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CHAPTER I 

INTRODUCTION 

 

1.1 Automatic Target Recognition 

Automatic target recognition is a process of detection and classification used 

in various automatic functions (Bhanu and Jones, 1993; Ratches, Walters, Buser, and 

Guenther, 1997). There are various applications of the automatic target recognition to 

real world problems, such as personal identification, military surveillance, passport 

authentication, robotic navigation and manufacturing. In personal identification, 

human faces, fingerprints, and iris are of targets to be identified, while military 

surveillance deals widely with the recognition of military vehicles. In general, the 

classification is done by comparing the target captured by an image sensor against 

known objects stored in a reference template library until the target is identified. In 

this sense, the automatic target recognition can be performed by using a correlation 

method or template matching which is a mathematical method for comparing a 

similarity between two functions and defined as (Feitelson, 1988) 

 ∫ ∫
∞

∞−

∞

∞−

−−= '')','()','(),( *
dydxyyxxryxtyxC . (1-1) 

Here ),( yxr  and ),( yxt  are the reference and the target images, respectively. In the 

correlation method, the height and sharpness of the correlation function ),( yxC  

measures the similarity between the target and the reference images. If they match, 

the integral of  Eq. (1-1) has  large values over a sharp, narrow correlation peak. In the  
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unmatched case, the correlation peak is broad. Thus its value is small.  

One of the useful methods for calculating image correlation is the Fourier 

transform method. This method is based on a convolution theorem which states that 

the multiplication of two functions in the frequency domain is equivalent to their 

convolution in the space domain (Goodman, 1996), so that 

 { })},({)},({),( * yxryxtyxC F FF
-1= . (1-2) 

In Eq. (1-2), }{⋅F  and }{⋅-1
F  represent the forward and the inverse Fourier transform 

operators, respectively, and * denotes complex conjugation. According to Eq. (1-2), 

the image correlation can be computed by taking the Fourier transform of the target 

and the reference images. After the spectra of the target and the reference are 

multiplied, the resultant product is inversely Fourier transformed in order to obtain the 

correlation output. 

The computation of the image correlation via the Fourier transform method 

can be implemented by using either an electronic or optical approach. In order to 

perform the electronic correlation, the Fourier transformation is computed by using a 

two-dimensional (2-D) discrete Fourier transform. The discrete Fourier transform of 

the image ),( nmr  with NM ×  pixels is defined as (Heckbert, www, 1998) 

 ∑∑
−

=

−

=

+−
=

1

0

1

0

)(2

),(),(
M

m

N

n

N

ln

M

km
j

enmrlkR
π

. (1-3) 

This equation shows that the 2-D discrete Fourier transform is computed in serial by 

first performing the 1-D discrete Fourier transform of M  rows, and then is followed 

by another 1-D discrete Fourier transform of N  columns. Because the image 

correlation requires two forward discrete Fourier transforms and one inverse discrete 

Fourier transform, the electronic approach must perform very intensive computations 
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and it is slow due to the serial process. This indicates that the correlation-based 

system requires an extremely fast parallel-computing machine in order to perform the 

real-time automatic target recognition. 

On the other hand, an optical system provides an effective way to perform the 

2-D Fourier transform of images at the speed of light. The optical Fourier transform 

exploits an inherent parallelism of optics and the Fourier transforming ability of a lens 

to process input images. In order to perform optically the Fourier transform, a spatial 

pattern or a transparency is placed at the front focal plane of a thin lens. By 

illuminating the pattern with a collimated coherent light, the Fourier spectrum of the 

pattern can be obtained at the back focal plane of the lens. On the basis of this optical 

property, the 2-D correlation can be real-time implemented by using joint transform 

correlator. In the real-time joint transform correlator (Yu and Lu, 1984), the target 

image is detected by a charge-coupled device (CCD) image sensor, while the 

reference images are stored in the computer system. The target and the reference 

images are displayed onto an electrically addressed spatial light modulator (EASLM) 

in order to produce the joint input image. Next, the generated joint power spectrum is 

captured by the CCD. This captured joint power spectrum is transferred to the 

computer which will then either display the joint power spectrum onto the EASLM in 

order to perform the second optical Fourier transform or directly perform digital 

Fourier transform via fast Fourier transform algorithm. 

1.2 Significance of Study 

Although the joint transform correlator architecture is indeed useful for 

implementing the automatic target recognition system, there are several limitations 

that characterize the system such as: 
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1. The process of displaying the target and the reference images introduces a time 

delay which is dependent upon the image size. 

2. In real-world applications of the automatic target recognition system to personal 

identification and military surveillance, the system may deal with a large (and still 

increasing) number of target images to be recognized. As a consequence, the joint 

transform correlator must have a huge number of reference images which cover all 

possible variations of the target such as rotation, orientation, and scale changes. 

Thus, the joint transform correlator requires considerable storage capability which 

may cause a storage problem. 

3. The time delay and the storage problems become even more severe when a CCD 

sensor having a mega-pixels resolution is employed to detect the target image, 

because the size of the detected target may exceed several Mbytes. 

One practical approach to solve these problems is to compress the reference 

images. By applying a digital image compression, such as the one developed by the 

Joint Photographic Experts Group (JPEG) (Pennebaker and Mitchell, 1993), there are 

two advantages that can be obtained. First, the time delay occurred during transferring 

the image from the computer to the EASLM can be reduced. Second, less capacity 

will be occupied by storing the compressed references. Therefore, the implementation 

of the automatic target recognition by using the joint transform correlator with the 

compressed reference images has advantages in that it saves storage requirement and 

speeds up the detection time. In general, to perform compression, the number of bits 

needed to represent an image is reduced by discarding spatial and spectral 

redundancies as much as possible. 
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Furthermore, although there have been many research works devoted to the 

joint transform correlator, they were mainly done to improve the recognition 

performance of the joint transform correlator when its input target suffered from a 

poor illumination (Alam and Karim, 1993; Jutamulia, Storti, Gregory, and Kirsch, 

1991; Pati and Singh, 1998; Zhang and Karim, 1999) and additive Gaussian noise 

caused by the sensor (Li, Zhang, and Hu, 1996; Li, Yin, and Yu, 1998; Tanone, Uang, 

Yu, Tam, and Gregory, 1992; Wang, Shang, and Chatwin, 1996). A study of the 

performance of the joint transform correlator by using compressed reference images is 

yet to be done. For these reasons, it is important to study effects of the reference 

compression on the performance of joint transform correlator.  

1.3 Research Objectives 

There are two primary objectives of this work. The first objective is to study 

the effects of lossy image compression on the recognition performance of the joint 

transform correlator, while the second one is to obtain a guideline to optimize the 

performance of the joint transform correlator. 

1.4 Scope and Limitations of the Study 

 This dissertation studies the implementation of the automatic target 

recognition system by using the joint transform correlator with the compressed 

reference images. The study is carried out by both a computer simulation and an 

experimental verification. The scope and limitations of the study were defined as 

follows. 

- The JPEG compression algorithm is used for compressing the reference images, 

because it is one of the digital image compression standards and its format is 

widely supported by most CCD sensors. 
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- The target image of interest used in the study consists of single and multiple 

targets. Each target is characterized by different contrast and spatial-frequency 

content. In addition, the presence of an additive noise in the input target is also 

taken into account. 

- The metrics for quantifying the recognition performance of the joint transform 

correlator with compressed reference images are a ratio of correlation peak 

intensity to the standard deviation of the correlation intensity or peak-to-

correlation deviation (PCD) and a ratio of the autocorrelation peak intensity to 

the intensity of the secondary peak or peak-to-secondary peak ratio (PSR). The 

PCD is used for the case of single-target detection, while for multiple-target 

detection the PSR is used. 

In order to study the effects of the reference image compression on the 

recognition performance of the joint transform correlator, the research procedure 

shown as a diagram in Fig. 1.1 is used, where the image of interest is first prepared 

and duplicated into the target and the reference images. Second, the reference image 

is compressed into the JPEG format by using the ACDsee software with different 

compression levels, while the noise-free and noisy images are generated from the 

target. The target and the compressed reference images are then input into the joint 

transform correlator. The resultant output of the joint transform correlator is finally 

quantified. 

The joint transform correlator by using compressed reference images is first 

simulated by using MATLAB and is then experimentally verified. The experiment 

used in this dissertation is constructed by a conventional optical Fourier transformer 

using a Helium-Neon (He-Ne) laser as a  coherent light  source. An EASLM placed in 
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Figure 1.1 Diagram of research procedure. 

the front focal-plane of the Fourier transform lens is used to display a joint reference 

and target images. In order to detect the joint power spectrum and the correlation 

output intensity, a CCD sensor is placed in the back focal-plane of the lens.  

1.5 Organization  

This dissertation is organized into six chapters of which this is the first. 

Chapter II reviews the principles of optical pattern recognition by using the joint 

transform correlator. The review is started by discussing the basic optical Fourier 

transform processor and is followed by the mathematical description of the joint 

transform correlator and its optical implementation. The algorithm of the JPEG image 

compression and the compression of the reference images of the joint transform 

correlator are presented in Chapter III. The simulation and the experimental 

verification of single-target detection by using the joint transform correlator with 
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compressed reference images are presented in Chapter IV. Chapter V presents the 

simulation and the experimental results of the multiple-target detection by using joint 

transform correlator with compressed reference images. Finally, the conclusions of 

the dissertation are provided in Chapter VI. 



CHAPTER II 

OPTICAL PATTERN RECOGNITION USING 

JOINT TRANSFORM CORRELATOR 

 

In this chapter, the concept of optical pattern recognition by using joint 

transform correlator is presented. The discussion is started with reviewing principles 

of optical Fourier transformation by using a thin lens which forms the basis for 

implementing the correlation-based pattern recognition. This is followed by 

discussion of the theory of a joint transform correlator and its real-time 

implementation. 

2.1 Introduction 

Optical pattern recognition by correlation is one of the most successful 

applications of coherent optical processing systems and currently remains an active 

area of research. The reason of this is that the correlation of two functions, reference 

and target images, can be practically computed by taking an inverse Fourier transform 

of the product of the spectra of the two functions. Since the coherent optical system 

can perform Fourier transformations with the speed of light, optical correlators are 

very useful for real-time image classifications. 

In the field of optical pattern recognition, the VanderLugt (Lugt, 1964) and the 

joint transform correlators are two optical architectures widely used for implementing 

correlation operations. The VanderLugt correlator is the first optical architecture 

which uses a complex-valued transfer function of the reference image to detect the 
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input target image. The transfer function is interferometrically synthesized as a spatial 

filter. However, due to requirement for prior filter synthesis, the VanderLugt 

architecture is not suitable for real-time systems. This drawback is not found in the 

joint transform correlator (Goodman, 1996), in particular when the joint transform 

corrleator is implemented in conjunction with an electrically addressed spatial light 

modulator.  

2.2 The Optical Fourier Transform 

 The optical Fourier transform is based on the laws of diffraction and 

propagation of light. In the optical Fourier transform, a far-field diffraction (i.e., 

Fraunhofer diffraction) pattern of coherently illuminated spatial mask is mapped into 

the near-field diffraction by using a positive lens. This can be regarded as taking the 

2-D Fourier transform of the spatial mask by using the lens. Figure 2.1 shows a 

schematic diagram for implementing the optical Fourier transform of the spatial 

pattern with amplitude transmittance 1 1( , )u x y . By illuminating perpendicularly the  

 

 

 

 

 

 

 

 

 

Figure 2.1 Optical Fourier transform by a positive lens. 
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pattern placed at one focal length f in front of the Fourier transform lens with a 

coherent plane wave of unity amplitude, the amplitude distribution appearing at one 

focal length behind the lens is found to be (Goodman, 1996) 

 2 2 1 1 1 2 1 2 1 1

1 2
( , ) ( , ) exp ( )U x y u x y j x x y y dx dy

j f f

π
λ λ

∞ ∞

−∞ −∞

 
= − + 

 
∫ ∫ , (2-1) 

where λ is the wavelength of the coherent light, and 2 2( , )x y  are the actual 

coordinates in the horizontal and the vertical directions at the back focal plane which 

is also called as the Fourier plane. 

2.3 The Joint Transform Correlator 

The basic operation of the joint transform correlator consists of two of step 

process: Firstly, the generation of the joint power spectrum of the target and the 

reference images by using the optical Fourier transform shown in Fig. 2.2(a). In order 

to correlate the target 1 1( , )t x y  and the reference 1 1( , )r x y , they are placed side-by-side 

on the input plane. This joint input image can be mathematically expressed as  

 1 1 1 0 1 1 0 1( , ) ( , ) ( , )
JTC

f x y r x x y t x x y= − + + , (2-2) 

where 0x  and 0x−  are the position of the reference and the target images at the input 

plane ),( 11 yx , respectively. By illuminating perpendicularly this input image with a 

coherent plane wave, the Fourier transform of the joint input image generated at the 

Fourier plane becomes 

 

2 2 2
2 2 0

2 2 2
0

1
( , ) , exp 2

1
, exp 2

JTC

x y x
F x y R j x

j f f f f

x y x
T j x

j f f f f

π
λ λ λ λ

π
λ λ λ λ

   
= −   

   

   
+    

   
, (2-3) 
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where 2 2,
x y

R
f fλ λ

 
 
 

and 2 2,
x y

T
f fλ λ

 
 
 

 correspond to the Fourier spectrum of the 

reference and the target images, respectively. The exponential terms in Eq. (2-3) are  

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.2 Schematic diagram of joint transform correlator (a) recording of the 

joint power spectrum, (b) obtaining the correlation output. 
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caused by the translation of the images in the input plane. By recording the intensity 

of this complex field distribution on a photographic film or other light-sensitive 

recording media, its resultant joint power spectrum can be mathematically described 

by  

 

2

2 2 2 2

2 2

2 2 2 2

2 2

*2 2 2 2 2
0

* 2 2 2 2 2
0

( , ) ( , )

1
, ,

, , exp 4

, , exp 4 .

JTCI x y F x y

x y x y
R T

f f f f f

x y x y x
R T j x

f f f f f

x y x y x
R T j x

f f f f f

λ λ λ λ λ

π
λ λ λ λ λ

π
λ λ λ λ λ

=

    
= +   
    

     
+ −     

     

     
+ +      

     
 (2-4)

 

The last two terms in Eq. (2-4) correspond to the multiplications of the Fourier spectra 

of the target and the reference images that are *2 2 2 2, ,
x y x y

R T
f f f fλ λ λ λ

   
   
   

 and 

* 2 2 2 2, ,
x y x y

R T
f f f fλ λ λ λ

   
   
   

. These terms are of particular interest, because they 

provide the desired correlation between the target and the reference images. 

The second process is the generation of the cross-correlation between the 

target and the reference images by Fourier transforming optically the joint power 

spectrum. Once the film has been developed, the transparency with an amplitude 

transmittance that is proportional to the recorded joint power spectrum is inserted in 

the input plane of the second optical Fourier transform shown in Fig. 2.2 (b). As a 

result, the field distribution generated at the output plane is proportional to 

 

* *

3 3 3 3 3 3 3 3 3 3 3

*

3 3 3 3 3 0 3

1
( , ) ( , ) ( , ) ( , ) ( , )

  ( , ) ( , ) ( 2 , )

U x y r x y r x y t x y t x y
f

r x y t x y x x y

λ

δ

= ⊗ − − + ⊗ − −

+ ⊗ − − ⊗ −
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 *

3 3 3 3 3 0 3
( , ) ( , ) ( 2 , ) ,r x y t x y x x yδ + − − ⊗ ⊗ +   (2-5)

 where ⊗  denotes convolution. The first two terms of Eq. (2-5) correspond to the 

autocorrelations of the reference and the target images, respectively. They appear on 

axis of the correlation plane ),( 33 yx . The third and the fourth terms produce the 

desired cross-correlation signals of the reference 
1 1

( , )r x y  and the target 
1 1

( , )t x y  

centered at 
3 0

2x x=  and 03 2xx −= . By measuring the cross-correlation height and its 

sharpness, the degree of similarity between the target and the reference is finally 

determined. 

2.4 The Real-Time Joint Transform Correlator  

With rapid development of detection technology and electro-optics devices, a 

real-time implementation of the joint transform correlator for adaptive pattern 

recognition by using a magneto-optic device was firstly proposed by Yu and his 

coworkers (Yu and Lu, 1984). Since then, several proposals of the real-time joint 

transform correlator by using liquid crystal television and EASLM have also been 

reported (Yu, Jutamulia, Lin, and Gregory, 1987). Figure 2.3 shows a schematic 

diagram of optical setup for implementing the real-time joint transform correlator 

which is used in this thesis. In this setup, the target image is captured by a CCD image 

sensor, while the reference images are stored in a computer system. In order to 

perform correlation, the two images are displayed onto an EASLM placed in a front 

focal plane of a Fourier transforming lens. By illuminating perpendicularly the 

EASLM with collimated laser light, the generated joint power spectrum at the back 

focal is captured by the CCD sensor and is then transferred to the computer. By 

redisplaying the recorded joint power spectrum onto the EASLM and after subsequent 
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Fourier transformation, the correlation output can be obtained at the back focal plane 

of the lens L1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 A schematic diagram of optical setup for implementing real-time joint 

transform correlator. 

2.4.1 The Optical Fourier Transform of Pixelated EASLM 

 As discussed in the preceding Section, the real-time joint transform correlator 

employs the EASLM as a programmable display of the reference and the target 

images. However, most EASLMs comprise of a matrix of light-modulating elements 

with rectangular shape as shown in Fig. 2.4. Therefore, unlike photographic films, 

EASLMs are discrete pixelated devices. They display sampled images rather than 

continuous images. As for the EASLM with resolution of 2 2
ex ey

M M×  pixels and 

pixel size of 
ex ey

L L× , its amplitude transmittance can be mathematically written as 
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Figure 2.4 Geometry of the EASLM with rectangular pixels. 

 

 ( ) 1 1
1 1 1 1( , ) , rect  rect

ey ex

ey ex

M M

EASLM ex ey

n M m M ex ey

x y
f x y x mP y nP

L L
δ

=− =−

  
= − − ⊗        

∑ ∑ , (2-6) 

where 
ex

P  and 
ey

P  are the pixel pitch in the 1x  and the 1y directions, respectively. 

Since the EASLM is used to display the input image of the optical Fourier 

transformer, it is important to understand the sampling effect of the EASLM on the 

generated Fourier spectrum of the image. Let us consider rectangular aperture with 

size of 
x ex y ey

N P N P×  as 

 1 1
1 1( , ) rect rect

x ex y ey

x y
f x y

N P N P

  
=        

 (2-7) 

is displayed on the center of the EASLM. The sampled rectangular aperture can be 

mathematically expressed as  
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 ( )

1 1 1 1 1 1

1 1
1 1

1 1

( , ) ( , ) ( , )

, rect rect

rect rect .

ey ex

ey ex

s EASLM

M M

ex ey

n M m M ex ey

x ex y ey

f x y f x y f x y

x y
x mP y nP

L L

x y

N P N P

δ
=− =−

=

   
= − − ⊗           

  
×        

∑ ∑

 (2-8)

 

By Fourier transforming optically the sampled aperture, its Fourier spectrum is found 

to be  

 [ ]2 2 2 2 2 2

1
( , ) ( , ) ( , )

s EASLM
F x y F x y F x y

j fλ
= ⊗ , (2-9) 

where 2 2( , )F x y  is the Fourier spectrum of the aperture 1 1( , )f x y  given by 

 2 2 2 2( , )  sinc sinc 
x ex y ey

x y ex ey

N P N P
F x y N N P P x y

f fλ λ
   

=    
  

, (2-10) 

and  

 

2 2 2 2

2 2

( , ) sinc sinc

, .
ey ex

ey ex

ex ey eyex
EASLM

ex ey

M M

n M m M ex ey

L L LL
F x y x y

P P f f

x ym n

f P f P

λ λ

δ
λ λ=− =−

  
=   

   

 
× − −  

 
∑ ∑  (2-11) 

The field intensity at the back focal plane of the Fourier transform lens can be written 

as  

 

2

2 2 2 2

2 2

2

2 2

1
( , ) sinc sinc

,

sinc sinc .

ey ex

ey ex

eyex
s x y ex ey

M M

m M n M ex ey

y eyx ex

LL
F x y N N L L x y

j f f f

x ym n

f P f P

N PN P
x y

f f

λ λ λ

δ
λ λ

λ λ

=− =−

  
=   

   

 
× − −  

 

  
⊗   

   

∑ ∑

 (2-12) 

Figure 2.5 shows the intensity pattern along the 2x  axis for 20
x y

N N= =  pixels. The 

first two sinc functions correspond to the Fourier transform of the rectangular pixel. 
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Since the pixel size is the smallest structure in the input plane, this 2-D sinc function 

will be the broadest signal in the Fourier plane. It can be regarded as an envelope 

function with a main lobe of 2
ex

f

L

λ
 wide. This envelope function modulates a 

convolution of an array of delta functions, spaced at interval of 
ex

f

P

λ
 and 

ey

f

P

λ
in the 2x  

and the 2y  directions, with the Fourier spectrum of the rectangular aperture. 

Therefore, although the Fourier spectrum of the sampled rectangular aperture appears 

as the replication of the original spectrum of the aperture at ,
ex ey

m f n f

P P

λ λ 
  
 

 in the 

Fourier plane, the number of replications is limited by the envelope function. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  1-D cross-sectional scan of the power spectrum of the rectangular 

aperture displayed on the EASLM. 
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2.4.2 The Joint Transform Correlator Using a Pixelated EASLM 

 Consider the joint input image of the joint transform correlator to be displayed 

on the pixelated EASLM as shown in Fig. 2.6. Let the reference 1 1( , )r x y  and the 

target 1 1( , )t x y  images having 
x y

N N×  pixels are separated with M  pixels from each 

other. The amplitude transmittance of the joint input image to be displayed on the 

EASLM is mathematically described as  

 

1 1
1 1 1 1

1 1
1 1

2
( , ) , rect rect

2

2
, rect rect

2

ex ex
JTC

x ex y ey

ex ex

x ex y ey

MP x MP y
f x y t x y

N P N P

MP x MP y
r x y

N P N P

  + = +           

  − + −           
. (2-13)

 

By displaying the joint input image onto the EASLM, the sampled image becomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Joint input image. 
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( )

1 1 1 1 1 1

1 1
1 1

1 1
1 1

1
1 1

( , ) ( , ) ( , )

, rect rect

2
  , rect rect

2

, rect
2

ey ex

ey ex

s EASLM JTC

M M

ex ey

m M n M ex ey

ex ex

x ex y ey

ex e

f x y f x y f x y

x y
x mP y nP

L L

MP x MP y
t x y

N P N P

MP x MP
r x y

δ
=− =−

=

  
= − − ⊗        

   + × +           

− + − 
 

∑ ∑

12
rect .x

x ex y ey

y

N P N P

  
       

 (2-14) 

Perpendicular illumination of the EASLM by a coherent plane wave produces the 

Fourier spectrum of the sampled joint input image at the Fourier plane as 

 

2 2 2 2

2 2 2 2

1
( , ) sinc  sinc

, ,
ey ex

ey ex

ex ey ex ex
s

ex ey

M M

JTC

n M m M ex ey

L L L L
F x y x y

j f P P f f

x y x ym n
F

f P f P f f

λ λ λ

δ
λ λ λ λ=− =−

    
=     

   

   
× − − ⊗         

∑ ∑  (2-15)

 

where the Fourier spectrum of the 

 

2 2 2 2
2

2 2
2

, , exp 2
2

, exp 2
2

ex
JTC

ex

MPx y x y
F T j x

f f f f f

MPx y
R j x

f f f

π
λ λ λ λ λ

π
λ λ λ

     
′=     

     

   
′+ −   
   

, (2-16)

 

with 

 2 2 2 2
2 2, , sinc sinc

y eyx ex
x y ex ey

N PN Px y x y
T T N N P P x y

f f f f f fλ λ λ λ λ λ
      

′ = ⊗       
       

 (2-17a) 

and 

 2 2 2 2
2 2, , sinc sinc

y eyx ex
x y ex ey

N PN Px y x y
R R N N P P x y

f f f f f fλ λ λ λ λ λ
      

′ = ⊗       
       

. (2-17b) 

By a straight forward calculation, the joint power spectrum of the joint transform 

correlator system is given by 
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2 2 2 2

2 2

2 2 2 2

2 2 2

1
( , ) sinc  sinc

, ,

,

ey ex

ey ex

M M
ex ey eyex

s

m M n Mex ey ex ey

ex ey ex ey

ex ey

L L nLmL
F x y

f P P P P

x y x ym n m n
R T

f P f P f P f P

x y xm n
R T

f P f P f

λ

λ λ λ λ

λ λ λ

=− =−

∗

    
=            

    
 ′ ′× − − + − −          

 
′ ′+ − − −  
 

∑ ∑

2

2

4
22

2 2 2 2

4
2

, e

, ,

e .                                                              

ex

ex

ex

ex

MP x m
j

f P

ex ey

ex ey ex ey

MP x m
j

f P

ym n

P f P

x y x ym n m n
R T

f P f P f P f P

π
λ

π
λ

λ

λ λ λ λ

 
− − 

 

∗

 
+ − 

 

 
−  

 

   
′ ′+ − − − −      

   


×
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               (2-18)

Equation (2-18) shows that the pixel structure of the EASLM produces multiple 

power spectra of the joint input image 2 2( , )
JTC

F x y  in the Fourier plane. However 

because of the modulation by the envelope function, only the zero order spectrum 

( 0, 0)m n= =  of the joint power spectrum 
2

2 2( , )F x y  has the highest intensity, while 

the higher orders are attenuated. Since its intensity is the highest, the zero order 

spectrum is recorded by the CCD sensor for the next computation purpose. 

 The zero order spectrum can be mathematically written as 
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   

     
′ ′+ −     
     

     
′ ′+ +     

     
 (2-19) 

By expressing the complex field distribution 2 2,
x y

R
f fλ λ

 
′ 
 

 and 2 2,
x y

T
f fλ λ

 
′ 
 

 into 

their amplitude and phase distributions 
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      
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and  

 2 2 2 2 2 2, , exp ,T

x y x y x y
T T j

f f f f f f
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λ λ λ λ λ λ

      
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      

, 

the zero order of the joint power spectrum can be rewritten as 

0
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    
× + −    
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Equation (2-20) shows that the third term contains the desired product of the Fourier 

spectra of the target and the reference images which is sampled by the cosine carrier 

fringes. Since the product of the spectra determines the correlation output, the cosine 

fringes must be faithfully recorded. 

 By recording the continuous joint power spectrum using the CCD sensor with 

the spatial resolution of 2 2
x yCCD CCD

N N× and pitch of 
xCCD

P  and 
yCCD

P , the sampled 

zero order of the joint power spectrum can be mathematically described as  
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where 
cx cy

L L×  represents the size of the light-detecting rectangular element of the 
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CCD. Since the CCD sensor used for recording the joint power spectrum is generally 

characterized by both finite resolution and finite active area, in order to record the 

zero order spectra the CCD sensor must fulfill two requirements. First, its resolution 

must satisfy the sampling theorem (Oppenheim and Schafer, 1989) in order to sample 

the detail of the spectra that is the cosine function of Eq. (2-20). Second, its active 

area must be wider than the size of the zero order spectra. The first requirement 

determines the relationship between the sampling frequency of the CCD with the 

frequency of the cosine function such that  

 cosine2
CCD

f f≥  (2-22a) 

or 

 2
xCCD

ex

f
P

MP

λ
≥ . (2-22b) 

Equation (2-22) indicates that the spatial separation of the target and the reference 

images in the input plane is determined by not only the focal length of the Fourier 

transform lens and the operating wavelength but also the spatial resolution 
xCCD

P  of 

the CCD sensor. The second requirement can be mathematically expressed as  

 2
CCDx CCDx

ex

f
N P

P

λ
≥  (2-23a) 

 2 CCDy CCDy

ey

f
N P

P

λ
≥ . (2-23b) 

Next, the digitized joint power spectrum is redisplayed on the EASLM in 

order to produce correlation output. However, since the pixel pitch and size of the 

CCD sensor are different than that of the EASLM, the spatial extension of the 

redisplayed joint power spectrum are scaled by the ratio of the pixel pitch given by 
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 CCDx
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and the ratio of the pixel size given by 
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respectively. By taking the scaling factors into account, the amplitude transmittance 

of the redisplayed joint power spectrum becomes  
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 (2-26) 

By Fourier transforming the redisplayed joint power spectrum using the lens L1, the 

correlation output intensity is mathematically found to be 
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where 3 3( , )c x y  is the correlation signal defined as 
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The first two terms of Eq. (2-28) correspond to the autocorrelations of the reference 

and the target images appeared on the origin of the correlation output plane. The last 

two terms are the desired cross-correlation signals centered at coordinates ( ,0)
xCCD

MP  
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and ( ,0)
xCCD

MP− , respectively. The maximum width of each correlation signal is 

confined in the area of 2 2
x CCDx y CCDy

N P N P× . Thus, the cross-correlation and the 

autocorrelation signal can be completely separated provided 2
x

M N≥ . However due 

to the pixel structure of the EASLM, the correlation output is periodically replicated. 

According to Eq. (2-27), the separation of the replicated correlation output in the x  

and the y directions are 
ex

f

p

λ
 and 

ey

f

P

λ
, respectively. Therefore, these separation must 

be chosen sufficiently wide in order to prevent overlapping of the adjacent replicas. 

Figure 2.7 shows the cross-sectional scan of the replicated correlation output along 

the 3 0y = . It is clear that the separation of each correlation signal depends on the 

characteristic of the EASLM and the CCD sensor, the focal length of the Fourier 

transform lens and the wavelength of the laser light. It can be seen from Fig. 2.7 that 

in order to avoid the overlapping of the adjacent replicas, their separation must follow  

 

 

 

 

 

 

 

 

 

Figure 2.7 Location and width of correlation output of the joint transform correlator. 
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When 2
x

M N= , the focal length of the lens L1 must satisfy  
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≥ . (2-31) 



CHAPTER III 

JPEG IMAGE COMPRESSION 

 

 In this chapter we review the algorithm of JPEG image compression and apply 

the algorithm to compress images with different spatial frequency contents and 

contrasts. Quantitative measurements of the effects of compression on image quality 

will be presented and used as the basis for analyzing the performance of the joint 

transform correlator with compressed reference images. 

3.1 Introduction 

 Digital data is now prevalent in many multimedia applications such as 

internet, photography, mobile communication, medical imagery, digital libraries, and 

displays. However the storage of uncompressed digital data requires considerable 

space, while its transmission can be very time consuming such that it prohibits real-

time systems. In order to solve storage and access time problems, the data could be 

compressed. In the case of digital image compression, the image will be represented 

with less data, while maintaining good image quality. Image compression operations 

reduce the data contents of the digital images and represent the image in a more 

compact form. There are two types of image compression, namely lossless and lossy 

compressions. A lossless compression retains the exact data of the original image bit 

for bit, while lossy compression returns the decompressed image being similar but not 

exactly same as the original image. As a result, lossy compression provides a higher 

compression level than that of the lossless compression. Among the various lossy 
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compression schemes, the JPEG is one of the most popular and well-established 

image compression standards.  

This thesis employs the JPEG compression scheme to compress the reference 

images of the joint transform correlator. Four different sets of test images were first 

compressed into a JPEG file with various compression levels and were used as the 

reference images of the joint transform correlator. The compression performance and 

the image quality of the compressed images were then assessed. The recognition 

performance of the joint transform correlator by using the compressed reference 

images was finally investigated and the results will be presented in the next chapter. 

3.2 The JPEG Compression 

 The JPEG compression algorithm is one of the digital image compression 

standards designed for compressing either full-color or gray scale images. The JPEG 

algorithm exploits the limitation of the human eye which is more sensitive to intensity 

than to color. Thus, the JPEG intends to discard information that is not easily 

perceived by the human eye such as high spatial-frequency components and small 

variation in color of images. The JPEG performs well on the continuous-tone images, 

while an image with many sudden jumps in intensity or color will not be compressed 

well. In the JPEG algorithm, compression is achieved in a series of steps (Pennebaker 

and Mitchell, 1993) as shown in Fig. 3.1: 

- The pixels of the image are grouped into blocks of 88×  pixels. 

- A discrete cosine transform is applied to each block. The transform generates 1 

DC and 63 AC components of spatial frequency. 

- Each of the 64 discrete cosine transform components is quantized in 

conjunction with a quantization table. This is done in such a way that high 
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spatial-frequency components are quantized with higher quantization 

coefficient than the lower one. After quantization, the results are rounded to an 

integer. As a consequence, these AC components almost become zero. This 

cause irretrievably lost of information. 

- The 64 quantized frequency components are encoded by using a combination 

of the run length encoding (RLE) and the Huffman coding. 

 

 

 

 

 

 

Figure 3.1 A block diagram of the JPEG encoder (Salomon, 1998). 

3.3 JPEG-Compressed Reference Images 

 In order to study the effect of compression of the reference image on the 

recognition performance of the joint transform correlator, two input images with 

different spatial-frequency content and contrast were prepared as the reference 

images. All of images consisted of 186124×  pixels with 8-bit gray scale levels and 

their size were 23 Kbytes. Figures 3.2(a) and (b) show the fingerprint and the human 

face images employed as the high-contrast scenes with high and low spatial-frequency 

contents, respectively, while its low contrast versions are shown in Figs. 3.2(c) and 

(d). In comparison to Figs. 3.2(a) and (b), the low contrast images have smaller 

intensity variation of the luminance from the uniform background. Figures 3.3(a), (b),  
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Figure 3.2 Original images as test scenes: (a) high-contrast fingerprint, (b) high- 

contrast human face, (c) low-contrast fingerprint, and (d) low-contrast 

human face. 

(c), and (d) correspond to the logarithmic value of the power spectra of the high-

contrast fingerprint, the high-contrast human face, the low-contrast fingerprint, and 

the low-contrast human face, respectively. Since the fingerprint and the human face 

are complex images, the contrast function defined as (Hess, Bradley, and Piotrowski, 

1983) 

 
DC

vuA
vuC

),(2
),( =  (3-1) 

(a) (b) 

(c) (d) 
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Figure 3.3 The power spectra of (a) high-contrast fingerprint, (b) high-contrast 

human face, (c) low-contrast fingerprint, and (d) low-contrast human 

face.  

is used to confirm the difference between their contrasts, where ),( vuA  is the 

amplitude of the Fourier spectrum of the image. Figures 3.4(a) and (b) show the 1-

dimensional (1-D) plots of the contrast function of the images with high and low 

spatial-frequency  contents,  respectively.  It is clear from the figure that in the Fourier  

(a) (b) 

(d) (c) 
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(b) 

Figure 3.4 1-D plot of the contrast function of (a) fingerprints and (b) human faces. 
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domain, the contrast difference determines the amplitude of the spatial-frequency 

content, such that the high-contrast image has higher amplitude of the spatial 

frequency than that of the low contrast. This implies that the high-contrast images 

contain more high spatial- frequency components. The figures confirm also that in 

comparison with the fingerprint, the human face has less high spatial-frequency 

components, because their amplitudes are much lower. 

The test images of fingerprints and human faces were compressed into the 

JPEG format by using the ACDsee software (The 2000 ACD systems, Ltd.) with 

different compression quality. In this software, the compression quality is determined 

by a parameter called the quality factor (QF) whose value can be varied from 100 to 

0. High value of the QF discards less information than that of the small value. Thus, 

the higher the value of the QF, the better the image quality and the bigger the file size 

of the compressed image will be. Figure 3.5 shows compressed images with QF 

equals to 0, 10, 50, and 100. It is clear that at low QF, the quantization done 

independently on 8 8×  blocks of pixels generates visible gray scale discontinuities 

along the block boundaries. These are called the blocking artifacts (Pennebaker and 

Mitchell, 1993). The subjective evaluation of the compressed test images is shown in 

Table I. Regardless the spatial frequency contents of the image, the results show that 

the degradation of the compressed low-contrast images is more severe than that of the 

high contrast images. 

3.3.1 Compression Performance  

The compression produced by the ACDsee software was assessed by using the 

compression ratio (CR) defined as the ratio of the uncompressed to the compressed  
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Figure 3.5 JPEG compressions of (a) high-contrast fingerprint, (b) low-contrast 

fingerprint, (c) high-contrast human face, and (d) low-contrast human 

face. 

file sizes (Pennebaker and Mitchell, 1993). High CR corresponds to the small size of 

the compressed image. Figure 3.6 shows the CR of the  reference images as a function  

QF = 0 QF = 10 QF = 50 QF = 100 

(a) 

(b) 

(c) 

(d) 
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Table 3.1 The subjective evaluation of the test images. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 The CR as function of the QF. 

of the QF. It is clear from Fig. 3.6 that regardless of the spatial-frequency content, the 

CR of the low-contrast image is higher than that of the high-contrast image. This is 

due to the fact that as shown in Fig. 3.4 the low-contrast image contains less high 

Subjective Ranking 
Test images 

QF=0 QF=10 QF=50 QF=100 

High-contrast fingerprint Poor Fair Good Excellent 

Low-contrast fingerprint Worst Very poor Fair Excellent 

High-contrast human face Poor Fair Good Excellent 

Low-contrast human face Very poor Poor Fair Excellent 
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spatial-frequency components than the high-contrast image does. The quantization 

process done on the low contrast image causes more AC components of the spatial 

frequency to become zero. As a consequence, the RLE and the Huffman coding can 

encode efficiently the redundant zeroes. For the same reason, the CR of the high-

contrast human face is higher than that of the fingerprint. 

3.3.2 Image Quality Measurements 

 The effect of image compression on the quality of the image was objectively 

evaluated by using the peak-signal-to-noise ratio (PSNR) defined as (Yang, Zhang, 

and Mitra, 1999) 
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= =
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 (3-2) 

Here ),( jif  and ),(ˆ jif  are the original and the compressed images with NM ×  

pixels, respectively. ),( jif  takes integer values 255),(0 ≤≤ jif  for 8-bit gray scale 

images. The PSNR measures the similarity of the images in decibels (dB). The large 

PSNR means that the degree of similarity between the original and it compressed 

versions is high. Based on Eq. (3-2), the PSNR for each test image was calculated and 

the results are shown in Fig. 3.6. It can be seen from the figure that the PSNRs 

increase as the QF increases. In addition regardless the spatial frequency contents of 

the images, the PSNRs of the low contrast image is higher than that of the high 

contrast image. This is because the high-contrast image contains more high spatial-

frequency components than the low-contrast image. Since the high spatial-frequency 

determines fine details of the image, discarding high spatial-frequency components of 

the high-contrast  image degrades the  fine  details  more  significantly than that of the 
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Figure 3.7 The PSNRs as function of the QF. 

low-contrast image. Therefore, the PSNR of the compressed high-contrast fingerprint 

is the lowest, because the degradation is the most severe. However, based on the 

subjective evaluation provided in Sect. 3.3, the image quality of the compressed low-

contrast image is poorer than that of the compressed high-contrast images especially 

at small QF. This difference may be caused by the limitation of the human eyes in 

detecting degradation of fine details.  

 

 

 



CHAPTER IV 

SINGLE-TARGET DETECTION 

 

In this chapter, the proposed real-time implementation of joint transform 

correlator with JPEG-compressed reference images for single-target detection is 

studied by using computer simulations and experiments. The simulation results show 

that in comparison with the compressed high spatial-frequency image, the joint 

transform correlator by using the compressed low spatial-frequency reference image 

offers a better recognition performance in that it is robust to noise and contrast 

difference for a wide range of compression levels. However, due to the limitation of 

the EASLM on displaying low contrast image and low dynamic range of the CCD 

sensor, not all experimental results for different situations can be successfully 

obtained.  

4.1 The Joint Transform Correlator with Compressed Reference 

Images 

This study is based on the optical setup for implementing the real-time joint 

transform correlator with compressed reference image shown in Fig. 2.3. If the 

compressed reference is represented by 1 1( , )
c

r x y , the joint input image of Eq. (2-2) 

can be mathematically rewritten as 

 1 1 1 0 1 1 0 1( , ) ( , ) ( , )
JTC c

f x y r x x y t x x y= − + + . (4-1) 

Under a presence of additive white Gaussian noise 1 1( , )n x y at the input target and a  
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contrast difference between the target and the compressed reference images, the joint 

input image can be rewritten as 

 1 1 1 0 1 1 0 1 1 0 1( , ) ( , ) ( , ) ( , )
JTC c T

f x y r x x y c t x x y n x x y= − + + + + , (4-2) 

where Tc  is the amplitude ratio of the target to the reference images. Tc  becomes 

greater, equal, or smaller than 1 when the contrast of the reference image is lower, 

equal, or higher than that of the target, respectively. After a Fourier transformation by 

the lens L1, the joint power spectrum captured by the CCD sensor is found to be  
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where 2 2( , )x y  are the coordinates at the Fourier plane. 2 2,
c

x y
R

f fλ λ
 
 
 

 and 

2 2,
x y

N
f fλ λ

 
 
 

 are the Fourier transforms of the compressed reference, and the noise, 

respectively. By displaying the captured joint power spectrum onto the EASLM, the 

second Fourier transformation produces the correlation output at the back focal plane 

of the lens L1. The correlation signals  corresponding to the sixth, seventh, eighth, and  
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ninth terms of Eq. (4-3) can be expressed as  

 
3 3 3 3 3 3 3 0

3 3 3 3 3 0

( , ) [ ( , ) ( , ) ( 2 )]

( , ) ( , ) ( 2 ),

T c

c

I x y c r x y t x y x x

r x y n x y x x

δ

δ

= ∗ ⊗ ±

+ ∗ ⊗ ±  (4-4) 

where ∗  denote correlation. The first term of Eq. (4-4) corresponds to the desired 

correlation of the input target with the compressed reference which is scaled by the 

contrast difference, while the second one is the unwanted correlation of the 

compressed reference with the noise. Since both terms appear at the same position 

02x± , Eq. (4-4) indicates that besides the image quality of the compressed reference 

1 1( , ),
c

r x y  the correlation output depends on both the contrast and the noise. 

Therefore, it is important to measure the effects of image compression on the 

correlation performance of the joint transform correlator. 

4.2 Simulation Results  

 In the computer simulation, the target and the compressed reference images 

were combined to form the joint input image of 832 624×  pixels with a separation of 

2482 0 =x  pixels. Each set of compressed references consisted of 21 images with QF 

varying from 0 to 100 with 5 incremental steps. Each target consisted of images with 

no noise, noise with variance 2
0.01σ =  and variance 2

1σ = , respectively. All noises 

were generated by using the IMNOISE command of MATLAB software. The 

algorithm for performing computer simulation of the joint transform correlator with 

compressed reference images is shown in Fig. 4.1. The target and the compressed 

reference with QF = 0 were first combined to form the joint input image. The joint 

transform correlator of this joint image was computed and its resultant output was 

quantified  by  measuring  a  ratio  of  the  correlation  peak  intensity  to  the  standard  
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Figure 4.1 Flowchart for conducting computer simulation of the joint transform 

correlator with compressed reference images. 
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deviation of the correlation intensity or peak-to-correlation deviation (PCD) given by 

(Roberge and Sheng, 1994) 

 

{ }

max

1/ 2
1 1

2

0 0

( , )

1
( , ) ( , )

M N

i j

I i j
PCD

I i j E I i j
M N

− −

= =

=
 

 −  × 
∑∑

. (4-5) 

Here, max),( jiI  is the maximum intensity of the correlation output, while { }),( jiIE  is 

the mean of the correlation intensity. In the case that the target matches the 

compressed reference, the correlation function has a sharp peak and its standard 

deviation is small. Thus, the PCD of Eq. (4-5) is large. In the unmatched case, the 

correlation output is broad and its peak is low. Since the standard deviation is large, 

the PCD is small. In order to compare the recognition performance at different 

compression levels, each PCD is normalized by the value of the autocorrelation peak. 

The computation of the joint transform correlator is repeated for different compressed 

reference images. After QF = 100, the computation of the joint transform correlator is 

restarted for the next target image with the reference having QF = 0.  

 Figure 4.2 illustrates a flowchart for computing the joint transform correlator. 

The Fourier transform of the joint input image is calculated by using the 2-D FFT 

command of the MATLAB 6.0 run on a Windows-based personal computer. The joint 

power spectrum is generated by taking the modulus square of the resultant Fourier 

spectrum. By calculating the inverse Fourier transform of the joint power spectrum 

and followed by taking the modulus square of the result, the correlation output 

intensity is produced.  
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Figure 4.2 Flowchart for computing the joint transform correlator. 

4.2.1 Compressed High-Contrast Fingerprint as the Reference Images 

 The 3-D plot of the autocorrelation of the uncompressed high-contrast 

fingerprint is shown in Fig. 4.3(a), while the  correlation outputs of the joint transform 

correlator by using the compressed high-contrast fingerprint with the QF = 10 as the 

reference are illustrated in Figs. 4.3(b), (c), and (d). In Fig. 4.3(b), the target is the 

noise-free high-contrast fingerprint image. It is obvious that besides the correlation  
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Figure 4.3 Simulation results of the joint transform correlator. (a) autocorrelation 

of the uncompressed high-contrast fingerprint; and cross-correlation 

outputs by using the compressed high-contrast fingerprint reference 

(QF = 10) under a situation that the target is: (b) noise-free high-

contrast fingerprint, (c) noisy high-contrast fingerprint ( 1
2 =σ ), and 

(d) noisy low-contrast fingerprint ( 1
2 =σ ). 
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signal is almost as sharp as the autocorrelation output shown in Fig. 4.3(a), its peak 

decrease slightly. This is the effect of the compression on the reference image 

(Widjaja, 2003). However, since the CR of the high-contrast fingerprint is small (see 

Chapter II), the decrease of the degree of similarity between the two images is not 

significant. The correlation outputs caused by the noise-corrupted high- and low-

contrast fingerprint targets with the variance 1
2 =σ  are shown in Figs. 4.3(c) and (d), 

respectively. When the target is the noisy high-contrast fingerprint, the peak intensity 

falls about one order of magnitude compared with the noise-free target, and its 

correlation plane is slightly noisy. However, in the case of the noisy low-contrast 

fingerprint target, besides the peak intensity falling by about two orders of magnitude, 

the correlation plane appears to be noisier. These occur because first, since the target 

has a lower contrast than the reference, a contribution of the correlation term 

( , ) ( , )
c

r x y t x y∗  of Eq. (4-4) is reduced by the factor Tc  which is smaller than 1. 

Second, the small luminance value of the low contrast image is sensitive to noise. In 

particular when the noise variance 2σ  is 1, the noise level is stronger than the image 

luminance. Therefore, under the presence of the same noise level, the correlation 

plane of Fig. 4.3(d) appears to be more noisy. 

Figure 4.4 shows the variation of the normalized PCDs as a function of the QF 

of the compressed high-contrast fingerprint reference image for different target 

scenes. The normalized PCD is calculated from the ratio of the PCD of the cross 

correlation between the target and the compressed reference images to the PCD of the 

autocorrelation of the uncompressed test images. In general regardless of the contrast, 

the PCDs decrease gradually as the QF becomes smaller, because when more 
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information is discarded from the compressed reference the degree of similarity 

between the reference and the target images decreases. However, in a situation where 

the variance of the noise is 1
2 =σ , the PCD of the low-contrast fingerprint target 

reduces drastically to less than 0.3. As shown in Fig. 4.3(d), this is caused by the 

decrease of the correlation term ( , ) ( , )
c

r x y t x y∗  and the increase of the noise in the 

correlation plane. This PCD does not increase as the QF becomes higher. Therefore, 

the recognition of the noisy low-contrast fingerprint target is dependent upon the 

noise rather than the compression level of the reference image, while the recognition 

of the high-contrast fingerprint depends only on the compression level. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 The PCD-based recognition performance of the joint transform 

correlator as a function of the QF of the compressed high-contrast 

fingerprint reference. 
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4.2.2 Compressed Low-Contrast Fingerprint as the Reference Images 

 Figures 4.5(a), (b), (c), and (d) show the 3-D correlation outputs of the joint 

transform correlator by using the low-contrast fingerprint as the reference image. 

Since the image contrast is low, it is expected that the autocorrelation peak of the 

uncompressed low-contrast fingerprint is lower than the autocorrelation of the high-

contrast image. This can be clearly observed in Fig. 4.5(a) which shows that although 

the output is sharp, its peak reduces by three orders of magnitude compared to the 

autocorrelation of the high-contrast image shown in Fig. 4.3(a). When the reference is 

the compressed low-contrast fingerprint with the QF = 10 and the target is the noise-

free low-contrast fingerprint, the correlation output shown in Fig. 4.5(b) becomes 

broad and its peak decreases. This is mainly caused by the effect of compression of 

the low-contrast fingerprint image which suffers from more loss of the high spatial-

frequency components than that of the high-contrast fingerprint. Since the reference 

image is the impulse response of the joint transform correlator, this loss yields a broad 

impulse response. In the other cases of using the same compressed reference with the 

QF = 10, the joint transform correlator of the noisy low-contrast fingerprint target 

with the variance 1
2 =σ  shown in Fig. 4.5(c) gives the correlation output which is 

noisier than that of the noisy high-contrast fingerprint target of Fig. 4.5(d). This 

occurs because the noise is stronger than the target luminance. Thus although the 

contrast ratio Tc  is unity, the contribution of the correlation term ( , ) ( , )
c

r x y n x y∗  is 

greater than the term ( , ) ( , ).
c

r x y t x y∗  As a consequence; the desired correlation peak 

is indistinguishable as it is buried in a strong noise. Figure 4.5(d) shows the 

correlation output produced by the noisy high-contrast fingerprint target with the  
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Figure 4.5 Simulation results of the joint transform correlator. (a) autocorrelation 

of the uncompressed low-contrast fingerprint; and cross-correlation 

outputs by using the compressed low-contrast fingerprint reference 

(QF = 10) under a situation that the target is: (b) noise-free low-

contrast fingerprint, (c) noisy low-contrast fingerprint ( 1
2 =σ ), and (d) 

noisy high-contrast fingerprint ( 1
2 =σ ).  
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variance 1
2 =σ . In this case, the luminance value of the high-contrast fingerprint is 

stronger than the noise, and the contrast ratio is greater than unity. As a consequence, 

the correlation term [ ( , ) ( , )]
T c

c r x y t x y∗  is stronger than the term ( , ) ( , ).
c

r x y n x y∗  

Therefore, although the correlation plane appears to be noisy, the correlation peak can 

still be detected. 

Figure 4.6 shows the normalized PCDs as a function of the QF of the 

compressed reference for different target scenes. It is clear that as the QF becomes 

smaller, the PCDs decrease rapidly regardless of the image property of the targets. 

Thus, in comparison with the compressed high-contrast reference, the compression of  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 The PCD-based recognition performance of the joint transform 

correlator as a function of the QF of the compressed low-contrast 

fingerprint reference. 
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the low-contrast fingerprint reference degrades significantly the correlation 

performance of the joint transform correlator. This is in agreement with the discussion 

in the previous paragraph that the compressed low-contrast fingerprint contains less 

high spatial-frequency information than that of the compressed high-contrast 

fingerprint. As a result, the degree of similarity between the compressed reference and 

the target decreases rapidly. Furthermore, as shown in Fig. 4.5(c), when the low-

contrast fingerprint target is corrupted by the noise with the variance 1
2 =σ , the noise 

level is stronger than the target. Therefore, the PCD falls below 0.3. In comparison 

with Fig. 4.4, the degradation of the performance of the joint transform correlator 

caused by compressing the low-contrast fingerprint reference is more severe. 

4.2.3 Compressed High-Contrast Human Face as the Reference Images 

 Figures 4.7(a), (b), (c), and (d) illustrate the 3-D correlation outputs of the 

joint transform correlator by using the compressed high-contrast human face as the 

reference image. The autocorrelation output of the uncompressed high-contrast human 

face shown in Fig. 4.7(a) is broader than that of the high-contrast fingerprint shown in 

Fig. 4.3(a). This is caused by the characteristic of the human face image which 

contains less high spatial-frequency information. As a consequence, the impulse 

response of the joint transform correlator by using the human face image as the 

reference becomes broader than that of the high-contrast fingerprint reference. When 

the reference is the compressed high-contrast human face with the QF = 10 the 

following results are obtained: As shown in Fig. 4.7(b), the joint transform correlator 

of the noise-free high-contrast human face target gives slightly broader correlation 

output compared to the autocorrelation output, because of the compression. The  
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Figure 4.7 Simulation results of the joint transform correlator. (a) autocorrelation 

of the uncompressed high-contrast human face; and cross-correlation 

outputs by using the compressed high-contrast human face reference 

(QF = 10) under a situation that the target is: (b) noise-free high-

contrast human face, (c) noisy high-contrast human face ( 1
2 =σ ), and 

(d) noisy low-contrast human face ( 1
2 =σ ).  
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correlation outputs of the noise-corrupted high- and low-contrast human face targets 

with the variance 1
2 =σ  are depicted in Figs. 4.7(c) and (d), respectively. It is 

obvious that due to the lower contrast, the correlation peak of Fig. 4.7(d) is lower than 

that of Fig. 4.7(c). In comparison to Figs. 4.3(c) and (d), these correlation planes are 

less noisy. This is mainly caused by the broad impulse response of the joint transform 

correlator which confines the output of the correlation term ( , ) ( , )
c

n x y r x y∗  within its 

impulse area. Since the correlation term ( , ) ( , )
c

t x y r x y∗  is broad and its peak is high, 

the effect of the noise is not significant. 

 Figure 4.8 shows the normalized PCDs as a function of the QF of the  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 The PCD-based recognition performance of the joint transform 

correlator as a function of the QF of the compressed high-contrast 

human face reference. 
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compressed high-contrast human face for different target scenes. It is clear that for all 

given types of targets, the normalized PCDs almost do not vary with respect to 

compression level. This indicates that the presence of the noise and the contrast 

difference between the target and the reference do not affect the correlation 

performance of the joint transform correlator by using the compressed high-contrast 

human face reference. As shown in Figs. 4.7(b), (c), and (d) since the term 

( , ) ( , )
c

t x y r x y∗  gives broad correlation output, the degradation caused by the noise 

and the contrast difference do not change significantly the standard deviation of the 

correlation output. As a result, the normalized PCDs are always maximum for nearly 

all target scenes. 

4.2.4 Compressed Low-Contrast Human Face as the Reference Images 

 Figure 4.9(a) shows that the autocorrelation of the uncompressed low-contrast 

human face is as broad as Fig. 4.7(a). However, its peak reduces by about two orders 

of magnitude, because the image contrast is low. Note that although the 

autocorrelation of the low-contrast human face is broader than that of the low-contrast 

fingerprint shown in Fig. 4.5(a), its peak is higher. This is caused by the luminance of 

the low-contrast human face which is higher than the fingerprint. Figures 4.9(b), (c), 

and (d) show the correlation peaks of the joint transform correlator by using the 

compressed low-contrast human face with QF = 10 as the reference. In Fig. 4.9(b), the 

target is the noise-free low-contrast human face image. The correlation output further 

decreases and broadens. This is the effect of the compression of the reference image. 

Figures 4.9(c) and (d) show the correlation output of the noisy low- and high-contrast 

human face targets with the noise variance ,12 =σ  respectively. When the input  
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Figure 4.9 Simulation results of the joint transform correlator. (a) autocorrelation 

of the uncompressed low-contrast human face; and cross-correlation 

outputs by using the compressed low-contrast human face reference 

(QF = 10) under a situation that the target is: (b) noise-free low-

contrast human face, (c) noisy low-contrast human face ( 1
2 =σ ), and 

(d) noisy high-contrast human face ( 1
2 =σ ).  
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target is the low-contrast human face, the degradation of the correlation output caused 

by the noise is more severe than that of the high-contrast target shown in Fig. 4.9(d). 

This is in agreement with the resultant correlations discussed in Sect. 4.2.2. Since the 

luminance of the low-contrast target is smaller than the noise, the presence of the 

correlation term ( , ) ( , )
c

n x y r x y∗  is obvious in the correlation plane. Furthermore, in 

comparison with Figs. 4.5(c) and (d), the joint transform correlator by using the 

compressed low-contrast human face has broader impulse response. As a 

consequence, the correlation output of the low-contrast human face is less affected by 

noise than that of the low-contrast fingerprint. 

 Figure 4.10 shows the variation of the normalized PCDs as a function of the  

 

 

 

 

 

 

 

 

 

 

Figure 4.10 The PCD-based recognition performance of the joint transform 

correlator as a function of the QF of the compressed low-contrast 

human face reference.  
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QF of the compressed low-contrast human face for different target scenes. The 

normalized PCDs are greater than 0.9 and almost constant for all compression levels, 

except when the QF is less than 20. The results also show that the recognition 

performance of the joint transform correlator by using the compressed low-contrast 

human face as the reference is affected by the noise. Since the CR of the low-contrast 

human face is the highest compared with the others, therefore, it is worth mentioning 

that although by using a small file size of the compressed reference, the joint 

transform correlator gives a good correlation performance.  

4.3 Experimental Verifications 

 Experimental verifications of the joint transform correlator with compressed 

reference images were performed by using the optical setup shown in Fig 4.11. A He-

Ne laser Uniphase: 1507P-0 operating at wavelength of 632.8 nm was used as a 

coherent light source. A combination of a spatial filter and a beam expander 

consisting of 20x microscope objective lens ( 8.3 mmf = ), 25 mµ pinhole aperture 

and a collimating lens ( 300 mmf = ), was used to produce a plane wave with a 

diameter of about 36 mm. A twisted-nematic liquid crystal display Jenoptik SLM-

M/460 having resolution of 832 624×  pixels with pixel aperture of 27 23 mµ× , pixel 

pitch of 32 32 mµ× , and a contrast ratio of 200 was used as the EASLM. Because its 

contrast ratio is low, the EASLM cannot display efficiently a small variation of gray 

level images. As a consequence, the optical Fourier spectrum of the images cannot be 

faithfully generated. An eight-bit CCD sensor PULNiX TM-2016-8 having pixels 

resolution of 1920 1080× , pixel size of 7.4 7.4µ× m, and pixel pitch of 7.4 7.4µ× m 

was used to capture the generated joint power spectrum. The focal length of the 
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Fourier transform lens was chosen by considering non-overlapping condition of the 

adjacent replicas of the correlation output given by Eq. (2-31). By substituting the 

corresponding values into Eq. (2-31), the required focal length is found to be 278f ≥  

mm. The experiment used a lens with focal length 300f = mm.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Actual optical setup for experimental verifications of the real-time 

joint transform correlator with compressed reference images. 

 As a preliminary study, the implementation of the joint transform correlator 

was done by using two identical uncompressed high-contrast fingerprint images with 

the size of 124 186
ex ey

P P×  as the reference and the target images. They were separated 

by the distance 02 248
ex

x P= . The generated joint power spectrum was captured by 

the CCD sensor. In order to record faithfully the joint power spectrum, a neutral 
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density (ND) filter with an optical density = 2.0 was installed in front of the CCD 

sensor, because the dynamic range of the sensor is limited. Saturation of the sensor by 

high intensity of light clips the cosine fringes of the joint power spectrum. The 

captured joint power spectrum is shown in Fig. 4.12. It is clear that, there are three 

bright spots along the horizontal direction. The brightest spot corresponds to the zero 

order of the joint power spectrum, while the leftmost and the rightmost spots are the 

( 1,0)th−  and the ( 1,0)th+  orders, respectively. They are separated from the zero order 

by the distance 
ex

f

P

λ
 in horizontal direction. The intensity of the zero order of the joint 

power spectrum is brighter than that of the ( 1,0)th−  and the ( 1,0)th+ orders, because of 

the intensity attenuation by the envelope sinc function. Furthermore, the generation of 

vertically oriented fringes caused by the interference between the target beam and the 

reference beam can be clearly observed from Fig. 4.12(b) which shows the enlarged 

zero order of the joint power spectrum. The fringes are obvious, because the spatial 

resolution of the CCD sensor is finer than the fringe period that is 23.92 m
ex

f

MP

λ
µ= . 

 By redisplaying the zero order of the joint power spectrum on the EASLM and 

taking its optical Fourier transform, the correlation output is obtained at the back focal 

plane of the lens L1. Figure 4.13 shows the zero, the ( 1,0)th−  and the ( 1,0)th+ orders 

of the correlation signals. They are separated by 
ex

f

P

λ
 in the x  direction. In the 

detection of the correlation output by the CCD sensor, the ND filter with an optical 

density of 3.0 was used to prevent clipping of the correlation peak intensities. The 
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Figure 4.12 (a) joint power spectrum of two identical uncompressed high-contrast 

fingerprints and (b) its enlarged zero order of the joint power spectrum. 
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zero order contains the DC signal corresponding to the two autocorrelation signals 

and the two identical cross-correlation signals. The separation of the autocorrelation 

and the cross-correlation signals is equal to 
CCDx

MP . The quantitative evaluations by 

using the PCD were then done on one of the cross-correlation output confined in the 

area of 2 2
x CCDx y CCDy

N P N P× . Based on this experimental setup, the fingerprint 

detections by using the joint transform correlator with compressed reference images 

were experimentally verified. 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Autocorrelation output of uncompressed high-contrast fingerprint. 

 As for the high-contrast human face, the joint power spectrum of the two 

identical uncompressed images is shown in Fig. 4.14(a). Following the previous 
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. This joint power spectrum was directly captured by the 
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  (b) 

Figure 4.14 (a) joint power spectrum of two identical uncompressed high-contrast 

human faces and (b) its enlarged zero order of the joint power spectrum. 
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the high frequency spectra carried by the cosine fringes. Consequently, the correlation 

output will not be generated. Note that as discussed in Sect. 3.3, the amplitude of the 

high frequency components of the human face image is lower than the fingerprint 

image. Therefore, the amplitude of the fringes modulates by the high frequency 

spectra is weak. Figure 4.14(b) shows the enlarged zero order of the joint power 

spectrum. In comparison with Fig. 4.12(b), this joint power spectrum has the same 

spacing of the fringes, however the spread of the spectra around the origin, which 

corresponds to the DC signal and the low frequency spectra, is larger. Since their 

intensities exceed the maximum dynamic range of the CCD sensor, they are clipped. 

Figure 4.15 shows the correlation output of this joint power spectrum which 

was generated by our optical setup shown in Fig. 4.11. This output was captured by 

using the ND filter with the density = 4.0. In comparison with Fig. 4.13, the  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Autocorrelation output of uncompressed high-contrast human face. 
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correlation plane appears to be corrupted by more noise that might be speckle noise. 

When the EASLM redisplayed the zero order of the joint power spectrum, the light 

modulating elements displaying clipped intensities of the joint power spectrum had 

maximum transmittance. Consequently, stronger light totally transmitted by the 

EASLM generated more speckle noise. Experimental verification of the human face 

detections were conducted by using this optical setup. 

4.3.1 Compressed High-Contrast Fingerprint as the Reference Images 

Figures 4.16(a), (b), (c), and (d) show the 3-D output correlations of the high-

contrast fingerprint as the reference images obtained from the experiment. The 

autocorrelation peak of the uncompressed high-contrast fingerprint shown in Fig. 

4.16(a) is higher than the cross-correlation by using the compressed reference with 

QF = 10 shown in Fig. 4.16(b). This is caused by the degradation of the reference 

image by compression. This result is in agreement with the computer simulation 

depicted in Fig. 4.3. Figures 4.16(c) shows the correlation output obtained when the 

reference is the compressed high-contrast fingerprint with QF = 10 and the target is 

noisy high-contrast fingerprint. It can be seen from the figure that the correlation peak 

is buried in the noise. This can be explained by the fact that the amplitude of high 

spatial-frequency components of the noise are higher than that of the target and the 

reference images. The effect of intensity reduction by the ND filter on the high 

spatial-frequency components of the target and the reference is more significant than 

that of the noise. As a consequence, the CCD sensor captured the spatial frequency 

components of the noise, instead of the interference fringes generated by the spectra 

of the target and the reference images. As a result, the correlation signal was not  
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Figure 4.16 Experimental results of the joint transform correlator. (a) 

autocorrelation of the uncompressed high-contrast fingerprint; and 

cross-correlation outputs by using the compressed high-contrast 

fingerprint reference (QF = 10) under a situation that the target is: (b) 

noise-free high-contrast fingerprint, (c) noisy high-contrast fingerprint 

( 1
2 =σ ), and (d) noisy low-contrast fingerprint ( 1

2 =σ ).  

(a) (b)

(c) (d)

(a) (b)
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generated. Figure 4.16(d) shows the correlation output when the target is noisy low-

contrast fingerprint with variance 2
1σ = . There is no observable correlation peak 

generated in this detection, because of the low contrast ratio of the EASLM.  

 Figure 4.17 shows the variation of the normalized PCDs as a function of the 

QF of the compressed high-contrast fingerprint for different target scenes obtained 

from the experiment. The PCDs were computed by using the intensity value detected 

at the original position of the correlation peak. When the target is noise-free high-

contrast fingerprint, the PCD increases as the QF increases. However when QF 

becomes larger than 50 the PCD fluctuates. This occurs because the images captured 

by the CCD sensor were shifted by a few pixels. This image shift may be caused by 

jitters in a frame-grabber system. In the case of capturing the correlation outputs, the 

spatial shift of the correlation peak from its original position introduces wrong 

computation of the PCD. In order to overcome this problem, an average of the 

correlation peak intensities is computed over 5 5×  pixels neighborhood of the original 

correlation peak. Figure 4.18 shows the normalized PCDs by using the averaged 

correlation peak intensities. It is clear that the fluctuation of the PCDs becomes 

smaller than that of Fig. 4.17. The PCDs of the high-contrast fingerprint target 

without and with noise having variance 2
0.01σ =  increase gradually as the QF 

increase. This is in agreement with the simulation results discussed in Sect. 4.2.1. 

However when the fingerprint target is corrupted by the strong noise, the PCD 

reduces drastically regardless of the compression quality. This indicates that the 

recognition performance of the joint transform correlator depends more on noise level 

than that on the compression.  
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Figure 4.17 The variation of the normalized PCDs as a function of the QF of the 

compressed high-contrast fingerprint for different target scenes 

obtained from the experiment ( : noise-free high-contrast 

fingerprint target, : noisy high-contrast fingerprint target with 

2
0.01σ = , : noisy high-contrast fingerprint target with 2

1σ = , 

: noise-free low-contrast fingerprint target, : noisy low-contrast 

fingerprint target with 2
0.01σ = , and : noisy low-contrast 

fingerprint target with 2
1σ = ). 

In the case of the low-contrast target detection, all PCDs are low. This is 

because  the  limitation  of  the  used  EASLM  in  displaying  efficiently  low-contrast 

images. According to the characteristic of the EASLM (see Technical Documentation 

for  Matrix  Modulator  SLM-M,  Jenoptik,  19  September  1999),  the transmission is  
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Figure 4.18 The variation of the PCDs as a function of the QF of the compressed 

high-contrast fingerprint by using the averaged intensities over 5 5×  

pixels neighborhood of the correlation peak.  

maximum when its light-modulating elements are driven by signal with gray level 

amplitude greater than 210. Since the pixel values of the low-contrast fingerprint 

image are between 210 to 255, the spatial light modulation by the fingerprint image 

displayed on the EASLM cannot be done effectively. This can be verified from Fig. 

4.19 which shows the zero order of the joint power spectrum of the detection of the 

low-contrast noise-free fingerprint target by the compressed reference with QF = 100. 

In comparison with Fig. 4.12(b), it is obvious that the fringes appear only at the cross 

pattern which corresponds to the power spectra of the backgrounds of the target and 

the reference images.  
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Figure 4.19 Zero order of the joint power spectrum of the low-contrast fingerprint 

target. 

4.3.2 Compressed Low-Contrast Fingerprint as the Reference Images 

 The experimental verifications of the fingerprint detection by using the joint 

transform correlator with compressed low-contrast reference could not be successfully 

accomplished, because the EASLM cannot modulate totally the incident light. Figures 

4.20(a) and (b) show the joint power spectrum of the low-contrast fingerprint 

generated by the digital and the optical computations, respectively. The digitally 

computed joint power spectrum is plotted in logarithmic scale. It is obvious that the 

optically generated joint power spectrum does not contain the spectral pattern shown 

in Fig. 4.20(a).  
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Figure 4.20 The joint power spectrum of low-contrast fingerprint obtained from (a) 

the simulation and (b) the experiment. 

4.3.3 Compressed High-Contrast Human Face as the Reference Images 

 The 3-D plot of the autocorrelation of the uncompressed high-contrast human 

face illustrated in Fig. 4.15 is shown in Fig. 4.21(a), while the correlation outputs of 

the joint transform correlator by using the compressed high-contrast human face with 

QF = 10 as the reference are illustrated in Figs. 4.21(b), (c), and (d). Note that the 

experimentally generated correlation signals are not as broad as those obtained by the 

computer simulation shown in Fig. 4.7. This is because the maximum correlation 

peaks intensities were reduced by using the ND filter with density = 4.0 installed in 

the front of the CCD sensor. As a consequence, the peak height and width of the 

correlation signal were greatly reduced. When the target is noise free high-contrast 

human face, the correlation output shown in Fig. 4.21(b) is almost as sharp as the 

autocorrelation output shown in Fig. 4.21(a), however its peak slightly decreased. 

This is the effect of the compression on the reference image. Furthermore, the 

correlation planes shown in Figs. 4.21(a) and  (b) contain  stronger  noise  than  that in 

(a) (b) 
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Figure 4.21 Experimental results of the joint transform correlator. (a) 

autocorrelation of the uncompressed high-contrast human face; and 

cross-correlation outputs by using the compressed high-contrast human 

face reference (QF = 10) under a situation that the target is: (b) noise-

free high-contrast human face, (c) noisy high-contrast human face 

( 1
2 =σ ), and (d) noisy low-contrast human face ( 1

2 =σ ).  

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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Figs. 4.16(a) and (b). As discussed in Sect. 4.3, this is mainly caused by more speckle 

noise which is generated by light totally transmitted through the EASLM. Figures 

4.21(c) and (d) show the correlation output of the noise-corrupted high- and low-

contrast human face targets with the noise variance 2
1σ = , respectively. It is obvious 

that correlation peaks could not be observed. This is caused by the same reasons 

discussed in Sect. 4.3.1.  

 Figures 4.22(a) and (b) show the normalized PCDs as a function of the QF of 

the compressed high-contrast human face for difference target scenes obtained 

without and with averaging of intensities over 5 5×  pixels neighborhood of the 

original correlation peak. Figure 4.22(b) shows that besides reducing the fluctuation 

of the PCDs, the averaging of the correlation peaks increases the value of the PCDs, 

because the averaged correlation peak may become approximately equal to the correct 

value. When the target is noise-free high-contrast human face, the PCD decreases as 

the QF becomes smaller. However, when the QF is less than 10, the PCDs decrease 

rapidly. This is due to the fact that the blocking artifacts carry high-spatial frequency 

information. Therefore unlike the compressed fingerprint image, the generated 

blocking artifacts at low QF increase significantly the frequency content of the 

compressed human face reference. Since there might be frequency content mismatch 

between the target and the reference, the correlation peaks reduce. As a result, the 

PCD decreases drastically. In the presence of noise with variance 2
0.01σ =  in the 

input target, the PCDs drop below 0.5. This is because the joint power spectrum 

recorded without the use of the ND filter was corrupted by additional noise. 

Consequently, the correlation plane also appears noisy. When the noise presence is  
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Figure 4.22 The variation of the normalized PCDs as a function of the QF of the 

compressed high-contrast human face for different target scenes: (a) 

without and (b) with averaging of intensities over 5 5×  pixels 

neighborhood of the original correlation peak. 
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stronger, the PCDs decrease further. Because of the limitation of the EASLM, the 

detections of the low-contrast human face targets give low PCDs.  

4.3.4 Compressed Low-Contrast Human Face as the Reference Images 

 The experimental verifications of the joint transform correlator with the 

compressed low-contrast human face as the reference could not also be accomplished, 

because of the limitation of the EASLM. This is confirmed by comparing Fig. 4.23(a) 

with Fig. 4.23(b) which shows the difference of the joint power spectrum of the low-

contrast human face obtained from the computer simulation and the experiment, 

respectively. It is obvious that the joint power spectrum obtained from the experiment 

has no spectral information as the digitally generated joint power spectrum.  

 

 

 

 

 

 

 

 

Figure 4.23 The joint power spectrum of low-contrast human face obtained from 

(a) the simulation and (b) the experiment. 

(b) (a) 



CHAPTER V 

MULTIPLE-TARET DETECTION 

 

 In Chapter IV, single-target detection by using the joint transform correlator 

with JPEG-compressed reference images was studied and demonstrated. The system 

employed two successive optical Fourier transformations to compute the correlation 

of the target and the compressed reference images. In order to investigate the effects 

of reference compression on the recognition of the joint transform correlator on using 

compressed reference images, the correlation output was evaluated by measuring the 

PCD. To further verify the feasibility of our proposed method, this chapter studies the 

effects of JPEG-compression of the reference image on the performance of multiple-

target detection via both computer simulation and experimental verifications. In this 

study, the detection performance is measured by using the desired primary correlation 

peak to the secondary peak intensity ratio (PSR). 

5.1 Multiple-Target Detection by Using the Joint Transform 

Correlator with Compressed Reference Images 

 The real-time multiple-target detection by using the joint transform correlator 

with compressed reference images can be implemented by using the optical setup 

shown in Fig. 2.3. By displaying the compressed reference 1 1( , )
c

r x y  and the input 

scene consisting of N  target images 1 1( , )
i

t x y  side-by-side with a separation of 02x  

onto the EASLM, the joint input image can be mathematically written as 
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 1 1 1 0 1 1 0 1

1

( , ) ( , ) ( , )
N

JTC c i i i

i

f x y r x x y t x x x y y
=

= − + + + +∑ , (5-1) 

where ix  and iy  correspond to the relative position of the target in the 1x  and the 1y  

directions, respectively. When the additive white Gaussian noise 1 1( , )n x y  is present 

at the input scene and there is a contrast difference between the target and the 

compressed reference images, the joint input image can be rewritten as 

1 1 1 0 1 0 1 1 0 1

1

( , ) ( , ) ( , ) ( , )
N

JTC c T i i i

i

f x y r x x y c t x x x y y n x x y
=

= − + + + + + +∑ . (5-2) 

After a Fourier transformation by the lens L1, the joint power spectrum captured by 

the CCD sensor is found to be  
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where 2 2,
i

x y
T

f fλ λ
 
 
 

 is the Fourier transform of the th
i  target. The first three terms of 

Eq. (5-3) are associated with the autocorrelations of the reference, the input targets, 

and the noise, respectively. The fourth and fifth terms are cross-correlations between 

the targets and the noise. The cross-correlations between different targets correspond 

to the sixth and seventh terms, while the eighth and the ninth are the cross-

correlations between the reference and the input targets. The last two terms 

correspond to the cross-correlation between the reference and the noise. After 

displaying the captured joint power spectrum onto the EASLM, the second Fourier 

transformation produces the correlation output at the back focal plane of the lens L1. 

The correlation signals corresponding to the last four terms are of particular interest, 

because these terms appear at the same position. They can be mathematically written 

as: 

 
[ ]3 3 3 3 3 3 3 0 3

1

3 3 3 3 3 0 3

( , ) ( , ) ( , ) ( 2 ),

( , ) ( , ) ( 2 , ).

N

c T i i i

n

c

C x y r x y c t x y x x x y y

r x y n x y x x y

δ

δ
=

= ∗ ⊗ ± + ±

+ ∗ ⊗ ±

∑
 (5-4) 

The first term of Eq. (5-4) corresponds to the desired cross-correlation of the input 

target scene with the compressed reference images which is scaled by the contrast 

ratio 
T

c . The second one is the unwanted correlation of the compressed reference with 

the noise. However since the input scene consists of multiple targets, besides the 

contrast difference, the detection of the correct target may be affected by the 

correlation of the compressed reference with the non target and the noise. 
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5.2 Computer Simulation 

The effects of the reference image compression on the multiple-target 

detection using the joint transform correlator were studied by using the same 

fingerprint and human face images. The input target scene contained two different 

images with one of them identical to the original reference image. Figures 5.1(a) and 

(b) show the multiple target and the compressed reference with QF = 10 for the high-

contrast fingerprint and the human face, respectively. Their low-contrast images are 

shown in Figs. 5.1(c) and (d). The JPEG-compressed reference images were generated 

by using the same ACDsee software (The 2000 ACD systems, Ltd.). 

In the simulation, the multiple-object input scene was first generated and then 

was combined with compressed reference images to form the joint input image with 

the separation 2482 0 =x  pixels, while the distance between the desired target and the 

undesired object images was 186 pixels in the y  direction. In the simulation, the 

same algorithm for computing the joint transform correlator used in Chapter IV was 

employed. However, the correlation output of the multiple-target detection was 

quantified by measuring the PSR in the correlation plane. 

 5.2.1 Compressed High-Contrast Fingerprint as the Reference Images 

The 3-D plot of the correlation outputs of the multiple-fingerprint detection by 

using the joint transform correlator with the high-contrast fingerprint reference are 

shown in Fig. 5.2. The correlation output shown in Fig. 5.2(a) consists of two peaks, 

because there are two targets. The primary peak produced by the autocorrelation of 

the uncompressed high-contrast fingerprint, while the second one is the cross 

correlation of the reference with the non-target fingerprint. For this reason, the  
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Figure 5.1 Multiple target input scenes and the compressed reference with the QF = 

10: (a) high-contrast fingerprint, (b) low-contrast fingerprint, (c) high-

contrast human face, (d) low-contrast human face. 

(a) (b) 

(c) (d) 
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Figure 5.2 Simulation results of the multiple-target joint transform correlator. (a) 

autocorrelation of the uncompressed high-contrast fingerprint; and cross-

correlation outputs by using the compressed high-contrast fingerprint 

reference (QF = 10) under a situation that the multiple-target scene is: 

(b) noise-free high-contrast fingerprint image, (c) noisy high-contrast 

fingerprint image ( 1
2 =σ ), and (d) noisy low-contrast fingerprint image 

( 1
2 =σ ). 
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primary peak is higher and sharper than the undesired secondary peak. Figures 5.2(b), 

(c), and (d) show the correlation outputs of the joint transform correlator by using the 

compressed high-contrast fingerprint at QF = 10 as the reference. In Fig. 5.2(b), the 

high-contrast multiple-fingerprint target is free from noise. The resultant correlation 

peak is slightly lower compared with that of the uncompressed case shown in Fig. 

5.2(a). This is the effect of the compression on the reference image (Widjaja, 2003; 

Widjaja and Suripon, 2004). Figures 5.2(c) and (d) show the resultant detection of the 

high- and low-contrast multiple-targets which are corrupted by noise with variance 

1
2 =σ , respectively. In the case of the noisy high-contrast fingerprint target, the 

correlation plane is slightly noisy and the peak intensity of both desired and undesired 

correlations are about one order of magnitude lower than the noise-free multiple- 

target. However, in the case of the noisy low-contrast target, the correlation plane 

appears very noisy. This makes the determination of the correct correlation peaks 

become difficult. The reason of this is that the low-contrast image has luminance 

which is weaker than the noise (Widjaja and Suripon, 2004). This produces noisy 

correlation plane. Since the target has lower contrast than the reference, the 

correlation of the compressed reference with the target is reduced by a factor 
T

c  

which is less than 1. Because of these two reasons, the effect of noise on the 

recognition of the low-contrast target is found to be stronger than that of the high-

contrast target with same noise level. 

Figure 5.3 shows the variation of the PSRs as a function of the QF of the 

compressed high-contrast fingerprint reference for different multiple-target scenes. In 

general, the PSRs gradually increase as the QF increases, because less information is 

discarded from the compressed reference image. When the degree of similarity 
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between the target and the compressed reference images improves, the correlation 

quality becomes better and the PSRs increase. However, the PSRs of the low-contrast 

fingerprint target are lower than that of the high-contrast target and they decrease 

drastically when the noise level increases. As mentioned in the preceding paragraph, 

this is the consequence of scaling of the correlation function by the contrast ratio and 

also by the sensitivity of the low-contrast image to noise. Therefore, the recognition 

of the noisy multiple-fingerprint depends on the contrast rather than the compression 

level of the reference image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 The PSR-based measurement of the detection performance of the joint 

transform correlator as a function of the QF of the compressed high-

contrast fingerprint reference. 
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5.2.2 Compressed Low-Contrast Fingerprint as the Reference Images 

 Figures 5.4(a), (b), (c), and (d) illustrate the 3-D correlation outputs of the 

multiple-fingerprint detection by using joint transform correlator with the low-

contrast fingerprint as the reference image. The autocorrelation peak of the 

uncompressed low-contrast fingerprint image shown in Fig. 5.4(a) is almost as sharp 

as the autocorrelation of the high-contrast target shown in Fig. 5.2(a). However, its 

peak intensity reduces by three orders of magnitude. The secondary peak is also lower 

and broader than that of the high-contrast fingerprint. Figure 5.4(b) illustrates the 

output correlation of the noise-free low-contrast multiple-fingerprint with the low- 

contrast reference compressed at QF = 10. Both correlation peaks become broad and 

their peaks further decrease. This occurs because the compressed low-contrast 

fingerprint reference image suffers more from loss of high spatial-frequency contents. 

As the compressed reference image now contains mainly the low spatial-frequency 

components, the impulse response of the joint transform correlator with this 

compressed reference image becomes broad. Figure 5.4(b) also reveals that, because 

of the compression, the intensity of the desired correlation peak is reduced more than 

that of the undesired peak, yielding false detection. Figures 5.4(c) and (d) show the 

detection outputs of the noisy low- and high-contrast multiple-fingerprint target with 

variance 1
2 =σ , respectively. Since the luminance of the noisy low-contrast 

multiple-target is weaker than the noise, the correlation term ( , ) ( , )
c

r x y n x y∗  gives 

the greatest output. As a result, the correlation peaks are buried in strong noise. 

However, when the target scene is the noisy high-contrast fingerprint with variance 

2
1σ = , the target luminance is stronger than the noise and the contrast ratio 

T
c  is 
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Figure 5.4 Simulation results of the multiple-target joint transform correlator. (a) 

autocorrelation of the uncompressed low-contrast fingerprint; and cross-

correlation outputs by using the compressed low-contrast fingerprint 

reference (QF = 10) under a situation that the multiple-target scene is: 

(b) noise-free low-contrast fingerprint, (c) noisy low-contrast fingerprint 

( 1
2 =σ ), and (d) noisy high-contrast fingerprint ( 1

2 =σ ).  
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greater than unity. The output correlation of the compressed reference with the 

multiple-target becomes greater than that of the other terms. Therefore, although the 

correlation plane is noisy, the correlation peaks can be clearly observed.  

 Figure 5.5 shows the PSRs as a function of the QF of the compressed low-

contrast fingerprint reference for different multiple-target scenes. It is obvious that as  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 The PSR-based measurement of the detection performance of the joint 

transform correlator as a function of the QF of the compressed low-

contrast fingerprint reference. 

the QF increases, the PSRs increase more rapidly than that of the compressed high-

contrast fingerprint shown in Fig. 5.3. This indicates that the use of the compressed 

low-contrast fingerprint reference degrades significantly the performance of multiple-

target detection by the joint transform correlator. The severe effect of compression on 
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the detection of the low-contrast multiple-fingerprint can be observed when the QF is 

less than 20 in which the PSRs become smaller than unity. It is obvious that in 

comparison with the high-contrast target, the detection of the low-contrast multiple-

fingerprint target is dependent more upon the noise. When the variance of the noise is 

equal to 1, the PSR of the noisy low-contrast multiple-fingerprint never exceeds unity. 

This is because the low-contrast target image is easily corrupted by the noise. 

Therefore, besides the compression, the detection of the noisy multiple-target is 

dependent upon the contrast difference between the target and the reference image. In 

order to avoid the false detection, the low-contrast fingerprint reference cannot be 

compressed as small as the high-contrast reference. 

5.2.3 Compressed High-Contrast Human Face as the Reference Images 

 Figure 5.6(a) shows the 3-D plot of the output correlation of the high-contrast 

multiple-human face with the uncompressed reference. It is clear that the desired 

correlation output is sharper and its peak intensity is higher than that of the undesired 

peak. The broadening of the autocorrelation peak is because the human face reference 

image contains less high spatial-frequency components. Figures 5.6(b), (c), and (d) 

illustrate the correlation outputs of the joint transform correlator by using the 

compressed high-contrast human face as the reference at QF = 10 for different 

multiple-target scenes. Figure 5.6(b) illustrates the output detection of the noise-free 

high-contrast multiple-target which is slightly affected by the compression. Figures 

5.6(c) and (d) show the resultant detections of the high- and the low-contrast multiple-

targets which are corrupted by noise with variance 1
2 =σ , respectively. It can be 

seen that the correlation outputs depend on the contrast difference. Due to the lower  
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Figure 5.6 Simulation results of the multiple-target joint transform correlator. (a) 

autocorrelation of the uncompressed high-contrast human face; and 

cross-correlation outputs by using the compressed high-contrast human 

face reference (QF = 10) under a situation that the multiple-target scene 

is: (b) noise-free high-contrast human face, (c) noisy high-contrast 

human face ( 1
2 =σ ), and (d) noisy low-contrast human face ( 1

2 =σ ).  
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contrast, the peak intensities of Fig. 5.6(d) are lower and its correlation plane is more 

noisy than that of Fig. 5.6(c). 

 The variation of PSRs as a function of the QF of compressed high-contrast 

human face reference for the different multiple-target scenes is shown in Fig. 5.7. It is 

obvious that all PSRs are almost independent of the compression. Their magnitudes 

which are always greater than unity depend on the contrast difference and noise. This 

ensures that false alarm will not occur in the correlation plane. In the case of the 

detection of the multiple high-contrast human face, the PSRs are slightly affected by 

the noise. However, contrary results are obtained when the contrast of the detected 

target are low. In the case of the noise-free multiple-target, the correlation of the low 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 The PSR-based measurement of the detection performance of the joint 

transform correlator as a function of the QF of the compressed high-

contrast human face reference. 
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-contrast non-target human face with the compressed high-contrast reference produces 

lower peak intensity than that of the high-contrast non target, because of the contrast 

difference. As a result, the detection of the low-contrast target yields a higher PSR 

than that of the high-contrast target. When the multiple low-contrast human face is 

corrupted by the noise with variance 2
0.01σ = , the peak intensity produced by the 

correlation of the non target is further degraded because of the hyper sensitive nature 

of the low-contrast image to noise. Thus, its PSR increases further. However, when 

the variance of the noise increases to be 1, the PSR of the low-contrast multiple-target 

reduces drastically. This is because of the stronger noise signal than the target image, 

both correlation terms produced by the target and the non target are corrupted by the 

strong correlation of term ( , ) ( , )
c

r x y n x y∗ . 

5.2.4 Compressed Low-Contrast Human Face as the Reference Images 

 Figures 5.8(a), (b), (c), and (d) show the correlation outputs of the multiple- 

human face detection by using joint transform correlator with the low-contrast human 

face as the reference image. Figure 5.8(a) shows the output detection of the noise-free 

low-contrast human face by using the uncompressed reference. The correlation peaks 

are broad and their peak intensities are reduced by about two orders of magnitude 

compared with that of the high-contrast human face target, because of the lower 

contrast. When the reference image is compressed at QF = 10, the intensity of both 

correlation peaks in Fig. 5.8(b) further decreases, and their correlation profiles 

broaden. Figures 5.8(c) and (d) show the detection outputs of the noisy low- and the 

high-contrast multiple-targets with variance 1
2 =σ , respectively. It is clear that when 

the target is high-contrast human face, the degradation of correlation output caused by  
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Figure 5.8 Simulation results of the multiple-target joint transform correlator. (a) 

autocorrelation of the uncompressed low-contrast human face; and 

cross-correlation outputs by using the compressed low-contrast human 

face reference (QF = 10) under a situation that the multiple-target 

scene is: (b) noise-free low-contrast human face, (c) noisy low-contrast 

human face ( 1
2 =σ ), and (d) noisy high-contrast human face ( 1

2 =σ ).  
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the noise is less than that of the low-contrast target. The desired correlation peak is 

even higher than the case of autocorrelation shown in Fig. 5.8(a). This is because the 

image contrast is higher.  

 Figure 5.9 shows the variation of PSRs as a function of the QF of the 

compressed low-contrast human face reference for different multiple-target scenes. In 

comparison with the compressed high-contrast human face, the use of the compressed 

low-contrast gives similar results except that the PSRs decrease abruptly when the 

compression QF becomes very low. This is caused by the degradation of the reference 

image by JPEG compression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 The PSR-based measurement of the detection performance of the joint 

transform correlator as a function of the QF of the compressed low-

contrast human face reference. 
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5.3  Experimental Verifications 

 The experimental verifications of the multiple-object detection by using the 

joint transform correlator with compressed reference images were done by using the 

same optical setup employed in Chapter IV. As discussed in the preceding chapter, 

because of the limitation of the EASLM in displaying the low-contrast image, the 

experimental verifications of the joint transform correlator with compressed low-

contrast reference image cannot be successfully performed.  

The preliminary study of multiple-target detection was firstly done by using 

the high-contrast multiple-fingerprint target and the uncompressed high-contrast 

fingerprint as the reference. The target scene had a size of 124 558
ex ey

P P× , while the 

size of the compressed reference was 124 186
ex ey

P P× . To capture the generated joint 

power spectrum shown in Fig. 5.10(a) by the CCD sensor, the ND filter with density 

of 2.0 was used to reduce the light intensity. Three replications of the joint power 

spectrum that are the ( 1,0)th− , the (0,0)th , and the ( 1,0)th+ orders can be observed 

from Fig. 5.10(a). The higher orders are separated from the zero order by the distance 

ex

f

P

λ
 in x  direction. The enlarged zero order of the joint power spectrum illustrated in 

Fig. 5.10(b) shows the inclined fringes generated by the interference between the 

desired target and the reference beams. After redisplaying the zero order of the joint 

power spectrum onto the EASLM, the second optical Fourier transform produced the 

correlation output. The correlation output was then captured by the CCD sensor 

placed at the back focal plane of the Fourier transform lens L1. The density of the ND 

filter used in this recording was 3.69. Figure 5.11 shows the resultant correlation  
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  (b) 

Figure 5.10 (a) joint power spectrum of the high-contrast multiple-fingerprint 

detection by using uncompressed reference, (b) its enlarged zero order 

of the joint power spectrum. 
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output of the multiple-fingerprint detection. The zero order of the correlation output 

contains the following components: three autocorrelations of the reference and the 

two input targets which appear at the origin, two cross-correlations between the 

reference and the desired input target 
3 3 1 3 3

( , ) ( , )r x y t x y∗ , two cross-correlations 

between the reference and non input target 
3 3 2 3 3

( , ) ( , )r x y t x y∗ , the two cross-

correlations between the different targets 
1 3 3 2 3 3
( , ) ( , )t x y t x y∗ . 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Correlation output of the high-contrast multiple-fingerprint detection. 

 In the case of the multiple-human face detection, the preliminary study was 

conducted by using uncompressed high-contrast human face as the reference. The 

generated joint power spectrum captured by the CCD sensor and its enlarged zero 

order are shown in Figs. 5.12(a) and (b), respectively. Figure 5.12(b) confirms that the 

joint power spectrum contains an inclined cosines fringes necessary to generate the 

desired correlation output. Since the displayed joint input image consisted of  multiple  
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  (b) 

Figure 5.12 (a) joint power spectrum of the high-contrast multiple-human face 

detection by using uncompressed reference, (b) its enlarged zero order 

of the joint power spectrum. 
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images, large area of the EASLM transmitted light. In comparison to the single 

human face detection, the joint power spectrum had higher intensity of light. Thus the 

intensity of the joint power spectrum was reduced by using the ND filter with density 

of 1.0. Figure 5.13 shows the correlation output obtained by redisplaying the joint 

power spectrum shown in Fig. 5.12(b) onto the EASLM and taking the optical Fourier 

transform. This correlation output was captured by using the ND filter with the 

density of 3.0. Since the densities of the ND filters used in the recordings of the joint 

power spectrum and of the correlation output were smaller than that of the fingerprint 

detection, the correlation planes appear to be more noisy than that of Fig. 5.11. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Correlation output of the high-contrast multiple-human face detection. 

5.3.1 Compressed High-Contrast Fingerprint as the Reference Images 

 Figures 5.14(a), (b), (c), and (d) show the 3-D correlation outputs obtained 

from  the   experimental   detections   of  the  multiple-fingerprint  by  using  the  joint  
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Figure 5.14 Experimental results of the multiple-target joint transform correlator. (a) 

autocorrelation of the uncompressed high-contrast fingerprint; and cross-

correlation outputs by using the compressed high-contrast fingerprint 

reference (QF = 10) under a situation that the multiple target scene is: (b) 

noise-free high-contrast fingerprint image, (c) noisy high-contrast 

fingerprint image ( 2
1σ = ), and noisy low-contrast fingerprint image 

( 2
1σ = ). 
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transform correlator with the compressed high-contrast fingerprint as the reference 

image. The autocorrelation peak of the uncompressed high-contrast fingerprint image 

shown in Fig. 5.14(a) is higher than the undesired secondary peak. This is in 

agreement with the simulation result shown in Fig. 5.2(a). When the reference is the 

compressed high-contrast fingerprint with QF = 10 and the multiple target is noise-

free high-contrast fingerprint, both the correlation peaks shown in Fig. 5.14(b) 

become lower. Since the use of the uncompressed reference produces the secondary 

peak intensity that is smaller than the primary peak, the degradation caused by the 

compression lowers significantly the secondary correlation peak. Figures 5.14(c) and 

(d) show the correlation outputs of the joint transform correlator by using the 

compressed high-contrast fingerprint reference with QF = 10 for the noisy high- and 

low-contrast multiple-fingerprint targets with variance 2
1σ = , respectively. It is clear 

that the correlation peaks are hardly observed. In particular, the secondary correlation 

peak is minimized. For the case of the high-contrast target, this is because the cosine 

fringes which encodes the desired correlation information were corrupted by the 

spectrum of the strong noise. However for the case of the low-contrast target, this is 

caused by the limitation of the EASLM in displaying low contrast image. This 

explanation is confirmed by Fig. 5.15(a) and (b) which show the corrupted joint 

power spectrum of the detections of the high- and low-contrast target, respectively.  

 Figures 5.16(a) and (b) show the PSRs as a function of the QF of the 

compressed high-contrast fingerprint reference for different multiple-target scenes 

obtained without and with averaging of intensities over 5 5×  pixels neighborhood of 

the correlation peaks. The averaging process provides smooth variation of the PSRs.  
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       (a)               (b) 

Figure 5.15 Joint power spectrum of the detection of (a) the noisy high-contrast 

multiple fingerprint target with variance 2
1σ =  and (b) the noisy low-

contrast multiple fingerprint target with variance 2
1σ =  by using the 

compressed high-contrast fingerprint reference with QF = 10. 

In the case of the high-contrast fingerprint detections, although their magnitude is 

different, the variation of the PSRs is similar to the simulation results in that they 

increase gradually as the QF becomes higher. When the target is the noise corrupted 

multiple-fingerprint with variance 2
0.01σ = , its resultant PSR is higher than that of 

the noise-free target. This is because the secondary peak is minimized by the noise 

presence. Since this peak value appears in the denominator, the value of the PSR 

becomes higher. Furthermore, as the variance of the noise increases to unity, the joint 

power spectrum is strongly corrupted by the noise. Since the primary correlation peak 

is degraded, its PSR reduces sharply to less than 1.5. The detection of the low-contrast 

multiple-fingerprint targets gives different results compared to the simulation. The 

PSRs of the experimental results are always approximately equal to 1. This occurs  
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Figure 5.16 The PSR-based measurements as a function of the QF of the joint 

transform correlator with compressed high-contrast fingerprint reference: 

(a) without and (b) with intensities averaging over 5 5×  pixels 

neighborhood of the original correlation peak. 
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because the EASLM cannot display effectively low-contrast images. Since the cosine 

fringes were not generated, there were no primary and secondary correlation peaks. 

As a result, the PSRs become approximately 1. 

5.3.2 Compressed Low-Contrast Fingerprint as the Reference Images 

 Due to the limitation of the EASLM discussed in Chapter IV, the experimental 

verifications of the multiple-fingerprint detection of using compressed low-contrast 

fingerprint reference cannot be accomplished. The joint power spectrum of Fig. 

5.17(b) which was experimentally generated does not contain the spectral information 

as the one generated by the computer simulation shown in Fig. 5.17(a).  

 

 

 

 

 

 

 

 

         (a)            (b) 

Figure 5.17 The joint power spectrum of the low-contrast multiple-fingerprint 

obtained from (a) the simulation and (b) the experiment. 

5.3.3 Compressed High-Contrast Human Face as the Reference Images 

 Figure 5.18(a) shows the 3-D plot of the correlation output of the multiple-

high-contrast human face detection by using the joint transform correlator with  
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Figure 5.18 Experimental results of the multiple-target joint transform correlator. (a) 

autocorrelation of the uncompressed high-contrast human face; and 

cross-correlation outputs by using the compressed high-contrast human 

face reference (QF = 10) under a situation that the multiple target scene 

is: (b) noise-free high-contrast human face image, (c) noisy high-contrast 

human face image ( 2
1σ = ), and noisy low-contrast human face image 

( 2
1σ = ). 
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uncompressed high-contrast human face reference, while Figs. 5.18(b), (c), and (d) 

illustrated the correlation outputs of the detection with the reference compressed at 

QF = 10. It can be seen from Fig. 5.18(a) that the autocorrelation peak intensity is 

higher and sharper than that of the secondary correlation peak generated by the non 

target. As the reference is compressed, the correlation peak intensities shown in Fig. 

5.18(b) reduce slightly. This is in agreement with the computer simulation results 

shown in Fig. 5.6. However, when the human face targets are strongly corrupted by 

noise, Figs. 5.18(c) and (d) show that there are no observable correlation peaks. As 

discussed in Sect. 5.3.1, the presence of strong noise in the input and the limitation of 

the EASLM degrade significantly the correlation outputs. 

 Figures 5.19(a) and (b) show the variation of the PSRs as a function of the QF 

of the compressed high-contrast human face reference for different multiple-target 

scenes obtained without and with averaging of intensities over 5 5×  pixels 

neighborhood of the correlation peak. By averaging correlation intensities over 5 5×  

pixels neighborhood of the correlation peak, the values of the resultant PSRs of the 

noise-free and the noisy high-contrast human face with variance 2
0.01σ =  vary 

around 3. These are almost the same as the simulation results.  

5.3.4 Compressed Low-Contrast Human Face as the Reference Images 

The experimental verifications of the multiple-human face by using low-

contrast human face reference cannot be successfully accomplished because the 

EASLM has a low contrast ratio. As evident by Figs. 5.20 (a) and (b) which shows the 

joint power spectrum of the multiple-human face detection of using low-contrast 

human face reference, the optically generated joint power spectrum is far from the 

ideal joint power spectrum generated by digitally computation. 
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Figure 5.19 The PSR-based measurements as a function of the QF of the joint 

transform correlator with compressed high-contrast human face 

reference: (a) without and (b) with averaging of intensities over 5 5×  

pixels neighborhood of the original correlation peak. 
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        (a)             (b) 

Figure 5.20 The joint power spectrum of the multiple-human face detection by using 

low-contrast human face reference obtained from (a) the simulation and 

(b) the experiment. 

 



CHAPTER VI 

CONCLUSIONS 

 

In this dissertation, in order to solve storage problems and improve processing 

time of automatic target recognition systems, a real-time implementation of joint 

transform correlator by using JPEG-compressed reference images has been 

theoretically studied and experimentally verified. The storage problem arises from the 

fact that the joint transform correlator employs a large number of reference images to 

deal with all possible variations of targets, while the process of the target and the 

reference images introduces a time delay which depends on the size of images.  

There were two primary objectives in this dissertation. The first objective was 

to study the effects of reference image compression on the recognition performance of 

the joint transform correlator. The second one was to obtain a guide line to optimize 

the recognition performance of the joint transform correlator on using compressed 

reference images. In order to achieve these objectives, studies of single- and multiple-

target recognitions were performed by using fingerprint and human face images as 

test scenes with different spatial-frequency contents, and by taking into account the 

presence of noise in the input targets and of contrast difference between the target and 

the reference images. The JPEG-compressed reference images with different 

compression levels were generated by using ACDsee software. The computer 

simulations of the joint transform correlator with compressed reference images were 

performed by using MATLAB. The experimental verifications of the joint transform 
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correlator with compressed reference images were done by using one stage optical 

Fourier transformer where the twisted nematic liquid crystal display, the He-Ne laser, 

and the CCD sensor were used as the EASLM, the coherent light source, and the light 

detector, respectively. However, due to the limitation of the EASLM on displaying 

low contrast image and low dynamic range of the CCD sensor, not all experimental 

verifications could be performed. 

In Chapter III, the effect of JPEG compression on the information contents of 

the compressed reference images was assessed by using the CR and the PSNR. From 

the four types of reference images, the compressed low-contrast human face and the 

high-contrast fingerprint have the highest and the lowest CRs, respectively. The CR of 

the high-contrast human face is slightly higher than the low-contrast fingerprint for 

the low QF. The objective evaluation by using the PSNR shows that PSNRs of the 

low-contrast image is higher than that of the high-contrast image. The subjective 

evaluation of the compressed image shows that at low QF, the quality of the image is 

reduced with distinctive blocking artifacts. 

 In Chapter IV, the performance degradation of the proposed joint transform 

correlator used for single-target detection is summarized in Table 6.1. The simulation 

results show that the effects of compression of the high-contrast human face reference 

on the correlation performance of the joint transform correlator is insignificant for all 

given target scenes. Although the detection performance of the joint transform 

correlator by using the compressed low-contrast human face decreases at the low QF, 

the degradation due to the noise presence and the contrast difference is small. Besides 

being sensitive to noise, the detection performance of the joint transform correlator by 

using  the  compressed   fingerprint  reference  depends  on the  compression,  and the  
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Table 6.1

High contrast Low contrast High contrast Low contrast

Gradual Gradual Gradual and significant Severe

Sudden Sudden Sudden and significant Severe

No No No No

Very small Very small Very small Very small

High contrast Low contrast High contrast Low contrast

Gradual Severe Severe Severe

Not available Not available Not available Not available

Gradual Severe Severe Severe

Not available Not available Not available Not available

Simulation

Performance degradation of the single-target detection by using the joint transform correlator with compressed reference images

Compressed reference image Condition of multiple-target images

Noise free Noisy

High-contrast fingerprint

Low-contrast fingerprint

High-contrast human face

Low-contrast human face

Experiment

Compressed reference image Condition of multiple-target images

Noise free Noisy

High-contrast fingerprint

Low-contrast fingerprint

High-contrast human face

Low-contrast human face
 

 1
0
8
 



 109 

degradation for the low-contrast fingerprint is more significant compared with the 

high-contrast one. In the experiment, only detections of target by using the 

compressed high-contrast references could be verified. This is because the used 

EASLM could not display efficiently low-contrast images and the dynamic range of 

the CCD sensor is low. As a result, the remaining experimental verifications by using 

low-contrast references could not be successfully performed. The experimental results 

show that the recognition performance of the high-contrast fingerprint target by using 

compressed high-contrast fingerprint is in agreement with the simulation results, 

while the recognition of the high-contrast human face target by using compressed 

high-contrast human face reference is different with the simulation, because the 

generated joint power spectrum is corrupted by the speckle noise. Furthermore, the 

performance degradation of the low-contrast fingerprint and human face target 

detections are severe because of the limitation of the EASLM.  

 Since the experimental verifications of the real-time joint transform correlator 

with compressed reference images are not complete, the guideline for optimizing the 

recognition performance of the system is based on the simulation results. In the case 

of single-target detection, the guideline is determined by considering that the 

normalized PCD obtained from the simulations must not decrease more than 10 

percent below the maximum value that is unity. Expect for detection of the noisy low-

contrast fingerprint target with variance 2
1σ = , the high-contrast fingerprint 

reference can be compressed until QF = 30 that is equivalent to the compression of 

about 5.2 times smaller than the original size. Since the effect of compression on the 

low-contrast fingerprint image is greater than that of the high-contrast image, the 

maximum compression of the low-contrast fingerprint reference is QF = 85 that 
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corresponds to the file size ratio of about 5.3 times smaller than the original size. 

Therefore, regardless of the contrast, the maximum compression of the fingerprint 

reference is about 5.2 times. Based on the same guideline for the detection of the 

fingerprint, Fig. 4.8 shows that the joint transform correlator by using compressed 

high-contrast human face can be accomplished at any compression levels. In the case 

of the low-contrast human face reference, the smallest QF is 5 that corresponds to the 

CR = 36.5. Thus, the maximum compression of the human face reference is about 

33.6 times.  

 In Chapter V, the multiple-target detection by using joint transform correlator 

with compressed reference images was investigated. Table 6.2 summarizes the 

performance degradation obtained from the computer simulation and the experiment. 

The simulation results showed that when the reference image has low-spatial-

frequency contents such as human face, the effects of compression of the reference on 

the multiple-target detection by using joint transform correlator is not significant for 

all given target scenes regardless of the noise and the contrast difference. This is in 

agreement with study of the single target detection. In contrast with the use of the 

compressed reference with low-spatial-frequency contents, the multiple-target 

recognition by using the compressed reference with high-spatial-frequency contents is 

not only determined by the contrast, but also the noise and the compression as well. It 

is worth mentioning that the use of the low-contrast reference with high-spatial-

frequency contents may yield false alarms. The experimental verifications of the 

detection of multiple-target give the same results as the single target. In the case of the 

multiple-target detection, the guideline for optimizing the detection performance is 

that the PSR must be greater than unity. By taking this into account, except for the 
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Table 6.2

High contrast Low contrast High contrast Low contrast

Gradual Gradual and significant Gradual and significant Severe

Sudden Sudden and significant Sudden and significant Severe

No No No No

Very small Very small Very small Very small

High contrast Low contrast High contrast Low contrast

Severe Severe Severe Severe

Not available Not available Not available Not available

Gradual Severe Severe Severe

Not available Not available Not available Not available

High-contrast human face

Low-contrast human face

Experiment

Low-contrast human face

High-contrast fingerprint

Low-contrast fingerprint

Compressed reference image Condition of multiple-target images

Noise free Noisy

Performance degradation of the multiple-target detection by using the joint transform correlator with compressed reference images

High-contrast fingerprint

Low-contrast fingerprint

High-contrast human face

Noisy

Compressed reference image

Simulation

Condition of multiple-target images

Noise free

 

 1
1
1
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detection of the noisy multiple low-contrast fingerprint target with variance 2
1σ = , 

the compression of the high-and the low-contrast fingerprint references can be done at 

any levels. The same compression requirement can also be applied to the joint 

transform correlator with compressed high-and low-contrast human face.  
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