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Abstract

The paper is dedicated to construction of invariants for the parabolic equation

ut þ aðt; xÞuxx þ bðt; xÞux þ cðt; xÞu ¼ 0:

We consider the equivalence group given by point transformations and find all invariants up to seventh-order,
i.e. the invariants involving the derivatives up to seventh-order of the coefficients a, b and c with respect to the
independent variables t, x.
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1. Introduction

We consider the standard linear second-order parabolic partial differential equations in two independent
variables:

ut þ aðt; xÞuxx þ bðt; xÞux þ cðt; xÞu ¼ 0; aðt; xÞ 6¼ 0: ð1Þ
ll that the well-known group of equivalence transformations for Eq. (1) (given in [1]), i.e. the changes of
bles t, x and u that do not change the form of Eq. (1), is composed of the linear transformation of the
dependent variable,

�u ¼ rðt; xÞu; ð2Þ
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and the following change of the independent variables:
�t ¼ /ðtÞ; �x ¼ wðt; xÞ; ð3Þ
where r(t,x), /(t) and w(t,x) are arbitrary functions obeying the invertibility conditions, r(t,x) 5 0, / 0(t) 5 0
and wx(t,x) 5 0. The form invariance of Eq. (1) means that the transformations (2), (3) map Eq. (1) into an
equation of the same form:
�u�t þ �að�t;�xÞ�u�x�x þ �bð�t;�xÞ�u�x þ �cð�t;�xÞ�u ¼ 0: ð10Þ
Eqs. (1) and (1 0) connected by an equivalence transformation are called equivalent equations.

An invariant of Eq. (1) is a function
Jða; b; c; at; ax; bt; bx; ct; cx; att; atx; axx; . . . ; cxx; . . .Þ
that remains unaltered under the equivalence transformations (2) and (3). It means that J has the same value
for equivalent Eqs. (1) and (1 0):
Jða; b; c; at; . . . ; cxx; . . .Þ ¼ Jð�a; �b;�c; �a�t; . . . ;�c�x�x; . . .Þ:
If J is invariant only under the transformation (2) it is termed a semi-invariant [2]. The order of an invariant (or
semi-invariant) J is identified with the highest order of derivatives of a, b, c involved in J.

Semi-invariants of hyperbolic equations (termed the Laplace invariants) have been known since the 1770s.
Recently there have been considerable interest in invariants of parabolic equations. The first step toward solv-
ing the problem of invariants for parabolic equations was made in [2] where the semi-invariant of the second-
order
K ¼ 2cxa2 � bta� bxxa2 � bxbaþ bxaxaþ
1

2
b2ax þ bat þ baxxa� ba2

x ð4Þ
was found. It was also shown there that K and the coefficient a(t,x) provide a basis of semi-invariants. This
solves the problem of semi-invariants. Namely, any semi-invariant J of an arbitrary order involves only a and
K together with their derivatives of an appropriate order, i.e.
J ¼ Jða; at; ax; att; atx; axx; . . . ;K;Kt;Kx;Ktt;Ktx;Kxx; . . .Þ: ð5Þ
Furthermore, it follows from this result that the invariants of Eq. (1) with respect to the general equivalence
group can be obtained by subjecting the functions (5) to the condition of invariance under the change (3) of
the independent variables.

The method and result of [2] were used in [3] for investigating invariants and invariant equations up to fifth-
order with respect to the joint transformations (2) and (3). It has been shown in [3] that Eq. (1) has no invar-
iants up to fifth-order and that it has precisely one invariant equation of the fifth-order, namely the equation
k ¼ 0: ð6Þ
The quantity k is defined by
k ¼ 4að2aKxx � 5axKxÞ � 12Kðaaxx � 2a2
xÞ þ axð4aatt � 9a4

xÞ � 12ataxðat þ 2a2
xÞ

þ 4að3at þ 6a2
x � 5aaxxÞatx þ 2aaxð16ataxx � 12aa2

xx þ 15a2
xaxxÞ � 4a2attx � 12a2axatxx

� 4a2axxxð2at � 4aaxx þ 3a2
xÞ þ 8a3atxxx � 4a4axxxxx: ð7Þ
and is termed a relative invariant due to the invariance of Eq. (6) with respect to the equivalence transforma-
tions (2) and (3). It is demonstrated in [3] that Eq. (6) provides a necessary and sufficient condition for Eq. (1)
to be equivalent to the heat equation.

In the present paper, we find all invariants and invariant equations of the sixth- and seventh-orders. Since
k = 0 singles out the heat equation and all equations equivalent to the heat equation, we exclude these equa-
tions and assume in what follows that k = 0. Under this assumption, we prove the following result.
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Theorem. An arbitrary Eq. (1) with k = 0 has one invariant of the sixth-order:
K1 ¼
2akx � 5kax

k6=5
; ð8Þ
and one invariant of the seventh-order:
K2 ¼
2a2kxx � 9aaxkx þ 5ð3a2

x � aaxxÞk
k7=5

� ð9Þ
Furthermore, there are additional invariants of the seventh-order in the following particular cases.

(A) The family of Eq. (1) obeying the invariant conditions
5K2 � 3K2
1 ¼ 0; K1 6¼ 0 ð10Þ
has the invariant
K3 ¼
a

k8=5
axkt þ 2atkx �

12

5k
aktkx þ 2aktx � 5katx

� �
: ð11Þ
(B) The family of Eq. (1) defined by two invariant equations
K1 ¼ 0; K2 ¼ 0 ð12Þ

has the invariant
K4 ¼
1

4k9=5
10ka2ð3axaxxx � 2aaxxxx þ 3a2

xx � 4atxxÞ þ 5kað8ataxx � 8att þ 16axatx � 15a2
xaxx � 8KxÞ

�
þ 2kð50a2

t � 4ata2
x þ 15a4

x þ 40axKÞ þ akxð8axat þ 6aaxaxx � 4a2axxx � 8aatx � 3a3
x � 8KÞ

� 40aatkt þ 8a2ktt

�
� 3

5k14=5
ð2akt � 5katÞ2: ð13Þ
(C) The family of Eq. (1) obeying the invariant conditions
K1 ¼ 0; K2 6¼ 0 ð14Þ

has the invariant
K5 ¼ 4K2K4 � 3K2
3: ð15Þ
2. Generalities

2.1. Equivalence group

For obtaining invariants we use the Lie approach. This approach consists of finding an equivalence group of
point transformations, and finding its invariants by solving a system of homogeneous linear equations. Let us
recall the method for obtaining an equivalence group. Consider a parabolic equation (1). Since the functions a,
b, c depend on the independent variables t, x only, the equivalence group should leave invariant the equations
au ¼ 0; bu ¼ 0; cu ¼ 0: ð16Þ
Let the generator of a one-parameter equivalence group be
X e ¼ nt o

ot
þ nx o

ox
þ fu o

ou
þ fa o

oa
þ fb o

ob
þ fc o

oc
; ð17Þ
where the coefficients nt, . . . ,fc may depend, in general, depend on the variables t, x, u, a, b, c. The coefficients
of the prolonged operator
eX e ¼ X e þ fut
o

out
þ fux

o

oux
þ fuxx

o

ouxx
þ fau

o

oau
þ fbu

o

obu
þ fcu

o

ocu
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are defined by the prolongation formulae
fut ¼ De
t f

u � utDe
t n

t � uxDe
t n

x; fux ¼ De
xf

u � utDe
xn

t � uxDe
xn

x;

fuxx ¼ De
xf

ux � uxtDe
xn

t � uxxDe
xn

x; fau ¼ Duf
a � atDun

t � axDun
x;

fbu ¼ Duf
b � btDun

t � bxDun
x; fcu ¼ Duf

b � ctDun
t � cxDun

x:
Here the operators De
t ; De

x are operators of the total derivatives with respect to t and x, respectively, where the
space of the independent variables consists of t and x,
De
t ¼

o

ot
þ ut

o

ou
þ ðat þ utauÞ

o

oa
þ ðbt þ utbuÞ

o

ob
þ ðct þ utcuÞ

o

oc
þ � � � ;

De
x ¼

o

ox
þ ux

o

ou
þ ðax þ uxauÞ

o

oa
þ ðbx þ uxbuÞ

o

ob
þ ðcx þ uxcuÞ

o

oc
þ � � �
The operators Dt,Dx and Du are operators of total derivatives with respect to t, x and u, where the space of the
independent variables consists of t, x, and u,
Dt ¼
o

ot
þ at

o

oa
þ bt

o

ob
þ ct

o

oc
þ � � � ;

Dx ¼
o

ox
þ ax

o

oa
þ bx

o

ob
þ cx

o

oc
þ � � � ;

Du ¼
o

ou
þ au

o

oa
þ bu

o

ob
þ cu

o

oc
þ � � �
Because of (16) and the definitions of fau ; fbu ; fcu , one can split the part of determining equations
fau ¼ 0; fbu ¼ 0; fcu ¼ 0
with respect to at, ax, bt, bx, ct, cx. Consequently the coefficients nt, nx, fa, fb and fc do not depend on u.
Solving the determining equations
eX eF jð1Þ;ð2Þ ¼ 0;
one finds
nt ¼ p; nx ¼ q; fu ¼ urðt; xÞ; fa ¼ 2aqt � apt; fb ¼ aqxx þ bqx � bpt þ qt � 2arx;

fc ¼ �cpt � rt � arxx � brx;
with arbitrary functions p = p(t), q = q(t,x), r = r(t,x). Hence, we arrive at the following generator of the
equivalence group:
X e ¼ p
o

ot
þ q

o

ox
þ ur

o

ou
þ að2qx � ptÞ

o

oa
þ ðaqxx þ bqx � bpt þ qt � 2arxÞ

o

ob
� ðcpt þ rt þ arxx þ brxÞ

o

oc
:

ð18Þ

This manuscript is devoted to constructing differential invariants of the equivalence group. For obtaining nth-
order invariants we use the infinitesimal test
eX eðJÞ ¼ 0;
where J depends on a, b, c and their derivatives up to order n. Notice that for relative invariants the infinites-
imal test is
eX eðJ kÞjS ¼ 0; k ¼ 1; . . . ; s;
where S is a manifold defined by equations Jk = 0, k = 1, . . . , s.
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2.2. Semi-invariants and the representation of invariants

Recall that the generator for finding semi-invariants is (see [2])
X e ¼ ur
o

ou
� ð2arxÞ

o

ob
� ðrt þ arxx þ brxÞ

o

oc
; ð19Þ
and that Eq. (1) has the following semi-invariants up to the second-order (see Section 1)
a; at; ax; att; atx; axx; K;
where K is given by Eq. (4):
K ¼ 2cxa2 � bta� bxxa2 � bxbaþ bxaxaþ
1

2
b2ax þ bat þ baxxa� ba2

x :
Furthermore, the invariants of the equivalence group defined by the generator (18) are in the class of functions
J of the form (4) involving, in general, the derivatives of a up to the order n, and derivatives of the function
K(t,x) are up to the order n � 2. Accordingly, the generator (18) is rewritten in the form
X e ¼ að2qx � ptÞ
o

oa
þ fK o

oK
;

where
fK ¼ qtxaax � qxxxxa
3 � qxxxaxa2 � 2qtxxa

2 þ 3qxK � qttaþ qtðat þ axxa� a2
xÞ � 3ptK:
The coefficients of the prolonged operator
eX e ¼ X e þ fat
o

oat
þ fax

o

oax
þ � � � þ fKt

o

oKt
þ fKx

o

oKx
þ � � � ð20Þ
are defined by the prolongation formulae, e.g.
fat ¼ Dtf
a � atDtn

t � axDtn
x; fax ¼ Dxf

a � atDxn
t � axDxn

x;

fKt ¼ Dtf
K � KtDtn

t � KxDtn
x; fKx ¼ Dxf

K � KtDxn
t � KxDxn

x;
where
Dt ¼
o

ot
þ at

o

oa
þ KtoK þ � � � ; Dx ¼

o

ox
þ ax

o

oa
þ KxoK þ � � �
For finding invariants one has to apply the following procedure. Let us consider an invariant of order n, where
it is assumed that J depends on the variable a, its derivatives up to nth-order, the function K and its derivatives
up to (n � 2) order. Invariants can be obtained by solving the equations
eX eðJÞ ¼ 0;
and relative invariants by solving the equations
eX eðJ kÞjS ¼ 0:
3. Sixth-order invariants

This section is devoted to finding sixth-order differential invariants. Let
Jða; at; ax; att; atx; axx; . . . ; axxxxxx;K;Kt;Kx;Ktt;Ktx;Kxx; . . . ;KxxxxÞ

be a sixth-order differential invariant.

The prolonged operator eX e is defined by (20). Splitting the equations eX eðJÞ ¼ 0 with respect to p, q and its
derivatives, one obtains a system of 43 linear homogeneous equations. Some of these equations are of the fol-
lowing two types. The first type is
J x þ
Xn

i¼1

aiJ yi
¼ 0; ð21Þ
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where J = J(x,y1,y2, . . . ,yn), and the coefficients ai (i = 1,2, . . . ,n) are linear functions of the independent vari-
ables y1,y2, . . . ,yi�1 which have the form
ai ¼
Xi�1

k¼1

bi;kðxÞyk þ ciðxÞ:
The characteristic system for Eq. (21) is
dx
1
¼ dy1

c1ðxÞ
¼ dy2

b2;1ðxÞy1 þ c2ðxÞ
¼ dy3

b3;1ðxÞy1 þ b3;2ðxÞy2 þ c3ðxÞ
¼ � � �
From the characteristic system one can obtain the general solution of (21).
The second type of equations is
xJ x þ
Xn

i¼1

kiyiJ yi
¼ 0; ð22Þ
where ki (i = 1,2, . . . ,n) are constant. The general solution of (22) is
J ¼ JðJ 1; J 2; . . . ; J nÞ; where J i ¼
yi

xki
; ði ¼ 1; 2; . . . ; nÞ:
The calculations for obtaining the system of equations for finding invariants and solving its equations are
cumbersome. For these calculations we therefore used the Reduce programs developed for solving the linear-
ization problem of third-order ordinary differential equation [5].

After solving the equations of the first and second types the system is reduced to the following system of
equations
oJ
oJ 2

J 1 ¼ 0; 6
oJ
oJ 3

J 3 þ 5
oJ
oJ 1

J 1 þ 7
oJ
oJ 2

J 2 ¼ 0;
oJ
oJ 2

J 3 ¼ 0; ð23Þ
where
J 1 ¼ k=ð8a5Þ; J 2 ¼ 2
ok
ot

a� 5
oa
ot

k

� ��
ð16a7Þ; J 3 ¼ 2

ok
ox

a� 5
oa
ox

k

� ��
ð8a6Þ;
and J = (J1,J2,J3).
If k = 0, then J1 = J2 = J3 = 0. This case was studied in [3]. If k 5 0, then J1 5 0. Because of the first equa-

tion of (23), J does not depend on J2. Solving the second equation of (23), one obtains the only invariant
J 5

3=J 6
1. This invariant was also obtained in [4] as an invariant with respect to contact transformations.
4. Seventh-order invariants

Similar to the previous section the system for finding invariants of seventh-order is reduced to the following
equations
24
oJ
oJ 6

J 2 þ 6
oJ
oJ 4

J 3 þ 5
oJ
oJ 2

J 1 ¼ 0; ð24Þ

9
oJ
oJ 6

J 6 þ 7
oJ
oJ 5

J 5 þ 6
oJ
oJ 3

J 3 þ 8
oJ
oJ 4

J 4 þ 5
oJ
oJ 1

J 1 þ 7
oJ
oJ 2

J 2 ¼ 0; ð25Þ

3
oJ
oJ 6

J 4 þ 2
oJ
oJ 4

J 5 þ
oJ
oJ 2

J 3 ¼ 0; ð26Þ
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where
J 4 ¼ ð�5ktaxa� 4kxata� 5atxakþ 15ataxkþ 2ktxa2Þ=ð8a8Þ;

J 5 ¼ ð�9kxaxa� 5axxakþ 15a2
xkþ 2kxxa2Þ=ð8a7Þ;

J 6 ¼ ð�40atxxa2k� 4axxxkxa3 þ 30axxxaxa2k� 40ktata

þ kxað�8atxaþ 8atax þ 6axxaxa� 3a3
x � 8KÞ þ 80atxaxak

� 40attakþ 100a2
t kþ 40ataxxak� 80ata2

xk� 20axxxxa3k

þ 30a2
xxa

2k� 75axxa2
xakþ 30a4

xkþ 80axKk� 40Kxakþ 8ktta2Þ=ð32a9Þ:
Taking the Poisson bracket of Eqs. (24) and (26), one obtains the equation
oJ
oJ 6

J 3 ¼ 0: ð27Þ
Assuming k 5 0, Eqs. (24) and (25) can be solved. The remaining Eqs. (26) and (27) are reduced to the
equations
2
oJ

oJ 10

ð5J 8 � 3J 2
7Þ þ 15

oJ
oJ 9

J 10 ¼ 0; ð28Þ

oJ
oJ 9

J 7 ¼ 0; ð29Þ
where J = J(J7,J8,J9,J10), and
J 7 ¼
J 3

J 6=5
1

; J 8 ¼
J 5

J 7=5
1

; J 9 ¼
5J 1J 6 � 12J 2

2

5J 14=5
1

; J 10 ¼
5J 1J 4 � 6J 2J 3

5J 13=5
1

:

Since Eqs. (28) and (29) contain no derivatives with respect to J7 and J8, the variables J7 and J8 are invariants.
If J7 5 0, then J does not depend on J9, and Eq. (28) becomes
2
oJ

oJ 10

ð5J 8 � 3J 2
7Þ ¼ 0:
This equation shows that there is the additional invariant J10 which is obtained for ð5J 8 � 3J 2
7Þ ¼ 0.

If J7 = 0, then one needs only to solve Eq. (28) which becomes
10
oJ

oJ 10

J 8 þ 15
oJ
oJ 9

J 10 ¼ 0:
If J8 5 0, this equation yields the invariant
J 11 ¼ J 9 �
3

4

J 2
10

J 8

:

The assumption J8 = 0 leads to the analysis of the equation
J 10
oJ
oJ 9

¼ 0:
If J10 = 0 then one only obtains the invariant J9.
Conditions
 Additional invariant
J7 5 0
 5J 8 � 3J 2
7 6¼ 0
 No
5J8 � 3J 2
7 ¼ 0
 J10
J7 = 0
 J8 5 0
 J11
J8 = 0
 J10 5 0
 No

J10 = 0
 J9
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Remark. The invariants J7, J8, J10 and J11 are equal, up to immaterial constant factors, to the invariants (8),

(9), (11), . . ., respectively. Namely:
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J 7 ¼ 81=5K1; J 8 ¼ 82=5K2; J 10 ¼ 83=5K3; J 9 ¼ 84=5K4; J 11 ¼ 84=5 K5

4K2

:

5. Conclusion

This paper is devoted to finding sixth and seventh-order differential invariants of linear second-order par-
abolic partial differential equation (1) under an action of the equivalence group of point transformations. We
found one sixth-order differential invariant J 5

3=J 6
1. Seventh-order invariants are J7, J8. Other functions J9, J10

and J11 are invariants for particular cases. We have also found invariants of eighth and ninth-order, but the
result is too cumbersome, and it is not presented in the paper.
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