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Abstract. Exact computations of polarizations correlations probabilities are carried out in QED, to the
leading order, for initially polarized as well as unpolarized particles. Quite generally they are found to be
speed dependent and are in clear violation of Bell’s inequality of Local Hidden Variables (LHV) theories.
This dynamical analysis shows how speed dependent entangled states are generated. These computations,
based on QED are expected to lead to new experiments on polarization correlations monitoring speed in
the light of Bell’s theorem. The paper provides a full QED treatment of the dynamics of entanglement

PACS. 12.20.Ds Specific calculations – 12.20.Fv Experimental tests – 03.65.Ud Entanglement and quan-
tum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

1 Introduction

We carry out exact computations of joint probabilities of
particle polarizations correlations in QED, to the lead-
ing order, for initially polarized and unpolarized particles.
The interesting lesson we have learn from such studies is
that the mere fact that particles emerging from a process
have non-zero speeds to reach detectors implies, in gen-
eral, that their polarizations correlations probabilities de-
pend on speed [1]. The present extended, and needless to
say, dynamical analysis shows that this is true, in general.
This is unlike formal arguments based simply on combin-
ing angular momenta. As a byproduct of this work, we
obtain clear violations with Bell’s inequality (cf. [2–4]) of
LHV theories. We will also see how QED generates speed
dependent entangled states.

Several experiments have been performed in recent
years (cf. [4–8]) on particles’ polarizations correlations.
And, it is expected that the novel properties recorded here
by explicit calculations following directly from field theory,
which is based on the principle of relativity and quantum
theory, will lead to new experiments on polarization cor-
relations monitoring speed in the light of Bell’s Theorem.
We hope that theses computations will be also useful in
such areas of physics as quantum teleportation and quan-
tum information in general.

� Work supported by a Royal Golden Jubilee Award.
a e-mail: edouard@ccs.sut.ac.th

The relevant quantity of interest here in testing Bell’s
inequality of LHV [2] theories is, in a standard notation,

S =
p12(a1, a2)
p12(∞,∞)

− p12(a1, a
′
2)

p12(∞,∞)
+
p12(a′1, a2)
p12(∞,∞)

+
p12(a′1, a′2)
p12(∞,∞)

− p12(a′1,∞)
p12(∞,∞)

− p12(∞, a2)
p12(∞,∞)

(1.1)

as is computed from QED. Here a1, a2 (a′1, a
′
2) spec-

ify directions along which the polarizations of two par-
ticles are measured, with p12(a1, a2)/p12(∞,∞) denot-
ing the joint probability, and p12(a1,∞)/p12(∞,∞),
p12(∞, a2)/p12(∞,∞) denoting the probabilities when the
polarization of only one of the particles is measured.
[p12(∞,∞) is normalization factor.] The corresponding
probabilities as computed from QED will be denoted by
P [χ1, χ2], P [χ1,−], P [−, χ2] with χ1, χ2 denoting angles
the polarization vectors make with certain axes spelled
out in the bulk of the paper. To show that QED is in vio-
lation with Bell’s inequality of LHV, it is sufficient to find
one set of angles χ1, χ2, χ′

1, χ
′
2 and speed β, such that S,

as computed in QED, leads to a value of S with S > 0
or S < −1. In this work, it is implicitly assumed that the
polarization parameters in the particle states are directly
observable and may be used for Bell-type measurements
as discussed.

The need of a relativistic treatment based on explicit
quantum field dynamical calculations in testing Bell-like
inequalities is critically important. An intriguing and very
recent reference [9], which appeared after the submission
of our paper for publication, discusses the role of rela-
tivity in quantum information, in general, and traces the
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historical development of its role, and most importantly,
in the light of our present investigations, emphasizes the
need of quantum field theory as necessary for a consistent
description of interactions. Most earlier analyses dealing
with relativistic aspects, relevant to information theory
and Bell-like tests are kinematical of nature or deal with
basic general properties of local operators associated with
bounded regions of spacetime setting limits on measure-
ments and localizability of quantum systems. These prob-
abilities are well documented in some of the recent mono-
graphs [10–12] on the subject. Notable important other
recent references on such general aspects which are, how-
ever, non-dynamical of nature are [13–17], and a paper
by Czachor [18] indicating how a possible decrease in vi-
olation of Bell’s inequalities may occur. In the present
work, we are interested in dynamical aspects and related
uniquely determined probabilities (intensities) of correla-
tions based on QED, as a fully relativistic quantum field
theory (i.e., encompassing quantum theory and relativ-
ity) that meet the verdict of experiments. QED is a non-
speculative theory and as Feynman [19] puts it, it is the
most precise theory we have in fundamental physics. The
closest investigation to our own is that of reference [20],
a reference we encountered after the submission of our
paper for publication, which considers spin-spin interac-
tions, in a QED setting, for non-relativistic electrons and,
unfortunately, does not compute their polarizations cor-
relations which are much relevant experimentally. In the
present paper, exact fully relativistic QED, computations,
to the leading order, of polarizations correlations are ex-
plicitly carried out for initially polarized and unpolarized
particles. The importance of also considering unpolarized
spin stems from the fact that we discover the existence of
non-trivial correlations, in the outcome of the processes,
even for such mixed states (since one averages over spin)
and not only for pure states arising from polarized spins,
leading, in particular, in both cases to speed dependent
probabilities. The main results of our paper are given
in (2.20), (2.22), (2.23), (2.41–2.43), (3.10), (3.12–3.19).
All of these probabilities lead to a violation of Bell’s in-
equality of LHV theories. As the computations are based
on the fully relativistic QED, it is of some urgency that
relevant experiments are carried out by monitoring speed.

2 Polarizations correlations: initially polarized
particles

We consider the process e−e− → e−e−, in the c.m., with
initially polarized electrons with one spin up, along the
z-axis, and one spin down. With p1 = γmβ(0, 1, 0) =
−p2 denoting the momenta of the initial electrons, γ =
1/
√

1 − β2, we consider momenta of the emerging elec-
trons with

p′
1 = γmβ(sin θ, 0, cos θ) = −p′

2 (2.1)

where θ is measured from the z-axis.

For the four-spinors of the initial electrons, we have
(p0 = γm)

u(p1) =
(
p0 +m

2m

)1/2








(
1
0

)

iρ
(

0
1

)








(2.2)

u(p2) =
(
p0 +m

2m

)1/2









(
0
1

)

iρ
(

1
0

)









(2.3)

ρ =
γβ

γ + 1
=

β

1 +
√

1 − β2
(2.4)

and for the final ones

u(p′1) =
(
p0 +m

2m

)1/2
(

ξ1
σ·p′

1
p0+mξ1

)

(2.5)

u(p′2) =
(
p0 +m

2m

)1/2
(

ξ2

− σ·p′
1

p0+mξ2

)

(2.6)

where the two-spinors ξ1, ξ2 will be specified later.
The expression for the amplitude of the process is well-

known (cf. [21])

A ∝
[
u(p′1)γµu(p1)u(p′2)γµu(p2)

(p′1 − p1)2

−u(p
′
2)γ

µu(p′1)u(p′1)γµu(p2)
(p′2 − p1)2

]
. (2.7)

The following matrix elements are needed and are readily
calculated

u(p′1)γ
0u(p1) =

p0 +m

2m
ξ†1

(
1 + iρ2 sin θ
−iρ2 cos θ

)
(2.8)

u(p′2)γ
0u(p2) =

p0 +m

2m
ξ†2

( −iρ2 cos θ
1 − iρ2 sin θ

)
(2.9)

u(p′1)γ
0u(p2) =

p0 +m

2m
ξ†1

(
iρ2 cos θ

1 + iρ2 sin θ

)
(2.10)

u(p′2)γ
0u(p1) =

p0 +m

2m
ξ†2

(
1 − iρ2 sin θ

iρ2 cos θ

)
(2.11)

u(p′1)γ
ju(p1) =

p0 +m

2m
ρξ†1

[(
i + sin θ
− cos θ

)
δj1

+ i
(−i + sin θ

− cos θ

)
δj2 +

( − cos θ
−i + sin θ

)
δj3

]

(2.12)



E.B. Manoukian and N. Yongram: Speed dependent polarization correlations in QED and entanglement 139

u(p′2)γ
ju(p2) =

p0 +m

2m
ρξ†2

[(− cos θ
i − sin θ

)
δj1

+ i
(

cos θ
i + sin θ

)
δj2 +

(
i + sin θ
− cos θ

)
δj3

]

(2.13)

u(p′1)γ
ju(p2) =

p0 +m

2m
ρξ†1

[(
cos θ

i + sin θ

)
δj1

+ i
(− cos θ

i − sin θ

)
δj2 +

(
i − sin θ

cos θ

)
δj3

]

(2.14)

u(p′2)γ
ju(p1) =

p0 +m

2m
ρξ†2

[(
i − sin θ

cos θ

)
δj1

− i
(

i + sin θ
− cos θ

)
δj2 −

(
cos θ

i + sin θ

)
δj3

]
.

(2.15)

For θ = 0, (see Fig. 1), we obtain from (2.7–2.15)

A ∝ ξ†1ξ
†
2

{

(1 + 6ρ2 + ρ4)
[(

0
1

)

1

(
1
0

)

2

−
(

1
0

)

1

(
0
1

)

2

]

+ 4iρ2

[(
0
1

)

1

(
0
1

)

2

+
(

1
0

)

1

(
1
0

)

2

]}

(2.16)

generating the speed dependent (normalized) entangled
state of the emerging electrons

|ψ〉 =
1
N

{
(1 + 6ρ2 + ρ4)√

2

[(
0
1

)

1

(
1
0

)

2

−
(

1
0

)

1

(
0
1

)

2

]

+
4iρ2

√
2

[(
0
1

)

1

(
0
1

)

2

+
(

1
0

)

1

(
1
0

)

2

]}

(2.17)

where

N =
[
(1 + 6ρ2 + ρ4)2 + 16ρ4

]1/2
(2.18)

ξj =
1√
2

(
e−iχj/2

eiχj/2

)
, j = 1, 2 (2.19)

ρ is defined in (2.4), and the angles are measured relative
to the x-axis (see Fig. 1).

The joint probability of the electrons polarizations cor-
relations is then given by

P [χ1, χ2] =
∥
∥
∥ξ†1ξ

†
2 |ψ〉

∥
∥
∥

2

=

[
(1 + 6ρ2 + ρ4) sin

(
χ1−χ2

2

)− 4ρ2 cos
(

χ1+χ2
2

)]2

2 [(1 + 6ρ2 + ρ4)2 + 16ρ4]
.

(2.20)

x

z

y

χ1

e−

e−

e−e−

Fig. 1. The figure depicts e−e− scattering, with the electrons
initially moving along the y-axis, while the emerging electrons
moving along the z-axis. The angle χ1, measured relative to the
x-axis, denotes the orientation of spin of one of the emerging
electrons may make.

[For β → 0, one obtains a rather familiar expression
P [χ1, χ2] = sin2 [(χ1 − χ2)/2] /2.]

If only one of the spins is measured, say, corresponding
to χ1, we then have to form the state

ξ†1 |ψ〉 =
[1 + 6ρ2 + ρ4]

2N

(
e−iχ1/2

−eiχ1/2

)

2

+
4iρ2

2N

(
eiχ1/2

e−iχ1/2

)

2

(2.21)

from which we obtain the corresponding probability

P [χ1,−] =
∥
∥
∥ξ†1 |ψ〉

∥
∥
∥

2

=
1
2
− 4ρ2(1 + 6ρ2 + ρ4)

(1 + 6ρ2 + ρ4)2 + 16ρ4
sinχ1 (2.22)

and similarly

P [−, χ2] =
∥
∥∥ξ†2 |ψ〉

∥
∥∥

2

=
1
2

+
4ρ2(1 + 6ρ2 + ρ4)

(1 + 6ρ2 + ρ4)2 + 16ρ4
sinχ2. (2.23)

The probability P [χ1,−] may be equivalently obtained by
summing P [χ1, χ2] over the two angles

χ2, χ2 + π (2.24)

for any arbitrarily chosen fixed χ2, i.e.,

P [χ1, χ2] + P [χ1, χ2 + π] = P [χ1,−] (2.25)

as is easily checked, and similarly for P [−, χ2].
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For all 0 � β � 1, angles χ1, χ2, χ′
1, χ

′
2 are read-

ily found leading to a violation of Bell’s inequality of
LHV theories. For example, for β = 0.3, χ1 = 0◦,
χ2 = 137◦, χ′

1 = 12◦, χ′
2 = 45◦, S = −1.79 violating

the inequality from below.
The speed dependence of P [χ1, χ2] generally holds true

for other angles as well. For θ = π/2, however, it is readily
verified that (2.7) leads to the entangled state

|ψ〉0 =
1√
2

[(
0
1

)

1

(
1
0

)

2

−
(

1
0

)

1

(
0
1

)

2

]
(2.26)

for all 0 � β � 1, leading to a rather familiar expression
P [χ1, χ2] = sin2 [(χ1 − χ2)/2] /2.

Now we consider the process e+e− → 2γ, in the c.m.
of e−, e+ with spins up, along the z-axis, and down, re-
spectively. With p1 = p(e−) = γmβ(0, 1, 0) = −p(e+) =
−p2, we have for e−, e+ the spinors given by

u =
(
p0 +m

2m

)1/2








(
1
0

)

iρ
(

0
1

)








(2.27)

v =
(
p0 +m

2m

)1/2









iρ
(

0
1

)

(
1
0

)









(2.28)

with ρ defined in (2.4), and we consider momenta of the
photons

k1 = γm(sin θ, 0, cos θ) = −k2 (2.29)

where we have used the facts that

|k1| = |k2| = k0
1 = k0

2 = p0(e±) ≡ p0 = γm. (2.30)

The amplitude for the process is given by (cf. [21])

A ∝ v

[
γµγk1γ

ν

2p1k1
+
γνγk2γ

µ

2p1k2
+
γµpν

1

p1k1
+
γνpµ

1

p1k2

]
u eν

1e
µ
2

(2.31)

where eµ
1 = (0, e1), e

µ
2 = (0, e2) are the polarizations of

the photons with (j = 1, 2)

ej = (− cos θ cosχj , sinχj , sin θ cosχj) ≡
(
e
(1)
j , e

(2)
j , e

(3)
j

)
.

(2.32)

The following matrix elements are readily derived

v
(
γiγ0γj

)
u =

p0 +m

2m
2iεij2ρ (2.33)

vγiu =
p0 +m

2m
(1 − ρ2)δi3 (2.34)

v
(
γiγmγj

)
u =

p0 +m

2m
(−δmjδi3 − δmiδj3 + δijδm3

)

× (1 − ρ2) − i
p0 +m

2m
(1 + ρ2)εimj .

(2.35)

Upon setting,

k1

|k1| = n (2.36)

the amplitude A is then given by

A ∝ −i(1 + ρ2)n · (e1 × e2)

+ β(1 − ρ2)
(
e
(2)
1 e

(3)
2 + e

(3)
1 e

(2)
2

)
. (2.37)

For θ = π/2, this gives

A ∝ − (0, sinχ1, sinχ1)1 (0, sinχ2, sinχ2)2

×




i(1 + ρ2)








0
1
0





1




0
0
1





2

−



0
0
1





1




0
1
0





2





−β(1 − ρ2)








0
1
0





1




0
0
1





2

+




0
0
1





1




0
1
0





2










(2.38)

(see Fig. 2), generating a speed dependent (normalized)
entangled state for the photons given by

|φ〉 =
1
N





i(1 + ρ2)√

2








0
1
0





1




0
0
1





2

−



0
0
1





1




0
1
0





2





−β (1 − ρ2)√
2








0
1
0





1




0
0
1





2

+




0
0
1





1




0
1
0





2










(2.39)

with

N =
[
(1 + ρ2)2 + β2(1 − ρ2)2

]1/2
. (2.40)

Therefore the joint probability of photons polarizations
correlations is given by

P [χ1, χ2] = ‖(0, sinχ1, cosχ1)1(0, sinχ2, cosχ2)2 |φ〉‖2

=
(1 + ρ2)2 sin2(χ1 − χ2) + β2(1 − ρ2)2 cos2(χ1 + χ2)

2[(1 + ρ2)2 + β2(1 − ρ2)2]
(2.41)
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x

z

y

χ1

e− e+

Fig. 2. The figure depicts e+e−

annihilation into 2γ, with e+,
e− moving along the y-axis, and
the emerging photons moving
along the x-axis. χ1 denotes the
angle the polarization vector of
one of the photons may make
with the z-axis.

and

P [χ1,−] = ‖(0, sinχ1, cosχ1)1 |φ〉‖2 =
1
2

(2.42)

P [−, χ2] = ‖(0, sinχ2, cosχ2)2 |φ〉‖2 =
1
2

(2.43)

P [χ1,−] is also equivalently obtained by summing
P [χ1, χ2] over

χ2, χ2 +
π

2
(2.44)

for any arbitrarily chosen χ2, i.e.,

P [χ1, χ2] + P
[
χ1, χ2 +

π

2

]
= P [χ1,−] (2.45)

and similarly for P [−, χ2].
For all 0 � β � 1, angles χ1, χ2, χ′

1, χ
′
2 are read-

ily found leading to a violation of Bell’s inequality of
LHV theories. For example, for β = 0.2, χ1 = 0◦,
χ2 = 23◦, χ′

1 = 45◦, χ′
2 = 67◦, S = −1.187 violating

the inequality from below.
Again the speed dependence of P [χ1, χ2] generally

holds true for other angles as well. For θ = 0, however,
it is readily checked that (2.37) leads to the entangled
state

|φ0〉 =
1√
2








0
1
0





1




0
0
1





2

−



0
0
1





1




0
1
0





2



 (2.46)

for all 0 � β � 1 giving a rather familiar expression
P [χ1, χ2] =

[
sin2(χ1 − χ2)

]
/2.

3 Polarizations correlations: initially
unpolarized particles

For the process e−e− → e−e−, in the c.m.,
with initially unpolarized spins, with momenta

p1 = γmβ(0, 1, 0) = −p2, we take for the final elec-
trons

p′
1 = γmβ(1, 0, 0) = −p′

2 (3.1)

and for the four-spinors

u(p′1) =
(
p0 +m

2m

)1/2
(

ξ1
σ·p′

1
p0+mξ1

)

, ξ1 =
(−i cosχ1/2

sinχ1/2

)

(3.2)

u(p′2) =
(
p0 +m

2m

)1/2
(

ξ2

− σ·p′
1

p0+mξ2

)

, ξ2 =
(−i cosχ2/2

sinχ2/2

)
.

(3.3)

A straightforward but tedious computation of the corre-
sponding probability of occurrence with initially unpolar-
ized electrons, (2.7) leads to

Prob ∝ [u(p′1)γ
µ(−γp1 +m)γσu(p′1)]

× [u(p′2)γµ(−γp2 +m)γσu(p′2)]

− [u(p′1)γ
µ(−γp1 +m)γσu(p′2)]

× [u(p′2)γµ(−γp2 +m)γσu(p′1)]

− [u(p′2)γ
µ(−γp1 +m)γσu(p′1)]

× [u(p′1)γµ(−γp2 +m)γσu(p′2)]

+ [u(p′2)γ
µ(−γp1 +m)γσu(p′2)]

× [u(p′1)γµ(−γp2 +m)γσu(p′1)] (3.4)
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which after simplification and of collecting terms re-
duces to

Prob ∝ (1 − β2)(1 + 3β2) sin2

(
χ1 − χ2

2

)

+ β4 cos2
(
χ1 + χ2

2

)
+ 4β4

≡ F [χ1, χ2] (3.5)

where we have used the expressions for the spinors
in (3.2), (3.3).

Given that the process has occurred, the conditional
probability that the spins of the emerging electrons
make angles χ1, χ2 with the z-axis, is directly obtained
from (3.5) to be

P [χ1, χ2] =
F [χ1, χ2]

C
. (3.6)

The normalization constant C is obtained by summing
over the polarizations of the emerging electrons. This is
equivalent to summing of F [χ1, χ2] over the pairs of angles

(χ1, χ2), (χ1 + π, χ2), (χ1, χ2 + π) (χ1 + π, χ2 + π)
(3.7)

for any arbitrarily chosen fixed χ1, χ2, corresponding to
the orthonormal spinors
(−i cosχj/2

sinχj/2

)
,

(−i cos(χj + π)/2
sin(χj + π)/2

)
=
(

i sinχj/2
cosχj/2

)

(3.8)

providing a complete set, for each j = 1, 2, in reference
to (3.2), (3.3). This is,

C = F [χ1, χ2] + F [χ1 + π, χ2]
+ F [χ1, χ2 + π] + F [χ1 + π, χ2 + π]

= 2(1 + 2β2 + 6β4) (3.9)

which as expected is independent of χ1, χ2, giving

P [χ1, χ2] =

(1 − β2)(1 + 3β2) sin2
(

χ1−χ2
2

)
+ β4 cos2

(
χ1+χ2

2

)
+ 4β4

2(1 + 2β2 + 6β4)
.

(3.10)

By summing over

χ2, χ2 + π (3.11)

for any arbitrarily fixed χ2, we obtain

P [χ1,−] =
1
2

(3.12)

and similarly,

P [−, χ2] =
1
2

(3.13)

for the probabilities when only one of the photons polar-
izations is measured.

A clear violation of Bell’s inequality of LHV theories
was obtained for all 0 � β � 0.45. For example, for β =
0.3, with χ1 = 0◦, χ2 = 45◦, χ′

1 = 90◦, χ′
2 = 135◦ give

S = −1.165 violating the inequality from below. For larger
β values, alone, one cannot discriminate between LHV
theories and quantum theory for this process. A violation
of Bell’s inequality for at least some β values, as seen,
however, automatically violates LHV theories.

The probability of photon polarizations correlations in
e+e− → 2γ with initially unpolarized e+, e−, has been
given in [1] to be

P [χ1, χ2] =
1 − [cos(χ1 − χ2) − 2β2 cosχ1 cosχ2

]2

2[1 + 2β2(1 − β2)]
(3.14)

P [χ1,−] =
1 + 4β2(1 − β2) cos2 χ1

2[1 + 2β2(1 − β2)]
(3.15)

P [−, χ2] =
1 + 4β2(1 − β2) cos2 χ2

2[1 + 2β2(1 − β2)]
(3.16)

and a clear violation of Bell’s inequality of LHV theories
was obtained for all 0 � β � 0.2. Again, for larger values
of β, alone, one cannot discriminate between LHV theories
and quantum theory for this process. A violation of Bell’s
inequality for at least some β values, as seen, however,
automatically occurs violating LHV theories.

For completeness, we mention that for the annihilation
of the spin 0 pair into 2γ the following probabilities are
similarly worked out:

P [χ1, χ2] =

(
cos(χ1 − χ2) − 2β2 cosχ1 cosχ2

)2

2[1 − 2β2(1 − β2)]
(3.17)

P [χ1,−] =
1 − 4β2(1 − β2) cos2 χ1

2[1 − 2β2(1 − β2)]
(3.18)

P [−, χ2] =
1 − 4β2(1 − β2) cos2 χ2

2[1 − 2β2(1 − β2)]
(3.19)

and violates Bell’s inequality of LHV theories for all 0 �
β � 1.

4 Conclusion

We have seen by explicit dynamical computations based
on QED, that the polarizations correlations probabilities
of particles emerging in processes depend on speed, for
initially polarized as well as unpolarized particles, in gen-
eral. We have also seen how QED leads directly to speed
dependent entangled states. For processes with initially
polarized particles (as well as for spin 0 pairs annihilation
into 2γ), a clear violation of Bell’s inequality of LHV the-
ories was obtained for all speeds. This clear violation was
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also true for several speeds for processes with initially un-
polarized particles, but the tests are more sensitive on
the speed for such processes. The main results of the pa-
per are given in (2.20), (2.22), (2.23), (2.41–2.43), (3.10),
(3.12–3.19). We feel that it is a matter of some urgency
that the relevant experiments are carried out by monitor-
ing speed.

The authors would like to acknowledge with thanks for be-
ing granted a “Royal Golden Jubilee Award” by the TRF
No. PHD/0022/2545 for especially carrying out this project.
The authors would like also to thank the referees for for point-
ing out some pertinent references for this work and for valuable
suggestions.
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