The hydration structures of F^- and Cl^- investigated by *ab initio* QM/MM molecular dynamics simulations

Anan Tongraar*a and Bernd Michael Rodeb

- ^a School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. E-mail: anan@ccs.sut.ac.th; Fax: 0066-44-224185
- b Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020, Innsbruck, Austria

Received 20th September 2002, Accepted 12th November 2002 First published as an Advance Article on the web 6th December 2002

Combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations have been performed to investigate the hydration shell properties of F^- and Cl^- . The chemically most relevant region, the hydration sphere of the anions, was treated by Born-Oppenheimer ab initio quantum mechanics using D95V+, 6-31+G and D95V++ basis sets for F^- , Cl^- and water, respectively, while the remaining part was described by classical pair potentials. The QM/MM simulations have predicted average coordination numbers of 4.6 ± 0.2 for F^- and 5.6 ± 0.1 for Cl^- , in contrast to the corresponding values of 5.8 ± 0.1 and 5.9 ± 0.1 resulting from classical pair potential simulations. Within the first hydration shell of F^- , the QM/MM results indicate more flexibility of the hydration complex in which the F^- ·· H-O bond appears to be linear. For the case of Cl^- , a combination of linear and bridged forms, together with a competition between the solvation of the ion and hydrogen bonding among water molecules, are observed.

