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Electron-positron annihilation into hadron-antihadron pairs
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The reactions e+e− → π+π− and e+e− → NN with N = p, n are studied in a nonperturbative quark model.
The work suggests that the two-step process, in which the primary qq pair first forms a vector meson which in turn
decays into a hadron pair, is dominant over the one-step process in which the primary qq pair is directly dressed
by additional qq pairs to form a hadron pair. To reproduce the experimental data of the reaction e+e− → nn and
pp, a D-wave, ω-like vector meson with a mass of around 2 GeV has to be introduced.
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I. INTRODUCTION

Experimental data on the reaction e+e− → nn from the
FENICE Collaboration [1], earlier data on the reaction
e+e− → pp from the FENICE and DM2 Collaborations [2],
and data collected at the LEAR antiproton ring at CERN on
the time-reversed reaction pp → e+e− [3], which are all sum-
marized in Fig. 1, indicate a ratio σ (e+e− → nn)/σ (e+e− →
pp) > 1 at energies around the NN threshold with Ec.m. ∼
2 GeV. Averaging over the available data on both the direct
and time-reversed reactions, one finds [4]

σ (e+e− → pp)

σ (e+e− → nn)
= 0.66+0.16

−0.11. (1)

In a naive perturbative description of e+e− annihilation
into baryons, the virtual timelike photon first decays into a qq

pair, and then the qq pair is dressed by two additional quark-
antiquark pairs excited out of the vacuum to form a baryon
pair. The dressing process does not distinguish between u and
d quarks at high momentum transfers since in the description of
perturbative QCD the gluon couplings are flavor blind. In the
conventional perturbative picture, the only difference between
proton and neutron production arises from the different electric
charges of the primary qq pairs. One expects to get

σ (e+e− → pp)

σ (e+e− → nn)
> 1 (2)

at large momentum transfers where the u-quark contribution
dominates in the proton, and the d quark dominates in the
neutron.

The reaction e+e− → NN at energies around the NN

threshold is highly nonperturbative; hence, the problem must
be tackled in a nonperturbative manner. In this work we model
the reactions by the nonperturbative 3P0 quark dynamics which
describe quark-antiquark annihilation and creation. It was
shown that the 3P0 approach is phenomenologically successful
in the description of hadronic couplings [5–9].

The reaction e+e− → NN may arise from two different
processes: (1) the primary qq pair is dressed directly by two

∗On leave of absence from Department of Physics, Tomsk State
University, 634050 Tomsk, Russia.

additional quark-antiquark pairs created out of the vacuum
to form a baryon pair; and (2) the primary qq pair forms a
virtual vector meson first, and then the virtual vector meson
decays into a baryon pair. We expect that the second process
is dominant over the first because of the considerable success
of the vector dominance model. However, it is difficult to
extract a solid conclusion by studying the reaction itself since
there are only very limited experimental data available and
the effective strength of the quark-antiquark vertex may vary
largely from one process to another. We therefore study first a
much simpler process, the reaction e+e− → π+π−, for which
a large number of high quality data are available. The work is
arranged as follows: In Sec. II we study the reaction e+e− →
π+π− with the parameters determined in the reactions ρ0 →
e+e− and ρ0 → π+π−. The reaction e+e− → NN is studied
in Sec. III in the two-step process described above. We give
our conclusions in Sec. IV. In Appendixes A and B we discuss
the calculations of the transition amplitudes ρ0 → π+π− and
V → NN in the 3P0 model.

II. REACTION e+e− → π+π−

The reaction e+e− → π+π− may arise in the valence quark
dominated picture from the following process: the e+e− pair
annihilates into a virtual timelike photon, the virtual photon
decays into a qq pair, and finally the qq pair is dressed by
an additional quark-antiquark pair created out of the vacuum
to form a meson pair, as shown in Fig. 2(a). The transition
amplitude is expressed formally as

T1 = 〈π+π−|Vqq |qq〉〈qq|G|qq〉〈qq|T |e+e−〉, (3)

where 〈qq|T |e+e−〉 is simply the transition amplitude of e+e−
to a primary quark pair, 〈qq|G|qq〉 is the Green function
describing the propagation of the intermediate qq state and
〈π+π−|Vqq |qq〉 denotes the amplitude of the process of a qq

pair to a π+π− pair. Vqq is the effective vertex for the creation
and destruction of a quark-antiquark pair in quark models,
which is identified in the context of the 3P0 quark-antiquark
dynamics. At an energy scale of about 1 GeV, the intermediate
quark-antiquark state can be assumed to be saturated by the
ρ0(770) resonance, depicted in Fig. 2(b), as in the context of
the vector dominance model. We refer to this process as the
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FIG. 1. Comparison of the cross sections for e+e− → pp and
e+e− → nn at the NN threshold region. Solid circles [2] and triangles
[3] are for the reaction e+e− → pp; squares [1] are for e+e− → nn.

two-step reaction, whereas the former, more general one, is
the one-step reaction. The corresponding transition amplitude
then takes the form

T2 = 〈π+π−|Vqq |ρ〉〈ρ|G|ρ〉〈ρ|qq〉〈qq|T |e+e−〉, (4)

where 〈ρ|qq〉 is simply the wave function of the intermediate
meson ρ, 〈ρ|G|ρ〉 the Green function describing the prop-
agation of the intermediate meson, and 〈π+π−|Vqq |ρ〉 the
transition amplitude of ρ0 annihilation into a π+π− pair.

The size parameter of the ρ meson associated with its wave
function may be determined by studying the reaction ρ0 →
e+e−. The transition amplitude of a vector meson annihilation
into an electron-positron pair takes the general form

T = 〈e+e−|T |qq〉〈qq|V 〉, (5)

( () )

FIG. 2. Reaction e+e− → π+π− in (a) the one-step process and
(b) the two-step process.

where |V 〉 is the vector meson state (see Appendix A), and
〈e+e−|T |qq〉 is the transition amplitude of a quark-antiquark
pair to an electron-positron pair. The transition amplitude can
be evaluated by a standard method as, for example, outlined
in [10]. One has

〈e+e−|T |qq〉 = −eqe

s
ue(pe− ,me− )γ µve(pe+ ,me+ )

× vq(pq,mq)γµ uq(pq,mq), (6)

where s = (pq + pq)2, eq is the charge of quarks, and the Dirac
spinors are normalized according to uu = vv = 2m. In the
small quark momentum approximation, the decay width for
the transition of a vector meson to an electron-positron pair
can be easily evaluated. One has

�ρ0→e+e− = 16πα2Q2

M2
V

|ψ(0)|2, (7)

where Q2 is the squared sum of the charges of the quarks
in the meson, with Q2 = 1/2 for ρ, 1/18 for ω, and 1/9
for φ; and ψ(0) = 1/(πb2)3/4 is the coordinate space wave
function of the vector meson at the origin. Using as an input
Mρ = 0.7758 GeV, α = 1/137, and the experimental value of
�ρ0→e+e− = 7.02 ± 0.11 keV, we get b = 3.847 GeV−1 for the
size parameter of the ρ meson with the spatial wave function
set up in the harmonic oscillator approximation (see details
in Appendix A). The size parameter b in Eq. (A2) might be
slightly different from meson to meson.

We use the reaction ρ0 → π+π− to determine the effective
strength parameter λ in the quark-antiquark 3P0 vertex

Vij = λ�σij · ( �pi − �pj )F̂ij Ĉij δ( �pi + �pj )

= λ
∑

µ

√
4π

3
(−1)µσ

µ

ij y1µ( �pi − �pj )F̂ij Ĉij δ( �pi + �pj ),

(8)

where y1µ(�q ) = | �q | Y1µ(q̂), �σij = (�σi + �σj )/2, �pi and �pj are
the momenta of quark and antiquark created out of the vacuum.
F̂ij and Ĉij are the flavor and color operators projecting
a quark-antiquark pair to the respective vacuum quantum
numbers. The derivation and interpretation of the quark-
antiquark 3P0 dynamics may be found in the literature [5,6].

The decay width of the reaction ρ0 → π+π− takes the form

�ρ0→π+π− = π

4
M2

ρ

√
1 − 4M2

π

M2
ρ

|Tρ0→π+π−|2, (9)

where Tρ0→π+π− is the corresponding transition amplitude
defined in the center-of-mass system. Substituting Tρ0→π+π−

as calculated in our approach (see Appendix A) we get

�ρ0→π+π− = λ2
(

2
3

)7√
πMρ(bk)3e− 1

6 b2k2
, (10)

where Mρ is the mass of ρ meson and k =
√

M2
ρ/4 − M2

π

is the momentum of the outgoing pions. The result obtained
here is consistent with those of Refs. [5,11,12]; the different
magnitude of the strength parameter λ just depends on the
different normalization of the 3P0 vertex. With the size
parameter b = 3.847 GeV−1 determined from the reaction
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FIG. 3. Theoretical prediction (solid line) in the two-step model
shown in Fig. 2(b) for the cross section of the reaction e+e− → π+π−

compared with experimental data from [13,14].

ρ0 → e+e−, the experimental value � = 150 MeV for the
decay width of ρ0 → π+π− requires the effective strength
parameter λ to take the value λ = 0.98 . In [11], the size
parameter b is taken to be 2.5 GeV−1 and the effective strength
is fitted to be 0.39, which according to our normalization
corresponds to λ = 0.96.

Based on the evaluations for the reactions ρ0 → π+π− and
ρ0 → e+e−, it is straightforward to work out the transition
amplitude of the two-step diagram shown in Fig. 2(b) in the
reaction e+e− → π+π− to be

Te+e−→π+π− = Tρ0→π+π−
1

E − Mρ

Te+e−→ρ0 . (11)

The transition amplitude for the process ρ → e+e− is

Tρ→e+e− = 〈e+e−|T |qq〉〈qq|V 〉 =
∫

dp̄q dp̄q

(2π )3/22Eq

× δ( �pq + p̄q)ψρ( �pq, pq) Tqq→e+e− ( �pq, p̄q),

(12)

where ψρ is the wave function of the ρ meson in momentum
space, and Tqq̄→e+e− is given in Eq. (6). The δ function δ( �pq +
�pq̄) indicates that we work in the ρ-meson rest frame.

Note that only the P wave contributes to the process
e+e− → π+π− since the spin of the intermediate ρ is 1.
Furthermore, there is no free parameter, because the size and
the effective strength parameters have been determined by the
processes ρ0 → e+e− and ρ0 → π+π−, respectively.

In Fig. 3 we give the prediction for the cross section of the
reaction e+e− → π+π− in the model for the two-step process.
The result seems to indicate that the reaction e+e− → π+π− is
completely dominated by the intermediate vector meson. One
may therefore conclude that the one-step process is completely
saturated by the relevant resonances entering at this energy
scale.

FIG. 4. Electron-positron annihilation into nucleon-antinucleon
pairs in a two-step process via intermediate vector meson states.

III. REACTION e+e− → N N

In the following we assume that the reaction e+e− → NN

is described by a two-step process, just as for the reaction
e+e− → π+π−. This is again consistent with the vector
dominance model.

Here we study the two-step process shown in Fig. 4:
the e+e− pair annihilates into a virtual-time-like photon, the
photon decays into a qq pair, the qq pair forms a virtual
vector meson, and finally the virtual vector meson is dressed
by two additional quark-antiquark pairs created out of the
vacuum to form a baryon pair. The meson ρ(2150) with the
quantum number IG(J PC) = 1+(1−−) is a good candidate [15]
for such an intermediate state. The transition amplitude in such
a two-step process takes the form

Te+e−→NN = 〈NN |V (3P0)|V 〉〈V |G|V 〉〈V |qq〉〈qq|T |e+e−〉.
(13)

Here 〈V |qq〉 is simply the wave function of the intermediate
vector meson with both isospins I = 0 and 1 (see Appendix B),
〈V |G|V 〉 the Green’s function describing the propagation of
the intermediate vector meson, 〈NN |V (3P0)|V 〉 the transition
amplitude of the intermediate meson annihilation into a
nucleon-antinucleon pair, and 〈qq|T |e+e−〉 the transition am-
plitude of an electron-positron pair to a quark-antiquark pair as
given in Eq. (6). The transition amplitude 〈V |qq〉〈qq|T |e+e−〉
for the process of the intermediate vector meson to an electron-
positron pair is defined as in Eq. (5) but with different meson
wave functions. The evaluation of the transition amplitude
〈NN |V (3P0)|V 〉 is worked out in Appendix B. The energy
scale of the intermediate q2q̄2 state in the V → NN̄ transition
is simply set by associating in average an equal share of the
total energy to each valence quark involved.

Considering that both isospin I = 0 and 1 vector mesons
could be the intermediate states for the reaction e+e− → NN ,
we have the transition amplitudes

Te+e−→pp = 1√
2

[T (e+e− → V (I = 1) → NN )

+ T (e+e− → V (I = 0) → NN )],
(14)

Te+e−→nn = 1√
2

[T (e+e− → V (I = 1) → NN )

− T (e+e− → V (I = 0) → NN )],

for the reactions e+e− → pp and e+e− → nn, respectively.
It is clear that the cross sections of these reactions would
be the same if either a single isospin 0 or isospin 1 vector
meson dominated the intermediate state at this energy scale.

025204-3



Y. YAN et al. PHYSICAL REVIEW C 71, 025204 (2005)

TABLE I. ρ and ω mesons coming in pairs.

1S ρ(770) ω(782)
2S ρ(1450) ω(1420)
1D ρ(1700) ω(1650)
3S or 2D ρ(2150) ω(2150) ?

However, the experimental ratio of Eq. (1) indicates that at
least two vector mesons with isospins 0 and 1 are involved as
intermediate states. In addition to the confirmed vector meson
ρ(2150), there are clues [16,17] for the existence of an ω-like
meson lying in the energy region near the NN threshold. The
vector meson with isospin 0 has mass and width of about 2150
and 220 MeV, respectively. The contribution of the ω(2150) as
well as the ρ(2150) are included in our calculation. The mesons
ρ(2150) and ω(2150) are assumed to be superpositions of 3S

and 2D states, considering that the lower lying states have
been occupied (see Table I).

It is found in our study that the experimental data suggest a
ω(2150) being in a D wave and prefer the ρ(2150) meson
as a mixture of S and D waves. It may be interesting to
mention that the work [12], which studied the decay of
higher quarkonia in the 3P0 quark model, revealed that the
lower energy counterparts ρ(1450) and ρ(1700) of the meson
ρ(2150) are likely to be mixtures of 2S or 1D states.

Presented in Fig. 5 are the predictions of the present model
for the total cross sections of the reactions e+e− → pp and
e+e− → nn at the NN threshold, with the ω(2150) in the 2D
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FIG. 5. Model predictions for the cross sections of the reactions
e−e+ → nn (dashed line in the upper figure) and e−e+ → pp (solid
line in the upper figure) and for the ratio σ (e+e− → pp)/σ (e+e− →
nn) (in the lower figure) versus the S-wave probability of the meson
ρ(2150).

state and the ρ(2150) varying from the 2D state to the 3S

state. Note that except for the parameters describing the S- and
D-wave admixture in the mesons ρ(2150) and ω(2150), there
are no more free parameters. For the size parameter, we employ
b = 3.847 GeV−1 as already fixed in the reaction ρ0 → e+e−,
the 3P0 strength with λ = 0.98 is fixed in the reaction ρ0 →
π+π−. The size parameter of the nucleon with a = 3.1 GeV−1

is fixed from other considerations [6,18], and the masses and
widths of the mesons ρ(2150) and ω(2150) are taken from
[15–17]. The energy denominator of the intermediate q2q̄2

state �E is roughly approximated as �E = Ec.m./3 , assum-
ing that the reaction energy Ec.m. is shared by the six quarks
equally [19,20].

With ω(2150) in the 2D state and ρ(2150) half in the 3S

and half in the 2D state, we get

σ (e+e− → pp) ≈ 0.65 nb,
(15)

σ (e+e− → nn) ≈ 0.76 nb,

and, hence,

σ (e+e− → pp)

σ (e+e− → nn)
≈ 0.85. (16)

The model results for the cross sections of Eq. (15) are sensitive
to the length parameters b and a and the effective parameter
λ. However, the ratio σ (e+e− → pp)/σ (e+e− → nn) is of
course independent of the strength parameter and rather
independent of the length parameters involved.

IV. CONCLUSIONS

The puzzling experimental result that σ (e+e− →
pp)/σ (e+e− → nn) < 1 can be understood in the framework
of a phenomenological nonrelativistic quark model. All pa-
rameters employed in the model, except the ones describing
the mixture of the S and D waves for the intermediate vector
mesons ρ(2150) and ω(2150), are not free but determined by
other reactions.

The experimental data suggest the existence of a D-wave
ω meson with a mass of about 2100 MeV. The conclusion is
quite general, independent of the special values of the size
parameters a, b and the 3P0 strength λ.
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APPENDIX A: TRANSITION ρ → π+π− IN 3 P0 MODEL

We study the reaction ρ → π+π− shown in Fig. 6 to
determine the effective strength parameter λ in the quark-
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FIG. 6. ρ → π+π− in the 3P0 nonrelativistic quark model.

antiquark 3P0 vertex of Eq. (8). The �σij in the vertex can be
understood as a operater acting on a quark and antiquark state,
or it projects a quark-antiquark pair onto a spin-1 state. It can
be easily proven that

〈0, 0|σµ

ij |[χ̄i ⊗ χj ]JM〉 = (−1)M
√

2δJ,1δM,−µ. (A1)

Concerning the SU(2) flavor, a quark-antiquark pair that anni-
hilates into the vacuum must have zero isospin. So the operator
F̂ij has the similar property 〈0, 0|F̂ij |T , Tz〉 = √

2δT,0δTz,0. For
the color part, one simply has 〈0, 0|Ĉij |qi

αq
j

β〉 = δαβ , where α

and β are color indices. The transition amplitude for meson
decay into two mesons in the 3P0 model shown in Fig. 6
is defined as T = 〈�i |V †

45|�f 〉, where |�i〉 and |�f 〉 are the
initial and final states, respectively. For simplicity, we consider
here only the S-wave mesons; that is, all the mesons involved
have orbital angular momenta equal to 0. The initial state is
simply the one meson wave function (WF) having the form

|�i〉 = N e− 1
8 b2( �p1− �p2)2

[
1

2

(1)

⊗ 1

2

(2)]
Si ,Mi

[
1

2

(1)

⊗ 1

2

(2)]
T ,Tz

.

(A2)

We have spin Si = 1 and isospin Ti = 1 for the ρ meson, and
the isospin projection Tz = 0 for ρ0. Here we employed the
harmonic oscillator interaction between quark and antiquark.

The final state |�f 〉 is formed by coupling the WFs of the
two final mesons. For two S-wave mesons we have

|�f 〉 = N1N2e
− 1

8 b2( �p3− �p4)2
e− 1

8 b2( �p5− �p6)2

×
[[

1

2

(3)

⊗ 1

2

(4)]
S1

⊗
[

1

2

(5)

⊗ 1

2

(6)
]

S2

]
Sf ,Mf

×
[[

1

2

(3)

⊗ 1

2

(4)]
T1

⊗
[

1

2

(5)

⊗ 1

2

(6)
]

T2

]
T ,Tz

.

(A3)

The transition amplitude is derived as

Tspatial = λ
24

33
√

3π1/4
b3/2k e− 1

12 b2k2
. (A4)

Note that we have, for simplicity, set the ρ and π mesons
to have the same size parameter b, that is N = N1 = N2 =
(b2/π )3/4.

APPENDIX B: TRANSITION V → N N IN 3 P0 MODEL

In the 3P0 model the transition amplitude for a vector meson
decaying into a NN pair might be written in the form

〈NN |V (3P0)|V 〉 ≡ 〈NN |V †
25

1

�E
V

†
36|V 〉

= 4π

3
λ2 1

�E

∑
S ′

z

C(LJz − S ′
z, S

′S ′
z, 1Jz)

· TcolorTsfTspatial, (B1)

where the Clebsch-Gordon coefficient C(LJz − S ′
z, S

′S ′
z, 1Jz)

results from the spin-orbital coupling of the intermediate
meson having the orbital angular momentum L = 0, 2 and spin
S ′, and the factor 1/�E accounts for the energy propagation
between the two quark-antiquark vertices V

†
25 and V

†
36 as

defined in Eq. (8). Here we have supposed that �E is constant
for a given reaction energy as, for example, discussed in
[16,17]. Using the wave functions defined in the previous
sections we get for the color part Tcolor = 1√

3
, for the spin-flavor

part

Tsf = 1

2
〈J [ij ]|S ′S ′

z
(−1)µσ 25

−µF̂25(−1)νσ 36
−νF̂36

×
∑

J23,J56

|J [231;564]〉Spin
SSz

|J [231;564]〉Flavor
T Tz

,

J [ij ] = 1

2

(7)

⊗ 1

2

(8)

,

(B2)

J [ijk;lmn] =
[(

1

2

(i)

⊗ 1

2

(j ))
Jij

⊗ 1

2

(k)
]

1/2

⊗
[(

1

2

(l)

⊗ 1

2

(m))
Jlm

⊗ 1

2

(n)
]

1/2

,

and for the spatial part

Tspatial =
∫ ∏

d3qi �
†
NN

Y ∗
1µ(q̄25)δ(3)(q̄25)Y ∗

1ν(q̄36)

× δ(3)(q̄36)�m(q̄78)δ(3)(q̄17)δ(3)(q̄48)

× δ(3)(q̄123 − �k)δ(3)(q̄456 + �k), (B3)

where q̄ij = q̄i + q̄j , q̄ijk = q̄i + q̄j + q̄k , �NN is the spatial
wave function of the NN state

�NN = N2
b e− 1

4 a2[�q2
23+�q2

56]e− 1
12 a2[(�q12−�q13)2+(�q46−�q45)2], (B4)

and �m with m = s, d is the spatial wave function of the
intermediate meson, which is taken as 3S and 2D states

�s( �p) = Nse
− 1

2 b2p2( 15
4 − 5b2p2 + b4p2

)
,

(B5)
�d ( �p) = Nde

− 1
2 b2p2

(bp)2
(

7
2 − b2p2

)
Y2Lz

(p̂).
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At the NN threshold, that is, k ≈ 0, one may evaluate Tspatial

analytically. For the process where the vector meson is in an S
wave, we obtain

Tspatial = 4 · (4π ) · 8 · δµ,−ν(−1)ν · NsN
2
b

×
{
f (2, α)

[
15

4
f (4, β) − 20b2f (4, β) + 14b4f (8, β)

]

− f (4, α)

[
15

4
f (2, β) − 20b2f (4, β) + 14b4f (6, β)

]}
.

(B6)

For the process where the vector meson is in a D wave, we

have

Tspatial = 16 · (4π ) · 8 · b2NsN
2
b · I · f (2, α)

× [
7
2f (6, β) − 4b2f (8, β)

]
, (B7)

with

I = 3√
5

1√
4π

C(10, 10, 20)C(1µ, 1ν, 2 µ + ν). (B8)

In the above equations α and β are constants defined as α =
2a2 and β = 2b2 + 6a2. The function f (n, u) is given as

f (n, u) =
∫ ∞

0
dx xne−ux2 = 1

2
u− n+1

2 �

(
n + 1

2

)
. (B9)
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