

Available online at www.sciencedirect.com

MICROPOROUS AND MESOPOROUS MATERIALS

Microporous and Mesoporous Materials 75 (2004) 273-279

www.elsevier.com/locate/micromeso

Exchange diffusion of Cu²⁺, Ni²⁺, Pb²⁺ and Zn²⁺ into analcime synthesized from perlite

Alan Dyer a,*, Sudaporn Tangkawanit b,1, Kunwadee Rangsriwatananon b

^a Institute of Materials Research, Science Research Institute, Chemical Sciences Division, University of Salford, Cockcroft Building, Salford M5 4WT, UK

Received 7 April 2004; received in revised form 9 July 2004; accepted 9 July 2004

Abstract

The zeolite analcime was synthesized, in its sodium form, from a perlite (volcanic glass) deposit at Lopburi, Thailand. Particle size analysis was used to approximate the radius of the analcime particles as 3.87×10^{-6} m. XRD, XRF, ²⁹Si MAS NMR and thermal analysis confirmed the product as analcime of good purity. Diffusion exchange of Cu^{2+} , Ni^{2+} , Pb^{2+} and Zn^{2+} for ²²Na⁺ from the synthetic analcime was investigated in the temperature range 298–333 K. Diffusion coefficients (D) were calculated using the Barrer, Barri and Klinowski equation. E_a , ΔS^* and ΔG^* values showed that all the channel sites were involved in the observed diffusion processes.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Analcime; Perlite; Cation exchange; Diffusion

b School of Chemistry, Institute of Science, Suranaree University of Technology, Nakorn Ratchasima 30000, Thailand