
 

CALL ADMISSION CONTROL IN WIRELESS DS-CDMA 

SYSTEMS USING REINFORCEMENT LEARNING 

 

 

 

 

 

 
 
 

Pitipong  Chanloha 
 

 

 

 
 
 
 
 
 
 
A Thesis Submitted in Partial Fulfillment of the Requirements for the 

Degree of Master of Engineering in Telecommunication Engineering 

Suranaree University of Technology 

Academic Year  2006 



การควบคุมการเรียกเขาในระบบ ดีเอส-ซีดีเอม็เอไรสาย  
โดยใชการเรียนรูแบบรีอินฟอรสเมนท 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

นายปติพงศ  ชาญโลหะ 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

วิทยานิพนธนีเ้ปนสวนหนึง่ของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต 
สาขาวิชาวิศวกรรมโทรคมนาคม 
มหาวิทยาลัยเทคโนโลยีสุรนารี 

ปการศึกษา  2549



CALL ADMISSION CONTROL IN WIRELESS DS-CDMA 

SYSTEMS USING REINFORCEMENT LEARNING 

 
Suranaree University of Technology has approved this thesis submitted in 

partial fulfillment of the requirements for a Master’s Degree.  

 

      Thesis  Examining Committee 

 

           
      (Asst. Prof. Dr. Rangsan  Tongta) 

      Chairperson  

 

           
      (Asst. Prof. Dr. Wipawee  Hattagam) 

      Member (Thesis Advisor) 

 

           
      (Assoc. Prof. Dr. Kitti  Attakitmongcol) 

      Member  

       

 

 

 
__________________________________    _____________________________ 
(Assoc. Prof. Dr. Saowanee  Rattanaphani) (Assoc. Prof. Dr. Vorapot  Khompis) 

Vice Rector for Academic Affairs Dean of Institute of Engineering 



ปติพงศ  ชาญโลหะ : การควบคุมการเรียกเขาในระบบ ดีเอส-ซีดีเอ็มเอ ไรสายโดยใชการ
เรียนรูแบบรีอินฟอรสเมนท (CALL ADMISSION CONTROL IN WIRELESS DS-CDMA 
SYSTEMS USING REINFORCEMENT LEARNING). อาจารยที่ปรึกษา : ผศ. ดร. วภิาวี 
หัตถกรรม, 95 หนา. 
 
วัตถุประสงคของงานวิจัยคือ การหานโยบายที่ดีที่สุดที่เปนไปไดในการควบคุมการเรียก

เขาสําหรับผูใชงานเสียงหลายระดับในระบบดีเอส-ซีดีเอ็มเอ ไรสาย ซ่ึงทําใหผลรางวัลตอบแทน
ระยะยาวของระบบมีคาสูงสุด โดยที่ยังสามารถคงเงื่อนไขบังคับของคุณภาพการใหบริการได  

การควบคุมการเรียกเขานี้ไดกําหนดปญหาเปนแบบ การตัดสินใจแบบกึ่งมาคอฟ (semi-
Markov decision process) โดยที่สองเงื่อนไขบังคับธรรมชาติวิสัยในระบบดีเอส-ซีดีเอ็มเอที่
พิจารณาคือ เงื่อนไขบังคับของระดับของอัตราสวนของสัญญาณตอส่ิงแทรกสอด (signal-to-
interference ratio) และเงื่อนไขบังคับของความนาจะเปนในการติดขัด (blocking probability) เพื่อ
หลีกเลี่ยงภาระการคํานวณของวิธีการไดนามิคโปรแกรมมิง (dynamic programming) เราไดนํา 
วิธีการเรียนรูแบบรีอินฟอรสเมนทแบบแอคเตอร-คริติค (actor-critic reinforcement learning) เพื่อ
แกปญหาการควบคุมการเรียกเขา นอกจากนี้เราไดทําการรวมเอาฟงกชันทําโทษเขาไปในสัญญาณ
ผลรางวัลตอบแทนเพื่อควบคุมเงื่อนไขบังคับของความนาจะเปนในการติดขัด สวนเงื่อนไขบังคับ
ของอัตราสวนสัญญาณตอส่ิงแทรกสอดนั้นควบคุมโดยการกําหนดคาในปริภูมิสเตต (state space)
ของระบบ 

จากผลการทดลองพบวาอัลกอริธึมที่นําเสนอสามารถใหผลที่ดีกวาเทคนิคที่มีอยูเดิมและ
สามารถเขาถึง 91-95% ของผลจากวิธีการไดนามิคโปรแกรมมิงซึ่งเหมาะที่สุดและยังสามารถรักษา
เงื่อนไขบังคับของคุณภาพการใหบริการโดยใชปริมาณการคํานวณและความตองการในการเก็บ
ขอมูลในระดับที่พอเหมาะ 

 
 
 
 
 

 
ABSTRACT (THAI) 

สาขาวิชาวิศวกรรมโทรคมนาคม ลายมือช่ือนักศึกษา  
ปการศึกษา 2549   ลายมือช่ืออาจารยที่ปรึกษา  
 



PITIPONG  CHANLOHA : CALL ADMISSION CONTROL IN WIRELESS 

DS-CDMA SYSTEMS USING REINFORCEMENT LEARNING. THESIS 

ADVISOR : ASST. PROF. WIPAWEE  HATTAGAM, Ph.D. 95 PP.  

ABSTRACT (ENGLISH) 

DIRECT-SEQUENTIAL CODE DIVISION MULTIPLE ACCESS (DS-CDMA)/ 

CALL ADMISSION CONTROL/ REINFORCEMENT LEARNING/  

ACTOR-CRITIC REINFORCEMENT LEARNING (ACSMDP)/  

SEMI-MARKOV DECISION PROCESS (SMDP)  

 

The underlying aim of this research is to find the best possible call 

admission control policy for multiclass voice services in wireless direct-sequential 

code division multiple access (DS-CDMA) systems that maximize the long-term 

reward of the system while satisfying multiple quality-of-service (QoS) 

constraints. 

The call admission control problem is formulated as a semi-Markov 

decision process. Two important constraints inherent in CDMA systems are 

considered which are signal-to-interference ratio (SIR) constraints and blocking 

probability constraints. To circumvent the computational burden of conventional 

dynamic programming (DP) methods, we employ an actor-critic reinforcement 

learning method to solve the call admission control problem. Furthermore, we 

incorporate a penalty function into the reward signal in order to account for the 

blocking probability constraints. The SIR constraints are accounted for by 

embedding them into the system state space. 
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The numerical results show that the proposed algorithm can outperform 

existing techniques where it can achieve up to 91-95% of the optimal DP solution 

while maintaining the QoS requirement constraints with reasonable computational 

and storage requirements. 
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CHAPTER I 

INTRODUCTION

 

This chapter provides a background on code division multiple access (CDMA) 

mobile communication systems and highlights the significance of call admission 

control in wireless CDMA systems and the motivation for applying reinforcement 

learning which is the main focus of this thesis. 

 

1.1 Significance of the Problem 

Since its introduction, cellular telephones have fascinated millions of 

subscribers in the United States, Asia and Europe (Chen, 1998). The first generation 

(1G) of cellular systems has been designed to mainly support voice users. Channel 

access is provided by frequency division multiple access (FDMA). In FDMA, a user 

is assigned a particular channel which is not shared by other users in the vicinity 

(Rappaport, 2002). However, as the number of subscribers increased, the frequency 

spectrum became exhausted which resulted in capacity limitation. The spectrum 

exhaustion of 1G cellular systems led to the development of digitized transmission in 

the second generation (2G) cellular systems which provided increased capacity and 

supported low rate data transfer. To access the channel, time division multiple access 

(TDMA) was employed. TDMA allows users to share the same frequency channel by 

dividing the signal into different time slots. Each user then takes turn transmitting and 

receiving over the channel in a round robin fashion. The 2G cellular systems support 



 

 

2

voice, data and facsimile services⎯all of which require low data rate transfer. 

However, apart from voice and low rate data transfer services, mobile users in modern 

communication systems demand for support of more sophisticated services, such as, 

multimedia and video-on-demand, which require high bit rate transfer and therefore 

increased system capacity. 

An alternative multiple access namely the code division multiple access 

(CDMA) scheme, has been recently developed to increase the capacity of cellular 

systems (LEE, 1991) in order to achieve high bit rate data transfer for supporting 

multimedia which consumes more bandwidth. CDMA uses unique spreading codes to 

spread the baseband data before transmission. The receiver then dispreads the wanted 

signal which is then passed through a narrow band pass filter. The unwanted signals 

are not dispreaded nor passed through the filter. The main advantages of CDMA are: 

1. Soft capacity limit – Unlike FDMA and TDMA, an increase of the number 

of users in CDMA system raises the noise level in the system. Hence, the 

CDMA system capacity can be increased however at the cost of degraded 

signal quality. This is referred to as the soft capacity limit. Therefore, 

unlike FDMA and TDMA systems, there is no hard limit on the number of 

users in CDMA systems. Note that the users’ signal-to-interference ratio 

gradually degrades as the CDMA capacity increases and improves as the 

capacity of the system decreases.  

2. RAKE receiver – One of the main advantages of CDMA systems is the 

capability of using signals that arrive at the receivers with different time 

delays. This phenomenon is called multipath. More specifically, multipath 

is a scenario where radio signals reach the receiving antenna via different 
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paths which merely provide multiple versions of the transmitted signal at 

the receiver. Multipath causes interference and phase shifting of the signal. 

To correct multipath effects, a RAKE receiver can be used by collecting 

time delayed versions of the required signal. RAKE receivers employ a set 

of sub-receivers to search for different multipaths and feed the information 

to the other sub-receivers. Each sub-receiver then finds a strong multipath 

signal. The results are then combined together to create a signal with 

higher signal-to-noise ratio.  

3. Power control – One of the major problems in mobile communication is 

the near-far problem. The near-far problem occurs when many mobile 

users share the same channel. Consider a receiver at a base station which 

serves many mobile users. Assuming that all users transmit at the same 

power level, the receiver at the base station will receive stronger signals 

from nearer users than users further away. In fact, a user’s transmitted 

signal appears as other users’ interference. If the near users transmit at 

several orders of magnitude higher than users further away, then the 

signal-to-interference ratio (SIR) of further away users may become 

undetectable. To reduce the interference from mobile users transmitting at 

different power levels, CDMA employs a power control scheme. Under 

such scheme, the base station controller (BSC) which controls all radio 

transmission will dynamically adjust power the nearer users so that the 

SIR levels of all users are roughly the same. 

4. Soft handoff – In non-CDMA cellular systems which employ traditional 

hard handoff, each mobile user makes a connection to one base station at a 
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time. It is only when the connection to the current cell is broken, a 

connection to the new cell is then established.  However, connection re-

establishment to the new cell may not always be successful due to 

multipath fading and insufficient capacity at subsequent cells. Hence, 

ongoing calls may be interrupted or even forced terminated. Alternatively, 

CDMA systems employ soft handoff where a mobile user is 

simultaneously connected to two or more cells. The soft handoff is 

performed by the Mobile Switching Center (MSC) which chooses the best 

version of the signal at anytime without switching frequencies. Therefore, 

soft handoffs can help reduce the number of forced terminated handoffs. 

5. Security broadcasting – In FDMA and TDMA cellular systems, data 

transmission security is usually not considered. CDMA cellular systems, 

on the other hand, can improve transmission security owing to its use of 

spreaded codes such as pseudo noise (PN) long code, PN short code, etc. 

For example, the PN long code has more than 4.4 billions codes.  

 The aforementioned main advantages allow CDMA to support the various 

classes of multimedia traffic, such as, voice, video streaming, images, web 

documents, data or a combination thereof (Bartolini and Chlamtac, 2002). Such traffic 

requires high bit rate which FDMA and TDMA cannot satisfy. Furthermore, CDMA 

networks can also support multiple classes of traffic with different quality-of-service 

(QoS). Suppose a mobile user requests to join the CDMA network. The base station 

then makes a decision whether to admit or reject the call request. This process is 

called call admission control (CAC) which is employed to administrate the required 

level of QoS. The basic of CAC mechanism is to admit a new user into the system 
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only when the QoS constraints of all existing users in the system and that of the new 

user are satisfied. Therefore, CAC requires quantification of QoS constraints.  

One significant QoS constraint in CDMA systems is in the physical layer in 

terms of signal-to-interference ratio (SIR). It is the minimum SIR requirement that 

governs the system capacity in CDMA systems. The call admission controller rejects 

calls to maintain the SIR requirement. This results in an increase in blocking 

probability, which is in many cases, an important QoS constraint in the network layer. 

Hence, unlike CAC in other cellular systems, there exists a significant interplay of the 

physical layer (SIR) and the network layer (blocking probability) QoS requirements in 

CDMA CAC mechanisms. 

It should be noted that there are many existing approaches which investigated 

CAC in mechanisms in communication networks. These CAC methods can be 

classified as complete sharing, threshold policy and the semi-Markov decision process 

(SMDP) approach. 

1.1.1 Complete Sharing 

Complete sharing is the simplest CAC policy which always accepts new 

users as long as there is sufficient capacity, or in the case of CDMA systems, as long 

as the SIR requirements of all users in the system are satisfied. Comaniciu and 

Narayan (2000), Lee and Wang (1998) and Liu and Zarki (1994) investigated the 

CAC problem in CDMA systems by considering the SIR level in the physical layer 

alone. They do not consider the problem of finding an admission policy that considers 

the blocking probability of the system which is a functionality in the network layer. 

Complete sharing CAC policies are generally suboptimal. This policy can be easily 
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implemented but it cannot satisfy any QoS constraints⎯apart from the SIR level 

requirements. 

1.1.2 Threshold Policy 

Threshold policy is a call admission policy which accepts a user of some 

class k  if the number of users in such class is less than a threshold kT  (Liu and 

Silvester, 1998) and (Soroushnejad and Geraniotis, 1995). However, similar to the 

complete sharing policy, it is generally known that threshold policies cannot satisfy 

blocking probability constraints (Ross, 1995) either⎯unless it is found through brute 

force empirical search. Therefore, threshold policies are impractical for maintaining 

QoS requirements in actual networks.  

1.1.3 Semi-Markov Decision Process (SMDP) 

From the two aforementioned approaches, the blocking probability QoS 

constraints cannot be easily satisfied in any approach. Alternatively, the semi-Markov 

decision process approach, on the other hand, can deal with multiple QoS constraints 

and can also guarantee the optimal call admission control policy. Several existing 

works have been proposed to find the optimal CAC policy using SMDP framework. 

These works can be classified as follows. 

1.1.3.1 CAC in Cellular Network  

Choi J., Kwon, Choi, Y. and Naghshineh (2000), Singh and 

Bertsekas (1997) and El-Alfy, Yao and Heffers (2001) have investigated the CAC 

problem in cellular networks using the SMDP framework. To solve the CAC problem, 

Choi et al. (2000) employed the linear programming method which can deal with QoS 

constraints on call blocking probability and call dropping probability. On the other 

hand, Singh and Bertsekas (1997) and El-Alfy et al. (2001) have applied an 
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alternative tool called reinforcement learning to solve the CAC problem in cellular 

networks with capacity constraints and call dropping probability constraints. These 

two works have dealt with CAC problems in generic cellular networks which are not 

specifically CDMA networks. 

1.1.3.2 CAC in CDMA with Blocking Probability Constraints Only 

Yang and Geraniotis (1994) dealt with the CAC problem which 

considered the blocking probability constraints alone. To solve the CAC problem, the 

authors used value iteration technique which is a dynamic programming tool. 

Makarevitch (2000) also dealt with the CAC problem which considered the power 

control affect and QoS constraints in terms of blocking probability constraints only. 

This work employed reinforcement learning to solve for the near-optimal CAC policy. 

1.1.3.3 CAC in CDMA with Dual Constraints 

Comaniciu and Poor (2003) investigated the joint optimization 

call admission control problem in multiple data services and dealt with dual 

constraints which are SIR levels and blocking probability constraints. To solve for the 

solution, linear programming which is a dynamic programming technique is 

employed. 

Singh, Krishnamurthy and Poor (2002) employed a conventional 

dynamic programming (DP) method to solve for an optimal CAC policy. Given an 

explicit model of the system, i.e., the transition probability matrix and the expected 

rewards, DP method is guaranteed to deliver an optimal CAC policy. However, DP 

has limited applicability due to the curse of dimensionality and curse of modeling (see 

Chapter 2 for details). Therefore, the approach of Singh et al. (2002) inevitably 

becomes too complex to solve when the scale of the CAC problem increases. 
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To circumvent the computational burden of DP, this thesis proposes an 

alternative approach based on reinforcement learning (RL) (Sutton and Barto, 1998) 

to determine near-optimal CAC policies instead. RL methods can provide near-

optimal solutions to complex DP problems through experience learned from 

simulations and direct interaction with the environment. Consequently, they do not 

require an explicit model of the system. The scalability of RL is therefore better than 

classical DP methods. RL has already been successfully applied to solve CAC 

problems in many communication networks, such as, in ATM networks (Tong and 

Brown, 2000), non-CDMA cellular networks (Singh and Bertsekas, 1997 and El-Alfy 

et al., 2001) and CDMA networks (Makarevitch, 2000 and Vazquez-Abad and 

Krishnamurthy, 2002).  

More specifically in CDMA networks, Makarevitch (2002) investigated the 

CAC problem with blocking probability constraint alone. They employed RL to solve 

for a near-optimal CAC policy. Vazquez-Abad and Krishnamurthy (2002) handled the 

dual constraints, i.e., SIR and blocking probability constraints. Their work also 

employed RL to solve for a near-optimal CAC policy. However, their proposed work 

is table-based meaning that a parameterized component is needed for every possible 

system configuration. Hence, as the scale of the CAC problem increases, the 

scalability of their approach will become a concern⎯particularly in terms of 

computational and storage requirements. 

In response to these outstanding issues, the aim of this thesis is to develop an 

online call admission decision-making algorithm for multiple voice services in a 

wireless DS-CDMA system which has low computational and storage requirements 

and maximizes the long-term performance criterion while satisfying dual QoS 
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constraints on the SIR level and the required blocking probability. The contribution of 

this thesis is placed on the development of an actor-critic RL method (The details of 

actor-critic can be found in section 2.5) which deals with multiple QoS constraints. 

The proposed method is an extension of Usaha and Barria (2007) which developed an 

actor-critic RL method and applied it to solve a call admission control and routing 

problem in low-earth orbit satellite networks. Whereas Usaha and Barria (2007) 

considered an unconstrained SMDP problem, the proposed method in this thesis 

differs from Usaha and Barria (2007) work where we consider a constrained SMDP 

problem instead. The actor-critic method proposed here differs from Usaha and Barria 

(2007) where the reward is modulated to account for the constraints (Chanloha and 

Usaha, 2007). The results in this thesis show that the proposed actor-critic algorithm 

can satisfy the dual constraints on the SIR level and blocking probability. 

Furthermore, our proposed method employs function approximation which has the 

advantage of scalability when compared to Vazquez-Abad and Krishnamurthy (2002) 

which also employed RL to deal with dual constraints for CAC in CDMA networks.  

 

1.2 Research Objectives 

The objectives of this research are as follows: 

1.2.1 To apply reinforcement learning (RL) to solve the CAC problem in 

wireless CDMA systems supporting multiple class voice users subject to the dual QoS 

constraints on blocking probability and SIR requirements.  

1.2.2 To apply reinforcement learning (RL) to alleviate the curse of 

dimensionality and the curse of modeling of dynamic programming (DP). 
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1.2.3 To compare the reinforcement learning solution with dynamic 

programming solution in terms of average reward, computational complexity and 

memory storage.  

 

1.3 Assumptions 

1.3.1 CAC in CDMA systems can be formulated as a SMDP problem. 

1.3.2 Reinforcement learning can reduce the computational complexity and 

memory storage of the solution when compared to dynamic programming. 

1.3.3 Reinforcement learning can achieve a near-optimal CAC policy and can 

satisfy multiple QoS constraints. 

 

1.4 Scope of the Thesis 

This thesis consists of two main parts. Firstly, the call admission control 

problem for a small multiclass voice service CDMA system is formulated as a SMDP 

and is solved with a conventional dynamic programming method. A classical dynamic 

programming method, i.e. linear programming, will be compared to the complete 

sharing and threshold policy CAC methods. Among these three methods, the dynamic 

programming method can give the optimal CAC policy. The dynamic programming 

method in this part is obtained from Singh et al. (2002) and deals with multiclass 

voice services only. To quantify the performance, we compared two metrics, namely, 

the blocking probability and average long-term reward. We use the blocking 

probability metric to demonstrate the ability to maintain the QoS requirements, 

whereas the average long-term reward metric is used to demonstrate the optimality of 

the policy. The SIR constraint (Details of the SIR computation can be found in 
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appendix I) which is the other QoS constraint considered is embedded in the state 

space of the system.  

In the second part, we extended the small scale CAC problem to a more 

realistic scenario by significantly increasing the state space. An actor-critic RL 

technique is proposed to solve the call admission control problem in the large scale 

network. In this part, we deal with QoS constraints by proposing a modification of the 

reward to account for the constraints on blocking probability. The SIR constraint is, 

however, embedded in the state space of the system. The storage and computational 

requirements and numerical results for the DP method, threshold policy and the 

proposed actor-critic RL method are compared and analyzed.  

 

1.5 Expected Usefulness 

1.5.1 To obtain a call admission control algorithm by using RL to control the 

desired blocking probability while the SIR requirements are satisfied in DS-CDMA 

systems.  

1.5.2 To obtain a call admission control algorithm by using RL which can 

reduce the high computational complexity and memory storage of the conventional 

dynamic programming in DS-CDMA systems. 

1.5.3 To obtain a conclusion about the application of reinforcement learning in 

DS-CDMA networks and suggest its possible applications to other call admission 

control problems, for example, to deal with multimedia traffic such as multiclass 

voice and data traffic. 
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1.6 Organization of Thesis  

The remainder of this thesis is organized as follows. Chapter 2 presents the 

theoretical background which underlies the contribution of this thesis. Firstly, the 

concept of dynamic programming (DP) method is reviewed. This is followed by an 

introduction of reinforcement learning (RL) which deals with the dual curses (The 

curses of DP can be found in section 2.3) of DP which are the curse of dimensionality 

and the curse of modeling. RL can avoid the curses of DP method by directly learning 

through experience from simulation or interaction with the environment. We then 

classify three categories of RL which are actor-only methods, critic-only methods and 

actor-critic methods and justify the reasons for selecting the latter method in this 

research. 

In Chapter 3, we study the call admission control problem (CAC) with 

multiple voice services in wireless DS-CDMA network. Already addressed and 

solved in Singh et al (2002), the CAC problem is formulated as semi-Markov decision 

process (SMDP) problem and solved analytically by using a DP method called linear 

programming (LP). The objective of this chapter is to demonstrate that the CAC 

policy obtained by the DP method is the optimal policy. Two metrics are considered 

which are the blocking probability and average long-term reward. The SIR constraint 

is inherently embedded in the system capacity of the CDMA system. Numerical 

results show that the DP CAC policy outperforms the complete sharing and threshold 

policy methods. However, we point out that the storage and computational 

requirements of the DP method becomes prohibitive and can grow intractably as the 

scale of the system increases. 
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To avoid the computational burden caused by DP, an alternative method, 

namely, the actor-critic RL method is proposed in Chapter 4 to solve the CAC 

problem. By using function approximation, the proposed method needs only a small 

number of parameters for making each CAC decision. The performance metrics are 

blocking probability and the average long-term reward. The SIR level constraint is 

embedded in the state space of the system. Numerical results are obtained from a 

significantly larger scale system. Results show that our proposed actor-critic RL 

method can achieve near-optimal CAC policy, satisfy QoS constraints and demand 

less memory storage and low computational complexity when compared to DP. 

Chapter 5 summarizes all the findings and original contribution in this thesis 

and points out possible future research direction. 



CHAPTER II 

BACKGROUND THEORY

 

2.1 Introduction 

In this thesis, we study the call admission control (CAC) problem in wireless 

DS-CDMA networks. A common approach to solve call admission control problems 

is to formulate the problem as a semi-Markov decision process. This is due to the fact 

that the call admission decisions occur at instances whereby the system exhibits 

Markov property. Analytical tools such as dynamic programming (DP) can then be 

applied to solve for the optimal policy. It is generally known that the computation of 

this technique needs an explicit model of the SMDP process. The explicit model 

refers to the state transition probability and expected reward which grow 

exponentially as the size of the state space increases. DP therefore becomes 

impractical or even intractable to solve as the dimension of the problem increases.  

An alternative method to avoid the computational burden of dynamic 

programming method is reinforcement learning (RL). RL evaluates the optimal policy 

by experience sampled from simulation or direct interaction with the environment. 

Such sampling allows RL to learn the state dynamics model instead of computing the 

exact analytical model as in dynamic programming. In addition, RL can also employ 

function approximation to deal with large state space. Function approximation is 

extremely important as it allows experience learned from a limited subset of the state 
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space to be usefully generalized to produce a good approximation of decision 

variables over a much larger subset.  

This chapter therefore provides an essential foundation of Markov decision 

theory framework and presents algorithms which are used to solve it in this thesis. 

This chapter is organized as follows. The next section gives a theoretical background 

on Markov decision processes. Section 2.3 describes the dynamic programming 

concept which is used to solve the SMDP formulation. An introduction of 

reinforcement learning is given in section 2.4. In section 2.5, the actor-critic 

reinforcement learning which the contribution of this thesis is based on is presented. 

Finally, the conclusion of chapter is in the last section.  

 

2.2 Markov Decision Theory Background 

As mentioned in the previous section, CAC problems in communication 

networks can be viewed as a SMDP process (Singh, Krishnamurthy and Poor, 2002). 

The basic idea of SMDP lies on Markov property which states that the probability of 

visiting the next state depends only on the present state of the system.  

2.2.1 Markov Property 

Let { }tX  be a stochastic process where tX  refers to the state of the 

process at any time t . If the future of the process, given that the process is presently 

in state 
kt

X , is independent of the past, then { }tX  is called a Markov process. That is, 

{ }tX  is a Markov process if 
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where 1 2 1,k kt t t t +< < < <  kt  is the present time and 1kt +  is the time instant in the 

future. Equation (2.1) is referred to as the Markov property. In other words, a 

stochastic process has Markov property if the probability distribution of future states 

of the process, given the present state and all past states, depends only upon the 

present state and not on any past states.  

2.2.2 Markov Decision Process (MDP) 

A Markov decision process (MDP) is a discrete-time stochastic process 

characterized by a set of states, actions and rewards. Let { }nX  be a discrete value 

Markov chain1 for all n , where n  is the present and 1n +  is the future (discrete) time 

index. At each state, the decision-maker can select an action from a set of permissible 

actions at the given state. For a state x  and an action a , a state transition function 

( )xxp a′  defines the transition probability to the next state x′ ,  

 

( ) 1[ | , ]xx n n np a P X x X x a a′ + ′= = = =  (2.2) 

 

As a result of taking action a  at state x  and transiting into state x′ , the decision-

maker earns an expected reward ( )xxr a′  given by 

 

( ) { }1 1| , ,xx n n n nr a E r X x a a X x′ + + ′= = = =  (2.3) 

 

where {}.E  is the expectation operator and 1nr +  is the reward earned where 1n +  is 

the future discrete time index. Note that equations (2.2) and (2.3) completely specify 

the dynamics of the Markov decision process. Dynamic programming requires the 

                                                 
1

 A Markov chain is a series of states of a system that has Markov property. 
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exact knowledge of these two functions in order to determine the optimal policy. 

Reinforcement learning, on the other hand, does not as RL learns these functions from 

interacting with the environment. However, before we proceed to determine an 

optimal policy for the MDP, some measure of how good a policy is must be 

established. The next subsection describes such policy measure. 

2.2.2.1 Value Function 

Value functions are estimations of how good it is to be in a given 

state x . A value function is defined as the amount of future reward that can be 

expected. Since whatever actions are taken affect the rewards received in the future, 

policies which govern what actions to take at a given state will characterize the value 

function accordingly. Suppose that π  is a policy that maps a state x X∈  to some 

action ( )a A x∈ , where ( )A x  is the set of available actions in state x , to the 

probability ( ),x aπ  of taking action a  when in state x . Denote ( ),h x π  as the 

expected return when starting in x  and following policy π  thereafter, given by  

 

( ) 1
0

, k
n k n

k
h x E r x xππ γ

∞

+ +
=

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑  (2.4) 

 

where {}.Eπ  is the expectation operator given that the actions taken follow 

policy π , and n  is any time step. The function ( ),h x π  is referred to as the state 

value function for policy π  at state x . The fundamental property of value functions 

used throughout reinforcement learning and dynamic programming is that they satisfy 

a particular recursive relationship. In particular, the relationship between the value 

function of state x  and the value function of its possible successor states, is given by 
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( ) ( ) ( ) ( ) ( )
'

, ,x xx
x

h x v r a p a h xπ π π′ ′+ = +∑  (2.5) 

 

where x′  is the successor state, ( )v π  is the average reward following some policy π , 

( ) ( ) ( )
'

x xx xx
x

r a p a r a′ ′= ∑ , ( )xxp a′  is the probability of selection action a  from current 

state x  to state x′ . Equation (2.5) is called the Bellman equation for ( ),h x π . 

2.2.2.2 Optimal Value Function 

Now that the notion of value function has been established, the 

notion of optimal value function can now be introduced. The policy *π  is said to be 

average reward optimal if and only if ( ) ( )*v vπ π≥  for every other policy π , where 

( )v π  is the average reward given by 

 

( ) 1
0

1lim kN k
v E r

N ππ
∞

+→∞
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑  (2.6) 

 

 Furthermore, the optimal value function ( )*,h x π , x X∀ ∈  can then be defined as  

 

( ) ( )
( )

( ) ( ) ( )* * *, max ,x xxa A x x X
h x v r a p a h xπ π π′

∈ ′∀ ∈

⎧ ⎫′+ = +⎨ ⎬
⎩ ⎭

∑  (2.7) 

( )*, 0h x π =   

 

where x  is the recurrent state. The function ( )*,h x π  can be interpreted as 

follows. Under policy *π , ( ) ( )* *, ,h x h xπ π′−  is the difference in the optimal 

expected reward over an infinitely long-time when starting in state x  rather than state 

x′ , where x , x X′∈ . Note that the optimal value function is the unique solution of 
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the Bellman equation in (2.5). The optimal value function in (2.7) is called the 

Bellman optimality equation for the average reward MDP criterion.  

The objective of MDP formulated problems is to find the best possible policy 

that maximizes the long-term average reward for discrete-time stochastic processes. 

However, the CAC problem investigated in this thesis is viewed as a continuous-time 

stochastic process. Even so, some researches have formulated the call admission 

control problem in CDMA networks with the discrete-time MDP model before. For 

example, Sung, Hwang, Chen and Hsu (2004) has formulated CAC problem with 

channel reservation in CDMA systems and solved it by policy iteration which is a 

dynamic programming method. Makarevitch (2002) studied the CAC problem in 

CDMA systems and solved it by reinforcement learning. 

As aforementioned, CAC problems are generally viewed as continuous-time 

stochastic processes. A continuous-time version of MDP called the semi-Markov 

decision process (SMDP) framework is often used.  

2.2.3 Semi-Markov Decision Process (SMDP) 

In the previous section, we have introduced a discrete-time Markov 

decision model where the decisions can be made only at fixed epochs 0,1,...n = . 

However, in many sequential decision-making problems, the time between each 

consecutive decision epoch is not identical but random. In fact, the random duration 

between epochs is drawn from a general probability distribution which may or may 

not be independent of the past history. The semi-Markov decision process is generally 

used to model such problems.  

 Consider a Markov process { }kt
X  whose state transition follows the 

transition probability matrix controlled by policy π  denoted by Pπ . Let the set of 
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possible states be denoted by X . Suppose that at time kt , the system is in state 

kt
X x X= ∈ , action ( )a A x∈  is chosen where ( )A x  is the set of all available actions 

in state x , and the system transits into a new state 'x X∈  with probability 

( )'xxp a Pπ∈ . Associated with the transition is the expected reward of ( )1k xxr r a′+ = . In 

this thesis, we consider optimizing the average reward criterion. Under policy π , the 

average reward SMDP criterion is given by 

 

( )
1

0lim ,
k

k

N
N

E r
v

t

π

π

∞

+
=

→∞

⎧ ⎫
⎨ ⎬
⎩ ⎭=
∑

 (2.8) 

 

where π  is a stationary policy2 that maps a particular state into a particular action, Nt  

is the duration of the sequence of N state transitions. Under the unichain assumption 

which states that under any stationary policy π , a state can be reached by any other 

state under π , the limit in the above equation exists and is independent of the initial 

state. The objective of the SMDP formulation is to find an optimal stationary policy 

*π  that maximizes the average reward criterion such that ( ) ( )*v vπ π≥  for every 

other policy π . 

 

2.3 Dynamic Programming (DP) 

Dynamic programming (DP) is an analytical method used to solve for the 

optimal policy which is the solution for the objective function in (2.8). DP is tailored 

                                                 
2

 Let kπ  be the policy at time kt . A set of polices { }0 1 1, ,..., Nπ π π −  is said to be the stationary 

policy if and only if 0 1 1... Nπ π π π−= = = = . 
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to solve sequential decision-making problems under uncertainty (Uncertainty in real-

world problems are modeled by transition probabilities which are often inaccurate). 

Efficient numerical computation techniques which have been developed to solve the 

DP optimization problems include value iteration (Tijms, 1986), policy iteration 

(Sutton and Barto, 1998) and linear programming (Bertsekas, 1995). Note that linear 

programming has the advantage of having widely available codes, whereas value and 

policy iteration usually involves the writing of its own code. The number of iterations 

required by linear programming depends heavily on the specific problem considered, 

whereas the policy iteration algorithm and value iteration requires typically only a 

very small number of iteration regardless of the problem size (Tijms, 1986). 

Consider a Markov chain in section 2.2.3 whereby the average reward 

criterion in (2.8) under some stationary policy π  holds. To solve for the optimal 

policy *π , one must solve for all the 1X +  unknowns (which are ( )*v π  and 

( )*, ,h x x Xπ ∀ ∈ ) to the following Bellman optimality equation for the average 

reward SMDP criterion, 

 

( ) ( ) ( )
( )

( ) ( ) ( )* * * *, , max ', , ,x xxa A x x X

h x v x r a p a h x x Xπ π τ π π′
∈ ′∀ ∈

⎧ ⎫+ = + ∈⎨ ⎬
⎩ ⎭

∑  (2.9) 

( )* 0,h x =   

 

where x  is the recurrent state, ( )*,xτ π  is the expected time that the system 

remains in state x  under policy *π  and X  is the size of the system state space. 

Note that DP is able to attain an optimal solution to SMDP formulated 

problems. However, it is generally known that for complex systems with large state 
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spaces, dynamic programming methods demand enormous amount of computation for 

developing transition probabilities and expected reward expressions. This problem is 

called Bellman’s curse of dimensionality. Moreover, DP also requires an analytical 

model of state transitions which is usually hard to identify in real applications. This 

problem is called the curse of modeling. DP methods are therefore difficult to 

implement in actual networks. In light of the limitations of DP methods, an alternative 

method which is based on experience learned from interacting directly with the 

environment or simulation is presented in the next section. 

 

2.4 Reinforcement Learning 

Reinforcement learning (RL) is a computational approach for automated goal-

directed learning and decision-making (Sutton and Barto, 1998), in order to maximize 

a numerical reward signal. Reinforcement learning is a type of unsupervised learning 

system. RL provides new methods to deal with the curses of DP problem by finding 

and achieving a near-optimal set of actions through experience instead. Such 

experience is learned through interaction between the agent or decision-maker and the 

environment. Figure 2.1 shows the agent-environment interaction in reinforcement 

learning. Let tx , ta  and tr  be the state, action and reward incurred at time t , 

respectively. At each time step t , the agent receives some representation of the 

environment’s state tx  and selects an action ta . One time step later, the agent receives 

a numerical reward 1tr +  and finds itself in a new state 1tx + . The immediate reward is 

returned to evaluate the action taken by the agent from the environment. These events 

interact continually and the agent’s goal is to maximize (minimize) the total amount 
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of reward (cost) it receives over the long run (Sutton and Barto, 1998). RL methods 

can be broadly classified into three main categories as follows. 

 

action 

Agent

Environment

state 
tx ta

reward
tr

1tr +

1tx +

 

 

Figure 2.1 Diagram of agent-environment interaction in reinforcement learning 

 

2.4.1 Actor-Only Methods 

Actor-only methods operate under a parameterized family of 

probabilistic policy to select an action in each state (Marbach and Tsitsiklis, 1999). 

The parameterized components are updated in the direction that improves the gradient 

of some performance measure with respect to the parameter. These methods therefore 

update the policy directly. However, the general weakness of the actor-only methods 

is the large variance of the gradient estimators obtained directly from simulations 

which results in a slow learning rate.  

2.4.1.1 Actor-only methods for CAC in CDMA networks 

Vazquez-Abad and Krishnamurthy (2002) proposed a CAC 

policy for multiple voice and data services in CDMA systems based on an actor-only 

method. Their method has the ability to deal with both SIR requirements and blocking 

probability constraints. However, the shortcoming of their proposed method is that it 

is table-based—meaning that a parameterized component is required for every state 

and action pair in the system. Consequently, the scalability of the approach in 
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Vazquez-Abad and Krishnamurthy (2002) will become a concern when the size of the 

system increases.  

Lui, Zhang Y. and Zhang H. (2005) has investigated the 

multiple voice and data services CAC problem in CDMA systems. They employed an 

adaptive self-learning control which determines the grade-of-services (GoS) in 

blocking probability terms of new call and handoff calls. The probability of selecting 

an action for whether admitting or rejecting a call in this work is fixed at 0.5. The 

shortcoming for this work is the time spent in learning the network before it can be 

used. 

2.4.2 Critic-Only Methods 

Critic-only methods rely on approximations of value functions and aim 

to solve for an approximation to the Bellman equation in (2.5) (Sutton and Barto, 

1998), (Bertsekas and Tsitsiklis, 1996). Then, a greedy policy based on the 

approximated value function is applied aiming at improving the policy currently being 

followed. Critic-only methods update the policy indirectly through learning the value 

function approximations. Convergence to a near-optimal policy can be achieved in a 

timely manner. However, for these methods, policy improvement is not always 

guaranteed, even if good approximations of the value functions are obtained. Policy 

improvement is only guaranteed in limited settings (Bertsekas and Tsitsiklis, 1996). 

Successful applications of critic-only RL methods to solve for CAC policies in 

cellular networks include El-Alfy, Yao and Heffers (2001) and Lilith and Dogancay 

(2005). 
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2.4.2.1 Critic-only methods for CAC in CDMA networks 

Makarevitch (2000) used a critic-only method to obtain a call 

admission control policy for a multiple class voice services in CDMA system which is 

formulated as a MDP. This work investigated the power control effects and network 

layer constraints in terms of blocking probability constraints only. 

Liao, Yu, Leung and Chang (2006) has investigated the CAC 

problem in CDMA systems under dynamic cell configuration. The problem is 

formulated as a MDP with no blocking probability constraints. This work differs from 

Makarevitch (2000) where Liao, et al (2006) additionally considered the maximum 

link power constraints in their problem.  

2.4.3 Actor-Critic Methods 

Actor-critic methods combine the strong feature of the two previous 

methods together. The critic part attempts to learn value functions from simulation 

and uses them to update the actor’s policy parameters in the direction of improvement 

of the performance measure gradient. Policy improvement is guaranteed as long as the 

policy is gradient-based which is a strong feature of actor-only methods. Faster 

convergence is achieved by using approximated value functions which is a strong 

feature of critic-only methods (Bertsekas and Tsitsiklis, 1996). An actor-critic 

reinforcement learning has been employed to solve the CAC and routing problem in 

low earth orbit satellite networks (Usaha and Barrier, 2007). However, this work 

formulated the CAC problem as an unconstrained SMDP. To the best of our 

knowledge, there has yet been any work which applied actor-critic RL methods to 

SMDPs with multiple constraints. 
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2.4.3.2 Actor-Critic methods for CAC in CDMA networks 

Pandana and Liu (2004) has proposed an actor-critic RL 

approach in a mobile transmission problem for one base station which aims at 

maximizing an average reward criterion. This work considered the SIR level 

constraints which determines the capacity of the CDMA system. However, this work 

did not consider any blocking probability constraints. 

From the aforementioned works which employed RL, none of these works 

have employed the actor-critic RL algorithm to solve the CAC problem in CDMA 

systems with the dual constraints on the SIR and call blocking probability before. This 

led us to consider the CAC problem with dual constraints and develop an actor-critic 

approach to solve the problem. A brief introduction of our proposed method is 

presented in the next section. 

 

2.5 Actor-Critic Method in this Thesis 

The actor-critic methods combine two strong features of the critic-only and the 

actor-only methods together which are fast convergence and guaranteed performance 

improvement. Figure 2.2 shows the diagram of the actor-critic architecture. The 

architecture is comprised of two parts, namely, the critic and actor part. Upon an 

action selection, the critic part estimates the value function which predicts future 

reward from the temporal-difference (TD) error. The TD error is used to evaluate how 

well the selected action was. A positive TD error means that the tendency to select 

that action in the future should be encouraged. On the contrary, if the TD error is 

negative, the tendency in selecting that action should be discouraged. The TD error is 

calculated from the difference between the immediate reward and predicted reward. 
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Afterwards, the TD error value is then fed back to the critic part which then drives the 

probability of selecting actions in the actor part (Sutton and Barto, 1998). 

ACTOR

CRITIC

State , Action 

TD 
Error

Predict 
reward

Immediate 
reward

Feedback learning

Decision to do something (Action)

 

Figure 2.2 Diagram of actor-critic architecture 

 

As stated earlier in section 2.4.1, the natural weakness of the actor-only 

methods is the large variance of the gradient estimator obtained directly from 

simulation which results in a slow learning rate. To improve the learning rate, the 

estimated value function should be involved. The estimated value function gives a fast 

convergence rate which helps expedite the learning rate which is a strong 

characteristic of the critic-only methods (Usaha, 2004). 

However, as mentioned in section 2.4.2, policy improvement in critic-only 

methods is not always guaranteed. The reason is that the improvement of policy 

experiences an abrupt change. This has been identified as the key reason why policy 

improvement in critic-only methods is guaranteed in some limited cases only 

(Bertsekas and Tsitsiklis, 1996). To avoid abrupt policy changes, a probabilistic 

policy should be used. The probabilistic policy is then gradually updated in the 

direction that improves the performance measure. Under the condition that the 
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probabilistic policy is gradient-based, policy improvement is guaranteed which is a 

strong characteristic of actor-only methods. 

To avoid the drawbacks caused by actor-only and critic-only methods, the 

actor-critic reinforcement learning is therefore selected in this thesis. Hence, by 

employing the actor-critic method in the policy search, a near-optimal solution can be 

achieved. In the following subsections, we proceed to present the actor-critic method, 

the performance criterion of which we wish to improve in this thesis and its gradient.  

2.5.1 Average Reward Criterion  

 Consider a Markov decision process with finite state space X  and finite 

action space A . Let θµ  be a probabilistic policy which belongs to a family of policies 

parameterized by vector MRθ ∈ . That is, ( )a xθµ  is a mapping from the current state 

of the process to a distribution of actions. Suppose that the transition probability 

transition matrix of this Markov decision process is Pθ  whose elements are the 

probability of transiting from state x  into state 'x  when the actions taken are 

controlled policy by θµ . Upon selecting each action ( )a A x∈  at state x X∈ , a 

reward ( ),g x a  is generated. The objective is to find the average reward criterion for 

a randomize stationary policy that ( ) ( )*v vθ θ≥  for every θ  which is given by 

 

( ) ( ){ }1

0

1lim ,N
k kkN

v E g x a
N µθ

θ −

=→∞
= ∑  (2.10) 

 

where {}.E
θµ

 is expectation operator and N is the number of transitions.  
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2.5.2 Gradient Estimation 

Let ∇  denote the gradient with respect to the parameterized vector θ . 

The parameterized policy, θµ , can be tuned by improving the gradient of the average 

reward which is given by (Usaha, Barria 2007). 

 

( )
( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

x
, ,

,
x X a A

x X a A x

p x a x x a Q x a
v

p x a x x a

θ θ
θ θ

θ θ

µ ψ
θ

µ τ
∀ ∈ ∀ ∈

∀ ∈ ∀ ∈

∇ =
∑ ∑

∑ ∑
 (2.11) 

 

where ( ),Q x aθ  is an action-value function of starting in state-action pair 

( ),x a  and following policy θµ  thereafter, ( ),x aτ  is the average transition time 

corresponding to state-action pair ( ),x a  and  

 

( ) ( )
( ),

a x
x a

a x
θθ

θ

µ
ψ

µ
∇

=  (2.12) 

 

2.5.3 The Actor 

The parameter ( ),x aθψ  in (2.12) is the actor feature of the actor-critic 

architecture. Note that at any time step, the parametric vector θ  controls θµ  (i.e. the 

policy of the actor) and ( ),x aθψ  (i.e. the estimated gradient ( )v θ∇ ). Hence, by 

tuning the parametric vector θ , the estimated gradient can be improved. In particular, 

at the k -th transition occurring at time kt , the parametric vector kθ  is updated by 

 

( ) ( ) ( )1 1 1 1 1, ,k k

kk k k k r k k k kr Q x a x aθ θθ θ η ψ+ + + + += + Γ  (2.13) 
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where k

kr
Qθ  is the estimated action-value function at time kt , kη  and ( )krΓ  are the 

stepsize parameters, kr  is the parameterized vector of the critic at time kt .  

2.5.4 The Critic 

The job of the critic part is to critique the actor. In other words, the critic 

quantifies how well the action of the actor is. This is done by maintaining action-

value functions ( ),Q x aθ  which is a measure of how good it is to perform a given 

action a  in a given state x  and following policy θµ  thereafter. In the case where the 

transition probability matrix Pθ  is unknown (this is generally the case when the 

system dynamics is generally too complex to extract that one must resort to 

simulation or direct interaction with the system), the critic must approximate 

( ),Q x aθ  by an estimated action-value function. Such approximation at any time step 

kt  is denoted by the parameter ( ),k

kr k kQ x aθ  in the below equation 

 

( ) ( ) ( )
1

0

, ,k k k

k

K
T

r k k k j k k
j

Q x a r r j x aθ θ θφ φ
−

=

= =∑  (2.14) 

 

where ( ) ( ) ( )0 1, , ,..., ,k k k
T

k k k k K k kx a x a x aθ θ θφ φ φ −⎡ ⎤= ⎣ ⎦  is the feature vector for state-action 

pair ( ),k kx a  which is dependent on parameter vector kθ , ( ) ( )1 ,...,
T

kr r r K= ⎡ ⎤⎣ ⎦  is the 

critic parameter vector at time kt . The critic parametric vector can be updated as 

follows 

 

1k k k k kr r d zγ+ = +  (2.15) 
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where kγ  is the stepsize, kz  is the eligibility trace and kd  is the temporal difference 

(TD) error.  

 In the above treatment, we have assumed that the problem state space is 

small enough that we can use a look-up table representation. A look-up table 

representation means that a separate action-value function ( ),rQ x aθ  is kept for every 

state-action pair ( ),x a . That is, the number of entries required for look-up table 

representation in (2.15) is r K X A= = × . However, as the problem size increases 

and the number of state-action pair becomes large, look-up table representation 

becomes infeasible. Alternatively, we can use compact representation whereby 

action-value functions can be represented by a smaller set of parameters using a 

function approximator. That is by using function approximation in (2.14), the critic 

approximates ( ),Q x aθ  with ( ),k

kr k kQ x aθ  by using a linear function approximation 

architecture. The number of entries in (2.15) required for compact representation can 

be chosen such that r K X A= << × . By using such representation, the number of 

parameters required for actor-critic method is greatly reduced and the scalability of 

the method is enhanced.  

 

2.6 Conclusion 

The SMDP framework has been used to formulate call admission control 

problems in CDMA networks. In this chapter, we have briefly reviewed the SMDP 

concept, and introduced an analytical tool called dynamic programming (DP) to solve 

the SMDP formulated problem. The advantage of DP is that the optimal solution can 

be determined. However, DP has two main drawbacks which are Bellman’s curse of 
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dimensionality and the curse of modeling. These curses are caused by DP’s 

requirement of complete mathematical formulization of the system dynamics.  

To solve such drawbacks, reinforcement learning (RL) has been introduced. 

RL methods provide an approximate solution to SMDP formulated problems. RL 

circumvents the curses of dimensionality by employing function approximation. Such 

approach demands less computation and parameter storage. Furthermore, the curse of 

modeling is avoided by simulation or direct interaction with the system which do not 

require an explicit model of the system dynamics.  

In the next chapter, an SMDP formulation of the CAC problem for multiple 

voice services in DS-CDMA systems is presented. The purpose is to demonstrate the 

optimality of the solution obtained by means of a dynamic programming method. The 

SMDP formulation is proposed and solved by Singh et al. (2002). 



CHAPTER III 

CALL ADMISSION CONTROL IN WIRELESS DS-CDMA 

SYSTEMS: A DP APPROACH

 

3.1 Introduction 

In this chapter, a conventional dynamic programming (DP) method is 

employed to solve the CAC problem in wireless direct-sequential code division 

multiple access (DS-CDMA) systems which support multiple voice services subject to 

multiple quality-of-service (QoS) requirements. Existing approaches have been 

proposed to find for the CAC policy under QoS constraints in CDMA systems and 

have employed DP methods to solve for the optimal CAC policy. 

In section 1.1.3.2, Yang and Geraniotis (1994) investigated the call blocking 

probability which is the network layer constraint alone. In this work, a dynamic 

programming method called value iteration is employed to solve for the CAC policy. 

Singh et al. (2002) investigated a call admission control problem which deals with 

dual constraints, namely, the SIR and blocking probability constraints. The solution 

from Singh et al. (2002) is solved by another DP method called linear programming 

(LP) which gave the optimal CAC policy under multiple QoS constraints. This 

chapter is therefore dedicated to present the underlying concepts, advantages and 

drawbacks of the method proposed by Singh et al. (2002). 

The emphasis of this chapter is focused on the following issues: 
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1. The introduction of the network model and basic assumptions of CAC in 

CDMA systems. 

2. The semi-Markov decision process (SMDP) formulation for the CAC 

problem in CDMA systems.  

3. Performance quantification of DP compared to other CAC policies. 

The structure of this chapter is organized as follows. The network model for 

DS-CDMA systems which support multiple voice services will be described in 

section 3.2. The following session is dedicated to describing the semi-Markov 

decision process (SMDP) formulation of the CAC problem. Section 3.4 presents the 

construction of optimal CAC policy by means of a DP method called LP. In section 

3.5, the numerical results will be presented. Finally, section 3.6 summarizes the entire 

chapter.  

 

3.2 Network Model 

In this chapter, we study the work in Singh et al. (2002) for call admission 

control problem as a SMDP for the uplink, which is the mobile connection to base 

station (BS) of a synchronous DS-CDMA cellular system in multiple voice services 

only.  
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Figure 3.1 CAC diagram in CDMA network 

 

Consider the incoming calls which require access to the CDMA network which can be 

classified into vK  classes. Assume that class i  voice call is generated according to a 

homogenous Poisson distribution with intensity ( )iλ  where 1,..., vi K= . The call 

duration of class- i  call is randomly generated according to an exponential distribution 

with mean rate 
( )
1
iµ

. Figure 3.1 depicts the CAC model in CDMA systems which 

can be described as follows. 

1. A voice user of class i  where 1,..., vi K=  requests to access the network.  

2. The call admission controller receives the SIR level computed from the SIR 

evaluation. Based on the SIR level and the required SIR constraints, the 

admission controller will make a CAC decision for the base station (BS). 

3. If the call admission controller decides to accept the call request, the request is 

sent to BS and connected to the public network i.e., public switched telephone 

network (PSTN).  

4. The SIR evaluation is passed back to the call admission controller in (2) to 

decide whether to admit or reject the next incoming user request. Thus, the 

performance in the physical layer affects the admission of the new users. 
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3.3 Semi-Markov Decision Process Formulation 

The aim of this section is to formulate the call admission control in CDMA 

network problem for the uplink process in figure 3.1 as a SMDP. The general 

assumptions of the SMDP framework in this chapter are as follows.  

1. A discrete-valued the state space specifies the profile of the users, i.e., the 

number of users in the network. The SIR requirement constraints are incorporated into 

the framework by truncating the state space to include only the user profiles which 

satisfy the SIR constraints. 

2. The state dynamics is defined by the arrival process which is a 

homogeneous Poisson distribution and the duration time for voice users which is 

assumed to be exponentially distributed.  

3. The SMDP must be unichain which is the property that defines the average 

reward (or cost) performance criterion to be optimized. 

Under these assumptions, the optimal CAC algorithm, which is designed to 

optimize a certain performance criterion and satisfy the QoS requirements in both the 

physical and network layers, can be attained by formulating the CAC problem as a 

SMDP as follows. 

3.3.1 State Space 

Consider a continuous-time stochastic process { }tX  where tX  is a 

random variable representing the state of the system at time t  where t R+∈ . Let X  

denote the state space which specifies all possible profiles of the number of users in 

the network. Suppose that at a given time t R+∈ , tX x=  where vKx X I+∈ ⊂  

represents a state vector of the BS. Let ( )x i  be the number of class i  voice users 
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where 1,2,..., vi K= . The state vector, x , which depicts the profile of current users in 

the system can then be defined by 

 

( ) ( ) = 1 ,...,
T

vx x x K⎡ ⎤⎣ ⎦  (3.1) 

 

To define the state space of the system, recall that the profile of the number of users in 

equation (3.1) in the system at any time is controlled by the level of SIR requirement 

in the CDMA system. In particular, the profile of the number of users in the system 

must be such that the actual SIR level for any class i  must not fall below the 

minimum SIR requirement for class i  where 1,2,..., vi K= . Let ( )x iΨ  be the SIR 

value for class i  voice users when the system is in state x  (See Appendix I for more 

details of the calculation of ( )x iΨ ). Let the minimum SIR requirement for class i  

users be denoted by ( )iβ . The minimum SIR requirement vector β  can be defined as  

 

( ) ( )1 ,...,
T

vKβ β β= ⎡ ⎤⎣ ⎦  (3.2) 

 

Therefore, the state space of all the possible profiles of users in the CDMA system is 

given by 

 

( ) ( ) ( ) ( ){ }= 1 ,..., : , 1,...,T
v x vX x x x K i i i Kβ= Ψ ≥ =⎡ ⎤⎣ ⎦  (3.3) 

 

Note that the state space X  in (3.3) inherently embeds the SIR constraints.  

3.3.2 Decision Epochs 

Consider a CDMA system which has a user requesting to join the 

network. At this particular instant, the BS must decide whether to admit or reject that 
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call request. Such instant is generally referred to as a decision epoch. The definition of 

decision epoch, according to Ross and Tsang (1989), is the instance when the 

stochastic process { }tX , t R+∈  changes state. The transition time between the 

changes of state in the stochastic process { }tX  is usually defined as kt  where 

0,1,2,...k =  is the index of the state transition sequence. 

3.3.3 Actions 

For each decision epoch, the decision from the call admission controller 

at the BS is made whether it is to admit or reject the call arrival. The decisions are 

referred to actions. The action space, denoted by A , is the set of all possible actions 

which is defined as follows 

 

( ) ( ) { }{ }1 ,..., : 0,1 vT K
vA a a a K a= = ∈⎡ ⎤⎣ ⎦  (3.4) 

 

where ( )a i  refers to the action for class i  voice user such that  

 

( )
1 ,if class  voice user is admitted
0 ,otherwise

i
a i ⎧

= ⎨
⎩

 (3.5) 

 

In other words, action ( ) 1a i =  is the action that accepts the request of class i  voice 

user; otherwise, the user is blocked by the BS. 

Suppose at decision epoch kt , the system is in state 
kt

X x= , where 

0,1,2,...k = . At state x , an action must be selected from a state-dependent subset of 

A  denoted by ( )A x . More specifically, ( )A x  is the set of all possible actions at state 

x  which can be defined as 
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( ) ( ) ( ){ }: 0,     if A x a A a i x e i X= ∈ = + ∉  (3.6) 

 

where ( )e i  denotes a vector with all zero components except for the i -th component 

which is unity. Equation (3.6) ensures that any action a  taken in state x , does not 

result in a transition to a state outside the state space. 

3.3.4 State Dynamics 

In this chapter, the CAC problem is formulated as a SMDP. As stated in 

section 3.1, the purpose of this chapter is to employ a dynamic programming method 

which has been proposed by Singh et al. (2002) to solve the CAC problem. However, 

as explained in section 2.3, the DP method requires a complete knowledge of the 

system dynamics which is described by the transition probabilities and expected 

reward of the system. Denote the transition probabilities for each state action pairs by 

( )xyp a  which is defined as the probability that the state at the next decision epoch is 

y , given that an action a  is selected at current state x . That is, the transition 

probability can be defined as  

 

( ) ( )1
,

k k kxy t t tp a P x y x x a a
+
= = =  (3.7) 

 

where 
1kt

x
+

, 
kt

x , 
kt

a  refer to the states at time 1kt +  and kt , and the action taken at time 

kt , respectively. Let ( )x aτ  be the expected sojourn time of the system. The expected 

sojourn time is the expected time at which the system remains in the state x  when 

action a  is taken. The expected sojourn time influences a change of state in terms of a 

specified period of time. Its mathematical term is given by 
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( ) { }1 ,
k kx k k t ta E t t x x a aτ + − = =  (3.8) 

 

For a call admission control problem formulated as a SMDP, equations (3.7) and (3.8) 

can be expressed as follows (Bertsekas, 1995 and Singh et al., 2002)  

 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

      ,if 

      ,if 
0                   ,otherwise,

x

xy x

i a i a y x e i X

p a i x i a y x e i X

λ τ

µ τ

= + ∈⎧
⎪

= = − ∈⎨
⎪
⎩

 (3.9) 

 

and 

 

( ) ( ) ( ) ( ) ( )( )
1

1

,
vK

x
i

a a i i x i iτ λ µ
−

=

⎡ ⎤
= +⎢ ⎥
⎣ ⎦
∑  (3.10) 

 

where ( )e i  denotes the vector with all elements equal to zero except the i -th 

component which is unity, ( )iλ  and ( )iµ  are the arrival rate and call duration time 

class i  voice users which follow a homogeneous Poisson distribution and an 

exponential distribution, respectively, where 1,..., vi K=  is the class index of voice 

services.  

Note that ( )x aτ  in equation (3.10) is the reciprocal of the sum of the rates 

which exit state x  when action a  is taken. In other words, ( )x aτ  is the expected time 

the system remains in state x  when action a  is taken, i.e., the expected time until the 

system transits into a new state. In equation (3.9), ( )xyp a  given by ( ) ( ) ( )xi a i aλ τ  is 

the probability of transiting from state x  to a new state ( )y x e i X= + ∈ . In other 

words, this is the probability of transiting into a state which has one more class i  
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voice user than state x . Note that this probability is non-zero only when a class i  call 

is admitted (i.e., ( ) 1a i = ). On the other hand, equation (3.9) states that the probability 

of transiting from state x  to a new state ( )y x e i X= − ∈  is given by 

( )xyp a = ( ) ( ) ( )xi x i aµ τ . In other words, this is the probability of transiting into a 

state which has one less class i  voice user than state x . This refers to the scenario 

when a class i  voice user terminates a call and leaves the system. Note that this 

probability is non-zero so long as there exists class i  voice users in the system (i.e., 

( ) 0x i > ). 

3.3.5 Policy 

A call admission control policy is a rule that maps each state x  into an 

action a . Suppose that at any given state x , an action a  which decides whether to 

accept or reject the call, is selected according to a specified policy π . A stationary 

policy (See section 2.2.3) π  is a function that maps the state space X  into the action 

space A  and is independent of time. An admissible policy is a stationary policy that 

satisfies 

 

( ) ( ){ }: ,X A x A x x Xπ πΠ = → ∈ ∀ ∈  (3.11) 

 

where ( )xπ  refers to the action taken at state x  under policy π . Hence, we 

are focused on finding a policy that is optimal over all other admissible policies 

subject to some performance criterion. 
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3.3.6 Performance Criterion 

The aim of this chapter is to solve the CAC problem in a CDMA system 

by minimizing the average cost performance criterion and satisfy multiple QoS 

requirement constraints. The cost criterion ( ),c x a  in this chapter, which is proposed 

by Singh et al. (2002), is defined as follows 

 

( ) ( ) ( )( )
1

, 1
vK

i
c x a i a iν

=

= −∑  (3.12) 

 

where ( )i Rν +∈  where ( )iν , 1, 2,..., vi K=  is some weight factor. As stated earlier 

that the CAC problem in CDMA systems must deal with two constraints. The first 

constraint is the SIR level constraint which determines the capacity of the system and 

is embedded into the state space as shown in equation (3.3). The second constraint is 

the blocking probability constraint which can be embedded in the cost function in 

terms of ( )i Rν +∈  where ( )iν , 1, 2,..., vi K=  is the weight factor for the blocking 

probability constraints. In this chapter, the average cost criterion is used as the 

performance criterion to be optimized. Suppose the average cost for a given 

admissible policy π ∈Π  is denoted by ( )v π  is defined as 

 

( ) ( ){ }1

0

1lim ,N
k kkN

N

v E c x a
t ππ −

=→∞
= ∑  (3.13) 

 

where {}.Eπ  is the expectation under policy π . The optimal policy *π  can then be 

defined as  
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( ) ( )* minv v
π

π π
∀ ∈Π

=  (3.14) 

 

3.4 Constructing the Optimal CAC Policy with Constraints 

This section explains the construction of the optimal policy. Here, the 

proposed method by Singh et al. (2002) is investigated, where the dynamic 

programming technique called linear programming (LP) method is employed to solve 

for the optimal CAC for the average cost criterion, in (3.14). The optimal policy *π is 

obtained by solving the following LP  

 

( )
( ) ( )

( )0, ,
min , ,

xa
x xaz x X a A x x X a A x

c x a a zτ
≥ ∈ ∈

∈ ∈
∑ ∑  

Subject to 
( )

( )
( )

0ya xy xa
a A y x X a A x

z p a z
∈ ∈ ∈

− =∑ ∑ ∑ , ,y X∈  

( )
( )

1x xa
x X a A x

a zτ
∈ ∈

=∑ ∑  (3.15) 

 

and the blocking probability constraints 

 

( )
( )

( ) ( ), , 1,...,i
x xa v

x X a A x
c x a a z B i i Kτ

∈ ∈

≤ =∑ ∑  (3.16) 

 

where ( ) ( ), 1ic x a a i= − , ( )B i  is the maximum allowable blocking probability for 

class i  voice user. The optimal solution of the above LP problem is denoted by *
xaz . 

To obtain a CAC policy from *
xaz , the optimal CAC policy can be constructed as a 

randomized stationary policy as follows. Denote the optimal randomized stationary 

policy as ( )* ,x aπ  where 
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( ) ( )
( )

( )

*
*

*, x xa

x xa
a A x

a z
x a

a z
τ

π
τ

∀ ∈

=
∑

 (3.17) 

 

However, if the optimal solution for some state x X∈  is such that * 0xaz = , 

( )a A x∀ ∈ , choose an arbitrary ( )a A x∈  and set ( )* x aπ = . 

 

3.5 Numerical Study 

In this section, a numerical study is carried out to demonstrate the optimality 

of CAC policies obtained in the previous section which was proposed in Singh et al. 

(2002). For performance comparison, three approaches have been investigated which 

include the complete sharing approach (CS), the threshold policy and the SMDP 

approach solved by DP. We consider a system with two classes of voice services, i.e., 

2vK = . Each arrival of class i  users is generated according to a homogenous Poisson 

distribution with rate ( )iλ , where 1,2i = . The mean call holding time for class i  call 

is exponentially distributed with parameter ( )iµ  where 1,2i = . The cost function 

( ),c x a  used in (3.12) and (3.13) is modified into a reward function in order to 

consider an average reward performance criterion (as oppose to the average cost 

performance criterion). The physical interpretation of the reward function ( ( )r i  in 

tables 3.1-3.3) can be interpreted as the income of the system earned by admitting 

class i  voice users. Thus, the optimization objective is to maximize the long-term 

average reward instead. Performance metrics are measured in terms of the long-term 

average reward, the blocking probability and the SIR levels. We assume that there is 
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no fading in the channel. The parameter ( )iβ  denotes the minimum SIR requirement 

for class i  which determines the upper limit on the number of users in the network as 

shown in equations (3.2) and (3.3) which is 20, 21 dB, respectively. The parameter 

( )P i  denotes the transmission power for class i  user which is 1.2 and 1.7 watts, 

respectively. The channel gain for class i  is ( ) 1h i = , where 1,2.i =  Finally, the 

channel variance of class i  user is given by ( )2 0iξ = , where 1,2.i =  N  is the 

processing gain of the channel which is 10. Note that ( )h i , ( )P i  and ( )2 iξ  are used 

to calculate, ( )x iΨ , which is the actual SIR value of class i  users when the system is 

in state x  (See Appendix I). The value of ( )x iΨ  is then employed to determine the 

state space X  in equation (3.3). Simulation is run for 710  time steps in each CAC 

method.  

We study 6 cases of parameters settings as shown in Tables 3.1-3.3. Table 3.1 

tests the ability to satisfy the blocking probability constraints of class 2 users when the 

constraint on blocking probability requirement is reduced. Table 3.2 shows the ability 

to maintain the blocking probability constraints of class 1 users while the traffic 

arrival rates of each class are increased from 1.5 to 2.0 calls/min. Table 3.3 shows the 

ability to maintain the constraint on blocking probability requirement in a non-trivial 

scenario. 

The parameter ( )T i  in tables 3.1-3.3 is the threshold for class i  voice user 

under the threshold CAC policy. The threshold policy shown in the tables are 

obtained by empirically reducing the number of calls in each class, thereby decreasing 

the blocking probability for the desired class until its blocking probability constraint is 
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satisfied. We select the threshold levels that give the maximum long-term average 

reward in order to obtain the best possible threshold policy that satisfies the desired 

blocking probability constraints. 

 

Table 3.1 Multiservice Parameters: cases 1-2 
  Class1 Class2 
Case 1, Blocking probability constraints, ( )B i  - 0.0001 

Case 2, Blocking probability constraints, ( )B i  - 0.00005 

Mean arrival rate (call/min), ( )iλ  1.5 1.5 

Threshold limited, ( )T i  2 8 

Rewards ($), ( )r i  8 4 

Mean call holding time(min/call), ( )1 iµ  1.1 1.1 

 

Table 3.2 Multiservice Parameters: cases 3-4 
  Class1 Class2 
Case 3, Blocking probability constraints, ( )B i  0.0001 - 

Case 4, Blocking probability constraints, ( )B i  0.00005 - 

Mean arrival rate (call/min), ( )iλ  2.0 2.0 

Threshold limited, ( )T i  9 1 

Rewards ($), ( )r i  8 4 

Mean call holding time(min/call), ( )1 iµ  1.1 1.1 
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Table 3.3 Multiservice Parameters: cases 5-6 
  Class1 Class2 
Case 5, Blocking probability constraints, ( )B i   - 0.00005 

Case 6, Blocking probability constraints, ( )B i   - 0.00001 

Mean arrival rate (call/min), ( )iλ  4 1 

Threshold limited, ( )T i  3 7 

Rewards ($), ( )r i  2 8 

Mean call holding time(min/call), ( )1 iµ  2 1 

 

Tables 3.4-3.9 reveal the optimality of the DP method over all other policies. 

The DP method can achieve the optimal long-term average reward while maintaining 

constraints on the call blocking probability requirement. The CS policy can also give 

the high long-term average reward. However, CS cannot satisfy the blocking 

probability constraints required. The empirical threshold policy can maintain the 

constraint on the call blocking probability requirement in all cases. However, the 

long-term average reward is the lowest of all.  

As stated earlier, the objective of this chapter is to deal with the CAC problem 

with dual constraints, namely, the call blocking probability and SIR level. Results in 

tables 3.5-3.10 depict the ability of the Singh et al (2002)’s method to maintain the 

call blocking probability constraints.  
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Table 3.4 Blocking probability measured for cases 1-2 
  DP CS Threshold Policy 
  Class1 Class2 Class1 Class2 Class1 Class2 
Unconstraint 0.000343 0.000445 0.000412 0.000380 0.000412 0.000380 

Case1 0.006027 0.000108 0.000380 0.000440 0.281156 0.000074 
Case2 0.025400 0.000060 0.000408 0.000399 0.280863 0.000093 

 

Table 3.5 Average reward measured for cases 1-2 
 DP CS Threshold Policy 
 Avg. Reward Avg. Reward Avg. Reward 

Unconstraint 17.9625 17.9924 17.9924 
Case1 17.9167 17.9761 14.6206 
Case2 17.6844 17.9894 14.6288 

 

Table 3.6 Blocking probability measured for cases 3-4 
 DP CS Threshold Policy 
 Class1 Class2 Class1 Class2 Class1 Class2 

Unconstraint 0.002715 0.042713 0.002797 0.002942 0.002797 0.002942 
Case3 0.000136 0.224125 0.002893 0.003167 0.000124 0.645501 
Case4 0.000054 0.413666 0.003232 0.003189 0.000060 0.645284 

 

Table 3.7 Average reward measured for cases 3-4 
 DP CS Threshold Policy 
 Avg. Reward Avg. Reward Avg. Reward 

Unconstraint 23.6002 23.9509 23.9509 
Case3 22.18 23.9858 18.7727 
Case4 20.7061 23.9858 18.8338 

 

Table 3.8 Blocking probability measured for cases 5-6 
 DP CS Threshold Policy 
 Class1 Class2 Class1 Class2 Class1 Class2 

Unconstraint 0.000877 0.000110 0.000867 0.000868 0.000802 0.000719 
Case5 0.002256 0.000050 0.000828 0.000836 0.210803 0.000036 
Case6 0.003930 0.000010 0.000802 0.000719 0.400232 0.000008 
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Table 3.9 Average reward measured for cases 5-6 
  DP CS Threshold Policy 
  Avg. Reward Avg. Reward Avg. Reward 

Unconstraint 15.9972 15.9854 15.9454 
Case5 15.9703 15.9931 14.3628 
Case6 15.9596 15.9454 12.8427 

 

In terms of the constraints on the SIR level, figures 3.2 and 3.3 show the 

moving average of the SIR level under case 4 setting. Results show that the SIR level 

of both classes can indeed be satisfied. 
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Figure 3.2 The SIR level for class 1 voice user  
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Figure 3.3 The SIR level for class 2 voice user 

 

3.6 Conclusion 

In this chapter, we studied the CAC problem for multiclass voice services in 

CDMA networks subject to two types of QoS constraints, namely, the SIR level 

constraint which is a physical layer constraint, and the call blocking probability 

constraint which is a network layer constraint. The focus of this chapter is on the 

approach of Singh et al. (2002) which formulates the CAC problem as a semi-Markov 

decision process (SMDP) by embedding the SIR level constraints into the state space. 

The call blocking probability constraint is taken into account by virtue of a dynamic 

programming (DP) method called linear programming (LP). This particular DP 

method was selected by Singh et al. (2002) due to its ability to solve optimization 

problems subject to multiple constraints. 
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The optimality of the DP-based CAC policy is demonstrated in the numerical 

study. The performance metrics measured are the long-term average reward, the call 

blocking probability and the SIR requirements. The numerical results show that the 

policy obtained from the DP method outperforms the complete sharing and empirical 

threshold policies by attaining the highest long-term average reward while still 

satisfying the dual constraints on the SIR level and call blocking probability. 

In the next chapter, we extend the CAC problem to a more realistic scenario 

by increasing the state space which results in increased computational and storage 

complexity of the DP approach. To circumvent computational burden of DP, we 

propose to use an alternative method called actor-critic reinforcement learning (RL) to 

solve for a near-optimal CAC policy in the CDMA network instead. 



CHAPTER IV  

CALL ADMISSON CONTROL IN WIRELESS DS-CDMA 

SYSTEMS: A RL APPROACH 

 

4.1 Introduction 

In the previous chapter, we obtained an optimal call admission control (CAC) 

policy in wireless DS-CDMA systems with multiple voice services constructed from 

dynamic programming (DP). Although an optimal solution is obtained, the scalability 

of such method becomes a major concern as the system size is increased to a more 

realistic scale. This problematic issue is referred to as the curse of dimensionality. 

Furthermore, DP methods must also cope with the curse of modeling which requires a 

complete knowledge of state transition probabilities and expected reward which are 

difficult to determine exactly in many scenarios.  

To overcome the computational difficulty of DP, we propose an alternative 

approach based on a reinforcement learning (RL) technique (Sutton and Barto, 1998) 

to determine near-optimal CAC policies instead of the optimal solution as obtained by 

DP. The RL method can provide near-optimal solutions to complex DP problems 

through experience learned from simulations or direct interaction with the 

environment. Consequently, RL does not require knowledge of the explicit model of 

system dynamics. Furthermore, RL methods also permit the use of function 

approximation which allows approximation of decision variables by a small set of 

parameters. Therefore, the scalability of RL is greater than classical DP methods.  
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The aim of this chapter is to propose an actor-critic RL method to solve the 

CAC problem in a CDMA network with multiple voice services, which incorporates 

both SIR levels and blocking probability constraints. The method builds on an earlier 

version of an actor-critic RL method in Usaha and Barria (2007) which has been 

successfully applied to solve a CAC and routing problem in LEO satellites networks. 

Whereas Usaha and Barria (2007) considered an unconstrained SMDP problem, the 

method proposed in this chapter considers a constrained SMDP problem. It should be 

noted that Vazquez-Abad and Krishnamurthy (2002) proposed a RL method to solve 

the CAC problem in CDMA networks under the SIR and blocking probability 

constraints. However, their method is based on a look-up table representation which 

will be infeasible as the problem dimension becomes large. On the contrary, our 

proposed method employs function approximation which has the advantage of less 

memory storage and computational requirements than Vazquez-Abad and 

Krishnamurthy (2002). 

The emphasis of this chapter is on the following issues: 

1. The semi-Markov decision process (SMDP) formulation which differs from 

the formulation in chapter 3. 

2. A modified reward to deal with the blocking probability constraints which 

differs from that of Usaha and Barria (2007).  

3. The performance analysis of the proposed RL method compared to the DP 

and empirical threshold policy methods.  

4. The analysis of memory storage and computational requirements.  

The structure of this chapter is organized as follows. Section 4.2 describes the 

CDMA network model. Section 4.3 presents the SMDP formulation for the RL 
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framework. Section 4.4 describes the RL technique called the actor-critic RL method 

which combines the strong points of the actor-only and critic-only methods together. 

Section 4.5 presents the numerical study of RL approach and section 4.6 concludes 

this chapter. 

 

4.2 DS-CDMA Network Model 

The network model remains the same as in section 3.2. For convenience, 

the network model for the CDMA system is summarized as follows. 
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Figure 4.1 Network model for DS-CDMA systems 

 

Consider a CDMA system which supports multiclass voice users of vK  

classes in Figure 4.1. In phase (1) in the figure, we denote the arrival rate for voice 

class i  users by ( )iλ  where 1,2,..., vi K= . The arrival of incoming call requests of 

class i  users follows a homogeneous Poisson distribution. In phase (2) of Figure 4.1, 

the call admission controller (CAC) receives the SIR level from the SIR evaluation in 

(4). In phase (3) of the figure, the call admission controller will make a CAC decision 

for the base station (BS) based on the SIR level and the required SIR constraints. If 

the decision is to admit the call request, the BS connects the call request to the 
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network. Finally in phase (4) of the figure, the current SIR level must be reevaluated 

as the current profile of the users has changed. The SIR value is then fed back to the 

call admission controller for the next CAC decision. Once admitted to the network, 

the duration of a class i  call in the system is exponentially distributed with mean rate 

( )iµ
1 . 

 

4.3 SMDP Formulation  

The CAC problem in CDMA networks can be formulated as an SMDP in a 

similar manner as chapter 3. However, unlike chapter 3, we modify the reward 

signal by including a penalty function which allows control over the blocking 

probability so that it meets the blocking probability requirements. For convenience, a 

complete formulation is provided in this section.  

4.3.1 State Space  

Consider a continuous-time stochastic process { }tX  where tX  is a 

random variable representing the number of users in the system at time t R+∈ . Let X  

denote the state space which represents the number of users in the system. Let 

vKx X I+∈ ⊂  be the state vector of the system and vK  be the number of voice classes 

where 

 

( ) ( )1 ,...,
T

vx x x K= ⎡ ⎤⎣ ⎦  (4.1) 
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where ( )x i , 1,..., vi K=  denotes the number of class i  voice users. Suppose that the 

current state is given by tX x= . In CDMA systems, the maximum number of 

allowable users depends on the SIR levels of the users present in the system. Such 

SIR levels must not violate the minimum SIR level requirements. 

Let ( )x iΨ  denote the SIR value for all class i  calls when the system is in 

state x . Let vector β  represent the minimum SIR requirements for all classes 

specified as follows 

 

( ) ( )1 ,...,
T

vKβ β β= ⎡ ⎤⎣ ⎦  (4.2) 

 

Since equation (4.2) must be satisfied for each admission of voice user into the 

CDMA system, the number of users in the system must give a SIR value ( )x iΨ  

which strictly satisfies the minimum SIR requirement ( )iβ  for every class i . Hence, 

the state space X  truncated by the required SIR levels can then be defined as follows 

 

( ) ( ) ( ) ( ){ }= 1 ,..., : , 1, 2,...,T
v x vX x x x K i i i Kβ= Ψ ≥ =⎡ ⎤⎣ ⎦  (4.3) 

 

Note that the minimum SIR requirements in vector β  determine the size of the state 

space. In other words, vector β  determines the maximum allowable number of users 

in the system or the capacity of the system. Details of the calculation of the SIR level 

( )x iΨ  is given in appendix I. 
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4.3.2 Decision Epochs 

A decision epoch refers to the time instant where an event occurs such 

that a decision must be made. Let the event space Ω  be the finite set of all possible 

events defined by  

 

( ) ( ) ( ) { }{ }1 ,..., : 1,0, 1T
vK iω ω ω ωΩ = = ∈ −⎡ ⎤⎣ ⎦  (4.4) 

 

The event vector ω  is defined as 

 

( ) ( )1 ,...,
T

vKω ω ω= ⎡ ⎤⎣ ⎦  (4.5) 

 

The event Ω∈ω  indicates whether a call arrival or call departure occurs. In 

particular, ( )iω  refers to an event associated to class i  calls and has the following 

meaning, 

 

( )
1             , if a call arrival of class  occurs
-1           , if a call depature of class  occurs 
0            , otherwise

i
i iω

⎧
⎪= ⎨
⎪
⎩

 (4.6) 

 

Furthermore, at any decision epoch, we assume that only one event can incur, i.e., 

 

( )
1

1
vK

i
iω

=

=∑  (4.7) 

 

4.3.3 Action Sets 

Let kt  where k I+∈  be the k -th decision epoch at which the event 

Ω∈kω  occurs. Let kx  be the state of the system in time interval [ )kk tt ,1− . Suppose 
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that kx x=  and kω ω= . If the event refers to an arrival of a new call request of class 

i , the call admission controller in the BS must decide whether to admit or reject the 

call request. Such action depends on the current state of the system and the type of 

event incurred. Let A  be the set of all possible actions of the call admission 

controller. The action ( ),a x Aω ∈  refers to the action taken at state x  and event ω  

which is given by 

 

( )
1              , accept the call

,
0              , reject the call

a x ω
⎧

= ⎨
⎩

 (4.8) 

 

Note that all call termination events must be allowed, therefore no action is required.  

4.3.4 Immediate Reward 

Suppose that the state and event at the k -th decision epoch be kx  and 

event kω , respectively. Suppose that action ( ),k k ka a x ω=  is taken and the system 

then transits into the next state 1kx + . Depending on how good the selected action was 

at a given state, an immediate reward is generated. The immediate reward function 

( ), ,k k kg x aω  is given by 

 

( ) ( ) ( )         , if  and  is such that =1  
, ,

0               , otherwise
k k

k k k

r i x X i
g x a

ω ω
ω

∈⎧⎪= ⎨
⎪⎩

 (4.9) 

 

where ( )r i R∈  can be interpreted as the revenue earned by the service provider for 

each decision to admit a class i  user into the system. 
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4.3.5 Policy  

The goal of the SMDP formulation is to find a state dependent rule or a 

stationary policy that maximizes the long-term average reward. Let Π  be the set of 

stationary policies defined as 

 

{ }: X AπΠ = ×Ω→  (4.10) 

 

To solve for the optimal stationary CAC policy, the performance criterion of the 

SMDP formulation must be defined. 

4.3.6 Performance criterion 

The aim of this chapter is to find the CAC policy that maximizes the 

long-term average reward for CDMA systems. The long-term average reward for 

policy π  can be defined as 

 

( ) ( ){ }1

0

1lim , ,N
k k kkN

N

v E g x a
t ππ ω−

=→∞
= ∑  (4.11) 

 

where Nt  is the completion time of the N -th decision epoch, and the actions ka  are 

selected according to policy π , i.e., ( )kkk xa ωπ ,= . Let the optimal policy be 

denoted by *π  where the associating long-term average reward under such policy is 

denoted by ( )*v π . The objective is to find an optimal policy *π such that 

 

( ) ( )* maxv v
π

π π
∀ ∈Π

=  (4.12) 

 

 

 



 

 

60

4.3.7 Modified Reward for Blocking Probability Constraints 

In this section, the blocking probability constraints are accounted for by 

modulating the immediate reward. To incorporate the constraints on blocking 

probability into the SMDP framework, the immediate reward function is changed 

from equation (4.9) by including a penalty term to the original reward. The penalty 

term is a function of the current blocking probability multiplied by a Lagrange 

constant and the time elapsed since the last decision epoch which is given by 

 

( ) ( ) ( ), , , ,k k k k k kg x a g x a B iχ ω ω χ τ= −  (4.13) 

 

where ( )B i  is the measured blocking probability of class i  users over the past history 

up to the instant when action ka  is made in state kx , τ  is the mean sojourn time since 

the last decision epoch and χ  is the Lagrange multiplier (Tong and Brown, 1999). 

The Lagrange multiplier can be physically interpreted as the penalty incurred 

whenever a blocking probability constraint is violated. The modified reward function 

in equation (4.13) is then fed back to the call admission controller to evaluate how 

good the selected action was. 

In addition, to maximize the long-term average reward, the performance 

criterion must be changed by replacing the reward signal in equation (4.11) by 

equation (4.13). The new performance criterion is thus given by 

 

( ) ( )1

0

1lim , ,N
k k kkN

N

v g x a
t χπ ω−

=→∞
= ∑  (4.14) 
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where Nt  is the completion time of the N -th decision epoch, and the actions ka  are 

selected according to policy π . Note that policy associated to the long-term average 

reward must also satisfy the blocking probability constraints. The blocking probability 

constraint for class i  users can be written as follows 

 

( ) ( )1
1 10

1lim N
k kkN

N

B i B i
t

τ−

+ +=→∞
≤∑  (4.15) 

 

The purpose of equation (4.15) is to guarantee the long-term blocking probability 

requirement of class i  users in the system. 

 

4.4 Actor-Critic Reinforcement Learning 

Actor-critic reinforcement learning combines the two strong characteristics of 

the actor-only and critic-only RL methods. The critic part of the actor-critic algorithm 

estimates the value functions based on some approximation architecture and 

simulation. The estimated value function is used to update the parameterized policy in 

the actor part in the direction which improves the performance gradient. Moreover, 

the estimation of value functions in the actor-critic algorithm may help reduce the 

variance which might deliver faster convergence speed when compared to actor-only 

methods (Usaha, 2004). Hence, faster convergence may be achieved (strong feature of 

critic-only methods) and policy improvement is guaranteed as long as the policy is 

gradient-based (strong feature of actor-only methods). 

A gradient-based policy can be described as follows. Consider a SMDP with 

state space X  and action space A . Let θµ  be a randomized stationary policy 

parameterized by some vector θ  where MR∈θ  and M  is the number of tunable 
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parameters. The actor-critic algorithm selects an action according to some 

probabilistic distribution over the set of allowable actions parameterized by vector 

MR∈θ . In particular, a randomized stationary policy ( ),a xθµ ω  maps a probability 

distribution over the action space A  to each state and event pair x X∈  and Ω∈ω . 

The policy ( ),a xθµ ω  is controlled by the parameter vector θ . We are interested in 

finding a policy ( ),a xθµ ω  such that ( ) ( )* max
MR

v v θθ θ
µ µ

∀ ∈
=  for every other policy 

θµ . This can be achieved by estimating the gradient of the average reward from 

simulation and updating θ  in the direction that improves the gradient direction. 

In the proposed actor-critic RL algorithm, the actor selects an action according 

to the following randomized stationary policy architecture 

 

( ) ( ) ( )
( )

, , , if 1
,

1      , if 1

p x a i
a x

i
θ

θ

ω ω
µ ω

ω

=⎧⎪= ⎨
= −⎪⎩

 (4.16) 

 

where ( ), ,p x aθ ω  is the probability of selecting action a  at state x  and event ω  

associated to parameter vector θ . The probability distribution of ( ), ,p x aθ ω  can be 

written in the form as follows 

 

( ) ( )( )
( )( )

exp
, ,

exp
u A

s a
p x a

s u
θ

θ
θ

ω
∀ ∈

=
∑

 (4.17) 

 

where the function ( )s aθ  is defined by 

 

( ) ( ) ( ), , ,s a S x a aθ ω θ ω= +  (4.18) 
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Note that the probability distribution function in equation (4.17) and (4.18) is used 

here as it defines the probability of selecting an action which is a continuously 

differentiable with respect to the parametric vector θ . This is a necessary condition 

for the existence of the gradient of the performance criterion (Usaha, 2004) of which 

we wish to improve. The scalar function ( ), ,S x aω  is the state representation which 

should be chosen in such a way that characterizes the features of the event ω , state x  

and action a . In this work, following scalar function is used 

 

( ) ( )
1

, ,
vK

i
S x a x iω

=

=∑  (4.19) 

 

It should be noted that equation (4.19), captures the characteristic of current users in 

the CDMA system. The state representation function in (4.19) is selected from Table I 

in Usaha and Barria (2007) because it gave the best results for CAC in their work. 

 The actor-critic algorithm consists of the critic and actor feature of the 

following forms 

Actor Feature 

 

( ) ( ) ( )

( )

,
, , , 0,..., 1

,i

a x
i

x a i M
a x

θ
θ

θ

µ ω
θ

ψ ω
µ ω

∂
∂

= = −  (4.20) 

 

Critic Feature 

 

( )
( )
( )

, , , for 0,..., 1
, ,

, , , for 
i

i
i

x a i M
x a

x a i M

θ
θ

θ

ψ ω
φ ω

φ ω

⎧ = −⎪= ⎨
=⎪⎩

 (4.21) 
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Note that the actor-critic feature in equation (4.20) and (4.21) are updated only at 

decision epochs associated to the incoming calls of the system. The critic feature in 

(4.21) can be expressed to be mathematical function as follows 

 

( ) ( ) ( ), , , 1i x a x i iθφ ω ω= ∀ =  (4.22) 

 

4.4.1 Actor-Critic Algorithm 

The proposed method is an extension of Usaha and Barria (2007) which 

developed an actor-critic method and applied it to solve an unconstrained CAC (and 

routing) problem. More specifically, the actor-critic method proposed here deals with 

a constrained CAC problem by employing the immediate reward function in equation 

(4.13) to account for the constraints. 

The actor-critic algorithm is used to train two parameter vectors, namely, 

the critic parameter vector 1Mr R +∈ , and the actor parameter vector MRθ ∈ . In this 

algorithm, let kγ  and kη  be small stepsize parameters, ( ) ( ), , , ,T
rQ x a r x aθ θω φ ω=  

and ( ) ( ), , , ,r rQ x a x aθ θω φ ω∇ = . ( )krΓ  is a normalizing scalar parameter that 

controls the learning rate of the actor. ( )krΓ  must satisfy ( )1 2

1 1k
k k

R Rr
r r

≤ Γ ≤
+ +

 for 

some constant 1 20 R R< < , where 1 2,R R R+∈ . The update of kd , kz , kr , kv  and kθ  

are perform at every instant an event occurs (i.e., at user arrival and departure 

instants). The proposed algorithm called the actor-critic for SMDP algorithm 

(ACSMDP) is presented as follows. The convergence results of the algorithm is 

provided in Usaha and Barria (2007). 
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The ACSMDP algorithm  

1) Initialize 1
0 0,  Mr z R +∈ , 0

MRθ ∈ , 0x X∈  and 0v  arbitrarily.  

2) for 1k =  to N  do 

3) At kt , an event kω  is generated at state kx . 

4) 1k k kt tτ −= −  

5) Generate ka A∈  from ( )
1

,
k k ka xθµ ω
−

. 

6) Get reward ( ), ,k k kg x aχ ω  and system transit state to next state 1kx + . 

7) Perform updates. 

a) Temporal difference: 

( ) ( ) ( )1 1

1 11 1 1 1 1 1 1 1 1 1, , , , , ,k k

k kk k k k k k r k k k r k k kd g x a v Q x a Q x aθ θω τ ω ω− −

− −− − − − − − − − − −= − + −  

b) Critic Parameter: 

( )1

11 1 , ,k

kk k r r k k kz z Q x aθλ ω−

−− −= +∇  

c) Tunable Parameter r Update: 

1 k k k k kr r d zγ−= +  
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d) Average Reward: 

( )( )1 1, ,k k k k k k k kv v g x a vχη ω τ− −= + −  

e) Actor Parameter: 

( ) ( ) ( )1 1

11 1 , , , ,k k

kk k k k r k k k k k kr Q x a x aθ θθ θ β ω ψ ω− −

−− −= + Γ  

8) end for k  

Note that in line 6) of the algorithm, the modified immediate reward function in 

equation (4.13) is employed. The proposed algorithm is used to estimate the gradient 

of the average reward and the randomized policy θµ  parameterized by MRθ ∈ . The 

parameter vector θ  is gradually updated in the direction which improves the gradient. 

Under conditions that ensure the existence of the gradient, and condition which 

guarantee that the actor parameter vector θ  is learned at a slower rate than the critic 

parameter kr , it can be shown that the above algorithm will eventually approximate 

the optimal randomized policy *θ
µ  (Usaha and Barria, 2007). 

 

4.5 Numerical Results 

4.5.1 General Settings and results 

In the numerical study, we assume a discrete event simulator which 

generates traffic streams for new call requests according to mutually independent 

Poisson processes. The mean call holding time is exponentially distributed. We 

compare performance metrics in terms of the long-term average reward and blocking 
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probability for each class. The proposed ACSMDP method will be compared with the 

CAC policy obtained from a conventional DP method in chapter 3 proposed by 

Singh et al. (2002) and an empirical threshold policy. The DP method attains an 

optimal CAC policy whereas the threshold policy empirically attains a policy that 

satisfies the blocking probability constraint for each class. 

The CDMA network under consideration has vK =2 classes of voice 

users. Each class has a SIR level threshold given by ( ) ( )1 , 2
T

β β β= ⎡ ⎤⎣ ⎦ , respectively 

and the minimum SIR level threshold is given by 20, 21 dB, respectively. We also 

assume that there is no fading to avoid the unpredictable noise in the channel. We 

study 6 cases with parameter settings as shown in Table 4.1-4.3. In Table 4.1, we test 

the ability to satisfy the blocking probability constraints of class 1 voice users by 

changing the blocking probability constraints. In Table 4.2, we test the ability to 

satisfy the blocking probability of class 2 voice users. This is done by increasing that 

arrival rate of class 2 users. Table 4.3 investigates a nontrivial scenario where the 

immediate rewards, arrival rates and the mean call holding time are all varied. The 

purpose is to test the performance of the proposed ACSMDP method whether it can 

guarantee the blocking probability requirements in such scenario. The parameter 

( )P i  denotes the transmission power for class i  user which is 1.2 and 1.7 watts, 

respectively. The channel gain for class i  is ( ) 1h i = , where 1,2.i =  Finally, the 

channel variance of class i  user is given by ( )2 0iξ = , where 1,2.i =  N  is the 

processing gain of the channel which is 32. Note that ( )h i , ( )P i  and ( )2 iξ  are used 

to calculate, ( )x iΨ , which is the actual SIR value of class i  users when the system is 

in state x  (See Appendix I). It should be emphasized that the SIR level requirements 
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are inherently incorporated into the framework by the truncation of the state space to 

points that satisfy the SIR requirements as shown in equation (4.3). The SMDP 

formulation is then solved over the truncated state space. 

Each CAC method is evaluated in a simulation with run length of 72 10×  time 

steps. The stepsizes used in the ACSMDP method are 

 

0.0001

1
20000

k k kγ η= =
+

 (4.23) 

 

and 
2

k
k

ηβ = . The normalizing parameter in the ACSMDP method is given by 

 

( ) 1 20.5
1k

k k

r
r r

⎛ ⎞
Γ = +⎜ ⎟⎜ ⎟+⎝ ⎠

 (4.24) 

 

Table 4.1 Multiservice Parameters: cases 1-2 
  Class1 Class2 
Case 1, Blocking probability constraints, ( )B i  0.001 - 

Case 2, Blocking probability constraints, ( )B i  0.0005 - 

Mean arrival rate (call/min), ( )iλ  12 12 

Rewards ($), ( )r i  8 4 

Mean call holding time(min/call), ( )1 iµ  1.1 1.1 

 

Table 4.2 Multiservice Parameters: cases 3-4 
  Class1 Class2 
Case 3, Blocking probability constraints, ( )B i  - 0.01 

Case 4, Blocking probability constraints, ( )B i  - 0.005 

Mean arrival rate (call/min), ( )iλ  12 15 

Rewards ($), ( )r i  8 4 

Mean call holding time(min/call), ( )1 iµ  1.1 1.1 
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Table 4.3 Multiservice Parameters: cases 5-6 
  Class1 Class2 
Case 5, Blocking probability constraints, ( )B i  - 0.01 

Case 6, Blocking probability constraints, ( )B i  - 0.001 

Mean arrival rate (call/min), ( )iλ  16 7 

Rewards ($), ( )r i  2.5 10 

Mean call holding time(min/call), ( )1 iµ  3 1 

 

From the numerical study, the obtained results in Table 4.4-4.9 reveal that the 

proposed approach can achieve up to 91-95% of the average reward achievable by the 

DP method, while the blocking probability constraint is still satisfied. From Table 4.4-

4.5, the results of case 1 and 2 show that our algorithm can achieve a near-optimal 

solution compared to dynamic programming solution whereas the empirical threshold 

policy cannot satisfy the required blocking probability constraint. 

 

Table 4.4 Blocking probability measured for cases 1-2 
  DP ACSMDP Threshold Policy 
  Class1 Class2 Class1 Class2 Class1 Class2 
Unconstraint 0.0047 0.0181 0.0181 0.0177 0.0130 0.0130 

Case1 0.0009 0.0455 0.0010 0.0460 0.0010 0.2537 
Case2 0.0004 0.0651 0.0004 0.0831 0.0006 0.3140 

 

Table 4.5 Average reward measured for cases 1-2 
 DP ACSMDP Threshold Policy 
 Avg. Reward Avg. Reward Avg. Reward 

Unconstraint 142.810 142.759 142.135 
Case1 141.964 141.600 131.659 
Case2 140.986 138.224 128.945 

 

In case 3 and 4, the blocking probability requirement of the ACSMDP method 

can be satisfied. Note that in these cases, the empirical threshold policy can also 
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satisfy the blocking probability constraint. However, its long-term average reward is 

less than the ACSMDP method. 

In case 5 and 6, results also show that the ACSMDP method can consistently 

perform well under nontrivial scenarios. 

 

Table 4.6 Blocking probability measured for cases 3-4 
 DP ACSMDP Threshold Policy 
 Class1 Class2 Class1 Class2 Class1 Class2 

Unconstraint 0.0090 0.062 0.0390 0.0270 0.0350 0.0350 
Case3 0.0840 0.010 0.1130 0.0090 0.2540 0.0010 
Case4 0.1130 0.005 0.1484 0.0050 0.3110 0.0060 

 

Table 4.7 Average reward measured for cases 3-4 
 DP ACSMDP Threshold Policy 
 Avg. Reward Avg. Reward Avg. Reward 

Unconstraint 151.690 151.283 150.097 
Case3 147.647 144.371 131.012 
Case4 145.187 142.007 125.631 

 

Table 4.8 Blocking probability measured for cases 5-6 
 DP ACSMDP Threshold Policy 
 Class1 Class2 Class1 Class2 Class1 Class2 

Unconstraint 0.0960 0.033 0.1080 0.0380 0.0870 0.0420 
Case5 0.0590 0.007 0.0890 0.0083 0.0940 0.0090 
Case6 0.0460 0.001 0.0630 0.0010 0.0850 0.0010 

 

Table 4.9 Average reward measured for cases 5-6 
  DP ACSMDP Threshold Policy 
  Avg. Reward Avg. Reward Avg. Reward 

Unconstraint 104.085 103.438 102.147 
Case5 107.643 106.719 104.772 
Case6 107.993 107.281 106.034 
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Figure 4.2 Learning curve of ACSMDP method 

 

Figure 4.2 illustrates that the learning curve of the ACSMDP method required 

in the training process before it approaches the long-term average reward of the 

dynamic programming method. Due to the long training time (i.e. up to about 710  

events), the graph suggests that the ACSMDP method should be trained offline prior 

to actual online implementation in order to achieve a near-optimal CAC policy. 

Figure 4.3-4.4 illustrates the SIR level under case 2 settings of the ACSMDP 

method in the training process for each class. During the training of the ACSMDP, the 

SIR does not fall below the SIR threshold limit.  

Figure 4.5-4.6 illustrate that all policies can maintain the SIR levels for both 

classes. Note that after training, the ACSMDP can still satisfy the SIR requirements 
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throughout the simulation process. The tests in Figure 4.5-4.6 used a runlength of 710  

time steps. 
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Figure 4.3 SIR level of class 1 user in training mode of ACSMDP 
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Figure 4.4 SIR level of class 2 user in training mode of ACSMDP 
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Figure 4.5 SIR of class 1 users for each policy 
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Figure 4.6 SIR of class 2 users for each policy 

 

4.5.2 Memory Storage Analysis 

In terms of storage requirements, it is stated in chapter 3 that the DP 

method requires a complete knowledge of the system dynamics in terms of state 

transition probability matrix. In particular, the transition probability matrix requires a 

number of parameters of X A×  parameters, where 232X =  and 4A =  are the size 

of state spaces and action spaces, respectively. Therefore, in this numerical study, the 

total number of parameters needed for the transition probability matrix is 

232 4 4096× =  parameters. On the contrary, the ACSMDP method does not require a 

complete knowledge of the system dynamics. It can improve CAC policies by 

learning from direct interaction with the environment. However, the ACSMDP 

method still needs storage for i) the tunable parameters, which are the actor parameter 



 

 

75

vector MRθ ∈  and the critic parameter vector 1Mr R +∈ , ii) the feature structures 

which are MRθψ ∈  for the actor part and 1MRθφ +∈  for the critic part; iii) the 

eligibility trace for the critic part, 1Mz R +∈ , where vM K A= ×  and vK  is the number 

of classes of voice users in the system. Consequently, the total number of parameter 

usage for the ACSMDP method is 

 

2 3( 1)r z M Mθ θθ ψ φ+ + + + = + +  (4.25) 

 

Hence, the ACSMDP method requires ( ) ( )( )2 2 2 3 2 2 1 23× × + × × + =  parameters. In 

this numerical study, the ACSMDP method demands significantly lower memory 

storage requirement than the DP counterpart. Thus, as the scale of the CDMA 

network under consideration increases, either by increasing the number of users in the 

system, the number of user classes, reducing the SIR level requirement thresholds, 

increasing the service area, etc., the state space of the system grows exponentially. 

This is referred to as the curse of dimensionality. Under these circumstances, the 

ACSMDP method can still scale well and provide near-optimal CAC decisions to the 

optimal CAC policy obtained by DP. The savings of the memory storage requirement 

of the ACSMDP method over the DP method becomes even more significant as the 

scale of the state space increases. 

4.5.3 Complexity Analysis 

In this subsection, we analyze the computational complexity of the DP 

and the ACSMDP methods, in terms of the amount of computation required to 

compute one online decision. Let the size of the state space of the considered system 
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be denoted by X and the size of action space of the call admission controller be 

denoted by A . Recall that vK  denotes the number of classes in the system. 

For the DP method, the amount of computation required for computing 

the optimal action, which is constructed from the linear programming solution xaz  in 

equations (3.15) and (3.16), is ( )O X A . On the other hand, the amount of 

computation required for each action selection for the ACSMDP method in equation 

(4.16) is ( ) ( )vO O K Aθ = . Note that X  grows exponentially as a function of vK  

and the SIR level requirements. Hence, it can be seen that the amount of computation 

required in computing one online decision in the ACSMDP method is significantly 

less than that of the DP method. Furthermore, the savings in the computational 

requirement becomes even more apparent as the size of the state space increases. 

 

4.6 Conclusion 

In this chapter, a reinforcement learning approach called the actor-critic for 

semi-Markov decision process (ACSMDP) method is employed to learn a near-

optimal call admission control decision policy for a multiple voice service DS-CDMA 

cellular system with QoS constraints at the physical layer (SIR level) and network 

layer (blocking probability). The approach circumvents the curse of modeling and 

dimensionality of the conventional DP method. The SMDP formulation has been 

reformulated and differs from that of chapter 3 where a modified reward signal has 

been employed to deal with the blocking probability constraints.  

Numerical study shows that the proposed approach can achieve an average 

reward of 91-95% of that obtained from the DP method and still satisfy the QoS 
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constraints. Furthermore, the storage requirements and the amount of computational 

complexity to compute an online decision of the proposed approach is generally less 

demanding than the DP approach which allows easy implementation. However, the 

tradeoff of using the ACSMDP method is the requirement of tuning and training the 

parameters involved in the algorithm.  

It should be noted that the parameter training in the ACSMDP method can be 

performed offline. However, in the event of unpredictable changes in real CDMA 

networks or drastic traffic variations, the parameters can be recomputed offline and 

uploaded to the call admission controller in the base station in a timely manner.  



CHAPTER V 

CONCLUSIONS

 

5.1 Conclusion 

In this thesis, we proposed a framework that enables multiple QoS constraints 

for adaptive call admission control in wireless DS-CDMA systems with multiclass 

voice users based on reinforcement learning. The work carried out in this thesis can 

be divided into two parts which are dynamic programming and reinforcement 

learning. The dynamic programming approach for determining an optimal call 

admission control policy is presented in chapter 3. An actor-critic reinforcement 

learning approach which is employed to solve for near-optimal call admission control 

policies is presented in chapter 4. The findings of this thesis can be summarized as 

follows.  

5.1.1 Chapter 3. Call Admission Control in Wireless DS-CDMA Systems: 

A DP Approach 

The purpose of this chapter is to study the call admission control 

problem by using the conventional dynamic programming method which has been 

proposed by Singh, Krishnamurthy and Poor (2002). In this chapter, the formulation 

of the problem is formulated as the semi-Markov decision process (SMDP) and the 

solution is exactly solved using linear programming (LP). In the numerical study, the 

performance in terms of the blocking probability controlled and the long-term average 

reward is compared between dynamic programming, complete sharing and threshold 
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policies under a small network scenario. The results show that the dynamic 

programming method can achieve the maximum long-term average reward while the 

desired blocking probability can be satisfied.  

5.1.2 Chapter 4. Call Admission Control in Wireless DS-CDMA Systems: 

A RL Approach 

The purpose of this chapter is to extend the call admission control (CAC) 

scheme to more realistically larger network. A type of reinforcement learning (RL) 

technique namely the “actor-critic” reinforcement learning has been successfully 

employed to solve the CAC problem in a large scale wireless DS-CDMA network. 

The large scale of the problem is obtained by increasing the capacity of the system in 

chapter 3. The CAC problem is cast as a semi-Markov decision process (SMDP) by 

using a modified reward signal to deal with the blocking probability constraints. The 

obtained numerical results in this chapter reveal that the actor-critic method can 

achieve an average reward between 91-95% of the optimal average reward achievable 

by the DP method while constraints can still be satisfied. Furthermore, in the terms of 

storage and computational requirements needed to compute an online decision of the 

proposed approach is generally demanding than the DP approach. We make note that 

the savings of the memory storage and computational requirements of the proposed 

method over the DP method becomes even more significant as the scale of the CDMA 

network under consideration increases. 
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5.2 Recommendation for Future Work 

5.2.1 Prioritized in Handover for Adaptive Call Admission Control 

In this thesis, we focus on the call admission control problem in the 

uplink where only new calls arrivals are considered. We can extend the framework to 

consider handoff calls whereby priority should be given over the new call arrivals as a 

forced termination of an existing call is likely to cause more dissatisfaction than 

blocking of new calls. Using this framework, we can construct a near-optimal CAC 

policy that minimizes the probability of dropping handoff calls or include handoff call 

dropping probability as additional constraints. 

5.2.2 Multiclass Data and Voice Services for Wireless DS-CDMA 

The actor-critic method can be extended to deal with multiservice voice 

and data call admission control. The arriving data user can be admitted into a buffer 

(all arrivals of data users must be buffered by default). The CAC problem can be 

reformulated to decide whether to admit queued data users or voice users subject to 

QoS constraints for both data and voice services as suggested in Singh et al (2002). 

5.2.3 Optimization of Reward Signals Design 

In chapter 4, the main focus of the chapter is to modify the reward 

signals to deal with the QoS constraints in call admission control problem in CDMA 

systems. However, the performance of the proposed algorithm depends on the 

modified reward signals. Investigations on how to find the best possible modified 

reward signal remains a subject for further study.  

5.2.4 Optimization in Parametric Tuning 

The actor-critic algorithm’s performance criterion, learning rate and 

function approximation in the actor and critic parts are affected by the tunable 
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parameters. The optimization of these tunable parameters in the actor-critic algorithm 

therefore warrants further investigation. 

5.2.5 Comparison with other Actor-Critic Approaches 

In chapter 4, the actor-critic algorithm is chosen as it combines two 

strong points of actor-only and critic-only RL methods. However, comparisons 

between the actor-critic method proposed in this thesis and other types of actor-critic 

reinforcement learning approaches in terms of learning rate, complexity, memory 

storage and performance criterion has not yet been covered in this thesis and is a 

matter worthwhile to investigate.  
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APPENDIX I
 

SIR Computation  

 



SIR Computation

The call admission control mechanism relies on the soft capacity of the 

CDMA network which is characterized by the SIR level. The SIR measurement in 

CDMA call admission control problems presented in this appendix is summarized 

from (Liu and Zarki, 1994). Suppose that there are M  cells is in DS-CDMA network 

of interest with kn  calls in progress in cell k . Let ( )R s  denote the received field 

strength. We model the reception at the receiving antenna of a particular cell’s base 

station (BS) by taking into account of the path loss, log-normal shadowing, and 

multipath fading through the following expression  

 

( ) 1010R s sζ α−=  (A.1) 

 

where α  is a constant typically ranging from two to four, s  is the distance 

between the receiver and transmitter, and ζ  is the transmit field strength in decibels 

(dB) which is normally distributed. The total power received by the BS in cell k  is 

the sum of the power from all the mobiles in the system and is given by 

 

( ) ( )
1 1

,
hnM

i
l i

I k I l k
= =

= ∑∑  (A.2) 

 

where ( ),iI l k  is the power received by cell k ’s BS from mobile i  of cell l . 

Suppose that, with ideal power control i.e., each mobile’s signal is perceived with the 
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same strength at its BS, S  is the power level of a mobile’s signal at its home cell BS 

and ( )l
iks  is the distance between mobile i  of cell l  and the BS of the cell k . Then 

 

( ) ( )
( ) 10

1

10
l
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ik

n
il

k l
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s
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ζ ζ

−

−

≠ =
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∑∑  (A.3) 

 

Equation (A.3) assumes the controlled power per mobile at each home BS is 

the same. Thus, the SIR at BS k  is given by 

 

( )kSIR S
I k S

=
−

 (A.4) 

 

The variable quantity in the expression for SIR in (A.4) is ( )I k , the total 

power received at the k -th BS. Equation (A.3) shows that this is a random variable 

because it depends on several other random variables, namely, the number of callers, 

their positions, and the transmitted power of interfering calls in neighboring cells. The 

capacity of CDMA systems is limited by the level of multiaccess interference in the 

system, which is measured by the SIR. In general, because the SIR drops as the 

number of users increases, it appears reasonable to maintain the SIR level above the 

set thresholds by limiting the number of incoming users. 

Although equation (A.4) looks at SIR purely as it is perceived at the BS 

antenna, it is obviously affected by the processing at the receiver. The standard signal 

model for DS-CDMA systems in fading environment has a received signal 
ms  for 

the m -th transmitted bit which is given by (Singh et al., 2002)  
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1 1, 1, 1 , ,
2

m

N

s m m n n m n m n m
n

Pb h P b h wυ υ σ
=

= + +∑  (A.5) 

 

where nP , , 1n mb = ±  and ,n mh  denote the transmit power, the m -th transmitted 

bit, and the channel gain respectively for the n -th user and N
n Rυ ∈  is the n -th users’ 

signature sequence. The final additive term denotes the white noise with variance 2σ  

with mw  being a zero mean unit variance, circularly symmetric, complex Guassian 

random variable. Suppose that the sequence ,n mh  is also complex valued and random 

with mean and variance denoted by nh  and 2
nξ , respectively. The SIR expression can 

then be approximated by (Rao, Comaniciu, Lakshman, and Poor, 2004)  

 

( ) ( )
( )

( ) ( )

2

1

2

1
SIR 1 SIR 1

1 1 1

P h

P

β

ξ β
≈

+
 (A.6) 

 

Equation (A.6) is the signal-to-interference ratio (SIR) of the CDMA system. 

The parameter ( )h i  is the channel gain of the system and ( )2 iξ  is the variance of the 

system where i  denotes the class of users where 1,2,..., vi K= , vK  denotes the 

number of class. Parameter β  is the unique fixed point in interval ( )0,∞ . This fixed 

point equation can be expressed as follows 
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where 

 

( ),
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pI p
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 (A.8) 

 

From the fixed point equation in (A.7) and (A.8), we can express and construct 

the SIR function ( )xf iβ  for the capacity constraint as follows 
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∑  (A.9) 

where N  is the channel gain of the system, I  is defined in (A.8), ( )x i  is the number 

of class i  voice users currently in the system where 1,2,..., vi K= , ( )P i  is the power 

transmission for each class i  voice user. In this thesis, the power transmission is a 

deterministic value for each class i  voice user. Finally, the SIR function ( )x iΨ  can 

be defined as follows 
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where ( )e i  denotes the vector with all elements equal to zero except the i -th 

component which is unity. Equations (A.9) and (A.10) evaluate the classwise SIR 

level which are used to determine the CDMA soft capacity constraints.  
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