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Abstract

The paper is dedicated to construction of invariants for the parabolic equation
u + a(t,xX)uy + b(t,x)u, + c(t,x)u = 0.

We consider the equivalence group given by point transformations and find all invariants up to seventh-order,
i.e. the invariants involving the derivatives up to seventh-order of the coefficients a, b and ¢ with respect to the
independent variables 7, x.
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1. Introduction

We consider the standard linear second-order parabolic partial differential equations in two independent
variables:

u, + a(t,x)uy + b(t,x)u, + c(t,x)u =0, a(t,x) #0. (1)

Recall that the well-known group of equivalence transformations for Eq. (1) (given in [1]), i.e. the changes of
variables ¢, x and u that do not change the form of Eq. (1), is composed of the linear transformation of the
dependent variable,

= o(t,x)u, (2)
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and the following change of the independent variables:

i=¢@1), x=ytx), (3)

where a(t, x), ¢(t) and (¢, x) are arbitrary functions obeying the invertibility conditions, o(z,x) # 0, ¢'(t) # 0
and (¢, x) # 0. The form invariance of Eq. (1) means that the transformations (2), (3) map Eq. (1) into an
equation of the same form:

il + a(t, X)itz + b(2, %)y + (£, x)u = 0. 1)

Egs. (1) and (1’) connected by an equivalence transformation are called equivalent equations.
An invariant of Eq. (1) is a function

J(aa ba C? at; axa bt7 bx7 Ct7 Cx7 attvatxa axxv e 7Cxx7 . )

that remains unaltered under the equivalence transformations (2) and (3). It means that J has the same value
for equivalent Egs. (1) and (1’):

J(a,b,c,a,,... Cu,...) =J(@,b,C,a;,...,C,...).

If J is invariant only under the transformation (2) it is termed a semi-invariant [2]. The order of an invariant (or
semi-invariant) J is identified with the highest order of derivatives of a, b, ¢ involved in J.

Semi-invariants of hyperbolic equations (termed the Laplace invariants) have been known since the 1770s.
Recently there have been considerable interest in invariants of parabolic equations. The first step toward solv-
ing the problem of invariants for parabolic equations was made in [2] where the semi-invariant of the second-
order

1
K = 2¢.a> — b,a — byad® — bba + bea,a + EbZaX + ba, + ba,.a — bai 4)

was found. It was also shown there that K and the coefficient a(z, x) provide a basis of semi-invariants. This
solves the problem of semi-invariants. Namely, any semi-invariant J of an arbitrary order involves only ¢ and
K together with their derivatives of an appropriate order, i.e.

J = J(aaat7ax7att7atx7axx7 e aK;KtaKxaKthKLwme . ) (5)

Furthermore, it follows from this result that the invariants of Eq. (1) with respect to the general equivalence
group can be obtained by subjecting the functions (5) to the condition of invariance under the change (3) of
the independent variables.

The method and result of [2] were used in [3] for investigating invariants and invariant equations up to fifth-
order with respect to the joint transformations (2) and (3). It has been shown in [3] that Eq. (1) has no invar-
iants up to fifth-order and that it has precisely one invariant equation of the fifth-order, namely the equation

A=0. (6)
The quantity 4 is defined by

A =4a(2aK ., — 5a.K,) — 12K (aa,, — Zai) + a,(4aa, — 9ai) — 12a,a,(a, + 2a§)
+4a(3a, + 6af — Saa.)a, + 2aa,(16a,a,, — 12aaix + 15a§axx) —4d*a,, — 12d%a,a,,

— 4a’a,(2a, — daay, + 3a§) + 8’ py — 4a* Appere- (7)

and is termed a relative invariant due to the invariance of Eq. (6) with respect to the equivalence transforma-
tions (2) and (3). It is demonstrated in [3] that Eq. (6) provides a necessary and sufficient condition for Eq. (1)
to be equivalent to the heat equation.

In the present paper, we find all invariants and invariant equations of the sixth- and seventh-orders. Since
A =0 singles out the heat equation and all equations equivalent to the heat equation, we exclude these equa-
tions and assume in what follows that A = 0. Under this assumption, we prove the following result.
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Theorem. An arbitrary Eq. (1) with 7. = 0 has one invariant of the sixth-order:

2al, — Sa,
Al = T’ (8)

and one invariant of the seventh-order:

P

2a% o — 9aa iy + 5(3a2 — aay)
AZ = /,L7/5 : (9)

Furthermore, there are additional invariants of the seventh-order in the following particular cases.

(A) The family of Eq. (1) obeying the invariant conditions
54, —347=0, A #0 (10)
has the invariant
a , 12
A3 = e al +2a,, — S_Aailix + 2aly — SAay|. (11)
(B) The family of Eq. (1) defined by two invariant equations
A =0, A, =0 (12)

has the invariant

Ay = 75 [1026° B0yt — 2t + 303, = dai) + Sia(Saiaq — 8ay + 160,05 — 1500, — 8K.)

+ 2/1(50at2 — 4a,ai + lSaj + 40a.K) + al.(8a.a, + 6aa,a,, — 4d*a,.,. — Saa, — 3ai, — 8K)

. 3
—40aa, i, + 8a%2,] — e (2al, — 5ia,)’. (13)
(C) The family of Eq. (1) obeying the invariant conditions
A, =0, Ay #£0 (14)
has the invariant
As = 44,44 — 342 15
3

2. Generalities
2.1. Equivalence group

For obtaining invariants we use the Lie approach. This approach consists of finding an equivalence group of
point transformations, and finding its invariants by solving a system of homogeneous linear equations. Let us
recall the method for obtaining an equivalence group. Consider a parabolic equation (1). Since the functions «,
b, ¢ depend on the independent variables #, x only, the equivalence group should leave invariant the equations

a, =0, b, =0, c, = 0. (16)

Let the generator of a one-parameter equivalence group be

0 0 0 0 0 .0
Xe _ gt X > u_ - a > b ¥ c > 1
CatcattatYat et e (17)
where the coefficients &, ..., {° may depend, in general, depend on the variables ¢, x, u, a, b, ¢. The coefficients
of the prolonged operator
= 0 0 0 0 0 0

Xe — xe u S Uy - U _~ (T by _~ Cu
+e 6u,+€ aux+é auxx“% aau+C abu+c e,
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are defined by the prolongation formulae
(" = Di{" —u D& — uDi&", (" = D" —uDE — u DL,
Cuxx = D)e(Cux - uxtDiét - uxxD§€X7 Cau = DuCa - atDuét - axDu£x7
Cbu = Ducb - leuét - beuéxa Ccu = Dugh - chuét - CxDuéx-

Here the operators D¢, D¢ are operators of the total derivatives with respect to 7 and x, respectively, where the
space of the independent variables consists of ¢ and x,

0 0 0 0 0
D! = Y +u,— % + (a, + wa,) % + (b, + ub,) W + (¢ +ucy) % +
00 d d 0
D = P + g + (a, + u.a,) % + (b + usb,) W + (cx + ucy) 6_

The operators D,, D, and D,, are operators of total derivatives with respect to ¢, x and u, where the space of the
independent variables consists of ¢, x, and u,

0 0 0 0
D, = 6t+at +bt6b+ct_+"'7

oc
0 0 0 0
Dx—a+ax&+bx&+cx&+"'v
0 0 0 0
Du —a+au&+bu&+cu&+

Because of (16) and the definitions of {, (™, (*, one can split the part of determining equations
(e=0, =0, *=0

with respect to a,, a, b,, by, ¢;, ¢,. Consequently the coefficients &, &%, {9, ¢” and (¢ do not depend on u.
Solving the determining equations

X)) =0,

one finds
5 éx =q, Y= uo(t,x), (:a = 2aqt —apy, é’b =aq,, + qu - bpt +4, — 2a0,,
{*=—cp, — 0, — aoy, — bay,

with arbitrary functions p = p(¢), ¢ = ¢(t,x), 0 = a(t,x). Hence, we arrive at the following generator of the
equivalence group:

0

0 0 0 9
X =p—tqg— — 4 a2q. —p)— o 2
pat+qax+wfau+a( q. p,)aa+ (aq. + bq, — bp, +q, — 2a0,) —

0
% — (ep,+ 0, + aoy + bo,) —

oc’
(18)

This manuscript is devoted to constructing differential invariants of the equivalence group. For obtaining nth-
order invariants we use the infinitesimal test

X¢(J) =0,

where J depends on a, b, ¢ and their derivatives up to order n. Notice that for relative invariants the infinites-
imal test is

XWU)s=0, k=1,....s,

where S is a manifold defined by equations J, =0, k=1,...,s.
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2.2. Semi-invariants and the representation of invariants

Recall that the generator for finding semi-invariants is (see [2])

e 0 g 0
X —uaa—(Zaax)&—(0',+a0'xx+b0'x)&7 (19)

and that Eq. (1) has the following semi-invariants up to the second-order (see Section 1)
a, at7 ay, atM Apx,s axx7 Ka

where K is given by Eq. (4):
1
K =2¢,a*> — b,a — b,a* — b.ba+ b.a,a+ Ebzax + ba, + ba,.a — bai.

Furthermore, the invariants of the equivalence group defined by the generator (18) are in the class of functions
J of the form (4) involving, in general, the derivatives of ¢ up to the order n, and derivatives of the function
K(t,x) are up to the order n — 2. Accordingly, the generator (18) is rewritten in the form
0 x O
X¢=a(2q, — p,) — —
a(2q, —p) 5+ 5

where

CK - thaax - qxxxxa3 - qxxxaxa2 - 2thxa2 + 3qu - qtta + q[(af + Axxd — azzc) - 3er

The coefficients of the prolonged operator
~ 0 0 x O k. O
Xe:Xe (N ax _— t_ x _
Tt T T T e,
are defined by the prolongation formulae, e.g.
Car = cha - alDtél - aXleX, Cal = xCa - aleét - axDxéxa

=D -KkDE -K.DE, =D —KD:E - KDE,

o (20)

where

0 0 0 0
Dt—&+at&+KtaK+"'a Dx_a+ax&+KxaK+"'

For finding invariants one has to apply the following procedure. Let us consider an invariant of order n, where
it is assumed that J depends on the variable «, its derivatives up to nth-order, the function K and its derivatives
up to (n — 2) order. Invariants can be obtained by solving the equations

Xe(J) =0,
and relative invariants by solving the equations

X¢(Jo)|s = 0.
3. Sixth-order invariants

This section is devoted to finding sixth-order differential invariants. Let
J(a) at) ax7 att; atxy axx7 MR} axxxxxx7 K7 Kt7 Kx7 Ktt7 Ktx; Kxx7 MR} Kxxxx)
be a sixth-order differential invariant. N
The prolonged operator X° is defined by (20). Splitting the equations X¢(J) = 0 with respect to p, g and its

derivatives, one obtains a system of 43 linear homogeneous equations. Some of these equations are of the fol-
lowing two types. The first type is

Jo+ Y aid, =0, (21)
i=1
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where J = J(x,y1,V2,- - -,Vn), and the coefficients a; (i = 1,2,. . .,n) are linear functions of the independent vari-
ables y1,y»,...,y;—1 which have the form

i—1

a; = Z ﬁz;k(x))ﬁ( + 7;(x)-

k=1

The characteristic system for Eq. (21) is

dx_ dy, - dy, dy,

1oy Bay (x)yy + 72(x) B Ba1(x)yy + B32(X)yy 4 73(x) B

From the characteristic system one can obtain the general solution of (21).
The second type of equations is

xJ + ZkiJ’in,- =0, (22)

i=1

where k; (i=1,2,...,n) are constant. The general solution of (22) is
J=J(1 s Jy), where J, =21 (i=1,2,....n).
X

The calculations for obtaining the system of equations for finding invariants and solving its equations are
cumbersome. For these calculations we therefore used the Reduce programs developed for solving the linear-
ization problem of third-order ordinary differential equation [5].

After solving the equations of the first and second types the system is reduced to the following system of
equations

oJ oJ oJ oJ oJ
_ — = _ = 2
anJ] 0, 66.] J3+56 J1+76 0, 6J2J3 0, (23)
where
oy Oa oA Oa
_ 5 _ 7 _ 6
Jy=1/(8a), <2a a 5a ))/(l6a ), (26x 56 ))/( ),

and J = (J],Jz,.]3).

If 2 =0, then J; = J, = J3 = 0. This case was studied in [3]. If 2 # 0, then J; # 0. Because of the first equa-
tion of (23), J does not depend on J,. Solving the second equation of (23), one obtains the only invariant
J3/J¢. This invariant was also obtained in [4] as an invariant with respect to contact transformations.

4. Seventh-order invariants

Similar to the previous section the system for finding invariants of seventh-order is reduced to the following
equations

o o o

U Ta+ 65Ty + S5 =0, (24)
o o o o o o

0 1Y e sy s 1Y o 25
e ARt an e e e ’ (25)
o v W

3 g2 gy Yo, (26)

0J¢ 0J4 o/,
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where

J4 = (=5haca — di.a,a — Sanal + 15a,a,.2 + 2).a%) ) (8a*),
(=94a.a — Saal + 15a)2{)v +2)na?)/(8a’),
Jo = (—40a,,a* ). — 4ac I’ + 30a,.a,a® i — 40),a.a

Js

+ .a(—8ana + 8a,a, + 6aa.a — 3az — 8K) + 80a,a.al
— 40a,al + IOOatzﬂv +40a,a,.al — 80ataﬁ}v — 20a,.,.a° A
+ 30a§xa22 — 750txxafai + 3061?/1 + 80a,K ). — 40K ,al. + 84a%)/(324°).

Taking the Poisson bracket of Egs. (24) and (26), one obtains the equation

_— = U. 2
AL (27)

Assuming 1 # 0, Egs. (24) and (25) can be solved. The remaining Eqs. (26) and (27) are reduced to the
equations

oJ oJ
2 ——(5Js —3J3) +15—J;p =0 28
aJlo( s 2 gy ’ (28)
oJ
—J7=0 29
T (29)
where J = J(J7,J3,J9,J10), and
Js Js 5116 — 1273 514 — 6J2J3
J7=F, 8:F7 9:—5J}4/5 ; J1o=—5J}3/5

Since Eqs. (28) and (29) contain no derivatives with respect to J; and Jg, the variables J; and Jg are invariants.
If J; # 0, then J does not depend on Jy, and Eq. (28) becomes

oJ
2—(5Js—3J3) =0.
aJ]O ( 8 7)
This equation shows that there is the additional invariant J,o which is obtained for (5J5 — 3J3) = 0.

If J; =0, then one needs only to solve Eq. (28) which becomes

oJ aoJ
10—Jg+15—J,0 =0.
et A
If Jg # 0, this equation yields the invariant
3J7
Jy =Jy— >0,
1 * 747,
The assumption Jg = 0 leads to the analysis of the equation
oJ
Jiw=—=0.
037,

If J1p = 0 then one only obtains the invariant J.

Conditions Additional invariant
J; #0 5Js—3J2#0 No

5Js—3J3=0 J1o
J;=0 Js#0 Ju

Jg =0 J]() #0 No

Jl():O J9
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Remark. The invariants J7, Jg, J1o and J;; are equal, up to immaterial constant factors, to the invariants (8),
(9), (11),..., respectively. Namely:

s As

Jr =801, Iy =8P, S =845 Sy =84 Sy =8" .
2

5. Conclusion

This paper is devoted to finding sixth and seventh-order differential invariants of linear second-order par-
abolic partial differential equation (1) under an action of the equivalence group of point transformations. We
found one sixth-order differential invariant J g /J ? Seventh-order invariants are J, Jg. Other functions Jy, J;q
and J;; are invariants for particular cases. We have also found invariants of eighth and ninth-order, but the
result is too cumbersome, and it is not presented in the paper.
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