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Abstract

An upper bound is derived for the exact ground state enérgyof N negatively charged bosons antdmotionless, i.e.,
fixed, positive charges with Coulombic interactions in arbitrary dimensionsy < —N(2+")/"/16712v3(2)“, in units of the
Rydberg, for allV > (2)" thus establishing, in particular, that the instability of “bosonic matter” is not a characteristic of the
dimensionality of space.

0 2003 Published by Elsevier B.V.

The instability of “bosonic matter” withV nega- sions. We were able to derive an explicit upper bound
tively charged bosons and motionless, i.e., fixed, for the exactEy in all dimensions
positive charges with Coulombic interactions, was in- 4 (2+v) /v

. me N

vestigated many years ago by Dyson and Lenard [1] g, < _<_)7 (1)
giving rise to the famou#//3 law for the ground state 2n? ) 16w2v3(2)¥
energy Ey. Such a power law behaviouv®, with forall N > (2)", wherem is the smallest of the masses
a > 1, implies the instability of such a system, since of the N negatively charged bosons. Thus we con-
the formation of such matter consisting@v + 2N) clude, in particular, that the instability of such matter
particles will be favourable over two separate systems is not a characteristic of the dimensionality of space.
brought into contact, each consisting@f + N) par- For example, no stable planar configurations may be

ticles, and the energy released upon collapse, in theformed corresponding to = 2. There has been much
formation of the former system, being proportional to interest in recent years in the physics of arbitrary di-
((2N)* —2(N)%), will be overwhelmingly large forre-  mensions, e.g., [4-7] and the role of the spin and sta-
alistically largeN, e.g.,N ~ 10?3. An elementary, but tistics theorem in such dimensions. It is well known
rigorous, upper bound fafy was derived by Lieb [2]  that the latter is tied up, e.g., [4] to the dimensionality
for N =83 n=1,2,..., for the problem at hand,  of space and we learn that such a system not being sub-
and extended for alv > 8 in [3] both in three dimen-  jected to stringent constrained statistics is necessarily
unstable in all dimensions. It is also an important the-
oretical question to investigate if the change of the di-
"5 Work supported by a Royal Golden Jubilee Award. mensionglity of.space will change such matter from,
" Corresponding author. e.g., an “implosive” to a “stable” or to an “explosive”
E-mail address: edouard@ccs.sut.ac.th (E.B. Manoukian). phase. The present work shows that this does not hap-
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pen. (Some of present field theories speculate that atand is zero otherwise, and fgr=1, ..., N —k,
early stages of the universe the dimensionality of space .

i - b1 7 — L)
was not necessarily three and, by a process, which mayw (%) = H( co{ i i ))
be referred to as compactification of space, the present’ ’ Pl VLo 2Lg
three-dimensional character of space arose upon the . =) )
evolution and the cooling of the universe.) The poten- =¢o(¥ —LY). [xi —L;”|< Lo ©)

tials considered are theg/ i type, and we do not dwell

and are zero otherwisé&, ) = jD(1,1,...,1). With

on the fate and the dynamics of the positive charges ; Lo < D/2, the interval§—L < x; < L}, {j D —
X £ ~ AN il

which, undoubtedly, involve complicated interactions,

and instability is established down to and above the disjoint. {—L <x; < L;i=1,..
nuclear level. Also since both signs of the charges are l ' '

involved in this work, the analysis becomes more in-

volved than one dealing with one sign of the charges ¢

only, e.g., [8]. Needless to say, if for someE y goes
to minus infinity, then (1) is automatically satisfied.
The Hamiltonian under study is given by

N N
H= ZP?/Zmi +Vi+Vo+ Zelei - R
i=1 i<j
(2
where
N N
V1=—Z Zezlfi—le_l, (3)
i=1 j=1
N
Vo= e?l% — %17t (4)
i<j

and thex;, ﬁj refer to the negative and positive
charges, respectively. Quite generally, we may write
foranyN > (2)",

N:(2n)”(l+%> <@'Q2)", @)’ =k, (5)

where 0< e <1 [3],n =1,2,.... We introduce an
N-particle trial function
W (X1,...,XN)
= (NUkDTY2Y " p(F () - (¥ ()
b
X Y1 (X(mg1)) - vk (X(Tw)), (6)
with the sum over all permutationgry, ..., 7y}

of {1,..., N}, such that¢(x), ¥;(x) are pairwise
orthonormal,

o) = ll[(iws(”")) =g, <L
i1 VL 2L

@)

Lo<xi<jD+ Lo}, j=1,...,N — k are pairwise
., v} defines a box
centered at the origin, whilgjD — Lo < x; < jD +
Lo;i=1,...,v} defines boxes with centers at the tip
ofthe vectord. (), respectively. We choose the vectors
Rl,...,ﬁk to lie in the box centered at the origin,
while we choos&Ryi1 =LY, ..., Ry = LNV-h,

By using the explicit bound for the expectation
value of the kinetic energy

vlh? [k (N —k)
m L LG

N
(W)Y p?/2mi|w) <
i=1
wherem is the smallest of the masses of the negatively
charged bosons, the following bound for the expecta-
tion value ofH is readily obtained

(W|H|¥)
vr2h? k
8n L2

+(N—k)|:

+ (H1)

~X

vlh?  S(N+k—-1) €
gni2 ¢ D ﬁLo}

(10)
with

k
(Hy) = —ek Z/d“i P2 (@)F — R
j=1
e%k(k — 1)

2
x | d'Xd"¥ g2 (¥)|X — %12 (&)

k
+ 262|R[ — Rj|_l.

i<j

(11)

The integrals in (11) involve integrations over the box
(-L<xi<L;i=1,..., v} centered at the origin,
and we recall thaiy, ..., Rr were chosen to lie in
this box. By partitioning the unit intervdD, 1]: 0 =
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ap<ai<---<a, =1, suchthat[2]
aj n
X 1 1
drcod (== )=—=(=> 12
f" (L) 2n (k) (12)
aj—1
letting o = (a; —ajfl),jzl,...,n,Z’;zlaj =1,

we generate boxeB(iy, ..., i,) of sidesa;; x a;, x

Ey <(¥Y|H|¥)

V7T2h2 62 k(u+l)/v
< k-
8mL2 4v L

+ (N —k)

<:U7T2;12 2
X > +e
8mLj

(N+k-1) 2 )
VvLo

xLog
(16)

- x @;, to bound (11) as a sum of integrations over where we have seb = xLg. Optimization overL,

these boxes [2]
€2k2 (2
2 L

Z v/dv*du-v

B(i1,...,iy)
x p2(¥)|X — ¥ Lpf (),

where (2)V is obtained by symmetry. Sincg —
¥ < ,/a,.zl +---+a? in each of the integrals in the
summand in (13), we obtain from (12)

(H1) < ——(2)”2 /,/oz,1+ ol (14)

iy

<Hl) S

(13)

From the Cauchy—Schwarz inequality this leads to

.....

2
€ oD/
4vL ’

where we have finally used that

(15)

~X

oz—i— +a

Ly

n
<Y it ta)=vm

i1,...0y

and the definition ok. All told we obtain from (10)

gives

L =v272h%/me’k". (17)

Optimization overLp, and choosingx sufficiently
large, the second term on the right-hand side of (16),
involving the(N — k) factor, leads to a strict negative
contribution with a power ofV less than that of the
first one. Thatis, we may further bound the right-hand
side of the inequality in (16) by the first term only from
above, which when the value &fin (17) is substituted
leads to the strict inequality in (1) by finally using (5).
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