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Abstract

The recently developed concepts of aggregate risk and cumulative risk rectify two limitations associated with the classical risk

assessment paradigm established in the early 1980s. Aggregate exposure denotes the amount of one pollutant available at the biological

exchange boundaries from multiple routes of exposure. Cumulative risk assessment is defined as an assessment of risk from the

accumulation of a common toxic effect from all routes of exposure to multiple chemicals sharing a common mechanism of toxicity. Thus,

cumulative risk constitutes an improvement over the classical risk paradigm, which treats exposures from multiple routes as independent

events associated with each specific route. Risk assessors formulate complex models and identify many realistic scenarios of exposure that

enable them to estimate risks from exposures to multiple pollutants and multiple routes. The increase in complexity of the risk assessment

process is likely to increase risk uncertainty. Despite evidence that scenario and model uncertainty contribute to the overall uncertainty of

cumulative risk estimates, present uncertainty analysis of risk estimates accounts only for parameter uncertainty and excludes model and

scenario uncertainties. This paper provides a synopsis of the risk assessment evolution and associated uncertainty analysis methods. This

evolution leads to the concept of the scenario–model–parameter (SMP) cumulative risk uncertainty analysis method. The SMP uncertainty

analysis is a multiple step procedure that assesses uncertainty associated with the use of judiciously selected scenarios and models of

exposure and risk. Ultimately, the SMP uncertainty analysis method compares risk uncertainty estimates determined using all three sources

of uncertainty with conventional risk uncertainty estimates obtained using only the parameter source. An example of applying the SMP

uncertainty analysis to cumulative risk estimates from exposures to two pesticides indicates that inclusion of scenario and model sources

increases uncertainty of risk estimates relative to those estimated using only the parameter source. Changes in uncertainty magnitude may

affect decisions made by risk managers.
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1. Introduction

The National Research Council (NRC) instituted the

classical risk assessment paradigm, a multiple-step proce-

dure that identifies a hazard and then relates population

exposure to one agent with dose and risk (NRC, 1983).

However, this conventional risk assessment practice is con-

strained by the following limitations that could lead to

underestimation of risk.

1. Exposures to a pollutant from multiple routes are

usually treated as independent events associated with each

specific route (EPA, 1999a). Therefore, simultaneous expo-

sures experienced by one person from multiple routes over a

period of time are not considered.

2. Exposures to multiple chemicals are often treated as

individual events and the combined toxicity effect(s) of

simultaneous exposures to multiple chemicals are not

addressed.

3. Uncertainty analysis in conventional risk assessment

considers only parameter uncertainty. Although both of the

other two types of uncertainty (scenario and model) con-

tribute to overall uncertainty, they are frequently assumed
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negligible or ignored (Fayerweather et al., 1999). Failure to

account for them could compromise the validity of the

outcome and conclusions reached by current methods of

estimating risk assessment.

The recently developed concepts of aggregate and

cumulative risks respond to the first and second limitations,

respectively (EPA, 1999a, 2000). Risk assessment analysis

is evolving as risk assessors formulate models that are more

complex, identify many and more realistic scenarios of

exposure, and attain new insights that allow the practitioner

to estimate risks from exposures to multiple pollutants and

multiple routes. This increase in complexity of the risk

assessment process is likely to increase risk uncertainties.

However, methods to estimate uncertainty associated with

risk estimates have remained unchanged. Uncertainty anal-

ysis of risk estimates accounts for only parameter uncer-

tainty and excludes model and scenario uncertainties. Risk

analysts have not substantiated but assume that model and

scenario uncertainties are smaller than parameter uncertain-

ties. In a recent treatment of uncertainty assessment of

chemical dose that the authors characterize as ‘‘introduc-

tory,’’ Hertwich et al. (2000) address all three types of

uncertainties. They conclude that scenario and model uncer-

tainty analysis can change dose estimates by several orders

of magnitude.

Currently, a specific procedure for a quantitative analysis

of scenario or model uncertainty is not available in the

literature. A general suggestion regarding analysis of model

uncertainty is that risk assessors may use different models to

estimate outputs (EPA, 1992a; Hoffman and Hammonds,

1994). The range of outputs can be considered as represent-

ing the uncertainty range. A more focused approach that

deals specifically with scenario and model uncertainties is

known as the distributional approach. This approach has

been used in analyses of uncertainty from model structure

and alternative assumptions or scenarios (Fayerweather et

al., 1999; Evans et al., 1994a,b). The distributional approach

divides the risk assessment into a series of decision points

called ‘‘nodes’’ that have alternatives. A combination of

alternatives from each node constitutes a ‘‘tree.’’ Each tree

has an assigned probability or ‘‘weight’’ based on expert

judgment. This weight is attributed to the risk estimate

resulting from each tree. Such results form the final risk

distribution. However, the integrity of the final distribution

relies heavily on the subjective nature of experts’ input.

There are also concerns that assigning probabilities to

models, i.e., quantifying the possibility of a model to be

‘‘correct,’’ is inappropriate (Morgan and Henrion, 1990;

Cullen and Frey, 1998). Although the literature does not

explicitly refer to scenario uncertainty, it is reasonable to

assume that approaches and comments on model uncertainty

are applicable to scenario uncertainty.

This paper responds to the need to account for changes in

uncertainty magnitude when two, not one, equally valid

models and two equally plausible scenarios are used to

estimate risk and uncertainty. The objective is to develop a

new method that adds model and scenario uncertainty to the

conventional parameter uncertainty analysis of the cumu-

lative risk assessment. We call this new inclusive method

the scenario–model–parameter (SMP) uncertainty analysis.

This paper focuses on the development of the SMP uncer-

tainty analysis as an integral part of the cumulative risk

assessment method. We begin with a review of essential

concepts involving exposure, dose, and risk, including the

new aggregate and cumulative risk concepts, continue with

a review of uncertainty classification and uncertainty anal-

ysis processes, and conclude by formulating the SMP

uncertainty analysis process. We demonstrate the applica-

tion of this method with results from a related paper on the

uncertainty of risk estimates from exposures to chlorpyrifos

and diazinon using the National Human Exposure Assess-

ment Survey in Arizona (NHEXAS-AZ) database (Karuchit

and Moschandreas, 2001).

2. A synopsis of risk-related concepts

2.1. Exposure and dose

Definitions of exposure, dose and related terms used in

this paper are those established in the EPA document

‘‘Guidelines for Exposure Assessment’’ (EPA, 1992a). The

basic structure of the flow of an agent from the outer

boundary to the receptor target organ and associated defi-

nitions are illustrated in Table 1 (EPA, 1992a). The onset of

the scheme is the contact of a chemical agent with the outer

boundary, which establishes an exposure. The outer boun-

daries of the inhalation route are the mouth and nose, and

the outer boundary of the ingestion route is the mouth. In

this scheme, there is no outer boundary of the dermal route,

since the skin is the place where absorption takes place, and

therefore it is an absorption barrier or exchange boundary,

not an outer boundary. The route-specific boundaries, with

corresponding chemical transfer process, are shown in Table

2 (EPA, 1992a).

The intake process commences when the chemical

moves through the opening of the outer boundary. The

amount of the chemical after crossing the outer boundary

is called a potential dose. Inhalation dose, oral dose and

dermal dose are common names for route-specific potential

dose (EPA, 1992a). Potential dose is synonymous with

administered dose. The amount that reaches the exchange

boundary is called an applied dose (see Table 1). The

uptake process takes place at the exchange boundary and

involves absorption of the chemical through the skin or

exposed tissues. The amount of chemical absorbed is

called an absorbed dose, while the amount of chemical

transported to an individual organ and the amount that

reaches it are called a delivered dose and a biologically

effective dose, respectively.

Although the above dose terms signify different quanti-

ties, they all have the same unit. The unit of dose has three
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different variations: mass of the chemical, mass of the

chemical per time, and mass of the chemical per body

weight per time. More importantly, the units are common

across routes, which is a major advantage when evaluating

risk from all routes of exposure, and when comparing

contribution of each route to the resulting risk. The generic

unit of exposure (Concentration�Time) is usually used for

inhalation route only. It is neither practical nor common to

use this unit with ingestion and dermal routes. Instead,

exposures via these two routes are frequently expressed as

potential dose (see, for example, EPA, 1992b, 1993). The

unit difference prohibits simple addition of exposure from

all three routes. Addition of doses, however, is an estab-

lished approach as is discussed later.

2.2. Risk and risk assessment

Exposure to harmful chemical agents leads to risk—the

probability of suffering adverse effect, e.g., harm or loss.

The process of estimating that probability is called risk

analysis (LaGrega et al., 1994; Molak, 1997). Risk analysis

applied to a particular situation constitutes a risk assess-

ment, which usually estimates the probability of occurrence

of human health effects (Molak, 1997). The NRC defines

risk assessment as a formalized and structured process that

estimates the magnitude, likelihood and uncertainty of

environmentally induced health effects (NRC, 1983). Haz-

ard identification, dose–response assessment, exposure

assessment and risk characterization are the four elements

or steps of risk assessment that constitute the risk assess-

ment paradigm (NRC, 1983). Hazard Identification deter-

mines whether a particular chemical is causally linked to

particular health effects. Dose–response assessment formu-

lates a relation between the magnitude of exposure and the

probability of occurrence of the health effects in question.

Exposure assessment estimates the extent of human expo-

sure before or after application of regulatory controls. Risk

characterization describes the nature and often the magni-

tude of human risk, including its uncertainty. (NRC, 1983).

Details on each element of the risk paradigm and the

Table 1

Exposure and dose scheme (adapted from EPA, 1992a)

Table 2

Route-specific boundaries and chemical transfer processes (EPA, 1992a)

Scheme Process Inhalation

boundary

Ingestion

boundary

Dermal

boundarya

(Hypothetical)

outer boundary

Intake Mouth/nose Mouth –

Exchange boundary

(absorption barrier)

Uptake Lung Gastrointestinal

tract

Skin

a There is no intake process for dermal route, the skin is the exchange

boundary where uptake process takes place (EPA, 1992a).
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significance of exposure and risk assessment with respect to

scientific research are found in the literature (e.g., Sexton et

al., 1993; NRC, 1983).

2.3. Aggregate and cumulative risk assessment

The risk assessment paradigm estimates risks from

exposure to one pollutant from multiple routes or multiple

pollutants from one route. A paradigm shift was conceived

to enable risk assessors to estimate risks from exposures to

multiple pollutants from multiple routes. This shift led to the

cumulative risk assessment procedure. Thus, the risk assess-

ment evolution begins with the risk assessment paradigm,

evolves with the notion of aggregate risk and ends with

cumulative risk.

Aggregate risk is the outcome of a three-concept

consolidation (EPA, 1999a): (1) Aggregate exposure is

the amount of one chemical available at the biological

exchange boundaries (e.g., respiratory tract, gastrointestinal

tract and skin) from multiple routes of exposure. (2)

Aggregate dose is the amount of a single substance

available for interaction with metabolic processes at bio-

logically significant receptors from multiple routes of

exposure. (3) Aggregate risk is the likelihood of the

occurrence of an adverse health effect resulting from all

routes of exposure to a single substance.

The term ‘‘aggregate’’ is the keyword used throughout

several recently published EPA guidance documents. The

term ‘‘aggregate exposure’’ is not defined as the contact of

an agent with the outer boundary of an organism, which is

the conventional definition of exposure. Instead, it refers to

applied dose—the amount that reaches the exchange boun-

dary. Thus, ‘‘aggregate exposure’’ is the applied dose in all

routes of exposure. This peculiar use of the term ‘‘expo-

sure’’ is a concern related to its definition and usage.

Indeed, EPA occasionally uses the term ‘‘exposure’’ to

refer to dose (e.g., (EPA, 2000, 1992b)). Moreover, simple

interpretation of the term aggregate as ‘‘added’’ or

‘‘summed’’ could lead to misconception about how aggre-

gate risk is estimated. In fact, this term is used to denote

essential concepts of the new risk assessment approach and

deserves careful consideration. Since EPA does not appear

to provide an exact definition of this term, for the balance

of this paper a practical definition of the term ‘‘aggregate’’

is used to denote two concepts jointly: (1) simultaneous

consideration of all routes of exposure and (2) ‘‘individual-

by-individual’’ assessment. The first concept is applied to

improve the current practice of risk assessment, which

typically treats exposure from different routes as independ-

ent events (EPA, 1999a). Simultaneous consideration of all

routes of exposure contributes to a more realistic risk

assessment because a person may be simultaneously

exposed to a chemical from multiple routes. The ‘‘individ-

ual-by-individual’’ assessment considers exposures that

each individual actually experiences, and uses appropriate

information regarding time, location, and demographics.

These two concepts are applied jointly in an aggregate risk

assessment. For each individual, dose is estimated for all

routes considered simultaneously, and then combined as an

aggregate dose. The combination is based on the dose

addition approach, which is explained in the next para-

graph, along with the concept of cumulative risk. Aggre-

gate doses, obtained from each individual, are used to

formulate the population distribution of aggregate dose.

Consequently, the population aggregate risk assessment is

based on this distribution.

Although aggregate risk assessment addresses the issue

of exposure to multiple routes, it considers only one

chemical. The ‘‘aggregate’’ concepts do not address cumu-

lative effects from exposure to multiple chemicals. Cumu-

lative risk assessment incorporates risks from both multiple

routes and multiple chemicals. Concepts and methods of

cumulative risk assessment are introduced in the EPA

document entitled ‘‘Proposed Guidance on Cumulative Risk

Assessment of Pesticide Chemicals that Have a Common

Mechanism of Toxicity’’ (EPA, 2000). Fundamentally, the

cumulative risk assessment can be viewed as an extension

of the aggregate risk assessment. It is defined as an assess-

ment of risk from the accumulation of a common toxic

effect from all routes of exposure to multiple substances

sharing a common mechanism of toxicity. Common toxic

effect refers to the same toxic effect caused by different

substances in or at the same organ or tissue (EPA, 2000).

Common mechanism of toxicity refers to substances that

cause a common toxic effect by the same sequence of

biochemical events (EPA, 2000).

Dose addition provides mechanisms and methods to

estimate both aggregate risk and cumulative risk. This

approach is explained by the following quote (EPA, 2000):

The application of dose addition is based on the

assumption that the chemicals behave similarly in terms

of the primary physiologic processes (absorption,

metabolism, distribution, elimination), as well as the

toxicologic processes. In other words, the chemicals of

interest are assumed to behave as if they were dilutions of

each other. When applying dose addition methods, the

Agency has generally assumed no interactions among the

chemicals (i.e., simple additivity) when there is no

adequate interaction information.

The margin of exposure (MOE), aggregate risk index

(ARI), hazardous index (HI), relative potency factor (RPF)

and toxicity equivalency factor (TEF) methods are among

the several metrics that help estimate cumulative risk (EPA,

1999a, 2000; Wilkinson et al., 2000). All methods are

similar in that they normalize doses of each substance to a

common scale (EPA, 2000). The normalized doses are then

summed. All methods are considered valid approaches as

they are expected to give similar results when certain

conditions are assumed and no single method is preferred

(EPA, 2000; Wilkinson et al., 2000).
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3. Conventional uncertainty analysis of risk estimates

This section reviews the classification and prevailing

analysis of risk uncertainty before a new uncertainty anal-

ysis procedure is developed. Uncertainty analysis is the

analysis of variation or imprecision of the outcome of an

assessment (Iman and Helton, 1988). The uncertainty of the

outcome is caused by many sources; therefore, uncertainty

is generally classified by its sources. Several different

classifications of uncertainty are suggested in the literature

(EPA, 1992a; Morgan and Henrion, 1990; Bogen, 1990;

Cullen and Frey, 1998; Finkel, 1990; IAEA, 1989). In

general, there are two commonly used (and often not clearly

separated) classifications: (1) scenario, model and parameter

uncertainty and (2) uncertainty–variability (U-V).

3.1. Scenario, model and parameter uncertainty

The EPA classifies uncertainty involved in exposure and

risk assessments into three types: parameter, scenario and

model uncertainty (EPA, 1992a, 1997a,b). The three types

of uncertainty, their sources and examples are summarized

below.

Parameter uncertainty is the uncertainty regarding

parameters (EPA, 1997a). Sources of parameter uncertainty

are measurement errors, sampling errors, variability, and the

use of surrogate data (EPA, 1997a, 1992a). Measurement

errors refer to random errors (imprecision) or systematic

errors (bias), while sampling errors are errors from small

sample size and/or nonrepresentative samples. Heterogene-

ity in environmental and exposure-related data includes

seasonal variation, spatial variation, variation of human

activity patterns by age, gender and geographic location

and leads to variability errors. Surrogate data refer to errors

from the use of substitute data. The name of this classifica-

tion requires close attention. The term ‘‘parameter’’ is used

to reflect two concepts (EPA, 1997b). The first refers to the

distribution parameter—the constants characterizing the

probability distribution of a variable (e.g., l or r). The

second refers to both distribution parameter and model

variable, where model variable denotes a variable that is

an element of a model, such as time, weight, concentration

or other variables in an exposure, dose or risk model. In our

opinion, the EPA uses the term ‘‘parameter uncertainty’’

where ‘‘parameter’’ denotes both distribution parameter and

model variable. This paper uses the term ‘‘distribution

parameter’’ or ‘‘model variable’’ instead of ‘‘parameter’’

to avoid possible confusion.

Scenario uncertainty refers to uncertainty associated with

missing or incomplete information needed to fully define

the exposure and dose (EPA, 1997a). Its sources include

descriptive errors, aggregation errors, errors in professional

judgment and incomplete analysis (EPA, 1997a, 1992a).

Descriptive errors are errors from incorrect or incomplete

information, while aggregation errors are spatial or temporal

approximations or homogeneity assumptions. Errors in

professional judgment are associated with defining appro-

priate exposure schemes, selecting improper models or

determining unrepresentative conditions; and incomplete

analysis denotes a source of errors from including or

excluding particular exposure scenarios.

Model uncertainty refers to uncertainty from gaps in

scientific theory that are necessary to make predictions

based on causal inferences (EPA, 1997a). Its sources include

modeling errors and relationship errors (EPA, 1997a,

1992a). Simplified representation of reality leads to model-

ing errors, while errors in correlation among model varia-

bles result in relationship errors.

3.2. U-V

An analysis that deals with parameter uncertainty only

uses the U-V classification. In this classification, uncertainty

is classified as either U or V. V refers to the true hetero-

geneity, or interindividual variability, attributed to certain

characteristics of a population (EPA, 1997b). Other terms

used for V in the literature include stochastic uncertainty,

aleatory uncertainty and Type A uncertainty (Cullen and

Frey, 1998). All parameter uncertainty that is not V is

defined as U.

Most analysts prefer distinguishing variability from other

types of uncertainty because of its characteristics and

ramifications for decision-making in risk assessment. Vari-

ability is usually not reducible by further measurement or

study, while uncertainty from other sources may be reduced

by further measurement (Cullen and Frey, 1998; Burmaster

and Wilson, 1996; Haimes and Lambert, 1999). Therefore,

differentiating between variability and other types of uncer-

tainty in risk assessment helps decision-makers to focus on

appropriate uncertainty reduction measures (EPA, 1997b).

Such distinction is fundamental to characterizing uncer-

tainty in the uncertainty analysis (Bogen, 1990; EPA,

1997b; MacIntosh et al., 1995; Rai et al., 1996; Haimes

and Lambert, 1999). Burmaster and Wilson (1996) discuss

the reason for separating V from U as follows:

Since Vand U arise from different sources, have different

interpretations and have different consequences in

decision-making, many risk assessors have sought a

way to encode and propagate them separately. At the end

of a long calculation, it is highly desirable for the risk

assessor to be able to segregate the total V from the total

U so the risk manager could make appropriate decisions.

In particular, the risk manager can do little to reduce the

total V in an assessment, but she or he can often reduce

the total U in an assessment by commissioning further

studies.

Based on its uncertainty type, a model variable can be a U

type, V type or both (Bogen, 1990; MacIntosh et al., 1995;

Burmaster and Wilson, 1996; Haimes and Lambert, 1999).

The concept is best explained by examples. A U variable can
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represent the amount of pesticide on a child’s hand at a

particular time. The amount of pesticide is not varying, but

the fixed, true amount is not known because of the lack of

knowledge needed to make a perfect measurement. A V

variable can represent the grade point average (GPA) of each

student in a class. The GPA is known exactly for each student

but it varies from one student to another because it represents

heterogeneity in the population. An example of a U and V

variable is a variable that represents the amount of pesticide

on the hands of each student in a class. Its values are

uncertain because of the imperfect measurement, and varia-

ble because of the heterogeneity in the population. Variables

that have either U or V are sometimes referred to as ‘‘first-

order’’ random variables; while those that have both U and V

are sometimes referred to as ‘‘second-order’’ random varia-

bles (Burmaster and Wilson, 1996). The second-order ran-

dom variable has a probability distribution that describes its

variability, while the distribution parameters are themselves

uncertain. Thus, each of the distribution parameters has a

specific probability distribution that describes its uncertainty.

3.3. Conventional uncertainty analysis: parameter uncer-

tainty analysis

Uncertainty analysis focuses on model output. Generally,

the objectives of an uncertainty analysis are: (1) to evaluate

the output uncertainty and (2) to find the relative contribu-

tion of each model variable to the output uncertainty. The

second objective is commonly referred to as a sensitivity

analysis (Iman and Helton, 1988; Hamby, 1994). Analysis

results make possible a more informed and sound decision-

making process. There are two ways to analyze uncertainty:

characterization and assessment (EPA, 1992a). Uncertainty

characterization is a qualitative discussion that focuses on

the determination of sources of uncertainty and their impact

on the model results. Uncertainty assessment is a quantita-

tive analysis of uncertainty.

Parameter uncertainty analysis is the analysis conducted

by most analysts at the present time. To analyze parameter

uncertainty, four approaches are typically employed: sensi-

tivity analysis, analytical uncertainty propagation, probabil-

istic uncertainty analysis and classical statistical methods

(EPA, 1992a; Cox and Baybutt, 1981; Iman and Helton,

1988; Seiler, 1987; Hamby, 1994; Cullen and Frey, 1998).

4. A new uncertainty analysis of risk estimates

The new inclusive uncertainty analysis is called the SMP

uncertainty analysis method. In this section, we present a

step-by-step scheme to estimate cumulative risk and the

SMP uncertainty. The flow chart of the scheme is illustrated

in Fig. 1; it consists of six steps:

Step 1: Identify toxic effects and endpoints

Step 2: Identify the exposure scenarios of concern

Step 3: Develop the dose models

Step 4: Estimate exposure, dose and risk

Step 5: Perform uncertainty analyses

Step 6: Characterize risk

This step-wise scheme is based on fundamental princi-

ples of risk assessment and methods suggested by the EPA

(EPA, 1999a, 2000). Comparison with the four elements of

the early risk assessment paradigm indicates that the first

two elements of conventional risk assessment—hazard

identification and dose–response assessment—are included

in the first step of the scheme. Exposure assessment and

elements of risk assessment are found in Steps 2, 3 and 4.

Risk characterization is put together in the last three steps.

Certain steps of the scheme are explained with examples

obtained from a study of the Arizona population risk assess-

ment of exposure to pesticides using the NHEXAS-AZ

database (Karuchit and Moschandreas, 2001). This risk

Fig. 1. Flow chart of the scheme.
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assessment is an application of the risk assessment uncer-

tainty estimating approach detailed in this paper.

4.1. Identification of toxic effects and endpoints

In the first step, information is gathered regarding toxic

effects, toxic endpoints and dose–response relationship of

the pollutants investigated. Toxic effects are defined as

effects caused by exposure to a chemical that will or can

be expected to endanger one’s quality of life (EPA, 1999b).

Toxic endpoint is the quantitative presentation of a toxic

effect at a certain exposure level, e.g., NOAEL and RfD. By

definition, cumulative risk assessment is only applicable to

pollutants that have common toxic effects and common

mechanism of toxicity.

4.2. Identification of the exposure scenarios and exposure

models

Exposure scenario is a set of facts, assumptions and

inferences about how exposure takes place (EPA, 1992a).

EPA’s ‘‘Standard Operating Procedures (SOPs) for Residen-

tial Exposure Assessments’’ (EPA, 1997c) contains informa-

tion about major exposure scenarios, which need to be

adapted to the pollutants of interest. Not all the listed

scenarios need to be included in the final assessment. To

perform a risk assessment that is focused and meaningful, the

included scenarios must be carefully selected. Criteria for

excluding scenarios from a study are not definitive but

include: scenarios that have very little possibility of happen-

ing; scenarios that are likely to result in trivial amount of

subject pollutant dose; and scenarios that have inadequate

information to perform an exposure assessment (EPA,

1992a, 2000). Conventional and clear scenarios are identi-

fied early in the risk assessment study and are called ‘‘base-

line.’’ Later in the SMP process, different assumptions are

made leading to ‘‘alternative’’ scenarios. Exposure duration

is part of an exposure scenario; therefore, duration must be

both relevant to the toxic end and realistic. Exposure

duration is selected for each of the alternative scenarios.

For subpopulations of interest, an assessment uses the base-

line scenarios with only subjects from the subpopulation

groups that are likely to be exposed to pollutants of interest.

Identification of models for estimating exposure and

potential dose, Step 3, are pollutant dependent and are

developed on the basis of several existing examples found

in the literature. Dose models employ the indirect method of

exposure estimation, also known as the scenario estimation

approach.

4.3. Estimation of exposure, dose and risk

Efforts in this step begin with estimating exposure to

subject pollutants and continue with estimating dose and

risk caused by the exposure. While measurement of expo-

sure is possible for certain pollutants, it is not possible for all

pollutants. When exposure measurement is not feasible,

concentration and questionnaire data are combined to esti-

mate exposures using the indirect method. Concentration

measurements are generally obtained from field studies.

Subject information (e.g., time and frequency of contact,

food consumption, and area of surfaces contacted) and other

exposure factors can be obtained from questionnaire data,

literature or assumptions. A typical assumption for the

estimation is that the subjects’ exposure to pollutant con-

centrations in air, food and surfaces takes place according to

each scenario defined over periods relevant for the mani-

festation of a toxic effect. A concentration measured in a

bulk medium is assumed homogeneous and not varying

over the time of interest. For each subject and environment,

medium sampling must take place at the same time and the

exposure, dose and risk of pollutants assessed must have the

same mechanism of toxicity (EPA, 2000).

Usually, certain pollutant concentrations are censored

values because they are assigned values below the limit of

detection (LOD) of their perspective measurement instru-

ment. Below LOD measurements are generally assigned one

of three values (zero, the LOD value or a value half the

LOD value) or they can be assigned values using the robust

method. The robust method generates ‘‘fill-in’’ values for

those below LOD values according to the distribution of the

above-LOD values (Helsel, 1990; Moschandreas et al.,

2001). The ‘‘fill-in’’ values are then assigned randomly.

This assignment is permanent for all analyses for a given

database.

Cumulative risk can be estimated using either the deter-

ministic or the probabilistic approach; each approach has

advantages and limitations. We recommend both approaches

to gain insights in the assessment and to make use of extant

databases. The deterministic approach is the fundamental

estimation approach that is appropriate for the application of

the ‘‘individual-by-individual’’ concept of the aggregate and

cumulative risk assessment. In this approach, each subject’s

data are used with appropriate models to estimate pollutant

and route-specific dose, and then the risk metric. Therefore,

each risk metric is calculated using the dose estimates that

belong to one and the same subject. However, this approach

has two major limitations. First, it cannot provide as much

information about the variation, i.e., uncertainty, of the

estimated results as the probabilistic approach. Second, the

estimation can be performed only on those subjects with a

complete set of data—those who have exposure estimates

for all pollutants and all routes. In other words, subject

measurements must be available for all media (e.g., indoor

air, food, floor dust, sill wipe and yard soil) along with other

relevant data needed for the dose estimations. In this study,

such subjects constitute the cumulative assessment group

(CAG). Although this may be the case for a few databases

generated for research purposes, this is not generally the

case for all subjects and all media for most databases that are

medium specific. The probabilistic estimation approach is

used to overcome these limitations.
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The probabilistic approach uses a probability distribution

to represent each model variable instead of a point estimate,

a single value. The estimation is performed using the Monte

Carlo method—a statistical sampling method for obtaining

the probability distribution of the possible outcomes of a

model (EPA, 1997b). The probability distribution of each

variable is developed using all available subject data. Con-

sequently, the information used in the assessment is not

limited only to the information from those subjects who

have a complete set of data. The other advantage of the

probabilistic approach relates to its greater potential and

ability to analyze uncertainty. The limitation of the proba-

bilistic approach relates to its inability to accommodate the

‘‘individual-by-individual’’ assessment concept. The proba-

bilistic approach eliminates the identity of each subject in

the simulation process because the probability distribution

of a variable is the distribution of the population, and

individual subjects used to formulate the distribution are

no longer discernible. Therefore, the dose and risk are not

estimated for each sample subject, but for all that combine

to represent possible outcomes. Although the estimation

does not conform to the strict cumulative risk assessment

concept, it estimates the population distribution of the out-

put, given that the probability distributions of the model

variables are good representation of the population.

4.3.1. Deterministic method

The deterministic method employs appropriate dose

models discussed in the previous step to estimate dose for

all routes, inhalation, dietary ingestion, dermal absorption

and nondietary ingestion. To estimate aggregate risk and

cumulative risk, the HI method is used in the NHEXAS-AZ

risk assessment of exposure to two pesticides: chlorpyrifos

and diazinon. The application of this method is explained

below (EPA, 1999a, 2000; Patrick, 1994; Mumtaz, 1995).

The HI of each subject is the summation of the hazardous

quotient (HQ) of the subject, which is calculated using the

following equation:

HQr;p ¼
Dr;p

RfDr;p
ð1Þ

where r denotes exposure route, p denotes pesticide; Dr,p is

the estimated potential dose of pesticide p from route r for

each subject; RfDr,p is the reference dose of pesticide p and

route r.

The aggregate HI for each pesticide is the sum of its HQs

in all routes, and the cumulative HI is the sum of all HQs.

Thus, the aggregate HI is estimated by:

HIA;chlorpyrifos ¼
X

r

HQr;1 ð2Þ

HIA;diazinon ¼
X

r

HQr;2 ð3Þ

The cumulative HI of each of the CAG subject is

estimated by:

HICAG ¼
X

r

X

p

HQr;p ¼ HIA;chlorpyrifos þHIA;diazinon ð4Þ

4.3.2. Probabilistic method

The primary purpose of probabilistic risk estimation is to

analyze uncertainty and its sources as they associate with

risk estimates. The probabilistic analysis may be performed

using the Monte Carlo method and one of several commer-

cial software packages such as the Crystal Ball (Sargent and

Wainwright, 1996). Based on the deterministic dose and risk

estimation models, the first step in a probabilistic analysis is

the formulation of a probability distribution for each model

variable.

Model variables can be classified into two classes: (1)

variables with measured values from field studies and (2)

variables with assigned values, either surrogates or assumed.

For the purpose of sensitivity analysis, variables estimated

from submodels involving observed data and surrogate or

assumed data should be segregated in the probabilistic

analysis models. In other words, each variable is substituted

by its submodel variables. Thus, a probability function is

developed for such variables based on observed data with-

out the effect of surrogate or assumed data. The segregation

has the benefit of improving the characterization of the input

variables and the identification of significant contributors in

model outputs.

To obtain credible outputs, significant correlation among

input variables must be taken into account in the Monte

Carlo simulation. Rank correlation coefficients are calcu-

lated for each pair of input variables to determine if

significant correlation exists. Selected significant correlation

coefficients are then specified in the simulations. When a

correlation between variables is defined, the simulation

program (e.g., in Crystal Ball) generates random numbers

for each variable from its probability distribution and uses

the correlation coefficient to rearrange the numbers to

achieve the specified correlation.

4.3.2.1. Monte Carlo methods in probabilistic uncertainty

analysis. The Monte Carlo method is a statistical sampling

method for obtaining the probability distribution of the

possible outcomes of a model (EPA, 1997b). The Monte

Carlo simulation process is described as follows (Cox and

Baybutt, 1981; Sargent and Wainwright, 1996). Let a1. . .am
be the input variables of a model. First, each of the

independent variables are assigned a probability distribu-

tion. Second, the simulation process selects one value for

each variable based on its probability distribution. This step

is repeated a large number of times, N. Consequently, N sets

of values (a1
(i). . .am

(i)), i = 1 to N, are obtained and the

corresponding model outputs, Y(i), i = 1 to N, are calculated.

The distribution of N outputs represents the population

distribution. The uncertainty of the output can be examined
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using several statistics, including the standard error (S.E.) of

the mean and the confidence interval (CI) of the mean or a

specific percentile. Alternatively, the Monte Carlo method

can be described as a process where N sets of values are

obtained from a joint distribution of all of the input

variables, and N corresponding model outputs are calculated

(Cullen and Frey, 1998).

An advanced technique called the two-dimensional (2-D)

Monte Carlo simulation is used with an uncertainty analysis

that requires variability to be distinguished from other types

of uncertainty (Bogen and Spear, 1987; IAEA, 1989; Hoff-

man and Hammonds, 1994; MacIntosh et al., 1995; Bur-

master and Wilson, 1996). Also known as ‘‘nesting’’ or

‘‘double looping,’’ this simulation technique has an ability

to separately propagate the two types of uncertainty (Cullen

and Frey, 1998). The two steps in the process are explained

using the following example. Let Y be the assessment

endpoint, which is a function of three variables: a1 (a U

Fig. 3. Illustration of the 2-D Monte Carlo simulation process (adapted from MacIntosh et al., 1995).

Fig. 2. Illustration of the 2-D Monte Carlo simulation in Steps 1 and 2.
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variable), a2 (a V variable) and a3 (a U and V variable). The

2-D Monte Carlo simulation of this assessment is illustrated

in Figs. 2 and 3.

Step 1: (1) A random value is selected for a1, a U-

variable, from its probability distribution. (2) The U and V

variable a3 has a probability distribution that describes its

variability, while its distribution parameters—the mean and

variance—are uncertain. A random value is selected for

each of the parameters from their probability distributions.

The selected pair of mean and variance characterizes a

distribution for a3.
Step 2: (1) A random value is selected for a2, a V

variable, from its probability distribution. (2) A random

value is selected for a3 from its probability distribution,

which is obtained from Step 1. (3) The value of a1 (selected
in Step 1) and the values of a2 and a3 (both selected in Step

2) are used to estimate one output value.

Fig. 2 illustrates the two steps. Step 2 is called an

‘‘inner’’ simulation. It is repeated a large number of times,

N. In each repetition, the value of a1 is fixed at the same

value selected in Step 1, only the values of a2 and a3 vary.
The simulation that includes one run of Step 1 and N runs

of Step 2 is called an ‘‘outer’’ simulation. It creates one

output distribution of size N. A large number of outer

simulation runs, M, are performed to create a family of

distributions (see Fig. 3). For the outer simulations, the

value of a1 is different from one run to the other as a result

of Step 1 selection of each run. The uncertainty associated

with a statistic (e.g., mean or percentile) of the outcomes

can be estimated from its S.E., obtained from the family of

M distributions. Furthermore, the uncertainty about the

percentile associated with a certain output value can be

estimated from the range of the percentiles corresponding

to that value. The range is obtained from the M distribu-

tions.

4.4. Uncertainty analysis

4.4.1. Parameter uncertainty analysis

Sensitivity analysis and probabilistic uncertainty analysis

are two approaches used to analyze parameter uncertainty in

this study. The former finds the relative contribution of each

model input to the change in the output, while the latter

evaluates the variation or imprecision in the output. The

flow chart for parameter uncertainty analysis is shown in

Fig. 4. In the NHEXAS-AZ pesticide risk assessment, seven

simulation modules with appropriate models are used:

Module 1: Chlorpyrifos inhalation dose (D1,1) estimation

Module 2: Chlorpyrifos ingestion dose (D2,1) estimation

Module 3: Chlorpyrifos dermal dose (D3,1) estimation

Module 4: Diazinon inhalation dose (D1,2) estimation

Module 5: Diazinon ingestion dose (D2,2) estimation

Module 6: Diazinon dermal dose (D3,2) estimation

Module 7: Cumulative hazardous index (HICAG) estima-

tion

All input variables in dose models are V types; their

values vary from one individual to another in any popula-

tion of interest. The only input variable that is U type is the

RfD variable for each case. A reference dose is a benchmark

dose level that applies to every individual in the population,

but its true or rather ‘‘best’’ value is unknown for each

pollutant; such a variable is a U type.

Simulations of Modules 1 through 6 are performed using

conventional Monte Carlo methods. The number of runs

Fig. 4. The flow chart of the parameter uncertainty analysis.
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used for each simulation was 5000. Selection of the number

of runs in the simulation is usually based on the computing

limitation and acceptable level of precision for the most

concerned results (Cullen and Frey, 1998). In this study, we

focus our attention on the high-end of the output distribu-

tions, particularly the 90th percentile values. Thus, the

number of runs selected was based on the numerical

stability of this output. As the number of runs increases,

the 90th percentile estimate stabilizes, i.e., closes in on

nearly constant values. The use of 5000 runs ensures that

numerical stability of the 90th percentile was achieved.

For Modules 1 through 6, analyses of the variation of

outputs used S.E. of the 90th percentile estimates that are

calculated using the nonparametric Bootstrap method (Efron

and Tibshirani, 1993; Montgomery and Runger, 1999). Five

hundred bootstrap samples, each consisting of 5000 values,

are randomly sampled with replacement from the original

set of 5000 output values. Then, the 90th percentile is

estimated for each bootstrap sample, resulting in 500 values

of the 90th percentile, from which one obtains the S.E. and

other statistics of the 90th percentile. The sensitivity anal-

ysis of each module is performed simultaneously with the

Monte Carlo simulation using the rank correlation coeffi-

cient method. Model variables with high correlation values,

R, have a significant impact on the corresponding model

output. The model output and the rank correlation coeffi-

cient, R, between values of each variable and the output are

calculated simultaneously. Therefore, two outputs are

obtained at the end of the simulation: a distribution of

5000 output values and the coefficient values. The coeffi-

cients of all input variables are ranked and compared to

identify the highly sensitive variables.

2-D Monte Carlo simulations are performed for estimat-

ing the cumulative hazardous index of the CAG subjects

(HICAG), Module 7, which consists of U variables and V

variables. The number of runs used is equal to 5000 and 500

for the inner and the outer simulation, respectively. For the

inner simulation, 5000 runs ensure the numerical stability of

the 90th percentile. For the outer simulation, the criterion for

selecting the number of runs is based on the concept of

nonparametric tolerance limits used by Hoffman and Ham-

monds (1994). The concept provides a method to find the

sample size M needed to create an interval that contains at

least a proportion q of the population, with a 1� a con-

fidence level (Conover, 1980; Montgomery and Runger,

1999). Usually, the lower and upper tolerance limits are set

to be the smallest and largest sample values, respectively.

Using q = 0.99 and a = 0.05, a sample size of M = 473 runs

was calculated for our example. Thus, with 500 outer

simulation runs, there is at least a .95 probability that at

least 99% of the population of the estimate is between the

smallest and largest values of the set of values obtained.

Therefore, in the 2-D simulation, 500 distributions of the

cumulative hazardous indexes (HICAG) were obtained. The

mean and median of each percentile and their uncertainty

were then estimated.

4.4.2. The SMP uncertainty analysis

At present, there is no standard method for quantitatively

analyzing these types of uncertainty. The SMP uncertainty

analysis method presented in this section was developed to

incorporate scenario and model uncertainties in the uncer-

tainty analysis in risk assessment. The SMP uncertainty

analysis can be performed on any statistic of interest. The

process is best explained by an example. In the Arizona

pesticide risk assessment, the SMP analysis was performed

on the cumulative hazardous index, HICAG, of a subject

population. It begins by dividing the analysis procedure

used to obtain HICAG into a series of decision points with

alternatives. Two decision points, each with two alterna-

tives, are identified and illustrated as a ‘‘decision tree’’ in

Fig. 5.

4.4.2.1. Decision point #1. The first decision point is the

selection of the method used to develop the probability

distribution of model variables. Since the uncertainty in the

Fig. 5. The ‘‘decision tree’’ of the SMP uncertainty analysis.
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model output is propagated from uncertainty in each of the

model variables, the probability distribution must be devel-

oped with appropriate methods. Two commonly used meth-

ods are parametric distributions, i.e., standard distributions

that fit observations such as normal, lognormal and others,

or empirical distributions, i.e., a histogram of study obser-

vations. The use of empirical distributions has certain

advantages and some limitations. Using parametric distri-

butions also has its benefits. With their own advantages and

disadvantages, there is no general agreement as to which

method is preferred (EPA, 1997b). The use of different

methods is likely to result in significantly different outputs

and output uncertainties. Therefore, the decision made at

this point is an important source of scenario uncertainty, and

is considered as the first decision point of the SMP uncer-

tainty analysis. The alternatives of this decision point are the

empirical distribution method (baseline scenario) and the

parametric distribution method (alternative scenario).

4.4.2.2. Decision point #2. The second decision point is

the selection of a model for estimation of dose. Unlike

models for inhalation or ingestion route, dermal dose

models are more complex and take different forms. Thus,

continuing with an explanation of the SMP method by

example, we select as the baseline model that is suggested

by the EPA in its publication entitled ‘‘Research Solicita-

tion: Human Exposure Assessment’’ (EPA, 1993). It uses

concentration data in three media (floor dust, sill wipe and

yard soil) and combines the data with subjects’ character-

istics to estimate dermal potential dose. However, the

model does not take into consideration information from

hand wipe or dermal wipe. Dermal wipe data are available

for both pesticides in the NHEXAS-AZ database. With the

use of a general EPA dose model (EPA, 1992a), the dermal

wipe data can be used to obtain different, but equally

credible, estimates of dermal dose. These estimates are

independent of the floor dust, sill wipe or yard soil data.

The decision made regarding the model selection is an

important source of both scenario and model uncertainty,

and is considered as the second decision point of the SMP

uncertainty analysis. The alternatives of this point are the

dermal model 1 (baseline model) and the dermal model 2

(alternative model). The two models are summarized in

Appendix A.

After establishing two alternatives for each of the two

decision points, four analysis paths must be considered for

estimating the SMP uncertainty (Fig. 5):

� Path BB: Use empirical input distributions and dermal

model 1
� Path BA: Use empirical input distributions and dermal

model 2
� Path AB: Use parametric input distributions and dermal

model 1
� Path AA: Use parametric input distributions and dermal

Model 2

The path with baseline decision for both decision points

is Path BB. For each analysis path, the 2-D Monte Carlo

simulation of Module 7 is performed using 5000 inner

simulation runs and 500 outer simulation runs. Therefore,

we obtained 500 distributions of HICAG estimates and 500

90th percentile estimates from each analysis path. Based on

these outputs, the uncertainty of 90th percentile estimates

was estimated and compared among different analysis paths.

At this stage, uncertainty estimated for each analysis path is

the parameter uncertainty only.

Four uncertainty analyses were established to investigate

the effect of inclusion of scenario or model uncertainty:

� Analysis P: Analysis that considers parameter uncertainty

only
� Analysis SP: Analysis that considers scenario and

parameter uncertainties
� Analysis MP: Analysis that considers model and

parameter uncertainties
� Analysis SMP: Analysis that considers scenario, model

and parameter uncertainties

Analysis P accounts for only parameter uncertainty and

ignores scenario and model uncertainties. It has only one

analysis path, Path BB. Analysis SP considers both scenario

and parameter uncertainties; therefore, it has two analysis

paths: BB and AB. In essence, this analysis assumes that the

two paths are equally suitable for the assessment, and assigns

equal chance to each path to be used. In a similar fashion,

Scenario MP considers both model and parameter uncertain-

ties, and assumes that Paths BB and BA have equal proba-

bility to be used in the assessment. Finally, Analysis SMP

considers all three types of uncertainties, and assumes that all

analysis paths are equally appropriate for the assessment.

The scheme used to obtain estimates from each analysis is

explained below. Analysis P is performed to obtain 500

estimates of two statistics, the median and the 90th percen-

tile, using Path BB only. Analysis SP is performed to obtain

250 estimates of the two statistics from each of the two

analysis Paths BB and AB. Analysis MP is performed to

obtain 250 estimates of the two statistics from each of the

two analysis Paths BB and BA. Finally, Analysis SMP is

performed to obtain 125 estimates of the two statistics from

each of the four analysis paths. The distributions of each

statistic are compared among analyses. The mean and

variance values estimated by each analysis are tested for

equality. Ultimately, the relative change of risk uncertainty

that accounts for only parameter uncertainty to risk uncer-

tainty that jointly accounts for scenario, model and parameter

uncertainty is estimated using the 95% tolerance limits

range.

4.5. Risk characterization

The findings from the risk assessment are integrated in

this final assessment step. Issues discussed in the risk
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characterization include risk estimates and associated uncer-

tainties, and comparisons of risks among subpopulations.

Additionally, risk characterization identifies variables that

significantly affect the outcomes in each simulation module,

or alternatives in the assessment that could change the

conclusions reached. Finally, risk characterization elaborates

on the results of the SMP uncertainty analysis and substan-

tiates all findings to assist and support the decision-making

process.

5. Discussion

The SMP uncertainty analysis method is not intended to

quantify all uncertainty that exists, i.e., uncertainty from all

imaginable scenarios and all published models. Instead, it

provides the mechanism that allows judiciously selected

scenarios and/or model uncertainty sources to be included in

the analysis. Ultimately, the SMP uncertainty analysis

compares the uncertainty based on all selected uncertainty

sources with that based on parameter uncertainty alone to

ascertain if ignoring certain sources of errors would change

the conclusions reached. This method, therefore, allows the

risk assessor to be all-inclusive and consider all appropriate

sources of uncertainty. If the SMP estimate is significantly

larger than the conventional estimate, the decision may be

affected. Conversely, if the SMP result is not significantly

larger than that of the conventional analysis, it is reassuring

to know that the uncertainty estimate is not sensitive to the

additional uncertainty sources included in the SMP analysis.

Selection of alternative models and scenarios as sources

of uncertainty is the nucleus of the SMP analysis process; it

must focus on realistic and practicable alternatives. Clearly,

exposure scenario selection depends on the population,

pollutant, subject population and relevant information about

the population. Recall that cumulative risk requires that the

pollutants share a common toxic end and the same mech-

anism of adverse effect. Such information and associated

factors can be obtained from the literature. The models

selected for use and their alternatives depend on the expo-

sure route. It is important to note that the literature contains

many additional models, making the appropriate choice of

alternative models a critical concern.

Performance of the SMP uncertainty analysis requires

performance of a risk assessment study. Therefore, it

requires identification of one or more databases, information

on the subject population and subpopulations, selection of

model and scenario uncertainty sources and factors that will

be used in the performance of the research. In the work

presented in the related paper, the SMP uncertainty method

was applied using NHEXAS-AZ database. It is one among

the very few multiple pollutant, multiple route exposure,

risk studies sponsored by a consortium of federal agencies

led by the EPA. NHEXAS-AZ consists of comprehensive

subject information obtained from a multiple stage survey

using six different questionnaires on demographic, housing,

food consumption, time budget and other pertinent informa-

tion. Most databases, however, are not as comprehensive

and therefore are likely to result in larger uncertainties than

those found in this application.

Analysis results obtained from the NHEXAS-AZ pesti-

cide risk assessment indicate that inclusion of scenario

uncertainty source into the process for estimating cumula-

tive risk uncertainty increases overall uncertainty. The

uncertainty of the 90th percentile estimate of HICAG—as

measured by its 95% tolerance limits range—increases

almost threefold compared to the output uncertainty that

considers only parameter uncertainty. Inclusion of the model

uncertainty source increases the uncertainty of this statistic

by 56%, and inclusion of both the scenario and model

uncertainty sources increases uncertainty by nearly a factor

of two. Similar results are obtained when the uncertainty is

measured by the range of the 95% confidence level of the

mean of the 90th percentile HICAG.

Clearly, this result confirms that the scenario and model

uncertainty sources are significant contributors to overall

uncertainty of the outcome of the assessment. When both are

ignored, the 90th percentile of HICAG is not likely to be near

the level of concern: 95% of the estimates are between 0.22

and 0.70. When the scenario uncertainty source is included,

i.e., the use of parametric distribution is considered an

equally appropriate alternative as the use of empirical dis-

tribution, the abovementioned conclusion about the 90th

percentile of HICAG changes substantially. Both analysis

scenarios that include the scenario uncertainty yield tolerance

limits range that extend more than 1.50, which means that the

90th percentile HICAG could exceed the level of concern.

Thus, the cumulative risk assessment process that includes

two different but realistic scenarios with two different but

equally feasible models may lead to risk estimates that have

substantively different uncertainty from that estimated with

conventional estimating risk uncertainty methods.

Appendix A. Two dermal dose models

A.1. Dermal dose model 1

The baseline dermal models for estimating potential dose

are as follows (Moschandreas et al., 2001):

Dose : PDder;t ¼ Eder;t � BW�1 � 103 ðA:1Þ

Exposure : Eder;t ¼ Eder;r þ Eder;y ðA:2Þ

Eder;r ¼
X

s

½CDs � Aps � Tps � ð1� DOpsÞ	 ðA:3Þ

Eder;r ¼
X

s

½CSs � ððSps � SApsÞ � SOpsÞ	 �M ðA:4Þ
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A.2. Dermal dose model 2

The general EPA dose model calculates the average daily

potential dose, ADDpot, by (EPA, 1992a,b, 1997a):

ADDpotðng=kg dayÞ

¼ Total Potential Dose ðngÞ
Body Weight ðkgÞ � Averaging Time ðdayÞ ðA:5Þ

To use the general EPA dose model, a scenario of dermal

exposure may be defined as follows. Since pesticide residue

on each subject’s skin comes from both outdoor (e.g., soil)

and indoor (e.g., floor and furniture surfaces) sources, the

exposure duration is assumed 24 h per day. Therefore, the

total potential dose is the potential dose integrated over the

1-day duration and the averaging time used in the model is 1

day. Furthermore, it is assumed that the pesticide mass is

distributed uniformly over the exposed body surface area

and is represented by the dermal wipe concentration. There-

fore, the total potential dose is estimated by the dermal wipe

concentration times the exposed body surface area:

Total Potential Dose ¼ Chand � SAps � 103 ðA:6Þ
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PDder,t is the total dermal potential dose of the

pesticide of each subject (ng/kg day)

Eder,t
is the total dermal exposure to a pesticide of

each subject (Ag/day)
BW is the body weight of the subject (kg)

Eder,r is the dermal exposure to the pesticide in

dislodgeable surface residue of each subject

(Ag/day)
Eder,y is the dermal exposure to the pesticide in soil

of each subject (Ag/day)
s is the type of surfaces contacted per day.

Dislodgeable surfaces residue data in the

NHEXAS database were obtained from two

surfaces: floor surface and window sill

surface. The latter is assumed representative

of residue from ‘‘nonfloor’’ surfaces, i.e.,

surfaces other than the floor in the house,

such as furniture surfaces. For Eq. (A.3), s = 1

for floor surface and s = 2 for nonfloor sur-

face. For Eq. (A.4), s = 1 for yard soil surface.

CDs is the pesticide concentration of dislodgeable

surface residue on surface s (Ag/m2)

As is the surface area of surface s contacted by

the subject (m2/day)

Tps is the transfer proportion of surface s by the

subject, proportion

DOps is the proportion of dislodgeable residue of

surface s transferred to oral route by the

subject via hands, food and objects;

proportion

CSs is the pesticide concentration in soil surface s

(Ag/g)
Sps is the soil from surface s covering on skin of

the subject (g/m2
day)
SAps is the body surface area of the subject exposed

to surface s (m2)

SOps is the amount of soil from surface s covering

on skin that is transferred to oral route by the

subject (g/day)

M is the matrix effect of soil, proportion

Chand is the pesticide concentration in the dermal

wipe sample (Ag/m2)

SAps is the body surface area of the subject exposed

to surface s (m2)
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