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This thesis systematically studies periodic and anti-periodic solutions for a
targe class of strongly nonlinear evolution equations in Banach spaces and
corresponding optimal control problems.

At first, a new existence result on periodic solutions for first-order nonlinear
evolution equations is presented. The equations contain nonlinear monotone operators
and nonlinear nonmonotone perturbations. An approach of integrating the theory of
nonlinear monotone operators and the Leray-Schauder fixed point theorem was used
to successfully overcome some difficulties due to strong nonlinearity.

By virtue of this approach, an existence result of anti-periodic solutions for the
first-order nonlinear evolution equations is also obtained. Furthermore, through an
appropriate transformation, the existence of anti-periodic solutions for the second
order nonlinear evolution equations is verified.

In addition, a corresponding Lagrange optimal control problem is considered.
We give an existence result of optimal control of systems governed by periodic
nonlinear evolution equations on Banach spaces.

Finally, the results are illustrated by three examples conceming quasi-linear
partial differential equations: quadratic optimal control problem of a system governed
by a second order quasi-linear parabolic equation with periodic condition; a Lagrange
optimal control problem of a system governed by a 2m-order quasi-linear parabolic
equation with time periodic condition; an anti-periodic boundary value problem of a
quasi-linear hyperbolic equation with nonlinear motion.
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Chapter 1

Introduction

In this thesis, we systematically study periodic and anti-periodic solutions
for a large class of strongly nonlinear evolution equations in Banach spaces and
a Lagrange optimal control problem of systems governed by strongly nonlinear
periodic evolution equations in Banach spaces.

Optimal control problems are minimizing problems which describe the
behavior of systems that can be modified by the action of an operator. Two
kinds of variables (or sets of variables) are involved: one of them describes the
state of the system and cannot be modified directly by the operator, it is called
the state variable; the second one, on the contrary, is under the direct control of
the operator which may choose a strategy among a given set of admissible ones,
it 15 called the conirol variable. The operator tries to modify the state of the
system indirectly, acting on control variables; only these may act on the system,
through a link control-state, usually called state equation. Finally, the operator,
acting directly on controls and indirectly on states through the state equation,
must achieve a goal usually written as the minimization of a functional which
depends on the control that has been chosen and on the corresponding state: the
so-called cost functional.

In many technological processes, the state of the system is described by
quantities that depend on the position variables and also on time. In the opti-
mal control of such processes, there often appear partial differential equations,
functional differential equations, or abstract evolution equations as state equa-
tions. In general, these equations are nonlinear. For example, the well-known
Navier-Stokes equation arising in hydrodynamic problems is a system of non-
linear diffusion equations. Similarly, in problems of chemical (nuclear) kinetics,
involving simultaneously chemical (nuclear) reactions and heat transfer, one has
to deal with a system of nonlinear diffusion equations. A fairly large class of such
problems can be covered by evolution equations on suitable Banach spaces.

Optimal control problems of distributed parameter systems have been ex-
tensively studied since the last century. Most of the work concentrated on linear
and semilinear equations is summarized by the books of Lions (1971), Ahmed and
Teo (1982), Li and Yong (1995), and Fattorini (1999). Recently, some authors
have shifted their attention to nonlinear cases. We refer to the works of Barbu
(1992), Papageorgiou (1993), Ahmed and Xiang (1997), etc.

In order to study the optimal control problem, it is very important to
analyze the state equations. Since the last decade, some authors have been paying



great attention to systems with strong nonlinearities, particularly to nonlinear
systems with nonmonotone perturbations. That is, the state equation is

£(t) + Alt,z(t)) = f(t,z(t), 0<t<T

with initial condition z{0) = xp. Here, A is a nonlinear monotone operator and f
is a nonlinear nonmonotone perturbing operator. There are some works discussing
such a class of initial value problems. In 1989, Hirano began to study the influence
of nonlinear nonmonotone perturbations. Since then, Ahmed and Xiang (1994),
Papageorgiou (1993) have continued to consider this problem. However, in order
to obtain the existence of solutions, they imposed some strong restrictions on
the perturbation such as restriction of domain or region, growth condition of low
order (almosl linear), etc.

On the other hand, another important and interesting problem is the non-
linear periodic problem which arises naturally in mathematical modeling of vari-
ous physical processes, because many processes are cyclic. For example, there are
periodic mathematic models in Bonilla and Higuera (1995), Kulshreshtha, Liang,
and Muller-Kirsten (1993). There has been a significant amount of research on
various periodic problems of nonlinear evolution equations for coucrete problems
(cf. Fu and Ma (1997), Kolesov (1991), Leung and Ortega (1998), Pao (1999},
and Pao (2000)}, for semigroup theory (cf. Browder (1965), Priiss (1979), Amann
(1978), Xiang and Ahmed (1992}, Vrabie (1990) and Papageorgiou (1994), Youg,
Fuzhong, Zhenghua, and Wenbin (1999}), and for the theory of monotone oper-
ators (cf. Becker Browder (1963), Becker (1981), Zeidler (1990), and Avgerinos
(1996)).

In 1990, Zeidler proved the existence of periodic solutions {or nonlinear evo-
lution equations only containing a nonlinear monotone operator by using mono-
tone theory. In 1996, Avgerinos continued to consider nonlinear and multivalued
systems including a nonlinear monotone operator perturbed by a nonmonotone
but regular operator (mapping within the same Hilbert space, thereby excluding
differential expressions). In this thesis, we extend the result to the more gen-
eral case of systems which contain a nonlinear monectone operator and where the
perturbing operator admits differential expressions.

Furthermore, many authors pay great attention to the existence of optimal
controls of nonlinear evolution systems with initial condition. So far, not much
seems to be known for T-time periodic problems. There are only some results
for linear periodic evolution equations in Hilbert spaces, see, e.g., Barbu{1991),
Barbu (1997), and Li and Young (1994). In this thesis, we study the optimal
control problem of systems governed by nonlinear periodic evolution equations in
Banach spaces.

More precisely, the main purpose of this thesis is to present general exis-
tence results for the optimal control problem (P): Minimize the functional

T
J(a:,u)zfo L(t,z(0),u(0)dt



subject to u € U,y and x € W, satisfying the state system

{ £(t) + Alt, z(t)) = f{t,z()) + B(u(t), 0<t<T
z(0) = z(T)

where A : (0,T)xV — V* is a nonlinear monotone operator, f : (0,T)x H — V*
is a nonlinear and nonmonotone perturbation, B € L,.((0,7T); L(E, H)), £ is a
reflexive Banach space {control space), V < H < V* is an evolution triple and
W, will be defined in Chapter 2.

Before we discuss the optimal periodic control problem, we study strongly
nonlinear periodic evolution equations as follows:

{¢m+A@)=f&ﬂ= 0<t<T (1.1)

By using nonlinear monotone operator theory and the Leray-Schauder fixed point
theorem, we prove successfully a new existence result of problem (1.1} under quite
general perturbations. A framework is presented that allows for a weaker the
growth condition and f: (0,T) x H — V*. The key step lies in choosing suitable
work spaces and defining a useful operator. :

It is very interesling that our techniques can also be used to solve an-
other problem arising in physics and other natural phenomena, namely, the
anti-periodic problem {cf. Okochi(1990}, Aizicovici, and Pavel (1992), Aizicovici
(1999), and Nakao(1996), etc.). We obtain existence results of anti-periodic so-
lutions under quite reasonable assumptions. In addition, by constructing an
appropriate transformation function, we reduce a class of second-order nonlinear
equations to first-order nonlinear equations. Moreover, the existence of anti-
periodic solutions for second-order nonlinear evolution equations is verified.

Finally, based on the discussion of the existence of periodic solutions for
nonlinear evolution equations, we study the periodic optimal control problem
(P). Using the monotone operator trick and Balder’s (1987) results we prove the
existence of optimal controls. The periodic problem is different from the initial
value problem, in that we have to show that the limit function is also periodic.
We use some techniques of weak convergence to overcome this difficulty.

The thesis is organized as follows. Chapter 2 mainly introduces nota-
tion and provides convenient reference to well known facts on abstract evolution
equations. Chapter 3 deals with the existence of periodic solutions for a class
of strongly nonlinear evolution equations. In chapter 4, we establish analogous
results for the anti-periodic solutions of first-order nonlinear evolution equation
and give an existence result for second-order nonlinear evolution equations with
anti-periodic conditions. In chapter 5, the existence result of optimal controls for
periodic nonlinear systems will be obtained. In chapter 6, we give three exam-
ples to demonstrate the applicability of our abstract results: a quadratic optimal
control problem of a system governed by a second order quasi-linear parabolic
equation with periodic condition; a Lagrange optimal control problem of a system
governed by a 2m-order quasi-linear parabolic with time-periodic conditions: and



an anti-periodic boundary value problem of a quasi-linear hyperbolic differential
equation with nonlinear motion.



Chapter 11

Preliminaries

In this chapter, we collect some definitions and propositions which will be
used frequently later on.

Before we start, let us introduce some basic notation. Throughout this
thesis, £ will be a real Banach space and E* will denote its topological dual.
The norm in £ will be denoted by || - ||g. We denote by (z, y)g the pairing of an
element z € E* with an element y € £. We shall use the symbol lim or — to
. 3 . . w .
indicate strong convergence in £ and w — lim or — for weak convergence in E.
Let 0 < T < 400 be a constant, I = (0,7) be a fixed interval, I = [0,T], and
L(E, H) denote the space of bounded linear operators from E to H.

2.1 Weak convergence

In contrast to finite dimensional Banach spaces, in infinite dimensional
Banach spaces there exist bounded sequences, which do not possess convergent
subsequences. This is responsible for many difficulties in the calculus of varia-
tions and the theory of partial differential equations. In order to overcome this
difficulty, weakly convergence is a very important concept.

Definition 1. A sequence {z,} C E is said to converge weakly to x € E if

il_r&(v,m“)g = (v,g}g forallve E*.

Proposition 1. (1) If E is a reflerive Banach space, then every bounded se-
quence {u,} in E has a weakly convergent subseguence.
If, in addition, each weakly convergent subsequence of {un} has the same

bimmit u, then
w )
U, —u  mkE asn— oo

(%) If

. w .
v, —mvin k', u,—uin F asn — oo,

then

(Un,Un)g — (v,u)p asn — 00.
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Moreover, if E is a reflezive Banach space, then
vﬂ—w—}v m B, u,-—u in E asn— oo,
implies
{(n,un)p — {v,u)y @8 1 —> 00,

Lemma 1. (Mazur) Let E be a Banach space and K be a convez and (strongly)
closed set in E. Then K is weakly closed in E.

The proofs of these results and more information about weak convergence
can be found in Yosida (1980).

2.2 Compact mappings in Banach Spaces

Definition 2. Let E, F' be normed linear spaces. An operator G : E — F is

called compact if it maps every bounded subset of E into a relatively compact
subset of F.

The following the Leray-Schauder fixed point theorem is one of our main

approaches in the proof of the existence of solutions for nonlinear evolution equa-
tions.

Theorem 1. Let G be a compact mapping of a Banach space B into itself, and
suppose there exists a constant M such that

lzlly <M

for allz € B and 0 € {0,1] satisfying x = 0Gzx. Then G has a fived point.

For the proof of this theorem, we refer to Gilbarg and Trudinger (1977),
pp- 231-232.

2.3 The Lebesgue space L, (I, F)

In order to investigate the evolution equation, we need the following more
general concepts and propositions for the Lebesgue integral and Lebesgue spaces.

Definition 3. (1) (Step functions). A function z : M C RY — E is called a
step function if © is piecewise constant. To be precise, we suppose that the set
M is measurable and that there exist finstely many pairwise disjoint measurable
subsets M; of M such that meas(M;) < oo for all i and

m(t)____{ai 3ftEM,,

0 otheruwise.



=1

(2) The integral of a step function is defined to be

zdt = meas M;)a;.
[ D (meas 1)

{3 (Mea.sumb!é functions). A function z: M C RY — E with values in
E is called measurable if the following hold:

(1) The domain of definition M is measurable.

(1) There exists u sequence {z,} of step functions x, : M — E such thai

lim ,(t) = z(¢t) for almost allt € M.

(4) (Integral). A function ¢ - M — E is called integrable if M is mea-
surgble and there ezists a sequence {z,} of step functions z, : M — E such
that

z(t) = limy, .0z, for almost allt € M,
fig l122(8) — 2 ()l pdt <€ for all n,m > ny(e),

where ny 1s 6 constant depending on €.

We define
f 2(t)dt = lim / T (t)dt.
¥ n—o0 M

Proposition 2. (Majorant convergence principle). We have

lim [ Ea(t)dt = f lim za(8)dt,
M M

n—nc 00

where all the integrals and limits ezist, provided the following conditions are sat-
isfied:

(i) llzn(t)]] < y(2) for almost alit € M and alln € N, and [, ydt exists.
(i) 1im, o zn(t) ezists for almost all t € M, where z,, : M C RN 5 E is
measurable for all n.
Definition 4. (1) The space C™ (I, E)} with m = 0,1, consists of all contin-

vous functions z : I — E that have continuous derivatives up to order m on I
with the norm

m
2 llgmz.zy= 3 sup {1 =9 () fls, ¢ € T} (21)
=0
Here, 1 means z. We write C (I, X) instead of C® (I, X).
(2) The space L, (I, E) with 1 < p £ 400 consists of the equivalence class
of strongly measurable functions z: I — E such that

- _S (2@ B dt) P <400 for 1<p<oo,
It lzyr.07= { esssup {|! osbit) Q%E, tell < +oo for g:: o, (22)

where esssup s the least C such that ||z ()|l < C ae. inl.



(3) From u, — w in L, (I, E) as n — oo it follows that

¢ ¢
/ Un (8) ds -—>/ u(s)ds mE asn— oo
0 0
(4) From
Un S in L,(I.E) asn — oc,
U v in LAI.LE") asn — oc,

i follows that

A t
/ (U (8) ,un (8)}pds —> / (w{s),u(s))pds asn— oo
0 0
(5)From
w _
up —ru i L,(I.E) aen — oo,
g e i LI.E*) asn — cc,

it follows that

fu(vn(s),un(s))Eds——a/; (v(s),u(s))pds asn— oo

2.4 Evolution triple

The use of several Banach spaces in connection with interpolation inequal-
ities represents an important modern strategy in the theory of nonlinear partial
differential equations.

Definition 5. (Evolution triple} We define an evolution triple

“V (_} H (_> LI*‘!‘!

to be the following:
(1} V is a real, separable, and reflerive Banach space.
(2) H ts a real, separable Hilbert space.
{8) The embedding V < H is continuous, that is,

iy < cllvlly,  JorallveV

with a constant ¢ > 0 and V is dense in H.

In order to simplify the writing of formulas, we agree to use the following
abbreyiations:

(.’B,‘y) = <$!y>V1 (x,y) = <$>y)H-



10

Ify € Hand z € V then {(y,x) = (y,1).

For example, if G is a bounded region of RY with N > 1, we set
V = W, (G) with 2 < p < oo and integer m > 1, and H = L,(G} then
V* = W-™P(G). So, “V < H — V*” is an evolution triple and V' — H is
compact by Sobolev embedding theorem.

Proposition 7. Let “V ~— H — V*” be an evolution triple. Then the following
hold:

(1) For each h € H, define a functional h: V — K by
(h,v) = (h,v) forallveV.

Then h is linear and conlinuous, t.e., heV.
(2) The mapping h— h from H into V* is linear, injective, and continu-
ous.

By Proposition 7, we may identify & with A. In this sense,
H—V"
Henceforth, we shall write h instead of 4. Then the following are valid:

(h,vy = (h,v) forallhe H wveV,
IRlly. < cllr|ly forallhe H.

In the following, the relation
Ve Ho V?

for evolution triples is to be understood in the sense of this sense. And we have
the following proposition:

Proposition 8. Let “‘V — H — V*” be an evolution triple. Then
(1) The embedding H — V* is continuous.
(2} H is dense in V*,
{(3) V* is a reflexive and separable Banach space.

2.5 Generalized derivatives

The following definition is basic for understanding evolution equations.

Definition 6. Let Y and Z be Banach spaces. Let uw € L; (I,Y} and
w € Li(I,Z). Then, the function w is said to be the nth generalized derivative
of the function v € I if

]TW () u(t)dt = (~=1)" fTw(t)w(t) dt  forally e G (). (2.4)
0 0

We write w = u'™. Equation (2.{) means the integrals appearing on the right
and left member belong both to Y N Z.
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Remark 1. (Generalized Derivatives and Distributions). Letu € L {1,¥). One
can assign to the function u a distribution U wvia

T
U(¢)=£ d{Bu(t)dt forall p e CF¥(0,T).

For each n, this distribution has nth distributive derivat’ve UM which is defined
by

U™ (¢) = (-1)"U (¢} for all ¢ € CF (0, T). (2.5)

If (2.4) holds, then U™ can be obuiously represented in the form

.
U™ (¢) = /ﬂ ¢ ()™ () dt  for all $ € CX(0,T). (2.6)

The advantage of the distribution conception consists in that each function
wy € Ly (1,Y) possesses derivatives of every order in the distributional sense. The
definition singles out the cases in which by (2.6) the nth distributional derivative
of u can be represented by a function w € Ly (I, Z). In this case, we set '™ = w
and we write briefly

ve LL(LY) ,u™elL {I,2).

Proposition 9. {Uniqueness of Generalized Derivatives). Lel Y “and Z be
Banach spaces. Moreover, suppose that ue Ly {(ILY) andv,w € Ly (I,Z). If

=9 and w™=w
in the sense of generalized derivatives, then we obtain
v(t) =w(t) almost everywhere on (0,T),
that isv =w in L (I, 2Z).

Proposition 10. (Generalized Derivatives and Weak Convergence). Let Y and
Z be Banach spaces with the continuous embeddingY C Z. Then it follows from

ui”) =v, onl forallk ond fitedn>1
and

ue 2> u in Ly(LY) ,

v v in L(I, Z),
a8k = 00,1 < p,g < o0 that

w=v  on (0,7).
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Proposition 11. (Existence ofu(“J). Let "V — H — V*” be an evolution triple
and 1 < p,g < +o0. Then the following are valid.

(1) Ezistence. Let uw € L, (I,V). Then there exists the generalized deriva-
tive

SO Lq (jj V)

if there is a function w € L, (I, V*) such that

fo (u (), 0) 9 (8) dt = (~1)" [ w (1) vy 9 (1)

forallv e V and v € C° (1).
Then v'™ = w and

& (w(0).2) = (™ (1) ),

holds for all v € V and almost all t € I. Here, d"/dt™ means the nth generalized
derivative of real functions on I.

(2) Uniqueness. Foru € L, (I, V), the generalized derivative u'™ is unique

as an element of Ly (I,V*), that is, t — u™ (1) can be modified only on a subset
of I of measure zero.

2.6 Sobolev space W,, and embedding theorems

The following proposition, in particular the integration by parts formula
{2.9) below, will play a central role in the treatment of evolution equations.

Proposition 12. {Frtension principle) Suppose thatY and Z are Banach spaces,
and that the linear operator A: D(A) C Y — Z satisfies the inequality

| Aull, < cilully (2.7)

for all u € D{A), where ¢ is a constant and the set D(A) is a linear subspace of
Y which dense in Y. Then:

{a) The operator A can be uniquely extended to @ linear continuous operator
A Y = 7 with (2.7) for allue Y.
() If A: D{(A) CY — Z is compact, thenso s A: Y — Z.

(See Zeidler(1990), p.71).

Let “V < H < V*” be an evolution triple. Define X = L,(I,V)} and
X*=L,(I,V").
For all v € X* and v € X, we have that

T T
| w II‘&‘:/O I (@) 15 dt, v HI’:[O [ v(e) Iy dt,
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and

(o vhr = [ (w0, v e
Definition 7. Define the space
We={z:zeX, t¢eX},
with the norm
I Hwpe=ll z llx + | & lIx -

whese the derivative in the definition should be understaod in the sense of gener-
alized derivative.

The space (W, || - ||} becomes a Banach space, which is clearly reflexive
and separable. C!(7, H) is dense in Wog (cf. Zeidler (1990), p. 422 and p. 446).

We have the following two important embedding theorems which are fre-
quently used in this thesis.

Proposition 13. The embedding Wy, — C (I, H) is continuous.
Progf. Let u,v € C* (I, H), then

d
4 (0,0 @) = @), v() + (u(0),5(0)).

Hence

t
((t), v(t)) = (u(s),v(s)) = [ (@r),v(r) + (ulr), 5
for all 0 < s <t < T. By the property of evolution triple, we have
(u,v) = (u,v), forallu,veV.

Then for u,v € C' (1,V), this implies

(u(t), v()) — (u(s), v(s)) = _/ (), (7)) + (u(r), 5(r))dr.

Now we choose a test function ¢ € C'(R) with ¢(s) = 0 and ¢(¢) = 1. Moreover,
let |§} + (4| < 1 on T and v = ¢u, then we get

(ult), $(t)u(t)) — (uls), $(s)uls))
- / (), $(r)u(r)) + (B )ulr) + $ryi(r), u(r))dr

= 2 [ o) atr), utryir + [ 4, uirpar



From the Holder inequality and continuity of the embedding V < V*, we get
s T
Humnif;2A<uﬂmwmﬁ+]‘mhxuﬂmT
T ’ T
< O f | ulr) (I dr)V( / L i(r) 5. dr)'fe
° T ° T
+@q[mmmwww]|WMMJWM
] ]

< c((f Hun g anrs (o e i ””)

= Cllullw,,

for any u € C* (I, V) with some positive constants C;, Cy, and C. So

|| ”c(i,y)g Clulw,,, forallue C'(1,V).

Since the set C! (T, 1) is dense in W, by the extension principle (Proposition 12)
the embedding operator j : C! (j, V) CWy = C (f, H) has a unique continuous
extension j : W,, — C (I, H). In this sense, the embedding

Woe < C (I, H)
is continuous. 0

Since the embedding of W, into C (I, H) is continuous, so every element

in Wy, has a representative in C(I, H). Therefore it makes sensc to speak of u(t)
foreach t € [.

Proposition 14. (1) (Dense subset). The set of all polynomialsw : I — V| that
is

w(t) = Z t'a; witha; €V for all i,
is dense in the spaces Wy,, L, (I, V), and L, (I, H).

(2) (Integration by parts). For all functions u,v € W,, and t.s € I with
s <t the following generalized integration by parts formula holds:

(), v )y —(uls),v(s))y =[ (@(r), v(Thv + (@ (1), u(r))vdr.

{See, problem 23.10e of Zeidler, 1990).

Proposition 15. The embedding Wy, < L, (I, H)} is comnpact if the embedding
V < H 1is compact.



Proof. First, we claim that for any § > 0, there exists a Cs > 0, such that
lzlly <dllzlly, + Csliz]ly,. forallz eV, (2.8)

If not, then there exists a ¢ > ( and a weakly convergent. sequence {z.} C V,
||mn||v =1, such that

lzally > 6 +nlz,lly,. forn > 1. (2.9)

By the compactness of the embedding V «» H, there exists a subsequence of
{za}, denoted by {x,} again, such that

Tn —Z inH asn - oc.
Then (2.9) implies that

Tp — 0 in H asn— oco.
Thus, T = 0. This means,

T, — 0 inH asn — oc.

This is contradiction to (2.9). Hence our claim holds.

Now, let {h,} C W,, be a bounded sequence. Because 1 < p,¢ < +o00 and
V is reflexive, we have that L, (7, V) and L, (I, V*) are reflexive {See Proposition
4). So

ho —+h in L, (I,V)
o = h in Ly (I, V")

Without loss generality, we may assume that b = 0.
In addition, for any s € [0,7"}, we have

hn (8) = hy, (8) —/tziz('r)d'r, te[0,7T].

Integrate it over (s,s+ o) (¢ € (0,T — s})

ho(s) = H[+h(t dt - / f drdt]

1 s+ta
= —/ h,n(t)dt—-—/ (s+0—7)h, (r)dr
o Js o J,
= ayp + by
We observe that

16n|y - l/s ’ {(s+0—17)

o

[A

hin (1) H ” dr

1 s+o .
< —/ {(s+0—35) hn(r)H dr
aJs ve
sto q l/q s+o i/p
< (f P, ('r)| dT) (f P’dT)
5 V. 5
- th o\/P < Cg'Me, (2.10)
Lo(IV*)
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On the other hand, since £, 25 0in L,(I,V)asn — oo, for any fixed o > 0. it
follows from Proposition 6 that

(v,an), = <1§ f:whn(t)dt>v

l 510
= = / (v, hy (8)), - dt
o o E
1 ST
— ;/ (0,0}, dt =10 forallve V" (2.11)

as n — oo. That is
anLD inV as n = oo.
Since the embedding V' — H is compact,
an, — 0 inH asn— oo (2.12)
Combining {2.10) and (2.12). we get
hp{8) — 0  in V"

In addition, W, < C (I, H) is continuous and k, is bounded in Wy, we have
the boundedness of h,, in C (. H}, moreover for any ¢ € I, hy, (f) is bounded in
V*. Hence, by the Majorized Convergence Theorem, we get

lim Hhnllp,rvey = 0 (2.13)
Finally, for any é > 0, by (2.13), we get
uhﬂ“LP(I‘H) <4 ”hn”r.pu,w + Cs ||$“L,,u,v-) forn=1,2,.--.
For any ¢ > 0, we can take § > 0 small enough such that
§liAnlly i1y < % forn=12,--
and then for this § > 0, by {2.12) we can take N big enough such that
Collball iy <5 foralin>N.
Therefore
hnll,rmy <€ foralln > N.

That is

hn — 0 inlL,(I[,H) asn— o0
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2.7 The Nemyckii operator
In order to discuss nonlinear problems and apply the abstract form to
partial differential equations, we require the properties of the Nemyckii operator

F is defined by

(Fx)(z) = f (2,21 (2) 22 (2) .-+ 7 12))

with = (&), z2, - . a}. Thus, F results when one replaces all the variables z;
by Z; (Z) 1 f (Z,$1 (z) P S (Z))
Assume:

{H1) Carathéodory condition. Let f : G'x R" — R be a given function, where G
is a nonempty measurable set in RY and N > 1. Moreover, the following
hoid:

z+— f(z,z) is measurable on G for all z € R™;

z+— f(z,z) is continuous on R® for almost all 2z € G.

(H2) Growth condition. For all (z,z) € G x R®,
If zog)| Calz) +b) lale.
i=1

Here, b > 0 is a constant, the function e € L;(G) is nonnegative, and
1 < ¢q,p; < oo for all 4.

Proposition 16. If (H1) and {H2) hold, then the Nemyckii operator

F ﬁLPi (G) = L, (G)

=1

15 continuous and bounded with

n
i/
|1F$||Lq(c;) <C ("a”Lq(G) + Z ||$i||ipiq((;})
=1

for all z € 1}, Ly, (G), where C > 0 is a constant.

For the proof of this proposition, we can refer to Zeidler (1990), pp. 561-
564.

In this thesis, the system model considered is based on the evolution triple
V «» H < V* and the Sobolev space Wy, In order to study the Nemyckii
operator in Banach spaces, we have to consider the measurability of functions
with values in Banach spaces. The following theorem tells us the relationship
between the measurability of functions with values in Banach spaces and the
measutability of real functions. We will frequently use it later.
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Theorem 2. (Pettis) Let Y be a real separable Banach space and let
[+ M C RY =Y be a measurable function. Then the following two staternents
are equivalent:

(1) The function f is measurable.

(2) The real functions = v (g, f (z)), are measurable on M for all func-
tional g € ¥Y'*.

Proposition 17. {Measurable functions via substitution). We set

F(z)=f(z2(2)).

If the function x : M C RN — E is measurable, then the function F: M — Y is
also measurable provided the following assumptions are salisfied:
(1) The set M is measurable and the Banach spaces E and Y are separable.
(2) The function f : M x E — Y satisfies the Caratheodory condition, i.e.,

z = f(z,z) is measurable on M for allx € E,

Tz — flz,z) is continuous on E for almost all z € M.

Suppose that an operator 4 : I x V — V* satisfies:
{H3) The function ¢ — A (t) is weakly measurable, i.e., the function

t—= (A(t)z, ¥)v

is measurable on [, for all z,y € V and A(t) z, XA (¢} z in V* whenever
z, —r x in V.

(H4) There exist a nonnegative function ¢; € L, () and a constant ¢y > 0 such
that

A By Ca () +elzlf! forallzeV, tel.

We also require the properties of the Nemyckii operator
AL, (I,V) = Ly (I,V*) is defined by
(Az)(t) = AL, z(2)).

Proposition 18. If hypotheses (H3) and (H4) hold, then for each r € X,
t — A(t, z(t)) is measurable from (0,7T) to V™.

The idea of proof is definition of measurable via substitution (see Propo-
sition 17).

Proof. Let w € V be fixed. We set
g{t,v) ={A(t,v),w), foralltel andveV

and wé know the interval (0,7} is measurable and the Banach space V and R
are real and separable.
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By assumption {H3), for each v € V, the function t — g (¢, v) is measur-
able on (0,7’) and for each ¢ € (0,T), the function v — g (¢t,v) is continuous on
V. That is, the function g : (0,7) xV — V* satisfies the Caratheodory condition.

In the other hand, let z € X be given, then the function ¢ — =z (¢} is
measurable on (0, T). By the substitution theorem (Proposition 16), we get, that
the function ¢ — g (¢, z (¢)) is measurable on (0, T) for all w € V. From the Pettis
Theorem, we get that for each z € X, the function ¢ —— A4 (¢, x (¢}) is measurable
from (0,7) to V*. (3

The system model considered in this thesis is based on the evolution triple
"V = H— V*", the compact embedding V < H, and 2 < p < +cc.



Chapter 111

Periodic Solutions of Evolution
Equations

In this chapter, we will study the existence of periodic solutions for nonlin
ear evolution equations. The first section contains some morotone and maximal
monotone theories. In the secord section, an existence and uniqueness results
of periodic solutions for a class of nonhnear evolution equations with ronlinear
aniform monotone cperator will be presented. In the third section, we wiil dis
cuss the existence of periodic solutions for a class of strongly norlinear evolution

eguations including a r.onlinear monotone operator and a nonlinear nonmanotone
perturbation.

3.1 Monotone operator theory

The theory of nonlinear monotone operators generalizes the following ele
mentary result. We consider the real equation

F(zy=b zeR (3.1)

and assume that:

(1) The function ¥ : # = R is morotone;

(2) F is continuous:

3) F(z) > +rocasz »roc.

Then, for each & ¢ R, equation (3.1) has a solution. If £ is strictly
monotone, then the solution is unique.

Now we want to generalize the result above Lo monotone operator equaticns
of the form

Ar=b zeX (32)

where A : X — A" is an operator or. the real reflexive Banach space X. A
natural problem. arises when there exists a solution of the operator equation (3.2)
for each b € X~.

The following definitions are basic.

Definition 8. Let Y be real Banach space and let A Y — Y be an operator.
Then:



(1) A is called monotone f
(Az — Ay, 2 —y), 20 forallz, yev.
(2} A is called strictly monotone if
(Ar — Ay, 2 —y)y, >0 forallz,y €Y  withz #y.
{3} A is called strongly monotone if there is a constant ¢ > 0 such that
(Az — Ay, 2 - y)y > cljz — yllf, Jorallz,ycY
(4) A is called uniformly monotone if
(Az — Ay, z—yly 2alllz—ylly)llz —wlly JorallzyeV,

where the continuous function a : R, — R, is strictly monotone increasing with
2{0) =0 and a(t) = +oo ast — +oo.

For example, we may choose a (t) = clt|’"" with p > 1 and ¢ > 0. In this
cagse, we obtain

(Az — Ay, 2 —y)y > clle~yl|}, forallz,yeV.

{5) If Y is a reflerive Banach space and A : Y — Y™ is an operator, A is
called pseudomonotone if z, X rasn— oo and

E(A.’En, In—Z)y <0
implies
(Az, z — w)y Slim, o {(AZn, 2n —w)y forallwcY.
(6) A is called coercive if

(Az,x)y

klime [zl

Obviously, we have the following implications:
A is strongly monotone = A is uniformly monotone = A is
strictly monotone = A is monotone.

Definition 9. Let A:Y — Y™ be an operator on the Banach space Y.
(1} A is called demicontinuous if

Tp— T a5 N — 400

implies Az, " Az asn - oo,
(2) A is called hemicontinuous if the real function

. t {Alz +ty),w)y

is continuous on [0,1] for all z,y,w €Y.
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Definition 10. Let Y be a reflerive Banach space. The operator A 1 Y — ¥+
satisfies the condition (M) of

T~y 7, ATy 3 b, Bm (AL, 2n)y < (b, 1)y

Tt 00

as n — +oo implics
Axr =b.

Proposition 19. Let A, B 1 Y — Y™ be operators on the real reflerive Banach
space Y. Then

(1} If A is monotone and hemicontinuous, then A s pseudomonotone.

(2) If A is monotone and hemicontinuous, then A is demicontinuous.

(3} If A 1s monotone and hemicontinuous, then A satisfies condition (M).

(4) If A is pseudomonotone and locally bounded, then A is demicontinuous.
. (5) If A and B are pseudomonotone, then A+ B is pseudomonotone.

For more information, one can refer to Chapter 25, Chapter 16, and Chap-
ter 27 of Zeidler{1990).

The notion of a maximal monotone operator is the most important concept,
in the theory of monotone operators. Each monotone operator possesscs a max-
imal monotone extension. We first consider some basic notions for multivalued
MAappIngs.

Definition 11. Let 4 : M — 2Y be a multivalued mapping, i.e., A assigns to
each point x € M a subset Ax of Y.
{1} The set

DAy={ze M: Az # &}

is called the effective domain of A.
{2} The set

R(A)=|] Az

rEM

is called the range of A.
{8) The set

G(A) ={{z,y) e M xY :z € D(A),y € Az}

is called the graph of A.

Each single-valued map
A:DAACM-SY
can bg identified with a multivalued map

A M2



by setting

| {Az} itz € D(A),
Az = { @ otherwise.

Instead of A we will briefly write A.
The map B : M — 2Y is called an extension of A : M — 2V if
G(A4) C G(B).

Definition 12, We consider the multivalued map map
ArM =27

where M is a subset of the real Banach spoce Y .
(1) A subset S of M x Y™ is called monotone if

(" =y z—y)y >0 forall (z,2%),(y,y") € S.

{2) A subset S of M x Y™ is called maximal monotone if it ¢s monotone
and there is no proper monotone extension i M x Y*.

(3) The map A is called monotone if the graph G (A) is monotone set in
MxY*,

(4) The map A is called maximal monotone if the graph G (A) is a mazimal
monotone set in M X Y.

An operator
A:D{A)CY =Y

is to be understood as a multivalued map A : Y — 2¥". Thus A is called mazimal
monotone if A is monotone and it follows from

(z,z°) € Y xY* and (2" —Ay,z—y)y 20 forallye D{A)

that z € D (A) and z* = Ax.

Proposition 20. Let A : Y — Y™ be a monotone and hemicontinuous on the
reflezive Banach space Y. Then

(1) A is mazimal monotone.
(2) A satisfies condition (M).
(8) It follows from either

T, —x Y and Aa:nﬂ#b mY* asn-— o0,
or

:z:n—}i)r mY and Az, b YY" asn— oo,
that

Az =b.
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In 1968, Browder built a fundamental result in the theory of monotone
operators. He considered the basic equation

be Lz + Az, z€C. (3.3)

Assume:
(H5) C is a nonempty closed convex set in the reflexive Banach space ¥,
(H6) L : C — 2¥" is maximal monotone;

(H7) A:C — Y is pseudomonotone, bounded and demicontinuous;

{H8) If the set C is unbounded, then the operator A is coercive with respect to
the fixed element b € Y*, that is, there exists a point 2o € C N D (L) and
a number 7 > 0 such that

(Az,z — zo)y > {byx — 20}y
for all z € C with ||z|| > r.

Theorem 3. (Browder (1968)). Let b € Y™ be given and assume (H5) through
(H8). Then the original problem (8.8) has a solution.

3.2 Evolution equations with nonlinear mono-
tone operator

Browder’s theorem will be helpful to assert the existence of solutions of
some initial value problems and periodic problems in differential equations. In
this thesis, we are interested in periodic problems. Let us consider the periodic
problem

{ £(t) + Az{t) = b(t), 0<t<T (3.4)

z(0) = z(T).

By a solution x of problem (3.4}, we mean a function z € {z € W, : z(0) = =(T)}
that satisfies

(#(t), v)v + (Az(t), v)v = (b(t), v)v

forallv € V and almost allt € I. T = (0,T).
Recall that

X=L,(1,V), X*=L,(I,V*)

where "V — H < V*” is an evolution triple, p > 1, and pl4g =1



-
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Lemma 2. Define the operator
Lr =2z, D(L)={ze W, :z(0)==z(T)}.
Then the linear operator L : D (L) C X — X* is mazimal monotone.

Proof. (1} L is linear and monotone. It is obvious L is linear. And, from the
integration by parts formula

(Le.o)x = [ (o). o(Ohdt = 5T ~ [=O)I) =0

for any x € D (L). Hence L is monotone.
(2) L is maximal monotone. Suppose that (y, ¥*) € X x X* and

0<{y*— Lz,y—z)x for any = € D(L). (3.3)

We have to show that y € D(L} and y* = Ly. We choose r = %z where
Y € C5°(0,T) and z € V, then from (3.5) and {Lz, z), = 0, it follows that

T
0w [ (PO Iy, @

for all z € V. The above inequality implies

f ' POy () + Y(O)y{t)dt =0 for all y € C(0,T).
0

Hence

*

y=y" and ye€ Wy,

because y* € X*. It remains to show that y € D(L). Since

(Ily (T) = = (D)l — 1y (0) — 2 (0)II3,)

8-

0 —2,y—1z)x =
for any x € D (L), we get

Iy (D)l — lly O} + 2y (0) = y(T),z(0)) > 0

for any x € D (L). In particular, we can choose z (t) = a for arbitrary a € V.
That is,

lly (T)f3 — lly O +2(y (0) =y (T),a) 2 0 (3.6)

for any a € V' and therefore

Iy (T — [ly (0)II7 > 0



26

by taking a = 0. Set £ = ||y(T)||§1 — ¥ (O)}|% and substitute na € V and
—ne €V, n=12,-- into (3.6), one can get

<(y{0)—y(T),a) <=, for n=1,2,--- andanyac V.

S| m
2| m

Letting n — +00,
{(y(0)—y(T), a)=0 forany a€c V.

Note that V' is dense in H, so y(0) = y(T) in H and y € D(L). Therefore, L
is maximal monotone. O

The problem (3.4) can be reformulated in the following operator equation
Ly + Az =b € D(L).

Theorem 4. Suppose that operator A : X — X* is pseudomonotone, coercive,
and bounded. Then, for each b € X*, problem (3.4) has a solution. If, in addition,
A s strictly monotone, then the solution is unique.

Proof. 1. Existence.

We identify L with a multivalued map
L:X —2¥

by setting

E:I::{ {Lz} ifz:ep(L),
@ otherwise.

Then D (L) = D(L) and R(L) = R(L). By Lemma 2, the operator
L:D(L) C X —» X" is maximal monotone, we get that L : X — 2% is
also maximal monotone. The existence of a solution of the problem (3.4)
follows from Browder’s Theorem {Theorem 3) with C = X and g = 0.

2. Uniqueness. Let x(, z; be two solutions of problem (3.4). It follows from
Lz, + Az; = b, 1=1,2
and as L 1s monotone, that

0 = (Lizi—ax), 31 —x2)y +{Ax) — Az, 21 — 12)

= (Az; — Azy, T — T2)y .

Since A is strictly monotone, 2y = x5. O
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3.3 Evolution equations with nonlinear mono-
tone and nonmonotone operators

In the proceeding section, we presented an existence result for periodic
solutions of evolution equations in which the nonlinear operator is uniformly
monotone. In this section, we will extend this result to more general nonlincar
evolution cquations including nonlinear nonmonotone pertarbations, That is, we
consider the existence of periodic solutions for the following nonlinear equation

{:ﬁ(t) + Alt,z(8)) = f(t,2 (@), tel

z(0) = z(T) (3.7)

with nonlinear monotone operator A and nonlinear nonmonotone perturbation

f.
Lel "V < H < V*” be an evolution triple and suppose that the embed-
ding V < H is compact. Let X = L, (/,V) and p > 2.

We need the following hypotheses on the data problem of {3.7).

(Al) A:I xV — V* is an operator such that
1. t — A(t, ) is measurable ;
2. For each t € I, the operator A(t) : V — V* is uniformly monotone
and hemicontinuons, that is, there exists a constant C; > 0 such that
(Alt,z)) — Alt,z2), 21— z2) > Ciliz — x|y forallz, zo eV,
and the map s +— (A(t,z+ sz),y) is continvous on [0,1] for all
z,y, zeV;
3. Growth condition. There exist a constant C, > 0 and a nonnegative

function a1 () € L, (I} such that

Atz v < aa () +Co ]| 7' forallz € V, ae on[;

(F1) f: I x H — V" is an operator such that
1. t —— f(t,z) is measurable;

2. £ + f(t,z) is continuous and f(#,z) is Holder continuous respect z
with exponent ¢ < & < 1 in H uniformly in t. That s, there 1s a constant,
L such that

It a) — f(ta2) ]

ve < Lllay~221% forallm, € H, tel

3. There exist a nonnegative function hy {} € L, () and a constant C3 > 0
such that

| f(tz) |

where 1 < k < p is a constant.

ve < hy(8) + Csllz|i¥! forallzeV,iel,
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We assume without loss of generality that A (¢,0) =0 for all ¢ € 1.

At first, we reformulate the equation (3.7) into an operator equation in
some appropriate spaces. It is often convenient to write system (3.7) as an oper-
ator equation in

Wo (T) = {z € Wp: 2(0) = =(T)}.
For z € X, we set
Alz)(t) = A(t,z(t), F(z)() = f{t,z(t)), forall tel.

Then, we obtain that the original problem (3.7) is equivalent to the following
operator equation:

{i‘ + A(z) = F(x),

z € Wy (T). (3.8)

The operator A and the operator F have some properties which we will be stated
below.

Lemma 3. If hypotheses (A1) and (F1) hold, then for each z € X,
t— A(t,z(t)) is measurable from (0,T) to V* and for each x € L, (I, H), the
function t — f(2,z (1)) is measurable from (0,T) to V*.

Lemma 4. If hypothesis (A1) holds, then the operator A : X — X* is uniformly
monotone, hemicontinuous, coercive, and bounded. That is,

(Az) — Azy, 2, — T9)x Cillzy — ol for all z1,29 € X,

li_I}n(A(x + Ay), 2)x (A(z+py),2)x forallz,y,z€ X and M\, p € [0,1],
]

(Az,z)x = C|z|% forallz € X,
|Az||,. < M+ M, ||3:||’;(_1 forallz € X.
Proof. 1. Boundedness. We show that the operator 4 : X — X* is bounded.

Let z € X, it follows from the growth condition (A1) (3) and p/g=p -1
that

I AGtz@) 5. < (e @ +Callzle) 57
< (e () + ] z@) ) (3.9)

for some constant «, > 0. By Proposition 18 in Section 2.7, the function
A (t, z (t)) is measurable from (0, T') to V*. By the property that linear com-
binations of measurable functions, norm functions of measurable functions
are also measurable. We obtain that the real function ¢ —|| A4 (¢, z (2)) ||¥.
is measurable on (0, T). Since a; € L, (0,7) and z € L, (I, V), the function
on the right-hand side of (3.9) is integrable over (0, T). By integration, we
obtain from (3.9) that

| Az llx- < o (|| ar loyn + | = ||§{*) for allz € X.

Let M; = ¢ - “alqu(r} and Mp = o, we get the boundedness of A.
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2. Monotonicity. We show that A : X — X* is monotone. Let z,, z, € X,
since Ary, Ara € X', then proposition 17 of Section 2.7 implics that the
real function

ter (At z1(2)) , z2(t))

1s integrable over (0,7). By the monotonicity of A(¢#) : V — ¥* for cach
t € (0,7), it implies that

{(Az) — A(ze), o1 — z2)x

T
- /; (At, 21 (8)) — AL, 22 (1), 71 (t) — 33 (8))

T
> / Cill 21 (8) — 22 (1) |15, dt
0
= ( “ I — Iz ||§(1
for all z,, z, € X.

3. Coerciveness. The operator A : X — X* is coercive, since

T
(A(z),2)x = /0(A(t,r(t))—A(t,O),:r:(t)—U)th

T
> f Cillz(®) I dt=C | z|F.
0
forallz € X.

4. Hemicontinuity. Let z,y,2 € X and 0 < A, < 1. For all t € (0,7), using
the inequality (3.9)

Atz (@) + 2y (1)), 2 @) IS A2 (1) + Ay (O) llv- ]l 2 (2) v
< M (las @) [+ 1@+ 2y @ 1) 2 0) s k@),
where
k@ =M (la@) |+ 2@ 17+ 1y @ 1) 120 o
Since a, (*) € Ly (I), then a, {:) € L, (I), and because of z,y.2 € X it
follows that
Iz () IR 1w () I5%€ Lo (1) and | 2 () llve Ly (1).

By the Hdélder inequality, the majorant function & {) belongs to L, (0, 7).
Therefore, it follows from the principle of Majorized convergence (see Propo-
sition 2 in Section 2.3) that

T
lm(A(z+Ay), 2)x = lim f (Al T (6)+ Ay (8), 2(6))ydt
A 0

A—p

= /T m{A(t, z{t) + Ay (1)), 2 (£))vdt

A=y
= (A{z+py), 2)x.
That is, A : X — X" is hemicontinuous. O
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Lemma 5. Under assumption (F'1), the operator F': L, (I, H) = X~ satisfies
1. Hélder continuous with exponent o, 0 < a <1, t.e.,
[F (z1) — F (372]“)(- < Liflz — 152“?,,,(1,}{) forall xy, 29 € L, (1. H)
with some constant Ly > 0;
2. Bounded, i.e.,
. k— \
VE @) x-S My Moz |80, foralla € Ly (1)
where M3, M, are positive constants.
3. F(zp) — F(z) in X* whenever z, s 2 in Wy as n — 0.

Proof. 1. Boundedness. We show that F': L, (I, H} — X is also bounded.
Let x € L, (I, H), from the hypothesis of {F'1) (3), we get

It fEz@) - < (hlt) + Calla i)

< a(|mO+ 10 1E™) (3.10)
for some constant @, > 0. Following an argument similar to proposition
18 in Section 2.7, the function f (¢, x (t}) is measurable from (0,7} to V*
for any z € L, (I, H), so that the real function ¢ — ||/ (t,z (£))[{l. is

measurable on (0,7). By integration, we obtain that

| F () fIx-< Ma+ My |l 2 5y, for all ze L (1 H).

2. For any 1), =3 € L, {I, H), by hypothesis (F1) and Hélder inequality, we
get

| Fz) = F(z3) || x

= (f: Ff (20 (8) — f (22 () 19 dt)uq

< L (/: Il 21 (8) — 22 (8} I df)w

L (/GT | 1 (t) — 2 () {|% dt)afp (/Oj 11_5%dt);—"1

Lillzy — H%,.(LH) .

[A

[FaN

with some constant L,. This proves that F' is Holder continuous with
exponent « in L, (I, H). Hence F is continuous on L, (I, H).
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3. Since the embedding V < # is compact, the embedding Wy, — L,{I./{)
is compact. That is

: w : :
Zn = In L, (I, H) whenever 2z, —z in W,,.

By using the above relation and the continuity of ¥, we have

F(z,) — F{(z) in X" whencver z, My in Wp..

Lemma 6. Assume (A1) and (F1) are satisfied , then the set
Sl={zeWy(T)| 2+ A(z) =0oF (z), for some o € [0,1]} (3.11)
15 bounded in Wyy. Moreover, there exists positive constants M such that
| Az} {|x-< M, and max Ne@ e < M
for all z € S1.
Proof. Let z € 51, then
(Z,z}x + {A(z) . x}x = {(oF (z),2)x.

From Lemma 4, Lemma 5, 2 (0) = z (T}, and the continuous embedding
X < L, ({, H), using integratton by parts we get

Crllzly < 1F (@)llx- - l=lix
< (1"'43 + My Hicﬂg(‘}y}) My

< (M -+ oglialli) - lzllx (3.12)

A

for some constants M; > 0 and a3 > (. Now the real function

g(&) = CrlEP ™ —as[€[F! ~ My

goes to +oo as £ = +oo when 1 < k < p. Thus, by virtue of the inequality
(3.12), we can find a constant ay > 0 such that

lz|lx € a4 (3.13)

for all z € 51.
Now, let ¢ {-) be an arbitrary element of X and suppose z € S1, then we
have

(Z,0)x + (A{z). &)x = (6F(2),9)x.



32

Apply Holder inequality, Lemma 4, and Lemma 5 again, we get

| 2(¢) [< |4 ()llx- ollx + ol I[F {2)]ix- ol

< (Mt Mo [l B M+ My 2 7 ) 1 @

(3.14)

By using the continuous embedding L, (I,V) — L, (I, H) and (3.13), then (3.14)
implies

|4 {|x- < a5 (3.15)

for some positive constant a5 and for all z € S1. It follows from (3.13) and (3.15)
that

[ 21w, € as+as.

Hence, 51 is bounded subset of W,,.
It follows from boundedness of A {Lemma 4) and (3.13) that

i A 2) llx-< o

for some ag > 0 and for all £ € S1. B
Finally, we note that as W,, = C (I, H) is continuous, then

max lz(t) lr < ol zllw,< oz

for some positive constants o« , a7, and for all x € S1.
Taking M = max (a4 + o5, s, a7), we get the assertion. O

In order to prove the existence of a solution of problem (3.8), we introduce
amap G : L, (J,H)x[0,1] = L, (I, H) defined by

Gz,0)=vy
where ¥ is the unique solution of the following problem

{ y+ Aly)=oF (z)
y(0) =y (T).

Since A is uniformiy monotone, then A is strictly monotone. By Theorem 4, for
any r € S, problem (3.16) has a unique solution y € Wy, C L, (I, H). So G is
well defined. In the following, we will show that G has a fixed point in L, (1, H)
by verifying that G satisfies the hypotheses of the Leray-Schauder fixed point
theorem (Theorem 1 in Section 2.2).

Theorem 5. Under assumptions (A1) and (F1), the equation (3.8} has a solu-
tion x € Wi,

(3.16)
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Proof. 1. The map G : L, (I, H) x [0,1} — L, (I, H) is compact.

Firstly, we show that the mapping G : L, (I,H) x [0,1] —» L,(I,H) is
continuous. In fact, for any sequence (z,,0n) C Lp(I, H) x [0,1] such that

(Zn,00) — (x.0) in L, (I, H) x[0,1],
let ¥, be a solution of the problem

{ yn + A (yn) = o, & (xn)
¥ (0) = ya (T,

and y be a solution of the problem

{y + Aly) = oF (z)
y(0) = y(T).
S0,

O — % v —Wx + (Alyn) — AW, ¥ — Wix
= (UnF(xﬂ) — oF (I)ﬂyﬂ_y>x‘ (3-1?)

Using integration by parts and the monotonicity of the operator A. we
obtain from (3.17) that

% (1 yu{T) =y (T) 1% = a0 =y {O) |7} + Ci v — ¥ 5
{(onF (2) —0F (T}, yn ~ Y)x

£ g~ 4F
< 5 || Yn — Y ”I)}{ + T “ oo (xn) - ¢ F(:E) “qX (3'18)

[ A

for all € > 0. By choosing ¢ in (3.18) small enough and from Lemma 4,
Lemma 5, we get

Billgn —y 1K< Boll 02F (22) — o F (2) |-
62 || JﬂF (xﬂ) - UﬂF ($) + URF(:B) —-oF ($) ||g('
Ba(ll F(zn) — F(2) 1%+ +low — o' || F2) I%.)

_ q
< Bl zn—a I +B5lon — o’ (1+ Iz ||gf;(;3m) .

VAN

for some positive constants 31, s, 83, f4, and f5. Noting that the embedding
L,(I,V)<— L, (I, H) is continuous, we have

= k-1 r
Hvn — ¥ lle,m< Belll zn — “;,,(I,H) +lon — J|W’P (I+ [z “Et,p(r_)ﬁ))w)

for some constant 8 > 0. Hence, G : L, {(J,H) x [0,1] — L,(I,H) is
continuous.

Moreover, we will show that G maps every bounded set in L,{(I,H)x|[0,1]
to a relative compact set in L, (I, H).
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Let 1 be solution of problem (3.16) with || = {|1,¢,:1)< b and some ¢ = [0, 15,
where b; > 0 is a constant. Similar to the arguments in proof of Lemma 6,
one can show that there exists constants b, > 0,

“ y HM’pqS b-g,

(¢ maps bounded sets in L, (I, H) x [0. 1] into bounded sets in 117,. As the
embedding Wy, < L, (1, H) is compact.
G: L,(I,H)x[0,1] — L, (I, H} is compact operator.

. A priori estimates.
Let
Xo=4rxe L, HY|le=G(zr.a) for some 0 < a < 14,

Assume x € L,(I,H) and z = G (2, o), then z € W, and satishes the
problem

{ i+ A(x)=oF (z),
r(0) =« (1).

By lemma 6, we get
iz llw,, < M for ali z € X,,.

Again, as the embedding 1V, — L, ({. I} is compact, we get
Vz o 0m< B forallz € X,

with some constant g7 > 0.

. We show that G (z, 0) = 0 for any =z € L, (I, H).
For any x € L, {I,H), set G(z, 0) = i, where yp is the solution of

v + A{ye) = 0, )
{ 4o (0) = wo (T). (3.19)

By uniqueness of the solution and as A (¢,0) = 0 for all t € I, we get
yo = 0 in Wy,
But the embedding Wy, <+ L, (, H) is continuous, so we get
yo =10 inl, (I, H),
that is,
Gz, 0) = 0, foranyz € L,(I,H).
Applying the Leray-Schauder fixed point theorem in the space L,(I, H),

there exists a fixed point y* € L, (I, H) N Wy, such that

v =G, 1).

y* € W,, is just the periodic solution of (3.8). By the equivalence of problems
(3.7) and (3.8), there exists a periodic solution for the nonlinear evolution equa-
tion (3.7). a



Chapter IV

Anti-periodic Solutions of
Evolution Equations

It is very interesting that our method can be used to discuss the existence
of anti-periodic solutions which arise in many physical models. In this chapter,
we prove results analogous to those in Chapter 3 for anti-periodic solutions of
nonlinear evolution equation. Moreover, we will present an existence result for
anti-periodic solutions of second-order nonlinear evolution equations.

As before, let "V o H > V*", X = L,(I,V), and X* = L,(I,V*), where
2<p<+00,I=(0,T),and 0 < T < +00.

4.1 Evolution equations with nonlinear mono-
tone operator
Similar to the preceding chapter, we start with an existence theorem for

the following anti-periodic problem

z (t) + Az (2) = b, 0<t<T (4.1)
z(0) = —z(T). '
Theorem 6. Suppose that the operator
A X - X"

is pseudomonotone, coercive, and bounded. Then, for each b € X*, problem (4.1)
has a solution. If, in addition, A is strictly monotone, then the solution is unique.

Proof. (1) The anti-periodic operator A : D (A} € X — X* is a maximal mono-
tone operator.
We set
Az=2, D{A)={z e Wy:2(0)=—z(T)} (4.2)

It is obvious that A is linear. From the integration by parts formula

| @ @,a@rde= 5 (@1~ e O1)
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for all z €¢ W,

pgy We get

{Az, )y = /OT (Z{t),z(t))dt =0, forall z € D(A). {4.3)

Combining (4.3) with linearity of A, we get that A is monotone.

Furthermore, A is maximal monotone. To prove this, suppose that
(y.y"} € ¥ x X* and

0<{y" ~Az,y — )y forall z € D(A). (4.4}
We have to show that y € D(A) and y* = Ay. Choose z = vz, wherce

Wwe CF(0,T)and z € V. Then & = ¢z and z € D (A). It follows from (4.3} aud
(4.4), that

0< (" yhx ~ f: <7/3(t)y(f) +9()y" (1), Z>V dt

for all 2 € V. Therefore,

[ (b0 + v @) ae =0
for all 4 € CF (0, T7). Since y™ € X, we get
Ay=y=vy" and yeW,.
Again, from

1

0 < G-dy—z)y=5(Ily(T) -2 (D)%~ ly(0) — = (O)]})
— ST (@), (1)~ 2 (T)) ~ 5 (y(0) =2 (0),y (0) — 2 (0))

we obtain

ly(T) | = 11y ()5 + 2 (%(0) + y(T), (0)) > 0

for all z € D(A}. In particular, we choose z(t}) = 0 for all ¢ € [0, T}, then

Iy (T)IIz — iy ()17 > 0.

We choose z(t) = cos Z - g for arbitrary a € V, then z € D(A) and z(0) = a.
Denoting ! = [[4(T) I3 — ly(0) [l > 0, we get

2n

because V' is a Banach space, a € V implies —« € V, na € V, and —na € V, for
n=1,2, ---. Letting n — +o0, we get

(W{(T) +y(0),a) =0

— o S )+ 300,0) < o



for any @ € V. By the density of V in H. we get y(0) = —y(7). That is.
v € D(A).

(2) Existence and uniqueness of anti-periodic solutions.

By the definition of the operator A, problem (4.1) is replaced by an oper-
ator cquation as follows:

Az + Az =0, z€ D(A).
We identify A with a nmltivalued map
AX 2%

Yy setiing

o _ [ {rsh ifze D),
) otherwise.

Then D (A) = D(A) and R (A) = R(A).

Tt follows from maximal monotonicity of the operator A : D{A) € X — X7
that A : X » 2% is also maximal monotone. Since 4: X — X* 1s pseudomono-
tone, bounded, and coercive, we obtain that for each b € X*, problem (4.1) has
a sotution by using Browder’s Theorem (Theorem 3) with C = X and z = 0.

For uniqueness, let z, (k = 1,2) be solutions of problem {4.1). It follows
from

A.’L‘k-!-Axk =&, k= 1,2
and monotonicity of A that

0 = <A(.’B1 — Ig),xl - l'g)x + (ASC] — A.’I)g,l‘l - 3)2>X
> (Axy — Azy, T — Ta)y -

Since A is strictly monotone, ¥ = To. 1

4.2 Evolution equations with nonlinear mono-
tone and nonlinear nonmonotone operators

We study the existence of anti-periodic solutions of the following nenlincar
evolution:

{:i:(t) 1A(t,x(t)) = f(t,z(t)), tel (45)

7(0) = —z(T).

We impose the same hypotheses (A1) and (F1) on the operators A and [ as in
Sectiop 3.3. By a solution z of problem (4.5}, we mean a function

€z e Wy :z(0) = —z(T)}
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that satisfies

<‘E(t)? v)V + <A(ta m(t))! U}'&’ = (f(ta :E(t))a v)V

for all v € V and almost all ¢t € J. We may write system (4.3) as an operatov
equation:

i+ Alz) = Fla), o
{ z € Wy (T). (4.6)

where

WoolT) = {z € Wy, : 2{0) = —=(T)}.
Recall that

X =L,(I,V)y, X*=L,(I,V*).
The Nemyckii operator A @ X — X* is defined by
A(z){t) = A(t, z(t)) foralltel,

and the Nemyckii operator I : L,(f, H) — X" is defined by

F)t)=f(t,z(t)) foralliel

A and F have the same properties which were stated in Lemma 4 and Lemma 5
of Section 3.3.

Before, we turn to proof the existence of solutions for (4.6), we note that a

result similar to Lemma 6 is true for anti-periodic problems with basically same
proof.

Lemma 7. Assume that (A1) and (F1) are satisfied. Then the set
S1={z € W, (T)| i+ Az) = oF(z) for some o € [0,1]} (4.7}
is bounded in W,,. Moreover, there erists a positive constant M such that
| A@) e < M and max||s(t) lu < M
for all z € S1.

We shall prove the following existence result for the anti-periodic problem.

Theorem 7. Under assumptions (A1) and (F1), the problem (4{.5) has a solution
z € Wy,

Proof. The proof is analogous to that of Theorem 5 in Section 3.3. We use the
Leray-Schauder fixed point theorem to prove it.
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1. Define an operator G : L, (I, H) x [0,1) ~ L, (I, H)
Gr,0)=y
where y is the solution of

{ y+Ay=oFz
y{(0) = -y (T).

This operator is well defined by Theorem 6.

2. G:L,(I,H)x [0,1] = L, (I, H) is compact.

Using Lemma 4, Lemma 5 in Section 3.3, for any sequence
{(zn.on)} C L, (I, H) x [0, 1] such that

& — x in L, (], H),
o, — o inR

as n — 0o, one can show that
yn —y in L, (I, H)
as n — oo, where ¥, is a solution of

{ Yn + A(yn) = o0, F(x,)
yn(o) = _yn(T)a

and ¥ is a solution of

{ ¥+ Aly) = oF(z)
y(0) = —y(T).

That is,
G(zn,0,) — G(z,0) in L,(I, H)

as nn — 00.

By virtue of the compactness of the embedding W, — L,(I, H) and using
similar arguments as in proof of lemma 7, we obtain that G maps bounded
sets in L,(I, H) x [0,1] into bounded sets in W,,, and thus into compact
scts in L,(1, H).

Therefore, G : L,(I, H) x [0,1] — L,(I, H) is compact.
3. It follows from Lemma 7 that if z = G(z,0) then
|z le,0ms M

for some positive constant M > 0.
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4. Tt is obvious that
G(z,0) =0,
since A (t,0) =0 forall ¢t € I.

Applying the Leray-Schauder fixed point theorem (Theorem 1 in Section
2.2) in the space Ly (1, H), we see that there exists a fixed point
y* € Ly(I, H) N Wy, with G(z,1) = y. Therefore, y* satisfies

{ y*+Ay* — Fyt
y'(0) = —y*(T)

and y* € W,,. Thus y* is a solution of problem (4.5) from the equivalence of the
problem with equation (4.8). O

4.3 Second order nonlinear evolution equations

As an application of results of Section 4.2, we can obtain the existence of
anti-periodic solutions for a class of second order nonlinear evolution equations
by reducing second order evolution equations to first order evolution equations.
We consider the following second order auti-periodic problem

E(@t)+ AQR, 2(t)) + Nz(t) = f(£,z(f)) O0<t<T,
{ z(0) = —=(T), (0) = —%(T), (4.9)
ze C(,V), & € Wy,

where A: I xV — V*and f:Ix H — V* satisfying hypotheses (A1) and (F1).
In addition, we assume:

(N1} The operator N : V — V* is linear, monotone, and symmetric, i.e.,

(Nv,w) = (Nw,v) forallv,weV.

For z € X, we set (Nz)(t) = Nxz(t), then problem (4.9) can be reduced to
the following equation:

i+ A(Z) + N(z) = F(z),
2(0) = ~x(T), (0) = ~&(T), (4.10)
zx € C(I,V), €W

Now we define an operator S : L, (I,V) - C (I,V) by

00 =5 ([ vors - [ visras).
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Letting z = Sy, problem (4.9) is reduced to the first order evolution equation:

{ (1) + At y(t)) + NSy(t) = f(t, Sy(t)),
y(0) = —y(T), vy € Wy

As before, for y € X, we set
Alye) = AL y@),  (NSy(t) = N(Sy(t)) forallie I

It follows from Lenima 4 in Chapter 3 that the operator 4+ X — X* is bounded.
uniformly monotone, hemicontinuous and coercive. Furthermore, NS : X -3 Y=
Fory € L,(I, H), we set

Fi{y)(t) = f(t,Sy(¥)) foralltel.

(4.11)

The equation (4.10) can be reformulated as the following equation:

{ y+ A(y) + NSy = Fi(y),
y(0) = —y(T), vy €W,

Lemma 8. Under assumption (F1), the operator F\ : L,(I, H) — X* is

{(4.12)

1. Holder continuous with exponent o, 0 < o < 1, i.c.,
1B ) = Fuye) Ix-< Loy~ w2 1,00y for all yi,yy € L,(1. IT)
with some constant Ly > 0;
2. bounded, i.c.,
| Fily) lfx-< Mys+ My || y ||fp;}‘)H) forallz € L,(1, H),
where M3, M4 are positive constants.
Proof. Ify € Ly(I.H), we get Sy e C(I,H) C L,(I, H). Thus F} is well defined.

1. Fy: Ly(I, H) — X* is Holder continuous with exponent 0 < o < 1.

Since
T

I F1(n) — Fy (1) |qx~:/0 | Ft, Sn(t)) — F{t, Sya(t)) Il dt

IA

T
/U L Su(t) - Sualt) I dt
T ¢ T
. f u f (01(5) — yals))ds — f (1 (5) — yals))ds 122 at

T
< 27C [ ) - w0 1§ @
0
< B H  — ¥ 'ic:,([';-;) for any 11,92 € Lp(fa Hj.
We obtain that

I Fily) = Fiye) lix-< Lu e = v 15,0
for any y;,y, € L,{I, H), where Ly, is a constant.
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2. Boundedness. For any y € L,(I, H),

T
| Fiw) i = f i (2, Sy(e) 1 dt

[ A

T
c [ ()15 || Sp(t) 157t
[0}

T i e
Ol W+ [ [ wtods = [ gtoe |57 e
1] {0 Jt

k—1
< Clh “iq +Cy [l y “{LFU‘),EI}

IA

where ¢ and C, are constants. So

| Fu(y) {lx-< My + My || y ||i:(11,n) for all y € L,(I, H),
where My = CY9 || hy || and My = C,/? are constants.

Theorem 8. Under assumptions (A1), (F1), and (NI), problem (4.9) has a
solution.

Proof. Step 1: Equivalence of (4.10) and (4.12).
et = be a solution of {4.10), we set

Yy = X.
Then, € Wy, y(0) = —y(T), and

g+ Aly)+ NSy~ Fily) = i+ A(2)+ NSy - Fi(y)
= F(z)- F{y) - Nz + NSy

but

t T
(=S = =)~ 5 / #(s)ds — [ i(s)ds)
= 0 forallt e I. (4.13)

Then z — Sy = 0 in C(I, H). Thercfore,
N(z — Sy) = N(0) =0,
and by assumption (F1} and (4.13), we get

T
| F) - Ry . = / | £t 2(0)) ~ £t Sy(t) 1% dt

T
< 1 [ () - Syl 5 dt =0
4]
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That is, ¥ is a solution of {4.12).
Conversely, let ¥ be a solution of (4.12), then y € C(I, H). We set z = Sy,
thus £ = y. Since y € Ly(I, V), we obtain z € C(I,V),

P+ A(z) + Nz — F(z) =y + A{y) + NSy — Fi(y) = 0,
and
z(0) = —z(T) z(0) = —z(T).

Step 2: We show that the equation (4.12) has a solution.

For this purpose, we show that NS : X — X" is linear, continuous, and
monotone.

In fact, it is obvious that NS is linear since N and S are linear. The
Hélder inequality implies

ISyl = 5 [ ] y(s)ds - / y(s)ds |} dt

< ‘9‘ [ ( f y(s)ds I, + | ] y(s)ds |)d
< 2 [ [ o as o

- [52 |y||)\a

for every y € X, where f; is a constant and 3, = ByTP/a+1 /2p~1  That is,
S : X — X is continuous. By assumption (N1), the operator N : V — V~
is linear and monotone, we get N : V' — V* is continuous (see Zeidler {1990),
Proposition 26.4). Thus, we obtain

T
| Nyl = f | Ny(s) [[T. ds
< By / Hy(s) If ds

IA

T
B fo 1 y(s) 1B )P0 = By v 1%,

for some constant 84 > O since p > 2,1 < g < p. Hence NS : X — X* is linear
and continuous.

The operator NS : X — X* is monotone. To prove this, let PP denote the
set of all polynomials p: [0,7] = V with coefficients of p in V. Since P 1s dense
in X, it is sufficient to show that

(NSp,pyx >0 forallpe P
Let g€ P. As N :V — V" is symmetric, we get

LN, a0y = (NaE),aBhy + (Nal0), )y
= 2(Ng(t),q(t))v.



14

30
T
2/0 (Ng(s),q(s)hvds = (Ng(T), q(T)}v — {Ng{0), q(0))v. (4.1

Substituting ¢ = Sp into (4.14), and noting that,

s T T
o = 5[ ploids— [ pts)ds) = =5 [ pisjs = —g(m)

for all p € P, we obtain

0
(NSp,p)x = (Ng(s),q(s))vds
4]
1

= SUN(T), ¢(Thv — (Nq(0),q(0))v).
= 0 forallpeP.

Therefore, NS : X — X* is linear, continuous and monotone. And from
assumption of (A1), we get that the operator A+ NS : X — X" is monotone.
hemicontinuous, coercive and bounded.

From Lemma 8, the operator F) : L,(I, H) — X~ is bounded and Holder
continuous, so there exists a solution of (4.12) by theorem 7 in section 4.2. Hence.
equation (4.11) has a solution.

Combining step 1 and step 2, the assertion of theorem is valid. (J



Chapter V

Optimal Periodic Control

In this chapter, we study the existence of optimal solutions for a Lagrange
optimal control problem governed by a class strongly nonlinear evolution equa-
tions with periodic condition which we stated in chapter 3. For the periodic

setting, we only need to consider the optimal control problem in a periodic inter-
val.

Definition 13. Let C be a Banach space and L : S C C — [—oc, +00| be given.
The function L is said to be sequentially lower semicontinuous at a point z € S

if

L(z) < lim, ., L(z,)
holds for each sequence (x,) C S such that

T, — T 68T — 0O,

L is said to be sequentially lower semicontinuous on S when L is sequentially
lower semicontinuous for all z € S. We briefly write that L is sequentially l.s.c

n S.

Let £ be a Banach space and suppose the control policies u(¢),t € I, take
their values in £. We denote the collection of nonempty, closed, convex subsets
of E by P(E). A multifunction U : [ - 27 is called measurable if

GriU)={(t,v) e I x E: v e U(t)} € B(I) x B(E),

where B(J) and B(F) are the Borel o-fields of 7 and F respectively.
Definition 14. Let U : I — 2% be o multifunction. A function u: I — E is
called a selection of U(-) if

u(t) e U(t) a.e tel

If such o u is measurable, then u is called o measurable selection of U{-).

Theorem 9. Let U : I — 2% be measurable taking closed set values. Then U
admits a measurable selection.
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For the proof of this theorem, we refer to Li and Yong {1994), pp. 100-101.

Obviously, the existence of measurable selections is ensured if U(?) take
closed set values for almost all ¢ € 1.

We assume:

(U1) E is a reflexive separable Banach space, and
U:I— P(E)
is a measurable multifunction such that

t — |Ut) = sup{|| u ||z w € U{t)} belongs to L. ().

As admissible controls, we choose the set of all selections of U{:) that
belong to space L.{(I, F),1 < ¢ £ r < +o0; that is,

Usg = v € L(I,E) :u(t) € U({) ae on 0,71}
Any clement in Uyy is called a control.
(Bl) B e Lo (I, L(E.H)).

(L1) L:IxV x E — RU {400} is such that

(1) (t,z,u) — L(t,z,u) is measurable. That is. L is a given
B(I) x B(V x E)— measurable function;

(2) (x,u) — L(t,z,u) is sequentially Ls.c;

(3) u = L{{.z,u) is convex;

(4) There exist a nonnegative bounded measurable function ¢(-) ¢ L;(0,T)
and a nonncgative constant Cg such that

L(t,z,u) > ¢(t) = Cs(ll z v + |l » i)

foralmost allt e [, allz e V, andallu € E.
Note that if hypothesis (U1) is satisfied, then by Theorem 9,

Uad 7"- w

The evolution system we are considering is the following

{ i(t) + Alt,z(8) = f(t,z(t)) + B(t)u(t) ac. tel (5.1)

‘T(O) = QZ(T), uc Uad-

Any solution z of (5.1) is referred to as a state trajectory of the evolution system
corresponding to the control w € U,q. Let us introduce some notions.

Definition 15. A pair (z,u) is said to be admissible if x is a solution of (5.1)
corresponding to w € Upg. We call z, u, and (z,u) an admissible trajectory, an
admissible control, and an admissible pair, respectively.
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We let

Ags = {(z,u) € Wy x Undl(x, u) is admissible},
Xaa = {2 € Wyl3u € U,g, suct that (z,u) € Ayl

The cost functional considered is:
.
Sz, u) = / L{t, z(t),u(t))dt V(z,u} € Ay
Jo

Then our optimal control problem can be stated as follows.
Problem {P}.
Find (xg, tg) € Agq, such that

J(zg,ug) = min J{z,u) = m.
(Zo, uo) {x‘u)mad( )

If such a pair {xg, up) exists, then we call (zq, o) an optimal control pair.

5.1 Existence of admissible trajectories

In order to prove the existence of optimal control problem (P), at first, we
should insure the existence of admissible trajectories of equation (5.1).

Theorem 10. Assume that hypotheses (A1), (F1), (B1), and (U1} hold. Then
the admissible pair set Agq is nonempty and X4 1s bounded in Wy, N C(I, H}.

Proof. (1) Auws #£ 0.
In fact, hypothesis (U1) implies

Ued # 0.
For every u € Uy, we define
fult,x) = f(t,2(t)) + B(t)u(t).
Clearly, f, satisfies hypothesis (F1)(1) and
1 fult, 21) = fults 22y < Lllzy — 22l

for all z;,z» € H and almost all ¢ € 1. That is, f, is Holder continuous respect
z in H uniformly in ¢, Furthermore,

I fult, o) v € M)+ Cellz "+ Bu(d) |v-
< (O | Bllzall u®) le) + Ca 2 (137

for all z € H and almost all t € I. By assumption, set

() = ha(t) + I Bl lu(®llg
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then hi{t) € L{I) and is positive. Hence f, satisfies hypothesis {Fl). By
Theorem 4 | the assertion holds.

(2) Let z{-) € X,q4, then there exists u : / — E measurable, u(t) € U(f),
a.c. on I such that

(t) + Alt,z(t)) = f(t,z(¥)) + B{t)ult) ae onl (5.2)
z(0) = z(7T). -

Thercfore,
(#.0)x + (Alx),z)x = (F{x),2)x + (Bu,z)x. (5.3)

Now, we observe the term (Bu,z)yx. By assumption B(t)u(f) € H and using
Cauchy’s incquality with € > 0, we get

{(Bu,z)y = f(B(f Yul(t), z(t))dt

- ] (B(tyau(t), =(1))dt
1 T q ep (T P
1 f Bl de+ /0 (o) dt

1A

Ep
< - ” quu {1 1) ; ”xH;;fp{LH}'

Since the embedding V — H is continuous and 1 < ¢ < 7 < +oo implies that
the embedding L.(I) — L,(I) is also continuous, there exist constants 5; > 0
and f, > 0 such that

P By

B
(Bu,z}x < g ”B”im({) |||U|||Lq(;) +—llzlfy foralle > 0.

1/p
Let € = (%) , where Cy is chosen as in hypothesis (Al), then

C
(Bu,z)x < s+ 3 el (5.4
where (33 = W ||B||q : |||U||]iqm is independent of v and .
From the coerciveness of A (see Lemma 4 in Section 3.3), boundedness of
F (see Lemma 5 in Section 3.3), (5.4}, and (5.3), we obtain

(o1
(o1
oy

SCullaly < B+ Ballall + B ol (5.

where C1, 3, B4, 35 are positive constants.
Now we consider the real function

C
g(¢) = TICP — BsCF — Bal — Bs,
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the function ¢(¢) = +00, as { — +oo since k < p, but {5.5) implies
glllzlx) <0 for all z € X .
Hence, therc exists a constant g > 0 such that
]l < Bs for all € X4 (5.6)

Moreover it follows from the continuity of the embedding X — L, (I, H) that
there is a constant f; > 0 such that

”x“Lp(,r‘H) < B forallz € Xgq (5.7)

In addition, given p(-) € X = Ly(I,V) = (Ly(1, V™))", we get from (5.2)
that

<3‘31p)X + <A(I)ap>X - (F(L)ilt’))\ + <Bu;p>/\’-
This implies

(Z,px < [JA@)|x. lIPlix + IF (@)l - ol x + | Bullx- [IP(l
< (M1 + My ||z|%0 + My + M, [|m||jj;;jm) pll5 (5.8)

+ (1B sty MUy 1) il -
Substitute (5.6) and (5.7) into {5.8), we get
(#,p)x < Bsllpll x

where 3 > 0 is a constant independent z and p. Since p € X was arbitrary, we
deduce that

|zl 4 < Bs  forall z € Xgq.
Hence,
1zllw,, = lizllx + IZllx. <Bs+Bs forallz e X,
Furthermore, we note that as the embedding W,, — C(I, H) is continuous,

max ||z(t)||; € Bs  forall z € X,y
tef

We have accomplished the proof of the theorem. |
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5.2 [Existence of optimal control pairs
In order to prove the existence of optimal control pairs, we nced the fol-
lowing result given by Balder (1986).
Theorem 11. The following three conditions
(1) L(t.-.-) is sequentially Ls.c. onV x E a.c. on 1,
(2) L{t,x,-} is convex on E for everyx € X a.e. on I,

(3) there exist M > 0 and ¢ € L(R) such that
L{t,z.u) 2 9(t) — M{l|z|l, + Wlulz) forallze Viue E ae onl

are sufficient for sequential strong-weak lower semicontinuity of J om
Li{l,V) x Li(I, E). Moreover, they are also necessary, provided that
J(Z,%) < +oo for someT € Li(I,V), w € L(I,E).

‘Theorem 12. If hypotheses (A1), (F1), (Ul), (B1), and (L1) hold, there cxists
an admissible control pair (z,u) such that J(z,u) = m.

Proof. By Theorem 10, we get Agy # 8. Let (2, u,) be a minimizing sequence,
that is, {(£n. %n)} C Agg and Bmy,_y o0 J (2, 1) = M.
From (up, u,) € A, we get

(5.9)

Tn + A(zn) = F(zn) + Bun
T (0) =z, (T), zn € Woa, Up € Ugg.

Since E is a reflexive Banach space, L (I, F) is a reflexive Banach space. In
addition, for v € U,y we get

Il gz = ( / Tuu(r)n;;dt) "
< (/‘]T|||U(t)|n;dt)w

= [0,

i.e., {up} is bounded in L.{I, E). Hence, there exists subsequence of {,}, again
denoted by {u,}, such that

Upn “ru in L.(ILE) asn— oo

Moreover, as U(t) is a closed convex subset of F, it is obvious that U, is a
closed convex subset of the reflexive Banach space L, (I, E), so Uy is a weakly
closed subset of L, (I, E) from Marzur’s Lemma (Lemma 1 in Chapter 2). Hence
U c Udd-
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On the other hand, since {2} C X, it follows from Theorem 10 and
reflexivity of W,, that there exist a subsequence of {,}, again denoted by {zn}.
an clement x € W, such that

€y —> 2 in W,, asn—> oo, {(5.10)
In the following , we shall show that (. u) € Agg. that is,

{ t+ A(x) = F(z)+ Bu
z(0)=2(1).

First, we claim z(0) = x(T). In fact, from the continuous embedding
W = C (I, H) and (5.10), we get

Th 3z in C(I,H) asn— oo
For given yp € H and ¢, € 7, we define
g{(z) = (z (i), yo) for any z € C (I, H).
Then g{r) is linear and
| 9(2) |=] (5 (o), yo) | <l 2 (to) el wo 1<) = le@mllvo ll-
Thatis g€ (C(I,H)) . Hence
g(zn) — gz} asn — +oo.
That is,
(zn (o), o) = (2 (t0), ) asn — +oo.
Since yo € H is arbitrary and H is Hilbert space, this implies for any ¢, € ],
N (P (o) iInH asn-— +oo.
So,
(00 25 2(0) i H
and
2o (T) 5 2(T)  in H
as n - 0o. It follows from z,,(0) = :c.ﬂ(T) that
z(0)=z(T) inH.

“Secondly, since embedding Wye — X is continuous, the embedding
Wpy — L, (I, H) is compact, and the operator 4 : X — X* maps bounded sets
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to bounded sets, it follows from (5.10) that there is a subsequence of {z, }. again
denoted {z,}, such that

Ln Xz in X,
LW s
Tp — 2 In X7,
5 : -
Ty — i L], H) (5.11)

W .
Azx, — w in X°*,

as n — 400 where 7 € X* is the generalized derivative of x and w € X*. Thanks
to Lemma 5 in Section 3.3, we get,

F(z,) — F(z) in X" (5.12)
Hence
(F(zn),zn)x — (F{z),z)x asn — oo. {5.13)

Note that B € Ly, (7, L(F, H)) implies B : L, (I, E) — L, (7, H) is linear
and continuous, which implies

Bu, %5 By in L, (I, H) (5.14)

W . .
as i — o< as u, — u in Ly {I, ). In addition, since

T, —rx in L(I, H)
asn — oo, we get

(Bug, To)x — {(Bu, T)r, (1 m),L,0.8)
= {(Bu, r}x asn— +oo. (5.15)

Again it follows from (5.9) that

{(Tn,Tn — Z)y + {A(Z0n) %0 — T} x
= (F(zp),2q — 2}y + {(Bun,zn — ), forn=1,2.-. (5.16)

From the integration by parts formula, we have

(j:n:-rn - x)x = (mlaxn - x)X + % (”Ifl (T) - (T)”:I!{ - ||$ﬂ (0) — & (0)“?'1)
= {&,Tn— L)k
— 0 (5.17)

as n — oo. Letting n — oo in (5.16) and noting (5.12), (5.15), and (5.17), we
obtain

-

lim {A{z,), zn — z)x = 0.

n—oo
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But 4 : X — X* is hemicontinuous, monotone, and so A satisfies condition (M}
{see Definition 10 and Proposition 19 in Section 3.1). We deduce that

w = Alz),
that is
W R
Alzy) — Az} in X
asn — 00,

Thus, for every ¢ € X,
(a0, @) x + (A(22), 9)x = (F(24), ) x + (Bua, é)x,
letting n — +00, then
(,¢)x + (Alz), &) x = (F(z),9)x + (Bu, ¢)x.

Thercfore, (x,u%) € Aga.
Again, it follows from (z,,u,) € Aeq and (z,u) € Ayq that

(T — &, 2, — Ty x + (A(zn) — Al2), 20 — )X
= (F(xg) — Flx), 20 — 2)x + {Bun — Bu,z, —xz)x foralln=12,-.-.

From integration by parts formula, we get

Cillzn — 2l < {(Azn — Az, 2 — Za)
= {F(z,)— F(z},zn—x)y +{Bun) ~ Bu),zn — 1)
—3 as n — oo.

That is,
Tp, —> T InX asn—o0.

Note that the embeddings L,(I,V) — Li;({,V) and L (I, E) — L\(I, E} arc
continuous, then

Tn — X in L,(I,V)
and
w .
Uy — U in Li{I, F)

as n — +oo. From hypothesis {L.1) and Theorem 11, we obtain
. _
J(z,u) = / L(t, z(t), u{t))dt
0

T
< lim [ L 3n(0), (0
o]
= h_mJ(In: un) =m.

This shows that (z,u) 1s the desired optimal pair. )



Chapter VI

Applications

In this chapter, to illustrate the applicability of our work, we apply Theo-
rem 5 in Section 3.3 and Theorem 12 in Section 5.2 to prove the existence of op-
timal control of systems governed by second-order periodic quasi-linear parabolic
differential equations. More general, we obtain the existence of periodic solutions
for quasi-linear parabolic differential equation of order 2m and the existence cor-
responding to Langrage optimal control. Moreover, we present an existence result
of anti-periodic solutions for quasi-linear hyperbolic differential equations by us-
ing Theorem 8 in Section 4.3.

In doing so we will use the following notations. z = (z,2z,"** ,2x) is @
variable point in the 7 -dimensional Euclidean space R®. An n-tuple of nonneg-
ative integers o = (a1, az, -+ ,ay) is called a multiindex and we define

n
ol =3 o
i=1

and

2% =222y

° for z = (21,22, , Z)-

Denoting Dy = 8/8z; and D = (Dy, Dy, -+, Dy) we have

aﬂl 602 aan
DC!:DCH a2 L 1% — .
U Dy Dt = e B

Let Q2 be a bounded domain in R* with n > 1 and piecewise smooth
boundary 8%, i.e., 8Q € C%'. Recall that 9Q € C%! if for each point 2 € IQ2
there is a ball B with center at z such that 82 N B can be represented in the
form 2y = gb(zl, Tt Zim 1y Zigly T ,Zn) for some ¢ with (;5 = CoL. QT = (0, T) X Q,
0 < T < oo is fixed. Suppose p > 2 and ¢ = p/(p — 1), W™P(Q1) denotes the
standard Sobolev space with the usual norm:

lellmp = (O 1| D0y ), m=0,1,2,--.

la|<m

Then W™P(2) is separable, uniformly convex and hence reflexive.
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Set
mP(Q) —{(pGH/mpl Dﬁtp|3g1=0, ]ﬁl Sm—l},

Since 99 is smooth, C(Q) is dense in W™ (Q) and Ly(Q), hence W™ 7(11)
is dense in L,(€Q). From Sobolev’s embedding theorem, we have that the em-
beddings C5(QY) — WiP(Q) — L*(Q) < VV_mp(Q\ are continuous and the
cmbedding WP(Q2) < L*(Q) is compact. Denote V. = W™ (Q), H = L0},
then V* = W-™4(Q1) and V < I < V"* is an evolution triple.

6.1 Optimal control of a system governed by
a second order quasi-linear parabolic equa-
tion with time periodic condition

Example 1. For 2 < p < +oo and § > 0, the optimal control problem under
consideration 15 the following:

(P1) :

J{z, u) ] / |z(, 2) —yo(z)l dzdt + = / /Iu (t, 2){" dzdt

inf = m,
yol-) € LQ(Q) is a target state

such that

4

il ?) = éDf“Déw(t, 2)P2Da(t, 2))

= 3" Difilt.z,x(t, 2)) + fo(t, 2, 2(¢, 2)) +b(t)ul(t) on Qr,
z(t,2) =0 on{0,T] x 00,

(6.1)

L 2(0,2) =z(T.2) onQ, |ut,z)]<r(l,z) ae

Note that, when p = 2, the partial differential operator in the dynamical
cquation is the Laplacian. So, this example incorporates nonlinear and non-
monotone perturbations of the Laplace equation. The differential operatcr in
divergence form — 5.1, Di(|DizP~2D;z), which generates A, is usually called
the pseudo-Laplacian.

We set

V =W, ?(8), H = L,(Q)

then V* = W-P(Q) and V is densc in H since CZ(Q) € WyP(Q) C Ly(Q) is
dense in W,P(Q) and Ly(Q). It follows from Sobolev’s embedding theorem that
the efmbedding V into H is compact,

We impose the following hypotheses.



(Fy fi: IxQxR—->R (:=0,1,---,N) is a function such that
(1) (t,z) = fi(t, z, z) is measurable for all z € R;

(2) |fi(t, z,2)] < alt,z) + nlz|*~! forall t € I and z € Q with
a(-,-) € Ly(Qr), a constant v; > 0, and a constant 1 < k < p.

(3) f:(t, z, ) satisfies the Lipschiz condition
|fult, 2, 21) = filt, 2, 32)| < Liz1 — 34
for all z;,z, € R and {{,2) € @y with some constant L > 0.
(B) b€ Loo(l).
(R) re L} (I x Q).

In order to study the existence of solutions for optimal control problem,
first we consider the existence of periodic solutions for the quasi-linear parabolic
equation:

-(%x (¢,2) — i D; (|D.z (1, z)|p_2 Diz (t,2))
=1

=Y Difilt,z, 2 (6, 2)) + fo(t, 2,2 (¢, 2))  onQr,
z(t,z) =0 on{0,T}x 39,

(6.2)

L 2(0,2) = (T, 2) on 1.

Definition 16. The generalized problem associated with (6.2) reads as follows.
We seek x € Wy, such that, for allv € V and almost all t € (0,T),

2 (z(t),v) + a(z,v) = f(t; (), )

z(0) = z(T).

(6.3)

where

a(.y) = /SIZ|Dixlﬂ"?(Dix)(Diy)dz,

o~

flt,z,y) = fQZfi(t,z,:t:)DiyderLfo(t,z,x)ydz.

In {6.83), % denotes the generalized derivative on I.

Lemma 9. There emists an operator AV — V* such that
(Alz),y)v = alz,y) forallz,yecV

and the assumptions regarding A in (A1) of Section 8.8 are fulfilled.



Proof. (1) From Hé&lder’s inequality, we get
i ( / dz Sy
)

p l/g r I/p
il DYl
izl azt z) (*/S; azt Z)

< Claft? -l = Clizi ™ il

1A

la (z. )|

with some constant C' > 0 for all ;¥ € V. That is, y — a(z,y) is linear and
bounded. So, there exists an operator 4 V — V* with

a(r.y) = (A2, ¥y y-
and
lAz]ly. < Cll=fy .

That is, A {-) is bounded.

(I} A key inequality.
From Tartar’s inequality

(AP72N = (P2 (A — ) 2 Ci| A ~ pf?

for all A, € R with some constant C; > 0, we get that there exists a constant
Cs > 0 such that

a(z,z —y) —aly, 7 — y) = Colz — yly
for all x.y € V. Hence
{Az — Ay, - y)v 2 Colz — gl

for all z,4¥ € V. That is, A is uniformly monotone.
Since A(0) = 0, we get that

(AI, .’E)V > CQ|SL]€;

That is, 4 is coercive.

(IIT) Continuity of A.
Let

Zn —rx nV  asn — +oo.

This implies
or, ar

T — B in L,(2) asn— 400

according to the definition of convergence in V = W, 2 P{S2). Set

G(z) = |z[P"%’z for all z € R,



then
|G(z)| < |z forallz e R
and it follows from Proposition 16 in Chapter 2 that the Nemyckii operator
G 1 Ly(2) = Ly()

is continuous. Therefore,

Oy, dr .
B, — 0% i Ly(f}) asn — +oc
mplies
G(ag:n) — G{ 8‘1‘) in L,(Q) asn — +oo.
8::1- 6::1-

By the Holder inequality, for all y € V. we obtain that

[{Az, — Az, y)v] = [/Z( (aln B 8251))33

0z, Oz L Oy
< 3 |la@) a2 +4
; Oz 9zl Ly razi Lp(2)
63:,1
< Rcica) TN
= < “r ALy ()
Hence
Az, — Az|,. — 0 as n— +oc.

That is, A(-} is demicontinuous, hence hemicontinuous.
Therefore, A(:) is defined above satisfies hypothesis (A1) in Chapter 3. O

Lemma 10. Under hypothesis (F), for every t € I, there exists an operator
f(t): H > V* such that

{(f()z,y)v = f(t, z,y) forallz e H ycV
and f(t) satisfies all hypothesis (F1)} in Section 3.3.
Proof. Since f: I x HxV — R is defined by

t:ru /Zfltz'c(z

then from hypothesis (F)(2), we get

d+/h@2£wﬂ,

|fi(taza$)‘q S C4(I{19(t,2)|q + |x|(k-—1)q)'



ot
[So]

It follows from z € W, P(Q), ay(t, ) € L,(€}), and the majorant criterion that
|filt, z, )] € L{Q), +=01,--- . N

By Hoblder's incquality, we gel.

(7} i 1/p
d f
1] (}71| l

N .
ey < Z(/ |ty 2, 2)|7dz) 7 - ( /;

(ot 2 )ltdz) e / =)

SI

< Y [t et 3 [ 12 [ ppasyn
=0 1==1

< Co(Cr+l2ll5) - Nyl (6.4)

for some constants Cy > 0,Cq > 0, and C7 > 0. That is, for each z € H and
t ¢ I,y — f(t,z.y) is a continuous linecar from on V. IHence there exists an
operator f : 1 x [T — V* such that

(fta) v = [{Lay).
And from (6.4), we have
|f(t )| < My + Mozl foralie lTand e H
where M, > 0 and M; > 0 are constants. Next from hypothesis (F)(4), we get
[ (6 1) = F(t22),9)y ]
= |[Ftt ey Fitaay)

; (Z (fi (t,z,21) — fi(t, 2, 32)) % + (folt,z,21) — fo (t,z,g:g))y) ol
Nzﬂl
/Zlft (t,z,x]) _‘f;' (t,Z,.'L'Q)r

< /ZL |71 — o I&—‘dz+/!;Lg|:1:1—-:r2||y|dz

+[yl)
(f I ——:Bgl"’dz)uq (Zf

= L|lz1 — 22l pye) - Hylly

[A

d +/ | fo(t, 2 - fo (t, 2, 2a}| |y| d

Oy
dz;

S LIF |51—.'LQ!(

i=1

dy
Oz

(AN

bfp
dz+f ly|” dz
Q

for all z; x» € H and t € I, where L' = maxg<i<n (L) and L > 0 is a constant,
Since the embedding L, (2) < L, () is continuous for 1 < ¢ < 2, this implies
{21 — 22| € Ly (2).
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From the above discussion, we obtain that the operator F : [ x H — 1
satisfies hypothesis (F1) of Section 3.1. L3

Let E=L(Q),r:IxQ—> Rtandr € L(I xQ). Let U: I — P(E) be
defined by

Uty ={v e L =B flolly<l r(t,) llo.oy=F1)}.
Note that
GrU={{t.v) €T x E:r(t)— || v ||,> 0}

By Fubini's theorem, ¢ — 7(¢) is measurable, that is, for fixed v € E,

t —» 7{{)— || v |l; is measurable, and v — 7(t)— || v ||, is continuous. Hence
(t,v) = F()— || v lig is a Caratheodory function. GrU € B(T) x B(V), that is
U(:) is measurable and [U(t)] < 7(t) aet € I and 7(-) € L7 (I). Thus hypothesis
(U1} is satisfied, The set of admissible controls U, is chosen as

Uw={u€ Ly(I,E), u(t)eU(t) ael.
If b € Lo(0,T), we can define B: I — L(E, H) by
B(t)ul-) = d(t)uf-).
then B € L, (I, L(F, H)).
Let L. I xV x E — R be defined

Ltz = g [ lolt,2) - w(t2)Pde+ 5 [ e 2y,

2Ja 2 Ja
w(t) = {we L) ol < 7(@) = Ir(t MLy}

where r € Lo, (1 x (2). Then, it is easy to see that, hypotheses (A1), {(F1), (U1),
and (L1) are satisfied.

Our problem can be taken to the following abstract form:

r
inf  J(z,u) = /0 L{t, 2(t), u(t))dt
such that
T(t)+ Az (t) = F(t,z(t)) + B(t)u(t)
2(0) =z (T)
w(t) € U(6) ae u() is measurable.

This problem is equivalent to problem (P). Applying Theorem 11 in Section 5.2,
we gef
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Theorem 13. If hypothesis (F) holds and v € Lo (I x Q), b € Lo {I), then
problem (P1) admits a solution

(z,u) € (Ly(1, Wi (@) (CF, Lo()) x Lo(I x ©)

with Oz /0t € L,(I, W~19{8)).
Corollary 1. (Properties of solution x.) If © is a solution of (6.2), then

t—s

lim/ (2(t,2) — z(s,2))%dz =0 for all s € [0,T).
Q

Therefore, the function t = x (¢, 2) s continuwous on [0, T in the mean.

6.2 Optimal control of a system governed by
a 2m-order quasi-linear parabolic eguation
with time periodic condition

Example 2. The distributed parameter, pertodic parabolic optimal control prob-
lem under consideration is the following:

T v
(P2) inf J(z,u) = inf/ / L{t, z,n(z{t, 2)). ult, z))d=dt
b Ja
subject to the time-periodic 2m- order gquasi-linear parabolic equation:

( Lx(t,2) + 3 (-1)ID°AL(t 2, 0(7)(E, 2))

laj<m

= 3 (—1)lIDefo{t, 2z, 2)) + B{t)u(t)  on Qr,

le|<m

ﬁ DPz{t,z) =0 on{0,T] x 80 Jorall 1Bl < m -1, (6:5)

z(0,z2) = z(T, 2) on .

Lt 2)] < r(t,2) ae tel

where n(z) = {(D7z), |v| < m}, i.e, n(z) denotes the tuple of all partial derive-
tives with respect z up to order m including .

The boundary condition wn (6.5) means that all partial derivatives with
respect z up to order m — 1 should vanish on OS2 for allt € I. Set M = (rtm):

nlm!
This kind of problem occurrs frequently. Examples are a controlled chemi-
cal reaction process with diffusion or controlled single specics population dynam-
ics with diffusion. The process is desired to be periodic (with period T').

“We will need the following hypotheses on the data of problem (P2).
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(A') All the functions A, (e < m): Q7 x R™ — R are functions such that

(1) (t,z) — Aq(t, z,m) are measurableon Q7 foraltn € RM n — A (1, 2,7)
are continuous on R a.e. (t,2) € Qr;

For each fixed ¢ € [, the following assumptions are satisfied:
(2) Growth condition

|Aalt, 2,0)| < as(t,2) + crfz) D |nyl7!

ri<m

with OL](', ) € LQ(QT) and Cl(') c LOO(Q)

(3) Uniform monotonicity

Z (Act (LZJ‘?) - Aﬂr (ta 3,‘?})) (7}'0 - ﬁ;) > Cl Z ‘Th‘ o ﬁ:)“[p ;

faj<m 7l<m

with C is a positive constant.
(4) Au(t,2,0) = 0 for all (¢, 2) € Qr.

(F) fo: @7 x R — R arce functions such that

(B")

(1) (t.2) = falt, z,z) is measurable on Qr for all z € R,
z — falt, z,x) is continuous on R for a.e. (1,2) € Qr;
(2) For each fixed ¢t € I,

[fa(t, 2,2)| < ag (£, 2) + g jz} 72

with az (+,) € Ly (@71), ¢4 > 0 and 1 < k < p are constants.

(3) fao(t, z,x) is Holder continuous with respect to z and exponent
0 < a <1, that is, there is a constant L

Ifﬂr (t'} Z,R'}l) - fa (t,Z,.'L'Q)l S L|$1 - $2|
for any z,, z2 € R, (t,2) € Q7.
be Lo (I).

(R reLi(lxq)

('Y L: I xQx RM x R— R=RU{+00} is an integrand such that

(1) (t,z,n,u) = L{t, z,1,u) is measurable;
(2) (n,u} > L(t, 2z,m,u)is Ls.c;
(3) w — L (¢, 2,n,u) is convex;

(4} o (¢, 2) = L) (Inlly + Nullg) S Lt z,n,u4)  ae with
¢ € Li(I x8) andl € Ly {Q) is a positive function.
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In order to study the existence of solutions to the optimal control problem,
first we consider the existence periodic solutions of the 2m order quasi-linear
parabolic equation:

((Go(z) + X (=D Do AL 2 on() (¢t 2)

la| <m

= > (—1)|a| D™ fo(t, z, z(t, 2)) on Qp,

e <rn

DA z(t, 2) =0 on [0,T)x 30 foral 3:18] <m -1,

z(0, z) = (T, z), on Q.

Ly

Definition 17. The generalized problem associated with (6.6) reads as follows.
We seek a function x € W,y such that, for ally € V and almost all t € I,

{ @ ratzt)y)=f L),y 67)
z (0} =  (T) )
where
alt,xz,y) = Z Atz () (8, 2)) D%ydz
A lee| <
and

fltan) = [ 3 faltaw () Dy ()i

[8]<m

In (6.7) & denotes the generalized derivative on 1.

Remark 2. One obtains the generalized problem (6.7) by multiplying the original
problem (6.6) by the function y € C§° (2} and integrating by parts with respect to
the spatial variable.

Proposition 21. If hypotheses (A') and (F') hold, then the generalized problem
(6.7) corresponding to the original problem (6.6) is equivalent to equation (5.7,
and the hypotheses (A1) and (F1) are fulfilled.

Proof. (1) We define another norm which is equivalent the usually norm on V' by

i/p

”¢”m,p,(} = Z “Da(f)“ip(g)

|laj=m

One can show that there exist constants ¢; > 0 and ¢; > 0 such that

C11¢llmp < NBllmpo < c2llln, forallgpeV.
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(2) The Nemyckii operator. For each t € I fixed, we set
(.Ea (t) :r,) (2) = Au (¢, 2,11 (x)) forall z € Q.
Obviously, we have
D’z e L,(0) if xeV and |B] < m.

It follows from (A’) (1), (2) and Proposition 16 in Chapter 2 that the Nemyckii
operator

-

Ay () 1V = L ()

15 continuous and

where M; > 0 is a constant.
(3) Boundedness. By Hélder’s inequality, we get

A, () z

. p/a -
Lg(s) =M (Hal (t)HLq(Q} i ||‘II|L ) forallz eV

ae)l < 3 ||, 10Wlk,m

lal<m

M, (Jlar (1)

[/

iy + 1T gl forall 2,y € v

where A, > 0 is a constant.

Hence, for each z € V | y — a(¢;z,%) is a linear continuous form on V.
By the Riesz Representation Theorem, there exists an operator A: I x V" — V'*
such that

(Alt,z), yhv =alt;z,y)
and

A (£, z) ||y < Mo (ua1 ()15, e + 1|x||f;;1) forallz € V and ¢ € I,

ie., A(t,z) is bounded.
(4) Uniformly monotonicity. By (A4") (3}, for all z;,2, € Vi and t € |

(A{t,x)) — A(t,z2), 21— 22)yy = altiz,z1 — T2} — altiz2, 27 — 32)
> O ||z — zafly,

i.e., A (t,z) is uniformly monotone.
(5)Lastly, we show that for each t € I, A(t) : V — V* is continuous.
Indeed, let

re, —x InV asn— +oo.
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Since A, (1)1 V — L, (1) is continuous,
A, () a, — Au )z in Ly(R) asn — oo

By Holder's inequality,

la (3 y) —a(tzy)l < Y ’

la]<m

Ay (8) T — Ay (¢ H »
(&)= (t)x L llylly

for all 4y € V. This implies

“/—'1 (t: 37?1) - A(t"r)“"' < Z ‘

jal<m

]

A, (t)x, ~ Ao (B) z

Lo()
Hence
A (t,zp) — A, 2)[ly. — 0 asn— +oo.

That is, the operator A(t) : V — V* is continuous.

Therefore, the operator A : I x V' — V* satisfies hypothesis (Al).

By a similar method, one can show that there exists ap operator I :
I x H — V* such that

(F(t.z),u)y = ftxy)

and the operator F satisfies the hypothesis (F'1). We have accomplished the
proof of proposition. 0

Using the operators A and F as defined above, Eq. (6.6) can be written
in abstract form:

(6.8)

{ T+ At z)=F(t,z),
z{(0)=z(T).

Applying Theorem 5 in Section 3.3, we get the following theorem.
Theorem 14. If hypotheses (A') and (F') hold, then there exists a periodic so-
lution x € L, (I, W™ (Q)), & € L, (I, W™™9()) of equation (6.6).

From the continuity of the embedding Wy — C (I, H) and the construe-

tion of W, we get

Corollary 2. (Properties of solution z) If = i3 a solution of problem (6.6), then
(1)

=5 0

lim | (z{t,2) —z(s,2)°dz=0 forallse[0,T].

Therefore, the function t v z (t.2) s continuous on [0,T) in the mean.

(2) The function z = z (t,z) belongs to Wi™? () for almost allt € (0,T).
That 4s, this function has generalized derivatives up to order m with respect to
the spatial variable x.
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Next, we consider the optimal control problem (P2).
Let U : I — L, (2) be defined by

Ult) = {'U € L (9 : ”UHLQ{SI) < |ir (&, ')”Lq(ﬂ) = F:(t)} -

Then the range of U (¢) is nonempty since r (¢,-) belongs to the range of I7 (#).
closed and convex because L, {2} is closed and uniform convex space.
Note that the graph of I/ is

GrlJ = {(t}u) el X E 0<T(t)— ”””LQ(Q)} :

But t — () is measurable by Fubini's theorem, and v — 7(¢) — 1217, ¢y 18
continuous. Hence the graph is measurable, which implies that GrlU € B () x
B (E); ie., U (-) is measurable. Furthermore,

U@ <7t ae

and 7(-) € L} (I} by hypothesis (R').
Thercfore, we have the hypothesis {U1) is satisfied.
Let L: I xV x E — R be defined by

E(t,yﬁu):LL(az,n(y(z)),u(z))dz-

One can find Caratheodory integrand Ly : I x @ x RM x R = R (i.e., {t.2) —
Ly {t, z,y,u) is measurable and (y, u) — L (¢, z, ¥, u) is continuous, & > 1) such
that Ly 1+ L as k — 400 and

¢ {t,z) — Uz} (Inlly + llullg) < L(t,2,n,u) <k almost every ¢t € 1.

Set

7, (t,y,’u):fﬂLk (2,5 (2),u(2)) dz.

It is easy to see that, for every £ > 1,1 — Ek {t,y,u) is measurable and
(y,u) — L (t,y,u) is continuous. Hence, for every k > 1, (t,y,u) — L (¢, ¥, u)
18 jointly medsurable Furthermore, frorn the monotone convergence theorem, we
have that Lk T L as k — +co. Hence L is measurdble Also using hy pothoses
(L") (2), (L) (3) and Fatou’s lemma, we can see that L (t,-,-}isls.c. and L (i, . ")
is convex. Finally, it follows from hypotheses (L) (4} that

6 (t) = Ullully + llully) < L (ty,u),

with

-

60 =10t My, 1= MOz
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So hypothesis (L1) is satisfied.
Finally, problem (P2) admits the following equivalent abstract formulation:

inf 7 (z, 1) = /:E (4,2 (6),u(t)) dt = m
subject to
z(t) + AL, z(t)) = F(t,z(2)) + b(t)u(t) ae. [
2(0) = 2(T), (6.9)
u(t) €U®)  ae,  u(-)=measurable.

Problem (P2) is the same as problem (P) in Chapter 5. So, applying
Theorem 11 in Chapter 5, we get the following theorem.

Theorem 15. Under hypotheses (A’), (F'), (B'), (R'), and (L'), the problem
(P2) has an optimal pair (z,u) € L,(I, Wi™ Q)N C(I, L}(Q))) x L,(Qr).

6.3 Anti-periodic boundary value problem of
quasi-linear hyperbolic differential equations

Example 3. We consider the following anti-periodic boundary problem corre-
sponding to o wave equation with nonlinear motion:

Tee(t, 2) — Az(t, 2) — Yo, Di(|Dizy(t, 2) P2 D (¢, 2))

=3 Difi(t, z,2(t, 2)) + folt, 2,2(2,2)) on Qrp

$ (6.10)
z(t,z) =0 onl[0,T] x 9Q

| 2(0,2) = —=2(T,2), 2:(0,2) = —z,(T,2) onQ.

We assume that f; (¢ = 0,1, .- ,n) satisfies the hypothesis (F) in example
1.

Let V = Wy P(Q) and H = L,(). Then V* = W=19(Q). Here p > 2 and
+, = 1. Hence "V < H < V*” is an evolution triple, and the embedding
{7 — H is compact.

1

Definition 18. The generalized problem corresponding to (6.10) reads as follows.
We seek a function t — z(t) such that, for all y € V and almost all t € (0,T),

Lo (@(t), y)u + a(E(t), y) + c(z(t), v) = f(z(t), ¥),
2(0) = —=(T),  &(0) = —&(T), (6.11)

z € C([0,T],V), T € Wh,.
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where we set

olzy) = [ 3 IDal D)D)

clz,y) = /ZDi.T:Diydz,
Q

=1

fnzf‘““”’x(z)w iydz + fn folts 2 2)y(2)dz,

.

ft, z,y)

i

(1",3})11 = f$yd$
9

for all z,y € V and all t € I. Here, d*/dt? is to be understood as o second
generalized derivative on (0.7).

From example 1, we can get the following lemma.

Lemma 11. Suppose that (F) in ezample 1 holds. Then for allt € I, there exists
an operator A(t) : V — V* such that

(A(t)z,y)v = alz,y) forallz,y €V,

and an operator f(t): H — 17 such that

-

(Fz,yhv = f(t,z,y) forallze Handy eV,

The operator A : I xV — V" satisfies the hypothesis (A1)} in Section 3.3, and
the operator F . I x H — V™ satisfies the hypothesis (F1).

Lemma 12. There erists an operator N : V — V* such that
(Nz,y}v =c(z,y) forallz,yeV

and N is linear, symmetric, and uniformly monotone.

Proof. Obviously, the map ¢: V xV — R is bilinear and symmetric. By Holder's
inequality,

HER IR / Dz Diy| dz
{ 0

Z ( fﬂ |Di:c[qdz) v ( fQ |Diy|sz)”p

< CllzlF - lylly

|

with some constant C > 0 for all z,y € V. That is, y — ¢(x,y) is linear and
bounded. Hence, there is an linear operator N : V' — V* such that

(N:E: y>V = C(*T: y)a
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INzlly. < Cllzlly"

and N is symmetric.
In addition,

c(x,z—y)~—cly,z2—y) = clz—y,r—y)
= fQZ(D!- (x - y)Vdz

2
= |z — ZU”WI.&!(Q) -

Since p > 2, the embedding W' (Q) — W2 ()} is continuous. So, there exists
a constant a; > 0 such that

(Ne—=Ny,z-y), = clz—y,z—y)
> ollz—ylly
That is, N : V — V* is uniformly monotone. [

Lemma 10 and Lemma 11 imply that hypotheses (A1}, (¥F1), and (N1} arc
satisfied. Hence,

Theorem 16. If (F) holds, then the generalized problem (6.11) corresponding to
the original problem (6.10) is equivalent to the operator equation

() + A)z(t) + Nz(t) = f(t,z(t)) 0<t<T,
z(0) = —z(T), #(0) = —2(T),
z € C([0,T},V), & € Wy,

and all the hypotheses of Theorem 8 are fulfilled. Therefore, problem (6.11) has
a solution. i.e., there exists a periodic solution x € C (I, W,* ),

8 ¢ L(I,WoP(NNC (I,L2 (), §F € L, (I, W™9(9Q)) of equation (6.10).



Chapter VII

Conclusion

7.1 Thesis summary

In this thesis, we have studied the existence of periodic and anti-periodic
solutions for a large class of strongly nonlinear evolution equations in Banach
spaces and sufficient conditions for the existence of a corresponding optimal pe-
riodic control.

7.1.1 Problems

The system model considered is based on an evolution triple
"V e H — V*” and the compact embedding V' — H. Let T be a positive
number, 2 < p < +00, and > + 1 = 1. The Banach space Wy, is defined by
Wee ={z:2€ L,(0,T;V), €L, 0,T;V")}

with the norm

|z llwpe=Il = llz,0m) + | £ o097 -

where the derivative in the definition should be understood in the sense of the
generalized derivative.

This thesis has considered the following problems:
1. Existence of periodic solutions for the nonlinear evolution equation

z(t) + At z(t)) = f(t,z(t)), te€(0,T),
{ (0) = z(T). ) ) ) (7.1)

where A: (0,T) x V — V* is a nonlinear monotone operator and
f:(0,T) x H— V* is a nonlinear nonmonotone perturbation.

2. Existence of anti-periodic solutions for the first order nonlinear evolution
equation

£(t) + At,z(t)) = f(2,2(2)), t€(0,T),
{ z(0) = —z(T). (7.2)

where A: (0,7) x V — V* is a nonlinear monotone operator and
F:(0,T) x H— V* is a nonlinear nonmonotone perturbation. -
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(A1)

71
Existence of anti-periodic solutions for the second order nonlinear evolution
cquation
F(8) + At £(1)) + Nz(t) = f(t,z(t)), 0<i<T,
z{0) = —z{T), ={0) = —z(T), (7.3)
z e C0,T)],V), T € Wi

where A4 :(0,T) x V — V* is a nonlinear monotone operator,
f:(6,T) x H— V* is a nonlinear nonmonotone perturbation, and N :
V — V* is a linear, monotone, and symmetric operator.

Sufficient conditions for the optimal control problem {P).
Let E be a control space and the control systems are given as follows:
a(t) + At z(t)) = f(t,2(t) + Bit)u(t), 0<t<T,
(7.4}
s0)=2(1), uEUw

where U,4 is the admissible control set.

We denote

Awa = {{z,u) € Wy, x Upy| (z,u) satisfies (7.4)}.
Xoo = {zeWyl FuelUy,, suchthat (z,u) € AL}.

Problem (P). Find (zo, up) € Aqg, such that

Jiz = in J{z,u)=m.
(o, uo) (z,g)lgad (z,u)=m

7.1.2 Hypotheses

A1 I xV —y V* is an operator such that
1. t — A(t, z) is measurable ;

2. For each t € I, the operator A(t) : V — V* is uniformly monotone
and hemicontinuous, that is, there exists a constant C; > 0 such that

(Alt,z) — A{t,z2), z1—22) 2 C ||z =z ||}, forall zy, 25 €V,

and the map s —— (A(t, £+s2),y) is continous o {0, Y forallz, y, z €V,

3. Growth condition. There exist a constant €, > 0 and a nonnegative
function a, (-) € L, (J) such that

WA ) v < o, () +Collz 8 ,forallz € V, ae on .

We assume that A(¢,0)=0forallt e I without loss of generality.
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(F1} f: I x H— V* is an operator such that

1. t +— f (i, ) is measurable;

2. z+— f (¢, z) is continuous and f(t,z) is Holder continuous with respect
to z with exponent 0 < o < 1 in H uniformly in ¢. That is, there exists a
constant I such that

[f2) = fta)llv- < Lilzy—a, ||}, forallzy, meH, tel

3. There exist a nonnegative function k; () € L, (7) and a constant Cj > 0
such that

| f& oz} v-<h(t)+Cs ||z i} !, forallz e V1 e I,
where 1 < k£ < p is a constant.

The operator N : V' — V™ is linear, monotone, and symmnietric, i.e.,
(Nv,w) = (Nw,v) forallv,weV
E 13 a reflexive separable Banach space.

U: I — P(FE) := the class of nonempty, closed, convex subsets of £

1s a measurable multifunction such that
t—> [U(t)) =sup{|| v ||z:u € Ut)} belongs to L,.(I)

where 1 < ¢ <71 < +00.

For the admissible controls, we choose the set of all selectors of U (-} that

belong to Lebesgue-Bochner space, that is,

(B1)
(L1)

Uasa = {u € Ly (I, E) : u(t) € U(t) a.e. on [0,T]}.
B e L™(I,¢(E, H)).
L:IxV xE— RU{+o00} such that
(1) (¢,z,u) —> L{t,z,u) is measurable;
(2) (z,u) — L(t,z,u) is Ls.c.;
(3) v — L(t,z,u) is convex;

(4) There exist a nonnegative bounded measurable function ¢(+) € Li(0,T)
and a nonnegative constant Cyg such that

Litzu) 2@ -Colllz v+l ulie)

for almost allt € I, allz € V, and all u € E.
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7.1.3 Resultis

1. Under hypotheses (A1) and (F1), problem (7.1) has a solution
z & Wy,

2. Under hypotheses (A1) and (F1)}, problem (7.2) also has a solution z € Wp,.
3. Under hypotheses (A1), (F1), and (N1), problem {7.3) has a solution.

4. Under hypotheses (A1), (F1), {B1), and {U1}, Ag 15 nonempty and X418
bounded in Wy, NC(J, H).

5. Under hypotheses {Al), (F1}, (Bl), (U1), and (L1), there exists a pair
(Zo,ug) € Agq such that J{xy, up) = ming wea,, J(z,u}-

7.2 Limitations

1. For the existence of a solution of the nonlinear evolution equation, we have
required thal the nonmonotone perturbation satisfies some growth condi-
tion and is Hoélder continuous.

2. For the optimal periodic control problem, the control part appears linearly
in the coniroi system.

7.3 Applications

All results in the abstract framework of this thesis can be applied to quasi-
linear partial differential equations. Three examples concerning quasi-linear par-
tial differential equations and the corresponding optimal control problems have
been presented. These are a quadratic optimal control problem of system gov-
erned by second order quasi-linear parabolic equation with time periodic con-
dition, Lagrange optimal control problem of a system governed by 2m-order
quasi-linear parabolic equation with time periodic condition, and an anti-periedic
boundary value problem of a quasi-linear hyperbolic equation with nonlinear mo-
tion.

7.4 Suggestion for further work

We should observe that further problems can be considered. For instance,
how to deal with optimal periodic or anti-periodic control problems in which con-
trols appear nonlinear? What form of Cesari conditions can guarantee existence
of optimal periodic or anti-periodic control? Discuss the relaxed optimal peri-
odic control problem without convexity condition. Extend our results to strongly
nonlinear differential inclusions. We will continue to study in this field.
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Remark 3. In this thesis, the existence of periodic solutions is obtamed by virtue
of the Leray-Schauder fized point theorem. This theorem guarantees only the
ezisience but not the uniqueness. The usual approach to verify uniqueness of
solutions for an initial value problem is to use integration by parts and Gronwall’s
Lemma.  However, this approach fails in the case of a periodic problem. The
unsqueness of periodic solutions and the number of periodic solutions are stull
open problems even for ordinary differential equations. For more detoil somne of
the investigations to the uniqueness of pertodic solutions carried out by author,
one may consull on the internal report.
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