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ON-POLICY MONTE CARLO (ONMC)

This research proposes an energy-efficient path selection algorithm which
aims at balancing the contrasting objectives of maximum network lifetime routing
and minimal energy consumption routing in mobile ad hoc networks (MANETS).

A typical mobile ad hoc network consists of nodes that are usually battery
operated. Hence, energy-efficient routing is a critical issue. There are two
approaches broadly suggested for energy-aware route selection protocols. Firstly,
the maximum lifetime routing protocols balance the load among nodes and can
prolong the network lifetime, but do not decrease the total energy consumption.
Secondly, the minimum energy consumption routing protocols aim at reducing the
network energy consumption, but the nodes exhaustively used along the selected
paths die very soon. Hence, there exists a tradeoff between the two approaches.
The underlying aim of this thesis is to address the problem of jointly optimizing
the energy consumption and network lifetime in MANETSs with dynamic topology.
There are two main contributions in this thesis:

The first contribution is the formulation of the energy-efficient path

selecting problem in MANETSs as a Markov decision process (MDP), whose goal
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is to find a sequence of path selection that minimizes the expected accumulated
cost for the system. The cost structure is a function of the energy consumed, the
residual energy as well as the number of alive nodes and the ratio of successfully
delivered packets, so as to achieve a good path selection policy which balances the
tradeoffs.

The second contribution is the application of a reinforcement learning
method based on sample episodes, called the on-policy Monte Carlo (ONMC)
method, to solve for a solution to the formulated MDP. The ONMC method is
chosen due to the inherent episodic behavior of the routing process in MANETS.
The simulation results show that the proposed algorithm can reduce the long-term
cost, which is a function that depicts the optimal tradeoff balance in the long run,
by up to 37% when compared to existing well-known energy-efficient routing

schemes.
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CHAPTER I

INTRODUCTION

This chapter introduces the background of mobile ad hoc networks and
highlights the significance of the energy-efficient routing problem in mobile ad hoc
networks. It also presents the motivation for applying reinforcement learning to

achieve energy-efficient routing which is the main focus of this thesis.

1.1 Significance of the Problem

A mobile ad hoc network (MANET) is a communication network where all
nodes cooperatively maintain network connectivity without a centralized
infrastructure. Since all nodes in the MANET can move freely, such network is
generally characterized by bandwidth-constrained, variable capacity links and
unpredictable topology. Each node has a limited transmission range. A source node
communicates with a destination node out of its transmission range through
intermediate nodes. Thus, every node in the network is capable of functioning as a
mobile router which participates in forwarding data packets and as a host which runs
applications. Figure 1.1 a)-b) illustrates an example of a MANET and its connectivity

at different time instants.
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Figure 1.1 MANET path connectivity between a source-destination pair a) when all
10 nodes have high residual battery levels. The dark lines depicts the

selected path. b) when most of the nodes have depleted their batteries

level.



1.1.1 Application of MANETS

The essential characteristics of a mobile ad hoc network are
infrastructureless, self-organizing and wireless communication. As a result, MANETSs
are suitable for communication in the following scenarios.

1) Military applications: Operations requiring soldiers, tanks, or battle
ships to mobilize freely in the battlefield without any restrictions imposed by wired
communication devices. These applications should thus be self-configuring,
independent of any centralized control station.

2) Commercial applications: The lack of infrastructure in ad hoc
networks is a motivating factor for deployment in commercial applications as it
reduces the cost of infrastructure investments. An example of this application would
be a conference room with participants communicating with each other.

3) Emergency rescue applications: Since a mobile ad hoc network can be
set up at any place, it can substitute the original primary communication for rescue
operations in networks which have been destroyed by a disaster. This network is
therefore useful for natural disaster scenarios.

1.1.2 Significance of Energy-Efficient Routing Protocols

Since the topology of MANETS change dynamically due to node
mobility, routing protocols are necessary to forward data packets. In the literature,
routing protocols such as Perkins, Royer, Das and Marina, (2004) summarizes a
description of Dynamic Source Routing (DSR) and Ad hoc On-demand Distance
Vector routing (AODV), then compares the performance of the two prominent on-

demand routing protocols for mobile ad hoc networks. (Geetha, Aithal, and



ChandraSekaran, 2006), studies the Dynamic Source Routing (DSR) ,
Ad hoc On-demand Distance Vector routing (AODV) , Destination-Sequenced
Distance-Vector (DSDV) and Temporally Ordered Routing Algorithm (TORA) which
are routing protocols normally used in ad hoc networks. They have analyzed the
effect of mobility over two ad hoc routing protocols, namely, AODV and DSDV.

However, the aforementioned works do not explicitly deal with energy
utilization in MANETs. A typical mobile ad hoc network consists of nodes that are
usually battery operated devices such as laptops, PDAs or sensor nodes. Thus, each
node carries out its individual processing as well as acts as a forwarding node
(router). Hence, energy consumption is a critical issue. There are routing protocols in
recent works which consider power as one of the cost metrics for MANETSs. In
general, energy-aware routing protocols can be categorized into two approaches,
namely, 1) the maximum network lifetime approach, 2) the minimum energy
consumption approach.

1.1.2.1 The Maximum Network Lifetime Approach

The maximum network lifetime routing protocols focus on
balancing energy usage among the nodes by avoiding overutilized nodes while
selecting a routing path. Therefore, nodes are used as intermediate nodes equally, so
that no nodes are heavily used and quick depletion of battery level is avoided. Since
the network lifetime is defined as the time at which the first node in the network
drains out of battery, this routing protocol therefore maximizes the network lifetime.
1) MME : The Max-Min Energy algorithm (Venugopal, Bartos,

Michael and Sai, 2003) is proposed to balance the Dynamic Source Routing (DSR)



protocol by selecting the route which contains the node with the highest remaining
battery level. In particular, the DSR protocol finds the optimal route by searching the
node with minimum remaining battery level in each route. Then the minimum
remaining battery level of each route is compared. The route with the highest
minimum remaining battery level is chosen as the optimal route.

2) AODV-energ : The Ad-hoc On-Demand Distance Vector
with a simple speed-based energy consumption mechanism is presented by Romdhani
and Bonnet (2004). The algorithm aims to maximize the network lifetime by selecting

the best path with the maximum mean cost, where the mean cost is defined as

cost . ) . .
cost :M , COStres jite 1S the ratio of the remaining battery level over the
mean -
number, .

speed of decreasing battery level within a period of time in each node, and numberyops
is the number of traversed hops along a given path. Such cost function favors paths
with high mean costs since a large summation of COStyes life and few numbermops
constitute to short paths that contain nodes with higher battery levels.

3) PAOD : The power-aware on-demand routing protocol
(Wang, Xu, Chen and Wu, 2004) selects routes based on a cost function which
represents the shortest path and the maximum lifetime. In particular, their cost
function comprises the number of intermediate nodes along a path and the maximum
of the minimum residual battery in a path. In effect, the protocol tries to select a path
which maximizes the battery level and has the shortest path.

In the aforementioned works, it can be observed that the
maximize network lifetime algorithms either use path costs as a function of residual

battery level for all nodes on the routing path, or avoid the route with nodes which



have the least battery level. However, these algorithms may not decrease the total
energy consumption because they only focus on battery level. Therefore, the path
selected may not be the minimum energy consumption path. Furthermore, the
algorithms try to use nodes fairly, resulting in a path selection that differs from the
previously selected paths, hence making it difficult to control energy consumption.
1.1.2.2 The Minimum Energy Consumption Approach

The minimum energy consumption routing protocols select paths
that minimize the energy consumption required to forward a data packet from a
source to a destination.

1) PCR : The Power Control Routing (PCR) presented by
Tsudaka, Kawahara, Matsumoto and Okada (2004) improves the network capacity
and decreases the energy consumption. The PCR controls the energy consumption by
considering the link weight defined by the number of nodes affected by interfered
communication resulted from limited energy consumption. Each intermediate node
has a link weight. The weight of the route is the summation of link weights of all
intermediate nodes along a path. PCR selects the path with the smallest route weight.
Under certain assumptions, the selected path requires minimum energy consumption
in each intermediate node. The reason is that the link weight is small when energy
consumption is low. In particular, each node limits energy usage by limiting its
transmission range which covers its neighbor nodes.

2) DPC-AODV : The Distributed Power Control is applied to
the AODV routing protocol to achieve energy savings in (Bergamo, Maniezzo and
Travasoni, 2003). The algorithm uses a hop-by-hop minimized energy consumption

path selection, therefore attaining paths with minimum energy consumption.



3) MPR : The Minimum Power Routing protocol (Singh, Woo,
and Raghavendra, 1998) is a routing algorithm based on minimizing the amount of
power required to send packets from a source to a destination node. The problem is

stated as  Minimize Y P(i,i+1) where P(i,i+1) denotes the energy consumption for
icpath

transmitting between two nodes along some path.

In the aforementioned works, it can be observed that algorithms
with minimum energy consumption approach consider intermediate nodes that
transmit with low energy consumption, so energy consumption along path is
minimized. However, these algorithms do not use nodes fairly as a result. Some
nodes lying frequently in a minimum energy consumption path can be used heavily
and tend to die out very soon because of battery level exhaustion. As a result, the
minimum energy consumption approach cannot achieve long network lifetime.

The algorithms in section 1.1.2.1 and 1.1.2.2 show that there is a tradeoff
between the maximum network lifetime and the minimum energy consumption
approaches. There is no clear consensus that any approach is suitable for all scenarios
because the maximum network lifetime approach can maximize the network lifetime
but does not decrease the total energy consumption, while the minimum energy
consumption approach can save energy consumption but the nodes along the path

disconnect very soon.



1.1.2.3 Tradingoff Both Approaches

To address the tradeoff between the two approaches, many works
attempt to integrate the advantages of both the maximum network lifetime and the
minimum energy consumption approach protocols by reducing the energy
consumption and increasing the network lifetime.

1) CMMBCR : The Conditional Max-Min Battery Capacity
Routing (Toh, 2001), is a conditional strategy power-aware routing protocol. The
basic idea is that when all nodes in some possible routes between a source to a
destination have sufficient remaining battery capacity above a pre-specified threshold,
the route with the minimum total energy consumption among these route is selected.
Otherwise, the path which maximizes the minimum residual battery level is selected.
The value of the threshold parameter (y) determines the node expiration behavior. If
the threshold (y) is low, the minimum energy consumption is preferred. On the other
hand, a high value of threshold (y) prefers the maximum-minimum residual battery
path and gives a longer network lifetime.

2) Max-Min zPpin : The algorithm in (Aslam, Li, and Rus

,2003) selects a path that uses at most z#P_  energy, where z is a parameter which
controls the path selection (i.e. 1<z <w). In particular, the route that maximizes the

minimum residual energy fraction (i.e. the ratio of the battery remaining after route
selection over the initial battery level) is selected as long as such path consumes no
more than zPpi, energy, where Ppin is the total energy consumed on the minimum
energy route. An important factor in this algorithm is the parameter z that measures

the tradeoff between max-min path and minimum energy consumption path. If z is



low, the minimum energy consumption path is favorable. Increasing z implies
favoring the maximum-minimum residual battery path.

Note that the CMMBCR and Max-Min zP i, both incorporate the
benefits of the maximum network lifetime and minimum energy consumption
approaches by varying its parameter value. The actual values of z and y could depend
on network size and the mobility profile of each node. Hence, it is difficult to
determine the value of z and y suitable for each scenario. There exists other
algorithms which propose the use of cost functions instead of relying on threshold
parameters, to achieve an optimum between the two approaches.

3) ESDSR : The Energy Saving Dynamic Source Routing
(ESDSR) is proposed in (Tarique, Tepe and Naserian, 2005). The Dynamic Source
Routing (DSR) protocol is modified to acheive energy awareness by employing a

specific cost function at each node. In particular, node i calculates its ratio of current

residual battery level and the energy consumption(Bi /e ) Some path | is selected if it
attains the maximum path cost C(R) = max(R,) among all available paths, where

R, =min(B,/e;) and node i is an intermediate node in path I.

4) PCSR : The Power Control Source routing protocol (PCSR)
based on DSR (Sheu, Lai and Chao, 2004), selects a path by depending on a
minimum cost function and some parameter Tnolg, Where Thoig is @ parameter value
used for comparing the minimum residual battery level of the nodes in each path. In
particular, the destination node first checks the minimum remaining battery level of
each route. If the least battery level route is greater than Theq , the route that has the

minimum cost will be selected. Otherwise, the route that has the maximum residual
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battery level will be selected. The cost function for some node i is defined

B (0)
B, (t)

level at time t and €;j is the energy consumed for transmitting on link (i, j).

as, Cost = x&; , where Bj(0) is the initial battery level, Bi(t) is the residual battery

5) PERRA : The Power Efficient Reliable Routing protocol for
mobile Ad-hoc networks (Kwak, Kim and Yoo, 2004) employs a new cost to select
paths based on the minimum residual battery of nodes along the path, the energy
consumption along the path and the path’s stability in accordance with the node

mobility. The algorithm selects the path with the smallest total cost given by

Total _cost=wyx| > Ep (i)+hxE,, ]
min(B;)
hx(Ene (1) + Eproc )
—w, xmin[ min(PLT ), max(PLT)],

—W, x min ,max(B;) (1.1)

where wi, wy, wj are weight factors which must sum up to unity. The first term on the
right hand side of the equation refers to the energy consumption and hop transfer (h).
The second term refers to the residual battery level, and the last term refers to the path
lifetime.

Unlike the works in (Toh, 2001) and (Aslam, Li, and Rus ,2003)
where path selection decisions are controlled by variation of some threshold
parameter, the works in (Tarique, Tepe and Naserian, 2005), (Sheu, Lai and Chao,
2004) and (Kwak, Kim and Yoo, 2004) use cost functions which combine

components of the energy consumption and the residual battery level in various
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formats. However, all of these works have a common feature, that is, they incorporate
both the benefits of the maximum lifetime and minimum energy approaches.
However, the actual value of such parameters will depend on
network size and the mobility profile of each node. For example, if the network size is
large and sparse, the network connectivity decreases because the number of neighbors
for relaying is insufficient due to limited transmission range (Bergamo, Maniezzo and
Travasoni, 2003). In such scenario, we may favor minimum energy consumption
routing to avoid wasting energy in delivering a packet. The parameter value should
give priority to minimizing the energy consumption rather than maximizing the
network lifetime. In low mobility scenarios, it is possible that some nodes in network
are used heavily as intermediate nodes since the position of certain nodes change
slowly. In this scenario, the residual battery level should be considered, and the
parameter value should be treated to maximize the network lifetime. However, in
reality, it is difficult to know the optimal threshold parameter value setting which is
suitable for each scenario. On the other hand, algorithms employing the combined
cost functions of both energy consumption and residual battery level, can smoothly
adjust the policy of path selection and avoid the problem of parameter value settings.
Minimum cost routing schemes were also proposed where the sum of the link cost
was used to deflect traffic from high cost routes. Link capacity cost of the

formc; =¢; / B,, where B; is the residual energy at node i, and ej is the

communication energy cost for link (I, j), has shown good performance in terms of

network lifetime (Basagni, Conti, Giordano and Stojmenovic, 2004). The normalized

link capacity cost of the form c; =e¢; (Bimt/ Bi), performed even better than other

combined cost metrics (Basagni, Conti, Giordano and Stojmenovic, 2004). Such
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method appears to perform well in terms of maximizing the network lifetime.
However, it is not clear whether there exists an optimal energy tradeoff balance in the
long run.

In response to these outstanding issues, this thesis proposes an energy-
efficient path selection algorithm which aims at balancing the contrasting objectives
of maximizing network lifetime and minimizing energy consumption routing in
MANETSs with dynamic topology. This thesis applies a reinforcement learning (RL)
technique called on-policy Monte Carlo (ONMC) (Sutton and Barto, 1998). In a
dynamic environment, the proposed algorithm can learn to select near-optimal
decisions to achieve a particular goal. RL consists of states (i.e. information of
environment) and actions (i.e. an agent’s decision). Before a decision is made to
select a path, the agent will consider the state of the environment. In this thesis, the
environment state is the information of energy consumption and battery levels of
relevant nodes. Such information would help an agent (i.e. source node) to select
paths suitable for different scenarios. Once a path is selected, a cost is assigned to the
agent. The agent improves its path selection policy with the goal of accumulating the
least expected cost in the long run. Under certain assumptions, RL is able to select
paths that achieve a suitable tradeoff which balances the maximum network lifetime

approach and minimum energy consumption approach.

1.2 Research Objectives

The objectives of this research are as follows:

1.2.1 To study the energy utilization in packet delivery in MANETS.
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1.2.2 To apply reinforcement learning (RL) to solve the energy-efficient
routing protocol problem in mobile ad hoc networks with dynamic topology.

1.2.3 To compare the reinforcement learning solution with other energy-
efficient routing protocols in terms of energy consumption, network lifetime, ratio of
the number of successfully delivered packets and the long-term cost.

1.2.4 To compare the tradeoff when RL is used in an energy-efficient routing

protocol.

1.3 Assumptions

1.3.1 Energy consumption for transfering data packets depends on the packet
size and transmission range. Since a free space radio model is assumed, factors such
as noise, fading etc. are ignored.

1.3.2 The state transitions of the environment can be modeled as a Markov
process. Consequently, the path selecting problem in MANETS can be modeled as a
Markov decision process (MDP).

1.3.3 Reinforcement learning can achieve a near-optimal path selection
policy, which can balance the tradeoff between the maximum network lifetime

approach and the minimum energy consumption approach.

1.4 Scope of the Thesis

This thesis consists of two main parts. Firstly, we propose the on-policy
Monte Carlo (ONMC) reinforcement learning method to deal with the tradeoff
between the maximum lifetime and minimum energy consumption approaches. The

actions available to the agent in the ONMC method is selected from a set of paths
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which are optimal according to three different metrics, i.e., the maximum-minimum
battery level, the least energy consumption and the least path cost. Therefore, action
space contains three types of optimal paths and we aim to find a good path selection
policy that balances their tradeoff. We then compare the energy-efficient routing
performance in terms of network lifetime, energy consumption, ratio of successfully
delivered packets and the long-term cost which is a function that depicts the optimal
tradeoff balance in long run.

In the second part, we compare the aforementioned performance metrics of the
proposed ONMC method with existing energy-aware routing protocols. These include
the Minimum Total Transmission Power Routing (MTPR) which selects a path with
minimum energy consumption along path; the Min-Max Battery Cost Routing
(MMBR) which prolongs the network lifetime by avoiding the route with nodes
having the least battery capacity among all nodes in all possible routes, so that the
battery of each node will be used more fairly. The ONMC method is also compared to
existing algorithms which integrate the two approaches. These include the conditional
max-min battery capacity routing (CMMBCR) which switches from minimum energy
consumption routing to maximum network lifetime routing by using a threshold
parameter consumption; and an algorithm based on a cost function of both node
energy consumption and residual battery level (Chang and Tassiulas ,2004) referred

to as the LowCost method.

1.5 Expected Usefulness

1.5.1 To obtain an energy-efficient routing algorithm that balances the

tradeoff of both maximum network lifetime and minimum energy consumption
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approaches by using RL which can discover a near-optimal path in mobile ad hoc
networks under the dynamic topology scenario.

1.5.2 To obtain a conclusion about the application of reinforcement learning
in energy-efficient routing in mobile ad hoc networks and suggest its possible
applications to other routing protocol problems, for example, the mobility prediction,

secured routing, etc.

1.6 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the
theoretical background of reinforcement learning (RL) which underlies the
contribution of this thesis. Firstly, we give an overview of the Markov decision
process (MDP) concept, and introduce reinforcement learning (RL) which provides
an approximate solution to the MDP formulated problem. In particular, we employ a
RL method called the on-policy Monte Carlo (ONMC) method which learns through
experience by interacting with the environment on an episode-by-episode basis. We
also provide justification for employing the ONMC method to energy-efficient
routing in mobile ad hoc networks.

In Chapter 3, we study the energy-efficient routing protocols in mobile ad hoc
networks. Firstly, we present the energy model which is used to calculate the energy
consumption in mobile ad hoc networks. We then propose a reinforcement learning
technique called the on-policy Monte Carlo (ONMC) method to balance the tradeoff
between maximum network lifetime and minimum energy consumption routing.
Routing performance is compared in terms of the ratio of successfully delivered

packets, and the long-term cost which is a function that depicts the optimal tradeoff
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balance in long run. The performance of ONMC method is compared with a variety
of existing energy-efficient routing protocols in MANETS.
Chapter 4 summarizes all the findings and original contributions in this thesis

and points out possible future research direction.



CHAPTER Il

BACKGROUND THEORY

2.1 Introduction

In this thesis, we study the energy-efficient routing protocol problem in
mobile ad hoc networks (MANETSs) where the network topology is dynamic. This
feature inherent in MANETs is due to node mobility where links are formed
whenever nodes are located within the transmission range and are broken otherwise.
Furthermore, links may also disappear when certain nodes have exhausted their
battery power while participating in the packet forwarding process. Routing protocols
determine which nodes the packets are forwarded to. Hence, routing decisions
strongly affect the amount of energy consumed in the routing process, the node
lifetime and consequently the network lifetime. Good routing protocols therefore
should take into account the node mobility behavior, energy consumption and residual
node lifetime. Unfortunately, the dynamics between these factors are difficult to
capture in MANETSs with an explicit mathematical model. In this thesis, we therefore
apply reinforcement learning (RL) which can potentially cater the dynamics in mobile
ad hoc networks. In RL, no explicit mathematical formulation of a model is needed.
Instead, good decisions are discovered through a systematic trial and error interaction
with its environment to achieve a particular goal.

RL is a computational approach used to solve a Markov decision process

(MDP) problem by identifying how a system in a dynamic environment can learn to
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choose optimal actions to achieve a particular goal. A RL problem is a problem faced
by an agent that must learn good behaviors through trial and error interactions with a
dynamic environment. The route discovery in MANETS can be viewed as an episodic
task. In particular, an episode starts each time a source node searches for a destination
node. If at least one route that reaches the destination node is found, the source node
will select a path based on the information of the residual battery level and energy
consumption along these paths. Due to the episodic nature of the MANETS, this thesis
employs a method for solving reinforcement learning problems with episodic tasks,
known as the on-policy Monte Carlo (ONMC) method (Sutton, 1998). The ONMC
method learns incrementally on an episode-by-episode basis, meaning that the action-
value functions are estimated and policies are improved after each episode. Under
certain assumptions, the ONMC method eventually converges to an optimal policy
and optimal value function-given only sample episodes and no other knowledge of the
environment dynamics.

This chapter presents the ONMC method which is applied to achieve energy-
efficient routing in MANETS in this thesis. The next section provides a theoretical
background on Markov decision theory. An introduction of reinforcement learning is
given in section 2.3. Section 2.4 presents the on-policy Monte Carlo method and the

conclusion is presented in the final section

2.2 Markov Decision Theory Background

2.2.1 Markov Property
The Markov property says that anything that has happened so far can be

summarized by the current state. Thus, the probability that the next state at time k+1
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based on what we have seen can be defined as simply the conditionally probability

based on the current state at time k is

!

Pr{s. =s

s, =5} =Pr{s,, =5|s, =5,5_, =5,..,5,=5}. (2.1)

We now formally define the Markov property for the reinforcement
learning problem. A state refers to information on the environment that may be useful
in making a decision. If the state has the Markov property, then the environment’s
response at time k+1 depends only on the state representation at time K. In other
words, such state has the Markov property, and is a referred to as a Markov state.

2.2.2 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is

called a Markov decision process, or MDP. Suppose the current time is time step K.

Based on the current state of the environment (S), the agent selects an action (a). As a

result of taking action a at state S the environment transits into new state(s’). The

probability of each possible next state is

P: =Pr{s,, =s'|s =s.a =aj. (2.2)

These quantities are called transition probabilities. Similarly, given any
current state and action, Sx and ag, together with any next state, Sx+1 and an associated
reward gy is generated and returned back to the agent. The expected value of the next

reward is
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Gi =E{g,|s =s.a =a,s,, =5]. (2.3)

Upon receiving this reward signal, the agent assesses how good the
action was and seeks to improve its decision in order to maximize the reward gained

in the long run.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a computational approach which identifies
how a system in a dynamic environment can learn to choose optimal actions to
achieve a particular goal. The learner is not told which action to take, as in most
forms of machine learning, but instead must discover which actions yield the most
reward by trial-and-error interactions with its environment.

A form of supervised learning scheme such as neural network require sample
input-output pairs from the function to be learned. In other words, supervised learning
requires a set of questions with the right answers. For example, we might not know
the best way to program a computer to recognize an infrared picture of a tank, but we
do have a large collection of infrared picture, and we do know whether each picture
contains a tank or not. Supervised learning could look at all the examples with
answers and learn how to recognize tank in general. However, there are many
situations where we do not know the correct answer that supervised learning requires.
For example, in a mobile ad hoc network, the question would be the set of the
network topology at a given time, and the answer would be how the routing protocol
should find the paths in each network topology. Simple neural networks cannot learn

to select intermediate node unless there is a set of known answer. Hence, if we do not
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predict the network topology in mobile ad hoc network in the first place, simple
supervised learning cannot determine the correct routing decision.

Reinforcement learning, on the other hand, differs from the more widely
studied problem of supervised learning in several ways. The most important
difference is that there is no presentation of input/output pairs. Instead, after choosing
an action the agent is told the immediate reward and the subsequent state, but is not
told which action would have been in its best long-term interests. It is necessary for
the agent to gather useful experience about the possible system states, actions,
transitions and rewards actively to act optimally. Another difference from supervised

learning is that, for RL, the on-line performance criterion is important.

-
Agent
g <
a
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e || 5k
‘ |
—  Environment j
SFH 1

Figure 2.1 Diagram of agent-environment interaction in reinforcement learning

The evaluation of the system is often concurrent with learning. Figure 1 shows
the basic idea how RL can learn to solve a complex task through repeated interactions
with its environment. Components of RL include an autonomous agent, the
environment, associated actions and rewards. The agent is the learner or the decision

maker. Everything comprised outside the agent is called the environment. In general,
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an action refers to a decision that an agent takes, while a state refers to information on
the environment that may be useful for the agent to make a decision. An intuitive way
to understand the relation between the agent and its environment is given in the
following example dialogue.

Environment : You are in state 65. You have 4 possible actions.

Agent : I'll take action 2

Environment :You received a reinforcement of 7 units. You are now in state 15. You
have 2 possible actions.

Agent : I’ll take action 1

Environment :You received a reinforcement of -4 units. You are now in state 65.
You have 4 possible actions.

Agent : I'll take action 2

Environment :You received a reinforcement of 5 units. You are now in state 44. You

have 5 possible actions.

The agent’s job is to find a policy m that maps a state to actions in such a way
that maximizes some long-run measure of reinforcement. In a standard reinforcement
learning model, an agent interacts with its environment. This interaction takes the
form of the agent sensing the environment, and based on this sensory input choosing
an action to perform in the environment. The action changes the environment in some
manner and this change is communicated to the agent through a scalar reinforcement
signal. There are three fundamental parts of a reinforcement learning problem: the

environment, the reinforcement function and the value function.
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1) The Environment

Every RL system learns a mapping from states to actions by trial-and-error
interactions with a dynamic environment. This environment must at least be partially
observable by the reinforcement learning system, and the observations may come in
the form of sensor reading, symbolic descriptions, or possibly mental situations. If
reinforcement learning system can observe perfectly all the information in the
environment that might influence the choice of action to perform, then the
reinforcement learning system chooses an action based on the true state of the
environment. This ideal case is the best possible basis for reinforcement learning and,
in fact, is a necessary condition for much of the associated theory.

2) The Reinforcement Function

As stated previously, RL systems learn a mapping from states to actions by
trial-and-error interactions with a dynamic environment. The goal of the
reinforcement learning system is defined using the concept of a reinforcement
function, which is the exact function of future reinforcements the agent seeks to
maximize. In other words, there exists a mapping from state-action pairs to future
reinforcements. That is, after performing an action in a given state, the RL agent will
receive some reinforcement (reward) in the form of a scalar value. The agent learns to
perform actions that will maximize the sum of the reinforcements it receives when
starting from some initial state and proceeding to a terminal state.

3) The Value Function

The value function is mapping from state to state values. Given a policy m,

which determines which action should be performed in each state, the value of state
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V7 (s) is defined as the expected sum of the reinforcement received when starting in

the state s and following some fixed policy to a terminal state

V7 (s)=E, {i O |S; =s}. (2.4)

The optimal policy V* would therefore be the mapping from state to action
that maximizes the sum of the reinforcements when starting in an arbitrary state and
performing actions until a terminal state is reached, that is,

V' =max{V7(s)f. (2.5)

In a general setting, we wish to select optimal actions at each time step to
maximize the long-term system performance criterion.

2.3.1 Monte Carlo Methods

Among the diverse availability of RL tools, a particular technique called
the Monte Carlo method has been selected in this thesis. The reason is because the
episodic nature of route search process in mobile ad hoc networks. The path selection
decisions are learned directly from experience on an episode-by-episode basis. By
estimating the action-value at end of each episode and performing a policy
improvement, and repeating the process under the newly improved policy, the policy

obtained finally converges to an optimal policy, which aims at balancing the

maximum network lifetime and minimum energy consumption approaches.
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Monte Carlo methods are ways of solving the reinforcement learning
problem based on averaging sample returns. Monte Carlo methods require only
experience, i.e., sample sequences of states, actions, and rewards from on-line or
simulated interaction with an environment. Learning from on-line experience is
striking because it requires no prior knowledge of the environment’s dynamics, yet
can still attain optimal behavior. To ensure that well-defined returns are available, we
define Monte Carlo methods only for episodic tasks. That is, we assume that the
experience is divided into episodes, and that all episodes eventually terminate no
matter what actions are selected. It is only upon the completion of an episode that
value estimates and policies are changed. Monte Carlo methods are thus incremental
in an episode-by-episode sense, not in a step-by-step sense (Sutton, 1998).

Let us consider Monte Carlo methods for learning the state-value
functions for a given policy, 7:S — A m. Recall that the value of a state is the
expected return, or in other words, the expected cumulative future discounted reward
starting from that state (Sutton, 1998). An obvious way to estimate the state value
function from experience, is simply to average the returns (eq.2.4) observed after
visits to that state. As more returns are observed, the average should converge to the

expected value. The policy evaluation problem for action values is to estimate

Q” (S, a) , the expected return when starting in state s, taking action a, and thereafter

following policy 7 :

Q” (S’ a) = E/r {ZOC: gt+n |St =5, a‘t = a} . (26)
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The first-visit Monte Carlo method averages the returns following the first time in
each episode that the state was visited and the action was selected. That is,

Q" (s,a) =M (2.7)

where C(S, a, 1) is the return of after the first occurrence of state action pair (S, a).

The every-visit Monte Carlo method estimates the value of a state-action pair as the
average of the returns that have followed visits to the state in which the action was
selected. That is,

n

c(s,ak)
Q" (s.a)=*———, (2.8)

n(s,a)
where c(s, a, k) is the return of the state-action pair after the occurrence of each visit
to (s, @) , n(s, @) is the number of visits to (S, a).

Both return averaging methods converge quadratically, to the true
expected values as the number of visits to each state-action pair approaches infinity.
This process is called policy evaluation under a fixed policy 7 .

After each episode, the observed average returns are used for policy
evaluation and the policy is improved at all states visited in the episode. Policy
improvement is the process of constructing a new policy that improves over an
original policy by making it greedy or e-greedy. The greedy policy selects the best
action with respect to the current action-value estimates. The e-greedy policy behaves

greedily most of the time with respect to the current action-value estimates. But every
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once in while, with some small probability, the e-greedy policy selects an action at
random and independent of the action-value estimates. This because it is not enough
just to select the actions currently estimated to be the best as certain state-action pairs
may never be visited. Hence, for these unvisited state-action pairs, there is no return
to average, and it may never be learned that these state-action pairs may actually be
better than the visited state-action pairs. By using the e-greedy policy, other
(unvisited) state-action pairs have a chance of being visited which may well be better
than the visited state-action pairs. Therefore, we need to estimate the value of all the
actions available at each state, not just the one we currently favor. The e-greedy
policy helps to explore other actions available in each state.

Consider a reinforcement learning system with finite state of the
environment and reinforcement learning agent which has a finite number of actions.

Suppose that the initial policy followed by the agent is 7. By alternating complete

steps of policy evaluation and policy improvement, an optimal policy 7" and optimal

action-value function Q* can be achieved :

E T | E T | E | * E *
7T, >Q™ > T, >Q™ > T, >... > T >Q

where —=— denotes a complete policy evaluation and —— denotes a complete
policy improvement.

During policy evaluation many episodes are experienced, with the
approximate action-value function approaching the expected value function
asymptotically. Let us assume that we do indeed observe an infinite number of
episode and that, in addition, the episodes are generated with exploring starts. The

latter assumption assigns a non-zero probability to every state-action pair of being the
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starting pair of an episode. Under these assumptions, the Monte Carlo methods will
compute each Q™ exactly, for an arbitrary policy 7z, . In other words, a complete

policy evaluation is performed. After each episode, the observed returns are used for
policy evaluation, and then the policy is improved at all the states visited in the

episode. Policy improvement is done by making the policy greedy with respect to the

current value function. This is for any action-value function Q" (s,a) under current

policy 7, the corresponding greedy policy is the one that, for each state S in the state

space (S € S) , deterministically chooses an action with maximal action-value
function (sometimes referred to as the Q -value)

ﬁ(s)=argmax{Q(S,a)}. (2.9)

a

Policy improvement then can be performed by constructing each new policy 7, , as

the greedy policy with respect to Q™ . The policy applies to 7z, and 7z, ,, because, for

allseS,

SR —
mex{™ (.3) 2.10)
> Q™ (Saﬂk (S))

The above relation assures us that each 7, ,, is uniformly better than 7, , unless it is
equal to 7, , in which case they are both optimal policies. This in turn assures us that

the overall process converges to an optimal policy and the optimal value function.



29

2.3.1.1 On-policy and Off-policy Monte Carlo

There are two approaches in the Monte Carlo methods which are
the on-policy method and off-policy method. In the on-policy method, the agent
commits to always exploring and tries to find the best policy that it still explores. In
the off-policy method, the agent also explores, but learns a deterministic optimal
policy that may be unrelated to the policy followed. However, only the on-policy
method has a sound mathematical proof that it to converges to optimal policy.
Convergence proof of the off-policy method remains an open issue (Sutton 1998).
On-policy methods attempt to evaluate or improve the policy that is currently being
used to make decisions. The only general way to ensure that all actions are selected
infinitely often is for the agent to continue to select them. Let S denote the set of all
possible states and A denote the set of all possible actions. Let the actions selected in

episode t be governed by policy z,, wherez,: S — A. Denote the state-action value
function of (s,a)by Q™ (s,a) which is the expected reward when starting from state-
action pair (s,a) and a fixed policy 7, is followed thereafter. Let the initial policy be
7, and initialize Q™ (s,a) at the beginning of an episode. For each episode t, generate
the action at a given state according toz,. At the end of episode t, Q™ (s,a) is updated

according to

lel

Q’“(s,a):Q’“f‘(s,a)+l > g(s,.a,)-Q™ (s,a,) |, (2.11)

n=z(s.a)
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where N, is the duration or the number of time steps in episode t, 7,(s,a) where
0<7,(s,a)<N, is the time step when the first visit of state-action pair (S, a) occurs in

episode t, and ¢ (S, a) is the reward obtained from taking action a at state S. Note that

the summation term is the accumulated reward following only the first occurrence of
(s.a).

Furthermore, a new policy for the next episode, 7,,,, 1s improved

from the previous policy, x,, using an e-greedy policy which is implemented as

follows,

£

A

T (8)= 8' | (2.12)
acA-{a’} with probability Ta]

a with probability 1-& +

b

where a” is the greedy policy found by a" :argmaXaEA{Q”‘ (s,a)}, e€[0,1] and |A is
the size of the action space. Under specific conditions, for any e-greedy policy with

respect to Q” is guaranteed to be better than or equal to 7.

2.4 On-policy Monte Carlo in the Thesis

In this thesis, we propose an energy-efficient routing method for mobile ad
hoc networks (MANET) which employs a reinforcement learning method based on
sample episodes, called the on-policy Monte Carlo (ONMC) method. This method
requires sample episodes for estimating a specific function which quantify what state

or action is good in the long run. Such function, so called action-value function is a
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function of a state-action pair which quantifies the average amount of reward an agent
can expect to accumulate in the long run from averaging sample returns received from
that state-action pair. In our energy-efficient routing problem (see section 3.3.1 for
more details), we define the state to take into account of the amount of energy
consumption and residual battery level which are quantized into discrete intervals.
Such discretization provides simplification to our problem by partitioning the
continuous state space into a discrete state space with a finite number of intervals.
The action space in our MANET framework is the subset of all possible paths
discovered which connects the source node to the destination node. The process can
be viewed as two episodic tasks, one nested in the other. The inner episode starts
when the source node (agent) selects an action (path), then it receives a cost signal
corresponding to the action selected. The outer episode starts when the distance
vector protocols are exchanged periodically. The actions carried out within the inner
episode follows a certain fixed policy. Such policy will be evaluated and improved at

the end of each outer episode. For each fixed governing policy 7, the action-value

functions Q”(S,a) are computed from average sample returns received from the

environment. The ONMC method learns incrementally on an episode-by-episode
basis, meaning that the action-value functions are estimated and policies are improved
after each (outer) episode. Under the assumptions, that all state-action pairs are visited
an infinite number of times in the limit of an infinite number of episodes, the ONMC

method eventually converges to an optimal policy (Sutton, 1998).
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2.5 Conclusion

In this chapter, an overview of the Markov decision process (MDP) concept is
given. We also introduced the concept of reinforcement learning (RL) to provide an
approximate solution to the MDP formulated problem. The MDP framework has been
used to formulate routing problems in mobile ad hoc networks (Maneenil and Usaha,
2005), (Chang, Ho, and Kaelbling, 2004). For routing protocol problems, we view
them as an episodic task where an episode starts each time a source node searches for
a destination node. The episode terminates when at least one route that reaches the
destination node is found, or when the maximum hop count to the destination node is
reached. For this reason, a RL method based on sample episodes, called the on-policy
Monte Carlo (ONMC) method was introduced in this chapter. In the next chapter, an
ONMC formulation of the energy-efficient routing in MANETs is presented.
Furthermore, we compare the performance of the ONMC method with well-known
existing energy-efficient routing protocols such as (Toh, 2001) and (Chang and

Tassiulas, 2004).



CHAPTER Il

ENERGY-EFFICIENT ROUTING IN MOBILE AD HOC

NETWORKS: A RL APPROACH

3.1 Introduction

This chapter presents an energy-efficient path selection algorithm which aims
to balance the contrasting objectives of the maximum network lifetime and the
minimum energy consumption routing protocols. The proposed algorithm is based on
a reinforcement learning (RL) technique called the on-policy Monte Carlo (ONMC)
method. This method is suitable for learning good decisions in tasks which are
episodic. The routing problem in MANETs may be viewed as an episodic task, where
each episode starts when a source node initiates a route search, in order to discover
paths that can reach the destination node. An episode ends when at least one path
which reaches the destination node is found, or when the number of maximum hop
count is reached (and no paths are found). If at least one route is found, the source
node will calculate the energy consumption and the residual battery levels along these
paths. The source node then selects one of such paths to forward the data packets. At
the end of each episode, a cost associated to the selected path is assigned to the
decision-maker (i.e., the source node). The expected cost per episode incurred from
the source node, evaluates how good the path selection decision was when the source

node was in that particular state. The path selection decision of the source node can be
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improved by systematically selecting the path that minimizes the expected state-
action cost per episode. Under the assumptions that every state-action pairs are
selected and simulation observe an infinite number of episode (Sutton,1998), the
ONMC method eventually converges to a good path selection rule, which aims at
balancing the minimum energy consumption and maximum network lifetime routing
protocols.

In recent literature, there are many works have been proposed to strike a
balance between the contrasting objectives of maximizing the network lifetime and
minimizing the energy consumption. The existing protocols which can achieve this
objective by varying threshold parameter value include Toh (2001), Aslam, Li and
Rus (2003). However in many scenarios, determining the suitable values of parameter
values is not straightforward as these values could depend on the network size and the
mobility profile of each node etc. Other existing protocols employ the combined cost
function of both energy consumption and residual battery level such as Chang and
Tassiulas (2004), Kwak, Kim and Yoo (2004). The normalized link capacity cost of

the form ¢; =e; (B, /B,), where B; is the residual energy at node i, and e; is the

communication energy cost for link (i, j), performed better than other combined cost
metrics (Basagni, Conti, Giordano and Stojmenovic, 2004). Such method appears to
perform well in terms of maximizing the network lifetime in the long run, whereas
energy consumption is not emphasized. It is not clear whether there exist an optimal
energy tradeoff balance in the long run.

To address the problem of jointly optimizing the energy consumption and
residual battery route selection in MANETs with dynamic topology, we present a

route selection scheme based on a reinforcement learning technique call on-policy
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Monte Carlo (ONMC) method. It should be noted that in recent literature, RL has
already been successfully applied in MANETSs. For instance, (Usaha, 2004) and
(Usaha and Barria, 2004) applied it to control the amount of routing overhead with
marginal difference in the path search ability. (Maneenil and Usaha, 2005) integrated
RL with an existing reputation scheme to determine a good rule to distinguish
malicious nodes in MANETSs. (Chang, Ho, and Kaelbling, 2004), applied RL to find
good adaptive routing and movement policies in a mobilized ad hoc networking
domain and demonstrated some promising empirical results under a variety of
different scenarios.

The emphasis of this chapter is focused on the following issues:

1. The introduction of the energy model

2. The MDP formulation for the energy-efficient routing protocol in
MANETS, which is the first main contribution of this thesis.

3. Application and performance quantification of the on-policy Monte Carlo
(ONMC) method, which is the second main contribution of this thesis.

4. The comparison of routing performance between the best variant of
ONMC method and four existing algorithms (i.e. MMBR, MTPR,
CMMBCR and Lowcost)

The structure of this chapter is organized as follows. The energy model which
describes the energy consumption in each node that is used for transmitting data
messages between two nodes is described in section 3.2. Section 3.3 is dedicated to
describing the on-policy Monte Carlo (ONMC) formulation to achieve balanced
energy tradeoff routing in MANETS. Section 3.4 presents the experimental results and

discussion. Finally, section 3.5 concludes the entire chapter.
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3.2 Energy Model

An ad hoc network consists of multiple nodes that maintain network
connectivity through wireless communications. The connectivity is enabled via radio
transmissions generated by a set of cooperating nodes. To model the energy

consumption in each node, we use the radio model discussed in Muruganathan,

S.D.(2005).
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Figure 3.1 Radio model

The transmitting and receiving energy required for transfer of a data message of b-

bits between two nodes by a transmission range of d meters is given by
Eror = Erx + Enx (3.1)
where E;, is the energy dissipated in the transmitter of the sending node given by

Er (b,d) = (Ey xb)+ (£ xbxd?), (3.2)

elec
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and &, =10pJ/bit/m* is the energy consumed in free space at the output transmitter

antenna for a transmitting range of one meter.

Consider a n-node mobile ad hoc network which makes extensive use of
broadcasting (i.e., a message is sent from one node to all other nodes within its
transmission range). Suppose that some node i has X, y and z as neighboring nodes
which are separated by a distance of dix , diy and di; , respectively. When node i
broadcasts to its neighbors, the energy consumption is calculated from the furthest
neighboring node. Hence, all neighboring nodes are reached with one transmission

energy usage which is given by
Epy (i) =max{Eyy (b,d;,), Erc (0,0, ), Ery (b,d, )} (3.3)
The term E,, is the energy consumption at the receiving node given by

Egy (b) = Eye xb), (3.4)

elec

where E,..is the energy expended in the radio electronics which is equal to 50

elec

nJ/bits. The term E, xb is assumed negligible. Since the delivered datagram packets

elec
have fixed length, then all algorithms use the same amount of energy to receive the

packets. The energy consumption is therefore

Eror = Erx + Egx :(5stbXd2)' (3.5
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We define Battlevel(i) as the residual energy in node i, which is reduced by a
quantity of E;, (i), when node i transmits a packet of b bits to its neighboring nodes

along some path.

3.3 ONMC as An Energy-Efficient Routing Protocol

3.3.1 MDP Formulation

In order to balance the tradeoff between the minimum energy
consumption and the maximum network lifetime approaches, the information of the
residual battery level and energy consumption at each neighboring node are required.
The information of the neighboring nodes, which is referred to as the state, is crucial
to the path selection decision. In particular, each source node acts as an agent which
decides to select a path depending on the current state. Assuming that each node
moves independently from one another and its future movement (position, direction,
and velocity) depends only on its current movement, the future topology of the
network can depend only on the current topology of the network and is independent
of its past. Then it may also be implied that the future state (that is, the energy
consumption and the residual battery level of each node) depends only on the current
state and not its past, and it is possible to (roughly) model the state transition as a
Markov process.

Therefore, we can (roughly) model the path selecting problem in
MANETSs as a Markov decision process (MDP), whose goal is to optimize some
performance criterion in finite horizon. The finite horizon problem is considered here
due to the episodic nature of message exchanges between the nodes due to the

distance vector protocol. An episode starts immediately after a message exchange and
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terminates at the subsequent message exchange. Applying the MDP framework with
appropriate costs to the route selection process in MANETS permits us to select paths
at a given state such that a suitable tradeoff between various energy-efficient paths is
achieved. The MDP framework consists of the following components.

1) State: Suppose that some source node and destination node are
connected by a set of multiple paths, L. The state space should encompass both the
energy consumption and battery levels of the network since we are interested in
finding paths that balance the tradeoff of the two factors. For some path |, the energy

consumption along path | € L, can be determined by

P

| = zviel Erx (I) (3.6)
Denote the minimum energy consumption path by
le =argmin,,_, {PI} . 3.7

To account for the battery load distribution among multiple paths connecting the

source and destination nodes, we define the bottleneck for each path | by
B, = min,,, {Battlevel (i)} (3.8)

Denote the path with the max-min residual battery level by

l, = argmax,,_, {BI } . (3.9)
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The energy consumption and battery bottleneck in each path have continuous values
which given rise to a continuous state space. Since the policy improvement (eq.2.10)
and evaluation (eq.2.11) are performed for each state-action pair, it is therefore
desirable to discretize their values to obtain a finite number of state-action pairs.
Furthermore, due to limited onboard processing capability at each node, the discrete

state space MDP is thus preferable. Hence, R and B, are quantized into discrete

intervals.

The quantization of minimum energy consumption is

(n);, where R (i),1<i<n. (3.10)

{Blb (1), ..... ,Blb (m)}, where BI (j),lS j<m. (3.11)

S:{s:s:[Ple(i),BI (j)},lgign,lgjgm}, (3.12)

where the size of S is |S| =nxm.

To calculate B, (i), we assumed that each node knows the location of its

neighbor node’s transmission range by means of Global Positioning System (GPS)

(Kwak, Kim and Yoo, 2004). Each node in the mobile ad hoc network selects its
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neighbor nodes from the maximum transmission range and link age'. In the route
discovery process, the source node broadcasts the RREQ to all its neighbor nodes.
The intermediate nodes forward the RREQ packets to their neighbor nodes after
having received them from the source node. The process is repeated until the RREQ
packets arrives at the destination node or the maximum of hop count is reached. The
source node waits for route reply until time out. Once the destination node receives
the RREQ packet, it calculates the energy consumption along the path and appends it
to a RREP packet and sends it retracing the same path back to the source node. Along
the retraced path, the intermediate nodes append data about their residual battery level
into the RREP packet. Once the RREP packet arrives, the source node then knows the
amount of energy consumed and the battery level of bottleneck nodes in each path
connecting the source and destination nodes. The source node can then calculate the
quantized level of energy consumption and bottleneck battery level according to
(eq.3.12).

2) Actions: Given the profile of the quantized energy and battery state of
all available paths, the source node must then select a path. We define the set of paths
to select from, or action space, based on three commonly-used energy-aware routing
mechanisms namely, the minimum energy routing (le) in (eq.3.7), the max-min
routing (lp) in (eq.3.9) and the minimum cost routing (l;) given by Chang and

Tassiulas (2004)

' The link age determines the stability of a link. The higher the link age, the more likely that link would
remain connected.
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IC:argminvleL (vél ETX(i)] (BI)_XZ(Binit)X3 ’ (3.13)

where Binit 1s the initial level of battery which is assumed constant for all nodes, and
(X1, X2, X3) are weight factors. Note that the shortest paths can be obtained with the
weights (0, 0, 0), whereas (1, 0, 0) and (0, 1, 1) correspond to the minimum energy
path (l¢) and the max-min residual battery path (l), respectively. Note that the
minimum cost route (lc), which uses a normalized link capacity cost is chosen here
due to its outstanding network lifetime performance (Chang and Tassiulas, 2004). Let

A be the action space such that

A={a:a=[a(1),a(2).a(3)].a(i)efo.1}, X a(i) =1, (3.14)

where a(1) = 1 refers to the selection of the max-min residual battery path Iy , a(2) = 1
selects the minimum energy consumption path le , a(3) = 1 selects the minimum
energy cost path lc, and a(j) = 0 refers to not selecting the corresponding path. We
defined the action space in this manner so that it consists of only these paths because
we aim to find a good path selection policy that balances their tradeoffs.

3) Cost structure: Once the source node selects an action, say path a=1,

at a given state s, a cost ¢(S,a) incurs where

c(s,a)=(R)"(B) " (By)"- (3.15)
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The goal is to find a path selection policy that optimizes the long-term average
performance criterion in finite horizon. We apply the method in the following
subsection in order to achieve this goal.
3.3.2 ONMC Reinforcement Learning for MANETS
In this thesis, we propose an energy-efficient routing method for mobile
adhoc networks (MANETs). Due to the episodic nature of the MANET, we employ a
reinforcement learning method based on sample episodes, called the on-policy Monte

Carlo (ONMC) method. This method requires sample episodes to estimate the action-
value functions (Q(S, a),VS eS,Vae A) which quantify the average amount of cost
an agent can expect to accumulate in the long run from that state-action pair. These
action-value functions are computed from average sample returns received from the
environment operating within a fixed decision rule called policy (7r :S—> A). The
ONMC method learns incrementally on an episode-by-episode basis, meaning that the

action-value functions are estimated and policies are improved after each episode.

The pseudocode of the ONMC method is depicted below:



44

1. Initialize: Return {s,a} < empty list VseS,vVaeA

2. Q{s,a} < arbitrary VseS,VaeA

3. 7 < arbitrary & —Soft policy

4. For interval T=1 to forever //Outer episode loop counting
/I distance vector exchange intervals.

5. For connection request t=1 to end of interval T //Inner episode
//'loop counting number of path search

// connection requests until the end of interval T.

6 Generate path selection action interval T according to 7.
7. Get cost from taking action.

8 For each state-action pair (s,a) appearing in interval T

9 R < add all costs following the first occurrence of (s,a)
10. Append R to Return (s,a)

11. Q(s,a) < average(Return(s,a))

12. For each s appearing in interval T

13. a cargmin{Q(s,a)}

,ifa=a"

1—3+%A
%A| ,ifaza'.

14. z(s,a) <

The ONMC method can then be mapped into the framework for energy-
efficient routing in MANETSs as follows. First of all, initialize the return to zero for
each state-action pair, at each mobile node (line 1). Arbitrarily initialize the state-
action values (line 2) and the starting policy (line 3). The outer episode starts when
the distance vectors are exchanged (line 4). The inner episode starts when a source
node requests a search for paths that can reach the destination node. A generic
multiple path discovery scheme is then executed. The information of the minimum
energy consumption and the maximum residual battery levels gathered from the path
search defines the state s of the source node. The source node then takes an action by

selecting one of such paths (line 6). Once the source node selects a path (takes action
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a) at state s, a corresponding cost incurs (line 7). The process for each connection
request is repeated until the end of interval T. Then the returns and action-value
functions are reevaluated (line 9-11) and e-greedy policy improvement is performed

(line 12-14).

3.4 Simulation Results and Discussion

3.4.1 Parameter Setting

We consider a MANET of 36 nodes randomly distributed in a square
area of 1000 m by 1000 m. Each node has an initial battery level of 100 J. A node
whose battery is depleted disconnects from the network and cannot recharge from any
external power supply. The movement of the nodes follows a random waypoint
mobility model. In particular, each node stays in a current location for a period of
time called pause time. After this period is over, each node moves to a randomly
selected new location with a constant velocity. The node velocity is uniformly chosen
between 0 and 15 m/s. In this thesis, we consider two mobility scenarios, i.e. the high
mobility scenario with pause time of Os and the low mobility scenario with pause time
120s. Each node has a transmission range of 200 meters. A link is formed between
any pair of nodes within this range. To discover multiple paths between a pair of
nodes, flooding is used in each algorithm. Note that the energy usage during the path
discovery process is not considered since all algorithms employ the flooding scheme.
Since we are focusing on the energy usage for packet routing, the energy used by the
flooding scheme is not considered as all algorithms consume the same amount of
energy during the path discovery process. Fixed-length datagram packets of

50 Kbytes are transmitted. The path energy consumption,F , is quantized into 5
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intervals: [0,0.3), [0.3,0.5), [0.5,0.7), [0.7,0.9), [0.9,00) J. The residual battery of a

path, B, , is quantized into 5 intervals: [0,20), [20,40), [40,60), [60,80), [80,100] J.

The packet sending rate is 0.2 packets per second. The changing topology is updated
every 30-second interval using a distance vector update protocol.
3.4.2 Metrics Used to Compare Routing Performance

Each algorithm is simulated for 20 runs until a precision of 3% is
achieved for every performance metric. To assess routing performance, the following
metrics are considered:

1) the network lifetime which is the duration until the first node in the
network disconnects

2) the average network energy consumption per node,

1 :
= =WZETX(|), (3.16)
i=l

where Erx (i) is the total energy consumption of node i, and N is the number of nodes
in the network

3) the ratio of successfully delivered packets,

_ number of successfully delivered packets
oP Total packets sent

R (3.17)

4) the average energy consumed per delivered packet define as the
network energy consumption divided by the number of successfully delivered packets
accumulated over simulation

5) the long-term cost,
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C(X) = , (3.18)

where R (X ) is the ratio between the network energy consumption of algorithm X

and the maximum network energy consumption from simulation, R,y (X) is the ratio

between number of alive nodes of algorithm X and the total number of nodes in the

network, Ry, (X) is the ratio between the number of successfully delivered packets

from algorithm X and the total number of packets sent in the simulation, R.; (X) is

the ratio between the network lifetime of algorithm X and the average duration of
simulation.
3.4.3 Impact of Action Space in ONMC

In this subsection, we compare the performance of various sets of action
spaces used for the ONMC method. Recall that an action refers to the selection of a
path based on three commonly-used energy aware routing as described in (eq. 3.7),
(eq.3.9) and (eq.3.13). The minimum energy path in (eq.3.7) minimizes the total
energy consumption on a path but suffers short network lifetime. The max-min
battery path in (eq.3.9) prolongs the network lifetime but does not guarantee
minimum energy consumption. The minimum cost routing in (eq.3.13) reflects both
the energy consumption rate and the residual battery levels. By combining different
paths to create different action spaces, we compare the performance between the
following variants of the ONMC RL method:

- The BERL method selects the min-max routing (lp) and the minimum energy routing

(le) as action space, i.e., A= {Ib,le} )
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- The BECRL method selects the min-max routing (lp), the minimum energy routing
(le) and the minimum cost routing (l¢) as action space, i.e., A= {Ib, I, IC} )

- The ECRL method selects the minimum energy routing (l¢) and the minimum cost
routing (l¢) as action space, i.e., A= {Ie, IC} .

The simulations results for the three ONMC variants are shown in Tables
3.1-3.2. To find the best performance in terms of the long-term cost C(X) in each
method, we investigate the cost function (eq.3.15) by varying the parameters (X1, Xo,
X3). We observed that (1, X, X) obtained the best results, which agrees with (Chang and
Tassiulas, 2004). In particular, we selected X; = 1 and X = X3 when weighting factors
X2, X3 equal 1, 5 and 30. Note that (1, 1, 1) gives equal weight to energy usage and
residual battery, whereas (1, 5, 5) gives more weight to the residual battery level and
shows improved network lifetime (Chang and Tassiulas, 2004). Finally, (1, 30, 30)
gives the most weight to the residual battery level and obtained a network lifetime
close to min-max battery path (lp). Tables 3.1-3.2 show the routing performance in the
high mobility scenario and low mobility scenario, respectively. From the table, it can
be observed that, in terms of network lifetime, BECRL has longer network lifetime
than BERL and ECRL. The reason is because BECRL has two actions out of three
which favors the maximum network lifetime, i.e., the min-max path (l,) and the
minimum cost path (I). Note that in beginning, Il favors minimum energy
consumption routing. Later on, when battery level depletes giving greater weight on
the residual battery, | will then tend to favor the path with the maximum residual

battery level which has the lowest cost and prolongs the network lifetime.
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Table 3.1 Weight parameters comparison (X1, X2, X3) at pause time 0s

Parameter

1,1,1 1,55 1,30,30
(X1, X2, X3) S — (1,339

Performance | BERL | BECRL | ECRL | BERL | BECRL | ECRL | BERL | BECRL | ECRL

Lifetime (s) 42349 44343 43309 | 44764 45676 44988 44818 45318 44196
Rpp 0.387 0.39 0.398 0.382 0.384 0.391 0.379 0.38 0.386

Eavg (3/node) 91.27 91.18 90.9 91.43 91.36 91.12 91.55 91.52 91.14

Avg. alive

9.1 9.55 10 9.15 9.15 9.75 8.7 8.75 9.55
nodes

C(X) 0.603 0.543 0.52 0.576 0.561 0.523 0.611 0.598 0.551

Table 3.2 Weight parameters comparison (X1, X2, X3) at pause time 120s

Parameter

1.1,1 1,5.5 1,30,30
(X1, X2, X3) (LLL) (13.5) (1,30,30)

Performance BERL | BECRL | ECRL | BERL | BECRL | ECRL | BERL | BECRL | ECRL

Lifetime (s) 52770 53606 53065 | 54738 55810 | 54827 | 55870 56180 54601
Rpp 0.415 0.417 0.423 0.411 0.413 0.418 | 0.4098 | 0.4095 0.414

Eavg (3/node) 92.03 91.96 91.28 92.4 92.26 91.77 | 92.68 92.64 92.19

Avg. alive 12.8 13.1 14.3 12.4 124 | 1325 | 12.05 11.8 12,6
nodes
C(X) 0326 | 0312 | 028 | 0329 | 0.321 03 | 0334 | 0339 0.322

We can observe from the tables that ECRL consumes the least energy.
The reason is because ECRL has an action space comprising the minimum energy
path (l¢) and the minimum cost path (l¢). Both of these actions favor paths with the
minimum energy consumption even though, later on when the battery starts to
deplete, I; tends to prefer paths with more residual battery levels. In addition, ECRL
also exhibits the highest ratio of successfully delivered packets, Rpp. The reason is
because ECRL uses the least energy consumption which in turn increases the number

of alive nodes. These remaining nodes give rise to enhanced network connectivity and
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consequently better chances in successfully discovering paths connecting the source
and destination nodes when compared to BECRL and BERL. In addition, the lower
average number of alive nodes in BECRL and BERL is caused by the fact that these
methods attempt to balance the load among different nodes to extend the network
lifetime. As a result, nodes are used uniformly and the battery levels are depleted
more or less at the same rate. Therefore, after first node disconnects, other nodes also
become exhausted shortly afterwards. Hence, a sharp drop in the number of alive
nodes for these methods is observed.

In terms of the long-term cost C(X) which is a function of network
lifetime, energy consumption, delivered packets and alive nodes, the ECRL method
exhibits the least cost of all. The reason is because ECRL can reduce energy
consumption, increase network lifetime, higher number of alive nodes and higher
ratio of successfully delivered packets. Note that when the weighting factor X; = 1 and
X2, X3 are increased, a longer network lifetime is observed, however with increased
long-term cost C(X). Nevertheless, for the three variants of ONMC, the ECRL shows
the best performance in terms of the long-term cost. Therefore, in the remaining
experiments, ECRL will be used to compare with other existing energy tradeoff
balancing schemes.

3.4.4 Comparison of Performance with Existing Schemes

In this subsection the performance of a variant of the proposed ONMC
method, called ECRL, will be compared with existing routing algorithms. Since these
algorithms use mechanisms to achieve energy tradeoff balance. The first algorithm
uses threshold parameters to switch from the minimum energy consumption routing

to maximum network lifetime routing. In particular, the conditional max-min battery
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capacity routing (CMMBCR) scheme in (Toh, 2001) chooses a minimum energy
consumption path if all nodes in all possible routes have sufficient battery capacity.
When the residual battery for certain nodes fall below a predefined threshold (y),
routing through these nodes will be avoided. As a result, the time until the first node
disconnects is extended. The second algorithm is the minimum cost routing scheme
from Chang and Tassiulas (2004). This algorithm employs a combined cost function
of the energy consumption and residual battery level as described by (eq.3.13) and
(eq.3.15).

In this section, the routing performance is compared between five

algorithms:

- MMBR (Min-Max Battery cost Routing): selects the path that has the
maximized minimum residual battery power of a node in the path, so
that the battery of each node is used fairly and maximum network
lifetime is achieved (Toh, 2001).

- MTPR (Minimum Total Transmission Power Routing): selects the
path that minimizes the total transmission energy consumed per
packet, disregarding the lifetime of each node (Toh, 2001).

- CMMBCR (Conditional Min-Max Battery Cost Routing) with
threshold 60 (TH-60): selects a path according to MTPR from a set of
some possible routes of which the residual battery of each node is
above 60J, and switches to MMBR, otherwise (Toh, 2001).

- CMMBCR with threshold 80 (TH-80), similar to CMMBCR with

TH-60 but with a threshold value of 80 J (Toh, 2001).
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- Lowcost: selects the minimum cost path as described by (eq.3.13) and
(eq.3.15). This scheme prefers minimum energy consumption routes
when the nodes have plenty of residual battery. As the node’s battery
depletes, the algorithm prefers paths that maximizes the network
lifetime (Chang and Tassiulas, 2004).

- ECRL: selects a path based on the ONMC reinforcement learning

decision which is our proposed method.

A. Weight parameters comparison

In this experiment, we determine the weight parameters (X1, X2, X3)
which give the best performance for the cost function (eq.3.15). Figure 3.2 compares
the long-term cost C(X) for different weights between the Lowcost algorithm and the
proposed ECRL method. Note that other algorithms did not require use of weight
parameters and therefore, are not shown here. Simulation was also run for alternative
forms of weights, such as the (x, 0, 0) and (0, X, X) which correspond to minimum
energy path and maximum network lifetime. We observed that (1, X, X) parameters
obtained the best results. The results observed in high and low mobility scenario,
show the best performance is attained when parameters (1, 1, 1) are used for all

algorithms. Therefore, in the rest of the experiments, parameters (1, 1, 1) will be used.
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Figure 3.2 Performance comparison of weight parameters (X1, X2, X3)

B. Network lifetime
In Figure 3.3, it can be observed that the LowCost algorithm has the
longest network lifetime. Note that the ECRL method is able to attain network
lifetimes near that of the LowCost algorithm. The MTPR algorithm has the shortest
network lifetime. The reason is because the latter method does not maximize network
lifetime. In particular, nodes which frequently find themselves on minimum energy
paths experience heavy load forwarding and their battery quickly become exhausted.

Other methods have higher network lifetime than MTPR since all take into account
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the residual battery levels in the path selection. Hence, these algorithms do not suffer
early node disconnection as the MTPR. Note that ECRL was able to increase network

lifetime by up to 15.1 percent when compared with MTPR.
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Figure 3.3 Comparison of the network lifetime

C. Network energy consumption per node
Figure 3.4 shows that the MTPR method consumes the least energy in
comparison with all other methods. This is, however, at the expense of decreased
network lifetime as show in Figure 3.3. Note that apart from MTPR, ECRL consumes
less energy than all of the remaining algorithms. This is due to the fact that ECRL

action space contains the minimum energy path (l¢). The results show the ECRL
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algorithm was able to decrease energy consumption by up to 1.8 percent when
compared with MMBR while the network lifetimes of ECRL are significantly longer

than that of MTPR.
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Figure 3.4 Comparison of the network energy consumption used per node

D. Number of alive nodes
Table 3.3, shows the average number of nodes still alive in the
MANET. The greater the number of alive nodes, the higher the connectivity
opportunity in the network. It can be observed that ECRL shows the highest number
of nodes still alive in the high mobility scenario. The MMBR, CMMBCR TH-60 and
CMMBCR TH-80 have the least number of nodes still alive in the network than all

the remaining algorithms. The reason is because these algorithms balance the load
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therefore, the batteries at most nodes are exhausted at the same rate. Hence, after first
node disconnects other nodes will disconnect soon afterwards. ECRL can attain up to

45 percent higher average number of alive nodes when compared with TH-80.

Table 3.3 Comparison of the number of alive nodes

Comparison of alive node in each algorithms
Pause time
MMBR TH-80 TH-60 MTPR ECRL Lowcost
0s 5.65 5.5 5.7 8.9 10 9.2
120 s 8.75 9.1 10.4 14.8 14.3 12.75

E. Long-term cost versus the network lifetime and energy consumption

Figure 3.5 and 3.6 compare the long-term cost in (eq. 3.18) for all
algorithms as a function of network lifetime and network energy consumption.
Results show that the MTPR uses the least amount of network energy consumption
but has the shortest lifetime since MTPR uses paths with minimum energy
consumption. So nodes along such path quickly become exhausted. On the other
hand, MMBR distributes the load among nodes according to the residual battery
levels. So nodes last longer and the network lifetime is maximized. However, the
network energy consumption is highest as MMBR does not take it into account. The
preferable location would be near the upper left hand corner of the graph—depicting
minimum energy consumption and maximum network lifetime. Note that the
LowCost and the ECRL algorithms are closer to this area than MMBR, MTPR,
TH-60 and TH-80. This suggests that the combined cost routing such as in (eq. 3.13),

can lead to more energy-efficient routing over threshold schemes as MMBR, MTPR,
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CMMBCR TH-60 and TH-80. Note that the all algorithms exhibit higher long-term

cost under the high mobility scenario as it becomes more energy-exhaustive and more

difficult to find paths as mobility increases. However, note that the ECRL method

achieved the lowest long-term cost over all other methods which depicts a balance

among the network lifetime and network energy consumption while attaining high

successful packet delivery ratio and number of alive nodes.
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Figure 3.5 Comparison of routing performance in high mobility
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F. Long-term cost
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Figure 3.7 compares the cost in (eq. 3.18) for all algorithms. Results

show that the ECRL algorithm achieved the lowest cost over all other algorithms. The

reason is because the source node (agent) is able to learn to select the path which

consumes the least energy at the beginning of simulation. In the long run, the ECRL

learns to select a path by considering the energy consumption and battery levels of the

intermediate nodes. Hence, it can be suggested that the ECRL algorithm can learn to

select the paths which best balance the tradeoffs among the four metrics. Note that,

the ECRL outperforms all other algorithms even in the high mobility scenario, by

achieving up to 37 percent lower long-term cost over all other methods.
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G. Ratio of successfully delivered packets

Figure 3.8, compares the ratio of successfully delivered packets.
Results show that the ECRL algorithm, exhibits good routing performance in terms of
high ratio of successfully delivered packets over all other methods. Results from
Table 3.3 suggest that the higher number of alive nodes in the network, as observed in
the ECRL algorithm, allow better connectivity and thus successful packet delivery in
the network. Note that such ratio for the Os pause time scenario is less than that of the
120s pause time. The reason is because it becomes more difficult to find paths as

mobility increases. Nevertheless, the ECRL algorithm can still perform well even in
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high mobility environment. The result shows the ECRL algorithm can attain a ratio of

successfully delivered packet of up to 5.5 percent higher than all algorithms.
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Figure 3.8 Comparison of the ratio of successfully delivered packets

H. Average energy consumed per successfully delivered packet
Figure 3.9 compares average energy consumed per successfully
delivered packets. Note that the ECRL algorithm consumes energy as well as the
MTPR algorithm in both mobility cases. The reason is because the ECRL algorithm
can deliver more packets and consume less energy than other algorithms, owing to its

action space.
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I. Maximum node velocity scenarios

So far, the maximum node velocity has been fixed at 15 m/s. In this
experiment, we compare the long-term cost C(X) for different maximum node
velocity scenarios with pause time of 120s. In Figure 3.10, it can be observed that the
ECRL algorithm achieved the lowest cost over all algorithms where the maximum
node velocity is 15 and 20 m/s. As the nodes increase their maximum velocity the
long-term cost C(X) is lower. The reason is because at higher node velocity it
becomes more difficult to find the paths. Hence, the ratio of successfully delivered
packet is decreased. Since fewer packets are delivered the amount of energy

consumed by the nodes in the packet forwarding process is also decreased. As the
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energy consumption at each node is reduced, the battery levels at each nodes are less
likely to become exhausted. This gives rise to greater number alive nodes and longer
network lifetime. Note that all algorithms exhibit marginal difference in the long-term
cost under high node velocity scenario. Hence, it can be suggested that as the
maximum node velocity increases, the ability in balancing the energy tradeoffs of the

ECRL is indifferent from other methods.
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Figure 3.10 The long-term cost and the maximum node velocity

J. Maximum number of nodes in the MANET
So far, the maximum number of nodes in the network has been fixed
to 36. In this experiment, we investigate the performance gain of the ECRL method as
the network size increases. The maximum node velocity is 15 m/s, the pause time is

120s and the coverage area is 1000x1000 m”. Figure 3.11 compares the long-term
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cost C(X) as the number of node in network is increased. Results show that all
algorithms have lower long-term cost as the size of the network increases. The reason
is because the greater number of nodes promotes better the connectivity opportunities
in the network. Hence, a higher ratio of successfully delivered packets is observed.
The greater number of nodes in the network give rise to higher node density. So nodes
which are used to forward data packets are used more distributively. As a result, the
network lifetime is increased. Note that apart from MTPR, all other algorithms tend to
utilize the nodes fairly. Therefore, we observe that these algorithms have lower long-
term cost than MTPR. Note that, however, as the size of the network increases, the
ECRL method has marginal difference in the long-term cost. The results suggest that
the ability to balance the energy tradeoff of the ECRL method is no different from

other algorithms (except the MTPR method) as the network size is increased.
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Figure 3.11 The long-term cost and number of nodes in the MANET
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K. Implementation
The implementation of the ONMC method requires a reasonable

increase in memory storage at each node for storing Q(s,a) which has |S||A| entries.

In particular, the setting used in simulation requires memory usage of 600 Bytes

(52><3><8Bytes) which includes the 5 state-discretization of the path energy

consumption, the 5 state-discretization of path bottleneck battery level and an action
space with 3 actions, assuming that each entry requires 8 Bytes. Furthermore, the
packet size of the search message must be increased to store the energy consumption

(Ple) and residual battery along the path(Blb) for the cost calculation for updating of

the action-value functions.

The duration of the simulation is 75 s, based on simulation run by
Microsoft Visual C++ 6.0 on Microsoft Window XP professional version 2002, run
on a 1.8 GHz Intel Pentium 4 processor and 608 MB of RAM. This suggests that if
the MANET undergoes significant changes, a new policy can be trained in a timely

manncr.

3.5 Conclusion

In this chapter, we presented the formulation of the energy-efficient path
selecting problem in MANETSs as a Markov decision process (MDP), whose goal to
find sequence of path selection that minimizes the expected accumulated cost for the
system. Furthermore, we presented a reinforcement learning method called the
ONMC method to solve the MDP formulated problem for energy-efficient routing in
MANETs. The proposed algorithm balances the contrasting objectives between

maximizing the network lifetime and minimizing the energy consumption. The
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routing performances were compared with variations of the conditional Max-Min
Battery Capacity Routing (CMMBCR) method which uses threshold values to control
of path selection; and the minimum cost routing scheme, called Lowcost, where the
cost metric is a function of the energy consumption along a path and the residual
battery level.

Simulation results compared the performance metrics in terms of the network
lifetime where the proposed method based on the ONMC method called, ECRL, was
able to increase network lifetime by up to 15.1 percent when compared with MTPR.
In terms of the network energy consumption per node, results show that the ECRL
algorithm is able to decrease energy consumption by up to 1.8 percent when
compared with MMBR. In addition, the ECRL algorithm can attain a ratio of
successfully delivered packets of up to 5.5 percent higher than all algorithms. In terms
of the average number of alive nodes remaining in network, ECRL can achieve up to
45 percent more alive nodes than all remaining algorithms. In terms of the long-term
cost which takes into account the network lifetime, ratio of successfully delivered
packets, network energy consumption and nodes alive in network, the ECRL gives the
best tradeoff by achieving a long-term cost of up to 37 percent lower than all other
algorithms. However, the performance gain of the ECRL method over other
algorithms becomes marginal as the maximum node velocity and the number of nodes

in the network are increased.



CHAPTER IV

CONCLUSIONS

4.1 Conclusion

In this thesis, we proposed a reinforcement learning (RL) framework, called
the on-policy Monte Carlo (ONMC) method, to solve an energy-efficient routing
problem in mobile ad hoc networks. The work carried out in this thesis aims to strike
a balance between the contrasting objectives of maximizing the network lifetime and
minimizing the energy consumption. The findings of this thesis can be summarized as
follows.

4.1.1 Problem Formulation

The problem formulation of the energy-efficient path routing in mobile
ad hoc network is a Markov decision process (MDP), whose goal is to find a sequence
of path selection that minimizes the expected accumulated cost for the system in the
long run. The cost structure is a function of the energy consumed, the residual
energy as well as the number of alive nodes and the ratio of successfully delivered
packets, so as to achieve a good path selection policy which balances the

tradeoffs.
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4.1.2 Energy-Efficient Routing in MANET: A RL Approach

In chapter 3, a reinforcement learning technique called the on-policy
Monte Carlo (ONMC) method was presented to solve the MDP formulated routing
problem. The ONMC method considers the state of the network before selecting a
path. The state information includes the energy consumption along a path and the
bottleneck battery level of a path. The algorithm then selects a path according to such
information. The agent adaptively improves its path selection policy to achieve a
balance between the maximum network lifetime approach and minimum energy
consumption approach suitable for each scenario.

Simulation results showed that the ONMC with variants of action spaces
consisting of the minimum energy path, the max-min residual battery level, and the
minimum cost routes, could learn to balance the contrasting objectives by reducing
energy consumption and prolonging the network lifetime. To measure the overall of
routing performance, we defined a long-term cost as an integrated routing
performance metric which is a function of the number of alive nodes, the ratio of
successfully delivered packets, energy consumption, and network lifetime. The results
showed that the proposed method attained the best tradeoff particularly in the high
mobility scenario, by achieving a long-term cost of up to 37 percent higher than all
other methods. However, the ability to balance the energy tradeoff of the proposed
method is no different from other algorithms (except the MTPR method) as the
network size is increased.

These results suggest that the ONMC method can attain good energy-

aware routing decisions. However, the tradeoff of using the ONMC method is the

requirement of reasonable increase in memory storage for |S||A| entries at the source
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node where |S| and |A| are the cardinality of the state and action spaces, respectively.
In particular, the setting used in our simulation required memory usage of only 600

Bytes (52x3><8ByteS) assuming that each entry requires 8 Bytes. There is a

reasonable tradeoff, however, as the ONMC method requires training time on average
of about 75 seconds in order to learn a good path selection policy. Hence, a new
policy may be obtained in a timely manner should the MANET undergo any abrupt

changes in the network.

4.2 Recommendation for Future Work

4.2.1 Mobility Prediction in Mobile Ad hoc Networks
In this thesis, we focus on the energy-efficient routing problem in mobile
ad hoc networks. Since nodes in the network can move freely, this is a challenging
task particularly when nodes are highly dynamic. We can extend our framework to
predict the position of nodes from a mobility prediction algorithm. Using such
prediction, we can prevent route errors due to node mobility and avoid short-lived or
unstable paths in the path selection scheme.
4.2.2 Avoiding Malicious Nodes
In this thesis, the main focus is on energy-efficient routing. The
fundamental assumption is that all nodes will cooperate and not misbehave. However,
in mobile ad hoc networks, communication between nodes out of transmission range
greatly relies on intermediate nodes. It is possible that certain intermediate nodes will
eventually run out of battery and then misbehave by dropping packets as they try to

save their battery level. To secure packet delivery, we can extend our framework to



69

distinguish malicious nodes (Maneenil and Usaha, 2005) in order to achieve a secure
and energy-efficient routing protocol in MANETS.
4.2.3 Improved Cost Function
In chapter 1, we referred to cost routing schemes as means to solve
energy-efficient routing problems in mobile ad hoc networks (Basagni, Conti,
Giordano and Stojmenovic, 2004). The structure of the cost function strongly affects
the routing performance. For instance, cost functions which place weight on the
residual battery level of a node tend to prolong the network lifetime. However, such
cost structure may not decrease the total energy consumption or other performance
metrics of interest may not be taken into consideration. Therefore, other forms of cost
metrics with additional objectives of interest is another open issue worthwhile
investigating.
4.2.4 State Quantization
In chapter 3, our MDP formulation quantizes the battery level and
energy consumption into discrete uniform intervals. However, more investigation is

needed regarding the suitable quantization levels. The quantization levels linearly

affects the memory storage which has |S||A| entries, where |S| and |A| are the size of

the state space and action space, respectively. Note that the size |S||A| directly

influences the learning process because optimal polices are learned only when all
actions and states are visited infinitely often (Sutton, 1998). This is the reason why
sampling all possible states and all available actions, by means of exploring starts and
action exploration, are crucial to policy improvement in the reinforcement learning
process (Sutton, 1998). Therefore, the size of the action space and the state space, the

latter of which is governed by how the states are discretized and the number of
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quantization levels, directly affect how often each state and action may be visited.
Thus, the quantization of continuous states is a subject which warrants future

investigation.
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APPENDIX A

CMMBCR Algorithm



A.1 CMMBCR Introduction

Conditional Max-Min Battery Capacity Routing (CMMBCR) is a power-
aware routing protocol which aims to satisfy the contrasting objectives between the
maximum network lifetime and the minimum energy consumption approaches (Toh,
2001). This algorithm uses a parameter value to protect the nodes which have lower
residual battery level than the predefined threshold value.

The basic idea behind CMMBCR is that when all nodes along the routes
connecting a source node to a destination node have sufficient remaining battery
capacity, i.e., above a predefined protection margin threshold (y), the route with the
minimum total energy consumption among these routes is chosen. However, if these
routes consist of nodes with residual battery levels below this threshold, the route
with the worst bottleneck nodes, i.e., nodes with the lowest battery capacity in the
route, should be avoided to extend the lifetime of these nodes.

Let By define the bottleneck battery level for path | and Battlevel(i) is the

residual battery in node i where

B, = min { Battlevel (i)}, for all node i € path |

Let A be a set containing all possible routes between any two nodes at time t

which satisfy the following equation:

B, >y, foranypathleA,
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where y is a threshold which ranges between 0 and 100. Note that for y = 0, the
CMMBCR is identical to MTPR. That is, the minimum total energy consumption
path will be selected. Furthermore, = 100 is always identical to MMBR. That is, the
path containing the node with the lowest battery capacity should be avoided so that
each node will be used fairly.

Let Q denote the set containing all possible paths between the specified source
and destination nodes. Then the set AnQ defines the set of paths whose bottleneck
nodes have remaining battery capacity higher than y.

If AnQ#¢, then CMMBCR chooses a path in ANQ by applying the
MTPR scheme. Otherwise, CMMBCR selects path | with the maximum residual

battery capacity :

l, =max{B||I eQ}.

If the battery capacity of the bottleneck nodes falls below the protection margin
threshold (), this path will be avoided to prolong its lifetime. The performance of

CMMBCR therefore depends on the value of y.

A.2 Impact of Protection Margin Threshold (y) in CMMBCR

In this section, the routing performance of CMMBCR with different threshold
y values is investigated under the low mobility scenario with pause time 120s. The
parameter setting in section 3.4.1 is used.

Figure A-1 shows a comparison of the network lifetime. It can be observed

that higher value thresholds result in longer network lifetime. The reason is because at
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the higher threshold values, nodes are protected from being used excessively at the
early stage before they exhaust their battery level. Therefore, the network lifetime is
extended.

However, although high threshold values permit longer network lifetime, they
cannot reduce the average energy consumption along a path, as shown in figure A-2.
The reason is because the high threshold values tend to select longer paths, which
increase the energy consumption. The energy consumption is minimum when y = 0,
where CMMBCR always selects the route with the minimum energy consumption.

Figure A-3 shows the standard deviation of the energy consumption per node.
The results show that when threshold is high, the standard deviation is low. The
reason is because the higher threshold values aim at load balancing, so that the energy
at each node in the network is consumed fairly. On the other hand, low threshold
values give rise to high standard deviation of energy consumption per node. This is
because lower threshold values tend to select paths with minimum energy
consumption. As a result, some nodes are selected more often than other nodes in the
network as minimum energy routing cannot prevent nodes from being overused.

Table A-1 shows the ratio of successfully delivered packets. The results show
that at higher threshold values, a lower ratio of successfully delivered packets is
obtained. The reason is due to higher threshold values balance the load. Therefore, the
batteries at most nodes are exhausted at the same rate. Consequently, the network
connectivity is low later on and decreases the chance of discovering paths and

successfully delivering packets.
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Table A-1. Ratio of successfully delivered packets (Rpp)

TH-80
TH-90

TH-100

81

Threshold Rpp

0 0.416
10 0.414
20 0.411
30 0.408
40 0.405
50 0.403
60 0.401
70 0.399
80 0.397
90 0.395
100 0.393
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A.3 Tradeoff Balancing for Threshold (y)

Table A-2.Tradeoff between network lifetime and energy consumption

Performance

Threshold Network Avg. ener,
parameters lifetime (s) con%umpti%)}rll Tradeoff
0 45231 89.06 0.001969
10 48320 90.22 0.001867
20 52203 90.9 0.001741
30 54088 91.28 0.001688
40 55071 91.62 0.001664
50 55811 91.96 0.001648
60 56532 92.2 0.001631
70 56677 92.42 0.001631
80 56827 92.6 0.001630
90 56825 92.67 0.001631
100 56778 92.69 0.001632

Table A-2 compares the tradeoff as the threshold value is varied. Note that the
tradeoff is defined as the ratio of energy consumption over network lifetime, so the
minimum tradeoff value gives the best performance. In other words, the minimum
tradeoff is obtained when energy consumption is minimized and the network lifetime
is maximized. From the table, it can be observed that CMMBCR with threshold 80
(TH-80) achieved the smallest tradeoff value. For this reason, we have selected TH-
80 as a benchmark for comparison with other algorithms in section 3.4. However,

despite TH-80 achieved the best tradeoff when compared with the rest of the
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threshold values, it still consumes high energy. Other values of thresholds such as
TH-60 consumes less energy with a tradeoff value comparable to the TH-80. For this

reason, we have selected TH-60 as another algorithm for comparison in section 3.4.
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