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Probability and Statistics
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1. Elementary Sampling Theroy 3 hrs.
2. Parameter Estimation 3 hrs.
3. Test of Hypotheses 3 hrs.
4. Chi - square test 3 hrs.
5. Least squares regression 3 hrs.
6. Correlation 2 hrs.
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Random sample A sel of cbservations X1, X2, . . n
{finite population) constitute a random sample of size n from a
finite population of size N, if it is chosen
so that each subset of n of the N elements

of the population has the same probability

of being selected.
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Random sample A set of observation X,, X, ..., X, constitutes a random

(infinite population) sample of size n from the infinite population f(x) if :

I. Each x; is a value of a random variable
whose distribution is given by f(x)

2. These n random variables are independent

We also apply the term random sample to the random

variables are Xyg euey X o
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Standard error of means \{ G% = 540 = 232
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@ flsznnsfidmualdfinruenusadhuuuudy o 2l0%hlsnd a%u unitorm,

exponential, Hazdy @) ndimiuenueves ¥ szt lndmsnenuvanuuisng

0_2

& F-J nIJ - L] r=1 1] d.’
N(u, =) e n fawnnwe (lasvirldudiegdan ne 30 Aodrinnue)
n

fignl ™ Aunannnguiunluin  mathematical statisics  wavInBaduvod
wilsguiiiimsmnuvsbsndfdndmaenwannnlindey  Tasiidh

a = 1
X X2, s Xy NAITHARUNILVY N(u, o2y H%’J X= (Xl + Xy + Xn)

n
2 : ,
sefinsuenuesiuy N, 2 e n fan = 2,34, ... Sudull
- n

@) amfunsdN  random sample  hi'ldgaionnnlszmnstimsuenued
. 3
suudsnd  lunsdigufinsuenusaves X owezhisglumnnlsn@n1d

[ K] -1 ] ] —_
uApt1SAR  The central limit theorem 11 14LBALAITTIINGHIALTINDY X

62

o oy A - [ o
napud lndnsmonumasudsnd N £ de o Sannnwedwiy
(]

\ 2 ¥
fodnnaveiuezl¥ n> 30 [1IBAMVEL Central limit Theorem

-~
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.

Tn
Wuda

K X is the mean of a random sample Xyy Xy, 0, X, from a distribution
X-p
c/Jn

ﬁa\e =2n_

with mean |4 and finite variance o > 0 then the distribution of Z =

approach a disiribution thatis N({0, 1) as n-» o]
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ﬂgﬂ"gmg[ (M mﬂuqyﬁuw 1 ﬁ‘ﬂﬁtﬂﬁ‘{ﬂvkﬁ'h mean 1Y standard deviation Y93 sampling

ey #
distribution of means AD

E(X) = p

I

(2) Hx

It

o= Var()m{) =

X

=

4 , A 4 A
§1 n fidunnwe Taswalludiezfien n2 30 ADMMINAND
. . w Y
(n 92300 standard deviation UD4 sampling distribution VI statistic AINUN 9
o o4 s w
1 standard error MTIRIUYAEHII standard error 8¢ 1 Adafe

oy =

o

fraduaitl  mudhanugaveningey 3,000 WisuSvundeniilmeuenisanudsnidae
mean 68.0 117 U0 satndard deviation 3.0 117 HfimzidondiretininBuuring
25 AU 80 #IDUW VIN mean HAL standard deviation YO sampling distribution
of means Smsifondrethailuivuid
384 Swandaioteidullfomuede (3,000 Sadldunnnh so inn Kady
namsnansuden1 80 @sdn wnwrapinnmIneasdlddunn  udnn
ngufirmezapllidh msusnusimmBovesntdafaiiedn  sxdhindms
saniauulsnide
o= h= 68.0 i
o5 = o/Jn = 3.0/425 = 06 i

A' at I Q) 1 £ AA & L i r 1 1 4
faodnfiz  ideiedludedeit 1 daiteduiidewmatiegiidmbe
(4
(M) BYTEwin 668 uBE 683 i3
¥
() Benn 664 i

b=

AUD4 mean YON sample TuMmiinNAsIPINgNIMUAAILYAS

- Uz X - 680
o% B X
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(M) 66.8 TWMNENATYIUAD (66.8 - 68.0) /0.6 = -2.0
68.3 Tumiuanangmne (68.3 - 68.0) / 0.6 = 0.5
amninziluiidssesiaedauniosznie 66.8 uaz 68.3 i

e o
@uimeididuldalsn@sznin 2 = 20 uaz z = 0.5

it

il

y i 1 g H 1
(Wuliszning = 2ungz = 0)+ (Wuitendnz = Ouaz z = 0.5)

il

04772 + 0.1915 = 0.6687

»
@ ar

WUNUIHIBIABIEMUATHMIANINY = (30)(0.6687) N38 53.

(1) 66.4 TUMUIBINATITIY = (664 - 68.0) /0.6 = -2.67
arunhozihuiiddioduesisundotoonin 6.4 s
= o meldiduldalsadnnnudhets 2 = 267
= (AN VARSI z = 0) - WM. TENIN 2= 267 Lag 2= 0)

= 0.5-04962 = 0.0038

&
ar

:.uuﬁwmuumﬁwéwmummmﬂwmﬂ = (80)0.0038) = 0.304
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18 Samoling Distribution of F :
Foi) ] Jb A &
voldinsanlsznnsngumiladdmsusnnssuuuniuimoy 14

It

r = 7 & o tg
p ﬂ':l’l”uTﬂzlﬂ‘u“i“ﬂﬂ‘ﬁmﬂudﬂﬁlﬂﬂ‘ﬂu (success)

] = o o 3 a4 .
mmmﬂslﬁuwmqmmmnm’mﬂmnmu (failure)

4
= l-—p

Y o ] :,’ 2 ] ¥ ] ar
dalul¥insanduilodauna o Auadignidennomilsznninguil uazdmiy

fadaetnuug n uRnsyadsnan A uImmns Ity P = 2 ¥y success. [Faedaudh
n

m'iﬂumsmgmmma 1 mu”lﬂssauq sas Isznnsveusifous i outcome fidaanms
ToumIogydinann ‘1uﬂmﬂumsmanmﬂmwum n nmnﬁszmnsﬂquu P fzfiudan

druflozifia success votms Tovm3og n ad1] mwuuﬂﬂ“lﬁﬂnnn 1 yruesiiedadidon
w'ld Mz if s
1ddai)

proportion %‘l mean ‘w, U0¢ standard deviation o 1

X i
wp = BP) = E(=) = -E(x) ~.mp = p
n n
0'2=Var(P)=Var—)S =~l~Var(X)= -—1——-.npq——-—p—‘1
p n n2 112 n
@
aJ o pq
JHU G, = '";"

5&?7;1]15”31 mean p, 40 standard deviation o, Y84 sampling distribution of proportions o

3) Ho = p

= P4
P n

3 I3 ’ )
wuderuilunsdlues, mean oyt lfidfunsfimbznnsfinndueiuaniodssmnsd
o ° ar A s Q‘ ar 1 i 5 é = A 1
$ruaudwaudnrdndsdaenaduuuuiuil dewindszmasinsuenuemuymduiy @l

¥
Tomsuanuesanuulsnd)  AAiuNITHOnIDIUBY sampling distribution of proportion S9enees i

Punmuenusmntsadild uflay Cenwal Limit Theorem 13MITUTIMIUINUIIVE
sampling distribution of proportion v lnd N(u,, o) 1 on fanwetufe n 2 30



-15-

ar al & ]
sz TeytidusunsnvaansAniluSess ndududfensminuiesiiuves mean oz

QA 3 1 dy
proportion Hadi10d19sa 114l

w ' 4 <l Y - Y A a iy
fanduii s ihiimsusudriuesednssundazndaduii i i§naspualssnm 2%

Sed

o

o . |- % 1 -~y o A s ﬂy y ¥
8imsnfadiedendasiusivsunioadnsduiian 400 u
1 Ci 1 =) L 3
() ea'mmmum:Lﬂumwnsﬁwamﬁ‘mmﬂn"!ﬁ'mmmuﬂumﬁ’qs 3% wiouInnN

@y sunamniezdhuiidesiindadus bilfnangutunds 29 vfedasnd

Tufil

h,=p = 002 WAZ o, = Jpq/n = J0.02(0.98)/400
= 0.14/20 = 0007
™ lafudmivasdidudnfumize 120 = 1800 = 000125 1513

0.03 - 0.00125 ~ .02
0.007

(0.03 - 0.00125) TuMBNAT Y =

= 125
amhesfiuiidoan = duiimoldduiRalsndlimaviees z = 125)
= 0.1056
t'hilddmnlfuee Idmamsninedluvivy 00764

0.02 + 0.00125 - 0.02

() (0.02 + 0.00125) Tunvaasigu
i 0.007

0.18

. ; 2 3 g
annhezduideims = Wuiiswldiduldsndvinmadnode z = 0.18)
= 0.5000 + 0.0714 = 0.5714

d s uez Idmanuhwzdlusidy  0.5000.
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1. Explain why the following will not lead to random sampling of the desired populations.

(a) To determine what the average person spends on a vacation, a researcher
interviews pressengers on a Inxury cruise.

{b) To determine the average income of its graduates 10 years after graduation, the
alumni office of a university sent questionnaires in 1994 to all members of the class
of 1984 and bases its estimate on the questionaires returned.

(¢) To determine public sentiment about import restrictions, an interviewer asks voters :

"Do you feel that this unfair practice should be stopped?”

2. 'The weights of 1500 ball bearing are normally distributed with mean of 22.40 ounces
and a standard deviation of .048 ounces. If 300 random samples of size 36 are drawn
from this population, determine the expected mean and standard deviation of the sampling

distribution of means if the sampling is done with replacement

Ans Mg = 22.40 oz, o3 = 008 oz.

3. In problem 2, how many of the random samples would have their means
(a) between 22.39 and 22.41 oz,
(b) greater than 22.42 oz,
{¢c) less than 22.37 oz,

(d) less than 22,38 or more than 22.41 oz,

Ans (a) 237, by 2, (c} none, (d) 34
4, Find the probability that next 200 children born
(a} less than 40% will be boys.
{b) beiween 43% and 57% will be girls

{¢) more than 54% will be boys. Assume equal probablilties for birth of boys ans ghls

Ans (&) .0019, (b} .9596 () .1151
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2. mwszanarhmaiined
2 s o & w ! A
MIBYIIWTAEDR (statistical inference; WunszuIun s ISty anINdIdnthe aw

9 ] o L & ) | & e 3 3 L# ] .
ﬂlﬂﬁ'{‘l}!ﬂﬂ?ﬂﬂﬂlB;lllﬂ"ﬂﬂ'ﬂlliz‘!ﬂﬂ? MAUAUBIONTOUYUTFITDAUY gwsauLeesn lAdluaes

b4
[

= 1 - |
Tt ng o) Al Aa

m madsznusnfiess (parameter estimation)
et N N : ' o s w
Timslanedoaiumsisyinanwes parameer #2071984  statistics  Hauuiin
q [y ’ "y (:» 4 [l TR L, -d”d
dmfumstsznusesnnime iy Swniandluiteey o 1ddndadl fe
(1.1) MIUTZINUAWULYR (point estimation)
(N2 MIUTLINWA WUV (interval estimation)
(V) MINARBUAUNAYIY (hypothesis testing)
& A o 1 = 3 4
FImstranudssdumaneaeuinmunsdsznnsin dmanug Aiudeio lanse
v ' 1 e A ¥ 1 a = @ w H
Tz Sreammhnzdiumduniily mesfownSealloragludaded 3 dimfuiidafiessduns

ES o & o 1
aausw )R B nsusnTeuezsudud (n.1) nau

2.1 arUIzamuyBYR (point estimation)

mnlszmmiweanndend  Aeiwedunaiuileridenty  ssdeniudy
MIUTIAIUANAUYA dmmlsanus e snniived lasWewa i aezdonh
dv mssznasunms

mrdysnauuuga sy Teesis ldudasianugnde sunndSadiuf JouWlums
dssmmirvaslszannsunnimuuga Tagdulngudimsdszinunwuugaes M luns
Uszmaves popuiation mean, %38 population median ﬂiﬂﬂﬂlﬁ"ﬂﬂﬁ‘ﬂy‘ﬁmﬂ sample mean o
sample median sﬂw’fu

@'i'uefhwaamiﬂsxumfh;mm;mmﬂuﬁﬁfﬁa AUYATNZUUUTOLIY Prob. & Stac.
B09UNFNNT 500 AW HNITHENUEIUULTNAGI8A 189 mean = p UAS variance o ST U LA
g ansemndnaUdaIMeUTznwa ey « was of SaldndviiedinFgueanut 4 au

i 2 [ y
wuMasuuraninfinm 4 auidludiiifle g = 25 %, = 3 x5 = 28, kg = 30 (ATUUWAY

(]

¥ ¥
100 AIZLUY) AIUW sample mean LB sample variance szl tife
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n 28+ 3
sampie mean = U= —2—5"1311—;—2?-————9 = 285
. a2 (252857 +(31-28.5% +(28-28.5° +(30-28.5)"
sample variance = 00 = 3 —
= 007

Taens ' & dsznmnes b waz 6* dssnmawed o8 Faduesaqdidn g ues o
Y9IATUUUADLYBITNIS Y 500 AU NAWHITY 28,5 Uz 0.07 mumAY
1 a &8 o ! & 4
Hymlumadssiuesinusfeduteslunudadmnssy  Hussadiiimilarwsuiluee
foulsrmmiaved
1 o 2 J ot
(1 Aundy o? veudsznnsnquikeys
} ) 2 a P -
) anuudsds of (edandlsuurngs g o) ¥ealsEnININgNIRY)
a i e 1 1o n
@ Sanda p vesndnhreynsdazeglunguinnauls
] 1 | 9 3 '
(4) Wasmavpanundedhviulsznnaaningy . p -,

(5) wnswreItandumniuldisnnsasings ; pi-p,

fnlsznaswmngeimurgeunaiumnsiiseffinandududiudiias
. ) 2 Qe oA ~ o] & oA X
(1) ATy u. alrzumaine o= X (BINAD  sample means)
- o o - a 1A ~3 2 4 g9a . .
2 Iy o, fmdszimmfe &2 = 82 (F4NAB sample variance)
! q 4 y ‘ ) N 4 da R
(3) AIMIU p, lssinmaIng p = X/n (WYINAB sample proportion)
(X ABTIUINUBY success IHAIFINGNUUN 1)
@ a 1A ” N _ = a4 ds ' |
(3) MNTU py-pp, ddszinaefe y-f, = Xi-Xo (FINRBRAANTENIN
sample means YA MUTHNBATE A
[3 v o ] ~ " o 1 ]
8) g p-p, AnszmEae B -p, (FINAERAAIISTHTN sample

proportions VeI sefudRITEDIND)

2.2 Qmauﬁ'ﬁmmﬁuﬂ'szmmﬂ'v (Properties of Estimators)
wad o Ad A LY | Y 1 s ) &
aueudandatliznaninissinfe duatsevay “Ind" dumeTussdimnilines
. ' ] w + ] a. Y [ y . g
¢Fus livnuny wears dnAnwiaaesidiowde il i ey “Iod GasTdlienwuen
. 44 4 o o | o ‘
pinls dmeviuiniuIdmaniiitfeseoninanh Tesader  udnmeuiunisazm

& w £ o ' <& = 1w g
fudvnsiimedfndesmsdszmmat  wufie srvsurdsuniiouae 1Ui
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. = w VoA 3 o i Al o . .
upiey asFunadIrma é ’J‘uﬂumﬂﬂmmﬂmﬂnmmm (unbiased sstimator) UEY
o &
wmintiwet o &
Ed) = 8

«ua"iﬁﬁ"amwhﬁau“hﬁ;ﬂwg,aﬁ’umﬁﬁmuﬂ‘lﬁ' mean W83 sampling distribution W81 § 1Y ©
ﬁjﬂd_’]ﬂ ﬁlllgﬁ’i? X Lﬂuﬁmﬂsdn'ﬁi’i mean = p uazil variance = ot
W X, %, .. X%, &5 andom sample @ 0 RidBnNImIn X Sewamah
() Sample mean X Lﬂu unbiaséd estimator A p
{¥) Sample variance g? L‘ldju biased estimator Y99 o
ma g

48]

(M WY

=
=

H|
=

E(X) =

B
T
X

VTR REL TAT(T: sample mear X Fuilu unbiased estimator V84 population mean u

o
(W) ANMIN

1)
W $2 = 3% -XP/n
i=1
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E §n] [x,-z - niz)]

Li=1

22—

E (X?‘ )— nE(ﬁzj }

= |-
| (— ]

i=1

poalsimdleenin B(x?) = p2eo? uos E(:‘E | = ul4at/n
CRLCALEA
n ; p .
E(§Y) = ':{ {‘Z (p2+02) - n(}lz'{'(}'zr’n)]
i=1
= i[nu2+no'z—np.2-cz)
- fole
- n

vnaumsaaetudy dowamundrnfadin 2 ozlifiu unbiased estimator 499 o2
] I A o o . . a t o .qy 1
no3s ueiifeyufienily wibiased esimator Y09 o2 agudy Wilkmyish
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A a oA oo . . Q ™ = :
mﬂ"iﬁ"lﬁmﬂﬁ:mmmmﬂu mbiased estimator #1MTY o nﬁwm&nu sample variance

. W»
dolniiandildsnges (1) tude () @ndhadsd Ao

(2)

N kd
Frwiiemues sample variance 7AW Intmwaunyy @) desinld

2. _ (-1 o 2
E(85) = w(nwl) G G

2.3 Precision of Estimation . The standard error

Lﬁﬂi’ﬁﬁﬂaﬂ statistics fi'jgum 147 {81992 sample mean, sample variance, w?aﬁu 1)
Faisovinsie lafAde sampling distribution U4  statistics Fnfu ﬁuuﬁ’jwmzﬁvmmﬁ%
AN701 sample mean 13 {0z TOAUIUM

- mean Y04 sampling diswibution 904 mean
ung - standard deviation Y84 sampling disribution U903 mean 18
ST standard eror TRTEIUEY mean AAVSMUIGRY standard deviation 194 sampling
distribution. Y84 mean (AHOWHWANITUNTHYBY variance MTBdU )

fowds WEfaT stendard error  fEUveTowpgnls  dimeuffomennnld
standard eror R ARMMRBIRTBIMAY TR uLgld denmsszmunailndaiiedn
Reafunzuwuasuus vindmnluiadd 24 s dwmfumounsnih mem DMZHWY

A0UIN Prob.& Stat. AyvsiAwm il 151fupt sample mean i IishanuTestlszuimmn
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3 1w ' Vo o e
mean ¥04UsEwnInasosdauriiy 285 fudalidioas ldanm lsedsyinsfineuinisg
¢ A A o
fanuvusadtoundasfloda smeldinietany lsuiad desudfasiewisnld standard

a9 d 1 a4 1 3 ¥
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fanehy guydtisdeimamanmmadianudauveundnaiianiia (ruyAnie
) e 1 q ) .—; a3 a1 ' g '

Armco iron) Tufitnsihanmmahanedouveundnsinieds o udlaumladun wse
[ 3 o ' 3 ey
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H ki s % _-_v . 1o o
118 Teoms lldnmdnwiiad IdTivinatazamusnmhiduld1dunenrs  auydilu 10
y 2 v a2 g o g
Fu i 10 URsvwmuedmay sanmiudiundnudesiunuguanngi i 100° F
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wazlasensualidmuin sso w el wdrisenmnmsihanudeuvauninidazin
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14T  standard error 84 sample mean iAn

Tt I~ 1 N ' w 3 = )
win o dusweulsynnasiinswa dnfultamy o luaumsgatiodis  sample

standard deviation s WaNAD

I
1t
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S N T
W anad - S maszuondi :
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2.4 MIUITIUAWMVYA (Interval estimation)

L ' ) et i Qo -
Tunmeamuzmasnsdssnaduuugaeisss T lddeyaifeawesforfudmaiiines

H
4

fisaule dsedwrudunaulfissdszuanindeidwavoneunia myilssnadisnnfie
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$ruderave: 1usUse Teminmin #daiuluieedusifearsufiosdssuadierisuaasiuou
oy (YR TN W 9 1 1 = a‘z’ 1 1 9 1 \ o
e uasdaiiaimstadindn aresminiiimeiimanls wuszanagluisdnandeszdy
d'l nld ¥ di ci [ =YY o T a ] ol r=| ~='u 'Y U = 1
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Xy Xar o0 Xy (2 30y mndsznnsiisdylinswaunie p_udyssauy@imaua
1 ] & ] 4 : o ar ¥ 1
yasnnunlslsng o?_uda msaheaiedssnadueds o tuiidasi 1 xS
inaedl 1ddeietedenanaanmsist idneifeusniniiden 1 udih  sampling distribution
— 3 el 2 o 3 A A o ] 1 ) o o 1
o % Wuwidlu N(u, o?7n) anluwdeimifvuamnnuinaty 1 - o i (@ dlum

[ H ] =, A
Howe 11 0.01, 0.05, 0.10) $ITWTORWIAIVEN 2(c/2) TINMTIMIUINUTIUTA 1A

|

{0 ' PP Hal2) < 28 « z(oc."z)] = 1-q

G/

By

ot aduty 1- o = 095 uf1 «(of2) = 20025 = 1.96 uagd 1-a =.090 ud
2(0/2) = 2(0.05) = 1.645]

3
wahiiwnilnaduvesawms (1) duauyady

>l

LA CTE)

oidn

~2(a/2) <

c = o
— 2o /2= £ X - < z(/2)—=
( ns oz )JE

Jn
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- X - z{al)= ~ns -X+z(a/2D—
o N
— 43 = o
X - #z{at/d)—= = € X + 2{et/2)—=
( )\/H il ( )\/H

a

duiuanuthazthluaums ) Sufieuidlnddad

2 P{? - z(a/2)w~‘7~.,-— susX-+ z(afz)%] =1~aqa
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fegai 1 sullamTenwemsusnusuLLYInd N, 1) ilerimass z(a/2)
do o« = 01, @ = 005

mel o

1 ¥
N 0IN ] o = 0.1 AU z(a/2)

2(0.1/2)
2(0.05)

AUNTSWUDY 2(0.1/2) 5 INTIUN 2(0.1/2) sgilawmiduannuny x A id

X-p

o/+n

P[-Z(O.IIZ) < < z(o.lfz)l =1-01I=09

1 i
vinmsh wn. Wduldalsnd No, 1 Tdwhid 1 Aalusnzaisezden
20.1/2) = Z0.05) = 1.645

058N 2 a = 005 159218 20.0572) = z0.025) = 1.96 adaiumsn
Ed .
1adail '

Conifdence level 9% 95%

z{(o/2) 1.645 1.96 #

oz i - ' & ' PR
dangien 2 Tssnumasesusauraniiaasenisniueousankaa lday
ar - 1 A A 2 4 dy oy o A a ' o
Msofunseieid Taamdamls fefiezdszinuniadsveusansdl Tdinsdndadiedn 13
[ © <t 1 ] z -4
dun 32 1w sdhmsneasusafsreadazdudenmindav sample mean oAl
— ' o : t o . o -
% = 42196 doud ndszaumsainilsumaundnndeunuinas g uunsmIiausia
=4 )

ot 4 1 =] P & a :!v
Mmooy o = 500 ﬂﬁluﬂ mﬂizmmﬂmiwmmmaﬁf 1! mmmmuiﬂ‘nﬂammﬂﬂmuu

5

Amuald o = 0.1
r ¥
3 ; aeldIEmsszinadieIinsun confidence interval, Tuiil landivua
o = 500 deuminld imiseeldgas 3) eadn confidence interval. volvdunai
9
(M a = 0.1 Al z(0.1/2)
() o/vn = 500/32

#0.05) = 1.645

il
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o ot

y . 4
dariulaugas (3) confidence interval iy | Aaeszdvanuiiel 90% Ao

[% - 164507432, X + 1645 # 0432

i

[42,196 ~ 1.645(500/32), 42,196 + :.645(500/,/32)]

[42,051, 42,341}

] gy = a e o = ' [ Y 1
nan lasayUffewsidaundsvosamusafudaninlssnuiiaziiseglugadanan

MesgaunmuFoduniify 90%

fadunanndreciehi 2 : vebhinAnmdbidaedei 2 Inilaeld « = 005 Wude

. 4 & . . , , 2

meziuszdunnuyeiuily 95% wavesnsdieeznd confidence interval ZVHIWIAY
é‘ 1 o4 1 & Y & A D -3 [

ulthnpainsdives o« = 01 namlaeagdudafie dundedesmsanuiredunniuge

F = o & o o '3 o
‘ummiﬂszmmﬂﬂmwumnwmﬂ "]Nﬂﬂﬂm'ﬁﬂﬂllﬂ'ﬁﬂUﬂﬂﬂﬁﬂ'!imﬂ'll!ﬂ?'mlﬂuﬂ?'ﬂ

1 I
as T e ’ ]

3
faglaft 8 hdieded 2 TuiueasliruyAdus linsiudves  standard

deviation ¢ taziaumues o 1y 005

=g o

H L] 1 1 é ﬁ?
38 : lunsaiflinsuaies o aedeelder s Fully standard deviation 1w

Idndsdisthutadsznuawet o udridgasii @ velddunah
Haf2) = 2(0.0572) = 2(0.025) = 1.96 ~ 2

AU 95% confidence interval for p Ao f
[

o~

4 % £ (196) s/ = 42,196 £ 2(614)/32
kN e

e

o

"4

= [41,937, 42,413]

. DA G R

s

oy

1 v ina

]
ar

' -l ' P o A &
VuheAunaevewsipzeglurie 141,937, 42413) drwseRuanuiely 95% #



L ko

L 7

- 27 -

2.5 MIIHIVHAUDITIIBE

. 1 ¥ 3
Tumsnusnssndsmednnnlssnnaomhunlszinasives 1 1ty Juesass

=t ]

- 1 ¥ 1 A w ' t ) 2
fisdaamsnsiuataviivimsizendsdiisiiumlsa e lddmianaalumsdszanudaes

9 1 dy

o : ! T o= 1 3 o -
Atnuwmuan E = % - p| I ldfuindmuald ggildhearsil

£ o= errar = [N — ui

1 . |
' [
LeN ~Zoye ”/ﬁ ' K U= %+ 20 oNT

Error in estimating p with X.

o

st ' b ¥ w 4 4 s
ITMTHINUDY n uwuﬂ“lwmmmmmmﬂmwuuumaﬂ

p [i -~ xa /2}%
b

v

si+z(azz)_c’—] =1-a

o
ar e

NusTmsez@en o Aresndatfuayns

\ . (=
s} . \
E = z{a/2)—= SRR o
Jn : W
- = ¢
CEL s
. 2
5) o lHei2)s
| E
feeaf 4 Tsanukdafuveniiaegnsondad 1dlaamaoiuaz 70 du Yedehv

Y = ] @ de o 3 a w e
WS nunswdadnldounladamaiuideiimndsunlanSnavesfegiuuazaninees

Tssamiudy

= = = ] o oY ')
?rm.m'nmmmmwamimmamuﬁﬂmmﬂssm}muﬂsﬂmmﬂ mean p = 70 AU LA

standard deviation ¢ = 3 AU

e = 9

amsRaaalimseed: s wdeametinnty malsanuia 18y
Ugssuumsnaaluy  iloruranis s lrsuideamanrri s nsudunig
Yasdreszuntmiiudngmusondnd g lannioiuazmile ioftszaoufanid malsam
1dhmsdndsetafienazen Tdnwhmssdennnauesiiediomlsd Sazudlaldn

1. - o P [N @ au i o
AN InRnannmIUssadian liifu 1 du deszduamnseliu 95%
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W E- k- dudAansnfidaninmsisznue
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Tusillonddownsld E<1 Taeld o = 005
a3 5

2 2
) [M] . [5&2{2&31] = 346

datiudio mdawaa lufiy (D deadnddindisediaio 35 u X{

2.8 Confidence Inierval on a Proportion
g lsnseuemsentsufeIfuIEnINT  confidence interval @MU Sas I
(proportion) p Fuluswesszymiisdylingwanndou Metrusundadasionlsanu

r ‘é d. o aQ =) & L1 H - =%
uaildhaansovaniuld msefidmi) damdiu p vealsanuhldiimsmeadalunszuiu

. o 4 a0 A PEIES 1 ny ar
nismuguaunmidudy  desnnniadusiindaoemnnnlssnuedozduszmunsodalog
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t o~ 1 A 1
nguupadudi lduasiguasamsafozdsldueld
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_ a0e  (FunTonguid "filure” ) Wunguvewdadumnuamil dufailungy
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Nd E

dredwiifszendoiunmaasauunuiyad oy n aft dedinnuinaiusiity p @
Alusvisafia lins ) detuld X fusnouues success udsmdadguuousmazlf xm
=] a ] ‘ dl. 4 (Y] L . 0 n’j = ot

dludasidiuued  success A 1A9AA100W (sample proportion) AHU X Talinuonuauiiv

HWUUVAUUNY mean (AN np WAY variance UIRREY np(1l - p) U@L sampie proportion
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) as i A e = y @ '
850y unbiased estimater 33U p $20 eRvziiuanusevaiive lidunad

X

E(f) = E(—] = LBy =L mp=op
n n

=i

¥ . 1 .
HEnNAIEI n Hunne (Tufe n 2 30) TAY Central Limit Theorem 19792 1471

MIUDAUDIVELINTHY

X - np _ Xin)-p

e - e p)h

a 4 .
T INANITU NUSIMVBUTAA N, 1) FIMWLATINN

(X/n) - p

- 2 g A T Y
"{Z‘“’“Jm—-m

< z(a/2)} = ] -

saum s luduinsdumansafee@ould iy

(1) E - z(a!2) ‘M <ps l(_ + z(n/2) /p(l - pP)
n n 0 n

is1eenayI¥eaunts (1) w3 confidence interval d Wy p vt 9gIeY
¥
unuaEaisans q luesunis (1 Megwls daunlsdusnfie za/2) dunlsdilimeznsiy
i o A o o A o w o 1 <
aldtuiidenimafmuarzduvosnnidody o nhitomatlymll  dualsdrdelifne
g 44 !:iy L t& = at ‘:‘\ al 1 ﬁg L o
X faulsdirilsngnaualddefimsdndedioiiavue o Yuwmeziiui i aured success
= [ ar ' a = o ¥ o or e
fsufurnavesdietrs auydan sty xn Mbiihiun XA Fudsdrgaiofs p il
[ ! 5 as 191 T o i ' t & o ¥
EumvetszannsFasida i s lsiRemfaunialsznud p fomwes s Fuiludi
=l ! o A w ' ) 1 dy o . . e Y
Wldnnmsdndemetny daedimsauilisfamnsnadiy confidence interval dwiy p dae

o A& w A
STV 1001 - o) WloTiwud 1Al

e} X 2(012) '(x/n)(l - x/n) <pc< L 2(0/2) ’(x/n)(l - x/n)
n n n n
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Mstees p ogde"

woldd Tt § = xm uay § = 1-p Hufu confidence interval AT
(2) 90g gl

Pa) AA
3) b -2/ 8 < p < ez /B
n n
L | Y W e [
nio@eu ey luginseiasadudnoztiu

(4) o z(a/z),(l’nﬂ

. . o 2 1 cé L (]
frepngfl 1 A¥ams Tsanumdamans aoualidsnidoan1snswndas @i p voanwa

] ¥
wan v 1 inesguilofoufulfunamswiaiomasziinuivle daedRuselseaum
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pud}

[ L 0 9
Wldsnaiegan 75 Suudnihmaneaey wuhlmari ldldinasysvedde 12 du
a

Fariumes sample proportion p%dkﬁ?ﬁﬂ x/m = 12/715 = 0.1

o
Q

Y e . . 2 3 9 ¢ A Py
AIGATOT point estimate MNSIUIZIIMAWEY p TatldMmaes P Al

p~p=0I6

anweiem 0.16 Unfedmauiidoemsuds widdamsieaulefiosnsu  confidence interval

d w3y p AwszAuAEei 95% nadaslagesh (3) a1 confidence interval d13U p
1t

AN

t - 202502 < p < P+ 20025,/ B2
n n

CEL) 16 ~ 1.96,}———————-('16;(5'84) <p< .16+ 1.96J§'~—~—]6;(5'84)
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08 < p < .24

1 -~ A 01/ 1 1 L] 1
Fafior Idoapliuniianudedui 95% Nmwealsznng p wegluyn (0,08, 024)  Fo
b ¥
msadia confidence interval 1t Ifisuiulait p asevegvinenin 0.16 ldintdn #
@ 1} 1 ﬁi
volidunadld E=|p - §] udraums @) szveniunmsadeldie 1000 - o)

wefudheanwea B Huefidnioonh «(a/2)Jfd/n  dufumsiiszifonsives n eliis
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wsodeldde 100 - o) efmuihimfanmatumsdsziabify B e i@laens e
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E = z(a/2)pq/n

wazufaunIs o Inwed n 32 1d
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Aoengit 2 Madefednd 1 Tnadfdosminnuhaiseedndedieteuiie o w1l
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anelirdanaafiiams1d § dszinm p Wuildrfesnt 005 dresedunnuiety 959
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sy o =4

A Tuifs W o= 005 § = 016 § = 084 spludaums ) 021d

2
o o= (2R

t

1,96\
(m) (0.16){0.84) = 207

P A N ’ ¢ @ ar a N y

Aulududenannaueadadeiiaiiy 207 mardulehds 95% N5t 3 Uszanmdives
Ed
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uunElnyia
madssnaauuge
1. Suppose we have a random sample of size 2n from a population denoted by X, and

EX) = poand V(X) = o let

2n
— 1 —_
K =-—3V X, and X; =
1 zn; i @ v

=
=3
~

K

be two estimators of w. Which is the better estimator of g 7 Explain your choice.

Ans | Both estimators are unbiased. Now,
V(X,) = o*/2n while WX,) = o’ /n Since
V(%) <V(X,), X, isan more efficient than X,.

2. Let three random sample of sizes n, = 10, n, = 8, and n; = 6 be taken from a
population with mean @ and variance o*. Let 8%, S and S} be the sample
variances. Show that

10S] + 882 + 652
24

g =

is an unbiased estimator of o2,

3. A sample of five measurement of the diameter of a sphere were recorded by a
( scientist as 6.33, 6.3I7, 6.§6, 6\.'32, 6.37 inches. Determine unbiased and efficient

estimates of (a) the true mean. (b) the true variance.

Ans @ (a) po= ‘:‘5 = 635 in

(b F =g = = = 000055 in®

Note that s = +/0.00055 Is an estimate of the true standard deviation but this

estimate is neither unbiased nor efficient



4, A civil engineer is analyzing the compressive strength of concrete. Compressive
strength is apprqx_%matgly normally distributed with variance o2 = 1000 (psi). A
random sample of 12 spe?imeps has a mean compressive strength of X = 3250 psi.

(1) Construct a 95 percent m}o‘-lsio.d\ed confidence interval on meﬁn-comp'ressive strength.

{by Construct a 99 percent two-sided confidence on mean compressive strength.

Compare the width of this confidence interval with the width of the one found in

part (a) ] b . ‘f S :
Ans @ (@ 323211 S p < 3267.89.
. N Y S TR R 4]
by 322649 < p < 3273, 51 R e
RPN L LA BRI Lonet uan (a
T ' ‘

5. Suvppose that in Exercise 4 it is desired to estimate the compressive strength with j{}

an error that is less that 15 psi. What sample size is required?

o R \/i) ’\ o s A Ag s 2R

6. A sample poll of 100 voters chosen at random from all voters in a given district
indicated that 53% of themn were in favor of a particular candidate. Find (a) 95%.,

{b) 99% confidence limits for the proportion of all the voters in favor of this

P
3
~ LY 0y

candidate. “tr v (&{/9 ) \\

oy
Ans ¢ (@ 055,010 £ p < 0.55 + 0.10 Gops e Al pse (,
(b) 0.55 — 045 < p < 0.55 + 0.45 ) 1;(,
vl g ey, \/ 0. 24 {)
7. How large a sample of voters should we take in Exercise 6 in order to be (a) 95%
and (b) 99.73% confident that the condidate will be elected?
Ans @ () n
{(b) n

384.2 or at least 385

]

900
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3. MINeasuauyfAgIM (Tests of Hypotheses)
¥ o ] ]
Tumalfiidtidesaisfudosdatule el lddenydRnrfudwonlszmng  Tee
at ﬁl cilr!ﬁl ®4 n’ o 1 aF oy .3’ W ='\ o 1 J 4 1
ovdedoyaitldrminmsndadised nudadulsuufiugiusinsdniadiededl widend
"madaduluBaadar (statistical decision theory) 10619ty INOWITABIMIdATUNAWIVTlR
® bl ¥ ’ »
it ldndadumil  Dvalumsihudnhdseniiléegluvasiiniolds wSeszuumsfnm
' -~y 13 ) A 1 -4 ) r = o A o Ai & H
unuTmivz@nhiszamdunioll  wiedoamsdafuiwiTugduniladumFegiisansmie i
5/
Sludu

3-1 = = 3 Ay ; « g l l l :
3 ¥
Tuaszurumsdadulaiudnabidosadsdoauyfgnnalizmsmoriuaives
dp o 9/ = oar i L) =) red ] o 1 = oy o
Urzsnnsfiddeaule domngAdindionezgndomielun tdrusweSond) guydguuseda

fred1aru  muydTuranlenunfeveadiedn (compressive strength) VEINOUNT ABTANIIY

as

4 Ny 1 ' A -] LT e ) s
uazisdosmseedaduhnuniivvoihdsde (1) vosnouniaziailozhiy 2,500 psi H3D

" .
o >

Ty luesilruilsowezdmuy@giulih

(1) Hy: 1= 2,500 psi
H,: ) # 2,500 psi

wBUNGUUATIN Hy: ko= 2,500 psi 1 "null hypotheses” UazTUN H,:p = 2,500 psi T
3 N ¥

"Alternative hypotheses”  tifosnnmn@gy B, Muldseyn u owvzlidwnnndt 2,500 psi

wimfoondt 2,500 psi A14 1 aSonmuydgru B, 1AluSnToutlad “two-sided alternative

3¢
hypotheses" Tuunnsdits wwwé’n‘a%’aﬂuuﬁmmﬂumum “one-sided alternative hypotheses™

v
a =

U

(2 H,: p = 2,500 psi
H, : p > 2,500 psi

J ¥ L ¥
= =1 o/ at

4 g W o al ¥ o 4 o] e Y
dusesddgdmivdonivedosi Biaueh domuApuilddsuiududonufersum

k Ll

]
=

yossgnnsfimimdedouiod  hilsdennuiieduivesdsdieodn  Awealsynng - (M
Wslimed) andisminnllunisde null hypotheses (FsfpgnTAW 1 = 2,500 psiy &

- a P R §
Waains ladinisninlumuisasiiie



@ Tanendszaumsoiiidnnn, TdumensfisiiFenszuninde, nieldn
pinmsnaseadiudu  dunidmwesmsiinennnndinsdaanarstiadunds
w o -~ o oA [ 1 .
Joqszasdupamanameuauydpunfenisdadud lalinsaidoumnlagui’

o 9 - 1
Aseantanie li

< 1 5’ A =
@ hamannnguiurmge] wieldunnnuuusessiateliuifiestenszuu.
¥ 3
nssamiu dmiunsdliifaglszasdveinsnaasuau@nuindiunisuras

] b4
Himguiniouuvsassitldda I fidiueta

¥ ¥V <o = a ' 3 ' 9 o =

@ Rnnadeimuafonasiulianmdh  wu dodmualusesauumi
- s 3 o o a ¥ o o d.de e
Franssu wiedesmuamuiusFyadiudu Fmivnsdlilinglseasduns
avnaseufszdlumsdaguih ldlmsdfidausiusedynn conformal testing)

3ol

A PN - s e o a 4 o = a 1
womaulslumsfaduidoauydguduniiinsdiueimions  aszyaumsfissidiihigas

& A o

' ! X = o
fafudindnezSondn "nsnadoUAuYATIN" (test of a hypothesis) nsz1umMsilazlddoya

]
P

o t &5 L A o T § i A a2/ 1
Tudaiedadgu dldgndnoenumnnnguuealsznsinauly dideyaildendidieds
b [ s
flassnsfudomu@gui 1dde 1iudr ivzaphdeauyipudindiafiueis edelsiddde

o ' ] @ w3 - o so3 2 ok of
yasenma hinssosdududoauydgmiezag) hdomudgudumng
» ] ] ¥ r
evemnmrmarouauyig wnzfendsiiethutiguiliiuumiliygs asiuiw
v L A = s . A o & s o d o 5 1 o
I statistic (B909 TlozEun test statisticy MAFAIoINTN  Aenmiudihdeyafi ldvinds
fedrnagelunsdadule @otee n1TNAAOY null hypothesis iNeafUMEIdAvYDINBUNTA
] t 4
MU (1) ﬁnuﬁ'jﬂﬁ'ﬁnws%ﬂﬁaﬁaﬂmmﬁuﬁwmu 10 ¥u iy mareumddauasA I
AN sample mean X Mumm@mmx >.2,530 psi 130 R < 2,450 psi w231
2,500 psi  VufevzUfeE Hy:p = 2,500 psi

mfies B, szvnefimsvouiud 1, flueds wavoimved x Fonwafhnnd 2,550 psi
wimfounh 2,450 psi uu*i]“titlﬂ’mﬂll critical region ﬁ‘a’ﬂ rejection region ‘Uﬂiﬂ'l'iﬂﬂﬁﬂ‘lj
12,450 psi < X < 2, 550 psi udusrezvouin null hyporhesm Hy:p = 2,500 psi Fsviuszon
¥N [2,450, 2,550] i acceptance region MIUNITNATOU wlRunahiivonves
critical region (9213011 critical value UDY test statistic) %@ﬁﬁﬂ 2,450 psi VEL) 2,550 psi llﬁal)gﬂ

©° ; y
Amuatuu i laveuluumeis
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¥ v »
uantudidudeliliuez IdinsuaeIF A uRITn 15319 test satistic Atmnzawiam

critical region Ty Fumnazovauydglunownisainig q du

'g:lll HAAILTIIN critical region U@Y acceptance region

8.2 anudewmailszant 1 uay 1 (Type Land Type IL error)
& ] i o b= = R o’;’ . 4 o
mshvzdadulodimzeoniunioufiers null hypothesis Huis19g 14 test statistic 4ar1IU
A ar 1 = 1 ar L o Q. ﬂ‘l, d ‘:‘ oF ’
Tavndeyalumdredadagulludatolumsdaduls  dnfudeiinilddoyanindedaedie
& r = < J ' or o 2 1 ~ % E=3
ivzdesvai e hionsrdlanuiavamifadulumsdaduledinade  anudanaiaiiie

& ¥
Fulumswamevauydgiull Idaesiiadaiife

a oo .3 a A
(n) Type I error Li’luﬂ'mmﬂwmﬂmnmumﬂmsﬂgam null hypothesis 10 null hypothesis
dndngndes

o =, g o s 4 .
(¥} Type Il error dlupNuRanamnsiuInnTeeNsy mill hypothesis 19 null hypothesis
danam ligndes

o o ' - <) wor g
TOTUMNTUAINAN %’l\?ﬁﬂﬁﬁﬂfﬂﬂﬁlﬂﬂ llgllhlﬂ'lﬁ N ﬂﬂﬂ1ﬂu

Decision in Hypothesis Testing

Decision H;, is True H, is fabe

Accept H, No error Type 1I error

Reject H, Type 1 error No error
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anniiufiosfia type T uag type 11 error Huvzimua Midudygydosaifieudail

R
H]

P {type L error} = P {reject Hy | H, is true}

™
Il

P {type Il error} = P {accept H, ] H, is false}

»
dolufiony "H1doinINeney” (power of test) Al

Power = 1 — B = P {reject H, | H,, is false}

wifFunadwwewnsnamey fio amnhezflufiezlfies ol hypothesis (o null
@ . W
hypothesis MAR  MnmIfinausImMINATRUmIATIUTHBgTUNTIAANMARIY oz I
= w2 1’" & " Y w . )1 = ar @ a ] o o‘;’ a A )
aunsafiny “fignl wie midedauder 18 hm@Egndulnugadasiumi  dntufeineh
ThethefigaifonsswoonunAinmmaaouiefinsuguinmuheziuvesnruianma
Tfianiosateglussduiimel
T = n"q n’lJ 4 1 p = w0 e

arnihesily o Y8IMsINa type I error 1 HunnsesBund szdusninmiiiod iy
(level of significance) YBINMINATEL  Iudredumsnameuiddausineuniaauindiie
¥ LA o 6 o o A g oa A . o o a & :
Hrafu auy@idunfovosiifidaiuhviafe u = 2,500 psi  ANIY type T emor azifindiuile
A1 sample mean X > 2,550 psi M50 ¥ < 2,450 psi Iaod udrdmruninedluiieveonld

¥ 1,

A9 type I error Hnazifiumasiddimmagsuamnsafimualdemuanmngay de
:j 1 H =y é 0’) i -]
duanutneslufevdfers 1, do B, dugndadeaunsoszatuguldlas divihmivaney

|73 . . ]
mignziudeatidiunses 1, Sedeldduliu “dowgiinse (strong conclusion)

W ¥ ]

do'ltloan@it null hypothesis Ho:p = 2,500 psi wulugndes  Fufusiedous
a_ oo 4 IA 4 T a o n’/’ 1 1 o]
fdada p fgndesiesduiou 4 Ahiviiy 2,500 psi Auluaruninziiufivaie ype o
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According to the norms established for a mechanical aptitude test, persons who are 18 years
old should average 73.2 with a standard deviation of 8.6. If 45 randomly selected persons
of that age averaged 76.7, test null hypothesis p = 73.2 against the alternative hypothesis

1 >73.2 at the 0.01 level of significance. Ans z = 2.73 ; reject Hj.

In 64 randomly selected hours of production the mean and the standard deviation of the
number of acceptable pieces produced by an automatic stamping machine are X = 1,038
and s = 146. At 0.05 level of significance does this enable us to reject the null hypothesis

p = 1,000 against the alternature hypothesis g = 1,0007 Ans z = 2.08 ; reject Hy.

In a labor - managemant discussion it was brought up that workers at a certain large plant
take on the average 32.6 minutes to get work. If a random sample of 60 workers took on
the average 33.8 minutes with a standard deviation of 6.1 minutes, can we reject the null
hypothesis p = 32.6 against the alternative hypothesis p > 32.6 at 0.05 level of

significance? Ams z = 1.52 ; cannot reject H.

Given a random sample of 5 pints from different production lots, we want to test whether the
fat content of a certain kind of ice cream exceeds 14%. What can we conclude at the 0.01
level of significance about the null hypothasis = 14% if the sample has the mean

X =14.9% and the standard deviation s = 0.42%. Ams t = 4.79 ; reject H,.

A random sample from a company's very extensive files show that orders for a certain piece
of machinery were filled, respectively in 10, 12, 19, .‘14, 15,18, 11 and 13 days. Use the
level of significance o = 0.01 to test the claim that on the average such orders are filled in
10.5 days. Choose the alternative hypothesis so that rejection of the nuil hypothesis

e = 10.5 implies that it takes longer than indicated. Assume nommality. Ans t = 3.087;

reject H.
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In Chapler 7 we learned how {o judge the size of the error in estimating a populaiiy
mean, hoew to consiruct confidence titervals for means, and how 1o perform tesis ¢
hypotheses about the mezans of one and of two popuialions. As we shall see in this an
in subeequem chapters, very similar methods apply 10 inferences about other populatin
parameters.

In this chapler we shall concentrate on popuiation variances, or standard deviation
which are not anly important in their own right, bul which must sometimes be estimale
hefore inferences about other paramelers can be made. Section 8.1 is devoted to e
eslimation of o and &, and Sections 8.2 and 8.3 deal with tesis of hypolheses aboul
these parameters,

8.1 ?he Esnmahon of Varllances 268 e
3.2 Hypotheses Concernmg One Variance . 271
8.3  Hypotheses Concemmg Twa. Vauances o 273
. 8.4 Review Exercises BT s
8.5 Checklist of Key. Terms | 278

THE ESTIMATION OF VARIANCES

In the preceding chapior, there were several instances where we esiimuted a populati
standard deviation by means of a sample standard deviation—we substituted & for
v he farge sample conlidence interval for 4o on page 222, in the lirge sample ©
coneerning joon paoe 240, and in the larpe sample test concerning ihe differen
between two means on page 233, There are many statistical procedures in winch 8
thus substited for o, or s° for o7, There are also situations where o is the primd
parnmeter of inlerest,



fased estimation
pepulation variance

EXAMPLE

Soluiion

Let §7 = 377" (X, — X)*/tn — 1) be the sample variance based on a random
sample from any population, discreie or continuous, having variance o, It follows
from the Example on page 179 that the mean of the sampling distribution of % is
given by o2,

The sample variance

£

> (X, - X

Sgtinl
n— 1

is an unbiased estimator of o*

Although the sample variance is an unbiased estimaior of ¢, it does not follow
that the sample standard deviation is also an unbiased estimator of #; m fact, it is not.
However, for large samples the bias 18 small and it is common praclice to estimate ¢
with . '

Besides s, population standard deviations ave somelimes estimated in terms of

. the sample range R, which we defined in Section 2.6 as the largest value of a sampte

minus the smallest. Given a random sample of size n from a normal population, it
can be shown that the sampling distribution of the range has the mean dyo and the
“standard deviation dio, where f, and d, are constants which depend on the size of the

sample. Forn = 1,2,..., and 10, their values are as shown in the following table:
n 2 3 4 5 & 7 8 9 10
: |
tdo 1.128 1.693 2.059 2,326 2.534 2704 2.847 2970 3.078
e (853 0.833 0.880 0.864 0.848 .833 0.820  0.808 0.797

Thus, R/d, is-an unbiased estimate of o, and for very small samples, n < 5. it
provides nearly as good an estimale of o as does s; as the sample size increases, il
becomes more efficient to use s instead of 12/d,. Nowadays, the range is used to
estimate ¢ primarily in problems of industrial quality control, where sample sizes are
usually small and computational ease is of prime concem. This application will be
discusscd in Chapler 14, where we shall need the above values of the constant ds.

With reference to the example on page 256, use the range of the first sarple to estimate
o for the heat-producing capacity of coal from the first mine,

Since the smallest value is 8,070, the largest value is 8,350, and » = 5 so that
iy = 2.326, we got

SEC. 8,1: The Estimation of Variances



Coufidence interval

SJor

EXAMPLE

Solution

§ _8350-8070 _ .,

2.326

Note that this is fairl¥ close to the sample standard deviation s = 125.5.
|

In most practicat applications, interval estimates of ¢ or o° are based on the
sample standard deviation or the sample variance. For random sampies {rom normal
populations, we make use of Theorem 6.4, according to which

(12 — N&?
e

is o random variable having the chi-square distribution with n— 1 degrees of freedom,
Thus, with x? defined as on page 211 for a chi-square distribution with - 1 degrees
~of freedom, we can assert with probability 1 — v that the inequality

) (- 182 s
Ximngr < T < Xz

will be satisfied; once the data have been obtained, we make the same assertion
with (I — a)100% confidence. Solving this incquality for o2, we obtain the follow-
ing result: ’

n—1)s" 7 — 1)s”
L N
afa 1—afz

IT we lake the square root of each member of this inequality, we obiain a corresponding
(! - a)100% confidence interval for o.

Note that confidence intervals for o or o oblained by taking “equal tails.” as i
the above formula, do not actually give the narrowest confidence intervals, becaust
the chi-square distribulion is not symmeltrical (see Exercise 7.16). Nevertheless. they
are used in most applications in order 1o avoid fairly complicated caleulations.

Relurning to the example on page 211, suppose that the refractive indices of 20 pieces
of glass (randomty sclected from a farge shipment purchased by the optical firm) have
a variance of 1.20 - 1074, Construct 4 95% confidence interval for o, the standql‘
deviation of the population sampled, '

- e H |l
For 20 — 1 = 19 degrees of freedom, Y3y, = 8.907 and x3 gy = 32.852 according .
Table 5, so that substitution into the formuta yiclds

(19)(1.20- 107 <o (12010 4)

32 852 h £.007

.
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0000069 < o < 0.000256
and, hence,
0.0083 < o < 0.0160

This means we are 95% confident thal the interval from 0.0083 to 0.0160 contains o,
the frue standard deviution of the refractive index,
n .

The methed which we have discussed applies only 1o random samples from
normal populations {or at least o random samples from populations which can be
approximated closely with normal distributions).

EXERCISES 8.1 Use the data of Exercise 7.46 on page 250 to estimate ¢ for the ength of time the
experimental engine will operate with the given fuel in terms of
(a) the sample standard deviation; ( § =« 4.145 )
{b) the sample range, ([ 4.341)
Compare the {wo cstimates by expressing their difference as a percentage of the first.
8.2 With reference to the exarnple on page 256, use the range of the second sample to estimate
@ for the heal-producing capacity of coat from the second mine, and compare the result
wilh the stundard deviation of the second sample.
8.3 Use the daia of part (2} of Exercise 7.70 to estimate o for the Brinell hardness of Alloy
1 in terms of
(a) the sumple standard deviation;
(b} the sample range,
Compare the Lwo esiimates by expressing their difference as a percentage of the first,
R4 Wilh reference to Exercise 7,47, construct a 99% confidence interval for the variance of
the amount of time it takes the company 1o fill an order for a piece of the given kind of
machinery.
8.5  With reference 1o Exercise 7.48, construct a 99% coafidence interval for the variance of
the population sampled.
8.6 Use the value of s obrained in Exercise 8.3 to construct & 98% confidence interval for o,
measuring the actual vartability in the hardness of Alloy .

82

HYPOTHESES CONCERNING ONE VARIANCE

In this section we shall censider the problem of testing the null hypothesis that o
population variance equzls a specified constant against a suituble one-sided or 1wo-
sided alternative; that 1s. we shall test-the null hypothesis o = o] against vne of the
alternatives o° < a7 a° > g}, or ¢ # o, Tésts like these are important whenever it is
desired 10 control the uniformity of a product or an operation. For example. suppose
that a silicon disc, or “wafer,” is to be cut into small squares, or “dice,” to be used
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in the manufacture of a semiconductor device. Since certain electrical character;shc
of the finished device may depend on the thickness of the die, it is important thaI al
dice cut from a wafer have approximately the same thickness. Thus, not only musl
the mean thickness of a wafer be kept within specifications, but also the variation ;,
thickness from focation to Jocation on the wafer, .
Using the same sampling theory as on page 270, we base such tests on the faq
that for random samples from a normal population with the variance o}

i
I
T
i
i

——
Statistic for test . (n—1)%"
concerning variance X e

o

is a random variable having the chi-square distribution with n — | degrees of freedq
The critical regions for such tests are as shown in the following table:

Critical Regions for Testing 7 = 0’5
- (Normal popdailion}

Alrernative Reject null
hypothesis hypothesis If:
o < o} X< X ea
e e s
gt > o} x> X
EE—
2 2 2 2
o ?é Ty X < X!nr}/!
or x* > X

In this table x? is as defined on page 211. Note that “equal tails” are used for the
two-sided alternative, and this is actually not the best procedure since the chi-squart
distribution is not synmmetrical.

EXAMPLE  The lapping process which is used to grind certain silicon wafers to the proper thickness
is acceptable only if &, the population stapdard deviation of the thickness of dice ¢t
from the wafers, is at most 0.50 mil. Use the 0.05 level of significance to test the nl
hypothesis ¢ = (1,50 against the alternative hypothesis ¢ > (.30, if the thicknesses |
15 dice cut from such wafers have a standard deviation of (.64 mii,

Solution
L. Nu!l hypothesis; o = 0.50
Alternative hypothesis: o > (.50

2. Level of sipnificance: a0 =0.05
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3

3. Criterion: Reject the null hypothesis if x* > 23.685, the value of ¥4 for 14
degrees of frgedom, where

» (n— 1)5?

3
Ja

s

4. Calewlations:

, (15— 1)0.64)°
= s = 22,94
(0.50%* ?
5. Decision: Since x* = 22.94 does not exceed 23.685, the null hypothesis cannot
be rejected; even though the sample standard deviation exceeds 0.50, there is

not sufficient evidence to conclude that the lapping process is unsatisfactory.
|

There exist tables similar to Table 8, which enable us to read the probabilities of
Type 11 errors connected with (his kind of test. As given in the National Bureau of
Srandards Handbook 91 (see the bibliography), they contain the OC curves for the
different one-sided and two-sided alternatives. far ¢ = 0.05 and ¢ = 0.01, and for
various values of n.

YPOTHESES CONCERNING TWO VARIANCES

latistic for test
of equality of two
Wrianees

The two-sample ¢ test, described in Section 7.9, requires that the variances of the two
populations sampled are equal. In this section we describe & test of the null hypothesis
o = g3, which applies to independent random samples from two normal populations:
it must be used with some discretion as it is very sensilive to departures from this
assumption.

If independent random samples of size n, and n, are taken from normal popula-
tions having the same variance, it follows from Theorem 6.5 that

S

F="r
53

+

is o random variable having the I distribution with n; — 1 and n, - 1 degrees of~.
freedont. Thus, if the null hypothesis a? = o is (rue, the ratio of the sample variances
L] | 2
5% and S? provides a statislic on which tests of the null hypothests can be based.”
The critical region for testing the null hypothesis o = o2 against the allernative
£ p ] 3 aL

hypothesis o2 > o} is F > F., where [, is as defined on page 212, Similaly.
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EXAMPLE

the critical region for lesting the null hypothesis against the alternative hypothesis
of < olis F < F_,, and this causes some difficultics since Table 6 only contains
values corresponding to right-hand tails of o = 0.05 and a = 0.01. As a result, we |
use the reciprocat of the original test statistic and make use of the relation

, 1
Fi o, v2) RO
first given on page 213. Thus, we base the test on the statistic F' = 57/57 and the
critical region for testing the null hypothesis o? = o? against the alternative hypothesis
gt < of becomes F = F,, where F, is the appropriate critical value of /7 for n; — |
and n; — 1 degrees of freedom.

For the two-sided alternative % # o} the critical region is F' < Fi_.p» or £ >
Fop2, where F = 51/8; and the degrees of freedom are ny — 1 and n, — 1. In practice,
we modify this test as in the preceding paragraph, so thal we can again use the table
of F values corresponding to right-hand tails of e = 0.05 and « = 0,01. To this end
we let $%, represent the larger of the two sample variances, 53, the smaller, and we
write the corresponding sample sizes as ny, and n,,. Thus, the test statistic becomes
F=8},/5% and the critical region is as showr in the following table:

Critical Regions for Testing 0"3 = 021
(Normal populations)

Alternative Reject pnll
hvporhesis Tesr stettistic hypathesis if:
I
at < o3 Fa F>Fng~1n 1)
i
S
ol > o] F:g,—'2 F>FE @ —1n-1
2
3 L] A
al # o3 F= '3,2—! F > Foply —1n,—1)
m AJ

The level of significance of these tests is ¢ and the figures indicated in p;m-mhcsc‘sl

are the respective degrees of freedom. Note that, as in the chi-square test, “equal taiis”

are used in the two-tailed tesl as @ matter of mathematical convenience, even thoug? :
the F distribution is not symmetrical, '
It is desired to determine whether there is less variability in the silver plating don¢
py Company [ than in that done by Company 2, 1l independent random samiples ©
size 12 ()l‘/lhe two companies’ work yield ¢, = 0.035 mil and », = 0.062 mil. test 1he
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null hypothesis 7 = o? against the altemnative hypothesis o < o7 at the 0.05 level of
significance, :

Solution

Lo Nuli hypothesis: o? = a2

2

Alrernative hypothesis: 02 < o}
2, Level of significance: o = 0.05

Criterien: Reject the null hypothesis if F' > 2.82, and the value of Fyes for
11 and 11 degrees of freedom, where

SZ
F=22
5

4. Caleulations:

_(0.062)°
T 0.035¢

3. Decision: Since F = 3,14 exceeds 2.82, the null hypothesis must be rejected; in
other words, the data support the contention that the plating done by Company

is less variable than that done by Company 2.

EXAMPLE With reference to the example dealing with the heat-producing capacity of coal from
two mines on page 256, use the 0.02 level of significance to test whether it is reason-
able to assume that the variances of the two populations sampled are cqual.

Solution

SEC. 8.3:

Null hypothesis: ol = o

Alternative hypothesis: o} # a3

Level of significance: o = 0.02

Criterion: Reject the null hypothesis if F > 11.4, the value of Fyg for 4
and 5 degrees of freedom, where the value of F'is

. S'l
Fe=Zl
S

since &) = 15,750 is greater than &2 = 10,920,
Calcnlutions: '
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EXERCISES

5. Decision: Since F = 1.44 does pol exceed 1.4, the null hypothesis canng
be rejected; there is no real reason to doubt the equality of the variances of |
the two populations. '

x,

Had we wanted lo use the level of significance @ = 0.05 or a = 0.01 in thj
example, we would have required tables of the values of Fyups(m, #2) of Foms(i, 1),
such tables may be found in the Biometrika Tables for Siatisticians listed in the
Bibliography under Pearson and Hartley. Also, OC curves for the one-tailed P tegs
may be found in the National Bureau of Standards Handbook 91.

Caution: In marked contrast to the procedures for making inferences about
the vatidity of the procedures in this chapter depend rather strongly on the assutption
that the underlying population is normal. The sampling variance of S? can change
when the population departs from normality by having, for instance. a single long tail,
It can be shown that, when the underlying population is normal, the sampling variance
of 5% iy 20*/{n — 1). However, for nonnormal distributions, the sampling variance
of §% depends not only on o2 but also on the population third and fourth moments,
itz and qu (see page 143). Consequently, it could be much larger than 20t /(n — 1)
This behavior completely invalidates any tests of hypothesis or confidence intervais
for *. We say that these procedures for making inferences about o are not robust
with respect o deviations from normality.

8.7  With reference to Exercise 7.44 on page 250, test the nult hypothesis ¢ = 600 psi for the
compressive strength of the given kind of steel against the aiternative hypothesis o > 600
psi. Use the 0.05 level of signiticance. (X = 5.352 ; comnat reject Wo)

8.8 If 12 determinations of the specific heat of iron have a standard deviation of 0.0086, est
the null hypothesis that o = 0.010 for such detepminations. Use the alternative hypothesis
o # 0.010 and the level of significance a = 3.01.

8.9  With refcrence to Exercise 7.64, test the null hypothesis that o = (5.0 minutes for the
time that is required for repairs of the first kind of photocopying equipment against the
allernalive hypothesis that ¢ > 5.0 minutes. Use the Q.05 level of significance and
assume normality. { x* z 145, 284 iYéj{C{' Ha)

8.10 Use the 0.01 level of significance to rest the null hypothesis that o = 0.015 inch for the
diameters of certain bolts against the allernative hypothesis that o # 0.015 inch, g:ven
that a rundom sample of size 15 yielded 52 = 0.00041, b

8.11 Playing 10 rounds of golf on his home course, a golf professional averaged 71.3 willi 8
standaed deviation of 1,32, Test the ) hypothesis that the consistency of his gane on
his home course is uctually measuied by o = 1.20, sgainst the alternative hypothesis it
he is less consistent. Use the level of sipnificance o = 0.05. (x*: te. 74, mf:-ye etfH)

8.12 The sccurily department of o large office building wants fo test the nuli hypolhem that
& = 2,0 minutes for the lime it lakes u guard to walk his round against the aliernaiive
hypothesis that o £ 2.0 minules. What can it conclude al the 0.01 level of significance if
& random sample of size 1= 31 yields s = [, 8 minutes?

8.33 Justily the use of the two-sumple  test in Exercisc 7.67 on page 261 by lesting the
pull hypothesis that the two populations have cquab variances. Use the 0.02 tevel Of
significance, ( F s togan ;| wed camnet vefed Ho )

8.4 With relarence to Bxereise 7,68 on page 261, use the 0.02 level of significance Lo test the
assumption dhat the two populations have eyual varionees,
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8.15 Two different lighting techniques are compared by measuring the intensity of light at
selected locations in areas lighted by the Lwo methods. If 1S measurements in.the first
area had a standard deviation of 2.7 foot-candtes and 21 measurements in the second area
had  standard deviation of 4.2 foot-candles, can it be concluded that the lighting in the
second area is less uniform? Use a 0.01 level of significance. What assumptions musl be
made as to how the two samples are obtained? ¢ g - 2 .42 we cam nef veq ett He)

8.16 With reference to Exercise 7.66, where we had ny = 40, 5 = 30,5, = 15.2, and 53 = 18.7,
use the 0.03 level of significance to test the claim that there is a greater variability in the
number of cars which make left turns approaching from the south between 4 PM. and 6
PM. at the second intersection. Assume the distributions are normal,

8.17 Random samples of size n; and ng, respectively, are 1aken from two log-normal popu-
fations, and the resulting sample means are I = 3.74 and & = 13.91 and the sample
variances are 1.2 and 9.5, You wish to test whether the second population has a mean
value four times as large as the first,

{ay Can you directly use a two-sample to test? Why?
(b} Is theie a transformation that can be made on lhc data that could conceivably
aliow the use of a two-sample test?

8.4
REVIEW EXERCISES

8.13 With reference to the example on page 243, construct a 95% confidence interval for :he
trec slandard deviation of the breaking strength of the given kind of ribbon.

8.19 With reference 1o the example on page 237, find separate 95% confidence intervals for
the standard deviations of the two aluminum alloys.

8.20 While performing a strenuous task, the pulse rate of 25 workers increased on the average
by 18.4 beats per minute with a standard deviation of 4,9 beats per minute. Find a 95%
confidence interval for the corresponding population standard deviation. What assumpiion
did you make about the population?

8.21 With reference 1o Exercise 8.20, use the 0.05 level of significance to test the null hypoth-
esis that ¥ = 30.0 for such increases in the pulse rute {while performing the given fask)
against the alternative hypothesis that 62 < 30.0.

8.22 If 31 measurements of the boiling point of sulfur have a standard deviation of 0.83
degree Celsius, construct & 98% confidence interval For the true standard deviation of
such measurements. What assumption did you make about the population?

8.23 Past data indicate that the variance of measurements made on sheet melal stampings by
experienced qualily control inspectors is 0.18 square inch. Such measurements made by
an inexperienced inspector could have too large a variance (perhaps because of inability
to read instruments properly) or oo small a variance {(perhaps because vwnusually high -
or low measurements are discarded), 1T a new inspector measures 101 stampings with &
variance of 0.3 square inch, test af the 805 level of significunce whether the inspector
is making satisfuctory measurements. Assume normality.

£.24 With reference 1o Exercise 7.69 on page 261, use the 0.02 Ievel of significance to test the
assumplion that the two pepulations have equal varfanees.
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8.25

8.26

8.5

Pull-strength tests on 10 soldered leads for a semiconducior dev:ce yield the fo]lowmj
results in poungs force required to rupture the bond:

15.8, 127, 132, 169, 106, 188, 111, 143 170, 125

Another sct of Clghi leads was tested after encapsulation to determine whether the py)
strength has beenfincreased by encapsulation of the device, with the foltowing results:

249, 236, 198, 221, 204, 21.6, 218 225

As a preliminary to the two-sample ¢ test, use the 0.02 level of significance to te
whether it is reasonable to assume that the two samples come from populations wiy
equal variances.

With reference to the example on page 257, test the equality of the variances for the tw
aluminum alloys. Use the 0.02 level of significance,

CHECKLIST OF KEY TERMS (with page references)

Robust 276 - Sample range 269
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Many engineering problems deal with proportions, percentages, or prebabilities. In ac-
ceptance sampling we are concerned with the proportion of defectives in a lol, and in lite
lesting we are concerned with the percentage of cerlain components which will perform
satisfaclorily during a slated period of time, or the probability thal a given component
will lasl at least a given number of hours. il should be clear from these examples thal
problems concerning preporlions, percentages, or probabilities are really equivalent; a
percentage is merely a proporiion multiplied by 100, and a probability may be inler-
preted as a proportion in a long serigs of trials.

Seciions 9.1 and 9.2 deal with the estimation of proportiens; Seclion 9.3 deals with
lests concerning proporlions; Section 9.4 deals with 1esis concerning two or more pro-
porlions; in Section 9.5 we shail learn how to analyze daia tallied into a two-way class-
ification; and in Seclion 9.6 we shall iearn how (0 judgs whether differences belween
an observed frequency distribuiion and corresponding expaciations ¢an be atiribuled 1o
chance,

@1
9.2
203
9.4
e @g
~(9.6)
S
9.8

Estimalion of Proportiens 279
Bayesian Estimation 286 :
Hypotheses Coneerning One Proporiion 290
Hypotheses Concerning Several Proportions
The Analysis of 7 x ¢ Tables 300

Goodness of Fit 303 e
Review Exercises 308 = =
Chechlist of Key Terms 311707

291

9.1
ESTIMATION OF PROPORTIONS

The informaton Dal iy osuslly available for the estimation of a proporien is the -
nuinber of tumes, X, that an appropriale event occurs in v trials, occasions, or ob-



servations. The point estimator, itself, is usually the sample proportion — 'hamely,
the proportion of the time thal the event actually occurs. If the n trials satisfy the
assumptions underlying the binomial distribution listed on page 95, we know that the
mean and the standard deviation of the number of successes are given by np and
vap(l — p). If we divide both of these quamiities by n, we find that the mean and the
standard deviation of the proportion of successes (namely, of the sample proportion)
are given hy

"P b and vipll —p) _ /p(l;—p)
n 7

n

The first of these results shows that the sample proportion is an unbiased estimator of
the binomial parameter p, namely, of the true proportion we are frying 1o estimate on
the basis of a sample.

In the construction of confidence in'lerva{s for the binomial parameter 3, we meet
several obstacles. First. since 2 and i are values of discrete random varables, it
may be impossible to gel an interval r{ér which the degree of confidence is exactly
{1 — @)100%. Second, the standard deviation of the sampling distribution of the
number of successes, as well as that of the proportion of successes. involves the
parameter  that we are trying to estimate.

To construct a confidence interval for p baving approximately the degree of
confidence (} — a)100%, we first determine for a given set of vaiues of p the corre-
sponding guantities z, and 2y, where &ty is the Jargest integer for which the binomial
probabililies bk n, p) = PIX = &] satisfy

T

Zb(k: n,m <

k=0

R

while z, is the smallest integer for which

1] Q
i < -
JL2_;'1*)(1’.,n,p} =5

To cmphasize the point that xy and vy, depend on the value of p, we shall wrile these
quantitics as () and &y (p). Thus, we can assert with a probability of approximately
o, and af feast 1 — o, that the ingquality

Jolp) < @ < ()
will be salisfied; here & s a4 value of o randam variable and p is a fixed constant,

To change inequalitics like these into confidence intervals {or p, we cun use o simple
graphicat inethod whicl ts ustrated by the following example: Suppose, for instanee,
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that we want to find approximate 95% confidence intervals for p for samples of size
7 = 20. Using Table 1 at the end of the book, we first determine @y and x, for selected
values of p such that x, issthe largest integer for which

B(ry: 20, p) < 0.025
while x, is the smallest integer for which

1 — B{z, — 1;20,p £ 0025

Lelting p equal 0.1, 0.2, ..., and 0.9, we thus obtain the vafues shown in the following
table:

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Plolling the points with coordinates p and () as in Figure 9.1, and drawing
smootht curves, onc through the 1, points and one through the x, points, we can now
“solve™ for p. For any given value of & we can obtain approximate 93% confidence
limits for p by going horizontally 1o the two curves and marking off the corresponding
vaiues of p (see Figure 9.1). Thus, for @ = 4 we obtain the approximate 95%
confidence interval

0.06 <p <045

Graphs similar to the cre shown in Figure 9.1 are given in Tables 9(a) and 9(b)
at the end of the book for various valies of n and for the 95% and 99% degrees of
confidence. These tables differ from the one of Figure 9.1 in that the sample proportion

z Z is used instead of 2, thus making it possible to graph curves corresponding to various
valuu of n on the same dmumm Also, for mcse.lsed accuracy, Tables 9(a) and 9(b)
are arranged so that values of —? from 0.00 to 0.50 are marked on the bottom scale
Wl‘lll(. those from 0,50 1o 1.00 arc marked on the top scale of the diagram. For valugs
of —i from .00 to 0.50 the gonﬁdz_m.e lintits for p are read off the left-hand scale of

the diagram, while for values of — from 0.50 to [.00 they are read off the right-hand
scale, Note that for 21 = 20 and z —4 Table ¥{a) yiekds the 95% confidence interval
0.06 < p < 0.44, which is very close, indeed, 10 the results oblained with Figure 9.t

On page 151 we gave the general rule of thumb thal the normal distribution
provides a peud approximation to the binomial distribution when np and rd - p) are
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FIGURE 9.1
95% confidence intervals for propariions {n = 29),

.

both greater than 5. Thus, for 7 = 50 the normal curve approximarion may be used if
it can be assumed that p lies between 0.30 and 0.70; for » = 100 it may be used
if it can be assumed that p lies between 0,15 and 0.85; for n =200 it may be used if
it can be assumed that p lies between 0,075 and 0.925; and so forth, This is what we
shali mean here, and later in this chapter, by “n being large.”

When n is large, we can construct approximate confidence intervals for the
binomial parameter p by using the normal approximation 1o the binomial distribution.
Accordingly, we can assert with probability 1 — o that the inequality

X —np

o & e,
T p-p

will be satisfied. Solving this quadratic inequality for p, we can obtain a corresponding
sel of approximate confidence limits for P in terms of the observed value & (see
Exercise 9.14 on page 289), bur since the necessary calculations are involved, we

shall make the further approximartion of substituting - for p in /np(T <), 'Tlils.

yields
Large sample confidence . z (1 — E) z
inferval for R B g <~z
r n Za/a i, P n of “
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EXAMPLE

Solution

winuon error
estimate

FEXAMPLE

where the degree of confidence is (I — o) 100%.

¥ @ = 36 of n = 100 persons interviewed are familiar with the tax incentives for
installing certain energy- saving devices, construct a 93% confidence interval for the
corresponding frue p:oportlon

. x 36
Substituting i 0.36 and z,,: = 1.96 into the above formula, we get

©6.360.69) {0.36)(0.64)
0.36 — 1.9,/ 220008 0364 1,06,/ Q39064
6/ =g - <p <036+ 196,/ S

0.266 < p < 0.454

or

We are 95% confident that the population proportion of persons familiar with the
tax incentives, p. is contained in the interval from 0.266 to 0.454, Note that if we
had used Table 9(a}, we would have obtained

027 <p <046
a

. X . .
The magnitude of the error we make when we use — as an estimator of p is
n

given by lw — p|. Again using the normal approximation, we can thus assert with
n

l—-p
< Zas2 \/"( P)
. . . p(l —p)
will be satisfied, namely, that the error will be at most Zaja —

1 —
B2z, [P

Il

probability [ — a that the inequality

_’
i
n

r . - . .
With the observed value — substituted for p we obtain an estimate of £,
7

In a sample survey conducted in a large city, 136 of 400 persons answered Yes to the
question whether their city’s public transportation is adequate. With 99% conlidence,
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Sample size

Sample size

Solution

EXAMPLE

Solution

~bb>

. Lox 136 .
what can we say about thc maximum error, if — = 200 = 0.34 15 used us an estimyy,
n
of the corresponding true proporlion?
Subslituting o= 0.34 and z,,, = 2.575 into the above formula, we find that the errg,

is at most

(0.34)(0.66)
400

» E=2575 ={.06]

The preceding formula for E can also be used to determine the sample size thy
is needed to altain a desired degree of precision. Solving for n, we get

nﬂp(l—p)[z‘g’r

but this formula cannot be used as it stands unless we have some information about
the possible size of p (on the basis of collateral data, say, a pilot sample). If no
such inforrmation is available, we can make use of the fact that p(1 ~ p) is at most
i» comesponding 10 p = 1, as can be shown by the methods of elementary calculus.
Thus, if

r

we can assert with a probability of at least 1 — « that the error in using - as an

. ~ - - + ?1
estimate of p will not exceed ', once the data have been obtained, we will be able
to assert with at least {1 — a}100% confidence that the error does not exceed B,

Suppose that we want to estimate the true proportion of defectives in a very large
shipment of adebe bricks, and that we want to be at feast 95% confident that the error
is at most 0.04. How large a sample will we nzed if

. {a) we bave no idea what the true proportion might be;
{b) we know that the true proportion does not exceed 0.127

(&) Using the second of the two formulas for the sample size, we get

1

][1.96

2

or n. = 60! rounded up to the nearest integer.
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One-sided confidence

interval for p

EXAMPLE

Solution

T

(b) Using the first of the two formulas for the sample size wilh p = 0.12 (the possible
value closest 1o p = 1), we get

2
n = {0.12)(0.88) [! 96} = 253.55

0.04
or » = 2534 rounded up to the nearest integer, This serves to illustrate how some
collateral information about the possible size of p can substantially reduce the size of
the required sample.  »

|

When p is very close to (), as is the case in problems of high reliability and p is
the probability of failure, none of the confidence intervals we have discussed provides
a satisfactory solution. What we really need here are one-sided confidence intervals
of the form p < C, where € is a constant depending on the degree of confidence
and the size of the sample. As we already pointed out on page 117, the binomial
distribution is best approximated with a Poisson distribution with A = np when p is
small and n is large. Based on this approximation, it can be shown that

1
P<£'Xu

is a cne-sided confidence interval for p, where x2 is as defined on page 211 and the
number of degrees of freedom equals 2{z + 1), A discussion of this result may be
found in the book by A. Hatd mentioned in the bibliography.

If there are & = 4 failures among n = 2,000 parts used continuously for a month.
construct & one-sided 99% confidence interval for the probability that one such part
will fail under the stated conditions.

Since x5 = 23.200 for 2(4+ 1) = 10 degrees of freedom, subsiitution into the formula
yields

and, hence,
p < 0.0058

That is, 0.0058 is an approximate 95% upper cordidence bound for p.
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9.2

BAYESIAN ESTIMATION!

In the preceding section we [ooked upon the (rue proportions we tried to estimate
as unknown constants; in Bayesian estimation these parameters are looked upon gg
random variables having prior distributions which reflect the strength of one’s belief
about the possible values they can take on, or other indirect information. As in Section
7.3, we arc thus faced with the problem of combining prior information with direct
sample evidence,

To iliustrate how this might be done, suppose that a manufacturer, who regularly
receives large shipments of electronic components from a vendor, knows that abou:
25% of the time 0.005 (half of 1%) of the components are defective, about 25% of
the time 0.01 of the components are defective, and about 50% of the time 0.02 of the
components are defective. Thus, before a shipment from this vendor is inspected, we
have the following prior distribution for the proportion of defectives:

Value Prior
of p probability

0.005 025
0.01 0.25
0.02 0.50

Now suppose that 200 of these components, randomly selected from the shipment,
are inspected, and only one of them is found to be defective. The probability of this
happening when p = 0.005,p = 0.0¢, or p = 0.02 are, respectively,

(2?0) (0.005)'(0.995)"" = 0.37

(2?0) (001);(099)“?9 = 027‘ and (2?0) (ODZ)i(OQS)Iw = 007

where we used the formula for the binomial distribution on page 96 and Jogarithms &0
simplify the calculations. Combining these probabilities by means of the formula for
Bayes® theorem. (Theorem 3.11 on page 79), we find that the posterior probability
for p=0.003 is

{0.25)(0.37)

0251037 + 0 25)027) + 0.5050.07) ~

1 This section may be omitted witout loss of contingily.,
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EXAMPLE

Selution

and that the corresponding posterior probabilities for p = 0.01 and p = 0.02 are
0.35 and 0.18. We have thus arrived at the following posterior distribution for the
proportion of defective components:

»
Value Paosterior
of p probabitity
Q005 - 047
4.0l 0.35
0.02 0.18

Note that whereas the odds were originally 3 to 1 against p = 0.005, it is now almost
an even bet; of course, this shift is accounted for by the fact that in the sample only
s = 0,005 of the components inspected were defective.

It the preceding example we assumed that 3 had to be 0.005, 0.01, or 0,02, and
this restriction was imposed mainly to simplify the calculations; the method would
have been the same if we had considered 10 different values of p, or even 100. It
wouid be more logical, perhaps, to fet p take on any value on the continuous intgrval
from 0 to 1, and in that case it is customary to use as the prior distribution the bela
distribution of Section 5,8. The parameters of this distribution are ¢ and g, and its
mean and variance can be expressed in terms of & and £ in accordance with the
formulas on page 162. It can then be shown that the posterior distribution of p,
namely, the conditional distribution of p for a given {observed) value of z, is also a
beta distributior, and that its parameters are ¢ + ¢ and n - = + J instead of o and
B.t Thus, the mean and the variance of the posterior distribution may be obtained by
substituting @ + e for & and i — x + 3 for B in the formulas on page 162,

A person doing research for a large oil company feels that the proportion of persons
requiring oil as wel! as gasoline at one of the oil company’s service stations is a
random variable having the beta distribution with e = 10 and 4 = 400. In a random
sample of size n. = 800, she finds that only = = 3 persons required oil as well as
gasoline, Find the mean and the variance of

{a)} the prior distribation of p;
{b) the posterior distribution of p.

(2) For the prior distribution we get

i
fo = e = 0,024
Ho = 1057400
and
 Pranfs of these sesults may be found in e boek by John B, Freund lisled in the hiblicgraphy,

4
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EXERCISES

-Fo-

10 - 400
1o 20 0.000058
. O ggiary 000005

{b) For the posterior distribution we get

and

¥

34 10
= = 0.01]
M= o acorson - oV
- (3 + 10} (800 — 3 + 400)
VU104 400+ 800X (10 + 400 + 800 + 1)

= 0.0000088

If we have mathematical tables giving the values of beta integrals, we can con

tinue with an example like this and calculate prior as well as posterior probabilities
associated with various infervals of the values of p.

9.1-

9.2

2.3

9.4

9.5

9.6

9.7

In a random sample of 200 claims filed against an insurance company writing collision
insurance on cars, 84 exceeded $1,200. Construct @ 95% confidence interval for the trie
prapostion of claims filed against this insurance company that exceed 31,200, using

(ay Table §; (0-25 < p< 4-44)

(b) the Jarge sample confidence interval formula. ( 0.3¢62 2 p < 0. 422
With reference to Exercise 9.1, what can we say with 99% confidence abouf the maximum
error, if we use the sampie proportion as an estimate of the true proportion of claims filed
against this insurance company that exceed $1,2007
In a random sample of 400 industrial accidents, it was found that 23] were due at least
partially to wnsafe working cenditions. Construct a 99% confidence interval for the
corresponding true proportion using

(2) Table 9; (0.52 < p< 0.4%)

{b) the large sample confidence interval formula, (o.51¢ < ¢ < 6-442)
With reference Lo Exercise 9.3, what can we say with 95% confidence about the maximust
error if we use the samiple proportion o estimate the corresponding true proportion?
In a spmple survey of the “safety explosives” used in certain mining operations, explosives
containing potassium nitrate were found o be used in 95 of 250 cases.

(2} Use Table 9 to construct a 95% confidence interval for the comresponding true

proportion. (6. 319 < p ¢ 8.445) :
(b) If 2% = 0.38 is used as an estimate of the corresponding true proportion, whil
can we say with 95% contfidence about the maximum error? E = 8.04

In 4 random sample of 60 sections of pipe in a cherical piant, 8 showed signs of serious
corrosion. Construct a 95% confidence interval for the true proportion of pipe seclion®
showing signs of seripus corrosion, using

(n) Table 9,

(h) the large sample confideuce interval formula,
In a recent study, 69 of 120 meteorites were observed 10 enler the earth’s amospher®
with a velocity of less than 26 miles per second, If we estimate the corresponding ne

CHAPR, 2 Inferences Concewming Proportions



2.9

9.18

9.11

9.12

9,13

9.14

9.1
9.16
9.17

9.18

%19

9.20

proportion 4s T%% = 0.575, what can we say with 95% confidence abou! the maximum
error? (B = 6.p9g5)

Among 100 fish caught in a large lake, J§ were inedible due to the pollution of the
environment. If we use {2 = 0.18 as an estimate of the corresponding (rue proportion,
with what confidence can we assert that the error of this estimate is at most (L0657

A random sample of 30p shoppers at a supermarket includes 204 who regularly use
cents-off coupons. Construct a 98% confidence interval for the probability that any one
shopper at the supermarket, selected at random, will regularly use cents-off coupons,
What is the size of the smallest sample required to estimate an unknown proportion fo
within & maximum error of 0.06 with at least 95% confidence?

With reference to Exercise 9.10, how would the required sample size be affected if it is
known that the proportion to be estimated js at least 0.757 ({ w= 2g41)

Suppose that we want 10 estimate what percentage of all drivers exceed the 53-mile per
hour speed Jimit on a cenain stretch of road. How large a sample will we need to be
at least 99% confident that the error of our estimate, the sample percentage, is at most
3.5%7

With reference to Exercise 9.12, how would the required sample size be affected if i1 is
knowa that the percentage o be estimated is at most 40%7 (V1 =1,3¢¢ )

Show that the inequality on page 282 leads to the following (1 — a)100% confidence
lienits:

L

»n - i
;l‘-!—izoﬁizu/) M+ 2

n zu/2

£

2
n+ zn/‘;’

Use the formula of Exercise 9.14 1o rework Exercise 9.3,
Use the foimula of Exercise 9.14 to rework Exercise 9.6.
In a random sample of 500 remote controls for home entertainment centers, 7 failed
during the 90-day warranty period, Construct an upper 95% confidence limit for the true
probability of failure during warranty. [p 4 &.614)
Observing the amount of pollutants in the air in a western city on 500 days, it was found
that it exceeded 200 micrograms pev cubic meter only four rimes. Construet an upper
99% confidence bimit for the probability that the air pollution in this city will exceed 200
micrograms per cubic meter on any one day.
The head of a highway department feels that four out of five road building jobs stay
within cost estimates, while his assistant feels thai it should be only three out of five,
{a) If the head of the highway department is regarded to be “three times as good”
as his assistant In determining figures like these, what prior probabilities should
we assipn fo their claims? (a.95 awd 6.27)
(b} What posierior probabilities should we assign to their claims if il is found that
among 12 road building jobs (randomly selected from the department’s files)
only two stayed within cost estimares? ( g.pp52%  awel O. 44467}
The purchasing agent of a firm feels thut the probability is 0.8 thal any one of several
shipments of steel recently received wil meer specifications. The head of the firm's
quality conrral department feels that this probability is 0.90, and the chief engineer feels
{somewhat more pessimistically) that it is 0.60. )
(a) I the managing director of the firm feels that in this matter the purchasing
agent is 10 times us reliable us the chiel engineer while the head of the quality
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9.3

conlro) department is 14 times as reliable as the chief engineer, whar 5
probabilities would she assign to their claims?

(b) If five of the shipments are inspected and only two meet specifications, wy,
postera‘.or probabitities should the managing director of the firm assign to
respective claims?

9,21 The autput of a certain transistor production line is checked daily by tnspecting a samp|
of 200 vnits. Over a long period of time, the process has maintained a yield of 80%, thay;,
a proportion defective of 0.20, and the variation of the proportion defective (from day,
day) is measured by a standard deviation of 0.0125, If on a certain day the sample contaiy
86 defectives, find the mean of the posterior distribution of the proportion defective ,
an estimate of that day’s proportion defective. Assume that the prior distribution of th
proportion defective can be approximated closely with a beta distribution.

9.22 Records of the dean of an enginecring school (collected over many years) show that o
the average 753% of all applicants have an 1Q of at least F15. Of course, the percentage
varies somewhat from year to year and this variation is measured by a standard deviation
of 2.15%.

{a) Verify that if the prior distribution of the proportion of applicants with an 1)
of at least 115 can be approximated closely with a beta distribution, we can
use the beta distribution with @ =300 and 4 = 100.

(b) If a sample check of 25 of this year’s applicants shows that only 16 of them
have an IQ of at least 115, use the results and the assnmptions of part (a) io
find the mean and the srandard deviation of the posterior distribution of the
proportion of this year's applicants who have an [Q of at least [15.

HYPOTHESES CONCERNING ONE PROPORTION

Statistic for
large-sample test
ConCerning p

Many of the methods used in sampling inspection, quality ‘control, and reliability
verification are based on lests of the null hypothesis that a proporiion {percentage,
or probability) equals some specified constant. The details of the application of such
tests o quality control will be discussed in Chapter 14, where we shall also go in(0
some problems of sampling inspection; applications to reliability and life testing will
be taken up in Chapter 15.

Althcugh there are exact tesis based on the binomial distribution that can be
performed with the use of Table 1, we shall consider here only approximate large-
sample tests based on the normal approximation to the binomial distribution. In
other words, we shail test the nuli hypathesis p = p, against one of the aliernartives
B < Py > tos OF P 2y with the use of the statistic

7= X —np,
\/n—pn{l *’7}5;—:_)_

.
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which is a random variable having 5pproximateiy the standard normal distribution.!
The critical regions are like those shown in the table on page 240 with p and g
substituted for u and pep.

EXAMPLE  In a study designed to investigate whether certain detonators used with explosives in

T coal mining meet the requiretent that at least 90% will ignite the explosive when
charged, it is found that 174 of 200 detonators function properly. Test the nulf hy-
pothesis p = 0.90 against the: alternative hypothesis p < 0,90 at the 0.05 level of
significance.

Solution
1. Null hypothesis: p=0.90

Alternative hypothesis: p < 0,90
2. Level of significance: o = 0.05
3. Criterion: Reject the null hypothesis if Z < —1.645, where

72X~
vnpe(l = po)

4, Caleulations: Substituting & = 174, n = 200, and py; = 0.90 into the formula
above, we get

- 174 — 200(0.90) _
" /200(0.90)(0. 10)
5. Decision: Since 2 = —1.41 is not less than —1.645, the null hypothesis cannot

be rejected; in other words, there is not sufficient evidence to say that the
given kind of detonator fails to meet the required standard.

—1.41

24
{YPOTHESES CONCERNING SEVERAL PROPORTIONS

When we compare the consumer response (percentage favorable and percentage un-
favorable) to two different products, when we decide whether the proportion of de-
fectives of a given process remains constant from day to day, when we judge whether
there is a difference in poitical persuasion among several nationality groups, and in
many similar situations, we are imerestcd‘ in testing whether two or more binomial

t Some authors write the numerater of this formula for Z as X & 1 — npo, whichever is numerically
smaller, but there is generally no need for this continuity correction so Izong as n is large.
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populitions have the same parameter p. Referring to these parametcrs as pr, ph, ...,
and g, we are, in fact, interested in testing the nulf hypothesis

phEp=EcEm =P

against the alternative hypothesis thit these population proportions are not all equal. To
perform a suitable large sample test of this hypothesis, we require independent random
samples of size ny,na, ..., and n;, from the & populations; then, if the corresponding
numbers of “successes™ are X, X,,..., and X, the test we shall use is based on the
fact that (1} for large samples the sampling distribution of

X~ np

v nﬁpil - PJ

is approximately the standard normal distribution, (2) the square of a random variable
having the standard normal distribution is a random variable having the chi-square
distribution with 1 degree of freedom, and (3) the sum of k independent random
variables having chi-square distributions with ! degree of freedom is a random variable
having the chi-square distribution with & degrees of freedom. (Proofs of these last two
resulls may be found in the book by John E. Freund mentioned in the bibliography.)
Thus,

i

(m: - nlpl
X. Z nipt(l - p:

is a value of a random variable having approximately the chi-square distribution with
k degrees of freedom, and in practice we substitute for the p;, which under the null
hypothesis are all equal, the pooled estimate

'y

BT+ Ty,
b= ———

PR BEEE

Since the null hypothesis should be rejected if the differences between the x; and
the n,;f are large, the critical region is x* > x2, where x2 is as defined on page 211
and the number of degrees of freedom is k — 1. The loss of one degree of freedom
results from substituting for p the estimate 3.

in actual practice, when we compare two or more sample proportions it is con-
venient to determine the value of the ¥ statistic by looking at the data as arranged
in the following way:

Sample 1 Sample 2 s Sample k Total
Successes . I Ty re s Ty T
Faiilures ) -~ I Ny — &> e Ny — Tk n—~x

Total n Tl e Tk n
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Statistic for test
concerning difference
among proportions

EXAMPLE

The notation is the sume as before, except for 2 tnd n, which represent, respectively,
the tolal number of successes and the total number of trials for all samples combined.
With reference to this table, the entry in the cell belonging to the @th row und jth
column is calted the observed cell frequency o, withi=1.2and 5=1,2,...,4
Under the null hypothesis ) = p, = ... = g = p, we estimale p, as before, as the
total number of successes divided by the total number of trials, which we now wrile
as o= ; Hence, the expected number of successes and failures for the jth sample

t
are estimated by

e ;=mn, p= A
¥ 7 n
and .
;- (o — x)
e =n,;(l —py= 2~
23 g( P) n
The quantities €,; and ey, are called the expected cell frequencies for j=1,2,... k.

Note that the expected frequency for any given cell may be obtained by multiplying
the totals of the column and the row to which it belongs and then dividing by
the grand total n.

In this notation, the x? statistic on page 292, with p substituted for the p,, can be
writlen in the form

a e (Oij_e\‘j)n
X —ZZ—————%.

f=13=1

as the reader will be asked to verify in Exercise 9.40 on page 300. This formula has
the advantage that it can easily be extended to the more general case, to be treated
in Section 9.5, where each trial permits more than two possible outcomes, and there
are, thus, more than two rows in the labular presentation of the various frequencies.

Samples of three kinds of materials, subjected to extreme temperature changes, pro-
duced the results shown in the following table:

Marerial A Muaterial B Marerial C Total

Crumbled | 41 27 22 90
Remained intact 79 . 53 78 210
Total 120 80 104 300

Use the 0.05 level of significance to test whether, under the stated conditions, the
probability of crumbtling is the same for the three kinds of materials,
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Seolution

EXAMPLE

u—:‘ -

1. Null hypothesis: py = = py
Alrernative hypothesis: py,py, and p; are not ail equal.

2. Level of significance: o = 0.05

3. Criterion: Reject the null hypothesis if x* > 5.991, the value of x3 . for
3 —~ 1 =2 degrees of freedom, where * is given by the formula above.

4. Calculations: The expected frequencies for the first two cells of the first row
are

and, as it can be shown that the sum of the expected frequencies for any
row or column equals that of the corresponding observed frequencies (see
Exercise 9.41 on page 300), we find by subtraction that €3 = 90 - (36 +24) =
36, and that the expected frequencies for the second row are ey = 120 - 36 =
84,2y = 80 — 24 = 56, and ey = 100 — 30 = 70. Then, substituting these
values togethee with the observed frequencies into the formula for x°, we get

— j2 — 2 9 2
X2=(4l 36) +(27 24} +(2- 30y

36 74 30
(79~ 84)% (53— 56) (78 — OV
B S 7 )
= 4.575

. 5. Decision: Since x? =4.575 does not exceed 5,991, the null hypothesis cannot
be rejected; in other words, the data do not refule the hypothesis that, under
the stated conditions, the probability of crumbling is the same for the three

kinds of material.
»

Most of the entries of Table 5 are given to three decimal places, but, since
rounding errors tend to average out, there is seldom any need to give more than two
decimal places in the final value of the X7 statistic, The test we have been discussing
here is only an approximate test since the sampliag distribution of the x* statistic is
only approximately the chi-square distribution, and it should not be used when one or
more of the expected frequencies is less than 5. If this is the case, we can sometimes
combine two or more of the samples in such a way that none of the e's is less than 5.

If the null hypothesis of equal proportions is rejected, it is a good practice to
graph the confidence intervals (see page 282) for the individual proportions p,. The
graph helps illuminate differences between the proportions.

Four methods are under development for making discs of a super conducting material,
Fifty discs are made by gach method and they are checked for superconductivity when
cooled with liquid nitrogen.

CHAP. B: Inferences Concerning Proportions



Solution

-y~

Method | Methad 2 Method 3 Method 4 Total

Super conductors 3 42 22 25 120
Failures 19 8 28 25 80

Toral 50 50 50 50 200

Perform a chi-square test with & = 0.05. If there is a significant difference between
the proportions of super conductors produced, plot the individual confidence intervals.

L. Null hypothesis: py=pr=py =
Alternative hypothesis: p,, pz, ps, and p, are not all equal,

2. Level of significance: o = 0.05

3. Criterion: Reject the null hypothesis if x? > 7.813, the value of x3, for
4 — { = 13 degrees of freedom.

- . 50
4. Calcularions: Each cell in the first row has expected frequency 120- 506 = 30.

and each cel] in the second row has expected frequency 80 - 206 = 20.

The chi-square statistic is

2

LI L
3730 T30 30
ool 184 04 25

30" 20 T 20" 30
=19.50

5. Decision: Since 19.50 greatly exceeds 7.815, we reject the null hypothesis of
equal proportions at the 5% level of significance.

The confidence intervals, obtained from the large-sample formula on page 282 are .
06214013, 084 £0.14, 044 ::0.14, 0.50 £ 0.14

These are plotted in Figure 9.2. Note how Method 2 stands out as being better. %
[ |

Although there has been no mention of randomization in the development :)‘f the
x? statistic, wherever possible the experimental units should be randomly assigned to
methods. In the example above, the discs could be numbered from 1 to 200 and random
numbers selected from | 10 200 without replacement. The dises corresponding o the
first fifty numbers drawn would be assigned to method | and so on. Thix will prevent
uncontrolled sources of variation from systematically influgncing the fest concerning
the {our methods, ’ :

So far, the alternative hypothesis has been that py, s, . . ., and p,, are not alt equal,
and for & = 2 this reduces to the altermative hypothesis 2 # pz. In problems where
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Statisric for test
concerning difference
between Iwo proportions

EXAMPLE

Solution

FIGURE 9.2

Canfidence bitervals for several proportons.

the alternative hypothesis may also be p, < g or iy > py, we can base the test on the
statistic '

.X,+X3

el with p=
\/;(_1-"13) (n, + ?IL;) T

which, for large samples, is a random variable having approximately the standard
normal distribution. The test based on this statistic is equivalent to the one based on
the x* statistic on page 293 with & = 2, in the sense that the square of this 7 statistic
actually equals the x7 statistic (see Exercise 9.42 on page 300} The critical regions
for this alternative test of the null hypothesis p, = p; are like those shown in the table
on page 240 with p, and p, substituted for ¢ and pig.

A study shows that 16 of 200 (ractors produced on onc assembly line required exiensive
adjustmenis before they could be shipped, while the sume was true for 14 of 400
ractors produced on another assembly ting. At the (LO1 level of significance, does
this support the claim that the second production line does superior work?

i, Nl hepothesis: py =
Alternative hypothesis: py > p,

2. Level of significance: o =040]

3. Criterion: Reject the nul) hypothesis if Z > 2.33, where Z 15 given by the
above formuia.

4. Calculations: Substituting 2, = 16, n; = 200, 2, = 14, n; = 400, and

_16+14
b= 56600 =09
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into the formula for Z, we get

16 14
T = 200 _ 400 2.18

1 =
\/(0 05)(0.95) (,,00 400)

5. Decision; Since Z = 2.38 exceeds 2.33, the null hypothesis must be rejected;
we conclude that the true proportion of tractors requiring exiensive adjustments
is greater for the first assembly line than for the second.

The test we have described here applies to the null hypothesis p, = p,, but it can
easily be modified (see Exercise 9, 38 on page 299) so that it applies also to the null
hypothesis p; = p2 = 6.

The statistic for testing p, = p, leads to a confidence interval which provides the
set of plausible values for p; — p,.

Large-sample confidence I (1.__"5&) Za (1_5:3)
interval for the difference of o By Zasa n, R, n, iy

two proportions ] n, n, . T

EXAMPLE  With reference to the preceding exampile, find the large-sample 95% confidence interval

for py — ps.
Solution  Since z,/n, = = 3£ = 0.08 and z,/m, = P, = % = 0.035
2] ( . ?_) Z (1 _ .{)
LI fﬁiz‘}ﬁ 7y ny + T n;
[ 7] n; (3] My

(0.08)(0.92) N (0.035)(0.965)
200 400 ’

=008 - 0.035 & 1.96\/

or 0.003 < p, — p; < 0.087
The first shift has a rate of extensive adjustment between 3 out of 1,000 and 87
out of 1,000, higher than the rate for the second shift.
' n

EXERCISES ' 0.23 A manufacturer of submersible pumps claims that at most 30% of the pumips require
repairs within the first 5 years of operation. If a random sample of 120 of these pumps
includes 47 which required repairs within the first 3 years, test the null hypothesis p = 0.30
against the alternative hypothesis p > 0.30 at the 0.05 level of significance.

(2 = 149 5 vyt He)
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9.24 The performance of a computer is observed over & period of 2 yeurs to check the clg,

9.25

9.26

9.27

9.28

9.29

9.30

9.31

9.32

9.33

that the probability is 0.20 that jts down time will exceed 5 hours in any given wey
Testing the null hypothesis p = 0.20 against the alternative hypothesis p # 0.20, wha o
we conclude at the level of significance o = 0.05, if there were only 11 weeks in whiy
the downtime of the computer exceeded 5 hours?
To check on an ambulance service’s claim that at least 40% of its calls are life-threatening ;
emergencies, a random sample was taken from jts files, and it was found that only 49 ¢4
150 calls were life-threatening emergencies. Can the null hypothesis p 2 0.40 be rejecyy
against the alternative hypothesis p < 0.40 if the probability of a Type I error is to bey
most 0.01? (2 = ~1.48 ; cawg t V(,iu{' Hel
In & random sample of 600 cars making a right turmn at & certain intersection, 157 pully
into the wrong lane. Test the null hypothesis that actually 30% of all drivers make thi
mistake at the given intersection, using the alternative hypothesis p # 0.30 and the Jevy
of significance

(0) =005  (b) a=0.0l1.
An airline claims that only 6% of all lost luggage is never found. If, in a random sample,
17 of 200 pieces of lost luggage are not found, test the null hypothesis p = 0.06 againsl
the alternztive hypothesis p > 0.06 at the 0.05 level of significance. (4. .4 4q4; mtﬁw‘
Suppose that 4 of 13 undergraduate engineering students state that they will go on to
graduate school. Test the dean's claim that 60% of the undergraduate students will go e
1o graduate school, using the alternative hypothesis p < 0.60 and the tevel of significance
a = 0.05. [Hint: Use Table | to determine the probability of getting “at most 4 successes
in 13 triais™ when p = 0.60.]
Suppose that we want (o test The “honesty” of a coin on the basis of the number of heads
we will get in 15 flips. Using Table [, determine how few or how many heads we would
have to get so that we could reject the null hypathesis p = 0.50 against the altemative
hypothesis p # 0.50 at the level of significance no larger than 0.05. what is the actial
level of significance we would be using with this criterion?
It costs mote to test a certain type of ammunition than to manufacture it, and, hence, only
three rounds are tested from each large lot. If the lot is rejected unless alf three rounds
function according to specifications,

(a) sketch the OC curve for this test:

(b} find the actual proportion of defectives for which the test procedure will cause

a lot to be rejecied with a probability of 0.10,

Tests are made on the proportion of defective castings produced by five different molds.
If there were 14 defectives among 100 castings made with Mold I, 33 defectives among
200 castings made with Meld If, 21 defectives among 18 castings made with Mold Iil,
17 defectives among 120 costings made with Mold IV, and 25 defectives among 150
castings made with Mold V, use the 0.01 level of signiﬁcance 1o test whether the it
praportion of defectives is the same for each mold. ¢ x "2, S Conivtet ‘ftj“* He)
A study showed that 64 of 180 persons who saw a photocopying machine adveriised
during the telecast of a baseball game and 75 of 180 other persons who saw it advertised
on a variety show remembered the brand name 2 hours later. Use the x* statistic to tesl
al the 0.05 level of significance whether the difference between the corresponding sample
proportions is significant.
The following data come from a study in which random samples of the employees of
three government agencies were asked questions about their pension plan:

( x¥ - 4.1 vcﬁcot Hod
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9.34

9.35

9.36

.37

2.38

ARy § Agency 2 Agency 3
_— _— :
| heFLe 1,
For the 67 66 /84 9 09
pension plan 1 Lo
Against th ; v g
partsh e 3300 y
pension plan S 66, & 41 e
{on = = 11:}:9 .Aah

. . N "y
Use the 0.01 leve! of sugmﬁcan‘ce 10 1wl the null hypothesis that the actual proportions
of employees favoring the pension plaw wc the same,

The owner of a machine shop must dwelde which of two snack-vending machines to
install in his shop. If each machine is wyted 250 times, the first machine fails to work
(neither delivers the snack nor retums thw woney) 13 times, and the second machine fails
to work 7 times, iest at the 0.05 level uf sigpificance whether the difference between the
corresponding sample proportions is sigwiticant, using

(a) the x* statistic on page 293,

(b) the Z statistic on page 296,

With reference to the preceding exervise, verify thal the square of the value obtained for
Z in part (b} equals the value obtained oy 2 in part (2). - . 905 < Pty <0.188
Photolithography plays a central role i wnnufacturing integrated circuits made on thin
disks of siticon. Prior to a quality-impiswement program, too many rework operations
were required. In a sample of 200 units, M) required reworking of the photolithographic
step. Following training in the use of Paycta charts and other approaches to identify
significant problems. improvements were wade. A new sample of size 200 had only 12
that needed rework.

Is this sufficient eVidE“CC_ o conchide at the 0.01 level of significance that the
improvements have béen effective in reducing he rework?

With reference to Exercise 9.36, find a lavge sample 99% confidence interval for the true
difference of the proportions.

To test the nuil hypothesis tkat the differenoe between two population proportions equals
some constant &, not necessarily 0, we can yse the statistic

Zo e M

X (g — ;\f;lv) Xl X
wU-F) 20-3)
L T3

which, for large samples, is a random variable having the standard normal distribigon.

(2} With reference 1o Exercise 9.36, use this statistic to test at the 0.05 level of
sighificance whether the true proportion of units requiring rework 4 now at
least 4% less than before the improvements were made.

(b} In a true-false tesl, a test tem iy considered to be good if it discriminates
between well-prepared students nnd "poorly prepared students. If 205 of 250
well-prepared students and §37 of 250 poorly prepared students answer a cer-
tain item correctly, test at the 00| level of significance whether for the given
item the proportion of €orrect answers can be expected to be at least 153%
highes among well-prepared students than among poorly prepared students.
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9.39 Wilh reference to part {b) of Exercise 9.38, find a large-sample 99% confidence intervy)
for the true differance of the proportions,

9.4 Verify that the formulas for the x? statistic on page 292 (with  substituted for the p;)
and on page 293 are equivalent, )

9.41 Verify that if the expected frequencies are determined in accordance with the rule on page
293, the sum of the expected frequencies for ach row and column equals the sum of the
corresponding observed frequencies,

9.42 Verify that the square of the Z statistic on page 256 equals the x? statistic on page 293
for k= 2.

THE ANALYSIS OF r x ¢ TABLES

As we suggested carlier, the method by which we analyzed the example on page 293
lends itself also to the analysis of r X e tables, or r-by-c tables, that is, tables in which
data are tallied into a 1wo-way classification having r rows and ¢ columns. Such (ables
arise in essentially two kinds of problems. First, we might again have samples from
several populations, with the distinetion that pow each trial permits more than two
possible outcomes. This might happen, for example, if persons betonging to different
income groups are asked whether they favor a certain political candidate, whether
they are against him, or whether they are indifferent or undecided, The other situation
giving rise to an 7 x ¢ table is one in which we sample from one population but classify
each item with respect to two (usually qualitative) categories. This might happen, for
example, if a consumer testing service rates cars as excellent, superior, average. of
poor with regard {o performance and also with regard to appearance. Each car tested
would then fall into one of the 16 cells of a 4 x 4 table, and it is mainly in connection
with problems of this kind that r x ¢ tables are referred to as contingency tables.

The essential difference between the two kinds of situations giving rise to r x¢
tables is that in the first case the column totals (the sample sizes) are fixed, whilt
in the second case only the grand total (the:total for the entire 1able) is fixed. AS
a result, there are also differences in the null hypotheses we shall want to test. 10
the first case we want Lo test whether the probability of obtaining an observation it
the #ib row is the same for each columny symbolically, we shall want to test the ol
hypothesis

pa=pp=-=p, fori=1,2,,..,r

where g i% the probability of obtaining an observation belonging 1o the <th row aud
.

the jth column, and Zp;j = 1 for each columin. The allernative hypothesis is thut the

1=1 .
s are not all equal or o lcust one row. In the second case we shatl want 1o st 'h“

nul! hypolhesis that the random variables represented by e two classifications ¥
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Statistic for analysis

of 7 X ¢ table

EXAMPLE

Seolution

independent, so that p;; is the product of the probability of getiing a value belonging
to the dth row and the probability of getling 2 value belonging to the jth column, The
alternalive hypothesis is that the two randem variables are not independent.

In spite of the differences we have described, the analysis of an 7 X ¢ table is the
same for both cases, First we calculate the expected cell frequencies e;; as on page
293, namely, by multiplying the totals of the respeciive rows and columns and then
dividing by the grand tota]. In practice, we make use of the fact that the observed
frequencies and the expected frequencies total the same for each row and column, so
that only (r — 1)(c — 1) of the e,; have to be calculated directly, while the others can
be obtained by subtraction from appropriate row or column totals. We then substitute
into the formula

x==§jZ("i§;‘3‘fi

im1j=1

and we reject the null hypothesis if the value of this statistic exceeds % for
(r — D(c — 1) degrees of freedom. This expression for the number of degrees of
freedom is justified by the above observation that after we determine (r — 1}(¢ — 1)
of the expected cell frequencies, the others are automatically determined, that is, they
may be obtained by subtraction from appropriate row or column totals.

To determine whether there really is a relationship between an employee’s performance
in the company’s training program and his or her uliimate success in the job, it takes
a sample of 400 cases from its very extensive files and obtains the results shown in
the following table: :

Performance in training program

Below Above
average Average average Total
Foor r 23 60 29 112
Success in joh Average 28 79 60 167
{emplover’s rating}
' Very good 9 49 63 121
Toal 60 188 152 400

Uise the 0.01 level of significance to test the null hypothesis that performance in the
training program and success in the job are independent. '

1. Nufl hypothesis: Performance in training program and success in job are in-

dependent.
Alternative hypotfiesis: Porformance in training program and success in job
are not independent,
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2. Level of significance: o = 0.0]

3. Criterion: Reject the null hypothesis if x? > 13.277, the value of x2,, for
(3 — 1){(3 = 1) = 4 degrees of freedom, where x? is given by the formula o
page 301.

4. Caleulations: Calculating first the expected cell frequencies for the first two
cells of the first two rows, we' get

11260 112188

£y = T 16.80, e = Taon 52.64,
i67 - 60 167 - 188

€y F 200 = 25‘05, [ _———-—480 = 78.49

Then, by subtraction, we find that the expected frequencies for the third cell
of the first two rows are 42.56 and 63.46, and those for the third row are
18.15, 56.87, and 45.98. Thus,

»_ (23~ 16.80)" , (60~ 52.64) N (29 — 42.56)
16.80 52.64 42.56
(28 —25.05)* (79 — 78.49)° . (60 — 63.46)*

505 " 7540 6346
(O 18.157 (49 = S6.87F (63~ 45,98
275 3689 4593
= 20.179

5. Decision: Since x* = 20.179 exceeds 13.277, the null hypothesis must be
rejected; we conclude that there is a dependence between an emiployee’s per-

formance in the training program and his or her success in the job.
' "

We pursue this example further in order to determine the form of the dependence.

EXAMPLE  With reference to the preceding example, find the individual contributions to the chi-
square,

Selution  We display the contingency table, but this time we include the expected frequencies
just below the observed frequencies.
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GOODNESS OF FIT

Performance in training program

Below Ahove
average Average average Total
Poor 23 60 28 112
. 16.80 52.64 42.56
Success in job Average 28 79 60 167
{employer's rating) 25,05 78.49 63.46
Very good g 49 63 121
18.15 56.87 45.98
Total 60 188 152 400

Also, we write

¥* = 2.288 + 1.029 + 4.320
+0.347 +0.003 + 0.189
+4.613 + 1.089 + 6.300

=20.179

From these two displays, it is clear that there is a positive dependence between per-
formance in training and job success. For the three individual cells with the largest
contributicns to x?, the above average-very good cell frequency is high, whereas the

above qverage-poor and below average-very good cell frequencies are low.
=

We speak of goodness of fit when we try to compare an observed frequency distri-
bution with the corresponding values vf an expected, or theoretical, distribution, To
itlustrate, suppose that during 400 five-minute intervals the air-traffic control of an
airport received 0, [,2,. .., or 13 radio messages with respective frequencies of 3, 15,
47,76, 68, 74, 46,39, 15,9, 5, 2,0, and 1. Suppose, furthermore, that we want to check
whether these data substantiate the claim that the number of radio messages which
they receive during a S-minute interval may be looked upon as a random variable
having the Poisson distribution with A = 4.8, Looking up the corresponding Poisson
probabilities in Tuble 2 and muliiplying them by 400 to get the expected frequencies,
we arrive at the result shown in the following table together with the original dala;
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Statistic for rest
of goodness of fit

EXAMPLE

Solution

Number of Observed Paoisson Expected
rodic messages Jrequencies probabililies Frequencies
0 3 0.010 4.0
1 15}]8 0.046 18.4 } 24
. 2 47 0.167 42.8
3 76 . 0.163 65.2
4 68 0.187 74.8
5 74 0.173 65.2
6 46 0.132 52.8
7 39 0.087 34.8
8 15 0.050 20.0
g g 0.025 10.0
10 5 0.012 4.8
11 2 0.005 20
12 o(® 0.002 T
13 1 0.001 0.4
400 400.0

Note thar we combined some of the data so that none of the expected frequencies is

less than 5.
To test whether the discrepancies between the observed and expected frequencies

can be Mmbuled to chance, we use the statistic

Z {o; — ei)

=1

where the ¢; and e; are the observed and expected frequencies. The sampling distribu-
tion of this statistic is approximately the chi-square distribution with & — m degrees of
freedom, where & is the number of terms in the formula for x* and mn is the number of
quantities, obtained from the observed data, that are needed to caleulate the expected
frequencies,

With reference to the radio message data on page 303, tesi at the 0.01 level of sig-
nificance whether the data can be looked upon as values of a random variable having
the Poisson distribution with A = 4.6,

1. Null hypothesis: Randomn variable has Poisson distribution with A = 4.6,
Alrernative hypothesis: Random variable does not have Poisson distribution
with A = 4.6,

2. Levef of significance: a = 0.01
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EXERCISES

—~8y-

3. Criterion: Reject the null hypothesis if y* > 16.919, the value of xi,, for
k—m=10-1 =9 degrees of freedom, where x* is given by the formuia above, -
(The number of degrees of freedom is 10 — 1 = 9, since only one guantity,
the total frequgncy of 400, is needed from the observed data to calculate the
expected frequencies,) '

4. Calculations: Substitution into the formula for x* vields

(18 -22.4% (47 — 42.87 (90— 10.0" (8-8.00
2 T m—— e ——r————— .
74 T ms T o T Ts0
= 6.749

5. Decision: Since x* = 6.749 does not exceed 16,919, the null hypothesis cannot
be rejected; we conclude thar the Poisson distribution with A = 4.6 provides

a good fit.
n

9.43 The results of polls conducted two weeks and four weeks before a guberpatorial election
are shown in the following table:

~,

-
Tivo weeks Four weeks
before election before election

For Republican
canelidare 79 9]
For Democredic :
candidare 84 66
Undecided 37 43

Use the 0.05 fevel of significance to test whether there has been a change in opinion
during the 2 weeks between the two polls. { x¥ » 3.45% ; cemvet qu,-l- He )
944 A Large electronics firm that hires many handicapped workers wants te detennine whether
their handicaps affect such workers™ performance. Use the level of significance a = 0,05
to decide on the basis of the sample data shown in the following table whether it is
reasonable to mainain that the handicaps have no effect on the workers’ performance:

Performance
Abeave Below
average Average average
Blind 21 64 7
Deaf 16 49 14
No handicap a9 93 28 J
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9.45 Tests of the fidelity and the selectivity of 190 radio receivers produced the results shoy,
in the following table:

Fidelity
Low Average High
-
Low 6 12 32 N
Sefectivity Average 33 61 18
High 13 15 0
.

Use the Q.01 level of significance 1o test whether there s a relationship (dependence)
between fidelity and selectivity. ( x*. s4 .72 ¥; w_1m.f Had

9.46 A quality-control engineer takes daily samples of n = 4 tractors coming off an assembly
line and on 200 consecutive working days the data summarized in the following table are
obtained: .

Number
reqiiring Nuniber
adjustments af days
0 104
1 79
2 19
3 |

To test the claim that 10% of ali the tractors coming off this assembly line require
adjustments, fook up the comesponding probabilities in Table 1, calculate the expected
frequencies, and perform the chi-square test at the 0,01 level of significance.

947 With reference to Exescise 9,46, verify that the mean of the observed distribution is 0.60.
corresponding o 15% of the fractors requiring adjustments. Then look up the probabilities
for n.=4 and p=0.15 in Table 1, calcalate the expected frequencies, and test at the 0.01
level of significance whether the hinomial distribution with n = 4 and p = (.15 provides
a suitable modet for this siteation. { XY . 4. b33 | courtef vejut H.)

9.48 Suppose thul in the example on page 303 we had shown first that the mean of the distribu-
tion, rounded to one decimal, is 4.5, and then tested whether the Poisson distribation with
A = 4.5 provides a good fit, What would have been the pumber of degrees of frecdom
for the appropriate chi-square criterion?

9.49 The following is the distribution of the hourly number of trucks arriving at a company s
warchouse; .
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Trucks arriving

per hour Frequency
0 52
1 15t
2 130
3 102
4 45
5 i2
6 5
7 1
g 2

Find the mean of this distribution, and using it (rounded to one decimal place) as the
patameter 3, fit a Poisson disuibution. Test for goodness of fit at the 0.05 level of
significance. ( x* 2 4.18% ; commat wejal Hod

9.50 Using any four columns of Teble 7 (that is, a total of 200 random digits), construct a
table showing how many times each of the digits 0, 1,..., and 9 occurred. Comparing
the chserved frequencies with the comresponding expected frequencics (based on the as-
sumption that the digits are randomly generated), test at the 0.05 level of significance
whether the assumption of randomness is tenable, ‘

9.51 The following is the distribution of the sulfur oxides emission data on page 8, for which
we showed that T = 18,85 and & = v/30.77 = 5.55:

Class lintits

{tons) Frequency
50- 8% 3
9.0-12.9 10

13.0-169 14
J?.G—ZQB 25
21.0-24.9 17
25.0-28.9 9
29.0-32.9 2

&0

{a) Find the probabilities that a randem variable having a normal distribution with
fo= 18,85 and @ = 5.55 takes ot @ value less than 8.95, between 895 and
12.95. between 12.95 and 16,93, between 16,95 and 20,95, between 20.93 and
24.95, between 24.93 and 28,95, and greater than 28,95,

(b) Multiply the probabilities obiained iy part () by the total frequency. » = 80,
thus petting the expected normal curve frequencics corresponding to the seven
classes of the given distribution (with the first onc changed 10 “8.9 or less™
and the Iast one changed to 290 or more™).

Ans (a) 0.03%5, D103 , 0. £215%, 0. L811,0 213

01013 , 0.030% .
(L) 3,98, t3.7, 225,033, P29,
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(c) Use the 0.05 Jevel of significance to test the null hypothesis that the given (g,
may be looked upon as & random sample from a rormal populiation. Exply,
Why the number of degrees of freedom for this x2 test is & — 3, where & jg the

number of terms in the x? stalistic. ( x* = 4.2 6 t¢ ; artm{ £k )
9.52 Among 100 purification filters used in an experiment, 46 had a service life of less thy,
20 hours, 19 had & service life of 20 or more but less than 40 hours, 17 kad a service Jif,
of 40 or more but less than 60 hours, 12 had a service life of 60 or more but less than g
hours, and 6 had a service life of 80 hours or more. Using steps similar to those outlingg
in the preceding exercise. test at the (L0 level of significance whether the Jifetimes may

be segarded as a sample from an exponential population with g = 40 hours.

9.53 A chi-square test is easily implemented on a camputer, The MIV/TAB commands

READ INTO Ci C2 (3 C4
31 42 22 25
19 8 28 25

place the table from the example on page 294 into columns 1. Then,
CHISQUARE Ci-C4

produces the outpul

Expected counts are printed below observed counts
Method 1 Method 2 Method 3 Method 4 Total

1 31 42 22 25 120
30.00 30.00 30.00 30.00

2 ig 8 28 25 80
20.00 20.00 20.00 26.00

Total 50 50 50 5O 200

ChiSq = 0.032 + 4.800 + 2,133 + 0.833 +

0.050 + 7.200 + 3.200 + 1.250 = 19,500
df=3

Repeat the anittysis using only the data from the first three methods,

9.54 The procedure in Exercise 9.53 also calculates the chi-square west for indepandence. D0
Exeicise 9.44 using the computer.

9.7

REVIEW EXERCISES

955 |n g sample of 100 cermic pistons made for an experimental diesel engine. 18§ wert
cracked. Construct a 95% confidence interval for the (rue proportion of cracked pistos:
using

() Table 9;
(b) the Luge sample confidence mterval formula,

9.56 With refeccree o Excreise 9.55, test ihe nall hypothesis p = 0,20 versus the alemi¥

hypothesis g5 < 0.20 ar the 0,05 level,
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9.57

9.58

9.59

9.60

9.41

9.62

9.63

9.64

9.65

9.66

9.67

9.68

In a random sample of 160 workers exposed Lo a certuin amount of radiation, 24 expe-
ricnced some il effects. Construct 2 99% confidence interval for the corresponding Lrue
percenlage, using »

(0) Table 9

{b) the large sample confiderice interval formula.
With reference to Exercise 9.57, test the null hypothesis p = 0.15 versus the alternative
hypothesis p # 0.15 at the 0.0 level.
In a random sample of 100 packages shipped by air freight, 13 had some damage, Con-
struct & 95% confidence interval for the true proportion of damaged packages. using

(&) Table 9;

(b) the targe sample confidence interval formula,
With reference to Exercise 9.59, test the hypothesis p = 0.10 versus the altemalive hy-
pothesis p > .10 at the 0.0 fevel.
In 4,000 firings of a certain kind of rocket there were 10 instances in which a rocket
exploded upon ignition. Construct an upper 95% confidence limit {or the probability that
such a rocket will explode upon ignition.
11 26 ol 200 Brand A tires fail to last 20,000 miles, whereas the corresponding figures for
200 tives cuch of Brands B.C, and D are 23, 15, and 32, use the (.05 level of significance
to test the null hypothesis thut there is no difference in the quality of the four kinds of
lires with regard to their durability.
One melhod of seeding clouds was successful in 57 of 150 attempts while another method
was successtul in 33 of 100 altempts, Al the 0,05 level of significante, can we conclude
that the first method is better than the second? |
With relerence to Exercise 9.63, find a large sample 95% confidence interval for the true
difference of probubilities.
Two bonding agents, A and B, are available for making a laminated beam. Of 50 beams
made with Agent A, 11 failed a siress test, whereas 19 of the 50 bews mads with Agent
B failed. At the 0.05 level. can we conclude that Agent A is better than Agent B?
With reference to Exercise 9.65, find a large sample 95% confidence interval for the true
dilference of the probabilities of failure.
Cooting pipes af three nuclear power plants are investigated for deposits that would inhibil
the Mow of water. From 30 randomly selected spots at each plant, 13 from the tirst plant,
8 from the second plant, and 19 from the third werc clogged.

(1} Use the 0.05 level 10 test the nult hypothesis of equality,

(1) Plot the confidence intervals for the three probubilitics of being clogged,
Suppuse that in Exercise 9.62 we had been interested also in how many of the tires lasted
maore than 30,000 miles and eblained the results shown in the following table:

Bramd A Brond B Hrand C Brard D
Failed t fast % 23 s 32
20060 miles
Lasted frowm 20000 18 93 16 191
to 30,000
Lasted wore than 56 84 60 a7
SN pnites
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{a) Usc the 0.01 level of significance w0 test the mull hypothesis that there iy o
difference in the quality of the four kinds of tires with regard to their durab;'],'ly
(b) Piot the four individual 99% confidence intervels for proportions.
9.6% The following is the distribution of the daily number of power fuilures reported iy
western city on 300 dayy: ’

Number of Number of
power failures days

43
64
62
42
36
22
14

O OO sl N B R — O

Test at the (.05 level of significance whether the daily number of power failures in this
cily is o random variable having the Poisson distribution with A =3.2.

9.70 With reference to the example on page 301, repeat the analysis after combining the
categories helow average and avervge in the training program and the categories poor
and ayverage in success, Comment on the form of the dependence.

9.71 Mechanical engineers, testing a new ayc welding techrique, classified welds both with
respect 1o appearance and an X-ray inspection.

Appearantce
Bad Normal Gopd Tora!
Al 20 7 3 30
X-ray Normul 13 51 16 §0
k
Good 7 2 21 40
Total 40 Y] ~4{) 150

- . . - . . . - . 2
Test for independence using o = 0.05 and Aind the individuat cell contributions 1o e )
slatistic.
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7.97 (a) Randomly select 10 cars to use the modified spark plugs. The other 10 cars use the
regular spark plugs; (b} select 7 specimens by random drawing, to try in the old oven,
1.99 t=—199 we would not reject p, = #g at the level of significance o = .05,

CHAPTER 8

8.1 (a) s =4.195; (b) 4.341.
8.3 (a) 1.787; (b) 2.144,
8.5 082 < ¢ < .695.
8.7 x? = 5.832: cannet reject Ho.
89 x?= 115.886; reject Hp.
8.11 x*=10.89; cannot reject Hy.
8.13 F =1.496; we cannot reject M.
8.15 F =242 we cannot reject Ho. ‘
8.17 (a) No, samples are not normal and variances are unequal; (b) base test on the logarithms
of the observations, . ’
8.19 152 <o, <220 and 1.9 < oy < 3.32,
8.21 x*=19.21; cannot reject Hy,
8.23 x? =72.22; reject He.
R.25 F =2.797 we cannot reject Hy,

CHAPTER 9

9.1 (a) 0.35 < p < 0.49; (b) 0.352 < p < 0.488.
9.3 () 0.52 < p < 0.64 (b) 0.514 < p < 0.642.
9.5 (2) 0.319 < p < 0.445; (b) £ =0.06.
9.7 E =0.0885.
9.9 0,617 < p < 0.743,
%11 n=201
9.13 n= 1300
9.15 0.513 < p < 0.639,
9.17 p < 0.026,
9.19 (a) 0.75 and 0.25; (b) 0.0052 and (.9948,
9.21 0238,
9.23 2 =2.19; reject Hy.
9.25 z = —1.83; cannot reject Hy.
927 z = 1.489; cannot reject Hy.
9.29 At most three or at least twelve heads: 0.0352.
9,31 x? = 2.37; cannot reject Hy.
9.33 x*=9.39; reject Hy.
9.37 ~0.005 < p, —p; < 0.145,

Answers to Odo-Numberad Exercises
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9.39 0070 < p — p2 < 0.374.

9.43 x* = 3.457; cannot reject H.

9.45 x? =54.328; reject Ho.

9.47 x? =0.657; cannot reject Hy.

9.4% x* =9.185; cannot reject Ho.

9.51 (ay 0.0375, 0.1071, 0.2223, 0.2811, 0.2163, 0.i013 and 0.0344; (b) 3, 8.6, 17.8, 22.5,
7.3, 8.1 and 2.8; (¢} x? = 1.264; good fiL. '

955 {a) 0.115 < p < 0.275; (b) 0.105 < p < 0.255.

9.87 {a) 0.084 < p < 0.243; (b) 0.077 < p < 0.223.

9.59 (a) 0.075 < p < 0.217; (b) 0.064 < p < 0.196.

9.61 p < 0.00424.

9.63 2z :=0.807; canpot reject Hy.

9.65 z = -1.746; rejeci Hy.

9.67 (a) x2 = 8.190; reject Ho; (b) 0.256 < p¢ < 0.611; 0.108 <« p, < 0.425; 0.46] < py <
0.806.

9,69 x2 = 10,481, canpot reject Ho.
9.71 x? = 47.862; reject Ho.

CHAPTER 10

10.1 P10 or more) = 0.2272; cannot reject Hg.
10.3 J6 or fewer) = 0.3036; connot reject Jfy.
10.5 z = -3.91; reject Hy.
10.7 P(3 or fewer) = 0.1719; cannot reject Fo.
10,9 z = -0.10; cannot reject Hy.

1011 2 =2.92; difference is significant,

10,13 z = 1.62; cannot reject Hy.

10.15 H =26.0; the populutions are not identical.

10.17 z=-0.244; cannol refect Ho.

10.21 z = -4.00; reject Hp.

10.23 Maximum difference is about 0.22; cannot reject Ho.

10.25 P(6 or more) = 0.0625; reject Hy.

10.27 z = —1.814; reject Ho.

10.29 H = 0.904, cannot reject oy,

1031 z = —-1.797; reject Ho.

10,33 W, =25s500) =19; reject Ho.

16.35 z = —2.248; reject Hy.

CHAPTER 11

.1 (b) §=39.05+0.764z; § =65.8.
11.3 (B} §=1.13+ 14.49z; § = 51.8.

Answers o Odd-Numbered Exercises



Appendix 11

AREAS
under the
STANDARD
NORMAL CURVE
from 0 to 2z~
2 -0 1 2 3 5 6. - T " 8 9

0.0 .0000 0040 0080 0120 0160 ,0199 .0239 0279 L0819 0359
0.1 L0398 0438 (3478 0617 05567 0586 0636 0675 0714 0764
0.2 0793 0832 0871 L0010 0948 0987 .1026 1064 1108 1141
0.3 1179 1217 1255 1283 1331 1368 .1408 1443 480 4517
0.4 584 JA681 1628 1664 1700 1736 AT2 1808 1844 1879
0.5 916 1950 1985 2019 2064 2088 2123 2167 21980 2224
0.6 2258 2291 2324 2357 2385 2422 2454 .2486 2518 2549
0.7 2580 2612 2642 2673 2704 2734 2764 AT 2823 2852
0.8 2881 2910 .27.)39 2067 2996 3023 3061 3078 3108 3133
0.9 3150 3186 8212 3238 3264 3289 3315 3340 8365 .3389
1.0 34138 8438 3461 3485 3508 3531 3654 3877 35699 3621
1.1 30843 3665 3688 3708 3729 37459 3770 3760 3810 3830
1.2 3849 3868 3888 3907 38256 3044 3962 3980 3957 4015
1.3 4032 4049 4068 L4082 4098 4116 4131 4147 4162 4177
1.4 4192 4207 4222 4236 4251 4265 4279 4292 43086 4319
1.5 4332 4345 4867 4370 4382 4394 4408 A418 4429 4441
1.6 4452 4463 4474 4484 4495 4505 - 45158 45256 4535 A545
1.7 4564 4564 4573 4582 4591 4599 4608 4616 4625 4633
1.8 4841 4649 4656 4664 4671 4678 4686 4693 4699 4706
1.9 4713 4719 4726 4732 4738 4744 4750 4766 4761 4767
2.0 4772 ATT8 4783 4788 A793 4798 4303 4808 4812 4817
2.1 4821 48286 4830 48534 4838 4842 4846 4860 4854 L4857
2.2 4861 4864 4868 AB71 4875 4878 4881 A884 4887 4800
2.3 4893 4890 4898 4501 4904 4906 4909 4911 4913 4918
2.4 4518 4920 4922 4025 49217 4029 4931 4932 4934 4036
s 7 ‘
2.5 A4D38 4940 4941 4943 4945 A946 4948 4949 4951 4962
2.6 L4953 49556 4966 4057 4959 4860 4061 4962 4963 4964 -
2.9 4965 4966 4967 4968 L4969 4970 L4971 4972 4973 4974
28 4974 A975 4976 4977 4977 4978 4079 L4979 4980 4981
2.9 4981 4982 4082 4983 L4984 4984 4985 4985 4986 4986
a.0 4987 4987 4987 4088 4988 4089 4989 4989 4000 4990
3.1 4990 4991 4001 4091 A592 4902 4992 4992 4908 40903
3.2 4993 A998 49084 4094 4904 4994 4904 4995 4995 4095
3.3 40056 4996 A906 4996 4996 4096 4986 4996 A996 4907
3.4 4997 4997 4907 4907 4097 4097 4997 4997 4007 4998
35 A998 4998 4968 4008 4098 4908 4098 4598 4008 4908
3.6 4998 4998 4990 A099 L4999 4000 4099 49909 4988 4009
3.7 4949 A999 A599 4G99 4899 4999 4999 - 4900 4908 A998
3.8 L4599 4990 4989 A998 4949 4909 4989 4999 44899 L4009
3.9 B000 BRO0 5000 000 B000 5000 5000 .5000 B000 5000

. :‘ .
; v
Nole:nni X ~ N(M™) AD E = (X-m)ls N(od)
D w2, = (X-pME/R Iad 2, — 2 VWA N (LLT)

~
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Table 4 Values of |,*

y a=0.10 @a=005"' a=0025 a=001 . a=0003 v,
1 3.078 6.314 12706 31.821 63.657 !
2 1.886 2,920 4303 6.965 9.925 2
3 1638 2,353 3.182 4,541 5.841 3

4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.015 2.571 3.365 4,032 5
6 1.440 1.943 2447 3.143 3.707 6
7 1.415 1.895 2.365 2,998 3499 | 7
8 1.397 1.860 2.306 2.896 3,355 8
9 1,383 1.833 2,262 2.821 3,250 9

10 1.372 1812 2,228 2764 3.169 0

11 1.363 1,796 2.201 2718 3.106 11

12 1,356 1.782 2.179 2.681 3.055 12

13 1350 1771 2,160 2.650 3.012 13

14 1.345 1.761 2145 2.624 2977 14

15 1341 1753 2.131 2602 2947 15

i6 1337 . 1746 2120 2.583 2921 16

17 1.333 1,740 2,110 2,567 2.898 17

18 1.330 1.734 210 2.552 2.878 18

19 1.328 1.729 2,093 2.539 2.861 19

20 1,325 1.725 2.086 2.528 2.845 20

21 1.323 1.721 2.080 2.518 2.831 21

22 1.321 1717 2074 2.508 2.819 2

23 1.319 1.714 2.069 2,500 2807 23

24 1.318 1711 2.064 2.492 2.797 24

25 1316 1,708 2,060 2485 2187 25

26 1.315 1.706 2,056 2479 2779 26

27 1314 1.703 2052 2473 2771 27

28 1313 1.701 2,048 2467 2763 23

29 1.311 1.699 2.045 2462 2.756 29

inf. 1.282 1.645 1960 - 2326 2576 | inf

[

X ~ WM
b /“ 1¥7 * Abridged by permission of Macmillan Publishing Co., lne, from Searistical
Methods for Research Workers,-L4th ed., by R. A. Fisher, Copyright © 1970 University of
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Table § Values of y2*

v o = 0.995 o =099 o =0.975 a = 0.95 o = 0.05 o = 0,025 o = 0.01 o = 0.005
1 00000393 0.000157 0.600982 0.06393 3.841 5024 6.635 7.879 1
2 00100 0.0201 0.0506 0.103 5.991 71378 3.210 10.597 2
3 00717 0.115 0216 0.352 7.815 9.348 11.345 12.838 3
4 0.207 0.297 0.484 671 9.438 11.143 13.277 14,860 4
5 0412 0.554 0.831 1.145 11.070 12.832 15.056 16.750 5
6 0.676 0.872 1.237 1.635 12.592 14.449 16812 18.548 6
7 0.989 1239 1.690 2.167 14.067 16.013 18.475 20278 7
8 [.344 1.646 2.180 2733 15.507 17.535 20.090 21.955 8
] 1735 2088 2700 3.325 16919 . 19.023 21.666 23.589 9
3] 2.156 2.55% 3.247 3.940 18,307 20.483 23.209 25.188
11 [ 2603 3.053 3816 4.575 19.675 21.920 24.725 26.757
12 3074 3571 4.404 5226 21.026 23.337 26217 28.300
13 3.565 4.107 5.009 5892 22362 24.736 27.688 20.819
14 4.075 4,660 5.629 6.571 23,685 26.119 29,141 31.319
15 4.60t 5.229 6.262 7.261 24.996 27.488 30,578 32.801
16 5142 5812 6.508 7.962 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8672 27.587 3c.191 33.409 35718
18 6.265 7015 8231 9.390 28.869 31526 34.805 37.156
19 6.844 7633 8907 © 10117 30,144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 31410 34.170 37.566 39.997
21 8.034 8.897 10,283 11.591 32671 35479 38932 41.401
22 8.643 9.542 10.982 12.338 33924 36.781 40289 42,796
23 9.260 10.196 11.68% ©o13.091 35172 38,076 41,638 44,181 -
24 9.886 10.856 12.401 13.484 36415 35.364 42980 45,558
25 10.520 11.524 13.120 14611 37.652 40.646 44,314 46928
26 11.160 12.198 13.844 £5.379 33835 41923 45.642 48,290
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50993
29 13.121 14.256 16.047 17.708 42.557 45772 49,588 52.336
30 13.787 14953 16.791 18,493 43,773 46.979 50.892 53.672
40 20.706 22.164 24,433 26.509 55,758 59.342 63.691 66.766
50 27.99H 29.707 12357 34.764 67.505 71.420 - 76.154 79.490
60 35.535 37.485 40.482 43,118 79.082 81.29% 88.379 91.952
70 43275 45.442 48,758 51,739 80.531 95023 100.425 104.215
80 51172 53.540 57.153 60,391 101.879 106.629 112.329 116,321
90 59.196 61.754 65.646 69.126 113,145 118,136 124.116 128.299
100 67.328 70.065 74222 77.929 124.342 129.561 135.807 140,169

* This table is based on Table B of Biometrika Tables for Statisticians, Vol. 1, by permission of the Biometrika trustees.,
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« = 0.03

Table @mav Values of F ot

1] F(O.05.¥ . %)
v2 = Degrees v, = Degrees of freedom for numerator
of freedom
for T
dengminator 14 2 6 7 8 9 10 12 15 i) 24 30 é 40 &0 120 oo
——
{ 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 | 234
2 18.50 |19.00 1 19.20 ;1920 | 19.30 1 19.30 | 1940 | 1940 | 19.40 {1940 { 19.40 | 1940 | 1940 { 19,50 | 1950} 19.50 | 19.50 | 19.50 | 19.50
3 1010 | 9.55{ 928} 912 | 901 | 804 | 8.89| 885 881 | 879 874 870 866 | 864! 862 859! 857! 855! 853
4 TFL | 65941 6591 639 626 616 609 604 6001 596 591 | 5846 580 | 5770 575 5713 s69| se6t 563
5 661 | 579 5411 19| 505 495 | 488 | 482 477 ) 474 468 | 462 456 | 4531 450! 446 | 443 440! 5437
6 599 ) 54 476 453 ] 439 428 | 421 415 4107 406 400 | 3941 387 3847 381 377! 374! 3707 167
7 559 7 474 435 412 397 387 379 373 3681 364 357 35t 344 341] 3380 334) 3301 3270 323
8 532 | 446 4074 384 369 358 | 3501 344 339 ] 335| 328 322 315] 312 308| 2304} 301 297) 293
9 512 426 385 3634 348 3374 329) 3231 3.18 314 307 300 294 | 2901 2881 2331 279} 275} 271
10 496 § 410 | 371 | 348 | 333 322} 31410 307) 302 ] 298| 291 285 277 | 274) 270! 286 2621 258% 254
1 4841 358 359 336 320 300 301 295) 290 285 279{ 2721 265! 2611 257 253 249 245! 240
12 475 1 389 3491 3267 311 300 291 285! 280 | 275] 269 | 2620 254 | 2511 247 23% ] 238] 230f 230
13 467 [ 381 341 | 318 303 2927 283 277 271 | 267] 260 2534 246 | 2421 2380 234 2307 225] 221
14 466 ¢ 3741 3341 3111 2967 2857 276) 270 265 260 253 246 239 | 235{ 2311 2274 2221 218) 213
15 454§ 3681 320 3064 290 279} 271 264 239 254} 248 | 240 2331 220 225( 220! 2161 211! 207
1 449 | 363 | 324 | 301 | 285| 274 ] 2661 250 254} 2491 242 2351 2287 224 z19] 2150 211] 206 20t
37 : 3451 359 320 296 281 270 | 261 ) 255 249 | 2451 238 2311 223 ] 2191 215] 210 206] 201 1.96
18 44} 355 306 29347 277 266 258 251 246 | 241 2341 227y 239 Za5] 20| 206 202 197| 193
19 4380 3527 13 290 2747 263 254 | 248 242 | 2380 23t 2231 216t 231 2071 203 198] 193] 188
20 4357 3430 310 ) 287) 2711 260 251 245] 239 235 228 2201 212 2081 204( 199} 195] 190 1.84
11 432 ] 347 307 | 284 268 257 | 249 242 2374 2324 225} 2181 210 205 261 1961 1.92f 187 181
12 430 ) 344 305 2827 266 255 246 2401 234 2301 2233 215) 207} 2031 198] 194 189! 1.84| 178
23 438 | 342 303 | 280 ) 264 253 | 244 237 2321 2271 2200 213] 205 % 201 196} 191 L86( 181 L76
24 426 | 3400 3011 278 262 251 2421 236 230 ) 225 218 211l 2031 198 ) 194) 1.8%; 184 179 1.73
a5 424 1 3391 299§ 276, 260 249 2407 234 228 224 216! 209 201 ] 1961 192| 187 132) 1.77] L71
£l 417 ] 332 292 ) 269 253 242 | 233 227 221 216{ 200 201| 193} 189) 184] 179| 174 1681 1.62
40 408 ) 323 ) 284 | 2611 245) 234 225( 218 212} 208 2004 192! 1841} 179} 1.74) 1.69] ts4]| 158 151
60 4007 315} 276 ) 2531 237 225 217} 210 204 199 1921 1841 175§ L7061 1657 159 053] 147) L3g
320 3.92 ¢ 30741 268 ) 2453 229 218 209 202)] 196 19t 183 175| 166 161 1557 1507 r43] 1357 125
o 384 ¢ 300 260 | 2371 2217 210 201 194 188 ) 183 173 167 157 152 146 1363 133} 1220 1.00
| ] _ i

* This table is repraduyced from M. Merrington and C. M. Thompson, “Tables of percentage points of the inverted beta (F) distribution”, Biometrika, Vol. 33 (1943), by
permission of the Biometrika trustges.



- with v, and va desveey of tvidom =001

veir.  Thenm Hie vabio
Foo Wi [Ylv rate 6(D)  vates ot f, . e OF00LY.Y)
.«,MUWWMW.MM. vy = Degrees of freedom for numerator
for -
denominator 1 2 3 4 5 6 7 & 9 0 12 15 20 24 M 40 Al 120 Ed
i 4052 | 5000 ¢ 5403 [ 5,625 5,764 | 5,859 | 5928 | 5982 1 6,073 [ 6056 § 6,406 | 6,157 | 6,209 | 6235 | 6,261 6,287 1 63131 6,339 6,366
2 98.50 199.00 1 99.20 [ 99.20 1 99.30 | 99.30 | 99.40 { 99.40 | 99.40 [ 9940 | 9940 | 99.40 | 9940 | $9.50 | 99.50 | 99.50 | 99.50 | 99.50 | 99.50
3 34.10 13080 § 29.50 | 28.70 | 28.20 | 27.90 | 27.70 | 27.50 § 27.30 {27.20 { 27.10 | 2690 | 26.70 | 26.60 | 26.50 | 26.40 | 26.301 26.20| 2610
4 21.20 [ 18.00 ] 16.70 | 16.00 | 1550 | £5.20 [ 15.00 | 14.80 | 14.70 | 1450 | 14.40 | 14.20 | 14.00 | 13.90 | 13.8014 13.70 | 13701 1360] 1350
3 1630 1 13.301 1210 | 11.40 ] 11.00 | 10.70 §10.50 | 1030 § 1020 | 1010 ] 98¢ 9.72] 955 | 947 938) 925 | 930! oy; 002
6 1370 110503 9.78 | 915 875 BA47| 826 810! 798| 787} 7.72| 756) 7401 731 723| 714] 706| 697| 638
7 12207 955 845 | 785} 746} 719 6991 6841 672 662 647 6311 616 607] 599 5911 5821 574| 565
8 1130 | 8651 736 701} 6631 637 618) 6031 591 | 58t s67] 552 s536| 5281 5200 512| 5031 405 4.83
g 1060 | 8027 6991 642 606¢ 580 561 5471 5351 526 5.1t 496| 481 | 4731 465| 457 | 448{ 440} 4.3
10 000 | 7561 655 | 599 5647 539 520 5061 494 485 471) 456 441 433 425 417| 408| 400] 391
I 965} 7211 622 | 5674 5324 507 489 4741 463} 434 440 425 410 402| 304 386 373t 3500 140
i2 9331 6.93) 5851 541 506 482 | 464 450 439} 430} 416 401| 386 378 370 3621 354% 1451 136
13 SOT F 670 5741 521 | 4861 462 | 444 4301 419 430 396| 3821 356 359 351| 3431 3341 2325} 3.17
14 8861 6.51 556 1.504 | 470 446 ] 428} 414 403} 394 380 3.66| 351 3431 335| 3271 318) 209] 300
15 868§ 636 54271 489 4561 43211 414) 400) 389 380 367| 352 337] 3207 33t| 3132l 305 296! 287
16 8531 6231 5291 477 444 420 4033 389} 378 369 355] 341 326 3.18) s10] 302 203 284] 23
17 840 1 6.1 5191 467 434 410 393 379 368 | 3591 346 331 316t 208 300 292 2w3| 275| 185
I8 826 | 6.01 5091 4581 4251 401§ 384 3711 360 | 351 | 337) 323 308 300] 292) 284 275} 266| 257
19 8.1 | 593 | 50U | 450 417 394 | 3.77] 363 | 3527 343] 330) 3.45| 3001% 292 284) 276 2671 258| 240
20 8.10 | 585| 494 | 4431 410 387 | 370} 3.56| 346 | 337) 323| 309 294 286 278] 269] 261] 2357 242
21 8OZ | 578 | 487 | 4371 404 | 381 | 3641 3519 340 | 331) 317¢ 3031 28%8)] 280 272 264 255) 246| 226
22 7951 5721 482 431 399 376 ) 359 3454 335} 3261 sa2d 298| 2837 275 267 258 250 2a0| 2m
23 788 | 566} 476 | 4261 394 371 354% 3411 330 321 307} 203] 2w 2700 262 2sa| 24s| 235 20
24 7821 5617 472 422 390 367§ 350} 3361 326 | 317 3.03) 289f 274 2661 2.58] 249| 240| 231] 2721
25 TI7T 1 557F 408 418 386 | 363 346 332 322 313§ 299 285% 2701 262 253| 245| 236| 227) 217
30 756 5394 A51 | 402 | 370 347 330 347 307 2981 284} 270} 2551 247 239) 230 2210 2411 201
0 731 ] 5181 431 383 35117329 312§ 299 | 289 | 2804 266] 252| 237 2290 20! 211} 202¢% 192) 180
] 708 1 498 | 413 365 334 302 295 2821 272 263{ 25091 2351 2201 2121 203 194 184 173 1.60
120 6.851 4791 395 3480 31074 296 279 266] 256 247§ 234 219 203 1951 1.86| 17610 166] 153 1.38
ks i 6.63 | 461 37811 3324 3.02F 2804 2641 251 241 ) 2321 2181 204 188 1790 1.70] 159 | 1471 132 100
i | 3 -

w.ﬁfrm ‘able is reproduced from M. Merringwon and C. M. Thompson,

“Tables of percentage points of the inverted beta (F) distribution,” Biomerrika. Vol, 33 (i943). by
b of the Bi Tike 1 -




APPENDIX

Appendix VII

RANDOM NUMBERS

BL772  T4640 42331 20044 46621 62898 93582 04186 19640 87056
24033 23491 83587 06568 21960 | 21387 76105 10868 97453 90581
45939 60173 52078 25424 11645 55870 66974 37428 93507 94371
30586 02133 75797 45406 31041 86707 12973 17169 88116 42187
03585 79353 81938 82322 96799 86650 36081 50884 14070 74950
64937 03385 95863 20790 65304 55189 00745 65253 11822 15804
15630 64759 51136 98627 62586 41889 25439 88036 24034 67283
09448 56301 BY683 30277 04623 86418 48820 06652 41982 49159
21681 91157 77331 60710 52290 16835 48653 71690 10159 14676
91097 17480 29414 08829 87843 28105 27279 47152 85683 47280
~
50532 25496 95652 42457 73547 76552 50020 24810 52084 761068
07136 40876 79971 54195 25708 B1817 36732 72484 94823 75936
27039 64728 10744 08396 56242 90085 28868 99431 50995 20507
85184 73949 36601 46258 00477 25234 09908 36574 72089 70185
54398 21154 97810 36764 32869 11785 55261 59009 38714 38723
65544 34371 09591 07839 58892 92843 72828 91341 84821 63886
08263 65952 85762 64236 39238 18776 84308 99247 46149 03229
39817 67906 48236 16057 81812 15815 63700 86915 19210 43943
62257 04077 79443 95203 02479 | 80763 92486 54083 23631 03825
53298 90276 62545 21944 16630 03878 07616 95715 - 02526 33537
—
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Chapter 3: Looking at Data: Rolatiomﬁip'

The focus of many statistical studies is on refationships belween two or mgp,
variables. Did the Detnocratic party's share of presidential votes in each
state change in any important way between the 1980 and 1984 electiong:
Does planting more corn on an acre of farm land change the yield at harvegul
and il so, what is the best planting rate? Do groups of people who smoké
more have a higher death rate from fung cancer? Such questions are ay,
topic in this chapter, and these examples are among those that we will con,.
sider,

When you first examine the relationship between two variables, yg,
should ask some preliminary questions. Most of these questions have alre-ad\r
been raised in Chapter 1; What exactly are the variables? How were they
measured? Are both variables guantitative or is at least one a categorical
variable? Quantitative variables take numerical values for which numer.
ical descriptions such as means and standard deviations are meaningfut,
Variables measured on a scale of equal units—such as length in centimeters
or income in dollars—are quantitative variables. So are counts of individ.
uals, and percents or fractions based on counts. Categorical variables, on
the other hand, are essentially labels that tell us into which class an individ-
ual falls. The sex or occupation of a person, the make of a car, and the spec-
ies of an animal are all categorical variables.

We have concentrated on quantitative variables to this point. But when
data an several variables are being examined, categorical variables are usu-.
ally present and are essential aids in organizing the data. Here is a small
portion of a typical data set, as printed out by the statistical cornputing sys-
tern used to analyze it

0BS5S In AGE 3EX JOB WT SBP
1 1083 39 M T 183 132
2 1381 27 F E 116 117
3 1502 87 M E 172 144
4 1481 26 M T 139 110
5 1666 48 F T 132 150

These data record medical measurements of the employees of a large
company that offers regular free physical examinations. Each row gives data
for one employee, or in statistical language, one case.

Case

i J——

A case is an individual person, animal, or thing for which values of the
variables are recorded.

The employees are given an identification number (ID) so that their names
will riot be included on the printout. The computing systemn has nurnbered
the cases consecutively under the heading OBS. Each column after the case
number and ID contains the values of a specific variable. Five variables are
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Looking at Data: Relotionships

recorded for each case. Three of these—the employee's age, weight, and
systolic blood pressure-—are quantitative, The others are the employee’s sex
{male or female) and job category (executive or technical), which are cate-
garical variables. ‘

In studying relationships among variables, we must pay more attention
to categorical variables than in earlier chapters. We are interested in rela-
tions between two quantitative variables (such as a person’s weight and
blood pressure), between a quantitative and a categorical variable (such as
sex and blood pressure), and between two categorical variables (such as sex
and job category). Some parts of this chapter {Sections 3.2 and 3.3) will
focus on relations between quantitative variables. Categorical variables are
considered in Section 3.4,

When we examine more than one variable, a new question becomes
important. Is your purpose simply to explore the nature of the relationship,
or do you hope to show that one of the variables can explain changes in the
other? In looking at the Democrats’ share of the popular vote for president
in each state in 1980 and in 1984 (Table 3.1), we do not wish to explain the
1984 data by the 1980 data but rather to see a pattern that may reflect
changing political conditions.! But in another cdse, the agronomists who
carefully planted corn at different rates per acre and recorded the yield
(Table 3.2) are indeed interested in a cause and effect relationship. They
believe that the planting rate will affect the yield and their purpose is to
recommend the best planting rate to farmers. In such cases, we distinguish
the explanatory variable (plants per acre) from the response variable (yield
of corn).

Response variable, explanatory variable

A response variable measures an outcome of a study. An explanatory
variable attempts to explain the observed outcomes.

In many studies, the goal is to show that changes in one or more explan-
atory variables actually cause changes in a response variable. For example,
medical researchers studying a new drug to treat high blood pressure give
different doses of the drug o each of several groups of patients and measure
the change in blood pressure after several weeks of treatment. The explana-
tory variable is the dosage and the response variable is the change in bleod
pressure. The researchers hope to show that different doses of the drug
cause changes in blood pressure. Not all explanatory-response relationships
involve direct causation, however. Some of the statistical techniques in this
chapter require us to distinguish explanatory from response variables; others
make no use of this distinction. Explanatory variables are often called
independent variables, and response variables are often referred to as
dependent variables. The idea behind this language is that the response
variable depends on the explanatory variable. However, since the words
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“independent”’ and ‘'dependent’’ have other meanings in statistics that are
unrelated to the explanatory-response distinction, we prefer to avoid those
words here.

The techniques used to study relations among variables are more complex
than the methods we developed in Chapter 1 to examine the distribution of
a single variable or those developed in Chapter 2 to examine the variation
of a single variable over time. Fortunately, statistical analysis of several-
variable data builds on the tools mastered in those chapters for examining
individual variables. And the principles that guide our work remain the
same:

» Combine graphical display with numerical summaries.

« Seek overall patterns and deviations from those patterns,

« Seck compact mathematical models for the data in addition to
descriptive measures of specific aspects of the data.

Table 3.1 Percent of the presidential votes won by the
Demeocratic candidate, 1980 and 1984

State 1980 1984 State 1980 1984
Ala. 48.7 38.7 Mont. 33.3 38.7
Alaska 30.1 30.9 Neb. 264 29.0
Ariz, 28.9 32,9 Nev, 27.9 327
Ark, 48.3 38.8 N.H. 28.6 31t
Calif. 36.9 41.8 N.J. 39.2 39.5
Colo. 32.0 i5.6 N.Mex. 37.5 39.7
Conn. 35.0 39.0 N.Y. 44.8 46,0
Del. 453 40.0 N.C. 47.5 38.0
Fla. 38.8 34.7 N.Dak. 26.7 34.3
Ga. 56.3 39.8 Ohic 355 40.3
Hawaii 45.6 44 3 Okla. 354 31.0
Idaho 25.7 26.7 Oreg. 44.1 43,9
1L 42.3 . 435 Pa. 43.1 46,3
Ind. 38.2 37.9 R.1, 48.1 48.2
Towa 39,1 46.3 5.C. 48.6 359
Kan. 3309 3.0 $.Dak. 2.1 36.7
Ky. 48,1 39.7 Tenn. 48,7 41.8
La. 46.4 38.6 Tex. 41.8 36.2
Maine 431 189 Utah 209 24.9
Md, 47.6 47.2 Vt. 39.3 41.3
Mass, 42.3 48.6 Va, ‘ 40.9 37.3
Mich. 43.1 40.4 Wash, 382 43.2
Minn. 477 50.1 W.Va. 50.1 44.7
Miss. 48.6 377 Wis, 44.0 45.4
Ma. 44.7 40.0 Wryo. 287 28.6
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Scacterplots

3.1 SCATTERPLOTS

gXAMPLE 3.)

Relationships between two quantitative variables are best displayed graph-
ically. The most useful graph for this purpose is a scatterploz Here is an
example of the effective use of scatterplots.

Percent voting Democratic in 1984

Tabie 3.1 shows the percent of the popular vote that was won by the Democratic
presidential candidates in the 1980 and 1984 elections. Both candidates, Jimmy
Carter in 1980 and Walter Mondale in 1984, were defeated by the Republican
Renald Reagan. (In 1980 an independent candidate, John Anderson, captured
6.7% of the national vote.) We know that many states have persisting political
traditions, so we expect similar behavior in two successive elections. It is possible
to see this relationship in the columns of npumbers in the table, but it is very difficult
to assess the strength of the refationship or 1o see any significant changes from
1980 to 1984, A picture is needed.

Figure 3.1 is a scatterplot of the daia in Table 3.1. Each point on the plot repre-
sents a single case—that is, a single state. The horizontal ccordinate x; is the percent
who voted Democrat in that state’s 1980 presidential vote, The vertical coordinate
¥, is the percent who voited Democrat in 1984, Thus, Alabarma appears as the point
(48.7, 38.7), for example. Since both variables have the same units (percent), we
use the same scale on both axes. The resulting plot outline is square . -
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Figure 3.1 Percent of votes for Democrats in the 1980 and {984 presidential
elections, by state. See Exampie 3.1.
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Interpreting Scatterplots

To interpret a scatterplot, look first for an overall pattern. This pattern shoulg
reveal the direction, form, and strength of the relationship between 198g
and 1984 voting in the states. The direction is clear from Figure 3.1: Stateg
with a high percent who voted Democrat in 1980 tended to also vote Demy,.
crat in 1984, That is, thé percent voting Democrat in 1980 and in 1984 ¢
positively associated. '

Positive association, negative association

Twa variables are positively associated when above-average values of
one tend to accompany above-average values of the other, and below-
average values tend simitarly to occur together. Two variables are neg-
atively associated when above-average values of one accompany below-
average values of the other, and vice versa.

In addition to the positive association, the scatterplot in Figure 3.1 shows
the form of the relationship: It is roughly linear, though with much scatter
about the linear pattern. The large scatter indicates that the linear relation-
ship is not very strong,. ‘

The meost important systematic deviation from the overall linear pat-
tern in Figure 3.1 occurs at the right of the graph, A cluster of states there
voted most heavily for Democrats in 1980, but were markedly less favor-
able to the Democrats in 1984, The single outlier on the extreme right is
Geargia, President Carter's home state. Following that hint, we suspect that
the south as a whole was more receptive to the southerner Carter in 1980
than to the northern liberal Mondale in 1984. To show this effect on the
graph, Figure 3.2 uses a different symbol (o} to represent the 10 states
south of Washington, D.C. and east of the Mississippi River; Louisiana,
through which the river flows, is also included,

Figure 3.2 generally sustains our surmise about the south. In fact, we
can refine our crude geographical definition of ‘'the south’’ by examining
the political behavior shown in Figure 3.2. The unemphasized point (e) in
the middle of the southern cluster is Arkansas, which appears to be southern
in voting pattern even though it lies west of the Mississippi. The two empha-
sized points (o) lying in the political mainstream (to the left of the cluster)
are Florida and Virginia. Neither is fully southern in its behavior.

In dividing the states into ‘‘southern’’ and ‘‘nonsouthern,’”’ we ntro-
duced a third variable into the scatterplot. This is a categorical variable that
has only two values, The two values are displayed by the two different plot-
ting symbols. Using different symbols to plot points is a good way to incor-
" porate a categorical variable into a scatterplot.?
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Percent voting Democratic in 1984
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Figure 3.2 The 1980 and 1984 percent of votes for Democrats, with the south

em

phasized (o).

News reports sometimes rate state educational systemns by comparing the mean
scores of seniors in each state op college entrance exarminations. This method is
misleading, because the percent of high school seniors who take any particular
college entrance test varics greatly from state to state. Figure 3.3 is a scatterplot
of the mean score on ithe Scholastic Aptitude Test (SAT) mathematics examination
for high school seniors in each state versus the percent of graduates in each state
who took the test.

The negative association between these variables is evident: SAT scores tend
to be lower in states where the percent of students who take the test is higher,
Only 3% of the seniors in the three highest-scoring siates took the SAT. The overall
pattern shows two clusters of points. At the upper left are states where only stu-
dents seeking admission to colleges that require the SAT take that test. Most stu-
dents in these states take a different college entrance examination, the American
College Testing (ACT) examination. The students who elect to take the SAT tend
ta be above average academically, so the mean SAT scores for states in this cluster
are high. The other cluster, at the lower right of the scatterplot, contains states
in which a high percent of college-bound seniors take the SAT. The mean scores
are lower here because a less selective group of students take the test, There is little
difference in mean SAT scores among these states, even though the percent of
seniors who take the fest varies from 30% to nearly 70%.
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Figure 3.3 Mean SAT mathematics score and percent of high school seniors who
took the test, by state, See Example 3.2,

The points that are individually labeled seem to lie 2 bit outside the lower
cluster. The mean SAT scores in these states are lower than in other states in which
a similar percent of students take the test. It is possible that the test scores point
to educational deficiencies in these states. n

Scatterplots showing relationships between other quantitative variables
may appear quite different from the clouds of points in Figures 3.1 and 3.3.
This is particularly true in experiments in which measurements of a response
variable are taken at only a few selected levels of the explanatory variable.
The following example illusirates the use of scatterplots in such a setting:

How rmuch commn per acre should a farmer plant to obtain the highest yield? Too
few plants will cléarly result in a low yield. On the other hand, if there are too many
plants they will compete with each other for moisture and nutrients, and vields
will again fall, The amount of moisture is critical: In dry seasons the best planting
rate is lower than in wet seasons. Rather than iry to forecast the weather, a farmer
can ensure even mojsture by irrigating his fields. Table 3.2 shows the results of
several years of field experiments in Nebraska.? Each entry is the mean yield of
four small plots planted at the indicated rate per acre. All plots were irrigated,
and all were fertilized and cultivated identically. The yicld of each plot should
therefore depend only on the planting rate—and of course on the uncontrolled
aspects of ecach growing season such as temperature and wind. The experiment
lasted several vears in order to avoid misleading conclusions due to the peculiar-
ities of a single growing season,




3.1 Scatterplots

Table 3.2 Average irrigated corn yields (bushels per acre)

Planis per acre 1956 1958 1959 1960 Mean
12,000 150.1 113.0 118.4 142.6 131.0
16,000 166.9 120.7 135..2 149.8 143.2
20,000 165.3 130.1 139.6 149.9 146.2
24,000 134.7 138.4 156.1 143.1
28,000 119.0 150.5 134.8
Mean 160.8 1246  130.1 1498
P8O A T e e
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Figure 3.4 Yield of corn versus planting rate for irrigated cornfields in Nebraska.
See Example 3.3.

The scatterplot in Figure 3.4 displays the results of this experiment. Since
planting rate is the explanatory variable, it is plotted horizontally as the x variable.
The yield is the vertical variable y. The vertical spread of points over each planting
rate shows the year-to-year variation. The overall pattern is revealed by plotting
the mean yield for each planting rate (averaged over all years). These means are
marked by triangles and joined by line segments. As expected, the form of the
relationship is not linear. Yields first increase with the planting rate, then decrease
when too many plants are crowded in. Since there is no consistent direction, we
cannot describe the association as either positive or negative. It appears that the
best choice is about 20,000 plants per acre. L
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Plotting the means as was done in Figure 3.4 is an excellent way 1o sum.
marize an experiment in which repeated observations are made at a feyw
fixed levels of a variable such as planting rate. The scatterplot also indicateg
how much variability lies behind each mean. In this case, however, we must
regard the means with great caution. As the gaps in Table 3.2 show, the
agronomists used only the three lowest planting rates in all 4 years, adding
the higher rates only as the need to study them became apparent. The means
therefore cover different spans of time. In particular, 1956 was a year of
very high vields, so that the means that include 1956 are biased upward rela.
tive to those that do not.

A closer look at Table 3.2 shows that 24,000 plants per acre was supe-
rior to 20,000 in 2 of the 3 years in which both rates were planted. The
agronomists concluded that maximurm yield is already approached at 16,000
plants per acre, but yields continue to increase somewhat up to 24,000 plants
per acre. hicomplete data, such as those in Example 3.3, are common in
practice. The agronomists’ data would have been more convincing if all five
olanting rates had been used in all 4 years—but it was only after the first
results were in that the researchers realized that higher planting rates might
give better results. Incomplete data often complicate a statistical analysis,
whether it is an informa)l analysis such as that of Example 3.3 or a formal
analysis of the type that we will learn about in Chapter 11. You should there-
fore be alert to missing data,

Examples 3.1 and 3.3, though different in most respects, share a maost
important feature: The relationship between the two variables plotted can-
not be fully understood without knowledge about a third variable. Figure
3.1 plots the percent of the presidential vote won by the Democrats in 1980
versus 1984 by state, but the relationship observed is partly explained by a
political and geographic grouping of the states. Figure 3.4 plots corn vield
versus planting rate, but the experiment spanned several growing seasons
that differed from each other. And if the agronomists had not carefully con-
trolled many other variables (moisture, fertilizer, etc.), these variables would
have confused the situation completely. You should be cautious in drawing
conclusions from a strong relationship appearing in a scatterplot until you
understand what other variables may be lurking in the background.

Smoothing Scatterplots

The strength of a scatterplot is that it provides a complete picture of the
relationship between two variables—at least as far as that relationship is
reflected in the available data. A complete picture is often too detailed for
easy interpretation, so we seek to describe the plot in terms of an overall
pattern and deviations from that pattern. Though we can often do this by
eye, more systematic methods of extracting the overall pattern are desirable.
This is called smoothing a scatierplot. When we are plotting a response vari-
able v against an explanatory variable x, Example 3.3 gives us a hint as to
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how to proceed. We smoothed Figure 3.4 by averaging the y values sepa-
rately for each x value. Though not all scatterplots have many y values at
the same value of x, as did Figure 3.4, we can smooth 2 scatterplot by slicing
it into vertical strips and computing the mean or median y in each strip.
For initial analysis, the median is preferred to the mean because it is more
resistant.

Median trace

T construct the median trace of a scatterplot, first slice the plot into
vertical strips of equal width, Compute the median of the ¥ values in
each strip and plot the median vertically above the horizontal midpoint
of the strip. Connect the medians by straight line segments to form the
median trace.

.The median trace displays the overall pattern of the dependence of y on
x. The scatter of the observations above and below the median trace displays
deviations from the pattern.

EFXAMPLE 34 Prior to 1970, American voung men were drafted into military service by Jocal
draft boards who followed a compiex system of preferences and exemptions. Con-
gress decided that a random selection process-—a draft lottery—would be fairer.
“he first draft lottery was held in 1970, The 366 possible birth dates were placed
into identical plastic capsules, poured into a rotating drum, and picked out one
by one. The first birth date drawn won draft number 1, the next 2, and so on.
Eligible men were then drafted in order of their deaft numnbers, those with the
lowest numbers first.

The ovt¢ome of the 1970 dralt lottery appears in the scatterplot in Figure 3.5,
Birth dates, pumbered | 1o 366 beginning with January 1, are plotted horizontally.
The drafl number assigned each date by the lottery is ploited on the vertical scale,
A properly conducted lottery should produce no systematic relationship between
these variables. Figure 3.5 certainly shows no clear overall patiern. Yet it was
charged that the lottery was biased against men born late in the year, that these
men received systematically lower draft numbers than men born earlier. An in-
vestigalion showed that birth dates had indeed been inserted into capsules and
poured into a box 1 month at a time before being placed into the drum.

With this hint that a month effect might be present, we will smooth Figure 3.5
by a median trace. Imagine that the scatterpiot is sliced vertically like a loaf of
bread. Each slice contains [ month's birth dates. We calculate the median draft
number for each month, and plot it vertically abeve the horizontal midpoint of
each slice. Figure 3.6 shows the median trace superimposed on the scatterplot.
The downward trend late in the year is now apparent. In 1971, the Department of
Defense reassigned the officers who had conducted the 1970 lottery and asked
statisticians from the National Burgau of Standards to design a truly random
selection procedure.* ]
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Figure 3.5 The 1970 draft iottery: draft selection numbers versus birth dates.
See Example 3.4.
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Figure 3.6 A median trace by month of birth for the 1970 draft lottery.
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Example 3.4 demonstrates that smoothing can reveal relationships that
are not obvious from a scatterplot alone. In this case there is a negative asso-
ciation between birth date and draft number: Later birth dates tend to have
lower dralt numbers. Once the medijan trace shows us what to look for, we
can see that the point cloud in Figure 3.5 is a bit thin in the upper right
region, indicating that men born late in the year won few high draft num-
bers. The combination of graphing and calculating once again proves its
eflectiveness.

To draw a median trace, firsi slice the scatterplot. The number of slices
chosen determines the degree of smoothing provided by the median trace.
Fewer slices sinocth the data more, while more slices allow the median trace
to follow the ups and downs of y more closely. In general, the number of
slices should increase with the number of cases; beyond this, choosing the
slices is a matter of judgment. Tt is often best to take advantage of naturally
occurring slices such as the months in Example 3.4.

Slicing a scatterplot into vertical strips is the basis for other graphical
displays as well. Figure 3.7 shows boxplots for each of the monthly slices
of the draft lottery data. The sequence of medians shows the smoéthed pat-
- tern; the quartiles and extremes show the séatter about the pattern portrayed
by the individual points in Figure 3.6. Smoothing a scatterplot either by the
median trace or by side-by-side boxplots thus displays both an overall pattern
and deviations from it.

The 1970 draft lottery raises one final question. How can we be confident
that the lower draft numbers assigned to men born later in the year were
not merely the play of chance? After all, repeated random drawings of birth
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Figure 3.7 Boxplots by manth for sefection numbers in the 1970 draft lottery.
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dates would give a different order each time. Some would appear—afig,
the fact—to favor January, and others to favor December. So the pattern
that Figure 3.5 seemed to show may be an accident. Quite true. We muyg;
judge whether this pattern is stronger than could reasonably arise from the
play of chance in a truly random drawing, This judgment requires a calcy.
lation of probabilities. Such a calculation shows that an association between
birth date and draft number as strong as the one observed in 1970 would oc.
cur less than once in 1000 random drawings. There is in fact good evidence
that the 1970 lottery was unfair.

Categorical Explanatory Variables

Variations on scatterplots are also the preferred means tor showing relations
between: & categorical explanatory variable and a quantitative response,
These displays are very similar to those already discussed. Suppose that the
agronomists of Example 3.3 had compared the yields of five varieties of corn
rather than five planting rates. The plot in Figure 3.4 remains helpful if the

- varieties A, B, C, D, and E are marked at equal intervals on the horizontal axis

in place of the planting rate. In particular, a graph of the mean (or median)
responses for each category will show the overall nature of the relationship,
If there are too many observations in each category to plot individually, as
in Figure 3.4, side-by-side boxplots or stemplots can replace the scatterplot
of response values above each category label in the graph. Figure 1.9 is such
a graph. There the categorical explanatory variable is hot dog type (beef,
meat, or poultry), and the response is the number of calories in each hot dog.

Many categorical variables, like corn variety or hot dog type, have no
natural order from smallest to largest. In this case we cannot speak of a
positive or negative association with the response variable. If the mean re-
sponses increase as we go from right to left in the plot, we could make them
decrease by writing the categories in the opposite order. In such cases the
plot simply presents a side-by-side comparison of several distributions. The
categorical variable labels the distributions. Some categorical variables do
have a least-to-most order. We can then speak of the direction of the asso-
ciation between the categorical explanatory variable and the quantitative
response. Here is an example.

What is the relationship between family income and the educational level of the
householder? (In government records, the householder is the adult who owns
or rents a dwelling.) Educational level is the explanatory variable. It appears in
government data as a categorical variable with these values;

A Less than 8 years of elementary school

B 8 years of elementary school

C 1 to 3 years of high school

D 4 years of high school



Summary

100 A AR e, AT AL bt o b PV 5 -~

v}
o)
§

i

=N
=]
i

o
=
SO

Family income ($1000)

I

L]
o
;

T p 1 1 1

[} R, Se— . et v v Ak b 2 s

A B C D E
Educational level of hous_eholder

Figure 3.8 Boxplots by educational fevel for family incomes in 1985,
See Example 3.5.

E 1 1o 3 years of college
F 4 or more years of college

more but does not guarantee a high income.

SUMMARY

The categories A to F are ordered from least education to most education. The
side-by-side boxplots of Figure 3.8 show the distributions of family income in 1985
for white families in these educational categories. The plot shows a positive asso-
ciation between educational level and income. That is, family income tends to
increase as the educational level of the householder increases. What is more, the
variability of income also increases with education. Some college-educated house-
holds have quite low incomes. Additional education offers the opportunity to earn

A categorical variable records into which of two or more groups an
observation falls, while a quantitative variable takes numerical values for

which arithmetic operations make sense.

When changes in a variable x are thought to explain or even cause
changes in a second variable y, x is called an explanatory variable and »

is called a response variable.

A scatterplot is a plot of observations x; and y, as points in the plane,
where x; and y; are the values of quantitative variables x and y for the

same case, that is, the same person, animal, or object.
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The explanatory variable, if any, is always plotted on the horizontal scale
of a scatterplot. Plotting points with different symbols allows us to see the
effect of a categorical variable in a scatterplot.

In examining a scatterplot, look for an overall pattern showing the form,
direction, and strength of the relationship, and then for outliers or other
deviations from that pattern. Linear relationships are an important form.

If the relationship has a clear direction, we speak of either positive
association or negative association.

Smoothing a scatterplot by a median trace or other method helps reveal
the nature of the dependence of ¥ on x.

SECTION 3.1 EXERCISES

3.1 TIn each of the following cases, tell whether the variable is
quantitative or categorical:

" {a): The name of the manufacturer of a TV set
(b) The number of insects on a corn plant
{c) The score on a test of math anxiety for a student taking a
statistics course
(d) The major area of study for the student in (c)
(e) The number of pages in a book
{f) Your height in inches

3.2 In each of the following cases, tell whether you would be interested
simply in exploring the relationship between the two variables or
whether you would want to view one of the variables as an
explanatory variable and the other as a response variable. In the
latter case, state which is the explanatory variable and which is the
response variable. '

(a) The amount of time spent studying for a statistics exam and the
grade on the exam

(b} The height and weight of a person

{¢) The amount of yearly rainfall and the vield of a crop

(d) A student's scores on the SAT math exam and on the SAT verbal
exam

(e} The occupational class of a father and of his son

3.3 Vehicle manufacturers are required to test their vehicles for the
arniount of each of several pollutants in tHe exhaust. Event among
identical vehicles the amount of a pollutant varies, so several
vehicles must be tested. Figure 3.9 plots the amounts of two
pollutants, carbon monoxide and nitrogen oxides, for 46 identical
vehicles. Both variables are measured in grams of the pollutant per
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Figure 3.9 Nitrogen oxides versus carbon monoxide in the exhaust of 46 vehicles
{Exercise 3.3).

3.4

mile driven. (Data from Thomas I. Lorenzen, *‘Determining

statistical characteristics of a vehicle emissions audit procedure,”

Technometrics, 22 (1980), pp. 483-493.)

(a) Describe the nature of the relationship. Is the association positive
or negative? Is it nearly linear or clearly curved? Are there any
outiiers?

(b} A writer on automobiles says, '"When an engine is properly built
and properly tuned, it emits few pollutants. If the engine is out
of tune, it emits more of all the important pollutants. You can
find out how badly a vehicle is poliuting the air by measuring
any one poflutant. Jf that value is acceptable, the other emissicns
will also be OK."' Do the data in Figure 3.9 support this claim?

The following are the golf scores of 12 members of a women's golf
team in two rounds of tournament play. (A golf score is the number
of strokes required to complete the course, so low scores are better.)

Player 1 2 3 4 5 6 7 8 9 10 11 12

Round 1 [ 89 90 87 95 86 81 102 105 &3 88 51 79
Round 2 | 94 85 89 89 81 76 107 89 87 91 B3 80

{a) Plof the scores from round 2 versus the scores from round 1.
(b) Is there an association between the two scores? If so, is it
positive or negative? Explain why you would expect scores in
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two rounds of a tournament to have an association like the one
you observed.

(c} A good golfer can have an unusually bad round and a weaker
golfer can have an unusually good round. Either of these
situations could produce an outlier. Circle the outlier in your
scatterplot. Can you tell from the data given whether the
unusual value is produced by a good plaver or a poor player?
What other data would you need to distinguish between the two
possibilities?

When water flows across farm land, some of the soil is washed
away, resulting in erosjon. An experiment was conducted to
investigate the effect of the rate of water flow on the amount of soil
washed away, Flow is measured in liters per second and the eroded
soil is rmeasured in kilograms. The data are given in the following
table. (From G. R. Foster, W. R. Ostercamp, and L. J. Lane, Effect
of Discharge Rate on Rill Erosion, presented at the 1982 Winter
Meeting of the American Society of Agricultural Engineers.)

Flow rate 31 .B5 1.26 2_‘47 3.75

Froded soil § .82 1.93 2.18 3.01 6.07

(a) Plot the data.

(b) Describe the pattern that you see. Would it be reasonable to
describe the overall pattern by a straight line? Is the association
positive or negative?

McDonald's “Big Mac’ hamburger is sold in many countries around
the world. By comparing the cost of a Big Mac in the local currency
to its cost in the United States, we can find the exchange rate
between the American doilar and that currency that would make the
cost of a Big Mac the same in both countries. The Economist did
this, and compared the result with'the actual exchange rates
between the dollar and foreign currencies. The following table gives
some of the data. The entries are the value of 1 dolar in foreign
currency; for example, at the official exchange rate 1 U.S. dollar
was worth 1.64 Australian dollars. (From The Economist, Sept. 6,
1986, p. 77.)

(ay Make a scatlerplot of the official exchange rate ¥ versus the Big
Mac exchange rate x.

(by Describe the overall pattern of your scatterplot Is the
association positive or negative? Is there a clearly linear pattern?
Are there any distinet outliers? How weli does comparing the
prices of a Big Mac predict the oﬁmial value of the dollar in
foreign currencies?
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Country Big Mac dollar value Official dollar value
Australia 1.09 1.64
Brazil 7.80 13.80
Britain .69 67
Canada 1.18 1.39
France 10.30 6.65
Hong Kong 4.75 7.80
Ireland .74 .74
Holland 2.72 2.28
Singapore 1.75 2.15
Sweden 10.3¢0 6.87
W. Germany 2.66 2.02

3.7 Do heavier cars cost more than lighter cars? Figure 3.10 is a plot of
the base price in dollars and the weight in pounds for all 1986 model
four-door sedans listed in an auto guide, Cars made by American

rnanufacturers are pIotted with a
plotted with an *'o.’

n X

and cars of foreign make are

(a) Describe the overall relationship between the weight of a car and
its price. Is the association strong {weight and price closely
connected) or weak? Is it generally positive or negative?

300(}0 g e e T Tl Py PSR e < e R e
o = Foreign
* = Domestic .
25000 - o
. »
- o
E 20000 - o .
& 15000 - o c o * .
‘é’ Fery B o » .*
i 10000 - % e $ .3
¢ :o < Ll U
5000
*
0 - T H [ I
1500 2000 ‘2500 3000 3500 4000 4500

Weight {in pounds)

Figure 3.10 B8ase price in dollars versus weight in pounds for 1986 four-door

sedans (Exercise 3.7).
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Figure 3.11 Mean SAT mathematics score versus median teacher salary by state

{Exercise 3.8).

(b) Describe the major differences between domestic and foreign
cars as they appear in the plot.

3.8 Does increasing public spending on education improve student
performance? Figure 3.11 plots one measure of academic
performance, the mean SAT mathematics test score in each state,
against one measure of spending, the median salary paid to teachers
in the state. The outlier is identified as Alaska.

{a) Is Alaska an outlier in both variables or only in one? Why do you
think Alaska is an outlier?

(b) Describe the overall pattern of the relationship between teachers’
salaries and studerits’ SAT mathematics scores.

(Experts in education say there is not a clear association between
spending on public education and SAT scores. As Example 3.2
shows, the percent of high school students who take the SAT varies
greatly from state to state, so the mean SAT score is based on
different kinds of students in different states.)

3.9 The following data refer to an outbreak of botulism, a form of food
poisoning that may be fatal. Each case is a person who contracted
botulism in the outbreak. The variables recorded are the subject’s
age in years, the incubation period (the time in hours between eating
the infected food and the first signs of illness), and whether the
subject survived (8) or died (D). (Modified from data provided by
Professor Dana Quade, University of North Carolina, Chapel Hill,
N.C) :
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Case 1 2 3 4 5 6 7 8 9

Age 29 39 44 37 42 17 38 43 51
Incubation | 13 46 43 34 20 20 i8 72 19
Ouicome D s 8 D D 3 D ) D

Case 10 i 12 13 14 13 16 17 13

Age 30 32 59 33 31 32 32 36 50
Incubation | 36 48 44 21 32 86 48 28 16
Outcome b D 8 D D s b 8 D

(a) Make a scatterplot of incubation period against age, using
different symbols for cases that were fatal and cases where the
victim survived. ‘ .

{b) Is there an overall relationship between age and incubation
period? If so, describe it

{c} More important, is there a relationship between either age or
incubation period and whether the victim survived? Describe
any relations that seemn important here.

{d) Are there any unusval cases that may require individual
investigation?

We wish to predict the level of nitrogen oxide (NOX) emissions from
the level of carbon monoxide (CO) emissions for a vehicle of the
type considered in Exercise 3.3. Figure 3.9 displays a moderately
strong relationship between the two variables. To construct a
median trace, we compute the median NOX level for the vehicles in
each 5-g/mile-wide slice of CO levels, Here is the result of these
calculations:

CO level Count Median NOX
D CO<5B 16 [.785
3<CO< 10 18 o 1270
10 CO <15 8 [.055
15<CO< 20 2 635

20<CO <25 2 715

Draw the median trace on a graph with the same scales as those
used in Figure 3.9, Describe the overall relation displayed by the
median trace.

Refer back to the flea data given in Exercise 1.19 for Thomas the
cat.

(a) Divide the data into consecutive 5-day periods and find the
median for each period {discard the data for the final two days).
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Plot all of the data and superimpose the median trace. Describe
the pattern displayed by-the trace.

(b) Repeat (a) using 3-day periods. For this problem do you prefer
S-day periods or 3-day periods? Why?

3.12 Compute the median trace for S-day periods from the flea data given

.13

3.14

in Exercise 2.57 for Creole the cat. Compare-the overall patterns of
flea teproduction fur Creole and Thomas as displayed by the median
traces.

To demonsirate the elfect of nematodes (microscopic worms) on
plant growth, a botanist prepares 16 identical planting pots and then
introduces different numbers of nematodes into the pots. A tomato
seedling is transplanted into each plot. Here are data on the increase
in height of the seedlings (in centirneters) 16 days after planting.
(Data provided by Matthew Moore.} -

Nematodes Seedling growth

¢ 10.8 9. 13.5 9.2
1000 111 11.1 8.2 11.3
5000 5.4 4.6 7.4 5.0

10,600 5.8 5.3 12 7.5

(a) Make a scatterplot of the response variable (growth) against the
explanatory variable {nematode count). Then compute the mean
growth for each group of seedlings, plot the means against the
nemaiode counts, and connectthese four points with line segments,

(b) Briefly describe the conclusions about the effectsof nematodes
on plant growth that these data suggest.

The presence of harmful insects in farm fields is detected by erecting
boards covered with a sticky material and then examining the insects
trapped on the board. Some colors are more attractive to insects
than others. In an experiment aimed at determining the best color
for attracting cereal leaf beetles, six boards in each of four colors
were placed in a field of cats in July. The following table gives

data on the number of cereal leaf beetles trapped. (Modified from

M. C. Wilson and R. E. Shade, ''Relative attractiveness of various
luminescent colors to the cereal leaf heetle and the meadow

Board color Insccts'trapped

Lemon vellow—} 45 59 48 46 3R 47
Whitc 21 12 14 17 13 17
Green 37 32 15 25 3G 41
Blue 16 Il 20 21 14 7
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spittlebug,'’ Journal of Economic Entomology, 60 (1967), pp.
578-580.)

(a) Make a plot of the counts of insects trapped against board color
{space the four colors equally on the horizontal axis). Compute the
mean count for each color, add the means to your plot, and connect
the means with line segments.

(b) Based on the data, state your conclusions about the attractiveness
of these colors to the beetles.

{c¢) Does it make sense to speak of a positive or negative association
between board color and insect count?

When animals of the same species live together, they often establish
a clear “'pecking order.” Lower ranking individuals defer to higher
ranking animals in many ways, usually avoiding open conflict. A
researcher on animal behavior wants to study the relationship
between pecking order and physical characteristics such as weight.
He confines four chickens in each of seven pens and observes the
pecking order that emerges in each pen, Here is a table of the

_ weights (in grams) of the chickens, arranged by pecking order.

That is, the first row gives the weights of the dominant chicken in
the seven pens, the second row the weights of the number 2 chicken
in each pen, and so on. (Data collected by D. L. Cunningham,
Cornell University, Ithaca, N.Y.)

Weight (g)

Peckingorder Pen1 Pen2 Pen3 Pend Poen5 Pené  Pen?

1880 1300 t600 1380 1800 1000 1680
1920 1700 1830 1520 1780 1740 1460
1600 1500 1520 1520 1360 1520 1760
1830 1880 1820 1380 2000 2000 1800

Y

{a) Make a plot of these data that is appropriate to study the effect
of weight on pecking order. Include in your plot any means that
might be helpful.

{b) We might expect that heavier chickens would tend to stand
higher in the pecking order. Do the data give clear evidence
for or against this expectation?

The tensile modulus of elasticity is a measure of strength for wood
products. In an experiment 58 strips of yellow ponlar wood were
each measured twice. The units of measurement are millions of
pounds per square inch, the two measures are denoted by T1 and
T2, and the number of the strip is denoted by S. The data are given
in the following table. Analysis of this larger data set is best done
using statistical software. (Data provided by Michael Triche and



4% 183 183} 50 168 170

~124.-

Chapter 3: Looking at Data: Relationships

Professor Michael Hunt, Forestry Department, Purdue University,
West Lafayette, Ind.)

8 Ti T2 S Ti T2 S T1 T2 5 Ti T2

1.58 1.55 2 1.53 1.54 30 138 137 4 124 125

5 159 1.57 6 1.52 1.51 7 147 145 8 145 1.44
1.54 1.53 | 10 1.49 149 11 1.51 1.5 112 160 1.58

13 1.34 1.32 1 14 1.33 133§ 15 172 1700 16 1.63 1.62
17 1.51 1,50 | 18 1.42 142 119 190 187|120 1.81 1.79
21 1.88 186122 1.68 1.65 1 23 §.56 1.54 | 24 1.68 1.67
25 173 174 1 26 1.63 162127 1.65 165128 176 1.75
29 1.58 156130 169 167 |31  1.60 158132 1.57 1.56
33 170 169 ]34 141 140 135 1.33 1.33 1 36 1.59 1.59
37 164 166 | 38 174 174 | 39 189 190140 173 1.7%
41 1.80 1.8Y | 42 1.67 168 1 43 1.63 1.64 | 44 1.87 1.88
45 202 204)146 179 18147 1.86 188 | 48 1.72 1.73

(a) Plot T2 versus T1.

(b) Is the association between T1 and T2 positive or negative? Is this
the direction of association that you would expect before looking
at your plot? Why?

(cy Plot Tl versus S and T2 versus 5. Do you see any pattern? If so,
describe it. What questions would you ask the experimenters in
seeking an explanation for the pattern observed?

3.2 LEAST SQUARES REGRESSION

EXAMPLE 3.6

When we smooth a scatterplot by using a median trace or some other tool,
we are attempting to summarize the dependence of the response y on the
explanatory variable x without specifying what form that dependence should
take. A single equation that describes the dependence of v on x provides a
more compact summmary. The simplest such equation is a linear equation of
the form

y=a+ bx
whose graph is a straight line. A strong linear pattern in a scatterplot can

be sunumarized by a linear equation.

Warren heats his home with natural gas. The amount of gas required 10 heat the
home depends on the outdoor temperature—the colder the weather, the more
gas will be consumed. As long as the family's habits, the insulation of the house,
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and other such factors do not change, Warren should be abie to predict gas con-
sumption from the outdoor temperature. He therefore measures his household's
natural gas consumption gach month during one heating season, from October
to the following June. Because months differ in length, he divides gas consump-
tion by the number of days in the month to obtain the daily gas consumption.

Outdoor ternperature influences gas consumption enly when it is cold encugh
10 require heating. The usual measure of the need for heating is heating degree
days. To find the number of heating degree days for a given day, first record the
high and low temperature for the day. The average iemperature is taken to be
the mean of the high and low temperatures. One heating degree day is accumutated
for each degree this average falls below 65°F. An average temperature of 20°F,
for example, corresponds to 45 degree days. Wazren obtains the average number
of degree days per day for each month from weather records for his community.

Here are the data.® The explanatory variable x is heating degree days per
day for the month, and the response variable y is gas consumption per day in
hundreds of cubic feet.

Month | Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June

or

X 156 26.8 378 364 355 18.6 15.3 7.9 RIJ
. 5.2 6.1 87 8.5 88 - 49 4.5 2,5 1.1

A scatterplot (Figure 3.12) shows that the refationship is strongly linear. The de-
viations from the straight-line pattern reflect the use of gas for cooking, windows

left open, and other influences on gas consurmption. [ ]
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Figure 3.12 Residential natural gas consumption versus heating degree days.
See Example 3.6.
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Figure 3.13 The least squares method: fitted line and residuals.

Computing the Regression Line

Warren's goal is to use his data to predict gas consumption at different
temperatures. To do this, he will draw a straight line through the scatter
plot in Figure 3.12. A line that shows the dependence of gas consumption
on degree days is called 2 regression line of the response variable (consump-
tion) on the explanatory variable (degree days).* Warren could find a satis-
factory regression line by moving a transparent straightedge through the
points until the fit seems good. We prefer a more objective method. When
a scatterplot shows a less strong linear pattern than the one in Figure 3.12,
it is difficult to fit by eye a line that is appropriate for predicting y from x.
Chapter 2 introduced the most common technique for fitting a line to data,
the wiethod of least squares. That chapter dealt only with linear growth
over time; now we will use least squares regression lines to describe the
overall pattern of any linear relationship.

Tao develop the least squares idea in detail, we magnify the center portion
of Figure 3.12 and draw a line through the points. See Figure 3.13, How
well does this line fit? Since our goal is to predict y when we are given 2

* The term ‘‘regression’’ and the general methods for studying relationships now included
under this term were introduced by the English gentleman scientist Francis Galten
{1822-1911), Galton was engaged in the study of heredity, One of his observations was that
children of tall parents tended to be taller than average but not as tall as their parents. This
“regression toward mediocrity’ gave these statistical methods their name.
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value of x, the error in our prediction is measured in the y, or vertical

direction. We therefore concentrate on the deviations of the data points from

the line in the vertical direction. These deviations are drawn in Figure 3.13.

They are the residuals when this particular line is used to predict y from x.
‘We represent n observations on two variables x and y as

(xlv yt)’ {xlr yZ)J L (xm J’n)

If a line y = a + bx is drawn through the scatterplot of these observations,
the line gives the value of y corresponding to x; as §, = a + bx;. The notation
# (read "'y hat’’} will be used to distinguish the y-value predicted by the
line from the actually observed y. The ith residual is the vertical deviation
of the fth data point from the line, which is

residual = observed v — predicted y
=y -5 _
= y; — a— bx
Some of these residuals are positive and somme are negative, The method of
least squares chooses the line that makes the sum of the squares of the re-

sidugls as small as possible. Finding this line amounts to finding the values
of the intercept a and the slope b that minimize the quantity

Z(}’i - a— bx)

for the given observations x; and y;. In the case of the heating data given
in Example 3.6, we must choose the ¢ and & that minimize

(5.2 —a~— 15602 + (6.1 ~a— 26867 + -+ (1.1 —a—.0b?*
Here is the solution to this mathematical problem.

Least squares regression line

The least squares regression line of ¥ on x calculated from #n observa-
tions on these two variables is given by ¥ = a + bx, where
b= 2lx - Iy~ 7)
Yix - x)*

a=¥%—bx

(3.1)

The sums in Equation 3.1 run over all of the observed values x; or y;
the subscripts were omitted for easier reading. There are many alternative
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expressions for a and b Many calculators and all statistical software sys-
tems will compute a and b for least squares regression lines. Use these re-
sources if they are available to you rather than calculate by hand. '

If you do statistical calculations with a basic calculator, you will want
to use an alternative computing formula for the slope b of the least squares
line. Like the similar Equation 1.3 for the variance, this formula avoids
subtracting the mean from each observation and makes efficient use of basic
sums and sums of squares. The computing formula is

A= 00 )
ny xt— (Z x)? (3.2

To calculate the least squares regression Jine of gas consumption on degree days
from the data in Example 3.6, proceed as follows. First compute the building
biock sums
Tx= 156+ -+.0=1939
T a? = 15.6% + - +.0% = 5618.11
Y y=52+ - +11=503
T xy = (15.6X5.2) + -+ + (0)(1.1) = 1375.0

Then from Equation 3.2

an:w(}: O 9
ny 1t - (Z x)?
(9)(1375.0) — (193.9)(50.3)
= T(9Y(5618.11) — {193.9)
2621.83
= 17,965.78
a=y— b¥
50.3 193.9 .

The resulting line is

5= 1.23 + .202x

It is shown in Figure 3.14 superimposed on the original scatterplot. ]

In the regression line $ = 1.23 + 0.202x, the slope of the line is b=
0.202. The slope is the increase in y correspondmg to an increase of one
unit in x Warren estimates that each additional degree day increases his
gas consumption by 0.202 hundred cubic feet (or 20.2 cubic feet) per day.
The number a = 1.23 is the intercept, the value of 3 when x = 0. In this
case, x = 0 indicates an average temperature of 65° or higher, so there is
no demand for heating. Warren expects to use 123 cubic feet of gas per day
when x = 0. This represents gas used for heating water and for cooking.
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Figure 3.14 The least squares regrassion line of naturai gas consumption on
heating degree days.

Warren adds insulation in his aitic during the summer, hoping to re-
duce his gas consumption for heating his home. The next February, gas
consumption is 870 cubic feet per day. Was the added insulation effective?
We cannot simply compare this year’s gas consumption with last February’s
rate {880 cubic feet per day) because the average temperatures for the two
months were not the same. In fact, this February had an average of 40
degree days per day. We therefore predict from the regression equation
how much gas the house would have used at 40 degree days per day last
winter. Cur prediction is

F=1.23 4+ (,202)(40) = 9.31

or 931 cubic feet. Warren estirnates that he saved about 61 cubic feet per
day by adding insulation.

The accuracy of predictions from a regression line depends on how
much scatter about the line the data show. When, as in this example, the
data points are all very close to the line, we are confident that our predic-
tion is reliable. If, however, the data-show a linear pattern with considerable
spread (as in Figure 3.1), we may agree that a regression line summarizes
the pattern but we will also put less confidence in a prediction based on
the line, We will learn in Chapter 10 how to give a numerical statement
of our level of confidence in predictions. OF course, the usefulness of any
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regression line is limited by the data from which it was computed. Warrey,
must collect new data and compute a new regression line if he wishes to
predict his gas consumption with the new insulation in place.

Fit and Residuals

The dependence of gas consurption on degree days (Examples 3.6 and 3.7)
was so strong that we can be confident that the least squares regression line
tells almost the whole story about these data. This happy circumstance is
not always the case. The deviations from the fitted regression line often
give important additional information. These deviations are best studied by
calculating and plotting the n residuals y; — §;,. As we saw in Chapter 2,
the residuals from a least squares regression line have the property that
their sum {and therefore their mean) is always 0.

In Example 3.6, the observed consumption of gas for October, when x = 15.6
degree days, was y = 5.2. The medicted consumption for this x from the icast
squares regression line of Example 3.7 is .

§=1.23 4+ (,202)(15.6) = 4.38
The October residual is therefore
e, =5.2—4.38=.82

This residual appears in Figure 3.13 as the length of the vertical [ine joining v

and 9. m

The distribution of the residuals can be examined using the tools pre-
sented in Chapter 1. A stemplot helps to check the symmetry of the distri-
bution and to spot outliers. A normal probability plot can tell whether the
residuals are approximately normally distributed. Since formal statistical
methods for predicting ¥ from x using a regression line depend on the shape
of the distribution of residuals, questions of symmetry and normality will
eventually interest us. Qur present concerns, however, are descriptive. Is
the relationship between ¥ and x close to linear? Are there outlying obser-
vations that require special attention? Is there evidence that ¥ is influenced
by variables cother than x? Scatterplots of the residuals against other vari-
ables are used to investigate questions like these.

You should always plot the residuals against the corresponding values
of the explanatory variable x. If all is well, the pattern of this plot will be
an unstructured horizontal band centered at 0 (the mean of the residuals)
and symmetric about 0. Figure 3.15(a} displays an idealized version of this
pattern. A curved pattern like the one in Figure 3.15(b) shows a nonlinear
dependence of the response y on x. A fan-shaped pattern like the one in
Figure 3.15(c) shows that the variation of y about the line increases as x
increases! predictions of ¥ will therefore be more precise for smaller values
of x, where y shows less spread about the line.



-13]-

3.2 Least Squares Regression

(=T L T

Residual

~3 -
—4 -

L B PR

s g it A e s e s b @ b 2t s o ot B RS i S8 SRS £ T I ki i e o e

Residual
=

£ AW EARI ot 4D TR TR T .

L T LY

Residual

©)

Figure 3.i15 |dealized patterns in plots of least squares residuals.

Other residual plots can give other kinds of information. A plot of the
residuals against the time order in which the data were collected may reveal
a dependence of y on some variable that changes over time. Since we have
seen that background variables can strongly affect the appearance of a
scatterplot, residuals should be plotied against time and against any other
variables, In all such plots, the residuals are plotted vertically and time or
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any other potential explanatory variable horizontally. A sloping linear band
or other strong deviation from the pattern shown in Figure 3.15(a) indicates
a dependence of y on the new variable. A sloping linear band cannot appear
when the residuals are plotted against x because the residuals have no re-
maining linear dependence on x. Of course, in practice, patterns will not be
as neat as the schematic drawings in Figure 3.15. Any set of data will show
some irregularity; don’t overreact to vague palterns in a residual plot. Here
are two examples of plotting and interpreting residuals.

The mathematics department of a large stale university must plan in advance
the number of sections and instructors required for elementary courses, The de-
partment hopes that the number of students in these courses can be predicted
from the number of entering freshmen, which is known before the new students
actually choose courses. The table below contains the data for recent years.® The
explanatory vartable x is the number of students in the freshman class, and the
response variable y is the number of students who enroll in mathematics courses
at the 100 level.

Year | 1980 1981 1982 1983 1934 1983 1986 1987

x‘ 4595 4827 4427 4258 3995 4330 4265 4331
7364 7547 7099 6894 6572 7156 7232 7450

Equation 3.2 could be used to compute the regression line from these data. In-
stead, we enter the data into the MINITARB statistical computing system, calling
x FRESH and ¥ MATH for easy recall. The regression command and the first part
of the printout appear as follows:

MTB > REGRESS ‘MATH® ON 1, *‘FRESH®
The regression equation is
MATH = 2492. 69 + 1. 0663 FRESH

Other information, including a table of the residuals, follows on the printout. We
see from the output that the least squares regression line is

§=2492.69 + 1.0663x L]

A scatterplot {Figure 3.16) of the data from Example 3.9 with the regres-
sion line shows a reasonably linear fit. There is a cluster of points with similar
values near the center. A plot of the residuals against x(Figure 3.17) magnifics
the vertical deviations of the points from the line. It is apparent from either
graph that a slightly different line would fit the five lower points very well,
so that the three points above the line represent a somewhat different rela-
tion between the number of freshmen x and mathematics enrollments y.
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Figure 3.16 The regression of elementary mathematics enroliment on number
of freshmen at a large university. See Example 3.9.
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Figure 3.17 Residual plot for the regression of mathematics enrollment on
number of freshmen.

A second plot of the residuals clarifies the situation, Figure 3.18 is a plot
of the residuals against time. We now see that the five negative residuals are
for the years 1980 to 1984, and the three positive residuals represent the
vears 1983 to 1987. This pattern suggests that a change took place between
1984 and 1985 causing a higher proportion of students to take mathematics
courses beginning in 1985. In fact, one of the schools in the university
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Figure LIB Plor of the residuals versus time for the regression of mathematics
enroliment on number of freshmen,

- changed its program to require that entering students take another mathe-

matics course. Notice that Figure 3.18 does not say that mathematics en-
rollments changed linearly over time up to 1984—a glance at the table in
Example 3.9 shows that they did not. Figure 3.18 is a plot of the residuals
from the regression of the enrollments on the count of freshmen, not a plot
of the enroflments themselves.

The contrast in Figure 3.18 between the years up to 1984 and the fol-

lowing years is another reminder that an observed relationship may not be
trustworthy when changes accur in the underlying situation. Because the
least squares regression line from Example 3.9 makes use of data from 1984
and eatlier, the mathematics department should not use it in future years
to predict elementary mathematics enrollments from the count of freshimen.

A study of cognitive development in young chiidren recorded the age (in months)
at which each of 21 children spoke their first word and their Gesell score, the
result of an aptitude test taken much fater. The data appear in Table 3.3 and in
the scatterplot of Figure 3.19.7 Notice that cases 3 and 13, and cases 16 and 21,
have identical values for both variables. When drawing the scatterplot, we used
a different symbol to show that one point stands for two cases.

The purpose of the study was to ascertain if age at first word {x} could predict
the later test score v, It is also plausible, however, to try to guess the age when a
child first spoke from the test score. Both the regression line of y on x and the
regression line of x on ¥ are therefore displayed in Figure 3.19. These regression
lines are very different: One minirnizes vertical deviations and the other minimizes
horizontal devialions, The lines intersect at the point (%, ), through which any
least squares regression line always passes. It is essential in a regression setting
to clearly distinguish the explanatory from the response variable. This example
also indicates why it is hard to fit an appropriate line by eye—we cannot easily
concenirate on lack of fit in one direction only. L
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Table 3.3 Age (in months) at first word
and Gesell adaptive score

Case Age Score Case Age Score
1 15 95 12 9 926
2 26 71 13 10 83
3 10 83 14 11 84
4 9 a1 15 i1 102
5 15 102 <16 10 100
¢ 20 87 17 12 105
7 18 93 18 42 57
8 11 100 19 17 121
9 8 104 20 11 86

10 20 G4 21 10 100
1 7 113

Figure 3.20 shows the regression of Gesell score on age at first word (the
colored line) and highlights two cases, the children numbered 18 and 19 in
Table 3.3. Case 19 is an outlier that lies well away from the general straight-
line pattern of the other points. Case 18 is not an outlier if we take the
overall paitern to be roughly linear, for this point falls in that pattern. The
residual plot (Figure 3.21) reinforces these conclusions. Case 19 produces

140

120 -4

100 -~

80"‘|

Gesell adapitive score

60 -

o = Two cases

40

i
10

20

Age at first word {in months)

30

40 50

Figure .19 The two least squares regression lines of Gesell store on age at first

word and of age at first word on Gesell score. See Example 3.10.
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Figure 3.20  The regression of Gesell score on age at first word, with and without
an influential case,
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Figure .21 Residual plot for the regression of Gesell score on age at first word:
case 19 is an outlier and case 18 is an influential case that does not have a large
residual.
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the largest residual and case 18 a rather small residual. Yet case 18 is very
important. Because of its extreme position on the age scale, it has a strong
influence on the position of the regression line. The black line in Figure
3.20 is the least squares regression line computed from all 20 cases except
case 18. Notice how this single case pulls the colored regression line toward
itself. Case 19, on the other hand, has less influence on the position of the
regression line because this child’s age at first word (17 months) lies close
to the mean age ¥ = 14.4 months. The regression line must pass through
the point (%, 7), so it is difficult for an observation at an age close to X to
move the line to any great degree,

Outliers and influential Observations

Example 3.9 illustrates the power of residuals to detect deviations from linear
dependence of y on x and even to suggest explanations for departures from
linearity. Example 3.10, however, points out a weakness of regression re-
siduals. Residuals call attention to outliers but not to other influential cases.

Ouilier, influential observation

An outlier in a regression is a data point that produces a large residual.
An observation is influential i#f removing it would markedly change the
* position of the regression line.

In other words, an outlier lies outside the linear pattern, and so has a large
residual. But you must also be on the alert for influential observations that
are not outliers. Least squares regression is not resistant. The position of the
least squares regression line is heavily influenced by observations that are
extreme in x. The influence of these points often guarantees that they are
not outliers, however, because they draw the regression line toward them-
selves. Influential observations are easy to detect (as long as there is only a
single explanatory variable), but merely locking for large residuals doesn'’t
do the job. Many statistical computing systems produce tables and plots of
regression residuals, but if you rely on these alone, you may miss the most
influential cases. The basic scatterplot of y versus x will alert you to obser-
vations that are extreme in x and may therefore be influential,

An influential observation should be investigated to ensure that it is cor-
rect. Even if no error is found, you should ask whether this cbservation be-
longs to the population you are studying. A statistician would ask the child
development researcher in Example 3.10 whether the child of case 18 is so
slow to speak that this case should not be allowed to influence the analysis.
If this case is excluded, much of the evidence for a connection between the
age at which a child begins 1o talk and later aptitude scores vanishes. If the
case is retained, we need data on other children who were slow to begin
talking, so that the analysis is no longer so heavily dependent on a single child.
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In addition to showing outliers and influential observations, examina-
tion of residuals may also disclose the influence of lurking variables.

Lurking variable

A lurking variable is a variable that has an important effect on the
response but that is not included among the explanatory variables
studied.

Since Jurking variables are often unrecognized and unmeasured, detecting
their effect is a challenge. The most effective tool is an understanding of the
background of the data that allows you to guess what lurking variables
might be present. One useful method for detecting lurking variables is to
plot both the response variable and the regression residuals against the
time order of the observations, since many variables change with tirne. This
was the case in Figure 3.18, where the change in course requirements over
time was a lurking variable. Here is another example.

A study of the manufacture of molded plastic parts examined the effect of time
spent in the mold (x) on the strength (¥) of the part. Several batches of hot plastic
were pressed for 10 seconds, then several more batches for 20 seconds, and so on.
Regression showed a strong dependence of strength en molding time. A plot of
strength against the order in which the batches were molded, however, showed
an even stronger dependence. This led the engineers to realize that the mold grew
constantly warmer as mote batches were processed, and that this lurking variable
explained the changing strength.®

This experiment was poorly designed; the effect of time in the mold cannot
be separated from the effect of any lurking variable that was changing over time
because all 10-second batches were molded first, then all 20-second batches, and
so on. As we shall see in Chapter 4, properly designed experiments can prevent
the effects of lurking variables from being confused with the effects of the ex-
planatory variable or variables. [ |

A regression line is a compact description of the overall pattern of de-
pendence of ¥ on x. Since the straight line is fitted to the data, it can be
described briefly as a FIT. The definition of residuals then says that

DATA = FIT + RESIDUAL

There are many ways of obtaining an overall FIT for two-variable data. The
median trace produces a FIT that is not forced to be a straight line. Some
statistical sofiware systems provide aliernative methods of fitting a straight
line to data that are more resistant than least squares regression. Examining
residuals, especially through plots, can help assess the success of a FIT pro-

“duced by any method. Residuals from least squares regression have several

special properties (such as mean 0) that make them simpler to work with.
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If your software allows resistant fitting of a line to data, you can check
the results of the least squares fit by also doing a resistant fit. If the two
lines do not agree closely, search for influential observations or other ex-
planations for the lack of agreement. Despite its lack of resistance, the least
squares method continues to dominate statistical practice. To use this—and
other-—statistical methods wisely, you must never neglect the detailed exami-
nation of your data.

SUMMARY

When a scatterplot suggests that the dependence of y on x can be
summarized by a straight line, the least squares regression line of y
on x can be calculated. This fitted line can be used to predict y for a
given value of x.

The fit of a regression line is examined by plotting the residuals, or
differences hetween the observed and predicted values of y. Be on the
lookout for outliers, which are points with unusually large residuals,
and also for nonlinear patterns and uneven variation about the line.

Influential observations, individual points that substantially change the
regression line, must also be spotted and éxamined. Influential observations
are often outliers in the x variable, but they may not have large residuals.

Evidence of the effects of lurking variables on y may be provided by
plots of v and the residuals against the time order of the observations,

SECTION 3.2 EXERCISES

3.17 Exercise 2.18 presented the following data on Sarah's growth
between the ages of 36 months and 60 months:

Age (months) | 36 48 51 54 57 60

Height(cm) | 86 90 91 93 94 95

(a) Use Equation 3.2 to compute the slope b of the least squares
regression line of height on age; then find the intercept a from
a = ¥ — bX. According to the regression line, how much d()es
Sarah grow each month?

(b} Make a scatterplot of the data and draw the least squares line
on the plot. -

{e) Use your regression line to estimate Sarah’s height at 42 months
of age.
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A student who waits on tables at a Chinese restaurant in a coilege
neighborhoad records the cost of meals and the tip left by single
diners. Here are some of the data.

“Meal | $3.50 8479  $524  $3.62  $5.35

Tip $ .25 $ .50 § .60 $ 40 $ .75

(a) Compute the least squares regression for these data starting with
Equation 3.2.

(b) Make a scatterplot of the data and draw the regression line on
your plot,

{€) The next diner orders a mea] costing $3.89. Use your regression
line to predict the tip.

Use your regression line from Exercise 3.17 to predict Sarah’s height
at each of 36, 48, 51, 54, 57, and 60 months. Then compute the
residuals for the regression line by subtracting these predicted
heights from the actually observed heights at these ages. Verify that
the residuals have sum 0 (up to roundoff error). Make a plot of the
residuals against age and briefly describe the pattern of residuals.

Compute the five residuals for the data in Exercise 3.18, using the
regression line that you have already computed. Verify that the
residuals have sum 0 {(up to roundoff error). Plot the residuals against
the cost of the meals and comment on the pattern of the residuals.

Runners are concerned about their form when racing. One measure
of form is the stride rate, defined as the number of steps taken per
second. A renner is inefficient when the rate is either too high or
too low. Of course, as the speed increases, the stride rate should also
increase. In a study of 21 of the best American fernale runners, the
stride rate was measured for different speeds. The following table
gives the speeds (in feet per second) and the average stride rates for
these women. (Data from R. C. Nelson, C. M. Brooks, and N. L.
Pike, ‘‘Biomechanical comparison of male and female distance
runners,” in P. Milvy (ed.), The Marathon: Physiological, Medical,
Epidemiological, and Psychological Studies, New York Academy of
Sciences, 1977, pp. 793-807.)

Speed 15.86 16.88 17.50 18.62 19.97 21.06 22.11

Stride rate { 3.05 3.12 317 3.25 3.36 3.46 3.55

(a) Plot the data with speed on the x axis and stride rate on the y
axis. Does a straight line adequately fit these data?
{(b) Compute the slope and intercept for the least squares line, usmg



._lq,‘ -

Section 3.2 Exercises

322

3.23

the computing formula 3.2 or a statistical calculator or software,
Graph the least squares line on your plot from (a).

(c} For each of the speeds given, compute the predicted value using
the least squares line.

(d) Using the results of (c), compute the residuals. Verify that the
residuals add to zero.

(e} Plot the residuals versus speed. Describe the pattern. What does
the plot indicate about the adequacy of the linear fit?

Refer to the previous exercise. The corresponding data for a group
of 24 elite American male runners are given in the following table:

19.97
3.22

Speed 15.86

292

16.88
2.98

17.50
3.03

18.62
311

21.06
3.31

22.11

Stride rate 3.41

Explain why the stride rate at each speed is lower for men than for
women. Then answer the guestions given in the previous exercise

_using the data for males.

Research on digestion requires accurate measurements of blood flow
through the lining of the stomach. A promising way to make such
measurements easily is to inject mildly radioactive microscopic
spheres into the bloodstream, The spheres lodge in tiny blood vessels
at a rate that is in proportion to blood flow; their radioactivity
allows blood flow to be measured from outside the body. Medical
researchers compared blood flow in the stomachs of dogs, measured
by use of microspheres, with simultanecus measurements taken
using a catheter inserted into a vein. The data, in millifiters of blood
per minute {ml/minute), appear below. (Based on L. H. Archibald,
F. G. Moody, and M. Simons, ‘‘Measurement of gastric blood flow
with radioactive microspheres,’’ Journal of Applied Physiology, 38
(1975), pp. 1051-1056.)

Spheres { 4.0 4.7 6.3 B2 120 159 174 181 202 239

Vein 33 83 45 93 107 164 154 176 21.0 217

(a) Make a scatterplot of these data, with the microsphere
measurement as the explanatory variable, There is a strongly
linear pattersn.

{b) Calculate the least squares regression line of venous flow an
microsphere flow. Draw your regression line on the scatterplot.

(¢} Predict the venous measurement for microsphere measurements
of 5, 10, 15, and 20 ml/minute. If the microsphere measurements
are within about 10% to 15% of the predicied venous
measurements, the researchers will simply use the microsphere
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measurements in future studies. Is this condition satisfied over
this range of blood flow?

Suppose that the last customer in Exercise 3.18 had ordered a large
meal and lefi no tip. The data are now as follows:

Meal | $3.50 $4.70 $5.24 $3.62 $15.69

Tip $ .25 § .50 $ .60 $ 40 ]

(a) Make a scatterplot of these data. Which observation will be most
influential? Why?

(b) Fit a line by eye to the first four observations and draw this line
on your plot. The least squares regression line fitted to all five
observattons is ¥ = 0.57 — 0.034x. Draw this line on your
graph as well. A comparison of the two lines shows the influence
of the final observation,

(¢} Does it appear from the graph that the influential observatjon
has a larger residual from the least squares line than the other
observations? (You need not actually compute the residuals.)

One component of air pollution is airborne particulate matter such
as dust and smoke. Particulate pollution is measured by using a
vacuum motor to draw air through a filter for 24 hours. The filter is
weighed at the beginning and end of the period, and the weight
gained is a measure of the concentration of particles in the air. in a
study of pollution, measurements were taken every 6 days with
identical instruments in the center of a small city and at a rural
location 10 miles southwest of the city. Because the prevailing winds
blow fram the west, it was suspected that the rural readings would
be generally lwver than the city readings, but that the city readings
could be predicted from the rural readings. The following table gives
readings taken every 6 days between May 2 and November 26, 1986.
The entry NA means that the reading for that date is not available,
usually because of equipment failure, (Data provided by Matthew
Moore.)

Rural | NA 67 42 33 46 NA 43 54 NA NA NA NA

City 39 68 42 34 48 82 45 NA NA 60 57 NA

Rural | 38 88 108 57 70 42 43 39 NA 32 48 36

City 39 NA 123 59 71 41 42 38 NA 57 50 38

Rural | 44 51 21 74 48 84 51 43 45 41 47 35

City 45 69 23 72 49 8 51 42 46 NA 44 42
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Figure 3.22 The regression of city particulate concentration on rural particulate
concentration for the same days (Exercise 3.25).

To assess the success of predicting the city particulate reading
from the rural reading, the 26 complete cases (with both readings
present) are analyzed. Computer work finds the least squares
regression line of the city reading y on the rural reading x to be

$= 2580+ 1.0935x

Figure 3.22 is a scatterplot for the 26 complete cases with the
regression line drawn.

{a) Which observation in Figure 3.22 appears to be the most
influential? Is this the observation with the largest residual
(vertical distance from the line}?

{b) Locate in the table the observation you chose from the graph in
(a} and compute its residual.

{c) Do the data suggest that using the least squares line for prediction
will give approximately correct results over the range of values
appearing in the data? (The incompleteness of the data does not
seriously weaken this conclusion if equipment failures are
independent of the variables being studied.)

(d) On the fourteenth date in the series, the rural reading was 88
and the city reading was not available, What do you estimate the
city reading to be for that date?

3.26 To study the energy savings resulting from adding solar heating panels
to a house, researchers measured the natural gas consumption of the
house for more than a year, then installed solar panels and observed
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the natural gas consumption for almost 2 years. The variables are
as in Example 3.6: The explanatory variable x is degree days per
day during the several weeks covered by each observation, and the
response variable y is gas consumption (in hundreds of cubic fect)
per day during the same period. Figure 31.23 plots y against x, with
separate symbols for observations taken before and after the
installation of the solar panels. The least squares regression lines
were computed separately for the before and after data, and are
drawn on the plot. The regression lines are

Before: ¥ = 1.089 + .189x
After: = 0.853 + .157x

(Data provided by Professor Robert Dale, Purdue University, West
Lafayette, Ind.)

(a) Does the scatterplot suggest that a linear model is appropriate
for the relationship between degree days and natural gas
consumption? Do any individual observations appear to be
outliers (large residuals) or highly influential?

{b) About how much additional natural gas was consurned per day
for each additional degree day before the panels were added?
After the panels were added?

(¢} The average daily temperature during January in this location is
about 30°, which corresponds to 35 degree days per day. Use the

Before solar panels

o = After solar panels

Gas consumed per day (in 160 cu [t)
N

¢ t ! i | i :
0 10 . 20 30 40 50 60

Heating degree days per day

Figure 3.2} The regression of residential natural gas consumption on heating
degree days before and after instaliation of solar heating panels (Exercise 3.26).
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regression lines to predict daily pas usage for a day with 35 degree
days before and after installation of the panels. If the price of
natural gas is $0.60 per hundred cubic feet, how much money do
the solar panels save in the 31 days of a typical January?

3.27 Table 1.4 gives the calories and sodium content for each of 17 brands
of meat hot dogs. The distribution of caloties was examined in the
discussion following Example 1.11, and the distribution of sodium
in Exercise 1.58. Now we examine the relation between calories and
sodiam, Figure 3.24 is a scatterplot of the data from Table 1.4,

(a)
L))

()

600 -

500

400 -

Sodium

300 ]

200 -

Describe the main features of the relationship. (The discussion
following Example 1.11 may help.)

The plot shows two least squares regression lines. One was
calculated using all of the observations, while the other omitted
the brand of veal hot dogs that is an outlier in both variables
measured. Which line (colored or black} was calculated from all
of the data? Explain your answer.

The regression line that ignores the outlier is

$ = 46.90 + 2.401x

A new brand of meat hot dog (not made with veal) has 150 calories
per frank. How many milligrams of sodium do you estimate
that one of these hot dogs contains?

100

100 120 140 160 180 200

i

Calories

Figure 3.24  The regression of sodium content an calorles for brands of hot dogs,

calcufated

with and without an outlier (Exercise 3.27).
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3.28 Arc baseball players paid according to their performance? To study

3.29

this question, a statistician analyzed the salaries of over 260 major
league hitters alonp with such explanatory variables as career batting
average, career hore runs per time at bat, and years in the major
leagues. This is a mulliple regression with several explanatory
variables. More detail on multiple regression appears in Chapter 10,
but the fit of the model is assessed just as we have done in this
chapter, by calculating and plotting the residuals

residual = observed v — predicted y

(This analysis was done by Crystal Richard.)

(a} Figure 3.25(a) is a plot of the residuals versus the predicted salary.
This plot was produced by the SAS statistical software system that
was used to analyze the data. Notice that when points are 0o
close together to plot separately, SAS uses letters of the alphabet
to show how many points there are at each position. Describe
the pattern that appears on this residual plot. Will the regression
model predict high or low salaries more precisely?

{(b) After studying the residuals in more detail, the statistician decided
to predict the logarithm of salary rather than the salary itself.
One reason was that while salaries are not normally distributed
(the distribution is skewed to the right), their logarithms are nearly
normal. When the response variable is the logarithm of salary, a
plot of the residuals against the predicted value is satisfactory--it
looks like Figure 3.15(a). Figure 3.25(b) is a plot of the residuals
against the number of years the player has been in the major
leagues. Describe the pattern that you see. Will the model
overestimate or underestimate the salaries of players who are
new to the majors? Of players who have been in the major leagues
about 8 years? Of players with more than 15 vears in the majors?

Refer to the golf data given in Exercise 3.4.

(a) Plot the data with the round 1 scores on the x axis and the round
2 scores on the y axis. Does it appear reasonable to fit a straight
line to these data? Are there any apparent outliers or influential
observations?

(b) Compute the slope and intercept for the least squares line. (Jraph
the least squares line on your plot from (a).

(¢} For each of the round 1 scores, compute the predicted value for
the round 2 score using the least squares line.

(d) Using the result of (c), compute the residuals. Verify that the
residuals add to zero.

(¢) Plot the residuals versus the round 1 scores. Describe the pattern.
What does the plot indicate about the adequacy of the linear fit?
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Figure 3.25 Two residual plots for the regression of baseball players’ salaries on

their performance (Exercise 3.28).
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3.30 Refer to the erosion data given in Exercise 3.5,

3.31

3.32

3.33

(a) Compute the slope and intercept for the least squares line. Graph
the least squares line on your plot from (a) of that exercise.

(b) For each ot the flow rates, compute the predicted value using
the least squares line.

(c) Using the results of (b), compute the residuals. Verify that the
residuals add to zero.

(d) Plot the residuals versus flow rate. Describe the pattern. What
dees the plot indicate about the adequacy of the linear fit?

Refer to the data in Exercise 3.16 giving two measurements of the
strength of wood strips. As before, you should use a statistical
computing system to analyze this larger data set.

{(a) Plot the data with T1 on the x axis and T2 on the y axis. Does it
appear reasonable to it a straight line to these data?

(b} Compute the least squares regression line. Graph the least
squares line on your plot From (a).

() For each case compute the predicted value using the least
squares line and find the residuals.

(d) Plot the residuals versus T1. Describe the pattern. What does
the plot indicate about the adequacy of the linear fit?

{€) Plot the residuals versus S, which gives the time order of the
measurements taken. Describe the plot.

(f) Make a stemplot (or, if your system permits, a normal quantile plot)
of the residuals. Describe the distribution of the residuals. 1s it
nearly symmetric? Approximately normal?

Refer to the previous exercise.

{a) Plot the data with T2 on the x axis and T1 on the y axis.

(b) Compute the slope and intercept for the least squares line which
views T1 as the response variable and T2 as the explanatory
variable. Graph the least squares line on your plot from (a).

(¢) On a plot of the data with T1 on the x axis and T2 on the y axis,
graph the least squares line from the previous exercise and also
the one that you just found in part (b) of this exercise. (Hint:
For each line simply find two points on it, plot the points and
connect them with a line.)

(d) Find the mean of each variable and verify the fact that the two
lines intersect at the point corresponding to these means.

If a statistical computing system is available, a more thorough analysis

of the particulate pollution data in Exercise 3. 25 is possible. Enter the

data into the computer.

(a) Do aregression of the city readings y on the rural readings x; verify
the regression equation given in Exercise 3.25 and obtain the
residuals.
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b} Plot the residuals against both x and the time order of the’
observations, and comment on the results.

(c) Make a stemplot (or, if your system allows, a normal quantile
plot) of the residuals. Is the distribution of the residuals nearly
symmetric? Does it appear to be approximately normal?

3.34 The following tabie gives the results of a study of a sensitive chemical
technique called gas chromatography which is used to detect very
small amounts of a substance. Five measurements were taken for
each of four amounts of the substance being investigated. The
explanatory variable x is the amount of substance in the specimen,
measured in nanograms (ng), or units of £0~% gram. The response
variable v is the output reading from the gas chromatograph. The
purpose of the study is to calibrate the apparatus by refating ¥ to x.
{Data from D. A. Kurtz (ed.), Trace Residue Analysis, American
Chemical Society Symposium Series No. 284, 1985, Appendix.)

Amount {(ng) Response
25 6.35 7.98 6.54 6.37 7.96
1.00 297 30.0 30.1 29.5 29.1
5.00 211 204 212 213 205
20.00 929 905 922 928 919

(a) Make a scatterplot of these data. The relationship appears to be
approximately linear, but the wide variation in the response values
makes it hard to see detail in this graph.

(b} Compute the least squares regression line of v on x, and plot this
line on your graph.

{c) Now compute the residuals and rmake a plot of the residuals
against x. It is much easier to see deviations from linearity in the
residual plot. Describe carefully the pattern displayed by the
residuals.

33 CORRELATION

We have to this point concentrated on analyzing data having a clear explana-
tory-response structure. In order to fit a regression line, we must know
which is the explanatory variable and which is the response. What tools are
available when we are interested in the relation or association between two
variables but do not wish to claim that one explains the other?

The basic scatterplot, of course, continues to portray the direction, form,
and strength of any relationship between two quantitative variables. But the
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interpretation of a scatterplot by eye is surprisingly subjective. Changing the
horizontal or vertical scale, for example, greatly affects our perception of
the strength of a linear or other pattern. Even the amount of white space
around the point cloud in a scatterplot can fool us. As Figure 3.26 illustrates,
a scatterplot appears to show a stronger relationship when the point cloud js
reduced in size relative to its surroundings. The two scatterplots in this figure
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" Figure 3.26 Two identical scatterplots; the linear pattern in the lower plot
appears stronger because of the surrounding white space.
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.are identical in every respect except that the lower plot is drawn smaller in
a large field and therefore appears to show a stronger linear pattern.®
When we are concerned with linear patterns in a scatterplot, we can
use an important numerical measure to aid our visual perception. The cor-
relation coeﬂiczent meastires the strength of the linear association between
two quanut%Tﬁ;e variables. It does not distinguish explanatory from response
variables, and it Is fiot affected by changes in the unit of measurement of
either or both variables.* The word “correlation’ is often used as a vague
synonym for “association.” Because correlation is a specific numerical mea.
sure that applies only to linear association and only to quantitative variables,
we will use the word only in this sense. There is a positive association be-
tween educational level and income in Example 3.5, for example, but corre-
lation is not meaningful because educational level is a categorical variable.

Computing the Correlation
We again have n observations on two variables x and y, denoted by
Xy, ¥ (X2, ¥2)h oo 20 (X0, 3)
Unlike the regression setting, x and y are not necessarily explanatory and re-

sponse variables, although they may be. Here is the definition of the corre-
jation coefficient.

Correlation coefficient

The correlation coefficient for variables x and y computed from 7 cases

is
1 x—X\fy—¥
s ""lz( Sx )( Sy ) -3

Here % and s, are the mean and staridard deviation of the x observations
alone, and similarly ¥ and s, refer to the y observations. As usual, the sum
runs over all of the cases for whxch the variables x and y have been measured.

We can also give a computing formula for the correlation coeflicient »
that eliminates the need to calculate the deviations x — ¥ and y — 7 from the
means. Like the earlier computing formulas, Equation 1.3 for the variance
and Equation 3.2 for the slope of the least squares line, this formula is built
up from basic sums. Because it is good practice to compute the means and

* Correlation and its relation to regression is another of Francis Galton’s contributions,
made in 1888.
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standard deviations of each variable as part of the overall description, we
give a form of the computing equation that uses the standard deviations,

3 Xy - FII ¢ o »

P o= e I)SIS“. .4

In statistical practice,  is usually computed by a statistical calculator or by
computer software rather than from a formula such as Equation 3.4,

The defining formula Equation 3.3 suggests why r is a measure of asso.
ciation between x and y. Suppose that x and y are the height and the weight
of a personi. The n cases represent measurements on »n people. Height and
weight are positively associated, so that larger than average values of x tend
to occur together with larger than average values of ». Therefore, the devia.
tions x — % and y — ¥ from the means will tend to either both be positive
{for larger people) or both be negative (for smaller people). In either case,
the product (x — X)(y — ¥) will be positive. Hence, r will be positive and will

.be larger as the positive association grows stronger. In the case of negative

associationt, on the other hand, the deviations x — X and y — ¥ will tend 1o
have oppgosite signs, so the sign of r will be negative.

The use in Equation 3.3 of the standardized deviations (x — X)/s, and
(¥ — 3)/s, implies that r measures association between x and y when both
variables are measured in standard deviation units about the mean as origin.
Changing the unit of measurement of either variable-—for example, record-
ing weight in kilograms rather than pounds—does not affect the value of r
because both variables are in effect reduced to a standard scale before ris
calculated. The properties of correlation will be explored in detail after an
example that illustrates the caleulation of r.

We will compute the carrelation between gas consurnption y and heating degree
days x for the data below, which first appeared in Example 3.6.

Month | Oct.  Nov. Dec. Jan. Feb. Mar. Apr. May June
15.6 26.8 37.8  36.4 355 18.6 15.3 7.9 0
y 5.2 6.1 B.7 8.5 8.8 4.9 4.5 2.5 191

There are # =% cases. Figure 3.12 shows strong positive linear association in
this example. As in the regression calculation of Example 3.7, first calculate the
building block sums,
Y x= 1564+ .0=1939
Yoat=(15.6)* + -+ (.0) = 5618.11
Yy=524+11=3503
LY =522 4+ + (LD)? = 34135
Toay=(15.6}5.2) + - + (0)1.1) = 1375.0
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Second, calculate the means and standard deviations of both variables. The means
and standard deviations are useful in their own right as descriptions of the distri-
butions of x and y.

193.9

.f=-’1;§:x= S = 21540
1 50.3
¥ — = e o §.50
y nZJ’ 9
e ! Y&t - —l—(}: %7
TR n
I (193.9)
=—1 561811 — ~——a0—"
8[5 t=—3

= é— [5618.11 — 4177.468) = 180.080

5. = +/180.080 = 13.419

1

N 1 .
3=;r:1‘[): V=T ]
1 (50.3%7
e 7 [341‘35 — -~—~§-—-]

= :;- [341.35 — 281.121] = 7.529

5y = /7.529 = 2.744

Finally, substitute into the computing formuia Equation 3.4 for the correlation
cocfficient.

Yoy % G (Y »)

T T S s,

1373.0 — 93 (1593.9)(50.3)

(8)(13.419)(2.744)

As in other multistep calculations, the exact answer depends on how many decimal
places are carried in the intervening steps. & computer or statistical calculator
will generally give more accurate answers. After a few practice runs to ensure
that you understand what the formula for r says, you should automate your arith-
metic if possible. -

To interpret the numerical value of the correlation coefficient r, you
must understand its behavior., Here are the basic properties of r.

1 The value of r always falls between -1 and 1. Positive r indicates
positive association between the variables and negative 7 indicates
negative association.
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2 The extreme values r = — 1 and r = 1 occur only in the case of
perfect linear association, when the points in a scatterplot lie
exactly along a straight line, Values of r close to 1 or -1 indicate
that the points lie close to a straight line.

3 The value of r is not changed when the unit of measurement of x,
y, or both changes. The correlation r has no unit of measurement;
it is a dimensionless number between —1 and 1.

4 Correlation measures only the strength of linear association
between two variables. Curved relationships between variables,
no matter how strong, need not be reflected in the correlation.

The standardization of x and y in Equation 3.3 serves to constrain r to
the range —1 to 1. The linear association increases in strength as r moves

(d) Correlation r = .73

(e) Correlation r = .9} (f) Correlation r = .99

Figure 3.27 How the correfation coefficient measures the strength of

{inear association.
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away from 0 toward either — 1 or 1. The sign of r indicates only the direction
of the association, so that r = ~0.7 and r = 0.7 indicate linear association
of the same strength but opposite directions. Understanding that » measures
associalion in a standard scale heips avoid misinterpretation of scatterplots.
Stretching or compressing the x or y scale can dramatically alter the appear-
ance of a scatterplot, but does not change the correlation. It is therefore
not always easy to guess the value of » from visual inspection of a scatterplot.
The scatterplots in Figure 3.27 illustrate how values of r closer to 1 or -1
correspond to stronger linear association. To make the essential meaning of
rclear, the standard deviations of both variables in these plots are equal and
the horizontal and vertical scales are the same. In general, it is not so easy
to guess the value of r from the appearance of a scatterplot.

The nature of the correlation as a measure of linear association is also
illustrated by the real data that we have examined. The very linear home
heating data in Example 3.12 (Figure 3.12) have a correlation close to 1
(r = 0.989). The linear relationship between the percent of votes for Demo-
crats in 1980 and in 1984 {Figure 3.1) is positive but less strong; the corre-
lation is r = 0,703, Figure 3.3 shows a quite strong negative association
(r = —0.849) between mean SAT score and the percent of each state’s high
school seniors who take the SAT. The associationl between birth date and
draft lottery number in Figure 3.5 is weak and slightly negative; the correla-
tion is r = —0.226.

Finally, the correlation cocfiicient measures the strenpgth of linear as-
sociation only. It is possibie to create examples of strong nonlinear associa-
tion in which the correlation coefficient is small, or even 0 (see Exercise
3.40). For example, the strong nonlinear dependence of corn yield on plant-
ing rate was noted in Example 3.3. The correlation between these variables is
r = 0.135, showing a very small linear association. Correlation is therefore
not a general measure of all the types of association that may be visible in
a scatterpiot.

Correlation and Regression

Although correlation does not presuppose an explanatory-response relation-
ship as regression does, the correlation coefficient » is meaningful for re-
gression as well. In fact, the numerical value of r is most clearly interpreted
from the following fact about regression.

r? in regression

The square of the correlation coefficient, r?, is the fraction of the varia-
tion in the values of y that is explained by the least squares regression
of y on x. Moreover, the roles of x and y in this interpretation can be
imterchanged.
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To understand this fact intuitively, consider again the scatterplot of
household natural gas consumption y versus heating degree days x which
appears in Figure 3.28(a). The horizontal dashed line marks the mean gas
consumption ¥. Gas conswmption shows considerable variation from month

‘l G - ey pam b L MRS b 47 gt m | £ e e e v e

Natural gas (in 100 cu fi)
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' Heating degree days

Figure 3.28(a) High r¥: The variation in y about the regression line is much less
than the variation in y about the mean ¥; mast of the variation in y is explained by
the linear refationship of y and x. '
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Figure 3.28(b) Low r’: The variatian of y about the regression line remains large;
less of the variation in y is explained by the linear relationship between y and x,
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to month, as indicated by the vertical deviations of the points from the
dashed line. The colored line is the least squares regression line. The vertical
deviations of the points frorn this line are small. That is, when x changes, ¥
changes with it, and this linear relationship accounts for almost all of the
variation in y. Since r = 6.989 in this example, * = 0.978 and we can say
that the linear regression explains 97.8% of the observed variation in gas
consumption.

On the ather hand, the scatterplot of Gesell score v versus age at first
word x in Figure 3.28(b) shows a weaker linear relationship. The vertical
variation about the colored regression line, although smaller than the varia-
tion about the mean ¥ (dashed line), is still large. The linear tie between x
and y explains a smaller fraction of the observed variation in y. In fact, since
r= —0.640 and #* = 0.410, we can say that 41% of the variation in either
variable is explained by linear regression on the other variable. As Figure
3.19 illustrates, the regression lines of y on x and of x on y are quite differ-
ent, But there is only a single correlation r between x and y (in either order),
and r? helps interpret both regressions. The correlation between Gesell score
and age at first word is negative, since late talkers tend to have lower aptitude
scores. The interpretation of r through r? makes it clear that the magnitude
of r, not its sign, measures the strength of a linear association.

We have gained not only more insight into interpreting correlation, but
also a valuable numerical measure of the usefulness of a least squares regres-
sion line. Since the goal of regression is to explain y by linear dependence
on x, r? is a divect measure of the success of the regression and is almost
always reported along with the regression resulis. This close connection with
correlation is specifically a property of least squares regression and is not
shared by more resistant methods of fitting a line to a scatterplot.

The use of r* to measure how successfully a regression line explains the
observed variation in y is not the only connection between correlation and
regression. There is a close relationship between r and the slope & of the
least squares regression line $ = a + bx. Some algebra based on Equations
3.1 and 3.3 establishes the following fact;

Regression slope

If 5, and s, are the standard deviations of the observed x, and y,, and
r is the correlation coefficient, then the slope of the least squares re-
gression line of y on x is

b=r2 (3.5)

That is, the least squares regression line of y on x is the line with slope
rs,ls, that passes through the point (%, 7). Regression can therefore be de-
scribed entirely in terms of the basic descriptive measures ¥, s,, ¥, s,, and
r. If both x and y are standardized variables, so that their means are 0 and
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their standard deviations are 1, then the regression line has slope r and passes
through the origin.

Equation 3.5 is the formula for the slope b that is easiest to understand
and remember. This equation says that along the regression line, a change
of one standard deviation in x corresponds 10 a change of r standard devia-
tions in y. When the variables are perfectly correlated (r=1or r= 1),
the change in the response v is the same (in standard deviation units) as the
change in x. Otherwise, since ~1 < r < 1, the change in y is less than the
change in x. As the correlation grows less strong, y moves less in response
to changes in x.

In Example 3.12 we found that for healingi degree days x and natural gas con-
sumption y,
£=21.54 and s, =13.42
=559 and s,=2.74

r= 989
The slope of the regression line of gas usage on degree days is therefore
o —
274 ) .
= 989 — . = 202
b=.9 13.42

in agreement with the vesult of Example 3.7.

The regression line passes through the peint {x, ¥), which is (21.54, 5.59).
Along the line, ¥ increases by b = (0,202 when x increases by 1. In terms of corre-
lation, v increases by r = 0.989 standard deviations when x increases by one stan-
dard deviation. |

Interpreting Correlation and Regression

Limitations of correlation and regression Correlation and regression
are powerful tools for measuring the association between two variables and
for expressing the dependence of one variable on the other. These tools
must be used with an awareness of their limitations, beginning with the fact
that they apply to only linear association or dependence. Also remember
that neither r nor the least squares regression line is resistant, One influen-
tial observation or incorrectly entered data point can greatly change these
measures.

We saw in Example 3.10 that case 18 is an influential observation in the re-
gression of the Gesell score y on age at first word x for'young children. In fact,
the correlation based on all 21 children is 7 = ~0.640. Since {—0.64) = 0.41,
age at first word appears 10 explain 41% of the variation in Gesell score among
children. But if case 18 is omitted, the correlation for the remaining 20 children
is only r= ~0.335. Only 1% of the varialion in aptitude score among these 20
children is explained by the age at which they first spoke. Excluding case 19,
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which is an outlier, we have r = —0.756 and r? = 0.572 or 57%. Case 19 is also
influential, though not as much as case 18. The least squares line of y on x for
the complete data set is

§=109.87 — 1.127x
but if case 18 is excluded the regression line becomes
§=105.63 — . 779x

These regression lines are graphed in Figure 3.20. This single observation of case
18 dramatically changes both the cormrelation and the fitted line. A decision to
exclude this child as not belonging (o the same population as the other children
will weaken the study’s conclusion that Gesell score can be partially predicted
from age at first word. Just as calculation often adds to the information provided
by a scatterplot, a plot is essential if calculation is not to be blind, Without a plot
1o help spot the influential observation, numerical calculations for these data can

be seriously misieading. |

Lurking variables We have seen repeatedly that the effect of variables
not included in a study can render a corrclation or regression misleading.
Examples 3.9 and 3.11 both illustrate the effect of such lurking variables.
To give another example, there is a strong positive correlation over time be-
tween teachers’ salaries and sales of liquor. Both increase with rising price
levels and general prosperity, creating a strong association. Such correla-
tions are sometimes called ‘‘nonsense cortrelations,”’ but the correlation is
perfectly real. What is nonsense is the conclusion that because the correla-
tion exists, teachers must be spending their salary increases on lignor. Even
a strong correlation does not imply any cause and effect relationship. The
question of causation is important enough to merit separate treatment in
Section 3.5. For now, just remember that a correlation between two vari-
ables x and y can reflect many types of relationship between x, v, and other
variables not explicitly recorded.

The effect of lurking variables can hide a true relationship between x
and y as well as create an apparent relationship, as the following example
illustrates.

A study of housing conditions and healih in the city of Hull, England measured
a large number of variables for each of the wards in the city. (A ward is a small,
relatively homogeneous geographic area.) Two of the variables were an index x
of overcrowding and an index y of the lack of indoor wilets. Since x and v are
both measures of inadequate housing, we expect a high corrclation. In fact, the
carrelation was only r = §.08. How can this be? Investigation disclosed that some
poor wards were dominated by public housing (called council housing in England).
These wards had high values of x but low values of y because council housing
always includes indoor toilets. Other deprived wards lacked council housing, and
in these wards high values of x were accompanied by high values of y. Because
the relationship between x and y differed in council and noncouncil wards, ana-
lyzing all wards topether obscured the nature of the relationship.'® [ ]
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Figure 3.29 shows in simplified form how groups formed by a harking
(categorical) variable as in Example 3.15 can make the correlation r mis-
leading. The groups appear as clusters of points in the scatterplot. There is
a strong relationship between x and v within each of the clusters; in fact,
r=0.85 and r = 0.91] in the two clusters. However, because similar values
of x correspond to quite different values of v in the two clusters, x alone
is of little value in predicting y. The correlation for all points displayed is
therefore low; in fact, » = 0,14, This example is another reminder to plot
the data rather than to simply calculate numerical measures such as the
correlation.

Prediction A regression: line is often used to predict the response y 1o a
given value x of the explanatory variable, This is clearly valid when the re-
gression reflects a cause and effect relationship and when #? is high enough
1o give us confidence that changes in x explain most of the variation in y.
For example, we can predict household natural gas consumption at different
outside temperatures {degree days), using the regression line calculated in
Example 3.7. However, successful prediction does not require a causal re-
lationship. 1f both x and ¥ respond to the same underlying unmeasured
variables, it may be possibie to predict ¥ from x even though x has no direct
influence on y.

X

Figure 3.29 This scatterplot has a low r* even though there is a strong correlation
within each of the two clusters.
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Decisions on which applicants to admit 1o graduate school are based on a num-
ber of criteria, such as the applicant’s undergraduate grades. Another criterion is
scores on the Graduate Record Examinations (GRE), national tests of both apti-
tude and knowledge administered by the Educational Testing Service. There is
no causal relationship between the score x a college senior achieves on the GRE
and the student’s grade point average (GPA) y as a first-year graduate student the
following year, But becausc both x and y respond to the student’s level of ability
and knowledge, it is plausible 10 predict v from .

The success of this prediction depends on the strength of the association be-
tween GRE scores and later GPA in graduate school. A study!! of a large humber
of first-year students at many graduate schools in many disciplines showed that
for students of economics

*  The correlation between the GRE verbal aptitude score and graduate
GPA was r = 0.09,

" The correlation between the GRE quantitative aptitude score and
graduate GPA was » = 0.35.

*  The correlation between the GRE economics advanced test score and
graduate GPA was r = 0.45,

»  The correlation between undergraduate GPA and graduate GPA was
r= 0.27.

Thesc results show that the verbal aptitude test bears little relation to success as a
graduate student of cconomics; but they also show that a student’s score on
the GRE economics advarniced test is a better predictor of success than the under-
graduate GPA. However, even the GRE econormics test accounts for only 20% of
the variation in first-year graduate GPA [because r? = (0.45)% = 0.20]. Although
prediction from a regression line makes sense in this setting, prediction based on
the GRE advanced score atone will be quite unreliable. n

Notice that for the purpose of assessing whether GRE scores are helpful
in making admissions decisions, the data in Example 3.16 are incomplete in
a systematic way. We have GPA information only for students who were ad-
mitted to graduate school. Because many students with low GRE scores
were not admitted, the data refer primarily to students who did well on the
GRE. The reported correlations describe the relation: between GRE scores
and graduate GPAs for students who make it to graduate school. They do
not tell us whether students with GRE scores too low to allow them admis-
sion would in fact have earned low grades if they had entered graduate
school.

Even when prediction is logically justified and ? is high, several addi-
tional cautions are in order. Chapter 2 noted the danger of extrapolation,
the use of a regression line for prediction at values of x removed from the
range of x-values used to fit the line. Most relationships remain linear only
over a restricted range of x, so extrapolation can yield silly results, An inves-
tigation of the firing time vy of blasting caps used in mining showed a:strong
linear response to the voltage x applied to the detonator. This is true, how-
ever, only over the range of voltages used in practice. The overall relation-
ship between vollage and fiving time is similar to that shown in Figure 3.30,
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Figure 3.30 Beware of extrapolation: The relationship between the voluage
applied and the firing time of a blasting cap is linear only in a restricted range of
voltages.

Below a threshold voltage, the blasting cap will not detonate at all. Exira-
polation of the regression line to low voltages is meaningless.

Using averaged data Many regression or correlation studies work with
averages or other measures that combine information from many individ-
vals. You should note this carefully and resist the temptation to apply the
results of such studies to individuals, The regression of natural gas consump-
tion on heating degree days, for example, was based on daily data averaged
over each month. The very high correlation observed does not apply to
individual days. Prediction of gas usage from outside temperature on a single
day would be much less reliable than is suggested by the high r? in the regres-
sion of Examnples 3.7 and 3.12. The reason for this is that averaging over an
entire month smooths out much of the day-to-day variation due to doors left
open, house guests using more gas to heat water, and so on. Figure 3.31
shows the gas consumption and degree days for several individual days in
April (A), May (M}, and November (N). There is considerable variation with-
in each month and the correlation for these individual observations would
be rmnoderate. But when only the three monthly averages (marked as & )are
recorded, the result is three of the points in Figure 3.12, with a correlation
near 1. Correlations based on averages are usually too high when applied
to individuals. This is another reminder that it is important to note exactly
what variables were measured in a statistical study.
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Nataral gas (in 100 cu fi}

Figure 3.31
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Narural gas consumption plotied against degree days for individual

days in April (A), May {M), and November (N}, and the averages of both variables
in the three months (). The correlation is much higher for the averaged data.

Correlation is not everything Finally, remember that correlation is not
a complete description of two-variable daia. The means and standard devia-
tions of both .« and y should be given along with the correlation. (Because
correlation and regression make use of means and standard deviations, these
nonresistant measures are appropriate to accompany a correlation.} Conclu-
sions based on covrelations alone may require rethinking in the light of a
more complete description of the data.

Competitive divers are scored on their form by a panel of judges, who use a scale
from 1 to 10. The subjective nature af this scoring often results in controversy.
We have the scores awarded by two judges, Ivan and George, on a large number
of dives. How should we assess their agreement? Some computation shows (hat
the correlation between their scores is r = 0.9, But the mean of Ivan’s scores is
3 points lower than George's mean.

These facts do not contradict cach other. They are simply different kinds of
information. van awards much lower scores than George, as the mean scores
reveal. But because [van gives every dive a score about 3 points lower than George,
the correlation remains high. Remember that adding or subtracting the same
number 1o all vahues of cither x or y docs not change the correlation. If Ivan and
George both rate several divers, the cunlest is consistently scored because, as the
high corrciation shows, Ivan and George agree on which dives are better than
others. But if Ivan scores one diver and George another, we must add 3 points to
Ivan’s scores 1o arvive at a fair comparison. ]
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Many statistical studies of important issues rely on correlation and re-
gression to describe complex relationships among many variables. The ex-
amples in this section demonstrate that even when only two variables are
involved, the numerical results of correlation or regression must be inter-
preted in the light of an understanding both of the behavior of these statis-
tical procedures and of the full background of the issue under study. The
numerical work is easily automated, and you should let a computer do it.
interpretation requires an informed and skeptical human mind.

SUMMARY

The correlation coefficient r measures the strength and direction of the
linear association between two quantitative variables x and y. Correlation
always satisfles —1 < r = 1, and r = + 1 only in the case of perfect
linear association. The value of r is not affected by changes in the unit of
measurement of either variable.

Correlation and regression are closely connected. The sguared correlation
coeflicient 2 is the fraction of the variation of one variable that is
explained by least squares regression on the other variable. The regression
line of ¥ on x is the line with slope b = rs,/s, that passes through the
point (%, ¥).

A correlation or regression should be interpreted with due attention to the
following: the possible effects of lurking variables, the lack of resistance of
these procedures, the danger of extrapolation, the fact that correlations
based on averages are usually too high for individuals, and an
understanding that correlation and repression measure only linear
relationships to the exclusion of other important aspects of the data.

SECTION 3.3 EXERCISES

3.35 A student wonders if people of simnilar heights tend to date each
other. She measures herself, her dormitory rcommate, and the
women in the adjoining rooms; then she measures the next man
each woman dates. Here are the data (heights in inches).

4

Women [ 66 64 66 63 70 65

Men 72 68 70 68 71 65

(a) Make a scatterplot of these data. Based on the scatterplot, do you
expect the correlation to be positive or negative? Near + 1 or not?
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{b) Use Equation 3.4 to compute the correlation r between the
heights of the men and women.

(¢) How would r change if all the men were 12 inches shorter than
the heights given in the table? Does the correlation help answer
the question of whether women tend to date men taller than
themselves? .

{d} If every woman dated a man exactly 3 inches taller than she,
what would be the correlation between male and female heights?

3.36 The growth of young children is nearly linear. Here again are data
on Sarah’s height at several ages. {See Exercise 3.17 for the
regression line.)

Age (months) | 36 43 51 54 57 60

Height {cm) 86 90 91 93 %4 95

{a) From a scatterplot of height versus age, explain why you would
expect the correlation to be close to 1.

(b) Compute the correlation coefficient » between height and age,
using Equation 3.4.

(¢) If Sarah were 4 centimeters taller at every age, how would the
value of r change?

3.37 Compute the mean and standard deviation for the heighis of the men
and women in Exercise 3.35, Use your results and the correlation
found in Exercise 3.35 to compute the slope of the regression line of
male height on female height. What is the slope of the regression of
female height on male height (when male height is on the x axis and
fermale height is on the y axis)? If both lines were drawn on the same
graph, with female height on the x axis, at what point would they
intersect?

3.38 Compute the mean and the standard deviation of both height and
age in Exercise 3.36. Use these values and the correlation from
Exercise 3.36 to find the slope of the regression line of height on
age. (Compare your result with the slope you found in Exercise 3.17.)
‘What is the slope of the regression lire of age on height?

3.39 Exercise 3.6 compares two methods of computing the value of a
dollar in foreign currencies: by comparing the cost of a McDonald's
Big Mac and the official exchange rate.

(a) Calculate the correlation r between the Big Mac value and the
official value of the dollar. )
{b) The Big Mac value of the dollar in Japan was 231 Japanese yen,
while the official exchange rate was 154 yen to the dollar. Add
_ this observation to the data set and calculate the correlation
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again. Explain carefully why adding this one observation causes
such a large increase in r,

3.40 The gas mileage of an automobile first increases and then decreases

3a

142

as speed increases. Suppose that this relationship is very regular, as
shown by the following data on speed (miles per hour) and mileage
{miles per gallon):

Speed 20 30 40 30 60

Mileage | 24 28 30 28 24

Make a scatterplot of mileage versus speed. Show that the correlation
between speed and mileage is r = 0. (Note that 10 show that r = 0,
you need only compute the numerator in Equation 3.4,) Explain why
the correlation is ¢ even though there is a strong association between
speed and mileage.

A college newspaper interviews a psychologist about a proposed
system for rating the teaching ability of faculty members. The
psychologist says, "The evidence indicates that the correlation
between a faculty member’s research productivity and teaching
rating is close to zero.”” The paper reports this as “‘Professor
McDandel said that good researchers tend to be poor teachers, and
vice versa.' Explain why the paper’s report is wrong, Write a
statement in plain Janguage (don’t use the word "correlation'')
explaining the psychologist’s meaning.

Each of the following statements contains a blunder. Explain in each
case what is wrong,.

(a) "‘There is a high correlation between the sex of American

343

344

workers and their income.”

(b) “'We found a high correlation {r = 1.0%) between students’
ratings of faculty teaching and ratings made by other facuity
members.”’

(c) ""The correlation between planting rate and yield of corn was
found to be r = 0.23 bushel.”

A study of class attendance and grades among freshimen at a state
unjversity showed that in general students who attended a higher
percent of their classes earned higher grades. Class attendance
explained 16% of the variation in grade index among the freshmen
studied. What is the numerical value of the correlation between
percent of classes attended and grade index?

Suppose that the heights of the men in Exercise 3,35 were measured
in centimeters {cm) rather than in inches, but that the heights of the
women remained in inches. (There are 2.54 cm to an inch.)
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{(a) What would now be the correlation between male and female
height? (Use information from Exercise 3.35—don’t compute the
new r directly.)

(b) What would be the slope of the regression line of male height
on female height? (Use your calculations from Exercise 3.37—
don’t compute a new regression line. Hint: Use Equation 3.5
for the slope b.)

3.43 Changing the units of measurement can dramatically alter the
appearance of a scatterplot. Consider the following data:

x| —4 -4 =3 3 a4 4

vyl 5 -6 -3 5 5 -6

(a) Draw x and v axes each extending from —6 to 6. Plot the data
on these axes. Then plot x* = x/10 against y* = 10v on the same
axes using a different plotting symbol. The two plots are very
different in appearance.

(b) The correlation between x and y is about ¥ = 0,25. What must
be the correlation between x* and y*?

(¢) Wil the regression line of ¥* on x* have the same slope as the
regression line of ¥ on x? Explain your answer. (Hint: Look at
Equation 3.5 for the slope.)

3.46 Return to the scatterplot in Figure 3.2 showing the percent of
presidential votes cast for Democrats in 1980 and 1984, with the
south emphasized. The correlation for all 50 states is r = 0.703,
Would 7 be higher or lower if the 10 southern states were omitted?
Why?

3.47 The full MINITAB computer output for Example 3.9 contains the
entry R-sq = 68. 4%. Explain what this means in this specific example,
in language that can be understood by someone who knows no
statistics,

3.48 Figure 3.10 shows how the price of four-door sedans varies with
their weight.

(a) If only foreign models are considered, the correlation between
weight and price is r = 0.707. Whal percent of the variation in
the prices of these foreign cars can be explained by the fact that
price increases linearly as weight increases?

(b} From examination of Figure 3.10, do you think that the linear
relation of price to weight explains a higher or a lower percent of
the price variation of the domestic models in the study? Why?

3.49 A study of erosion (see Exercises 3.5 and 3.30) produced the
following data on the rate at which water flows across land and the
resulting amount of erosion: -
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Flow rate 31 85 1.26 2.47 375

Eroded soil | .82 1.95 2.18 3.0t 6.07

‘What percent of the variation in the amount of erosion can be
explained by the fact that as the flow rate increases, ercsion increases
with it in a linear manner?

The mean height of American women in their early twenties is about
65.5 inches and the standard deviation is about 2.5 inches, The mean
height of men the same age is about 68.5 inches, with standard
deviation about 2.7 inches, If the correlation between the heights of
husbands and wives is about r = 0.5, what is the slope of the
regression iine of the husband’s height on the wife’s height in young
couples? Draw a graph of this regression line. Predict the height of
the husband of a woman wheo is 67 inches tall.

In a large economics class, the correlation between a student’s total
score prior to the final examination and the final examination score is
r= 0.6. The pre-exam totals for all students in the course have mean
280 and standard deviation 30. The final exam scores have mean 75
and standard deviation 8. The professor has lost Julie’s final exam
but knows that her ¢otal before the exam was 300. He decides to
predict her final exam score from her pre-exam total.

(a) What is the slope of the regression of final exam scores on
pre-exam total scores in this course? ‘

{b) Draw a graph of this regression line and use it to predict Julie's
final examination score,

The British government conducts regular surveys of household
spending. The following table shows the average weekly household
spending on tobacco products and alcoholic beverages for each of the

Region Aleohol  Tobacco
North £6.47 £4.03
Yorkshire 6.13 3.76
Northeast 6.19 3.7
East Midlands 4.89 3.34
Westl Midlands 5.63 3.47
Easl Anglia 4,52 2.92
Southeast 5.89 3.20
Southwest 4.79 271
Wales 5.27 3.53
Scotland 6.08 4,51
Northern Ireland 4.02 4.56
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3.53

3.54

3.55

3.36

11 regions of Great Britain. (Data from British official statistics,
Family Expenditure Survey, Department of Employment, 1981.)

(a} Make a scatterplot of spending on tobacco against spending on
alcohol.

{b} Describe the pattern of the plot. Circle the most influential
observation.

{c) The correlation is only » = 0.224. Compute the correlation for the
10 regions with Northern Ireland omitted. Explain why this »
differs so greatly from the r for all 11 cases,

Example 3.12 illustrates the computation of the correlation coeflicient
. Redo that computation, rounding off all intermediate steps to

the nearest whole number. Compare your answer with the result

in the example. (Use the building block surns found in the example
as your stariing point, but round them to the nearest whale nurmber
before proceeding.) Remember that your numerical answers for b,

r, and other descriptive measures that require long calculations

will vary as you carry more or fewer significant digits in the

_intermediate steps.

There is a strong positive correlation between vears of education
and income for economists employed by business firms. (In particular,
economists with doctorates earn more than economists with only

a bachelor's degree.) There is also a strong positive correlation
between vears of education and income for economists employed

by colleges and universities. But when all economists are considered,
there is a negative correlation between education and income. The
explanation for this is that business pays high salaries and employs
mostly economists with bachelor's degrees, while colleges pay lower
salaries and employ mostly economists with doctorates. Sketch a
scatterplot with two groups of cases (business and academic) which
illustrates how a strong positive correlation within each group and

a negative overall correlation can occur at the same time. (Hint:
Begin by studying Figure 3.29.)

If you have a statistical computing system, enter the data on the
relation between Gesell score and age at first word (Table 3.3).
Compute the correlation and the least squares regression line for
the data with both cases 18 and 19 omitted. How do the resuits,
particularly r?, compare with those given in Example 3.14? '
Refer to the data on wood strength used in Exercises 3.16, 3.31,
and 3.32. :

(a) Compute the correlation between T1 and T2,

{b) Using the slope of the least squares line, the standard deviations
of x and y, and the correlation found in (a), verify that Equation
3.5 holds for this set of data.
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Refer to the data on women's stride rates given in Exercise 3.21,

(a) Compute the correlation between speed and stride rate.

(b) What proportion of the variation in stride rate is explained by

. speed for this set of data?

{¢) Repeat (a) and (b) using only the data for speeds 15.86, 16.88,
17.50, and 18.62. Do the results change appreciably? From the
plotting that you have done, would you expect the least squares
line to change appreciably? Explain what you have learned from
this part of the exercise.

The data in Exercise 3.21 relating stride rate in strides per second to
running speed give the average stride rate of 21 elite female runners
at each speed. Suppose that you had data on many individual time
periods for all 21 runners. If you plotted each individual stride rate
at each speed and computed the correlation for these individual
data, would you expect the correlation between stride rate and
speed to be lower than, about the same as, or higher than the
correlation for the published data? Sketch a scatterplot of stride rate
versus speed for individual runpers to llustrate your answer.

3.59 The price of seafood varies with species and time. The following table

gives the prices in cents per pound received in 1970 and 1980 (PR70
and PR80) by fishermen and vessel owners for several species:

Spccies PR70 PRB0O
‘Cod 13.1 213
Flounder i5.3 42.4
Haddock 25.8 38.7
Menhaden 1.8 4.3
Ocean pereh 4.9 23.0
Salmon, chinook 55.4 166.3
Salmon, coho 383 109.7
Tuna, albacore 26.7 80.1
Clams, soft-shelled 47.5 150.7
Clams, blue hard-shelled 6.6 203
Lobsters, Armerican 54.7 189.7
Oysters, eastern 61.1 1313
Sea scallops 135.% 404.2
Shrimp 47.6 149.0

(a) Plot the data with PR70 on the x axis and PR80 on the y axis.

{b) Describe the overall pattern. Are there any outliers or points
that may be highly influential? If so, label them.

(c) Compute the correlation for the entire set of data.
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{d)} What proportion of the variation in 1980 prices is explained by
the 1970 prices?

(e) Recompute the correlation discarding the cases that you labeled
in (b).

{f) To what extent do vou think the correlation provides a good
measure of the relationship between the 1970 and 1980 prices
for this set of data? Explain your answer.

34 RELATIONS IN CATEGORICAL DATA

EXAMPLE 3.18

two.way table

Up to this point our focus has been on relationships between quantitative
variables, although categorical variables played an important role in Section
3.1. Now our focus will shift to describing relationships between two or
more categorical variables. Some variables—such as sex, race, and occupa-
tion-—are inherently categorical. In other cases, categorical variables are
created by grouping values of a quantitative variable into classes. Published
data are often reported in this form to save space. Analysis of categorical
data is based on the counts or percents of the cases that fall into various
categories.

Table 3.4 presents Census Bureau data on the educational attainment of Americans
of different ages.'* Because many persons under 25 years of age have not com-
pleted their education, they are not included in the table. Both variables, age and
education, have been grouped into categories, The entries in this two-way fable
are the frequencies, or counts, of persons in each age by education class. Although
bolh age and education as presented in this table are categorical variables, both
have a natural order from least to most. The order of the rows and the columns
in Table 3.4 reflects the order of the categories. =

Table 3.4 Educational attainment by age, 1984 (thousands of persons)

Age group
Education 25-34 35--44 45-54 35-64 ‘265 Total

Did not complete 5416 5030 5177 7606 13,746 37,577
high school

Completed 16,431 11,855 9435 8795 7558 54,073
high school

College, 8555 5576 3124 2524 2503 22,282
1-3 years :

College, 4 9771 7594 3904 3109 2483 26,862

Or more years

Total 40,173 30,058 22,240 22,033 26,291 140,754
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2.49 (a) Apr., May, June, July are high; Sept. and Dec. are low. (b) Yes, the
secondary peak is between Oct. and Nov. (¢) Months with high incidence of
diarrhea are followed by months with low weight. Height is not as sensitive
to the short-term effects of ilness.

2.51 (a) Phase One (0 to 6 hours): no increase in growth. Phase Two (9 to 24
hours): exponential growth. Phase Three (36 hours): growth is slower than
exponential. {b) Predicted log is .4230. Predicted colony size is 2.65.

(c) 1.16.

2.53 (b) This control chart is very similar to the control chart found in Exercise 2.4,
(c) They arc not sensitive to outliers,

2.35 (b} Exponential, exponential, lingar,

2.57 {¢) Day 5 is above; day 24 is below. (d) No increase or decrease is evident.
{e)} Thornas’ flea eggs show periods of increase and decrease.

2.5% Overall the pattern is neither linear nor exponential. Over short periods the
pattern is approximately linear.

Chapter 3

3.1 (a) Categorical. {(b) Quantitative. (¢) Quantitative. (d) Categorical.
(e} Quantitative. {F) Quantitaiive.

3.3 {a) Negative. Clearly curved. One observation is high on nitrogen oxides.
(b) No. Low nitrogen oxide is associated with high carbon monoxide.

3.5 (b} As the flow rate increases, the amount of eroded soil increases. Yes.
Positive,

3.7 (a) Heavier cars cost more. The association is weak and positive. (b) The
heaviest cars, greater than 3500 pounds, are all domestic cars, In the range
of 2500 to 3500 pounds, the foreign cars generally cost more than domestic
cars of similar weight.

3.9 (b) No clear relationship is evident. (¢) Those who survive appear to be older
and have longer incubation periods. {d) The two survivors with incubation
periods greater than 70,

3.11 (a) The number of fleas increases and then decreases. (h) The same pattern
is evident. The 3-day median trace gives a slightly better picture of the pattern.

3.13 (a) Means = 10.65, 10.43, 5.60, 5.45. (b) The introduction of {000 nematodes
per pot has no effect on seedling growth. With 5000 nematodes there is a
substantial reduction in seedling growth. Introduction of 10,000 nematodes
causes essentially the same growth reduction as 5000, L

3.15 (a) Means = 1520, 1707, 1540, 1816. (b) Against. Pecking order 1 has the
lowest mean weight, and pecking order 4 has the highest mean weight.

3.17 (a) .38, 71.95, .38 cm. (¢} 87.91 cm.
3.19 Predicied heights = 85.75, 90.35, 81.50, 92.65, 93.80, 94.95, Residuals =
.25, —.35, —.50, .35, .20, .05, There is no clear pattern in the residuals.

3.21 (a) Yes. (b) b = .080, a = 1.766. (c) 3.039, 3.121, 3.171, 3.261, 3.369, 3.457,
3.541. (d} .011, —.001, —.001, —.011, —.009, .003, .009. (&) The residuals
are all very small, indicating that the line fits the data well. Positive residuals
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3.23
.25
3.27

329

3.31

3.33
3.35
3.37

3.39

3.41

3.43
3.45
3.47

34
3.51
3.53
3.55

3.57

3.59

3.6t

3.63

are associated with high and low speeds, and negative residuals are associated
with intermediate speeds.

(b} $ = 1.03 + .90x. {¢) Predicted = 5.52, 10.03, 14.53, 19.03. Yes.

(a) Rural = 108, city = 123. No. (b} 7.4820. (c) Yes. (d) 93.65.

(a) The relationship is linear with two clusters and one observation that is
low in calories and sodium. (b) Black. It is closer to the influential observation.
(c) 407.05, . ,

(a) Yes. The round one scores of 102 and 105 are influential, and the round
one score of 105 appears 1o be an outlier. (b) 9 = 26.332 + .688x.

{¢) Predicted = 87.54, B8.23, 86.17, 91.67, 85.48, 82,04, 96.48, 9B.55, 83.42,
86.85, 88.92, 80.66. {d) Residuals = 6.46, —3.23, 2.83, —-2.67, —4.48,
—6.04, 10.52, —9.55, 3.58, 4.15, --.92, —.66. {e) There is a random pattern
with large residuals for the high round ooe scores.

{a) Yes. (b) § = —.033 + 1.013x. {d) No clear pattern. The linear fit is
adequate. (e} The last 15 residuals are all positive. (f) The distribution is
approximately symmetric, approximately normal.

(b) There is one large outlier. {c} No. No.

(a) Positive. Not. {b) r = .56333. (¢) It does not change, No. (d} r= 1.
Means = 69, 66, Standard deviations = 2.52982, 2.09762. Slopes = .6818,
4687, At the means, ' ' .

(a) r = .77440. (b) r = 99824, The additional point is very extreme in both x
and y.

The paper suggests a negative relationship. The psychologist is saying there

is no linear relationship.

r=.4

(b} r = .25. (c) No. It will be 100 times as large.

It is the percentage of variation in the number of studenis enrolled in 100
level mathematics courses explained by the linear relationship with the
number of students in the freshman class.

93.5%.

{a) .16. (b) 78.2,

r=.9519.

r= 2«.52, r? e 27, $ = 107.585 — 1.050x, There is'a substantial decrease
in r,

(a) 95899, (b) .9980. (¢) r = .99967, #* = 9993, No appreciable change in
the correlation or the line.

(b) There is a positive linear relationship. No outliers. Sea scaliops is an
influential observation. (c} .96704. {d) .9352. (e) .93996. (f) The correlation
indicates that the linear relationship is strong.

{a) 45.90%, 45.08%, 9.02%. {b) 60.66%, 39.34%. (d} Yes, The percentages
for mild, moderate, and severe are similar for each type of operation.

() 23,403. Round-off error. (b) 56.19%, 32.32%, 7.75%, 3.73%. (¢) 4 years

of high school: 30.27%, 43.05%, 16.68%, 10.00%. 1 to 3 years of college:
22.38%, 42.36%, 19.48%, 15.78%. 4 or more vears of college: 10.22%,



