= M, +/ U (dms + m(hs)ds)
0
Now from integration by parts formula, we obtain

M, = (AtMt)Zt

t t
— AoMoZo + / AM,dZ, + / Z,d(A,M,) + (AM, Z),
0 0

t t
= Mo—/ Msﬁ(hs)dms—l—/ ZVs(dmg + w(hs)ds) + (AM, Z),
0 0
t
~ M+ / (2.0, — Mor(h))dm,
Ot
= M0+/ stms
0

where K; = Z,V, — Mym(h;). This proves the theorem.

2.4 Fujisaki-Kallianpur-Kunita Theorem

t t
Theorem 2.4.5. M; = E[X,|F)] — n(Xy) + E[/ H.ds|FY] — / 7w(Hy)ds +
0 0

E[W,|FY] is a martingale with respect to F, .
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Proof : For any 0 < s < t, by the rules of conditional expectation, we have
B[E[Xo|F] — m(Xo)|F)] = E[XolF;] - n(Xo). (2.4.1)

And

7 du+/t [Hu|fsy]du—/:E[W(Huﬂff]du

m(H,)du. (2.4.2)

-

t
= / [H,|F) ]du / Elr(H,)|F) ]du

0

AT

-

Since W, is a Brownian motion process, so it is a F;-martingale then
E[EW|F|F)] = EW|F)] = BIEWH|FJIF)] = EW,|F].  (2.4.3)

Combining equation (2.4.1)-(2.4.3) and definition of M, yields

EIMIFY] = EIXoFY] - n(Xo) + B / Hodul ) - / o (H)du + E[W,FY)

= M,. (2.4.4)
This shows that M, is a FY -martingale.

Theorem 2.4.6. (Fujisaki-Kallianpur-Kunita Theorem). The filter w(X;) satis-

fies the Fujisaki-Kallianpur-Kunita equation

t t
(X)) = 7(Xo) —i—/ m(H)ds —|—/ {m(Xshs) — 7(Xs)m(hs) }dms (2.4.5)
0 0
where my is the innovation process defined in (2.3.1)

Proof : By Theorem 2.3.4 and Theorem 2.4.5, there exists a process K; such that

t
Mt:/ Kydmes.
0
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We should show that

K, = 7T()(shs> - ﬂ-(Xs)ﬂ-(hs)? (246>
which is equivalent to
/ CED(Ks — 7(Xuh) + m(X)m(ha))]ds = 0, (2.4.7)

for any bounded FY -adapted ;.

Put z = [, A\dm, and & = [; K,dm,, then

[ B ts = Blag)
On the other hand,
Ela6] = E[a(r(Xy) — m(Xo) — /0 R(H)ds)] = B[z, — /0 LHLds),
since Elzm(Xo)] = Elr(Xo)|E[FY] = 0, E[zm(X))] = Elz)E[X|FY] =
E[2X,] and
Bla [ wttds] = B[ Blal# n( )
_ /0 un(HL)ds
= /OtE[sts\]-“sY]ds
- E[/Otstsds].

Using the definition of the innovation process m; (from (2.3.1) and (2.3.2)) we see

that
t t
L= / AdV, + / Ao{hs — (ha)}ds. (2.4.8)
0 0

Then

Elx&] =  E[X, /0 NV /O ¥ / AV, Hods) + E[X, / Al — (i)}

0 0

_/O </OS N{ o — 7(h) Ydu) Heds). (2.4.9)
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We claim that the first expectation vanishes: indeed

t t
B[X, / AdV] = E[X)E] / AV, Fo] = 0
0 0

and
t S t t
E| / ( / NdV,)Hds] = E]| / E| / NV | Fo Hods]
0 0 0 0
t t
_ / E[H, / NVl F.]ds]
0 0
t t
_ E| / AV, / H.ds]
0 0
and hence

t t s
E[Xt/ Asts—/(/ MV, ) H,ds] = [/ A dVi(X XO—/ H,ds)]
0 0 0

t
= E[/ A dVW,] =0,
0

where the latter equality holds since the Brownian motion process W; is indepen-

dent of the Brownian motion process V;. Next consider
BUXC [ b= whbds) = EL[ A (h = w(h))}a]
<5l (X = X e — ()]
= B ARG~ 7(Xr(h) ]
+E [ A= 2 (b = xlh) ]
E| /0 Y / ' Hodu{h, — n(h)}ds]
= B[ Adm(Xho) — mCCIr(h s
+ [ Nt = )]
Assembling all parts together we obtain
Plat) = [ Br(0h) = w(X)n(h)s

This completes the proof.
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2.5 General Filtering Equation

We consider a general model as follows:

Signal process:

t
Xt = XO +/ Hst -+ Zt. (251)
0

Observation process:

t
Y, :/ heds + BW,. (2.5.2)
0

t

where E/ h2ds < oo, h; = h(X;), B > 0 is a constant and Z, is a F; martingale
0

independent of the Brownian motion process W;.

Innovation process:
t
my = B~H(Y; — / 7(hs)ds) (2.5.3)
0

We can show that m; is a Brownian motion process with respect to FY as

in the proof of Theorem (2.3.3).

t t
Theorem 2.5.7. M, = E[X,|F)] — 7(Xo) + E[/ H.ds|F)] — / m(H,)ds +
0 0

E[Z,|FY] is a martingale with respect to F,
Proof : For any 0 < s <'t, by a property of conditional expectation, we have
BIE[Xo|F] — m(Xo)|FS ] = E[Xo|F;'] — m(Xo), (2.5.4)

and

= [ Hudu]FY]—/sw(Hu)du. (2.5.5)
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Since Z; is a F;-martingale then
E(E(Z|F |7 ] = E|Z|F, ] = E[E[Z|F)|F]] = E[Z,|F]]. (2.5.6)
Combining equation (2.5.4)-(2.5.6) and definition of M, yields
BIMIFY) = BRI = (X0 + Bl [ Haulz) )= [ w(i)du+ B2
= M,. (2.5.7)

This shows that M, is a F) -martingale.

2.5.1 Fujisaki-Kallianpur-Kunita Filtering Equation
Theorem 2.5.8. (Fujisaki-Kallianpur-Kunita Filtering Equation). The filter
m(X}) satisfies the Fujisaki-Kallianpur-Kunita equation
t t
7(X;) = 7(Xo) +/ m(Hs)ds +/ B H7m(X,hs) — m(Xs)m(hs)}dm,  (2.5.8)
0 0
where my is the innovation process defined in (2.3.1)

Proof : By Theorem 2.3.4 and Theorem 2.5.7, there exists some process K; such
that
t
Mt :/ stms.
0

We should show that
~ m(Xshs) — w(X)m(hs)

K, = = : (2.5.9)
which is equivalent to
t Xshs) — m(Xs)m(hs
/ EN\(K, — m(Xsho) jg( i ))]ds =0, (2.5.10)
0

for any bounded F} -adapted ;.

Let 2, = f(f Admg and & = fg K dmg, then

/Ot E\K]ds = Elz&]
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On the other hand,
t t
E[z&]) = Ela(n(Xy) — 7(Xo) —/ w(Hs)ds)| = Elz X, —/ zsHds],
0 0

since E[zm(Xy)] = E[r(Xo)E[z|F] = 0, Elzn(Xy)] = Elz|E[X|F)] =

E[zX;] and
t t
E[zt/ n(Hg)ds] = E[/ Elz|FY n(H,)ds]
0 : 0
= / zsm(Hy)ds
0
t
= / Elz,H,|FYds
’ t
= E[/ zsHyds].
0
It follows from the definition of m, that
t t hs o hs
2 = / AsdW +/ Asﬁds, (2.5.11)
0 0 B
and
t t s t hs . ﬂ—(hs>
E[tht] = E[Xt >\de3 — ( )\uqu)HudS] + E[Xt )\STdS
0 o Jo 0

—/Ot(/0 Auh“Twczu)Hsds]. (2.5.12)

We claim that the first expectation vanishes: indeed
t t
E[X, / NdW,] = E[Xo) B / AdW,|Fo] = 0
0 0
and

Bl /0 N / AW, Hods) = B /0 B / AW\ H o]

0

0
t t
_ B / [, / AW | Fo]ds]
0 0

t t
= ] / AdW, / H,ds)
0 0
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and hence

E[X. /AdW / /)\dW VH,ds] = E[/Ot)\SdWs(Xt—Xo—/otHsds)]

t
= E[/ A dW,Z,] = 0,
0

where the latter equality holds since the martingale Z; is independent of W;. Next

consider

E[Xt/OtAShS‘—W(hs)ds] _ / X h>)ds]

+ [/OA(Xt X)}LS_TWCJS]

_ E[/O )\87‘—<Xshs) _g(Xs)W(hs)dS]

he — W(hs)ds]

<5l A2 2)

t t o
E| / As / Huduhs—wds]
0 s B

— E[/O /\ST"(Xshs) _g(XS)W(hS)dS]

+E[/Ot Hs(/os Auhs_Tf(hs)du)ds].

Assembling all parts together we obtain

E[Ztgt] :/0 E[}\S’/T(Xshs) _BZT<XS)7T(hS)dS]

The proof is thus complete.

2.6 Kushner Equation

The Fujisaki-Kallianpur-Kunita equation takes a somewhat more concrete

form in the case when (X3, Y;) are diffusion process, namely the solution of

dXt = (]J(Xt)dt + b(Xt)th X() - 5

ay, = A(X,)dt+ dv, Yo =0
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where ¢ is a random variable with probability density po(x), independent of Brown-

ian motion process W, and V;.

2.6.1 Kushner Theorem

Theorem 2.6.9. Assume there is an F) -adapted random process q;(z), satisfying

the Kushner-Stratonovich stochastic partial integral-differential equation

a(7) = pol) + / (Cq.) (x)ds + / W@ (A() — m(A)dm,  (26.1)

where
(£1)(&) = — 2 (aw) F(@)) + 5 () (@) (262)
and
i (A) :/RA(:B)qt(:v)d:v (2.6.3)

Then qi(x) is a version of the conditional density of X; given FY, i.e. for any

bounded function f

ELf(X)IFY] = / f (@) (@)dz (2.6.4)

Proof : An application of the It6 formula to the function f(X;) gives us:

PX) = FONAX A+ 3 (X))

= P00 + o f PG + ' (X)B(X) T,

or equivalently,

FXD = 060+ [ a0 g PO+ 517X 55 F X s
v [ ocjan,

t
0

—F(Xo) + / (CF)(X,)ds + / b(X,) f/ (X)W,
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where
(L)) = alw) 2 f(a) + 25 2 o). (2.6.5)
Next, consider
() = [ F@wl)ds
= Rf(x)po(:c)da:
and
(L) = / (CF)()qs () d
= [ (atwrgsto+ T2 ) o)
— /R < — %a(m)qs(z’) + %aa—;b2(x)qs(a:))f(:c)d:c
- / (€70.) (@) f (x)dx
and
71's(f’4) - ﬂ-s(f>ﬂ-s(A) = B f(l’)A(]?)qs(I)dI - WS(A> R f(l’)qs(l’>dl’

Then the right hand side of Fujisaki-Kallianpur-Kunita equation reads

wh) = woli)+ | (L f)ds + / A = m(F)ma(A) dm,

- [ (Po /cqsx Jis + /ths(x)(A(x)—WS(A))d%)da:
_ /foth v

This proves the theorem.
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2.7 Zakai Equation

2.7.1 Quasi-filtering

In this section we consider a transformation of the probability P into an-
other probability @ and denote by L, the restriction to FY of the Radon-Nykodym

derivative d—P
vativi a0
dP

@}?’:

and define a stochastic process o(X;) as follows

L, (2.7.1)

o(Xy) == Eo[ X Li| FY], (2.7.2)

where E is denoted the expectation under the new probability (). This process
is called from now on the quasi-filter of X; based on the information FY given by
the observation Y;. Now the relation between the filter 7(X;) and the quasi-filter

o(X¢) can be expressed as

7(X,) = ‘;((it;. (2.7.3)
2.7.2 Zakai Equation
Theorem 2.7.10. The quasi-filter o(X;) satisfies the following equation
do(X:) = o(Hy)dt + o(Xihy)dY;. (2.7.4)

This equation is called Zakasi filtering equation.
Proof : We have by the formula (2.2.7) in the proof of the Girsanov Theorem:
t
Ly=1 +/ Lym(hg)dYs, (2.7.5)
0

and

Lim(X;) = Eq| X, Li|F)] = o(Xy). (2.7.6)



Now we see that

o(Xt)
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Lir(X,) = Lom(Xo) + / tLde(XS)+ / tﬂ(XS)dLs+<L,7r(X)>t

Lom(Xo) + /0 Ls[m(Hs)ds + (m(hsXs) — w(hs)m(X5s))]dms

+ / tW(XS)LsW(hs)dYs + (L, (X))

o(Xo) + /O o(H,)ds + /0 Lylrn(hX,) — m(hy)m(X)|(dY; — m(hy)ds)

+ /tW(XS)LSW(hS)dYS + (L, 7(X))s.

Hence

o(X;) =o(Xo) + /OtO<H3)dS + /Ota(hSXs)dY;,

where integration by parts has been used. This equation is equivalent to:

dO'(Xt) = U(Xtht)dyz + O'(Ht)dt

(2.7.7)

Remark It follows from the proof of the previous theorem that if m(X;) satisfies

(2.4.5), then o(X;) satisfies (2.7.4).

Theorem 2.7.11. If o(X;) is a solution of the Zakai equation, then the process

m = w(X}) defined by (2.7.3) is a solution of the Fujisaki-Kallianpur-Kunita equa-

tion
Proof : Consider
() = a(545)
I S iC. O
— O'(lt)d (Xy) 02(1t>d (1) +
= m[a(h@)dt + o (X¢he)dYy] —
_o(h)o(Xehe)

o?(1)

O'(Xt) 2 1 o o
03(1t) <d0<1t)) 02(1t)d (Xt)d (115)
o(X4) o(Xi)

02(1t) [U(ht)dY;] + 03(1t) (ht)dt
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Next, we see that

_ U(Ht) o(Xihe) o, o(Xi)o(he) o (Xy)a? ()
T = )T ey T e e
a(ht) (Xtht)dt
21,

= w(Hy)dt + 7(X,hy)dY, — 7(X)m(he)dY; + (X)) w2 (h)dt
—r(hy)m(Xohe)dt

= w(H)dt + [1(X.hy) — m(X,)m(he)] Y
(X )7 (he)dt — 7(he)m(Xohe)dE]

= w(Hy)dt + [r(Xohy) — 7(X,)7(he))(dY; — 7 (he)dt)

= W(Ht)dt + [W(Xtht) — W(Xt)ﬂ'(ht)]dmt.
Then we have finally,

7(X,) = 7(Xo) + / r(H.)ds + / (r(Xuhe) — (X)r(h))dm,  (27.8)

This proves the theorem.
The Zakai equation takes a somewhat more concrete form in the case when
(X¢) and (Y;) are diffusion process, i.e. the process (X, Y;) the solution of the

system:

dXt = a(t, Xt)dt + b(t, Xt)th X() =7

dY, = g(t, X;)dt + dV;

where W, and V; are two independent Brownian motions and 7 is a random variable

with probability density po(z) with / 22po(x)dr < oo,
R

Theorem 2.7.12. Assume that there is an FY -adapted nonnegative random

process py(x), satisfying the Zakai PDE

dpi(x) = (L pi)(x)dt + g(t, 2)pi(2)dYs,  po() = po(z), (2.7.9)
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where

0

(£ F)w) =~ alt, )1 (0) + 5 261 () (27.10)

1
2
Then pi(x) is a version of the unnormalized conditional density of X; given FY,

so that for any measurable function f, such that Ef?(X;) < oo

Bl (x| = Je[Dedr)dr (2711)

Jo pe(@)dz

Proof : The Ité formula applied to the function f(X;) gives us:

F(X0) = F(Xo) + /0 (£F)(X,)ds + /0 b(X.) (X)W,
where
(£1)() = alt,2) - () + 502(1,2) - () (2.7.12)
Next, we see that
wf) = [ faypia)ds
= [ t@mlayis
and
oi(Lf) = / (CF)(x)pa()d
= [ (st gt + G @) oo
= [ (- gpatanto) + e an @) fo)is
- /R (€ o) () f (),
and
os(fh) = f(z)h(s,z)ps(x)dx.

R



Then the right hand side of Zakai equation reads

olf) = oolf)+ /0 (L S)ds + /0 o (Jh)Y.
= [r@(me+ [@odwas+ [ sy )
- / f(@)pi(@)de.

The proof is thus complete.
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CHAPTER III

FILTERING PROBLEM WITH POINT

PROCESS OBSERVATION

In this chapter, after establishing the filtering equation and quasi-filtering
equation with point process observation, we study the case of a Markov-Feller
signal process and we prove some theorems of filtering for Ornstein-Uhlenbeck

processes.

3.1 Introduction

In financial filtering, we want to estimate some financial factors through
some direct observation process depending on time. But in practice, this observa-
tion process can be observe only at discrete times, so in this Chapter we consider
a point process as an observation. For Definitions and Theorems in this section
one can refer to Brémaud (1981).

A point process over [0, 00) can be introduced into three different ways: as
a sequence of nonnegative random variables, as a discrete random measure, or via
its associated counting process. In this Chapter, we use the last way to study

financial filtering problems with point process observation.
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3.1.1 Point Processes

Definition 3.1.1. (Simple Univariate Point Processes). A realization of a point

process over [0, 00) can be described by a sequence 7T;, in [0, 0o} such that

TO - 0

T, <oo = T, <T,.

This realization is nonexplosive, i.e.

T = lim T, = +oc.

n—oo

To each realization T,, corresponds a counting function N; defined by

N n, if t € [T, Thi1);
400, ift>T,.
N, is therefore a right-continuous step function such that Ny = 0 and its jumps
are upward jumps of magnitude 1.
If the above T,,’s are random variable, defined on some probability space
(Q, F, P), one then calls the sequence T,, a point process. The associated counting
process N, is also called a point process. Henceforward, unless explicitly men-

tioned, attention will be restricted to P-nonexplosive point process, that is to say

point processes such that, P-a.s.,

Ny <oo, t>0 (orequivalently T, = 00)

Moreover, if the condition

E[N,] <00, t>0

holds, the point process V; is said to be integrable.
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Definition 3.1.2. (Multivariate Point Processes). Let T,, be a point process
defined on (2, F, P), and let (Z,,n > 1) be a sequence of {1,2,..., k}-valued
random variables, also defined on (2, F, P). Define for all 7,1 < ¢ < k and all

t>0

N(i) = Y UT, <t)1(Z, =)

n>1
Both the k-vector process Ny = (NVi(1), ..., N¢(k)) and the double sequence

(T, Zn,n > 1) are called k-variate point processes.

Definition 3.1.3. (Doubly Stochastic Poisson Processes or Conditional Poisson
Processes). Let N; be a point process adapted to a history F;, and let A; be a
nonnegative measurable process (all given on the same probability space (€2, F, P))

Suppose that
A¢ is Fy — measurable, t >0
and that
t
/ Ads <oo P—a.s., t>0
0
Ifforall0 <s<tandallueR

F) = exp{(ew - 1)/: Avdv}

then N; is called a (P,F;)-doubly stochastic Poisson process or a (P,F;)-

E[e’iu(Nt—Ns)

conditional Poisson process with the (stochastic) intensity A;.

If \; is deterministic (the notation A(t) is used), then Nj is called a (P, F;)-
Poisson process. If moreover F; = FN, one simply says; N; is a Poisson process
with the intensity A(t). If F; = FN,A\(t) = 1, then N, is the standard Poisson

process.
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Theorem 3.1.4. (Characterization of Doubly Stochastic Poisson Processes or
Conditional Poisson Processes). Let Ny be a point process adapted to some history
Fi, and let Ay be a nonnegative measurable process such that for all t > 0

(a) N is Fo-measurable,

(b) [ Ads < 00, P — a.s.

Then, if the equality

p| [Tean] = &] [T el

is verified for all nonnegative Fy-predictable process Cy, Ny is a doubly stochastic

Poisson process with the Fi-intensity A;.
Proof : See Brémaud (1981).

Theorem 3.1.5. (Watanabe Theorem). Let Ny be a point process adapted to the
history Fy, and let \(t) be a locally integrable nonnegative measurable function.

Suppose that
t
Nt—/ A(s)ds is an Fi-martingale.
0

Then Ny is an Fi-Poisson process with the intensity A(t). (i.e., for all 0 < s <

t
t, Ny — Ny 1s a Poisson random variable with parameter / AMu)du, independent
0
of Fs).

Proof : See Brémaud (1981).

Definition 3.1.6. (Progressive Process). The process X; is said to be F;-

progressive iff for all ¢ > 0 the mapping [0, t] x © into R is B([0, ]) x Fi-measurable.

Definition 3.1.7. (Stochastic Intensity). Let N; be a point process adapted to
some history F;, and let A\; be a nonnegative F;-progressive process such that for

alln >1

t
/ Ads < oo P —a.s.
0
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If for all nonnegative F;-predictable processes (Y, the equality

E[AMCAN4 = ELAMCJA%

is verified, then we say: N; admits the (P, F;)-intensity (or F-intensity) A;.

Theorem 3.1.8. (Stochastic Intensity Martingale Characterization). Let N; be a
nonexplosive point process adapted to F;, and suppose that for some nonnegative

Fi-progressive process Ay and for alln > 1
AT
Nipr, — / Asds is a (P, F;) — martingale.
0
Then X\ is the Fy-intensity of Ny.

Proof : See Brémaud (1981).

3.2 Filtering of a General Process from Point Process Ob-

servation

3.2.1 Problem Setting and Assumptions

Let (2, F, P) be a complete probability space on which all processes are
defined and adapted to a filtration (F;, t > 0).
We consider a filtering problem where the signal processes is a semimartin-
gale
t
Xt = XO + / HSdS + Zt7 (321)
0

where Z; is a JF;-martingale, H; is a bounded JF;-progressive process and

Elsup,<, | X,|] < oo for every t > 0, Xy is a random variable such that E|X,[* < oo;

the observation is given by a point process F;-semimartingale of the form

t
n—/m@+m, (3.2.2)
0
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where M, is a Fi-martingale with mean 0, My = 0 such that the future o- field
o(M, — My;u > t) is independent of the past one o (Y, hy;u < t), hy = h(X) is
a positive bounded F;- progressive process such that F / t h2ds < oo for every t.
Moreover, we suppose that Z; and M, are independent. 0

Denote by F} the o-algebra generated by all random variables Y, s < t.
Thus F} records all information about the observation up to the time t.

d
Suppose that the process u; = — < Z, M >, is F,- predictable (s < )

ds
where <, > stands for the quadratic variation of Z; and M;. Denote also by u, the
FY- predictable projection of us. By assumptions imposed on Z and M we see
that < Z, M >= 0, so us = 0.

The filter of (X;) based on information given by (Y;) is defined as the

conditional expectation

(X)) = E[X,|F)], (3.2.3)

or more general

m(f) = BLf(X)|F], (3.2.4)

where f is a bounded continuous function or f € Cy(R).
Denote by 7(h;) the filtering process corresponding to the process h; in

(3.2.2).

3.2.2 Innovation Process
Definition 3.2.9. Let m; be a process defined by
t
my =Y, — / m(hs)ds. (3.2.5)
0
The process m; is called the innovation from the observation process Y;.

Lemma 3.2.10. m; is a point process F; -martingale and for any t, the future

o-field o(my — ms ; t > s) is independent of FY .
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Proof : We have by definition of m, in (3.2.5) and Y; in (3.2.2) that, for any

t>s>0,
t
my —ms = Yt—YS—/ 7(hy)du
t
= M, — M, + / {hy — 7(hy) }du. (3.2.6)
Since FY C F, for any s > 0 and M, is F;-martingale that
E[M; — M,|F)] = E[E[M, — M,|F,J|F)] = 0. (3.2.7)

It follow from F) O FY whenever u > s > 0 and definition of m(h,) in (3.2.4)

s

that

Elh|F)] = E[E[hF)|F] = Eln(h)| 7] (3.2.8)

From (3.2.8). Hence

/t Elhy — 7(ha)| ¥ du = 0. (3.2.9)

Fubini’s Theorem implies

E[/:{hu — ()

]—"SY} = 0. (3.2.10)
Thus, for any t > s > 0, we get

E[mt _ms|"TsY] = E[Mt - MS|F5Y] +E|:/ {hu _ﬂ-(hu)}du

FSY} =0, (3.2.11)

and therefore the process m; is F} -martingale.
Now for any s,t such that 0 < s <t we consider two families C; and D; of

sets of random variables defined as follows:

Cst = {sets Co,s <a <t} ,where C, ={mi—my;a <a <t}

D, = {sets Dy,0 <b<t}, where D, ={Y3b< [ <s}.
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It is easy to check that Cs; and D are m-system, i.e. they are closed with
respect to finite intersection. Also they are independent each of other by (3.2.11).
It follows that (refer to Kallenberg (2002)) the o-algebra o(Cs ;) = o(mi—mg, s < t)
generated by Cy, is independent of the o-algebra o(D;) = F) generated by D;.

The second assertion of this Lemma as thus established.

Lemma 3.2.11. Let R; be a F} -martingale. Then there exists a F} -predictable

process K; such that for all t > 0,
t
/ Km(hg)ds < oo P —a.s, (3.2.12)
0
and such that R; has the following representation:
t
R, = Ry —I—/ Kgdms. (3.2.13)
0

Proof : See Brémaud (1981).

3.2.3 General Filtering Equation Theorem
Theorem 3.2.12. The filtering equation for the filtering problem (3.2.1)- (3.2.2)

s given by:

(X)) = m(Xo) +/0 m(Hs)ds +/0 {7(hs)} Hm(Xe-hs) — 7(Xs-)m(hs) }dms.

Proof : Define

M; = 7(X;) — 7(Xo) — /Otﬂ'(Hs)ds. (3.2.15)

First, we aim to prove that M, is a F, -martingale. To see this, we note

from the definition of M; in (3.2.15) that, for any ¢t > s > 0,
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Moreover, by the rules for calculation of conditional expectation, we have
Bln(X)|F)] = B[EIXF)|F)] = BIX|F]  (s<t)

and

Bln(X,)|F,] = n(X,) = BIX,|F]].

Thus

B, — M FY] — E[mxt)—w(Xs)— [ e

7

~ BLIE - BIE) - B] [ wmd ]
— [Xt X, — / w)du ]—“Y} (3.2.16)
Substituting the process X; from (3.2.1) into (3.2.16), we get
E[M, — M,|FY]=E [Zt — Zg+ /t{Hu — 7m(H,)}du f;’} : (3.2.17)

Since Z; is a F;-martingale then
ElZ — Z,|F)] = E[B[Z: — Z|FJ)|FS] =0
On the other hand, for any u € (s,t),

E[H,|F)] = E[E[H,|F|FY] = Elx(H,)|F)].

S

Thus

E[H, —n(H,)|FY]=0

and hence
t
/ E[H, — n(H,)|F du = 0.

Fubini’s Theorem implies

E{/t H, — n(H,)du

ff}:o.
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We summarize the above results into (3.2.17)
t
BN — NL|FY] = BZ, — 77 ] + E[/ (H, — (H,)}du|F¥] = 0.

This proves M, is a F) -martingale.
Now we can utilize Lemma 3.2.11 to assert that there exists a F)-

t
predictable process K; such that / K,m(hs)ds < oo P-a.s., Vt < 0 and
0

t
M,; = M, +/ Kydm. (3.2.18)
0
Equating (3.2.15) and (3.2.18) gives
t t
(X)) = n(Xo) + / (H.)ds + / K.dm,. (3.2.19)
0 0

Lemma 3.2.10 shows that m; is a F)-martingale and by Lemma 3.2.11,
t
there exists a ff-predictable process U, such that / Ust(hs)ds < oo P-a.s.,
0
Vt <0 and

¢
my = my +/ Ugdmes. (3.2.20)
0

Substituting Y; from (3.2.2) into (3.2.5), we see that m; can be expressed as
t
my = / {hs — W(hs)}dS + Mt. (3221)
0
Equating (3.2.20) and (3.2.5), we get
t t
Y, = / Ugdmg +/ 7(hs)ds. (3.2.22)
0 0
Finally, we shall show that
K, = {W(hS)}_l{W(Xs—hS) — m(Xs-)m(hs)}-
By definition of 7(X};) and properties of conditional expectation, we have

Elr(X,)Y,] = E[E[X,|F V] = E[E[X.Y;}|F]] = E[X.Y]. (3.2.23)
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We know that the integration by parts formula applied to the processes X; and Y,

has the form:

t t
XY = XYy + / X,_dY, + / Yo dXs+ (XY ), (3.2.24)
0 0
where X,_ = lim X, and (X,Y’); stands for the quadratic covariation of X;
u—s,u<s

and Y;. Now substituting Y; from (3.2.22) into the second term of the right hand

side of (3.2.24) we get

t t
/ X, dv, = / X, {Usdm, + m(hy)ds}. (3.2.25)
0 0
Next, substituting m; from (3.2.21) into (3.2.25), we get
t t t
/ X, dY, = / XS_US{dMS + {hs — ﬂ(hs)}ds} +/ Xs_m(hg)ds
0 0 0

t t
- / X, U.dM, + / X, Us{hs — 7(hs)}ds
0 0

+ /t X,_n(hs)ds. (3.2.26)

Substituting X, from (3.2.1) into the third term on the right hand side of (3.2.24),

we get
t t t ¢
/ Y, dX, = / Y, {H.ds+ dZ,} = / Y, H,ds +/ Y, dZ,  (3.2.27)
0 0 0 0
It follows from the definition of X; in (3.2.1) and Y; in (3.2.2) that
(X, )y =(Z,M), =0. (3.2.28)
Combining (3.2.26)-(3.2.28) and (3.2.24) yields

t t
XY, = XOYO+/ XsUdes+/ X Us{hs — m(hs)}ds
0 0

t t t
+/ Xs_vr(hs)der/ Ys_Hsder/ Y, dZ,. (3.2.29)
0 0 0
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Because the expectations of the second and sixth terms of the right hand side of

(3.2.29) are equal to 0, then
t
BIX,Y) = E[XoYi + E[ / X, Ui{hs — w(hs)}ds]
0

+E|:/OtXS_7T(hS)dS:| +E{/OtYS_HSds].

The rules for calculation of the conditional expectation show that
BLY) = B+ E] [ Ur(Xeoh) = (X n(h)}s]
+E[ /0 X (b + Ys_Hs}ds}. (3.2.30)
On the other hand, integration by parts gives
m(Xy)Y, = 7(Xo)Yo + /Ot (X5 )dYs + /Ot Yo dr(Xs) + (m(X),Y),.  (3.2.31)
Substituting Y; from (3.2.22) into the second term of (3.2.31), we get
/0 (X )Y, = /0 (X {Usdm, + 7 (he)ds). (3.2.32)
Next, substituting m; from (3.2.21) into (3.2.32), we obtain
/Otw(Xs_)dYs = /Otw(Xs_)Us{dMs + {hs — m(hs)}ds} + /Otw(Xs_)w(hs)ds
= [+ [ 706U~ w0
0 0
+/Ot7T(X3)7T(hS)d8. (3.2.33)
Substituting 7(X;) from (3.2.19) into the third term of (3.2.31), we get
/Ot Y dn(Xs) = /Ot Y {n(Hs)ds + Kqdms}. (3.2.34)
Next, substituting m, from (3.2.21) into (3.2.34), we get
t t ¢
/0 Y, dr(X,) = / Y, _m(H,)ds + / Vi K {dM, + {h, — m(hy)}ds}
= /Ot Y,_m(Hy)ds + /t Y- K dM;

0

+ /t szst{hs - 7T<h8)}d5' (3235>
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By using the expressing of 7(X;) from (3.2.19) and that of Y; from (3.2.22), we

have

t t t t
(r(X),Y)e = { / K.dms, / Usdmy); = / UK d(m,m), = / U, K hyds.
0 0 0 0
(3.2.36)

Combining (3.2.33), (3.2.35), (3.2.36) and (3.2.31), we obtain
¢ ¢
T(X,)Y, = W(XO)YO—i—/ W(Xs_)USdMS—i—/ (X )Ug{hs — m(hs)}ds

t " t " ¢

—|—/ W(Xs)ﬂ'(hs)ds—l-/ YSKSdMS—i—/ Y, m(Hy)ds
0 0 0
t t

+/ Y K {hs — w(hs)}ds +/ UK hgds. (3.2.37)
0 0

The expectations of the second and fifth terms of the right hand side of (3.2.37)

are equal t0 0, 50
Br(XY) = BlrXo)¥)+ B| [ w06 )Uulhe —(h)}is]
+E{/Ot7r(Xs_)7r(hs)ds} +EU; YS_W(HS)dS]
+E[/t Yo Ko {h, — w(hs)}ds] + E[/t UsKshsds].

0 0

The properties of conditional expectation reveal that

E[r(X,)Y)] = E[X,Yo] + E[/t{YsHS + Xsﬁ(hs)}ds} +E Ut USKSw(hs)ds] .
: : (3.2.38)

It follows from (3.2.23), (3.2.30) and (3.2.38) that

o | UL () — m(Xe ) + (X Jah)}ds] = o

For all ¢ > 0 and all F)-predictable processes U, such that [; Us(h)ds < oo,
P-a.s., Vt > 0, if C; is any nonnegative bounded FY -predictable process satisfying

the same requirement as Uy, then

E{ / C{Er(he) — 7(Xoha) + 7(X,)n(he)}ds| =0,
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the latter equality being valid for all nonnegative bounded FY-predictable

processes Cy, that is

Substituting K into (3.2.18), we get

(X)) = 7(Xo) +/0 7(Hy)ds +/0 {7(he)}y Hm(X_hs) — 7( X )m(hs) }dm.

The proof of this theorem is thus complete.

3.2.4 Quasi-filtering

There is some inconvenience in application of (3.2.14) because the appear-
ance of the factor {m(h,)}~!. To avoid this difficulty we introduce the unnormalized
conditional filtering or quasi-filtering in other terms.

As we know in the method of reference probability, the probability P ac-
tually governing the statistics of the observation Y; is obtained from a probability
@ by an absolutely continuous change P — ). We assume that () is the refer-
ence probability such that Y is a (@, F;)- Poisson process of intensity 1, where
Fo=F VFx.

Denoting for every ¢t > 0 by P, and @Q; the restrictions of P and @ re-
spectively to (2, F;) we have P, << ;. It is known that the corresponding
Radon-Nykodym derivative is the unique solution of a Doleans-Dade equation of

the form:

Li=1+ /t Ly (hy — 1)d(Y, — s), (3.2.39)

where h; and Y; are given in (3.2.2).

The explicit solution of (3.2.39) is

¢
L, = % = H hsAY; exp {/ (1-— hs)ds}. (3.2.40)
Qr iz 0
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Let Z, be a real valued and bounded process adapted to F;, then for every

history G; such that G; C F;, t > 0 we have a Bayes formula

Eq|Z:L+|Gi]

Ep|Zi|G] = m;

(3.2.41)

where Ep(.|G;) and Eg(.|G:) are conditional expectations under probabilities P

and () respectively.
Definition 3.2.13. The process o(X;) defined by
o(X;) = Eo[LiX|F)] (3.2.42)

is called the optimal quasi-filter (or quasi-filter) of X; based on data FY. It is in

fact an unnormalized filter of X,.

Then the filter of the process X; can be written as

m(Xy) = C;(()lit)), (3.2.43)
or in more general
n(f(x) = ZLED) (3:2.44)

Theorem 3.2.14. The assumptions are those prevailing in Theorem 3.2.12. More-
over, assume that Zy and M; have no common jumps. Then the quasi-filter o(X})

satisfies the following equation

o(X,) = o(Xo) + / o(H,)ds + / (0(Xoha) — o(X ) ydper  (3.245)

where

=Y, —t. (3.2.46)

ly=1 forevery s and o(1,) = Eg(L.|FY).
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Proof : It is known that Eg[L|F,] satisfies the equation
Bl 71 =1+ [ BolLs VP10 — 1, — o). (3.2.47)
An application of the integration by parts formula gives
BolLFY (X)) = EolLol#1x(X0) + [ Bolla- 17 1dn(X,
+ [ X agolL )
+(Eg[LIF"], 7(X)):. (3.2.48)
Next we shall compute the second term on the right hand side of (3.2.48). Substi-
tuting m(X;) by its expression from (3.2.14), we get
[ EeltoiFnx) = [ Eolbo \FL)a(Hds + K.}
= [ Balb R Y, 7 (h.)as)
0
+/t Eq[L._|FX )= (H,)ds, (3.2.49)
0

where
K, = {W(ht)}*l{ﬂ(Xt,ht) — (X )m(he)} (3.2.50)

By (3.2.47), the third term on the right hand side of (3.2.48) becomes
/ (X )dEQlLFY] = / (X { BolLe |7 ()~ 1}d(vi—s) ). (3:251)
It follows from the definition of Eg[L,|F)] in (3.2.47) and 7(X;) in (3.2.14) that
(EoltlF).w(0) = [ KoBolLw |FL)n(h) — Nav.. (3252)
Substituting (3.2.49), (3.2.51) and (3.2.52) into (3.2.48), we get

EqL|F m(X) = EQ[LO‘}—OY]W(XO)WL/O EqQlLs-|F._|n(H.)ds

t

+ | EglL. |FY|K{dY, — m(hs)ds}

7(Xo ) Eal L \FY {x(hy) = 1}d(Y; = 5) |

t

+ | K.EQ[L, |FY {r(h) — 1}dY.. (3.2.53)

+
— — S—
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Combining the third and fifth terms on the right hand side of (3.2.53), we have
t
EQ[Li|F/ n(X,) = Eq[Lo|Fy Jm(Xo) +/ Eq|Ls—|F."]m(H,)ds
t 0
+ [ ) { BalLen |7 Jir(h) - (Y. - 5)}
0
t
+ / Km(hy)Eg[Ls_ | FX ]d(Ys — s). (3.2.54)
0
Substituting K; from (3.2.50) into (3.2.54), we obtain
t
EQ[Li|F Im(X)) = Eq[Lo|Fy ]m(Xo) +/ EqQlL-|F."]m(H,)ds
0

+ [ # X BolL | (k) = (Y. - )}
+/0 {m(Xo_hy) — 7(Xo)m(hs) }Eg[Ls_ | FX ]d(Ys — ).

(3.2.55)
Combining the third and fourth terms on the right hand side of (3.2.55) gives

EQ[Le| 7 Im(Xy) = EQ[Lo!fg]W(Xo)Jr/O Eq|Ls-|F_]n(H,)ds

+ / {m(Xoohy) = 7(Xo0)} Eql Lo |FY (Y, — 5).

(3.2.56)
We note from (3.2.42) and (3.2.44) that
o(f(X0)) = 7(f(X)a(le) = 7(f(Xe) ElLe| 7], Vf € Cy(R).  (3.2.57)

By choosing suitable functions f € C,(R) and substituting (3.2.57) into (3.2.56),

we get

o(Xy) = 0(X0)+/0 J(Hs)d8+/0 {o0(Xs-hs) — o(X-)}d(Y, — )

= o(Xo) + /0 o(H,)ds + /0 (0(Xo—hy) — 0(Xo-) s,

where p; = Y; —t. The proof is now complete.
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Theorem 3.2.15. If o(X;) satisfies (3.2.45), then the process n(X;) satisfies
(3.2.14).

Proof : We assume that () is the probability such that Y; is a (Q, F;)-Poisson

process of intensity 1 (i.e. hy = 1). Then

a(hy) = o(h) _ EqlhsLi| 7] _ EqlLsl 7] _
’ o(ly)  Eq[LJFY] — Eq[LFY]

and 7~!(h,) = 1. Consider

dr(X,) = d("(Xt))

o(1y)
- U(llt)d0<Xt) - Zg?ii;d(f(lt) + Zigg (do(14))? — de( X,)do(1,)
— ot (X )n] - FES (o) ~ o(1)d
+Z§g3 [(o(h)e = o(10)dM]*
_02(110 [o(Hy)dt + o(Xy—he)dme][(o(he) — o(1¢))dMy]
- ‘;((it)) it a(Xth;)(l—t)a(Xt)dmt
- S Sl s

Then we have finally,
m(Xy) = 7w(Xo) —i—/o 7(Hy)ds + i {7(he)y Hm(Xo_hs) — 7(Xe_)m(hs) }dm,

This proves the theorem.
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3.3 Filtering for a Fellerian System

3.3.1 Filtering for a Feller Process with Point Process Ob-

servation

Suppose that X; is a Markov process on a filtered probability space
(Q, F,(F:), P) taking values in R and that the semigroup (P, , ¢ > 0) associ-

ated with the transition probability P;(z, E) is a Feller semigroup, that is

A - | Py, dy) (), (33.1)

maps C'(R) into itself for all ¢t > 0 and satisfies the following relation

lim P f (z) = f(2), (3.3.2)

uniformly in R for all f € C(R), where C(R) is the space of all real continuous
function over R. Assume that the observation Y; is a Poisson process of intensity
hy = h(X;) € C(R).

As before the filter m; is defined as:
me(f) = 7(f(X0) = Ep[f(X0)|F]- (3.3.3)
Also we have
oi(f) = o(f(Xy) = EqLef (X:)| 7], (3.3.4)

where the probability ) and the likelihood ratio are defined as before.

Denote by m; the innovation process of Y;:

my =Y, — /0 m(hs)ds =Y, — /0 ZEZL:; ds. (3.3.5)

Theorem 3.3.16. If A is the infinitesimal generator of the semigroup P; of the

signal process, then the optimal filter m,(f) = w(f(X})) satisfies the two following



equations:

(a) m(f)

(b) Wt(f)

- Wo(f)—i-/otﬂs(,Af)ds
+/0 7 (W) {me (fh) — 7o (f)ms(h) }dm
= 7T0(Ptf)+/0 ws—l(h){ﬂ's_(hpt_sf)

— g (Pr_s f)ms(h) }dmy .

where f € Cy(R) and ms—(f) = w(f(Xs-)).

Proof :
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(3.3.6)

(3.3.7)

t
(a) First, we prove that C/ := f(X,) — f(X,) — / Af(Xs)ds is a Fi-martingale,
0

where (F;) is the filtration to which (X}) is adapted. To do that, for any ¢t > s > 0,

E[C{ - CI|F) = B|f(X)) -

- / t Af(X,)du

’)

= E[f(X))|F] — E[f(X,)|F. —E[/tAfX

= E[f(X)|F] - E[ Af(Xy)du)
= P f(X, E[ / Af(Xu)du) }
P (X~ F(X)) — [ ABLF(X)dulFJdu

S

— Pt_Sf(XS)—f(XS)—/ AP, f(Xs)du

= B f(Xs) -

)= [ APF(X.)du.

0

Recall the property of Markov processes that

It follows from (3.3.8)

t t

Ptf—f:/ PSAfds:/ AP, fds.
0 0

and (3.3.9), that

E[c] —cf|F] =o.

(3.3.8)

(3.3.9)
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This proves th is a Fi-martingale. Next we consider the signal process

ﬂ&>=fuw+[Ammw+d

with the observation process
t
Y, = / hsds + M.
0

By using Theorem 3.2.12; we obtain

ﬂﬂ&»==ﬂﬂ%»+AﬂMﬂ&Wh

f(Xy), ift<s; (1)
P f(Xy), ift>s. (2)
First, we prove that (Q%)s is a Fs-martingale. We have to prove that
E[QLF.) = QL for any u < s.

case 1: ifu<s<t
= E[B[f(X))|F]|F.]
= E[f(X,)|F]
= P_.f(X,) (by definition of the operator F;)

= Q' (by definition (2) of Q")
case 2: fu<t<s

= P_.f(X,) (by definition of the operator F;)

= Q' (by definition (2) of Q")
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case 3: ift<u<s

= f(X:) (because f(X;) is measurable w.r.t. F,,u > t)

= Q' (by definition (1) of Q")
Next we consider X = QY as a signal process with the observation process

Y, = /hudu—l—MS.
0

By using Theorem 3.2.12, we obtain
t
(X)) = 7w(Xo) +/ {7(he)} Hm(X_hs) — 7(Xs_)m(hs) }dms.
0

It follows from the definition of Q% in (1) and (2), we obtain

Theorem 3.3.17. The quasi-filter o; satisfies the two following equations:
W alf) = o)+ [ a(Apds+ [ {ow(bf) - o(P)d
0 0
) o) = P+ [ (e (hPu) = o (P
where f € Cb(R>7 Os—(f) = O'(f(XS_)).CLTld He = Y; —t.

Proof :
t

(a) Recall that C/ = f(X,) — f(Xo) —/ Af(X;)ds is a Fi-martingale. Consider
0

the signal process
t
f0) = F0)+ [ AfX)ds+ ]
0
with the observation process

t
Y, = /hsds—i—Mt.
0
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By using Theorem 3.2.14, we obtain

o(f(X) = o(f(X0)) + / o (AF(X,))ds + / {o(f (X)) — o(F(Xo)) Y
(b) Put

f(Xt)> ift< 55

Pt—sf(Xs); if ¢ Z S.

We can see that QY is a Fy-martingale. Next we consider X, = Q! as a signal

process with the observation process
Y, = / hydu + M.
0
By using Theorem 3.2.14, we obtain

c(F(X) = o(Pf(X0)) + / (0(Prof(Xo ) — (P o f(Xo)) blpt.

3.4 Filtering for Ornstein-Uhlenbeck Process

Let X; be stochastic process with initial value X of standard normal dis-
tribution Xy ~ AN(0,1). X; is called an Ornstein-Uhlenbeck process if it satisfies

one of seven definitions below.

Definition 3.4.18. X; is a solution of SDE

X() ~ N(O,].)
Definition 3.4.19. X, satisfies

t
X = Xoe_o‘t+7/ e~ qw,,
0

X() ~ N(O, ]_)
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Definition 3.4.20. X; is a Gaussian process with
(a) EX; =0 Vt
2
(b) R(s,t) = E(X,X,) = Q—e—a‘t—sl‘
a

Definition 3.4.21. X, is a stationary Markov process with the density of the

transition probability is

pel(zy) = ! )exp{—w}.

yr(1 —e20t V(1 = 2e72)
In general
1 (y o x€72a(tfs))2
P (Y, t) = - :
(x7 S Y, ) \/’771’(1 — 6—2a(t—s)) €exp { 7(1 . 26—2a(t—5)>

Definition 3.4.22. X is a Feller process with semigroup (F;,t > 0) defined as

2
pi@) = [ (e LVTmEm ) @4
R 2a
where p is Gaussian measure on R

p(de) = ——e ¥ dx
2

and

lim P f(z) = f(z).

t—0

Definition 3.4.23. X; is a Feller process with (P;,t > 0) defined as

P f(x) = E[f(e_atx—i— ;:m)],

(0%

Y ~ N(0,1).
Definition 3.4.24. X, is expressed by

Xt = CtX—f—StY
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where

—at

G = ¢
2
~

sy = —y\1—e 2t
2a

X,Y are two independent standard Gaussian random variables (i.e., X,V ~

N(0,1)).

3.4.1 Filtering for Ornstein-Uhlenbeck Process from Point

Process Observation

We recall in this section some facts on Ornstein- Uhlenbeck processes and
show how to use them to our filtering problems. This process is of importance in
studies in finance. It has various ’ good properties * to describe many elements in
financial models such as that of interest rate ( Vasicek, Ho-Lee, Hull-White, etc.)
or stochastic volatility of asset pricing.

We will apply results of the previous section to the following filtering prob-
lem:

e Signal process: An Ornstein-Uhlenbeck process X; that is solution of the
equation (3.4.1).

e Observation process: A point process N; of intensity A; > 0.

So the signal and observation processes (X;, N;) can be expressed in the
form

dXt = —O[Xtdt + ’Yth 7)(0 ~ N(O, 1), (343)

where o,y > 0 ,)\; is a F;-adapted process, M; is a point process martingale
independent of W;.

Denote by F¥ the o-algebra of observation that is generated by (N, s < t).



The filter of (X;) based on data given by (FJ) is denoted now by X;:

A

X = m(X) = B(X,|F))

and also m,(f) = f(X,) = E(f(X)|FY) , | € Cy(R).

The innovation process m; is given by
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t
my = Ny — / m(As)ds, (3.4.5)
0

and dmt = dNt — W(/\t)dt

Since the semigroup (F; ,¢ > 0) for X is defined by (3.4.2), the infinitesimal

operator A4, is given by

Auf =T (RS — f) = —orf'(a) + o

On the other hand, P, f can be expressed under the form:

i721""(37). (3.4.6)

(Pf)w) = E[f(e e+ LvT=emy)], (3.4.7)

where Y is a standard Gaussian variable, Y ~ N (0, 1).

Then from Theorem 3.3.16 and 3.3.17 we can get:

Theorem 3.4.25. The filter m,(f) for the filtering problem (3.4.3)- (3.4.4) is given

by one of two following equations:

(a) m(f) = 7T0(f)+/0 WS<_O‘XfI(X)+;—af"(X))ds
+/0 T {7 ONf) — T (f)ms(N) Y,

b) m(f) = m(Pf)+ / T (e AP f) — o (Pra f)ma(A) Y.

where s (f) = w(f(Xs-)), my = Ns — / ms(N)ds and Py is given by (3.4.7).
0
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Theorem 3.4.26. The quasi-filter o(f) for the filtering problem (3.4.3)- (3.4.4)
is given by one of two following equations:

2

(@ alf) = o)+ [ o= aX P+ Lp))ds
T / (o0 (M) = 0o ()}
) of) = oolPf) + / (0 (AP f) — 0o (Praf) i,

where py = Ny — t, o (f) = o(f(Xs2)), f € Cp(R) and P, is given by (3.4.7).



CHAPTER IV

FRACTIONAL FILTERING THEORY

In this chapter, we consider a fractional filtering problem from an approxi-
mation approach. We prove that the limit of the approximate filters is the solution
of the original fractional filtering problem. A general problem, where both signal

and observation are fractional, is investigated as well.

4.1 Introduction to Fractional Brownian Motion

It is known that fractional Brownian motion (fBm) was introduced first
by Mandelbrot and Van Nees (1968). This is a centered Gaussian process BH =

{BE, t >0} with covariance

E(BIB[") = Z (s +* — |t — s]?), (4.1.1)

N | —

where H is called the Hurst parameter, 0 < H < 1.

In the case where H = %,
1
B(BY*B?) = o (s +1 =t = ), (4.1.2)

we have an ordinary standard Brownian motion. This is in general neither a
martingale nor a Markov process. In contrary, it exhibits a long-range dependence.
Some approaches to fractional stochastic calculus have been introduced by Coutin
and Decreusefond (2000), Dai and Heyde (1996), Decreusefond and Ustiinel (1999).

Stochastic filtering problems in fractional stochastics were studied by var-
ious authors. The chief obstacle in the study of these problems is the fact that

the signal process or the observation process is driven not by a martingale and
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powerful tools of martingale theory can not be applied as in traditional stochastic
filtering theory. Some attempts have been made by Decreusefond and Ustiinel
(1999) to overcome this difficulty by invoking the Malliavin Calculus

We know that, the fBm B = (BX ¢ > 0) has the following representation

B = ﬁ {Zt + /Ot(t - s)adWS} : (4.1.3)

where {W, s € R} is a standard Brownian motion, o« = H — % € (— %, %) Since

the process Z; = f?oo [(t—5)™— (—s)*]dW; has absolutely continuous trajectories,

it suffices to consider the term
t
B, = / (t — s)*dWs. (4.1.4)
0

In fact, B; is a fractional Brownian motion of the Liouville form.

4.2 Convergence of a Semimartingales B}

Let B be fractional Brownian motion and W; be the corresponding Brown-

ian motion in its representation (4.1.3). Suppose that 0 < o < 5, where o« = H—3.

Define
t
B, — / (t — 5)dWV, (4.2.1)
0
and
t
B = / (t—s+¢e)*dW; (4.2.2)
0
for every € > 0. The Ito stochastic differential of By is then

t
dBE = (/0 alt—s+ e)a*dWS)dt + AW (4.2.3)
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Indeed by applying the stochastic theorem of Fubini, we have

t s
//(s—u—l—a)alquds = / /s—u—l—aa tds]dw,
0 Jo

/ [t —u+e)* —e*]dW,

[

Ll 23

/ (t —u+e)*dW, — W] (4.2.4)
0

Substituting (4.2.2) into (4.2.4) then
t s 1
/ / (s —u+e)* *dW,ds = — (B — *W,). (4.2.5)
0 Jo a
We get B by rearranging (4.2.5)
t s
B; = 04/ / (s —u+e)* 'dW,ds + *W,. (4.2.6)

Define

t
o = / (t—u+ ) dW,. (4.2.7)
0

It follows from definition of ¢§ in (4.2.7). Hence Bf in (4.2.6) can be written as
t
B; :/ apids + W, (4.2.8)
0
or equivalently,
dB; = ay;dt + e*dW;. (4.2.9)

So By is a semimartingale.

We recall here a fundamental result given in Thao (2006).

Theorem 4.2.1. B{ converges to By in L*(Q, F, P) whene — 0. This convergence

is uniform with respect to t € [0,T7].

Proof : See Thao (2003) and Sealim (2004).
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Remarks

1. The o-field generated by the random variables {B; 0 < s < t} can be

denoted by
FP=0(By; 0<s<t). (4.2.10)

In a similar way, the o-field generated by the random variables {Wy; 0 <

s <t} can be denoted by
FV =o(W,; 0<s<t) (4.2.11)

where W; is the Brownian motion corresponding to fractional Brownian mo-

tion B;.
2. Denote the o-field generated by the random variables {By..; s <t} as
F+* = 0(Boye; s < 1) (4.2.12)
We see that

ﬁB.+s — U(BS+€; s S t)
= 0(Bsie; s+e<t+e)
= o(By; u<t+e)

= FP.. (4.2.13)

3. We consider

FP = o(By; 0<s<t)
C 0(Bs; 0<s<t+e)

= FE. (4.2.14)
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and
FP+ = 0(Bae; s<t)
= o(Ws; 0<s<t+e)
— ftVJ‘r’a (4.2.15)
Hence
FPcFB = FPr = FV. (4.2.16)

4.3 Fractional Filtering for a General Signal Process

In this section, we consider a filtering problem where the signal process is
a general stochastic process and the observation process is a fractional process.

Signal process:

Xy, 0<t<T, (4.3.1)
where E|X;| < oo, Vt € [0,T].
Observation process:
t
Y, = / hods+ By, 0<t<T. (4.3.2)
0

t
where h; = h(X;) is a continuous process with E/ hgds < oo and B; is the
0

fractional process given by
t
B, - / (t — 5)dWV,. (4.3.3)
0

For any ¢ > 0, we establish a new filtering problem (or an approximate
filtering problem).
Signal process:

X, 0<t<T, (4.3.4)

where E|X;| < oo, Vt € [0,T].



S7
Observation process:

t
Yf—/ hsds + By, 0<t<T, (4.3.5)
0
t
where h; = h(X;) is a continuous process with F / hids < oo and B¢ is given by
0

t
B = / (t — s+ ¢e)*dWs. (4.3.6)
0

Define the filter of the process (X;,0 <t < T') based on observation process

(Y:,0 <t <T) as the following conditional expectation
m(X,) :== E[X{|F)], (4.3.7)
or more general
m(f) = ELf (Xl 7], (4.3.8)

where f is any continuous and bounded function on R (or f € Cy(R)) and F} is
a o-algebra generated by (Ys, s <t).
Also the filter of the process (X;,0 <t < T') based on observation (Y;7,0 <
t<T)is
(X)) = E[X,|F), (4.3.9)
or in more general form

i (f) = E[f(X)|R], (4.3.10)

where f € Cy(R) and F}” is the o-algebra generated by (Y, s < t).
Theorem 4.3.2. The filter 7(f) converges to m(f) in L*(Q, F, P) as e — 0.

Proof : Consider the process Y from (4.3.5). It follows from (4.3.2) and (4.5.7)
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that

(EAY;—-YfF>1ﬁ
- <E|(/t heds + By) — (/thsds+B§)l2)
0 0

12 1/2
— (BIB - BiI?)

1Y, =Y/l

1/2

= || Bt—Bf ||

Theorem 4.2.1 shows that Bf — B; in L*(Q, F, P) as ¢ — 0, then Y — Y}
1
in L2(Q2, F, P) as ¢ — 0. If we take ¢ = —, then YY" Y, in L*(Q,F,P) as
n
n — oo.

On the other hand, we have
y1/n Y
F; CF. 1

We have a non-increasing collection of o-algebras (]'?;;) such that

MWFY,, =FY (ie. FY''" — FY asn — o). And by assumption E|X,| < oo, it

t+1/n

follows from the Levy Theorem that
E[f(X)| 7] — EIf(X)|F)] as n — oo, (4.3.11)
It follows from definition of m;/"(f), m(f) and (4.3.11), we obtain
m/"M(f) = m(f) as n— oo (4.3.12)
Because we take € = %, then
i (f) = m(f) as e =0 (4.3.13)

and the convergence holds in L?*(Q, F, P) and almost surely as ¢ — 0.
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4.4 Fractional Filtering for a Semimartingale Signal

Process

In this section, we consider a filtering problem where the signal process is
a semimartingale process and the observation process is a fractional process.

Signal process:
t
Xt:XO+/ HSdS—i—‘/t, OStST, (441)
0

where V; is a Brownian motion and H; is a stochastic process such that
t

E / H?ds < oco.
0

Observation process:

t
m:/m@+&,mggﬂ (4.4.2)
0

where hy = h(X}) is a process with £ / t h2ds < oo and B is a fractional Brownian
motion defined by 0
B, = /t(t — 5)dWs, (4.4.3)
0
where Brownian motion process W; in this expression is independent of V.
As in the last section, we can consider the new problem (an approximate
filtering problem).

Signal process:
t
Xt:Xo—i-/Hsds—i—V}, 0<t<T, (4.4.4)
0

where V; is a Brownian motion and H; is a stochastic process such that
t

§/£¢<m
0

Observation process:

t
Wz/@@+$,%ﬁ§ﬂ (4.4.5)
0
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t
where hy = h(X;) with E/ h2ds < oo and B¢ is given by
0

t
B; = / (t — s+ ¢e)*dWs. (4.4.6)
0
As before, we define the filter for an exact filtering problem as
m(f) == E[f(X0)| 7], (4.4.7)

where FY = o(Y,,s < t) and f € Cy(R). And also, define the filter for an

approximate filtering problem as
i (f) = Blf(X)| 7], (4.4.8)

where " = o(Y5,5s <t) and f € Cy(R). And define the innovation process:

1

v = g—a[Yf —/O 7<(h)ds], (4.4.9)

then 1f is a FY - martingale.
Theorem 4.4.3. The filter ;(f) = E[f(X)|FY] is written by

m(f) = L* — lim 7 (f), (4.4.10)

e—0

where 75 (f) satisfies the equation

wHP) =mi()+ [ mEids + [ IO - m OO R b,
0 0
(4.4.11)
where
A= (X0 H, + 5 f'(X) (44.12)
}_lt = ht -+ OégOi, gOi = /t<t — S+ g)aflth (4413)
0

ve = Lve - / ' re(hds (4.4.14)



Proof : It follows from (4.4.5) and (4.2.8)
¢
YS = / hsds + By
0

t t
= / heds +/ aptds + W,
0 0

t
= / l_lst +€aWt,
0

where h, = h, + apS. So Y{ is a FV- semimartingale.

Consider
h: = (hs + ap?)?
< 2(Rh2 4 o?(¢5)?),
then
E(hZ) < ER2(hI+ o?(¢))?)]
= 2E[h] + 207 E[(¢5)7],
1.e.

/OtE(l_li)ds < 2/0t E(h?)ds + 20° /OtE[(¢§)2]d8_

By definition of ¢S from (4.2.7) and Ito Isometry property, we get

Bl = E( / (s —ut &) dW,)]

(5 —u +¢)* @ V]du
0

= / (s —u+ ) Yy

0

S / Ot l)du
0

= g2 ) < .
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(4.4.15)

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.19)
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It follows by Fubini’s Theorem and (4.4.18) that
¢t ¢
E( / R2ds) = / E(R2)ds
0 0
¢ ¢
< 2/ E(h)ds + 2a2/ El(o5)?ds
0 0
t t
~ 2m / B2ds) + 202 / El(o))ds.  (4.4.20)
0 0
Then from assumption of h;, (4.4.19) and (4.4.20), we can see that
t —
E/ h%ds < oo. (4.4.21)
0

We can write down the FKK (Fujisaki - Kallianpur - Kunita) equation for

the filtering problem (4.4.4) and (4.4.5) by using general filtering problem:

mi(f) = m(f) + / w(H)ds + / RS (FOOR) — 72(F(X))ms (Rl dvs,

(4.4.22)

where H, = f'(Xy)H; + 5f"(X:), f € Co(R) and 7§(f) = E[f(Xo)|F; ). Notice

that from (4.4.1), we have

¢
E\Xy| = E‘Xo—l—/ Hgds + V|
0

t
E(|X0| w1 [ sl + |v;|)
0

t
— E|X| +E|/ H.ds| + E|Vi|
0

IN

t
< Bl + B(| |H.Ids)+ EIVi|
0
It follows from Cauchy-Schwarz inequality that
t
E|X,| < E|X,| + TW[E/ H2ds)'* + E|Vj. (4.4.23)
0
Notice that EV; =0 and V; = V,* — V,” imply EV," < co and EV,” < oco. So

E\Vi| = ElV;" +V, ] = EV," + EV; < . (4.4.24)
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By (4.4.23) and (4.4.24), then
t
E|X,| < E|X +T1/2[E/ H2ds)'* + E|V| < oo,
0

by the Levy Theorem we can see that L? —lim 75 (f) exists and by Theorem 4.3.2,

e—0

then m(f) = L? — lim w5 (f).

e—0

4.5 General Fractional Filtering

In this section, we consider a filtering problem where the signal process and
the observation process are fractional processes.

Signal process:

t
X, = X, +/ Hyds+BY, 0<t<T, (4.5.1)
0
t
where F|X;| < oo, H; is Fi-adapted process with E/ Hfds < 0o and
0
t
BY = / (t — s)°dU,. (4.5.2)
0
Observation process:
t
Y, = / hids+ B®, 0<t<T, (4.5.3)
0
t
where hy = h(X,) is F;-adapted continuous process with F / h2ds < oo and
0
t
BY® = / (t — s)*dW,, (4.5.4)
0

where U; and W, are two independent standard Brownian motions. As before, we
consider a new filtering problem (an approximate filtering problem).

Signal process:

t
X5 = X, +/ Hyds+BY*, 0<t<T, (4.5.5)
0
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t
where H,; satisfies E/ H2ds < oo and for every & > 0,
0

t
BV = / (t — s +¢)%dU,. (4.5.6)
0
Observation process:
t
YP = / heds + BPF, 0<t<T, (4.5.7)
0
where h; = h(X{) and for every € > 0,
t
B = / (t — s+ e)*dW,. (4.5.8)
0
The filter for an exact problem is defined as
m(f) = E[f(X)|F), (4.5.9)

where FY = o(Yy,s < t) and f € Cy(R). And the filter for an approximate
problem is defined as

g g Yts
™ (f) = ELf(XD)IF ", (4.5.10)
where f € Cy(R) and FY™ = o(YE, s < t).
Lemma 4.5.4. Let X, be a sequence of random wvariables converging to X and
| X, <Y for all n, where Y is integrable. If (F,) is an increasing (resp. de-

creasing) sequence of o-algebras, then E[X,|F,] converges a.s to E[X|F]| where
F =o(UpF) (resp. F =NpFn).

Proof : Take ¢ > 0 and put

A,, = inf X, B,, = sup X, (4.5.11)

k>m k>m

where m is chosen such that

E[Bp — An] <€ . (4.5.12)
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For any n > m we have

E[An|F)] = Elinf Xi|F,]

IN

E[Xn| 7

VAN

E[sup X |F,]

k>m

—  E[Bn|F.. (4.5.13)

By Levy’s Theorem, we get that E[A,,|F,] — E[A.|F] a.s. and E[B,,|F,] —

E[B,,|F] a.s.. Notice that, for any n > m, A,, < X,, < B, implies

E[A,|F] = lim E[A,|F.]

n—oo

= liminf E[A,,|F,]

n—oo

< liminf F[X,|F,] (4.5.14)

n—oo

E[B,|F] = lim E[B,|F,]

n—oo

= limsup E[B,,|F,]

n—oo

> limsup F[X,|F,] (4.5.15)
By using (4.5.14)-(4.5.15), we obtain
E[A,|F] <liminf F[X,|F,] < limsup E[X,|F,| < E[B,,|F]. (4.5.16)

n—00 n—00

It follows from (4.5.12) that

E[E[B,|F] — E[A,|F]] = E[E[Bn|F]] — E[E[A,|F]]

= FE[B,— A, <e. (4.5.17)
Using (4.5.16) and (4.5.17), we get

E[limsup E[X,|F,] — liminf E[X,|F,]] <e. (4.5.18)

n—oo n—oo
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This shows that lim,,_. F[X,|F,] exist. So from the existent of this limit and

(4.5.16), then

E[An|] < lim B[X,|F,] < E[Bu|F).

n—oo

It follows from (4.5.19) that

lim E[A,|F] < lim E[X,|F,] < lim E[B,|F].

m—00

Note that lim,, .. A,, = lim,,_ B,, implies that

E[lim A,|F] = E[ lim B,,|F]

m—00

Using Fubini’s theorem, we have

lim E[A,|F] = lim E[By|F]

m—00 m—00

It follows from (4.5.20) and (4.5.22) that

lim E[An|F] = lim E[X,|F,] = lim E[B,|F].

m—00 n—oo

On the other hand, the inequality A,, < X < B,, implies
E[A,|F] < E[X|F]| < E[B,|F|

And then

lim E[A,|F] < E[X|F] < lim E[B,|F]

m—00

It follows from (4.5.22) and (4.5.25) that

lim E[A,|F] = E[X|F] = lim E[By|F].

m—00

(4.5.19)

(4.5.20)

(4.5.21)

(4.5.22)

(4.5.23)

(4.5.24)

(4.5.25)

(4.5.26)

By (4.5.23) and (4.5.26), we have lim E[X,|F,] = E[X|F] or E[X,|F,] —

n—oo

E[X|F] as.

This Lemma still holds if we replace the a.s. convergence by the L2 con-

vergernce.



Theorem 4.5.5. The filter m,(f) = E[f(X;)|FY] is determined by
m(f) = 2~ I i(f). f € G(R)

where w5 (f) satisfies the following filtering equation

7ﬂn:ﬁm+1ﬁﬁmw+ﬁhﬁmmm—ﬁwwwaMew&

where
T7 ! £\ 17 826 1 15
Hy = f'(X{)H; + Tf (X7)

t
Hy = H+ Bus, vf — / (t—s+e)fdU,
0
B t
hy = hy + vy, @f-/(zﬁ—s—%e)”%le
0
1 t
i = v = [ m(ias),
ex 0
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(4.5.27)

(4.5.28)

(4.5.29)

(4.5.30)
(4.5.31)

(4.5.32)

Proof : It follows from the definition of X§ in (4.5.5), X; in (4.5.1) and from

Theorem 4.2.1 that

t
Xe = X0+/ H,ds + B{""
0

t
— X+ / H,ds + B
0

- Xt;

(4.5.33)

ie. X — X;in L*(Q, F,P) as € — 0. As for Y, from (4.5.3) and (4.5.7) we can

see that

t t
Ye_y, = (/ h(X;‘)dHBt(?)a)—(/ h(X.)ds + B)
0 0

:lfwwa—mxwm+w9239%

(4.5.34)

where h : R — R is a continuous function by assumption. The L?(Q,F, P)-

convergence of Bt(z)a and X respectively to Bt(Q) and X; respectively, imply that

Y7 — Y, in L*(Q,F,P) as € — 0.



It follows from (4.5.7) and (4.2.8)

t
yf_‘/m@+3%
0
t t
= /hsds+/ aptds + W,
0 0

t
= / l_lst +€aWt,
0

where h, = h, + apS. So Y{ is a FV- semimartingale.

Consider
h: = (hs + ap?)?
< 2(RZ 4 o?(¢5)?),
then
E(hZ) < ER2(hI+ o?(¢))?)]
= 2E[h] + 207 E[(¢5)7],
1.e.

t t t
/zﬂﬁmsgz/zm@ms+%f/zﬂ@9mw
0 0 0
By definition of ¢S from (4.5.31) and Ito Isometry property, we get
ElP) = E[([ (s—utotam.y)
0
= / E(s —u+¢e)** Dy
0

= /(s—u+€)2(a_1)du
0

S /s 82(0{—1)du
0

= g2 ) <« .
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(4.5.35)

(4.5.36)

(4.5.37)

(4.5.38)

(4.5.39)
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It follow by Fubini Theorem and (4.5.38) that
t t
E( / R2ds) = / E(R2)ds
0 0
¢ ¢
< 2/ E(h?)ds + 2(12/ E[(¢%)*ds
0 0
t ¢
= 2E(/ h2ds) + 2a2/ E[(p%)?]ds. (4.5.40)
0 0
Then from assumption of h;, (4.5.39) and (4.5.40), we can see that
t —
E/ hZds < oo. (4.5.41)
0
It follows from (4.5.5) and (4.2.8)
¢
X = Xo+ / H.ds + B'F
0

t t
= XO + / HSdS + / ﬁ@[]idS + 55Ut
0 0

t
= X0+/ Hds + U, (4.5.42)
0

where H, = H, + (5. So Xf is a F}¥- semimartingale.

Consider
H? = (H,+ py)?
< 2(HI+ (D)), (4.5.43)
then
E(H7) < E[2(H:+3°(¥5)%)]
= 2E[H?] + 26°E[(¢5)?], (4.5.44)
i.e.

/ B ds < 2 / B ds + 2 / ' Bl(65)ds. (4.5.45)



By definition of ¢¢ from (4.5.30) and It6 Isometry property, we get
BIWiF) = BI([ (s—u+ ey aviy]
0
= / E(s —u+¢)*" Ddu
0

= /(S—u—|—€)2(ﬁl)du
0

0

= 522070 < .
It follow by Fubini Theorem and (4.5.45) that
t —
E(/ Ads) = / B(A?)d
" t
< 2 [ Uy 20 [ Bl
° ’
= 2E( / Hds) + 2 / E[(5)?]ds
0 0
Then from assumption of Hy, (4.5.46) and (4.5.47), we can see that

t
E/ H2ds < 0.
0

We have a new approximate filtering problem:

Signal process:

t
Xf:XOJr/ Hds + €°U,.
0

Observation process:
t —
ve= [ s w
0
where

t
Hy = H, + Bus, o — / (t—s+2)°dUL,
0

t
hy = hy + gl got/(t—s—l—s)aldWS.
0
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(4.5.46)

(4.5.47)

(4.5.48)

(4.5.49)

(4.5.50)
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and the innovation process:

V= ve - /t 7= (R)ds]. (4.5.51)

- =
We can write the FKK filtering equation for the approximate model (4.5.49)

and (4.5.50) as

7r?(J‘)Z?ﬁ‘?(fH/O 7Ti(lff)d«H/o [ (f (X)) — mS(fF(X)m(h)]e™dvs. (4.5.52)

where
T 7 /! e\ 17 82ﬂ " £
Hy = f(X])H; + Tf (X)) (4.5.53)

Because Xf — X; and Y — Y, in L3(Q, F, P) and F,* \, F) as ¢ — 0, then by

virtue of Lemma 4.5.4 we have

m(f) = L* — lim 75 (f) (4.5.54)

e—0



CHAPTER V
APPLICATION FOR FINANCIAL MODEL OF

ORNSTEIN-UHLENBECK PROCESS

In this chapter, some financial filtering models are studied. The results
of filtering for Ornstein-Uhlenbeck process from point process observation from
Chapter III are applied to the study of the volatility in asset pricing and term

structure models for interest rates such as Vasiéek model and Hull-White model.

5.1 A Filtering Problem for the Volatility Model

In this section, we consider filtering problem for the volatility »; model

which can be represented by
d(In¥,) = —a(In X,)dt + vdW;. (5.1.1)

Set X; = InY;. Hence f(X;) = eX* = 3,. Next, we consider the filtering
problem.

Signal process:

Observation process:

From the results of Theorem 3.4.25 and Theorem 3.4.26, we obtain the

following theorems.
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Theorem 5.1.1. The filter of the filtering problem for the wvolatility model in

(5.1.2)-(5.1.8)is given by one of two following equations:
(a) m(X) = m(X) +/0 7TS<— aXIn(X) + ;—a2>d8
+ [ w5 (h5) = (@b,
(b) m(X) = WO(HE)+/O (W {7 (WP %) — mo (P X)ms(h) }dm,

t
where m; = S; — / m(hs)ds and P, is given by
0

(D)) = B [exp (=0 + v T =)

Theorem 5.1.2. The quasi-filter of the filtering problem for the volatility model

in (5.1.2)-(5.1.8) is given by one of two following equations:

(a) o(X) = UO(E)+/O as<—a§]ln(2)+%2>d
" / {00 (hf) = 0w ()},
1) 0(S) = oo(BY) / (00 (hPrsX) — 00 (PryS) g,

where p; = Sy —t and

(BX)(z) = E[exp (e™z + %m}/)].

5.2 A Filtering Problem for the Vasicek Model

The term structure for the Vasicek model which given by the following

equation
dT't = (b — &Tt>dt + ’}/Wt,

where 7; is the interest rate, a,y are positive constants and b is any real number.
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X;+0b
Given X; = ar; — b, then f(X;) = tto_ r¢. Now we study the following
filtering problem:
Signal process:
dX; = —aXdt + aydW,. (5.2.4)
Observation process:

It follows from Theorem 3.4.25 and Theorem 3.4.26 that

Theorem 5.2.3. The filter of the filtering problem for the Vasicek model in
(5.2.4)-(5.2.5) is given by one of two following equations:

(a) m(r) = mo(r) +/0 7s(b — ar)ds
—l—/o 7 (W) e (hr) — 7o (r)ms(h) }dms,
(b) m(r) = mo(Pr) —|—/0 T (R {me (hPi_gr) — T (Po_gr)ms(h) }dmy,

t
where m; = S; — / 7(hs)ds and P, is given by
0

(Pi(a) = B[ exp (0 + L vT=eay)].

Theorem 5.2.4. The quasi-filter of the filtering problem for the Vasicek model in

(5.2.4)-(5.2.5) is given by one of two following equations:

(a) oy(r) = ao(r)+/0 as(b—ar)ds+/0{Js_(hr)—as_(r)}d,us,
(b) or) = Uo(Ptr)—i—/O{as(hPtsr)—as(Ptsr)}dus.

where i, = Sy —t and

(Pyr)(z) = E[exp (e ™"z + %ﬁm}/)] :
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5.3 A Filtering Problem for the Hull-White Model
Here we consider the Hull-White model for interest rate r; given by
dry = (b(t) — a(t)ry)dt + 7 (t)dW,, (5.3.6)

where a(t), b(t) and (t) are deterministic continuous functions of ¢ with a(t) > 0

and y(t) > 0.
X
Let Xy = a(t)r; — b(t), then f(X;) = %I;(t) = r;. Next we establish the
a
following filtering problem.
Signal process:
Observation process:

By using Theorem 3.4.25 and Theorem 3.4.26, we found the filtering and

quasi-filtering equations for the Hull-White model as the following theorems.

Theorem 5.3.5. The filter of the filtering problem for the Hull-White model in

(5.3.7)-(5.5.8) is given by one of two following equations:

(@) mlr) = mlr)+ [ w0 - ar)is
—l—/o 7 (W) {7ms- (hr) — mo_ (r)ms(R) }dms,

t
(b) m(r) = mo(Ppr) +/ . (R {7 (hPi_gr) — T (P,_gr)m(h) Ydmy,
0
t
where m; = S; — / 7(hs)ds and P, is given by
0

(Pyr)(z) = E[exp (e_“(t)tx + w 1- 6’2“("/)“/)]-
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Theorem 5.3.6. The quasi-filter of the filtering problem for the Hull-White model

in (5.3.7)-(5.3.8) is given by one of two following equations:
a) or) = oo(r os(b(t) — a(t)r)ds os_(hr) — os_(7)}dus,
(W) @) = anlr)+ [ (bt = aOr)is + [ Lo (i) = o))
(b) ou(r) = oo(Pr) —i—/o {os_(hP,_sr) — 05 (Pi_sr) }dps,

where i, = Sy —t and

(Pyr)(z) = E[exp (e—a(t)tl. + w 1— 6—2a(t)ty)]‘



CHAPTER VI

CONCLUSIONS

In this thesis, we have studied some stochastic filtering problems that can
be applied to finance. The main results of this thesis are divided into two parts.
The first part is the stochastic filtering problem with point process observation,
While the second part is the stochastic fractional filtering problem.

An observation in reality can be made only at discrete times so the obser-
vation process is a stochastic process of discrete times. In general, the observation
can be made at random times. So a point process is used as an observation process.
In the first part, a stochastic filtering problem with semimartingale signal process
and observation process given by a point process is studied. The advantage of the
representation of a martingale as an integral with respect to the innovation process
is that stochastic calculus can be used to attain the filtering equation. By using
reference probability and Bayes formula, the quasi-filtering equation is obtained.
After that a Feller process and an Ornstein-Uhlenbeck process are used as a signal
processes.

Many financial processes can be perturbed not only by white noise as a
Brownian motion but also by a fractional process such as a fractional Brownian
motion. So fractional filtering is needed in finance. In the second part, a fractional
filtering with fractional observation process is studied in three cases. First, a
general signal process is considered. Second, a semimartingale signal process is
studied. Finally, a fractional signal process is examined. The convergence of a

semimartingale B; and general stochastic filtering theorem are used for the proof
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of the fractional filtering equation.

Apart from these results, the Thesis includes also some applications of
filtering problem with point process observation to estimate the volatility in asset
pricing models as well as in term structure models such as those of Vasicek and
Hull-White.

The author hopes that various practical problems arising in financial mar-

kets can be found solutions via the methods and results presented in this Thesis.
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