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1. Introduction

Let P, = (z;,¥;), 1 = 0,..., N be a sequence of pairwise different data points
in the zy-plane. In order to draw a curve passing through these points, it is in
general necessary to construct a mesh A :a =1y <t; <--- <ty = b and to define

a continuous vector-function C(t) = (Cz(t), Cy(t)), t € [a, b], such that

Cm(ti):xi, Cy(ti)zyi, 1=0,...,N,

that is,
Citi)=PF, i=0,...,N.

The parameter values chosen are called the interpolating nodes. The shape of the
curve is determined by the choice of the interpolating nodes as well as the method
of interpolation used on this mesh. The choice of the nodes greatly influences the
resulting curve. The problem of finding a good set of interpolating nodes is known
as the parametrization problem.

The simplest and most widely used parametrization is the uniform parame-
trization, provided by

ti =t;—1+h, h:(b—a)/N, 1=1,...,N.

This is generally unsatisfactory for the obvious reason that the nodes do not
relate to the distribution of the data points. The choice of the interpolating nodes
should be based on the behaviour of the data, giving a data dependent parametriza-
tion. It is generally accepted that a better choice is the cumulative chord length
parametrization

P, —P;_ :
t, =t;—-1 + I\IT,L i1 (b—a), i¢=1,...,N,
> =1 1P — Pj-1] R
with | - | denoting the usual Euclidean distance. Here, the term “better” refers to

a rather vague quality of the curve: its “fairness”. There is no precise definition of
this quality but it is customary to accept that a curve is fair if it reproduces the
interpolation polygon well and has a high degree of smoothness (see Criterion A in
[31]).

The theoretical foundation of parametrization by cumulative chord length for
natural splines was laid by Epstein [8]. In this case the curve has no corners. But
it was shown by Lee [25] that it may have cusps. Roughly, the distinction between
a corner and 4 cusp (for a parametric curve) is this: the position of the tangent line
changes discontinuously across a corner (at which the tangent line is undefined),
whereas across a cusp, the tangent line varies continuously, but the unit tangent
vector reverses its direction. Such a parametrization has sometimes been called the
“patural parametrization”. The main reason for this choice seems to be that it
roughly approximates the arc length parametrization [6]:

tizti_1+/ti JO@P + G @Fd, i=1...N,

ti—1
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which requires iterations [33]. However, here the aim is to create a curve through

a given set of points, and it is not clear why one should strive for the arc length

parametrization, nor is it clear that the suggested iterations should even converge.
One obtains the ezponential parametrization [23] if

P,—P_,i° .
t; =t;—1+ | 1) (b—a), t=1,...,N, 0<e<1

ZN= |P; — Pj_1l°

As a particular case, for e = 0,0.5, and 1, thls gives uniform, centripetal [23],
and chord length parametrizations respectlvely With nearly equally spaced points,
these three parametrizations are roughly the same. In general, the centripetal
parametrization gives better results than either the chord length or the uniform
parametrizations.

The affine invariant parametrization of Foley and Nielson [12,29] takes the
geometry of the control points into consideration and produces quality results for a
wide variety of curve/surface fitting problems. The interpolating nodes can also be
derived through optimization techniques [16,20,27]. The intrinsic parametrization
by Hoschek [18] uses the minimization of the distance between the given points
P, and an approximation curve, which is a nonlinear problem. But optimization
methods are expensive, and moreover it is not entirely clear what objective function
should be used. .

The choice of the interpolating nodes can be based on the preservation of the
data shape properties such as monotonicity, convexity, etc. We shall say that a
curve C is monotonicity preserving for the given data in the interval [tx,t], [ > &k
provided that the following conditions are fulfilled

C;(t)($j+1 — .CL'J‘) > 0, C;(t)(yj+1 — yj) >0 if te [tj,tj+1]
forall j=k,...,1—-1. « (1)

2. Affine Invariance of Polynomials and Splines

Let R = (—o0,00) be the real axis, and consider an affine transformation
R — IR : f{ = pt+q, where p # 0 and g are constant. Then the mesh A : #; <
t1 < -+- < ty is transformed into the mesh A={t|ti=pti+q, i=0,...,N}.
Let us show that interpolating Lagrange polynomials and interpolating polynomial
splines are invariant with respect to such transformations.

Lemma 1. The interpolating Lagrange polynomials are invariant with respect to
affine transformations of the real line R.

Proof: The Lagrange polynomial of degree n that interpolates the data (tj, fj),
j=1i,...,i+n, has the form

i+n i+n (t _ tk)
Lin(t) =Y fili(), L) =[] (t; —te)
i



Since here. N
Pt (t—m e R
Li(t) = _ = = 1:(%),
K2 * k#j
then
i+n i+n L R
Z fili®) =Y Fili(0) = Lin (D).
j=t
This proves the lemma. . O

Let S, (A) be a linear space of polynomial splines satisfying definition 3.1
in [22]. It was shown in [22, chapter 3] that using the extended mesh A one can
construct a system of normalized B-splines B;, ¢ = 1,..., p, such that any spline
S € Sn(A) can be uniquely represented in the form

p

S(t) =) _biBia(t), tE€ [to,tn]

=1

Let Sn’y(A) be a set of polynomial splines on the mesh A which is obtained
from the linear space S, 7(A) by affine transformation of the variable ¢. Let B;,
i=1,...,p be a system of B-splines on the extended mesh A forming a basis in
Sn,'i/'(A)'

Lemma 2. The interpolating splines in S, 7(A) are invariant with respect to affine
transformations of the real line R.

Proof: Let us show that the equality B; ,(t) = Bi,n(ﬂ, 1 =1,...,p, holds. If
n = 1, then by definition (3.18) in [22]

* . — 1 ift € [tiat‘H—l)v =
Bia(t) = {0, otherwise.

Therefore, B“(ﬂ = B, 1(t). Suppose the required equality is fulfilled forn —1 =%
(k > 1). Then by virtue of the recurrence relation for B-splines (3.7) in [22] and by
induction,

t— t; tign =t o

Bin(t) = —————B;n-1(t) + ir1n—1(%)
titn—-1 —ti tivn — it
f'— £ A tA bt E ~ ~
A —:———l'—,.—Bi,n—l(ﬂ + ,\—H.E—A—Bi.*.l’n_l(ﬂ = Bi,n(ﬂ-
' tign—1— ¥ tign — tig1

If now S and S are interpolating splines on the meshes A and A respectively
connected by the affine transformation { = pt + q (p # 0), then by virtue of the
uniqueness of the spline representation as a linear combination of B-splines, the
following representation holds:

S(t) = Z biBi,n(t) = Z biBi,n(ﬂ = S'(i) (2)
=1 i=1
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Therefore, the interpolating spline S is invariant with respect to affine transforma-
tions of its variable. This proves the lemma. O

Let us obtain the rela.tlon between S’ and §’. By differentiation of the equality

proven above, B; ,(t) = B; »(£),i=1,..., p, one obtains
drs  a d s ~qdE I
B ,(t) = 7 [Bin(t)] = = [Bin(D)] pri pB; ().

Differentiating now equality (2) one can write down
S'(t) = Z b:B; Z bipB; o (f) = pS' (D). (3)

By repeated differentiation of the last and next to last equalities we arrive at

S(r) Z b; B(") Z bszB(r) prg(r) (1?),

Note that the invariance of cubic weighted v-splines, and in particular of inter-
polating C? cubic splines with respect to affine transformations of the real line, was
shown in [10]. The invariance with respect to affine transformations of generalized
tension splines was proven in [22, chapter 7].

3. Shape-Preserving Parametrization

'Let us consider the behaviour of the parabola IL; » passing through the points
(tj, f5), J =14,i+1,i+2, depending on the mesh choice. We will seek the knot ¢;1;
such that the parabola turns out to be monotonicity preserving for the initial data,
that is, such that the following relations are met

Lio(t)(fie1— f) >0, j=ii+1,
We introduce the following notation,
a; = (tig1 — ti)/(tiva — i), Ti =tizo —t;.
As a corollary of the Lemma 1 the knots ¢; = 0 and ;.2 = 1 can be fixed. Then
.? a; =tip1, T;=1,

Q_L () = (1 — o) (figr — fi) + (2t — ap)[as(fize — fi) = fix1 + fil
dt w2 B a,;(l it 011;) ’

(4)

Let F; = (fi+1 — fi)(fi+2 — fix1). We consider three possible configurations of
the initial data:
A F,>0;



B. F; <0;
C. F;=0.
A. By assumption, the sequence f; < fiy1 < fiq2 or fi > fiy1 > fiya is
monotone. Since IL; , is a linear function, the monotonicity of IL; 5 is equivalent to
the fulfillment of the two inequalities

2 (firn — fi) > 0, L y(tig2)(figr — fi) > 0.

Simple manipulations, based on the fact that 0 < «; < 1, readily yield the inequal-
ities f £ .
—af + T SAe >0, —(1—o)?+
f i+2 f i - ( Z)

From these inequalities it follows that

f five — fin firi —fi _ ¢
ol =1— /22— << =al .. 5
fi+2”‘fi fz+2"f1, ( )

The same argument implies the following result:

fiv2 — fira

> 0.
fiva — fi

Lemma 3. If the restriction imposed on the initial data that F; > 0 holds, then
monot;ommty of the parabola is equivalent to the knot t;.1 being in the interval
TS = (t; + ol T, ti + ol T3).

One value of the knot ¢;,1 in the range Tif can be obtained by minimizing the
parabola length. Since f; 12 # f;, the equality (4) can be transformed into the form

IV 1-2t (fim—fi
(fixa = fi) 'L 5 (8) = _1 + ai(l — a;) <fi+2 -fi a,>.

Hence setting
a; = (fix1 — fi)/(fix2 — fi), : (6)
we have the equality (fi+2— fi) 7'IL; 5(¢) = 1, that is, the parabola degenerates into

a straight line, and it is easily verified that ¢,41 = ¢; + o;T; € Tz-f .
B. In this case the knot ¢;; is chosen so that

L;,z(tiﬂ) =0.
Since by virtue of (4) it follows that

L;,z(ti%l) = o7 (1 — o) " Hel (fige — fi) — 20i(fig1 — fi) + fi1 — fil
= a; ' (1 — i) Mo (fire — firr) + (1 = @) (fivr — i),

we have

VIfivr = fil . 7)
VIfir1 = fil + [ fixz — firal

C. There are three possible configurations of the initial data:

a; =



(1) fi =fi+1 = fita;
(i) fi = fir1, fir1 # fitos
(iil) fi # fi+1, fivr = fivo.

In the first case, the position of the knot can be chosen arbitrarily because
IL; 2(¢t) = constant. The selection range for t;;; will be the interval Tif = (0,1).
In the second and third cases the parabola is non-monotone for any position of
the knot ¢;41 (for case (ii) in the interval [t;,¢;+1] and for case (iii) in the interval
[ti+1, ti+2], respectively). For continuity of formulae (6) and (7) we set

_JE if “fi=fir1, firr # fize
= { l—¢ if fi# fix1, fix1 = fire, (8)

where € is a small number (e.g. € =(computer precision)x100). In cases B and C
the interval Tif degenerates into the point ¢;,;.

Therefore, formulae (6)—(8) determine a location of the knot t;,; for any pos-
sible configuration of the initial data.

Let us formally denote the set of parameters obtained from formulae (6)-(8)
for the data fo, f1,..., fn as af{ =q;,1=0,...,N—2.

The mesh A for the curve C(t) = (C;(t),Cy(t)) is constructed by using the
two above found meshes for each of the component functions C; and C,,. It follows
from the above that

Lemma 4. The curve C will be rendered monotonicity preserving for the initial
data if TP NT} # 0 and t;41 € TF NT) for all4, i =0...,N — 2. Otherwise the
conditions of monotonicity preservation are violated.

Let us specify the algorithm for parametrizing the curve C in the general case.
We define the parameters

. ‘ de

which fix a mesh normed by cumulative chord length. Then we choose ;11 = t;+&;

tit1 =t + oy,

where '
o i TFCTY,
a; =14 o if TY CTF, (9)
(af +af)/2, otherwise .

T
i
y

The value t;41 ¢ TF NTY # 0 is additionally corrected to the nearest point of
the interval T N T. Thus, the mesh has been constructed.

Denote the step size of the mesh A by h; = t;41 —¢;,1=0,...,N — 1. For
a curve C(t) passing through the points P;, ¢ = 0,..., N, the mesh A : {p < ¢; <
... <ty is uniquely determined by a set of parameters g, o1, ..., an_2 assigning
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the relations of the mesh steps, h;/h;_1, 4 = 1,...,N — 1, and the values ho or
hn—1.

For a vector-function Cs(t) = (Cy(t), Cy(t), C,(t)) which defines the curve in
the ryz-space passing through the points Q; = (x;,yi,2:), 1 = 0,..., N, the general
parametrization algorithm is similar to the 2-D case with formal substitution of the
interval T2 NTY NT7 for the interval T NT}. In formula (9), instead of (af +a¥)/2
we choose a; = (af + of + af)/3.

Furthermore, the parametrization will be called shape-preserving if the param-
eters «yp, ..., an—2 are chosen by the algorithm described above.

4. Parametrization for Cubic Splines

Let us consider a conventional cubic spline on the mesh A : tg <t; < --- <ty
satisfying the interpolation conditions

St)=Ffi, i=0,...,N,
as well as the endpoint constraints which are preferable in practical calculations [3]:
S'(t;)=fl, i=0,N. (10)

Note that in order to preserve the invariance of the spline under affine transforma-
tions of the parameter space, by virtue of (3), the values f/ must be modified by
fl=q'fl,i=0,N.

The given data will be called strictly monotone if fo < f; < -+ < fn or
fo> fi > ---> fn and if in addition the following inequalities are met,

folfi—fo) >0, fy(fv—fn-1)>0.

We will say that the spline S preserves the strict monotonicity of the initial data
if fo< fi<--< fnvand S'(t) >0,t € [to,tn], 0r fo > f1 > -+ > fnv and
S'(8) < 0, t € [to,tn]. In [22, chapter 4], sufficient conditions for the initial data
are established which ensure that if the data is nondecreasing fo < f1' < --- < fn
then the derivative of the cubic spline is nonnegative S’(t) > 0, ¢t € [to,tn]. By
virtue of Theorem 4.4 in [22], the following assertion is valid.

Lemma 5. Let a cubic spline S € C?[ty,ty] with endpoint conditions (10) inter-
polate the strictly monotonically increasing (decreasing) data {fi},i=0,...,N. If
the following inequalities are valid .

fo fn

. <3, /<3,

, flto,t1] fltv—1,tn]
fltim1,ti] hi—1  flti, tiy1] hi
JLimL bl gy Bl <o+ i—1,.. N-1,
flti, tiga] hi fltim1,ti] hi_1

then S’(z) > 0 (< 0) for all z € [to,tn], that is, S is strictly monotone on [to, tn].
With the above notation a; = (t;41 —t;)/(tiv2 —t;),2=0,..., N — 2, one has

h; 1— o .
=%l 0, ,N—2.
hi—1 Qi1
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Then from Lemma 5 one readily obtains the following restrictions on «;:

five — fiqr firi—fi
Y el o PN i=0,...,N—2.
fiva — fi ’  fir2— fi

These inequalities coincide with the conditions (5) of monotonicity preserving para-
metrization. Thus we have proved

Theorem 1. Let the initial data {f;}, ¢ = 0,..., N, be strictly monotone and
given on the mesh constructed by the algorithm of shape-preserving parametriza-
tion. Then a cubic spline S, that intérpolates this data and satisfies the endpoint
conditions (10), preserves the strict monotonicity of the initial data provided that
the following inequalities are met:

fo I
flto, t1] fltn=1,tN]

The following two corollaries follow immediately from Theorem 1.

<3, < 3. (11)

Corollary 1. Let the initial data P; = (z;,v;), ¢ = 0,..., N, be strictly mono-
tone. The interpolating parametric cubic spline C(t) = (Cy(t), Cy(t)) with knots
on the mesh A constructed by the algorithm for shape-preserving parametrization
is monotonicity preserving for the initial data if

() TP NTY #0, i=0,...,N—-2;

(b) max Z Yo ) <3 max( oy Uy < 3.
z[to, t1]’ ylto, t1] ’ ztn—_1,tN] YltN-1,tN]

Corollary 2. Let zg < 71 < -+ < zn and z > 0, =’y > 0. The interpolating
cubic spline with knots on the mesh A such that
( ) tisn € T%,i=0,...,N — 2, and

!
z[t—gm’i[ﬁ%m“

increases monotonically on the interval [to, tn].

¥

If the restrictions of Corollary 2 are fulfilled, then for single-valued functional
data there is a one-to-one correspondence between the points of the z-axis and the
curve points, that is, there exists a single-valued function y = y(z) with a graph
(Cq, Cy).

Conditions (11) can be rewritten in the form

ho < 3(f1— fo)/fs» hn—1 <3(fn— fn-1)/Fn- (12)

To fulfill these conditions one can apply two different algorithms.
(i) Starting from specified values f; and fy one finds kg and hy_1;
(ii) Fixing values of hg and hy_1 one corrects fy and fj.
Since h;41 = hi(1 — )/ai, 1 =0,..., N — 2, then setting

+1_ 1 — o
T ke -




one has hy_1 = hoR. Now choosing

ho = 3min<f1 —fo fn— fN—1>

fo = Rfy

one fulfills the conditions (12).
If the nodes tg and ty of the mesh A are fixed, e.g. if we use the normed
parametrization A : 0 =%y <t; <--- <ty =1, then we set

a={ halte) . i Li,(to)(fi = fo) > 0

e sign(f1 — fo), otherwise,

o :{ N_2.2(tN) if Liy_g2(n)(fv = fn-1) >0;

g sign(fy — fn—1), otherwise.

One can easily check that in this case conditions (12) are again satisfied. In order
to set f§ and f};, the cubic Lagrange polynomials may also be employed.

Remark 1. By virtue of formula (6), the step size of the mesh A for shape-
preserving parametrization is substantially smaller in the regions of sharply increas-
ing “gradient” of the initial data. Hence the points of the spline whose values are
obtained on a uniform partition of the interval [to, ] will be concentrated in such
domains. This property of the suggested parametrization is useful in applications.

5. Parametrization under Surface Construction

Let us consider the application of shape-preserving parametrization in the
construction of surfaces by a discrete set of points given in the manner described
in {22, chapter 8].

_Let the domain G : [c,d] x [0, 1] in the WU plane be divided into IV rectangular
subdomains by the straight lines w = w;, ¢ = 0,..., N, of the grid A,, : c = wy <
wy < -+ < wy = d. Suppose that on each of the lines w = w;, the grid

Al :0=wh<ul<---<ufy, =1, i=0,...,N,

is given. The number of nodes and their position on the grids Al i =0,...,N,
are independent of one another. Cartesian surface coordihates Pj; = (zij, Yij, Zij)
are given in the nodes u%, y =0,..., M;, i=0,...,N. The surface is constructed
as a triple of 2-D splines

¥

z=z(u,w), y=yly,w), z=2zu,w)

on the corresponding coordinates using the methods of shape-preserving approxi-
mation of [22, chapter 8] based on generalized tension splines. Tension is introduced
to improve the correspondence between the geometry of the surface and the initial
data. It is now natural to choose the partitions A, and A%, i = 0,...,N, by
applying shape-preserving parametrization.
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Algorithm 1. Construction of meshes A%, i =0,...,N.

(i) For each i = 0,..., N, start with the points F;;, § = 0,..., M;, and use the
algorithm of shape-preservmg parametrization to find a set of parameters &;
j =0,...,M; — 2, which gives the subsidiary mesh Ai :0=ah <df <<
Uy, = 1.

(ii) Consider the set 4%, j = 0,...,M;, for fixed i, 0 <4 < N, as the values of a
linear mterpolatmg splme l; W1th knots on the uniform partition of the interval
[0,1] with the step size h = 1/M;, that is,

LG/M:) =44, §=0,..., M

]’

Then find the mesh A, for each i, 0 <1 < N, from the following formula

uj = NHZlk /M), §=0,.... M

as an arithmetic mean of all the subsidiary parametrizations.

Clearly, 0 = uf < ul < .-+ < wujyy =1 for all 4. If M; = M; then the meshes
At and AJ coincide. Therefore, if M; =M,i=0,...,N, then all the meshes A,
are the same.

The second step of this algorithm takes the “averaged” geometry of the initial
points along all the cross-sections into account through the parametrization.

Algorithm 2. Construction of the mesh A,,.
Let P;(u) = (zs(u),yi(u), zi(u)), i =0,..., N, be a curve passing through the

points P;j, j = 0,..., M;, where the functions z;(u), yi(u), z;(u) are choosen to be
linear 1nterpolat1ng splmes on the mesh A%. Let us assume a certain fixed set of
parameters 4;, | =0,...,L (Lisa suﬂ?ic1ent1y large number) is given. For example

Wecanset'&l=l/L,l:O,...,L. R
(i) For each fixed I, 0 < I < L, start with the points P;(%;), ¢ =0,..., N, and
(a) obtain the cumulative chord length H, joining those points; -
(b) use the algorithm of shape-preserving parametrization to find the set of
parameters ag [, . . ., N—2, assigning the subsidiary mesh

O=w0,l<w1,l<-'-<wN,l=Hl.

(ii) Set
1
: wiszwi,l, ZZO,,N

The m(zsh A,, is thus constructed. Evidently, its length is H = wy — wp =
1
L+1 Zl:o H;.

Remark 2. Let us assume that the number of initial points is the same in all the
cross-sections, that is, M; = M, 1 = 0,...,N. When the mesh points A, = Al
(4 = ul, I =0,...,M) are used in Algorithm 2 as 4, the mesh A,, constructed by
Algorithm 2 coincides with the mesh of Algorithm 1.
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6. Graphical Examples

The figures below illustrate the employment of shape-preserving parametriza-
tion (sp-parametrization for short) in interpolations by the parametric cubic and
generalized tension splines of [22, chapter 4] with the defining functions

Yit) = 3/1+qt(1 - 0)]Qs, Q7' =20+q)B+aq), @i(t) =il —1).

For the purpose of comparison, spline curves with centripetal, cumulative chord
length, and uniform parametrizations, which are the most common, are given.
These three methods are similar with thé method suggested in this report in terms
of implementation complexity and computer resources consumed. The

80

60

40

20

80

%

60} o

40

20

(c) (d)

Figure 1. Akimd’s data with sharp gradient increase. (a) Interpolation using sp-,
centripetal, cumulative chord length and uniform parametrizations (¢; = 0). (b)
Magnification of the interval [7,10]. (c), (d) The same as (a), (b) but with go = 1,
(11=(12:10, Q3=16, q4:357 g5 = 9.5, g6 = 3.8, g7 =4, 48 =5, g9 = 2.

solid, dotted, dashed and dash-dotted lines show, respectively, the curves with sp,
centripetal, cumulative chord length, and uniform parametrizations. The bullet
signs denote the data points. In the construction of the cubic and generalized
tension splines, endpoint conditions of type (10) were used where the derivatives
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were computed by means of the second degree Lagrange interpolating polynomials:
S'(to) = L 5(to) and S'(tn) = Liy_ 5(tn).-

As our first example we have interpolated Akima’s [1] data of Table 1. The
effects of using four different parametrizations are depicted in Figure 1. Figures
1(a) and 1(b) are obtained setting ¢; = 0 for all ¢, that is considering the para-
metric cubic splines interpolating the data. Uniform and cumulative chord length
parametrizations are utterly unsatisfactory. The graph of the spline with centripetal
parametrization fails to show a one-to-one correspondence between the points of
the z-axis and the curve. The spline with sp-parametrization has small oscillations
along the data because the conditions 1 of Corollary 1 are violated. The mag-
nification in Figure 1(b) shows this effect clearly. In Figures 1(c) and 1(d) new
interpolants with tension parameters go = 1, g1 = 11, g2 = 10, g3 = 16, g4 = 35,
gs = 5.5, g6 = 3.8, g7 = 4, gs = 5, g9 = 2 are displayed for the same data, and the
stretching effect of the increase in tension parameters is evident.

Table 1. Data for Figure 1:

z; | 0] 2| 3| 5| 6| 8 9 11 |12 |14 | 15
y; 110 {10 |10 {10 |10 |10 [ 10.5 | 15 | 56 | 60 | 85

0.00075¢ .
0.008
0.0005

0.006 0.00025

0
0.004

-0.00025

0.002 -0.0005 {/ \
\ ]
-0.00075 ;
0 \ / B3
~_.~
0.29 0.295 0.3  0.305 0.31

(b)

Figure 2. C. de Boor example. Parametrizations for the parabola f(z) = (z - 0. 3)2
w1th:z:_0 0.1,0.2,0.3,0.301,0.4,0.5, 06andtens1onparameters qgo = 1.5, ¢1 = 2.5,

= (0.75, g3 = 1. 12, q4 = 75 g5 = = 0. ( f Magnification of the interval
[0 2,0.4]. (b) Magmﬁcatlon of the 1nterval [0.29,0.31

" Figure 2 illustrates an example from C. de Boor’s book [6]. The data points
have been obtained from the function f(z) = (z—0.3)% with z = 0,0.1,0.2, 0.3, 0.301,
0.4,0.5,0.6. Figures 2(a) and 2(b) present magnifications of the intervals [0.2,0.4]
and [0.29,0.31]. We have used tension parameters go = 1.5, ¢1 = 2.5, g2 = 0.75,
g3 = 1.12, ¢4 = 7.5, g5 = g¢ = 0. Here uniform and centripetal parametriza-
tions give a loop and a cusp correspondently. The solution with sp-parametrization
permits perfectly reproduce the data shape.

The data for Figure 3 (Table 2) has been taken from the book by Spéth [33].
Figures 3(a) and 3(b) show the plots of the interpolating cubic splines produced by
a uniform choice of tension parameters, namely, ¢; = 0. In Figures 3(c) and 3(d), in
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Figure 3. Spith’s data. (a) Interpolation by parametric cubic splines. (b) Magnifi-
cation of the interval [6,8]. (c),(d) The same as (a),(b) but with ¢; = 10,4 = 5,6,7
while the remaining parameters g¢; are unchanged.

order to approximate the segment of a straight line passing through the last three
data points, we have set g5 = g¢ = g7 = 10 while the remaining g; are unchanged.
The data for Figure 4 (Table 3) has been obtained from the function f(z) =
(z—5)*+2 with z = 2.5+14,¢=0,. .., 5, considered by Goodman and Unsworth [15].
We have used tension parameters go = 1.5, ¢1 = 2.5, g2 = 0.75, g3 = 1.12, g4 = 7.5.
Here cumulative chord length parametrization is unsatisfactory. Magnification of
the interval [4, 6] shows that sp-parametrization preserves monotonicity of the data.

Table 2. Data for Figure 3:

zpl 0] 2 25135556 7185110
yil2 125 |45 |5 45 115 |1105} O

Table 3. Data for Figure 4:

z; 2.5 3.5 4.5 9.5 6.5 7.5
y; | 41,0625 | 7.0625 | 2.0625 | 2.0625 | 7.0625 | 41.0625

Figure 5 illustrates the behaviour of the splines for the data selected by us on the
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(a) (b)
Figure 4. (a) Parametrizations for the data obtained from the function f(z) =

(€ -5)*+2 withz =25+4,i=0,...,5and go = 1.5, @1 = 2.5, g2 = 0.75,
g3 = 1.12, g4 = 7.5. (b) Magnification of the interval [4, 6].

8 8

7 7

(b)

Figure 5. Example with the data of a “human face”. (a) No tension. (b) The same
as (a) but with tension parameters q7 = 2, gs = 18.5, g9 = 1, q10 = 3.8, 11 = 0.8
while the remaining parameters g; are unchanged.

plane using a drawing: {z} = {0,0.5,1.3,1.4,L.1, 1.1,0.5,1.1,1,1.7,1.7,1,1,1.4,0.5},
{y} = {0,0.5,0.6,0.8,1.5,1.8,2.3,2.5,3,3.2,3.5,4.5,4.7,5,7}., To produce Figure
5(a) we have used parametric cubic spline interpolants. Figure 5(b) is obtained
setting q; — 0, 1= 0, ey 6, qr = 2, gg = 185, do = 1, qio — 38, qi11 = 0.8.

An example’of a surface constructed by the algorithm of shape-preserving ap-
proximation of [22, chapter 8] with the uniform and shape-preserving (Algorithm
1) parametrizations is shown in Figures 6 and 7 respectively. The mesh in Fig-
ure 7 is characterized by a concentration of lines in the regions of “sharp gradient
variation” in both directions which illustrates Remark 1 above. The improved
correspondence between the surface geometry and the initial data under shape-
preserving parametrization enables us to reduce the number of additional knots
and the values of tension parameters introduced when splines are constructed by
the algorithms of [22, chapter 8]. In this example, the number of additional knots
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Figure 6. Jet’s data. Uniform parametrization.

¥

,
M

Figure 7. Jet’s data. Shape-preserving parametrization gives a mesh concentration
in the domains of rapid gradient growth.

of the spline in the u direction is by approximately 20 percent (92 knots) lower
than when uniform parametrization is used. This allowed us to reduce computer
memory requirements.
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7. Computer Programs for Shape-Preserving Surface Approximation

The methods of shape-preserving spline parametrization considered in this re-
port were used in a package of computer programs in FORTRAN for the description
of multivalued surfaces in three-dimensional space.

Let a topologically rectangular surface II be given, on which one has, in
cartesian zyz-coordinate, a set of points Tj; = (zij, Yij» 2i5) € I, § = 0,..., M;,
i=0,...,N. A system of nonintersecting lines L;, ¢ = 0,.. ., N, on II contains
all points T;; and has the property that by means of some homeomorphic trans-
formation of the surface IT onto a reetangle G : [c,d] x [0,1] in the wu-plane, the

curves L; are transformed into a set of parallel straight lines w = w;, @ = 0,...,N,
connecting two opposite sides of the rectangle.

In the computer program, meshes A% : 0 = uf < ui < -+ < why, = 1,
i=0,...,N are first choosen with step /; = 1 /M; and then are optimized according

to the algorithm of shape-preserving parametrization of this report. The w-axis
coincides with the z-axis. For the mesh Ay :c=wp < w1 <:-- <wWN = d, under
the assumption oo < Z10 < *** < Tno, ONE takes w; = Tig, 1 =0,...,N.

At each of the given points T;; on the surface II, a quantity €;; = (sfj,ei’j,
€5), J = 0,...,M;, i = 0,...,N is fixed which specifies an admissible toler-
ance of the approximation spline S(w,u) at the point which in turn is a triple
(8% (w, u), S¥(w,u), S*(w, u)).

The two-dimensional spline S(w,u) is in the class C? for fixed u, and is a
twice continuously differentiable of u for fixed w, preserving the angles and the
non-smoothness in the data according to the algorithm of [22, chapter 5].

As a final result, the computer package generates the values of the spline
S(w,u) in the nodes of a regular mesh A = A, x A,, where Ay :c < g <
1I)1<---<1I)A~,SdandAu:0§110<ﬂ1<---<11M§1.

Let us formulate the main steps in the calculation of the values of the spline
S(w, u). .
Step 1. Construct the one-dimensional interpolating splines S;(u) along the sec-
tions w = w;, ¢ = 0,..., N. For this, the computer program package RSPIZG for
shape-preserving interpolation by generalized tension splines of [22, chapter 5] is
used. Then we shall turn to a basis of GB-splines.

Step 2. Calculate the parameters p;, g; on the mesh A,.

Calculation of the parameters p;, g; for the curve Ly is performed in a loop
over all points of the initial data T35, j =0,...,M;, 1 =0,... ,N.

(a) First we take p; = ¢; =0, 1=0,...,N.

(b) For the mesh T;; with fixed 1 (2 < i < N —2) we calculate the values of
the generalized splines Si(uj), K =1 —2,...,1+2, j =0,...,M;. This permits,
considering the local approximation spline in the variable w and using the shape-
preserving conditions in [22, chapter 8], to find the values of the parameters p;;,
dij-

’ Ifi = 0,1 (i = N — 1,N) we calculate the values Sg(u;), ¥ =0,...,3 (k =
N-3,...,N), j=0,...,M;. Using quadratic and cubic Lagrange polynomials in
the variable w we find the values of the first derivative of the spline on the boundary
(see (8.28) in [22]). Then using the formulae for the coefficients (see (8.27) in [22]),
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we construct a local approximating spline in w and analogously find the parameters
Dijs Qij for 1 = 0,1,N— 1,N. ’

Finally set p; = max p;j, ¢; = max ¢;;, j = 0,..., M;.

(c) Set hj = ho, pj = ¢ = qo, ] = —2,—1; hj = hn_1, Pj = ¢j = PN-1,
j=N,N+1.

Step 3. For each u;, 7 =0,..., M find the coefficients of generalized spline

N+1

Sj(w) = Z BrBr(w), Br = br(iy).

3

k=-1

Step 4. Find the values of splines S’j(w), j=0,.. ., M in the nodes of the mesh
Ay.
A call to the main program is:

CALL GEOMI1(N,M,No0,T,EPS,NN, WN, MN, XN, YN, ZN).
Input data:

N is the number of sections in w.

M is an array of dimension N, where M(:) is the number of points in the ith
section.

NO = ZfilM(z) is the total number of the initial data.

T is a two-dimensional array of size NOx3, which is a linear list of coordinates
of the initial data ordered sequentially by z, y, z. In particular, T(1,1),...,
T(M(1),1) are the z-coordinates of points for the first section. T(M(1) +
1,1),...,T(M(1)+M(2),1) are the z-coordinates of points for the second sec-

.tion, T(NO—M(N)+1,1),...,T(NO,1) are the z-coordinates of the points for the
Nth section, etc. )

EPS is an array of length NO of given tolerances of the approximating spline at the
initial points. We assume that the tolerances in all three coordinates are the
same.

NN is the number of nodes of the mesh A,,. 3

WN is an array of NN coordinates of the mesh A,,.

MN is the number of nodes of the uniform mesh A,.

Output data:
Y

XN, YN, ZN are arrays of MNXNN elements of the cartesian coordinates of the

points of the surface in the knots of the mesh A = Ay x A,.

This package of computer programs has a modular structure and is based on
calls to the one-dimensional programs of shape-preserving interpolation [22, chap-
ter 5], shape-preserving local approximation (22, chapter 8] and shape-preserving
parametrization described in this report.



- 18 -

References

1. H. Akima, A new method of interpolation and smooth curve fitting based on
local procedures, J. Assoc. Comput. Mach. 17 (1970) 589-602.

2. L. Alt, Parametrization for data approximation, in: Curves and Surfaces, eds.
P. J. Laurent, A. Le Méhauté, and L. L. Schumaker (Academic Press, Boston,
1991), pp. 1-4.

3. R. K. Beatson and E. Chacko, ‘A quantative comparison of end conditions
for cubic spline interpolation, in: Approximation Theory VI: Proceedings of
the Sixth International Symposium on Approximation Theory. Vol. I, eds.
C. K. Chui, L. L. Schumaker and J. D. Ward (Academic Press, Boston, 1989),
pp. 77-79.

4. W. Bohm, Parameterdarstellung, kubischer und bikubischer splines, Comput-
ing 17 (1976) 87-92.
5. E. Cohen, T. Lyche, and R. Riesenfeld, Discrete B-splines and subdivision

techniques in computer aided geometric design and computer graphics, Comp.
Graphics and Image Proc. 14 (1980) 87-111.

6. C. De Boor, A Practical Guide to Splines (Springer Verlag, New York, 1978).

7. W. L. F. Degen, Best approximation of parametric curves by splines, in: Math-
ematical Methods in Computer Aided Geometric Design II, eds. T. Lyche and
L. L. Schumaker (Academic Press, New York, 1992) pp. 171-184.

8. M. P. Epstein, On the influence of parametrization in parametric interpolation,
SIAM J. Numer. Anal. 13 (1976) 261-268.

9. G. Farin, Curves and Surfaces for Computer Aided Geometric Design. A Prac-
tical Guide (Academic Press, San Diego, 1993).

10.” T. A. Foley, Interpolation with interval and point tension control using gﬁbic
weighted v-splines, ACM Trans. Math. Soft. 13 (1987) 68-96.

11. T. A. Foley, T. N. T. Goodman, and K. Unsworth, An algorithm for shape
preserving parametric interpolation curves with GC? continuity, in: Mathe-
matical Methods in Computer Aided Geometric Design, eds. T. Lyche and
L. L. Schumaker (Academic Press, New York, 1989), pp. 249-259.

12. T. A. Foley and G. M. Nielson, Knot selection for parametric spline interpo-

" lation, in: Mathematical Methods in Computer Aided Geometric Design, eds.
T. Lyche and L. L. Schumaker (Academic Press, New York, 1989), pp. 261~
271. "

13. T. N. T. Goodman, Shape preserving interpolation by parametric rational
cubic splines, in: Numerical Mathematics Singapore’1988, eds. R. P. Agarwal,
Y. M. Chow, and S. J. Wilson (International Series of Numerical Mathematics,
Vol. 86, Birkhiiuser, Basel, 1988), pp. 149-158.

14. T. N. T. Goodman and K. Unsworth, Shape preserving interpolation by cur-
vature continuous parametric curves, Comput. Aided Geom. Design 5 (1988)
323-340.



- 19 -

15. T. N. T. Goodman and K. Unsworth, Shape-preserving interpolation by para-
metrically defined curves, STAM J. Numer. Anal. 25 (1988) 1453-1465.

16. G. Greiner, Variational design and fairing of spline surfaces, Computer Graph-
ics Forum 13 (1994) 144-154.

17. P. J. Hartley and C. J. Judd, Parametrization and shape of B-spline curves for
CAD, Computer-Aided Design 12 (1980) 235-238.

18. J. Hoschek, Intrinsic parametrization for approximation, Comput. Aided Geom.
Design 5 (1988) 27-31.

19. P. D. Kaklis and N. S. Sapidis,. Preserving interpolatory parametric splines
of non-uniform polynomial degree, Comput. Aided Geom. Design 12 (1995)
1-26. )

20. E. Yu. Kurchatov and V. F. Snigirev, Best choice of spline knots in automation
of contour design, in: Mathematical and Experimental Methods of Technical
Systems Synthesis, Kazan, 1989, pp. 38-43 (in Russian).

21. B.I. Kvasov, GB-splines and their properties, Annals of Numerical Mathemat-
ics 3 (1996) 139-149.

22. B. I. Kvasov, Methods of Shape-Preserving Spline Approximation (World Sci-
entific Publ. Co. Pte. Ltd., Singapore, 2000).

23. E. T. Y. Lee, Choosing nodes in parametric curve interpolation, Computer
Aided Design 21 (1989) 363-370.

24. E. T. Y. Lee, Energy, fairness and a counterexample, Computer-Aided Design,
22 (1990) 37-40.

25. E. T. Y. Lee, Corners, cusps, and parametrization: Variations on a theorem of
Epstein, SIAM J. Numer. Anal. 29 (1992) 553-565.

26. E. T. Y. Lee, On a class of data parametrizations: Variations on a theme of
Epstein, II, in: Mathematical Methods in Computer Aided Geometric Design

.II, eds. T. Lyche and L. L. Schumaker (Academic Press, New York, 1992),

pp. 381-390. .

27. S. P. Marin, An approach to data parametrization in parametric cubic spline
interpolation problems, J. Approx. Theory 41 (1984) 64-86.

28. V. L. Miroshnichenko, Convex and monotone spline interpolation, in: Con-
structive Theory of Functions’84, Sofia, 1984, pp. 610-620.

29. G. M. Nielson and T. A. Foley, A survey of applications of an affine invariant
norm, in: Mathematical Methods in Computer Aided Geometric Design, eds.
T. Lyche and L. L. Schumaker (Academic Press, New York, 1989), pp. 445-
467, !

30. D.F. Rogers and J. A. Adams, Mathematical Elements for Computer Graphics
(McGraw-Hill Publ. Comp., New York, 1990).

31. N. Sapidis and G. Farin, Automatic fairing algorithm for B-spline curves,
Computer-Aided Design 22 (1990) 121-129.

32. C. Seymour and K. Unsworth, Interactive shape preserving interpolation by
curvature continuous rational cubic splines, J. Comput. Appl. Math. 102
(1999) 87-117.



33.

34.

35.

36.

- 20 -

H. Spith, Spline Algorithms for Curves and Surfaces (Utilitas Mathematica
Publishing, Inc., Winnipeg, 1974).

C. Y. Wang, Shape classification of the parametric cubic curve and parametric
B-spline cubic curve, Computer-Aided Design 13 (1981) 199-206.

C. D. Woodward, B2-splines: a local representation for cubic spline interpola-
tion, The Visual Computer 3 (1987) 152-161.

Yu. S. Zavyalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline
Functions (Nauka, Moscow, 1980, in Russian).

3

L&

, A UIIUMTUAT Ton 157N |
[ & -
2 imtinenfomalTafigsud




CURRICULUM VITAE
Boris I. KVASOV

PRESENT ADDRESS:

Suranaree University of Technology

School of Mathematics

111, University Avenue, Muang District
Nakhon Ratchasima 30000, Thailand .
Tel.: (66-44) 224283, Fax: (66-44) 224185
Email: boris@math.sut.ac.th

DEGREES:

D.Sc., Habilitation Degree in Computational Mathematics (CM for short),
Russian Academy of Sciences (RAS for short), Moscow, 1997

Senior Researcher Degree in CM, RAS, Moscow, 1986

Associate Professor Degree in CM, Ministry of Higher Education, Moscow, 1986

Ph.D. in CM, Institut of Mathematics RAS, Novosibirsk, 1973

M.Sc. in CM, Novosibirsk State University (NSU for short), Novosibirsk, 1969

POSITIONS:

1995/to date Suranaree University of Technology, Associate Professor of Mathematics

1991-1995 Institute of Computational Technology RAS, Senior Researcher, Leading Researcher
1978-1991 Institute of Theoretical and Applied Mechanics RAS, Senior Researcher

1976-1978 Institute of Mathematics Belorus Acad. of Sci., Gomel, Head of Laboratary
1974-1976 Institute of Mathematics RAS, Novosibirsk, Assistant Researcher

1975 (2 mo.) Stefan Banach Mathematical Center, Warsaw, Poland, Visiting Research Fellow

ACADEMIC EXPERIENCE:

1996 (1'mo.) University degli Studi di Firenze, Italy, Visiting Professor of Mathematics
1985-1995 NSU, Associate Professor of CM -
1978-1985 NSU, Assistant Professor of CM

1983 (2 mo.) Grodno State University, Visiting Assistant Professor of CM

1976-1978 Gomel State University, Senior Lecturer

1974-1976 NSU, Lecturer

1972-1974 Krasnoyarsk State University, Senior Lecturer

Graduate/Postgraduate students: I supervised 15 M.Sc. and 2 Ph.D. in.CM.

PRINCIPAL RESEARCH INTERESTS:

Numerical Ana}lysis, Mathematical Methods in CAGD, Approximation Theory,
Spline Based Curve and Surface Approximation, Scientific Visualization

CURRENT RESEARCH INTERESTS:

Shape Preserving Approximation, Subdivisions, Difference Methods for Constructing Splines,
Tension and Discrete Splines and GB-splines, Curve and Surface Parametrization

RESEARCH GRANTS:

Difference Method for Constructing Shape Preserving Splines / Principal Investigator, The Thailand
Research Fund, Thailand, November 1, 1999 to October 31, 2001 (code BRG/08/2543)

Page 1



Page 2 B. I. Kvasov

Shape-Preserving Parametrization for Spline Interpolation / Principal Investigator, Suranaree University
of Technology, Thailand, October 1, 1999 to April 30, 2001

Discrete B-Spline Approa:zmatwn through Lagrange-Newton Polynomials / Principal Investigator, Sura-
naree University of Technology, Thailand, October 1, 1998 to December 31, 1999

Algorithms of Shape-Preserving Spline Approzimation / Coinvestigator, The Thailand Research Fund,
Thailand, July 1, 1997 to June 30, 1999 (code BRG/16/2540)

Difference Method for Construction Tension Splines / Principal investigator, MURST, Universita Degli
Studi di Firenze, Italy, 20 November to 20 December 1996

Geometric Splines for Curves and Surfaces Design / Principal Investigator, State Committee on Higher
Education, Saint-Petersburg Technical University, January 1994 to December 1995 (code PG-13)

Shape-Preserving Approzimation for Curves and Surfaces / Principal Investigator, The Russian Foun-
dation for Basic Research, RAS, Moscow, January 1993 to December 1995 (code 93-012-495)

PROFESSIONAL ACTIVITIES:

Thailand Research Fund’s Royal Golden Jubilee Ph.D. Grantee, 1998, 2000

Organizer, Third All-union Conference on Approximation Theory and Problems of CM, Novosibirsk,
January 28 - February 1, 1991

Guest Editor, Aprozimation Theory and Problems of CM, Modelirovanie v Mekh., 5(22) (1991) No. 5

The USSR Government State Prize in Science and Technology Semifinalist, 1986

Referee for Zh. Vychisl. Mat. i Mat. Fiz., Moscow; Numerical Algorithms, France

Reviewer for Mathematical Reviews (in the field of Numerical Analysis, 1975-1985)

CONFERENCE PRESENTATIONS: (recent years)

Approximation by discrete GB-splines, Tenth International Conference on Approximation Theory, Saint
Louis, USA, 26-29 March, 2001

Approximation by Lagrange splines, Fourth Annual National Symposium on Computational Science
and Engineering, Kasetsart University, Bangkok, March 27-29, 2000

On generalized discrete tension splines, Computational Techniques and Applications Conference and
Workshops, Canberra, Australian National University, September 20-24, 1999

A general approach to discrete splines, Third Annual National Symposium on Computational Science
and Engineering, Chulalongkorn University, Bangkok, March 24-26, 1999

A general approach to discrete splines, Conference on Surface Approximation and Vlsuahzatlon Uni-
versity of Canterbury, New Zealand, February 15-18, 1999

INVITED LECTURES:

— National University of Singapore, Singapore, 1998

— Suranaree University of Technology, Nakhon Ratchasima, Thailand, 1995, 1997
.— Universita degli Studi di Firenze, Italy, 1995, 1996

— Universitd di Milano, Italy, 1996

— Universita di- Siena, Italy, 1996

- Institutt for fnformatikk, Universitetet i Oslo, Norway, 1991

LANGUAGE PROFICIENCY:

Fluent in English and Russian. Read, understand and can translate from German and French into
English and Russian. I translated from English and French into Russian four books on splines and the finite
element method: (Publ. House “Mir”, Moscow)

1. Laurent, P: J., Approzimation et Optimisation, 1975, 496 pp.

2. Descloux, J., Methode des Elements Finis, 1976, 96 pp.

3. Ciarlet, Ph., The Finite Element Method for Elliptic Problems, 1980, 512 pp.

4. Zienkiewicz, O. C. and K. Morgan, Finite Elements and Approzimation, 1986, 320 pp.

SCIENTIFIC PUBLICATIONS: Two books and more than 70 research publications.



