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Abstract: We propose a new digital method for sizing parti-
cles and tracking their positions from an in-line hologram by
using a combination of a wavelet transform and a reconstruc-
tion of the envelope functions. In the proposed method, the
hologram is recorded by a charge-coupled device (CCD)
sensor. The wavelet transform of digitized holograms gives
information about the position of particles, while the recon-
struction of envelope functions provides the size of particles.
Preliminary theoretical and experimental verifications are
presented. The system limitation of the method is discussed.

Key words: Particle holography — in-line holography — wa-
velet transform — digital analysis

1. Introduction

Particle sizing and tracking is one of potential applica-
tions of in-line Fraunhofer holography [1]. In in-line
particle holography, opaque or semi-transparent parti-
cles are illuminated by a collimated coherent light. An
interference pattern produced between light waves dif-
fracted from the particles and the light wave trans-
mitted directly is recorded on a light-sensitive medium
such as a photographic film, and becomes a hologram.
The interference pattern in the hologram contains in-
formation about both the three-dimensional (3-D) spa-
tial position and the size of the particles which are en-
coded as a chirp signal and an envelope function,
respectively. In a conventional analyzing method, this
information is extracted by illuminating the developed
hologram with the coherent light. The transmitted light
reconstructs the images of the particles at the same dis-
tance as the recording distance. Since, in general, this
distance is not known in advance, the image plane of
best focus for each particle must be investigated by
scanning the overall depth along an optical axis with
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fine steps. Although this method allows us to freeze
moving particles and to analyze them later, we may
deal with a huge number of particles in real applica-
tions. As a consequence, the conventional reconstruc-
tion process is very tedious and time consuming.

In order to overcome this problem, Murakami [2]
employed a microscope to observe directly the trans-
mittance of the developed in-line hologram. He estab-
lished a relation between the density and the diameter
of interference fringes in the hologram which could
provide the desired information. However, his method
is applicable only to a small far-field number that cor-
responds to either a very big diameter of particles or a
very short recording distance. As for a large far-field
number, the density of fringes does not vary signifi-
cantly. This leads to an inaccuracy of the method. A
digital analysis of in-line holograms by means of a
Wigner distribution function (WDF) was proposed by
Onural and Ozgen [3]. Their work was focused mainly
on an extraction of the 3-D position of particles and
left measurements of the particle diameter unsolved.
An alternative solution for all-optical analysis of parti-
cle holograms using a wavelet transform (WT)-based
correlator was proposed by Widjaja [4]. In the method,
the WT is used to enhance edge features of both the
images of particles reconstructed from the hologram
and the image of a reference particle. By correlating
these two edge-enhanced images, the position and the
size of particles can be determined. Although the
method is indeed useful for analyzing irregularly
shaped particles, the problem in the method is that the
optical system becomes complicated. Recently, the WT
has also been used to extract information about the
3-D position of particles from digitally-recorded in-line
holograms [5]. This method is based on an interpreta-
tion of the diffraction process as a wavelet transforma-
tion with a spherical wave for the wavelet and an axial
distance of the wave propagation for its dilation (scale
change). To determine the position of particles, the di-
gital hologram is wavelet transformed by using a sphe-
rical wave-based analyzing wavelet. The position of
particles can be obtained if the resultant WT gives a
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maximum value. In fact, this approach is equivalent to
searching the in-focus image plane of particles recon-
structed from the hologram. However, since the dila-
tion factor is determined by the axial recording dis-
tance, this method is useful only for the short axial
distance. For the longer distance, the dilation increases.
As a result, the admissibility condition of the wavelet
is so violated that this method becomes invalid.

In the present paper, we propose a new digital meth-
od for analyzing a particle hologram by using a combi-
nation of the WT and the envelope function recon-
struction. Instead of treating the diffraction process
from the viewpoint of the WT, our proposed method is
based on the signal processing approach applied di-
rectly to the holograms. This obviates the need for
searching all depth planes. In the proposed method,
the WT extracts the axial position of particles with a
classical Morlet wavelet which is often used as an ana-
lyzing wavelet [6]. Here, the dilation factor is an inde-
pendent variable whose value is not determined by the
axial distance. A reconstruction of the envelope func-
tion is used to determine the size of particles. In com-
parison with the previous methods, our proposed
method has the following advantages. First, it gives in-
formation about the spatial position and the size of
particles. Second, since the hologram is used to extract
the above information, the method is free from un-
wanted virtual and out-of-focus images appearing in
the reconstruction process from the hologram. Third, a
longer depth can be measured because the dilation fac-
tor does not depend on the axial distance. Finally, an
accuracy of measurements can be maximized by taking
advantage of a multi-resolution property of the WT.

2. In-line particle hologram

As for a small spherical particle with a radius of a, an
amplitude transmittance of the in-line Fraunhofer ho-
logram can be mathematically expressed as [1]
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where 4 and z are the wavelength of the illuminat-
ing light and the distance between the particle and
the recording plane, respectively. r represents the ra-
dius coordinate in the hologram plane, while J; de-
notes the first-order Bessel function. The first term
of eq. (1) corresponds to the directly transmitted
light. The second term corresponding to a modula-
tion of the chirp signal by an Airy function becomes
very important for particle analysis, because the fre-
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Fig. 1. Simulated in-line hologram of a spherical particle.

quency of the chirp signal is inversely proportional to
the recording distance z while the minima of the Airy
function are determined by the size of particles. The
third term is a square of the Airy function whose ampli-
tude is much smaller compared with the other terms
[7]. Fig. 1 shows a computer plot of eq. (1), from which
the above properties of three terms can be obviously
observed.

3. Method

In our proposed method, the interference pattern of a
hologram for a particle is captured by a CCD sensor
and stored into a frame memory of the computer.
Then, the captured pattern or its 1-D cross sectional
profile is digitally analyzed. In digital analysis, the WT
is employed to determine a space-varying frequency of
the chirp signal. Since this frequency corresponds to
the recording distance z, the position of the particle
with respect to the recording plane can be measured.
An envelope function of the interference pattern is
next reconstructed in order to obtain the size of the
particle. In this work, all digital computations were
conducted by using the Matlab 5.3.

3.1. Wavelet transform

The WT is a mathematical technique which has been
introduced in signal analysis to overcome the inability
of Fourier analysis in providing local frequency spec-
tra. The WT of a signal pattern s(r) is defined as [6]
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which can be considered as a cross correlation between
the signal s(r) and the dilated (scaled) wavelet g(r/d).
Here d and ¢ are the dilation and the translation (shift)
parameters, respectively. The WT is computed by dilat-
ing and translating the analyzing wavelet g(r) into a set
of functions having different frequency responses. By
the dilation factor, unlike the WDF, the WT provides a
multi-resolution decompostion of the signal in such a
way that it gives a good spatial resolution at high fre-
quency and a good frequency resolution at low fre-
quency. When the signal s(r) has the same frequency
content as the dilated analyzing wavelet g(r/d) in the
region subtended by g*[(r — £)/d], a correlation peak is
generated in the WT domain.

Fig. 2 shows the resultant WT of eq. (1) in compari-
son with the theoretical values. In this computation,
the Morlet wavelet defined as [6]

g(r) = exp (2nifyr) exp (—1%/2) (3)

was used as an analyzing wavelet with f;, denoting the
frequency of the wavelet. The vertical coordinate in-
dicates the dilation factor, while the horizontal coordi-
nate corresponds to the spatial position of the signal.
The cross signs and the solid curve indicate the corre-
lation peaks computed by the WT and the theoretical
value of the frequency variation of the chirp signal,
respectively. The correlation output is produced at
any position ¢ along the dilation d shown by the solid
curve. Since the frequency is inversely proportional to
the dilation [6], the result indicates that the localized
frequency increases with respect to the spatial posi-
tion. Therefore, the resultant WT depicted in fig. 2
agrees well with the predicted theoretical values.
Furthermore, since the frequency is determined by
the recording distance z, measurements of the fre-
quency provides information about the position of
particles.
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Fig. 2. Wavelet transform of eq. (1).
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Fig. 3. Reconstruction of the Airy function and its minima.

3.2. Reconstruction of the envelope function

In order to obtain the radius of particles, a modulating
function is firstly reconstructed by determining maxi-
mum and minimum amplitudes of the digitized holo-
gram as shown in fig. 3 where the plus and the cross
signs associate with the maximum and the minimum
amplitudes, respectively. Second, positions of the smal-
lest amplitude are determined by finding the smallest
difference between the maximum and minimum ampli-
tudes. The circle signs illustrated in fig. 3 show the
group of pixels having the amplitude difference less
than 1%. Spatial positions of these pixels are then
averaged to obtain the position of the minimum of an
Airy function. Since the minima are mathematically
determined by an argument of the Airy function, the
radius of the particle that is only an unknown value in
the argument can be finally obtained.

4, Results and discussions

In a preliminary verification, the in-line hologram of
an optical fiber was simulated under illumination of
the coherent light operating at the wavelength of 543.5
nm. In this case, an envelope function of the interfer-
ence pattern due to a line object of the fiber becomes
a sinc function with the same argument [1]. By measur-
ing the optical fiber with a microscope OLYMPUS
CH30RF200, its radius was obtained to be 62.48 pum.
The simulated in-line hologram was then analyzed by
our proposed method. The errors of measurements for
given values of the recording distance z from 15 cm to
95 cm are shown in fig. 4. Circle and cross signs corre-
spond to the errors of measuring the distance z and
the radius a, respectively. The results show that the er-
rors in both measurements are less than 1% for a wide
range of the recording distance.
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Fig. 4. Errors of measuring z and a from simulated holo-
grams of the optical fiber.

Next, feasibility of our proposed method was experi-
mentally verified by generating optically an in-line ho-
logram of the optical fiber. The collimated coherent
light was generated from a He-Ne laser with the wave-
length of 543.5 nm. The generated hologram was re-
corded by using a CCD camera HAMAMATSU
C5948 having the resolution of 640 x 480 pixels in the
area of 8.3 x 6.3 mm. Fig. 5 shows the 1-D cross-sec-
tional scan of the in-line hologram with three observa-
ble minima recorded at the distance z = 30 cm. Due to
a limited experimental space, the longest distance for
recording the hologram was less than that taken for
the simulation. The errors of measurements using the
proposed method is shown in fig. 6. The small errors of
measurements for the recording distance z is in good
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Fig. 5. In-line hologram of the optical fiber recorded at
z=30 cm.
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Fig. 6. Errors of measuring z and a from holograms of the
optical fiber.

agreement with the simulation result. However, mea-
surements of the particle radius a give higher errors in
comparison with the simulation. The reasons for this
fact may come from the following; the spatial resolu-
tion of the CCD is insufficient to sample the interfer-
ence pattern and the speckle noise is overlapped over
the hologram. Since the holographic signal around the
minima has a very small amplitude comparable to the
amplitude of the speckle noise, the determination of
the minima becomes slightly difficult. This leads to a
higher error of measurements.

5. System performance

A system performance of our proposed method is de-
termined by the finite resolution and the finite aper-
ture of the employed CCD sensor. In order to deter-
mine the combined effect of the finite resolution and
the finite aperture, two requirements for measure-
ments must be fulfilled by the CCD sensor. The first
requirement is that the spatial resolution of the sensor
must satisfy the Nyquist sampling theorem [8] in order
to sample correctly the interference pattern. The sec-
ond one is that the aperture size of the CCD must be
wide enough to record the minima of the envelope
function. In order to analyze the system performance
we consider two major geometries of line and spherical
objects. In the following discussion the CCD sensor is
assumed to have a square-shaped aperture with the
size of X x X and the resolution of N x N pixels. The
sampling spatial frequency in either the horizontal or
the vertical directions of the CCD can be mathemati-
cally expressed as

feep = NT_l . 4)
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5.1. Line objects

In the case of line objects, the second term of the in-
line Fraunhofer hologram in eq. (1) corresponds to the
chirp signal modulated by a sinc function. Since the
spatial resolution of the sensor must satisfy the Nyquist
sampling theorem, the relationship between the fre-
quency of the chirp signal and the sampling frequency
fcep can be expressed as

feep > 2fehirp - (5)

Substitutions of the chirp frequency fehirp, given by x/Az
and eq. (4) into eq. (5) give
Az(N —1)

X< —o (6)
which describes the length of the interference pattern
that can be correctly sampled by the CCD sensor
placed at the distance z. Therefore, for a recording dis-
tance z, the analyzable area on the CCD is confined in
the region of 0 < x < Az(N — 1)/(2X). When the record-
ing distance becomes longer, the size of the analyzable
area increases, because the longer recording distance
causes the smaller frequency of the chirp signal. As a
consequence, when the right term in the inequality of
eq. (6) is bigger than the CCD aperture size, the range
of the recorded hologram that can be analyzed be-
comes 0 < x < X. This condition is achieved if the re-
cording distance z is bigger than 2X?/[A(N — 1)]. We
define this factor as a critical distance. In experiments,
its value was approximately 39.67 cm. Therefore, the
analyzable area is determined as follows

Az(N —1) 2X?

X< —F5—

. o 2XT
X if 0<Z_/1(N—1) (7a)

and

2X?
x< X if 2>7 (7b)

(N—-1)"

On the other hand, in order to measure the size of
the object, a minimum number of the minima n,,;, of
the envelope function must be recorded by the CCD.
In the case of line objects, the positions of the minima
are determined by an argument of the sinc function
2ax/Az. As a result, the following relationship

H > Pmin (8)
is obtained. By substituting egs. (7a) and (7b) into eq.
(8), the smallest width of the line object that can be
measured is found to be

Xlmin . 2X2
f 0 <-——
N-1 " USEE N
a> (9)
AZWmin oz 2X?
2X CCAN -1

Furthermore, in order to reconstruct faithfully the en-
velope function, a large number of interference fringes

must be present within the first minimum of the sinc
function at x = Az/2a. Since the zero of the chirp func-
tion occurs at x = (nAz)"* where n is the number of
fringes, the number of interference fringes within the
first minimum is found to be

Z
(207
A

By using the far-field condition z > m(2a)%/4 [1], eq.
(10) reduces to n > m or

1 JAz

Equation (11) describes the upper limit of the measur-
able object size as a function of the recording distance.

n =

(10)

5.2. Spherical Objects

Since the chirp signal is solely determined by the axial
position of the object, the analyzable area of the inter-
ference pattern for spherical objects can also be de-
scribed by egs. (7a) and (7b) with the replacement of
the variable x by r. However, the positions of the mini-
ma for the Airy function and the sinc function are dif-
ferent. The value of the Airy function becomes mini-
mum when the argument is 1.227, 2.237, 3.24m, etc. [9].
By taking this consideration into account, a minimum
number of the minima n.,;, of the envelope function
can be approximately described by

2ar

lz > (}’lmm + 023) . (12)
To find the smallest measurable size of the spherical
particle, the finite extent of the analyzable area of the
interference pattern is applied. This gives

X (Royin + 0.23) 2X?
2 \Vfmn P g <=
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By using the far-field condition to account for the num-
ber of fringes within the first minimum of the Airy
function, the biggest size of the measurable particle be-
comes

1 JAz

In summary, the lower limit of the measurable size
for spherical objects is higher than that for line objects,
while the upper limits for both objects are the same.
This is due to the fact that the width between the two
minima of the Airy function is wider than that of the
sinc function. Fig. 7 shows the ranges of the object size
and the recording distance in a logarithmic scale that
can be measured by our proposed method. The ranges
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Fig. 7. Measurable size of objects and their recording dis-
tances.

of measurements for line and spherical objects are con-
fined by the triangles drawn with the solid and the bro-
ken lines, respectively. The base and the right side of
the triangle correspond to the lower limits of the mea-
surable size of the object for the recording distances
being smaller and bigger than the critical value, respec-
tively. The left side of the triangle associates with the
upper limit of the measurable size. Since the upper lim-
its of the measurable size for both objects are the
same, the two lines coincide. The maximum measur-
able size of the object must have a smaller value than
the upper limit as described by eqs. (11) and (14). At
the recording distance which is greater than the critical
value, the longest recording distance and the largest
size of particle could be mathematically determined by
equating the maximum and the minimum values of the
particle size a. In the case of line objects, this yields
Zline,max — X /J’Ell’l min and Aline,max = X/ZJ'[}’lmm, while
for spherical partlcles the maximum recording dlstance
and the maximum size are given by Zspherical, max = = X%
TIA(Mmin + 0. 23) and dgpherical, max = X/27(Amin + 0.23),
respectively. In a similar fashion, when the recording
distance is smaller than the critical value, the shortest
recording distance and the smallest size of line objects
that can be measured becomes Zjnemin = = 4 XN’ i/
A(N - 1) and Aline,min = Xnmm/( - 1) respectlvely
In the case of spherlcal ob]ects we obtain Zgpherical, min
= 4nX*(Mmin + 0.23)A(N — 1)
X(nmin + 0.23)/(N = 1).

and Aspherical,min  —

6. Conclusions

We have proposed and verified experimentally a new
digital method for analyzing directly the in-line particle

holograms. A combination of the WT and the recon-
struction of the envelope function are employed to ex-
tract the position of particles and their diameter from
the digitized hologram, respectively. The experimental
results show that the errors of measuring the particle
position is less than 1% and slightly higher for errors
of measuring the particle size. These results are mainly
caused by the low resolution of the used CCD sensor
and by the speckle noise.

We have also analyzed the dependencies of the mea-
surable ranges of the recording distance z and the par-
ticle size a on the aperture size and the resolution of
the CCD. In general, the recording distance that can
be measured is much determined by the spatial resolu-
tion of the CCD sensor. To record faithfully the holo-
gram at a short recording distance, our proposed meth-
od requires a high resolution CCD sensor. This
requirement is relaxed as the recording distance be-
comes longer. As for the particle diameter, the smal-
lest size that can be measured is also determined by
the resolution and the diameter of the CCD. However,
the upper limit depends only on the recording dis-
tance.
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