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ABSTRACT

This paper proposes a new control structure with its
application in stabilizing an inverted pendulum
system. The structure is neuro-fuzzy control of which
initial parameters of the neural network are obtained
from the adaptive tabu search, hence the name
“neuro-tabu-fuzzy controller”. This proposed
controller consists of the Single Input Rule Modules
(SIRMs) and the dynamic importance degrees
(DIDs). The learning of the neural network results in
the DIDs. The simulation results indicate that the
proposed neuro-tabu-fuzzy controller has an ability
to stabilize a wide range of an inverted pendulum
system.

1. INTRODUCTION

Nowadays, modern industrial plants increase their 
complexity and demand flexibility that makes the 
control design difficult. It is known that the 
conventional control system design requires an 
explicit mathematical model of the plant. The 
practical characteristics of the plant such as 
nonlinearity, complexity, uncertainty, etc, are 
restrictions of the convention control because the 
plant model cannot be easily obtained. Intelligent 
control can be a practical alternative since control 
design can be based on the knowledge and experience 
of human. This method does not require any explicit 
mathematical model of the plant. The intelligent 
control such as fuzzy logic, neural network, 
combination of neural network and fuzzy logic was 
developed to apply for many complex control 
problems. An inverted pendulum system is a typically 
unstable nonlinear system often used as a benchmark 
for verifying the performance and effectiveness of 
control methods. One can find a great number of 
research articles concerning stabilization of an 
inverted pendulum on cart. Some recent works related 
to our work are reviewed as follows. Xu [1] 
constructed a fuzzy logic controller using simplified 
table-lookup method to build a set of 625 fuzzy rules 
for this purpose. Alata [2] used adaptive neuro-fuzzy 
inference to construct the rules for the fuzzy gain 
schedule to control an inverted pendulum system. 
Sakai [3] applied a nonlinear optimization method to

learn fuzzy control rules for an inverted pendulum 
system by using the vector simplex method. Omatu 
[4] used a neural network controller to tune the gains 
of a PID controller. Yi [5] applied a fuzzy logic 
controller based on the single input rule modules 
(SIRM) to stabilize an inverted pendulum system.
      In this article, we propose a new control structure,
which is an advanced form of the SIRM, to stabilize
an inverted pendulum system. The structure is based
on neural network, fuzzy logic, and adaptive tabu
search, so called neuro-tabu-fuzzy controllers. The
learning of the neural network uses a
backpropagation algorithm [6]. For fast convergence
and avoiding local minimum entrapment, adaptive
tabu search [7] is adopted to find suitable initial
values of the connection weights and the thresholds.
This proposed controller has a simple structure that
decreases the number of fuzzy rules.
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Fig. 1 Structure of the inverted pendulum system

2. INVERTED PENDULUM SYSTEM

Fig.1 depicts an inverted pendulum system in which
F is the driving force. Under stable mode, the
inverted pendulum is standing on a cart being
controlled to move on horizontally on a frictionless
rail. The dynamic equations of the inverted pendulum
system can be expressed as [5]
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where, cm and pm  are the mass of the cart and the 

pendulum, respectively. g =9.8 m/s2 is the gravitation. 

The parameter pl  is the half length of the pendulum. 

The variables , ,  represent the angular 

displacement, the angular velocity, and the 
acceleration of the pendulum, respectively. The 

variables x , v , a  denote the position, the velocity, 

and the acceleration of the cart, respectively.

3. NEURO-TABU-FUZZY CONTROLLER

The conventional fuzzy inference model sets all the
input variables into the antecedent part of each fuzzy
rule. This approach tends to increase the total number
of fuzzy rules exponentially with the number of the
input variables [5] and has a difficulty in setting up
suitable fuzzy rules. The Single Input Rule Modules
(SIRMs) [5] are adopted to handle these problems by
using only one input variable in the antecedent part of
the fuzzy rules. The SIRMs can be described as

1
SIRM if then- : :

imj j j
i i i i i j

i R x A f C                  (3)

where, SIRM-i denotes the SIRM of the ith input

variable and j
iR is the jth in the SIRM-i. j

iA and j
iC

are the membership functions of the ix  and if  in the

jth rule of the SIRM-i.
     The inference result 0

if of the consequent variable

if of the fuzzy rules can be determined by using the

simplified fuzzy reasoning method [8] defined as
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     Because each input variable plays a different role
on system performance, the dynamic importance
degree (DID) is set up for each input variable. The
learning of neural network results in the DIDs. Then,
the output f can be expressed as
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     The structure of the proposed neuro-tabu-fuzzy
controller is shown in Fig.2. In order to adjust the
DID for each input variable, the learning of the neural
network based on the backpropagation algorithm [6]
is adopted. Fig.3 shows the basic structure of a three

layer feedforward neural network applied in proposed
control structure. The learning of the backpropagation
algorithm can be described by the following four
steps.

Step 1. Find the initial values [-1, 1] of the weights 
and the thresholds by using adaptive tabu search.
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Fig. 2 Neuro-tabu-fuzzy control structure

Fig. 3 Multilayer feedforward neural network

Step 2. Compute the output of each layer
- hidden layer; 

1 jX
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- output layer; 2kX
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Step 3. Update the weights and the thresholds
- update the weights from the hidden to the output 
layer; 1jkW

1 1 1(t + t) = (t) +jk jk jkW W W

where
1 1 1 1 (t)jk k jW X

and
1 2 2 2 2(t) - (t) (t) 1- (t)k kd k k kX X X X              (6)
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- update the weights from the input to the hidden 

layer; ijW
(t + t) = (t) +ij ij ijW W W

where
ij j iW X

and 2
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- update the thresholds; 2k , 1 j

2 2 1 1(t + t) = (t) +k k k

1 1(t + t) = (t) +j j j

where , 1 ,  and 1  are the learning rate.

Step 4. Go back to Step 2 and repeat the process until 
the selected error criterion or the max-count iteration 
is met.

     Because the network output, 2kdX , is not 

obtainable, this problem can be overcome by taking 
the system output error to adjust the weights and the 
threshold [6]. So, eq. (6) is replaced by

1 2 2(t)- (t) (t) 1- (t)k kd k k ky y D X X                (7)
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     The adaptive tabu search (ATS) is the mechanism 
to search for the suitable initial values of the weights 
and the thresholds. It provides fast convergence and 
its procedures are detailed in [7].

4. SIMULATION RESULTS

The parameters of the inverted pendulum system are 

pm = 0.1 kg, cm = 1 kg and pl = 0.5 m. The moving 

range of the cart are limited to [-2.4, +2.4] m. The 
variables , , x , v  of the inverted pendulum are  

input variables of the SIRMs. The membership 
functions of NB (Negative Big), ZO (ZerO), and PB 
(Positive Big) of the antecedent part are defined in 
Fig. 4 and the fuzzy rules for each SIRM can be 
summarized in Table 1. The learning of the neural 
network requires the initial angle of the pendulum 
and the initial position of the cart to adjust the DIDs.

-1.0 1.00.0

NB PBZO

Fig. 4 Membership function for each SIRM

Antecedent variable

ix ( i = 1, 2, 3, 4)

Consequent variable

if (i= 1, 2, 3, 4)

NB -1.0

ZO 0.0

PB +1.0

Table 1. SIRM for each variable

     The simulation results are used to verify the 
performance and effectiveness of the proposed neuro-
tabu-fuzzy controller.

Fig. 5 Control result when pl = 0.5 m

Fig. 6 Control result when pl = 0.1 m

Fig. 7 Control result when pl = 1.0 m
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Fig. 8 Control result when the initial position of the
cart is 2.0 m

Fig. 9 Relation of the pendulum length with the
initial angle of the pendulum

     Fig. 5 shows the result, where the initial angle of 
the pendulum is 30 degrees and the other initial 
values are all zero. The sampling period is 0.01 s, 
following [5]. The numbers in Plant (0.5, 30.0, 0.0) 
represent the half length of the pendulum, the initial 
angle, and the initial position, respectively. In this 
case, the stabilization time is 3.48 s. To check the 
ability of the proposed controller, the length of the 
pendulum is changed. Fig. 6 shows the result when 
the length of the pendulum is 0.2 m, the stabilization 
time in this case is 3.57 s. After increasing the length 
of pendulum to 2.0 m, stabilization time is about 
6.17 s as indicated by Fig. 7. Fig. 8 depicts the result 
when the initial position of the cart is 2.0 m. As a 
result, the inverted pendulum system can be stabilized 
in 5.14 s. Fig. 9 shows the relation of the pendulum 
length with the initial angle of the pendulum. The 
symbols are located to indicate the complete 
stabilization time. The simulation results show that 
the proposed controller has ability to rapidly stabilize 
an inverted pendulum system of wide ranges.

5. CONCLUSION

In this article, we propose the neuro-tabu-fuzzy 
control structure to stabilize an inverted pendulum 
system. The proposed controller follows the basic 
structure of the SIRMs and the DIDs that can 
decrease the number of the fuzzy rules. The learning 
of neural network can adjust the DIDs. The adaptive 
tabu search is adopted to find the suitable initial 
parameters of neural network. The simulations results 
indicate that the neuro-tabu-fuzzy controller can 
rapidly stabilize an inverted pendulum system of 
various dimensions.
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