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Chapter 1

Introduction

Stability theory is a fundamental topic in mathematics and engineering dis-
cipline that consider control essential. The least requirement for a control system
1s that the system is stable, since only a stable system can be operated no matter
whether unknown disturbances or noises are presenl. There are several kinds
of stability concepts such as input-output stability, absolute stability, Lyapunov
stability, and stability of periodic solutions. These stability concepts have been
studied extensively over a hundred years.

In analyzing and designing a nonlinear control system, Lyapunov’s direct
method plays a vital role for the, mainly, two reasons. First, Lyapunov's direct
method uses an energy-like function, the so called Lyapunov function, to study
analytically behaviors of dynamical systems. Second, Lyapunov’s direct method
is applicable to systems both linear and nonlinear.

Lyapunov stability theory generally includes Lyapunov’s first and direct
methods. In this thesis, our interest is stability based on Lyapunov’s direct
method for systems described by nonlinear differential equations. The fact is
that virtually all physical systems are nonlinear in nature. Sometimes it is pos-
sible to describe the operation of a physical system by a linear model, such as
a set of ordinary linear differential equations. This is the case, for example, if
the model of operation of the physical system does not deviate too much from
the nominal set of operating conditions (Vidyasagar, 1978). Thus the analysis of
linear systems occupies an important place in system theory. But in analyzing

the behavior of any physical system, one often encounters situations where the



linearized model is inadequate or inaccurate.

There are some different issues between linear systems and nonlinear systems.
Firstly, in the case of linear system described by a set of linear ordinary differential
equations, it is often possible to derive closed-form ezpressions for the solutions
of the system equations (Curtain and Pritchard, 1977;Khalil, 1996). In general,
this is not possible in the case of nonlinear systems described by a sef of nonlinear
ordinary differential equations. As a consequence, it is desirable to be able to
make some predictions about the behavior of a nonlinear system even in the
absence of closed-form expressions for the solution of the system equations. This
type of analysis, called qualitative analysis or approximate analysis, is much less
relevant to linear systems. Secondly, the analysis of nonlinear systems make use of
a ﬁide variety of approaches and mathematical tools than does the analysis of the
linear systems. The main reason for this variety is that no tool or methodology
for nonlinear systems analysis is universally applicable. Finally, in general, the
level of mathematics needed to master the basic ideas of nonlinear system analysis
is higher than that for the linear case.

A fundamental problem in science is that of obtaining a mathematical model
of a physical or process. Usually scientific theory developed by the theoretician
postulating a mathematical model, based perhaps on some physical laws, and
then this model is validated against experimental evidence until the model rea-
sonably represents the process under consideration. It is then possible to make
predictions from the model, or design controls for the process so that it functions
in some desirable manners. By far largest class of mathematical models are those
given in terms of differential equations, and in this thesis nonlinear differential

equation is considered. A commonly used model for a nonlinear system is

£(t) = ft,z(t), w(®)), Vt=0, (1.1)

where ¢ denotes time; z(f) denotes the value of the function z(-) at time ¢ and is
an n-dimensional vector; u(t) is similarly defined and is an m-dimensional vector:
and the function f associates, with each value of £, z(¢), and u(¢), a corresponding

n-dimensional vector. The system (1.1}, a first-order vector differential equation,



represents a continuous-time system. The quantity z(¢} is generally referred to
the state of the system at time ¢, while u(f) is called the input or the control

function. The discrete-time analogue of the continuous-time system (1.1) is
sk +1) = Flk,2(k),ulk)), k=0,1,2,.. (1.2)

which is a first-order vector difference equation. A physical phenomenon can be
described by the continuous-time differential equation (1.1) or the discrete-time
difference equation (1.2). Our objective is to consider the continuous-time differ-
ential equation (1.1). In studying the system (1.1), one can make a distinction
between two aspects, generally referred to as analysis and synthesis, respectively.
Suppose the input function u(-) in (1.1) is specified and one wishes to study the
behavior of the corresponding function z(-); this is usually referred to as analysis.
Now suppose the system description (1.1) is given, as well as the desired behavior
of the function z(-), and the problem is to find a suitable input function «(-) that
would cause z(-} to behave in this desired fashion; this is usually referred to as
synthesis. The system {1.1} is said to be forced, or to have an input; in contrast,

a system described by an equation of the form
(1) = f{¢, :l:(t)), vVt > 0, (1.3)

is said to be unforced. In recent years much attention has been focusing on
controlling the behavior of partially known systems, also called uncertain systems.
Systems under consideration of analysis and control design are often not perfectly
known because their modeling calls for many assumptions. An accurate model of
the system should contain or can be separated into two parts: the identified model
as the known part of its dynamics and an uncertain part. The uncertain part of
system dynamics, called uncertainty, will be of limited magnitude. That is, the
uncertainty is not known, nor is it completely unknown. The use of such partial
known models to describe a physical system not only reflects the reality but also
makes it possible for us to study the way of designing controls that compensate for

the unknown and achieve better performance of modern sophisticated systems.



Consider the system

¢ = f(t,z) +g(t,7) (1.4)

where f:[0,00) x D - R* and g:[0,00) x D — R" are piecewise continuous in
t and locally Lipschitz in z on [0,00) x D, and D C R” is a domain that contains
the origin = 0. We think of this system as a perturbatiou of the nominal system
(1.3). The perturbation term g{t,z) could result from modeling error, aging, or
uncertainties and disturbances which exist in any realistic problems. In a typical
situation, we do not know g(t,z) but we know some information about it, like
knowing an upper bound on ||g(¢,z)|| . Here, we represent the perturbation as an
additional term on the right-hand side of the state equation. Uncertainties which
do not change the system order can be represented in this form. Suppose the
nominal system (1.3) has a uniformly asymptotically stable equilibrium point at
the origin. One is interested in what we can say about the stability behavior of the
perturbed system (1.4). A natural approach to address this question is to use a
Lyapunov function for the nominal system (1.3) as a Lyapunov function candidate
for the perturbed system (1.4). In section 4.3, we restrict our attention to the
case when the nominal system has a stable equilibrium point at the origin. The
exponential stability is of interest since it implies various types of stability such
as stability, itself, uniform stability, and asymptotic stability. In control theory
one is interested in the question of stabilization problem, i.e., how the input of
the system should be chosen to assure that the corresponding output has the
desired properties. Throughout this thesis, we are working on both analysis and
synthesis. Firstly, we try to obtain sufficient conditions for exponential stability
of the unforced system (1.3) using Lyapunov’s second method (analysis). After
that, we apply the stability result to the stabilization problem of the forced
system (1.1) (synthesis). Finally, we give an example illustrating the use of our
main result. The followings are our precise objectives. Consider the nonlinear
differential equation (1.3). Assume there exist a sufficiently smooth function

V(t, z), positive constants Ay, Ag, Az, p,and g such that

Mzl < V() < X lall® (1.5)



and the derivative of V along the solution of (1.3) satisfies
Vit,z) < —Xslz|*. (1.6)

We try to prove that under the conditions (1.5} and (1.6) the equilibrium point of
the system (1.3) is exponentially stable. After that we apply the stability result
to the stabilizability problem of the forced system (1.1), i.e., we need to synthesise
the feedback control u(t) = A(t,z(t)) such that the system (1.1) is exponentially
stable.

This thesis is organized as follows. In Chapter 2, we give such general back-
ground on differential equations as the existence and uniqueness, local and global,
theorem, the interval of definition, the maximum interval, the maximal solution,
and so on. In Chapter 3, we give the general ideas of Lyapunov stability and
control theory, for example, various types of stability, methods used to investi-
gate the stability of an equilibrium point of nonlinear dynamical systems, terms
used in control problems, and so on. In Chapter 4, section 4.2, we first derive
the sufficient conditions for the exponential stability of the nonlinear dynamical
system. After that, in section 4.3, we apply the stability result (from 4.2} to the
stabilization problem for the control system (1.1). Then, in section 4.4, we give
a numerical example to illustrate the use of theorem in section 4.3. Finally, in
Chapter 3, the conclusion and some suggestions for one who may be interested

in exploring further on stability and control problems.



Chapter II

Nonlinear Differential Equations

2.1 Preliminary Notations and Definitions

Suppose we are given the function f mapping a subset of R™, Euclidean

m-dimensional space, into R*, Euclidean n-dimensional space. If

I

L

1s in the domain of f, and we denote its image under f by

n

¥n

then we may write
fl (t: :E)
y=f(t,z) = : :
fult,2)
where we define
Ui = f,-(t,:r) = f,;(t,$1, ...,$m),7; = 1, ey TR
Note in particular, that the transpose of the n x 1 column vector

I



is the 1 % n row vector

T I
=T, '":mn)'

Moreover, for a matrix A € R**™, set of all real n by m matrices, the transpose

of the n x m matrix, A = {(a;;),¢ =1,...,n,j = 1,...,m, is the m x n matrix
AT = (aj,;),

where 3 =1,...,m,i=1,...,n.
We will say that fis continuous in z if each f; is continuous in z. Furthermore,

we define the vector of partial derivatives as

oh
af | ™
3.’1?;‘ - ) ’
3fa
dir;

where 1 < 7 < m. If f(¢,z) is a smooth function, the gradient of f(¢, z) is defined
by

8 d o \"
sz(t,l') = (6271 H axz}"': ax“) f(t,.’f)

d$1 8 d$2 8 d.’L‘n
ol o SR N bl
g Tttt g faltin)

= )

Given the n-dimensional vector z{t} = (x1(t),...,x,(t))T, where ¢ is a real

variable and each z;(t) is real-valued, we say x(f) is continuous at t = #; if each

zi(t) is continuous at ¢ = £, and it is differentiable if each z;(f) is differentiable.
We then may express the derivative vector as

#(1) = %% = (@1 (1), .. 2al8))7

and successive derivatives will be denated by (), z8)(t), ..., z® (). If z(2) is

given as above, we denote the norm of z(t), Euclidean norm, by

" 1/2
le(®)]l = {fo(t)} :

and for each ¢ this is a mapping of z(¢) into the nonnegative real numbers. It has

the properties



(i) ||=(¢)|] = 0 if and only if (¢} = 0, that is, each z;{t) is zero;

(ii) ||kz(2)]] = |k|}|z(2)|| for any real or complex scalar k; and

(iif) lz(2) + y (Ol < l2@l + ly @1l

However, any result given will not depend on the norm chosen (Sanchez,
1968). If we let ||-|| be a given norm on R®. Then for each matrix A € R**", the

quantity ||A|| defined by

Azx
(A= sup 128 Gp Al = sup Az,
ca0zekn 1T jap= flzll<

is called the induced (matrix) norm of A corresponding to the vector norm ||-||.
Frequently we will be considering a given function f mapping a subset of
k! into R®. If we denote a point in R**! by (#,z), where ¢t is a real and

t = (T1,T2,...,2n) T, then its image, wherever defined, may be denoted by
¥ = (yl} Y2, .- yﬂ.)T = f(t,$) = (fl(t:'"’c)! vy fﬂr(t: x))f.

In particular, if z = z(t) = (z,(t), ..., z.(t))T, then y = y(t) = f(¢,2(2)) is
an element in R* dependent on the real variable ¢. If f(¢,z(t)) is continuous for

(say) t) <t < tg, then we can define the integral

‘/:2 f(s,z{s))ds = (]:2 fi(s, z(s))ds, : fa(s, z(s))ds, ... ,/; f“(s’m(S))ds)T,

and the usual rules of integration will hold.

2.2 Ordinary Differential Equations

Differential equations occur in connection with numerous problems that are
encountered in the various branches of science and engineering, such as the prob-
lem of determining the motion of a projectile, rocket, satellite, or planet, the
problem of determining of charge or current in an electric circuit, and so on. In
those situations, the objects involved obey certain scientific laws. These laws
involve various rate of change of one or more quantities with respect to other
quantities. Recall that such change of rates are expressed mathematically by

derivatives. In the mathematical formulation of each situation, the various rates



of change are thus expressed by various derivatives and the scientific laws them-
selves become mathematical equations involving derivatives, that is, differential
equations.

An equation involving derivatives of one or more dependent variables with
respect to one or more independent variables is called a differential equation. It
is called an ordinary differential eguation if the equation is involving ordinary
derivatives of one or more dependent variables, (an) unknown function(s), with
respect to a single independent variable. In addition, initial conditions, which the
unknown function is required to satisfy, may be given. With such an equation,
the object is two-fold : (i) to find the unknown function or a class of functions
satisfying the equation, and (ii) whether (i) is possible or not, to gain some
information about the behavior of any function satisfying the equation. Since the
order of an ordinary differential equation is the order of the highest derivative of
the unknown function appearing in it, therefore the general form of an ordinary

differential equation of kth order is
Ft,z,%,..,2%) =0 (2.1)

where z = z(t) = (2,(8), ..., T2 (£))T is an unknown function, and F is a function
defined on some subset of RMk+1+}
A function z = @) = (@i(t), ..., ea(t))T, 71 < t < ra, which when substi-
tuted in (2.1) reduces it to an identity, is called a solution of (2.1}, and (r;,73) is
its interval of definition. When we say that we shall solve a differential equation
we mean that we shall find one or more of its solutions. Furthermore, suppose we
have solved a differential equation, this does not necessarily mean that we have
found a formula for the solution. Comparatively few differential equations have
solutions so expressible; in fact, a closed-form solution is really a luxury in differ-
ential equations. Ross, 1984, showed certain types of differential equations that
do have such closed-form solutions. For those equations of which exact methods
are unavailable are solved approximately by various methods (Ross, 1984, and

Sanchez, 1968). Since very little can be said about the equation in the form given
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in (2.1), so let us assume that we can solve (locally) for z{*). We obtain
% =Gt x, 2, ..., 2, (2.2)

the kth order equation in normal form. In this case, since z*/ is an n-dimensional
vector, the function G is a mapping from some subset of R®*! into R®.
Given an equation in the form (2.2) with £ > 1, the following substitution

reduces it to an equation with & = 1. In fact, let

Y1 =1z
and
Yo =&,..., Y = gtk=7)
then
Y= =1y
Y2 = I =ys
go1 = ¢ =y,
and

yk =${k] = G(t?‘r‘li! "':'T(k_l}) = G(t:yliy%'“:yk) = G(t:y)

This is the first-order system § = f(t,y), when y = (y1,¥2, -.-, ¥x)* and f(t,y)} =
(filt,u), - Sl 1)) = (y2, -, ¥k, G(t, ¥))*. Note that if z is an n-dimensional
vector, then y is a (k x n)-dimensional vector. It follows that we need only

consider the first-order equation

t=f( 1) (2.3)

where z = z(f) is an unknown n-dimensional vector function, and f(¢,z) is a
mapping from a subset of R**! into R*. We refer to (2.3) as a vector field. If, in

addition, f is differentiable, the derivative of f is given by

8h ... 8éh
af ~ 11 H1n
or

8fn ... Bfn

&z 8r,
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A linear ordinary differential equation of order n, in the dependent variable
z and the independent variable £, is an equation that is in, or can be expressed,

in the form
dr dn—l
ao(t) o + @ (t) ST+ + aa(t)e = bE) (2.4)
where qg is not identically zero. Since (2.2) and (2.3) are equivalent, (2.4) can be
expressed in the form

n

SI'T,' = Zaij(t)xj + b,(t) (2:})

=1

where a;;{t),i,j = 1,...,n, and 4(t),i = 1,..., n, are continuous real-valued func-
tions on 7, < t < r and () = (5,{1), ..., 2o (t))T is an unknown n-dimensional
vector. If we denote by A(f) the n X n matrix {a;;(t)), and by B(t) the vector

(B (2), ..., bn(t))T, the system (2.5) can be conveniently expressed as
T = A(t)z + B(t). (2.6)
Hence f(t,z) = A(t)z + B(t) and is defined in the infinite slab
B={tz) | <t<r,-oco<z<o0,i=1,..,n}.

If B(t) = 0 for all ¢, then the linear system (2.6) is called homogeneous; otherwise,
the system is said to be nonhomogeneous. If f; do not depend explicitly on ¢, the

system

v=f(y) (2.7)

is called autonomous or time-invariance. Otherwise, (2.3), it is called nonau-
tonomous or time-varying. However, any nonautonomous sytem (2.3) with z €
R™ can be written as an autonomous system (2.7) with y € R® simply by letting
=544 =1,y2 = 21,%2 = 7, and so on.

A nonlinear ordinary differential equation is an ordinary differential equation
that is not linear. A dynamical system is a system characterized by a set of related

variables, which can change with time in a manner which is, at least in principle,
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predictable provided that the external influences acting on the system are known.
A dynamical system described by a nonlinear differential equation is so called a
nonlinear dynamical system. When a differential equation is used to model the
evolution of a state variable for a physical process, a fundamental problem is
to determine the future values of the state variable from its initial value. The

mathematical model is then given by a pair of equations

dx
E = f(t: :E) ’ (2'8)
z(ty) = zg (2.9)

where the second equation is called an inztial condition. While the pair of equa-
tions is called an initial value problem. By a solution of (2.8) we mean a map, z,

from some interval 7 C R into R®, which will be represented as follows
z: IR
and
t— z(t)
such that z(t) satisfies (2.8), i.e.,

5(t) = f(t, =(t)).

In this case z(-,zg) : I — R™ defines a solution curve, trajectory, or orbit of the
differential equation (2.8) based at zo.The map z has the geometrical interpre-
tation of a curve in K", and (2.8) gives the tangent vector at each point of the
curve. We will refer to the space of dependent variables of (2.8) (i.e., R*) as
the phase space or the state space of (2.8), and our goal will be to understand
the geometry of solution curve in phase space. It may be useful to distinguish
a solution curve by a particular point in phase space that it passes through at
a specific time, i.e., for a solution z(t) we have, (2.9), z(4) = zo. We refer to
this specifying an initial condition. This is often included in the expression for a
solution by writing (¢, tg, z9}. In some situations explicitly displaying the initial

condition may be unimportant, in which case we will denote the solution simply
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as z{t). Still, in other situations the initial time may be always understood to
be a specific value, in this case we would denote the solution as z(¢, zy). Unfor-
tunately, there are no known method of solving equation (2.8). However, it is
not necessary, in most application, to find the solutions of (2.8) explicitly. For
example, in 2-dimensional space, let (¢} and z,(¢) denote the populations, at
time , of two species competing amongst themselves for the limited food and
living space in their microcosm. Suppose, moreover, that the rates of growth of
71(t) and z,(t) are governed by the differential equation (2.8). In this case, we
are not really interested in the values of z;(¢) and z,(f) at every time ¢. Rather,
we are interested in the qualitative properties of z;(t) and z2{t). Specially, we

wish to answer the following questions.

o Do there exist £, and & at which the two species coexist together in a
steady state? This is to say, are there numbers £, & such thai @, (¢} = &
and z,{f) = & is a solution of (2.8)? Such values &, &, if they exist, are

called equilibrium points of (2.8).

e Suppose that the two species are coexisting in equilibrium. Suddenly, we
add a few members of species 1 to the microcosm (i.e., the system is per-
turbed). Will z,(t) and z,(t) remain close to their equilibrium value for
all future time? Or perhaps the extra few members give species 1 a large

advantage and it will proceed to annihilate species 2.

o Suppose that z,(¢} and z5{t) have arbitrary values at t = 0. What happens
as t approaches infinity? Will one species ultimately emerge victorious, or

will the struggle for existence end in a draw?

More generally, we are interested in determining the following properties of

solutions of (2.8).

o Do there exist equilibrium values 2o = (2g, ..., Tn9)” for which z(t) = z, is

a solution of (2.8)7
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o Let $(t) be a solution of (2.8)-(2.9). Suppose that 3(t) is a second solution
with (0} very close to ¢{0); that is, ¥;(0) is very close to ¢;(0),7 =1,..,n.
Will 4(¢) remain close to ¢(t) for all future time, or will () diverge from
#(t) as t approaches infinity? This question is often referred to as the

problem of stability (We discuss this problem, in detail, later in chapter 3).

Note that if z(-) is a solution of (2.8)-(2.9) over [0,T] and [ is continuous,

then z{-) also satisfies the integral equation

z(t) = 2o + ]tf(s,:r:(s))ds, t € tg,T),t0 2 0. (2.10)
to

On the other hand, if z(-) € C*[0, T] satisfies (2.10), then clearly z(-) is actually
differentiable everywhere and satisfies (2.8)-(2.9). Then (2.8}-(2.9) and (2.10) are
equivalent in the sense that every solution of (2.8)-(2.9} is also a solution of (2.10)

and vice versa.

2.3 Existence and Uniqueness Theorems

The two fundamental questions which much now be considered are (i) what
conditions will ensure the existence of a solution of an initial value problem for a
general first order differential equation? and (#%) what conditons will ensure the
uniqueness of a solution of an initial value problem for a general first order differ-
ential equation? These questions are of prime improtance practically, because in
physical situations modeled by initial value problems is normally expected that
a solution can be found (it ezists) and, furthermore, there is only one solution (it
is unique). If no solution exists where one is expected this will indicate a failure
of a mathematical model used to derive the differential equation. Should more
than one solution exist this will either indicate an important feature of a physical
problem, or a failure of the model. In either event such a problem will require fur-
ther investigation, and this could lead to some modification of the mathematical
model.

Since the continuity of f(t,z) in its arguments only ensures that there is at

least one solution. It is not sufficient to ensure uniqueness of the solution. Extra



15

conditions must be imposed on the function f. The following theorem utilize a

condition on f(t,z) called a Lipschitz condition.

Theorem 2.3.1. {Local Existence and Uniqueness) Let f(t, z) be piecewise con-

tinuous in { and satisfy the Lipschitz condition

1£@,2) = fi&,yil < Lijz — v (2.11)

for all 2,y € B = {x € R* |ljz — zp)| < r} for all ¢ € [tg,t;}. Then, there

exists some & > () such that the state equation
z= f(¢,x), with z(tg) = z¢
has a unique solution over [tg, ty + J].

Proof. (Khalil, 1996).

The key assumption in Theorem 2.3.1 is the Lipschitz condition (2.11). A
function satisfying (2.11) is said to be Lipschitz in x, and the positive constant L
is called a Lipschitz constant. We also use the words locally Lipschitz and globally
Lipschitz to indicate the domain over which the Lipschitz condition holds. Let
us introduce the terminology first for the case when f depends only on z. A
function f(z) is said to be locally Lipschitz on a domain (open and connected
set) D C R* if each point of D has a neighborhood Dy with some Lipschitz
constant L;. We say that f is Lipschitz on a set W if it satisfies {2.11) for all
points in W, with the same Lipschitz constant L. A locally Lipschitz function on
a domain D is not necessarily Lipschitz on D), since the Lipschitz condition may
not hold uniformly {with the same constant L} for all points in D). However, a
locally Lipschitz function on a domain D is Lipschitz on every compact (closed
and bounded) subset of D (Khalil, 1996). A function f(x) is said to be globally
Lipschitz if it is Lipschitz on R*. The same terminology is extended to a function
f(t,z}, provided the Lipschitz condition holds uniformly in ¢ for all ¢ in a given
interval of time.

Theorem 2.3.1 is a local theorem since it guarantees existence and uniqueness

only over an interval {f, ¢ + 4], where § may be very small. In other words, we



have no control on 4; hence, we cannot ensures existence and uniqueness over
a given time interval [¢,%,]. However, one may try to extend the interval of
existence by repeating applications of the local theorem. Starting with a time
to with an initial state z(¢y) = zp, Theorem 2.3.1 shows that there is a positive
constant § (depending on z,) such that the state equation (2.8)-(2.9) has a unique
solution over the time interval [to, to+6]. Now, taking o +6 as a new initial state,
one may try to apply Theorem 2.3.1 again to extablish existence of the solution
beyond tg + & and so on. More convenient, the theorem below establishes the

existence of a unique solution over [ty, t;] where ¢, may be arbitrarily large.

Theorem 2.3.2. (Global Existence and Uniqueness) Suppose f (¢, z) is piecewise

continuous in ¢ and satisfies

| f(t,z) — (&, 9| < Lilz — yll

and

1t zodll < A

for all z,y € R, for all £ € [{g,11], 2 > 0. Then, the state equation
i = f(¢, ), with z(tg) = zo
has a unique solution over [tg, ).

Proof. (Khalil, 1996)

By uniqueness, it is meant that if two solutions £ = (t) and z = ¥(t)
of the equation (2.8) both satisfy ¢(2g) = (o) = %o, then these solutions are
identical in their common intervals of definition. In fact, the theorem states
that through every point of I x I there passes one and only one integral curve.
A solution of (2.8) through a point (initial condition) (tp,z0) € 1 x D will be
denoted by z(f,z). We shall also sometimes write £ for ‘;—?. Suppose further
that we are given two solutions ¢ (t), 1 < t < 79, and @a(f), 51 < t < sy,

of the differential equation (2.8) and both solutions satisfy the initial condition
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{2.9). Therefore () = w2(ta) = zo. If the equation satisfies the hypotheses of
Theorem 2.3.1, then in a neighborhood of {ty, zy) we have uniqueness, and the
two solution overlap. For instance, if r; < s; < {p < T2 < 83, then ¢, (t) = a(t)
for s, < ty < ry. However, we can define a new solution ¢(t} on r; < ty < sy,

that containing both ¢;(¢) and () as follows:

@1(t), if ry <ty <1
p(t) = _
ng(t), if 8 < tg < 89

This ¢{t) is a solution, since ¢;(¢) and o(t) are solutions. (t) agrees with
common values on s; < £y < ry and it is defined omn the larger interval. This same
procedure of tacking together solutionus would apply if we were given a finite
number of solutions ¢, (£),- -+, @m(t) such that v{iy) = - - = @nlls) = 6. We
could then define a new solution y{t) satisfying ¢(ty) = z¢ and whose interval of

definition contains those @, (t), - -, (1)

Theorem 2.3.3. Suppose the hypotheses of Theorem 2.3.1 are satisfied for the
differential equation (2.8). Then given the initial value (¢, o), there exists
a solution @(t) of (2.8) defined on m; < t < my, satisfying ¢(te) = zo.
Furthermore, if ¥(f) is any other solution and ¥(2y) = =z, then its interval

of definition is contained in (m,, ms).

Proof. (Khalil, 1996).

The interval (m,, my) is then called the mazimum interval of existence corre-
sponding to the initial value {#g, o), while the solution () is called the mazimal
solution.

From now on, we shall assume that the f;'s are continuous and satisfy stan-
dard conditions so that the solution of {2.1) exists and is unique. Throughout
this thesis, we consider the behavior of the zero solution of the system (2.8).
Since any solution of {2.8) can be shifted to the origin. In fact, if C is a class

of solutions of (2.8) which remains in D and zq(¢) is an element of C. Setting
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z =y + zo(t), the system (2.8) is transferred into

dy _ dx dzmplt) _ ) — I
% - a a6 ) — Flt,20(t))

= f(ty+zo(t) — f(t,zt)) = 9lt,y) (2.12)

If we denote by g¢(t, y) the right-hand side of (2.12), clearly g{¢,0) = 0 and the zero
solution y(t) = 0 of (2.12) corresponds to zo(t). In which case, the point y{t) =0
is called a critical point. In fact, any point xp in { X D at which f vanishes is
called a critical point of (2.8). In other words, if a system starts at a critical point,
it remains in that state thereafter. Moreover, a critical point zq of (2.8) is called
an isolated point if there exists a neighborhood of z( containing no other critical
points. Other terms often substituted for the term critical point are equilibrium
point, fized point, stationary point, rest point, sigularity, or steady state. In this
thesis, we always use the term equilibrium poini. We shall assume that this has
been done for any given system so that we then have f(¢,0) = 0,¢ > #, and D
is a domain such that ||z}] < H, H > 0.We shall also assume that there is no
other constant solution in the neighborhood of the origin, so this is an isolated

equilibrium point.



Chapter 111

Lyapunov Stability and Control
Theory

3.1 Definitions

Consider the nonlinear dynamical system
©(t) = f(t,z(t)),¥t > 0 (3.1)

where z(t) € R*, and f : {0,00) x R* — R" is continuous and satisfies the
Lipschitz condition {2.11) so that the solution exists and is unique corresponding
‘to each initial condition. Let z(t, to, 2o} be the solution of (3.1) corresponding to
the initial condition z(¢y) = o, evaluated at time ¢. In other words, z satisfies

the equation

a:c(t, t(},.’.ﬁo) = f(t, 113(3, t(],xg)),vt 2 to (32)

and satisfies

.I'(tu,tu,mo) = Iu,vx(] c K.

The intuitive idea of stability in a dynamical system is that for smail perturba-
tions from the equilibrium state at some time £y, subsequent motion z(t),t > t,
should not be too large. Suppose that Fig. 3.1 (Bamett and Cameron, 1993).
represents a ball resting in equilibrium on a sheet of metal bent into various
shapes with cross-sections as shown. If frictional forces can be neglected then

small perturbations lead to:
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(a) (b) (c)

Figure 3.1: A ball resting in equilibrium on a sheet of metal bent into various

shapes with cross-section.

(3.1a) oscillatory motion about equilibrium;
(3.1b) the ball moving away without returning to equilibrium;

(3.1c) oscillatory motion about equilibrinm, unless the initial perturbation is so
large that the ball is forced to oscillate about the new equilibrium position

on the left, or to fall off at the right.

If friction is taken into account then the oscillatory motions steadily decrease
until the equilibrium state is returned to. Clearly there is no single concept of
stability, and very many different definitions are possible, see for example, Bell-
man,1953, p. 30). We shall consider for the present only the following fundamen-
tal statements. The solution z(t) = (¢, %, Zq) is said to be Lyapunov-stable, or
simply stable (see Fig. 3.2 (Wiggins, 1986)) if for given ¢ > 0 and each ¢, € {0, 00)

there exists a ¢ = &(¢, #y) such that whenever ||zg — z,|| < 8(€, %) implies
“.’L‘(t, to, 3:0) - .'L'(t, tO: 3:1)“ < E:Vt 2 to.

It is unstable if it is not stable. The solution z(£) = z(¢, 5, %o) of (3.2) is asymp-
totically stable (see Fig. 3.3 (Wiggins, 1986)) if it is stable and in addition there
exists b > 0 such that ||zo — ;|| < b implies

tlim le(t, to, mo) — z(t, 20, 21)|| = 0.
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A x(t,toav’ﬂﬂ}

I(ts t{h $'|_)

Figure 3.2: Lyapunov Stability of a solution.

Geometrically, the definitions say that z(f) = z(t,t9, zo) is stable if any other
solution whose initial data is sufficiently close to that of z{t) remain in a tube
enclosing z(t). If the diameter of the tube approaches zero as ¢ approaches infinity,
then z(t) is asymptotically stable. Recall that a vector zo € K" is an equilibrium
of the system ( 3.2) if

f(t,:ﬂu) = O,Vt > 0.

In other words, if the system starts at an equilibrium, it stays there. Throughout

this chapter it is assumed that the origin is an equilibrium of the system {3.2).

If the equilibrium under study is not the crigin, one can always redefine the

coordinates on R® in such a way that the equilibrium of interest becomes the

new origin (see Chapter 2). Thus, without loss of generality, it is assumed that
f(t,0)=0,vt > 0.

This is equivalent to the statement

l‘(t, to,O) = O,Vt 2 tg.

Lyapunov stability is concerned with the behavior of the trajectories of a system

when its initial state is near equilibrium. In other words, it is concerned with the
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Figure 3.3: Asymptotic stability of a solution.

behavior of the function z(t, to, zg) when zy # 0 but is close to it. Now, according
to the definitions given above, we state the difinitions for the equilibrium zero as

follows:
Definition 3.1.1. The equilibrium zero is
e stable (see Fig. 3.4 (Afanas’ev, Kolmanovskii, and Nosov, 1935)) if,

for each ¢ > 0 and each #; € [0,00) there exists a § = (¢, ) such

that whenever [|zo|| < d(¢, £o) implies
“m(t: tU'::EU)H < E:Vt 2 to.

e asymptotically stable (see Fig. 3.5 (Afanas’ev, Kolmanovskii, and
Nosov, 1995))) if it is stable and in addition there exists p > 0 such

that ||zol| < p implies

lim ||z(¢, to, zo}l| = O.

t—oo

e exponentially stable (see Fig. 3.6 (Afanas’ev and others, 1995) if there

exist positive constants M, § and y such that

“.’E(t,fg, :Cg)“ S M ”I0H e_ﬂr(t_h}:vt Z tD:VIO € Bé"
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\ 2(t. tg, 1) (¢, to. To) /‘ x{t)
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(a) (b)

Figure 3.4: (a) Lypunov stability of the trivial solution. (b) Lyapunov-stable

phase trajectory.

Occasionally, however, the case when zg 1s far from zero is also of interest.,

Definition 3.1.2. The equilibrium zero is globally erponentially stable if there

exist positive constants M and < such that

|z (t, o, 2o} |} < M ||zo)| e T¢%), ¥t > tg, Yz, € R™.

In other words, the definition says that for any chosen z3 € R® the solution is
bounded by an exponential function depending on its intial state.

The study of nonlinear dynamical system is carried out by one of two Lya-
punov's method. One is the Lyapunov’s linearization method, and the other is
the Lyapunov’s direct method. The stability criteria for the linear system are
discussed in many literatures e.g. Bellman, 1953; Chicone, 1999; Curtain and

Pritchard, 1977; Khalil, 1996; Ross, 1984; and Sanchez, 1968.

3.2 The Lyapunov’s linearization method

One of the most useful results of Lyapunov stability theory is the Lyapunov’s

linearization method. Its great value lies in the fact that, under certain condi-
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Figure 3.5: Asymptotic stability of the zero solution.

tions, it enables one to draw conclusions abour nanlinear system hy sindying the
behavior of a linear system. We begin by defining precisely the concept of lin-
earizing a nonlinear system around an equilibrium. Consider first the autonomous
system

d$,‘
dt

2

(3.3)

3

= fi($I)I2: -“azn)a i= ]-:

feey

where f : D — R" is a continuously differentiable map from a domain D C K"
into R". Let z; = 0, 7 = 1,2,...,n be an equilibrium point of system (3.3), i.e.
£i(0,0,...,0) =0, i = 1,2, ...,n. Weshall assume that the function f;(z, 22, ..., Tn)
can be differentiated a sufficiently large number of times at the origin of coordi-

nates. By Mean Value Theorem,
aJ;
f,;(.’L') = f,(O) + “8—;(2::).’5

where 2z is a point on the line segment connecting z to the origin. The above
equality is valid for any point x € D such that the line segment connection z to
the origin lies entirely in D. Since f(0) = 0, we can write f;(z) as

gy, [, 0
Y ox oz

s = Lo+ [Fi) - Lo s
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Figure 3.6: Exponential stability of the zero solution.

Hence,
flz) = Aw + giz)
where
o7 . _ o af;
A= a(ﬂ) and g(z) = [81’" (z;) o (0)]

The function g;(z) satisfies

By continuity of (%) . we see that

llgs ()|
Izl

Alternatively, one can think of

—0as ||z =0

flz) = Az + g(z)

20

as the Taylor’s series expansion of f(-} around the point z = 0. With this notation,

the system

z{t) = Az(t), where 4 = Q(O)

-

I

(3.4)
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is referred to as the linearization or the linearized system of (3.3) around the

equilibrium zero. Precisely, the Jacobian matrix A is defined by

gh 8h . 62.!1
Az ar Tn
- %(x ) _ 1 2
i 3:1:3- 0
O 8 ., Ofn
ar, Iz3 8xn JI:IO

The development for nonautonomous system is similar. Consider the nonlinear

nonautonomous system

#(t) = f(¢,2{1)) (3.9)

where f : [0, 00)x D — R is continuously differentiableand D = {z e R* ll|z|| < H} .

Suppose the origin x = 0 is an equilibrium point for the system at ¢ = 0; that is,
f(£,0)=0,¥t > 0. {3.6)

Furthermore, suppose the Jacobian matrix [gﬂ is bounded and Lipschitz on I,

uniformly in #; thus,

| 0/; af;

ia—z(t’xl) - %(t,zg) < Ly ||y — 32l ,VT1, 20 € D,¥E2> 0

for all 1 < i < n. By the Mean Value Theorem

F(t,) = F(10) + 22 (t, )0

where z; is a point on the line segment connection z to the origin. Since f(¢.0} =0

we can write f;(¢,z) as

it2) = Ltz = it 0z + | 2t 2) - S o)
Hence,
f(t, :L') = A(t).‘l: + g(t, :C)
where
A =2 t0), 57)



a constant matrix and

af; ofi,. .1 o o
gi(t,z) = [(9]::: (1, 2;) ~ %(t,u)J . (3.8)

The function g(t, ) satisfies

lo(t,2)] < (Z

=1

ofi,, | Ofi
Uitz - i)

2\ 1/2
) el € Llieh®, L = VaL,

which implics

et )l
]|3:}|IH'D_"——”.‘I'” = 0. (3.9)

Therefore, in a small neighborhood of the origin, we may approximate the non-
linear nonautonomous system (3.5) by its linearization about the origin. The

system

5(t) = A(t)2(2), where A(f) = %(t, 0).

is referred to as the linearization or the linearized system of (3.5) around the
equilibrium zero. The following theorem spells out conditions under which we
can draw conclusions about stability of the origin as an equilibrium point for
the nonlinear system by investigating its stability as an equilibrium point for the

linear system.

Theorem 3.2.1. Consider the nonlinear system (3.5). Suppose that (3.6) holds
and that f(-, ) is continuously differentiable. Define A(), g(¢, z) as in (3.7),
(3.8), respectively, and assume that (2} (3.9} holds, and (i) A(-) is bounded.
Under these conditions, if zero is an exponentially stable equilibrium of the

linear system

then it is also an exponentially stable equilibrium of the system (3.5).

Proof. (Khalil, 1996).



3.3 The Lyapunov’s Direct Method

The Lyapunov’s direct method also called the Lyapunov’s second method
developed by the Russian mathematician, A. M. Lyapunov. The idea behind
the various Lyapunov theorems on stability is as follows: Consider a system
which is isolated in the sense that there are no externai forces acting on the
system. Suppose that one can identify the various equilibrium states of the
system, and that 0 is one of the equilibria (possibly the only equilibrium). Now
suppose that it 1s possible to define, in some sense, the total energy of the system,
which is a function having the property that it is zero at the origin and positive
everywhere else. (In other words, the energy function has either a global or a
local minimum at 0). If the system, which was originally in the equilibrium state
0, is perturbed to a new nonzero initial state (where the energy level is positive,
by definition), the following possibilities occur; (i) If the system dynamics are
such that the energy of the system is nonincreasing with time, then the energy
level of the systemn never increase beyond the initial positive value. Depending
on the nature of energy function, this may be sufficient to conclude that the
equilibrium 0 is stable. (i)} If the dynamics are such that the energy of the
system is monotonically decreasing with time and the energy eventually reduces
to zero, this may be sufficient to conclude that the equilibrium 0 is asymptotically
stable. (i#Z) If the energy function continues to increase beyond its initial value,
then one may be able to conclude that the equilibrium 0 is unstable.

Such an approach to analyzing the qualitative behavior of mechanical system
was pioneered by Lagrange, who showed that an equilibrium of a conservative
mechanical system is stable if it corresponds to a local minimum of the potential
energy function, and that it is unstable if it corresponds to a local maximum of
the potential energy function. The genius of Lyapunov lay in his ability to extract
from this type of reasoning a general theory that is applicable to any differential
equation. This theory requires one to search for a function which satisfies some
prespecified properties. This function is now commonly known as a Lyapunov

function, and is a generalization of the energy of a dynamical system. Consider
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the following nonautonomous system described by nonlinear equations

i=f(t,3), [(t,0)=0 (3.10)

subject to z(te) = o (modifications for nonautonomous case are straightforward).
The aim is to determine the stability nature of the equilibrium point at the origin
of (3.10) without obtaining the solution z{¢). For the Lyapunov’s direct method,
we need to construct the Lyapunov function in order to investigate the stability

of the equilibrium point of (3.10).

Defintion 3.3.1. The Lyapunov function is a real-value function V (¢, z) satis-

fying the following properties : (). V(¢,z) and all its partial derivatives
& and g—:‘_ are continuous. (ii). V(t,z) is positive definite, i.e. V{£,0) =0
and V(t,z} > 0 for all z # 0 in some neighborhood ||z]| < k of the origin.

(417). The derivative of V along the solution of (3.10), namely

. v

= 6V diL','
Vo= — —
dt

3:1:,; dt

= VVit,r)+VIV(tz) = %? + (3.11)

i=1

AV =V
= ? + £ a_:gt_ft (t,m)

is negative semidefinite (i.e. V(0) = 0, and for all in ||z|| < &, V(z) < 0).

A function V(¢,z) satisfying V(¢,0) = 0 and V(¢,z) > 0 for z # 0, is said to
be positive definite. If it satisfies a weaker condition V(¢,z) > 0 forz # 0, it is
said to be positive semidefinite. A function V(t,z) is said to be negative definite
or negative semidefinite if —V (¢, z) is positive definite or positive semidefinite,
respectively. If V (¢, z) does not have a definite sign as per one of these four cases,
it is said to be indefinite. In definition 3.3.1, the property (i) ensures that V is a
smooth function and generally has the shape of bowl near the equilibrium (see Fig.
3.7 (Afanas’ev, Kolmanovskii, and Nosov, 1993). The property (¢t} means that,
like energy, V > 0 if any state is different from zero, but V' = 0 when the state 1s
zero. The property (i1i) guarantees that any trajectory moves so as never to climb
higher on the bow] than where it started out. If property (i) is made stronger

so that the derivative of V along the solution of ( 3.10) is negative definite for
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Figure 3.7: (a) Example of Lyapunov function. (b} Level curves for the Lyapunov

function V(t,z) = Ci, (i=1,2,3),C < C; < Cs.

lz|| # O, then the trajectory must be drawn to the origin. the Lyapunov stability
states that, given the system of equation (3.10} with f{t,0) = 0, if there exists a
Lyapunov function for this equation, then the origin is a stable equilibrium point;
in addition, if V < 0, then the stability is asymptotic. Notice that in (3.11) the
f; are the components of f in ( 3.10), so V can be determined directly from the
system equations. Note in particular that a function ¢ : [0,00) — [0,00) is of
class K if it is continuous, strictly increasing, ¢(0) = 0, and ¢(t) > 0, for all

¢t > 0. furthermore, if there exists a(-) € K such that
a(|lll) < V(t,2) (3.12)

then (3.12) is positive definite (i.e., it is equivalent to the property (i5)). The
followings are some theorems on Lyapunov’s direct method spelling out condi-
tions under which we can draw conclusions about stability of the origin as an

equilibrium point of the nonlinear system.

Theorem 3.3.2. (Lyapunov’s first theorem) Suppose there exists a Lyapunov
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function V(t,z) such that
wy (j|z]]) < V(¢ z) (3.13)

where wy{-) € K and the derivative of V along the solutions of (3.10)
satisfies

Vit,z) <0. (3.14)
Then the trivial solution of the system {3.10) is stable.

Proof. (Yoshizawa, 1966}.

Theorem 3.3.3. (K.P.Peridskii) If in addition to the conditons (3.13) and
(3.14) the following inequality holds:

V(L z) < w(llzl)), (3.15)

where wy(-) € K, then the trivial solution of the system ( 3.10) is uniformly

stable.
Proof. (Khalil, 1996).

Theorem 3.3.4. (Lyapunov’s second theorem) suppose there exists a Lya-

punov function V (¢, z) such that

willlzll) < VIt z) < wolllz) (3.16)
and the derivative of V along the solutions of (3.10) satisfies
V(t,z) < —ws(llz)- (3.17)

where where w; (-}, wo(+), ws(-) € K Then the trivial solution of the system

(3.10) is uniformly asymptotically stable.

Proof. (Khalil, 1996).
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Theorem 3.3.5. Assume there exitst a sufficiently smooth funciion V' (¢, z) and
positive constants Ai, Ag, As,p,€ and §, with 4 > {2, such that for all z €

Rt < ¢
Allall? < Vit z) < gl

and the derivative of V along the solutions of (3.10) satisfies
V(t,z) < =X ||z|P +ee

Then the system (3.10) is asymptotically stable.

Proof. {Sun and others, 1998).

3.4 Introduction to Control Theory

In most branches of applied mathematics, the aim is to analyze a given
situation. To take a very simple example, if a mass is suspended by a string
from a fixed point then the assumptions might be that air resistance, the mass
of the string and the dimensions of the body could all be neglected, and that
gravitational attraction is constant. A familiar mathematical problem would then
be to determine the nature of small motions about the equilibrium position. We
should need a bridge --a mathematical description, between the real world and
the mathematical theory to put control theory into practice. Thus in order to be
able to obtain a mathematical description, or model, of the real-life situation 1t 1s
necessary to make certain simplifying assumptions so that established laws from
science, engineering, economic theory, etc., can be used. Mathematical methods
can then be applied to investigate the properties of the model, and the conclusions
reached will reflect reality only insofar as the accuracy of the model permits. Of
course the more realistic the model, the more difficult in general will it be to
solve the resultant mathematical equations. Many problems of great importance
in the contemporary world require a quite different approach, the aim being
or control a system to behave in some desired manners. Here system is used to

mean a collection of objects which are related by interactions and produce various
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device state variable xi ' >
i=1,2,3,....n Output
manitoring

feedback

Figure 3.8: The main features of a control systems

outputs in response to different inputs. These situations can include for example
industrial complexes such as chemical plants or steelworks; eleciro-mechanical
machines such as motors; biological systems such as the bacteria colony; and
economic structures of countries or regions. The complexity of many systems in
the present-day world is such that it is desirable for control to be carried out
automatically without direct human interactions. The main feature of a control
system can be represented as in Fig. 3.8 (Barnett and Cameron, 1993). The state
variables z; describe the internal energy or states of the system, and provide the
information which ( together with the knowledge of the model describing the
system ) enables us to predict the future behavior from the knowledge of the
inputs. The n-dimensional space containing ;s is state space. In practice, it is
often not possible to determine the values of the state variables directly, perhaps
for the reasons of expense or inaccessibility. Instead only a set of output variables
Y¥;, which depend in some way on the z;, is measured and almost invariably
m < n. For example, the state of the economy of & country is described by a
great many variables, but it is only possible to measure a few of these, such as
the volume of production, the number in employment, the value of gold reserves,
and so on. In general the objective is to govern a system to perform in some

required manners by suitably manipulating the control variables u;. To achieve
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this requires a controlling device, or controller. Systems are often subject to
external disturbances of unpredictable nature, for example wind gusts during
aircraft landing, or variations in the cost of raw materials for a manufacturing
process. We shall assume that all our systern meodels have the property that,
given an initial state and any input then the resulting state and output at some
specified later time are uniquely determined. A control system is a mathematical
model which describes the relationship between the states/outputs, z(t), and the

controls/inputs, u(t), by the differential equation
= f(t,z(t),u(t)),te T CR

where z(t) € X, u(t) € U. The set X is called the set of states/outputs and U
the set of controls/inputs. A control u(t) that is restricted to take values in a
preassigned subset 1 of the control space U is called admissible. If the controller
operates according to some pre-set pattern without taking account of the output
or state, the system is called open loop, because the loop in Fig. 3.8 is not
completed. In an open-loop control system, the input or control, u(t) is selected
based on the goals for the system and all available a priori knowledge about the
system. If however there is feedback of information concerning the outputs to the
controller, which the control u(t) is modified in accordance with the information
of the output, the system is closed loop. Simple illustrations of open and closed
loop system are provided by traffic lights which change at fixed intervals of time,
and those which are controlied by some device which measures traffic flow and

reacts accordingly. Consider the following nonlinear dynamical system
&= f(t,z(t), u(t)), VL 2 0, (3.18)

where ¢t denotes time; z(t) denotes the value of the state function z() at time
t and is an n-dimensional vector; u(t) denotes the value of the control function
u(-) and is m-dimensional vector; and the function f associate with each value
of ¢, z(t) and u(¢), a corresponding n-dimensional vector. Following the common
convention, this is denoted as: ¢t € [0,00), z(t) € R*, u(¢) € R™, and f : [0,00) X
R"® x R™ — R". The system (3.18} is said to be forced, or to have an input. While



a system described by an equation of the form
= f(t,z(¢)),vt > 0, (3.19)

is said to be unforced. Note that the distinction is not too precise. In the system
(4.18), if u(-) is specified, then it is possible to define a function f, : [0,0c) xR* —
R® by

fult,z) = f(t,z. ult)). (3.20)
In this case (3.18) becomes
& = fu(t,z),Vt > 0. (3.21)

Moreover, if u(-) is clear from the context, the subscript u of f, is often omitted.
In this case there is no distinction between (3.21) and (3.20). Thus it is safer to
think of (3.19) as (i) there is no external input to the system, or (ii) there is an
external input, which is kept fixed throughout the study. In control theory one
is interested in the question of how the input of the system should be chosen to
assure that the corresponding output has the desired properties. Depending on

the properties involved one can define some of the specific problems as follow.

Controllability The controllability problem is concerned with the question of
existence of controls which steer an arbitrary state of the system into a
given one. The system is called controllable if it is possible to force the
system from an arbitrary state to a desired state in finite time by some
admissible control. In practice, one requires various types of steering the

states:

e From an arbitrary state to the origin ( Null-Controllability ). The
system is null-controllable if every state € X can be controllable to
zero by some control ©(t) € U in some finite time T" > 0, i.e., one can
find a finite time T > 0 and an admissible control u(t) such that the
solution z(t) corresponding to this control satisfies z(t) = o, and

z(T) =0.
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e From the origin to an arbitrary state { Reachability }. The system 1s
reachable if one can find a finite time T > 0, and admissible control
u(t) such that the solution z(t) of the system satisfies z{y) = 0, and
z(T) = zy.

o From any state to an arbitrary state ( Global Controllability ). The
system is globally controllable if one can find 4 finite time T > 0 and
an admissible control u(z) such that the solution z{¢) of control system

satisfies z(to} = z¢, and z(T) = ;.

e From one state to a neighborhood of another state { Approrimate
Controllability ). The system is approximately controllable if one can
find a finite time 7" > 0, and an control u{f) such that z(f5) = zo, and

z(T) = By,

e efr.

Stabilizability The stabilization problem is how the feedback control u(t) =

h(t,z(t)) can be determined in order to stabilize the closed-loop system

& = f{t, z(t), h(t, 2(1)))
in the sense of Lyapunov.

Optimality In optimal control problem one is looking for an admissible control
u{-) which not only steers a state zy to a state x; but also does it in the
minimal time, or with minimal resources. Reality often puts some practical
constraints onto the problem of control optimization. This enforces us
occasionally to relax the requirement of optimality, under which it is called

near optimal or suboptimal.



Chapter 1V

Problem Formulation and Main

Results

In recent decades, the stability problems of nonlinear systems have been
extensively studied (Bellman, 1963; Curtain and Pritchard, 1977; Lakshminkan-
tham, 1989; Zabezyk, 1992). It is well known that the study of stability theory of
nonlinear dynamical systems is carried out by one of the two Lyapunov methods.
The first one is the Lyapunov’s linearization method. The other is the Lyapunov’s
direct method based on the construction of the Lyapunov function. The stability
problem has motivated the study of Lyapunov function in both finite (Bellman,
1953; Sun and others, 1998; Yoshizawa, 1966} and infinite dimensional spaces
(Curtain and Pritchard, 1977, Sattayatham and Huawu, 1999). The Lyapunov’s
direct method is used with this work. It is the purpose of this work to investi-
gate the exponential stabilization for nonlinear dynamical systems with control
constraint. This chapter is organized as follows. In section 4.2, we propose a the-
orem, which is a criterion for the exponential stability. Based on this theorem,
a bounded and continuous state feedback control is proposed to guarantee the
exponential stability. This is described in section 4.3. In section 4.4, a numerical

example is given to illustrate the use of our main result.
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4.1 Problem Formulation

Consider a class of uncertain nonlinear dynamical systems described by the

following state equations :

z(t) = f(t,z) + F(t,z) - ®(t,z,u), t >t >0 (41)

L’J(tu) =Ty

where ¢ € R is time, z(t) € R" is the state vector, u(t) € R™ is the control vector,
and ®(t,x,u) represents the system uncertainties. The assumption (B3), below,
is a general structure condition on ®{t,x,u). Moreover, the function &(.,-,-) :
(0,00) x R* x K™ — R™, F(-,-) : [0,00) x R* = ™™ and f(-,-) : [0,00) x R* —
R"™ are assumed to be continuous. The corresponding system of {4.1) without

uncertainties, called the nominal system, is described by
(4.2)

We assume further that the equation (4.2) has a unique solution corresponding
to each initial condition and the origin is the unigue equilibrium point. The state

feedback controller can be represented by a nonlinear function in the form
u(t) = —y(t,2) K7 (¢, ).

Now, the question is how to synthesize a state feedback controller u(t) that can
guarantee the exponential stability of nonlinear dynamical system ( 4.1) in the
presence of uncertainties ®(t, z, u). Before giving our synthesis approach, we prove

a sufficient conditions for the global exponential stability of system (4.2}).

4.2 Sufficient Conditions for Exponential Sta-
bility

Theorem 4.1. Assume there exist a sufficiently smooth function V (¢, z), posi-

tive constanis Aj, Az, A3, p, and ¢ such that for all z(t) € D, D is an open



connected subset of R* containing the B,(0), forall £ > ¢, > 0
Milz)il” < V{E (1)) < Aefla(t) 1) (4.3)

and the derivative of V" along the solution of {4.2) satisfies

dV (t, z(t))

— = V.V {t,z(t)) + VIV (E,z(2)} - F{t, z(t)) < =Asllz(D)|7. (4.4)

Then the equilibrium point of the system (4.2) is exponentially stable if
p < g and asymptotically stable if p > ¢ for all z(#;) € B,{0).

Proof. Let
Qt,z(t)) = V (¢, z(t))eS. (4.5)
Then, from (4.5), (4.4) and (4.3), we have
O, z(t) = Vi, z()ert + j\‘_:-vu,;;,-(f:))eﬁt
2alls(dlie

A2
< 0 (4.6}

< llz(a) e+

Integrate both sides of (4 6), we have, for all £ > ¢, > 0
A X
Q(t,z(2)) < Qlta, 2(t0)) = V (ta, 2(t0))e™® < Xoljz(te)|%e™®  (4.7)

Hence, it follows from (4.3}, (4.5), and (4.7), we get

el < (M)"”z(Q(t,z{t))e—m)w

- A A
b b/
(,\ﬁux(to)"qe-r;v—“”) |

1A

Ay

t/p
B (;‘2) Ja(to), 7e 31, (4.8)
1

If p < g and x(to) € B\ (0), we have |jz(to)[{¥/? < ||z(to) ||, rence

k=@ < kllz(to)lle™**, Va(te) € B(0)
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Ve S :
where k = (%f) Y = ,\_);Lp' Then the equilibrium zero of {4.2) is exponen-

tialiy stable. If p > ¢, from (4.8}, we have, Yz(tg) € B,(1),
tlim lz(2)il = 0. (1.9)

¢
Now let £ > ) be given. Choose d(g, {p) < (E;Trﬂﬁ)ﬁ . From {4.8) again,
if for all [jz(te}]| < (g, to), we have

£

Ol < koo

e Mit0) = cem M < £ Vit >ty > 0.

That is, in the case of p > g, the equilibrium zero of (4.2) is stable and by
(4.9), it is asymptotically stable. This completes our proof. {1

4.3 Stabilization Problem

We shail use Theorem 4.1 to find the condition on u(t) that can guarantee
the exponential stability of nonlinear dynamical system (4.1). Let us introduce

for system (4.1) the following assumptions :
(B1) The components of the control vector are physically Iimited by
lul< e, ¥Vi=1,2,...,m (4.10)
withg; >0, Vi=1,2 . m.

(B2) There exist a sufficiently smooth function W (¢, z), positive constants A, As, p,
~ and g such that for all z € D C R™, for all t > t; > 0, we have

Allzl]P < W(t, z) < Aaflz]|® (4.11)

and the derivative of W along the solution of % (t) = f(¢,2, satisfics

dW (¢, z(t))

o = VW) + VoW z(t) - f(te(®) <0, (412)

Remark :The nominal system £(t) = (£, ) is stable in the sense of Lyapunov

with (B2). (See Yoshizawa, 1966, p. 32)
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(B3) There exist positive continuous functions f,(t,z}), falt,x), falt,z)and a

positive constants 3, Ay and « with A3 > a > 1 such that

yTO (8, ) > — At ) Iyl + 0,2 Il ~ fslt ) )
Az fa(t, )|z ()1

+ — (4.13)
2f3(t,z) (IVIW (&, 2)F(t, 2)l| + (£ (8, 2)] 7 fe(@)e + e=#]
Yye R® ,Vz e DC R WVi>1, >0,
where
f2(t,2) > 4 fi(t,2) f2(t,3), Yz € DC RVt >t >0, (4.14)
Lt 2) |VIW (R, 2)F(t,2)|| < ellz(@} (4.15)

2 2 2
@, (t,z,y) = &, 2, “ tan~t Y1, £%2 tan! Y2y ey Zm tan-! Um), (4.16)
T 3 il
and
y'= [yl:y?:-' :um]T GRm (41T)
Lemma 4.2. Under the assumptions (B2) and (B3),

AWK = Py IELE + f P IKIP - eflz(®))9 < 0

where y(t,7) = spEaErwasrEaFeEan © (b 2) = Uit Dl e @'+
e Pt K(t,z) = FT{t,z)v,W(t,z) and § > 0, > 1.

Proof. fi[|K||— fy NKI® + fo7? 1K) — ellz(®)]l =

ALl ZUKP .
26 (1Kl +€*) 4 (K| + &%)? al|lz(?)}
fifs |KIP + 4fifs2 s WP e + 4R s K e — 273 K

ifs (K| + &)’
—2fZ K |Pe + FZIKI .
(Ko el

KN =
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K = Ah g = 22 K L - 4 g A K

1K) +e) Ay (I + 2
—eea(ayys < 21" = cllale (k) + )
(1Kl +&7)
_ SllK = = alls@IF 1K) - 20ie i (K2 = adls(t)Ie
(1K + &)’
UKL =@+ 20K (@) ire=™ + 1K S (e
(1K1 + )’
—olls (O 1K ~ 20 1K1 (1) la(®)I* ~ 2allz@ll* HK ||~
(IKT+e
—alle(®)**(/1) 7 — 2alz@I(f) e — allz@ljt(e?)
(K1 + ¢’
< 0.0

Theorem 4.3. The System (4.1) satisfying the assumptions (B1) - (B3) is ex-
ponentially stable if p < g and asymptotically stable if p > g under the

control
wlt) = 29 ban " le)], Vi=1,2,..m. (4.18)
kil
Here
{yl (t): y?(t)v LR ym(t}l - _ﬂ:’{fw x)I{T(t: I): (419)
. f2(t7$)
— 42
WD) = S VWG PGl T ey
e*(t,z) = [fi(t, z)] " l=(£)]j? + e~ &, (4.21)
and
K(t,z) .= FT{t,2)V,W(t, z) {4.22)

with 1 ~ a < As.

Proof. By (4.1) and (4.16)-(4.18), one has
() = j(t, z) + F(t,2) - B, , v, U2, ooy Upp)

s

2c Qe ¢
B f(t, m) " F(t,I) @ (t, i _-TTl tan_l ¥ ﬂ tan—l Yz, .oy __(_’_T_T?-_ tan"l ym)
™ i
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=fray Pt oot r ), Ya e DCRY £> 420

¥4

Let W{t,z) be a Lyapunov function candidate of (4.1) with (4.18)-(4.22).
The time derivative of W (¢, z) along the trajectories of the closed-loop

system, using (B2}, is given by

W= T VIW [+ )]

< VITWF-d,. (4.23)
From (4.13), (4.19), (4.20), and (4.21), we have
v 0 > -y | K+ 2 KN = o KNP+ Ayl (]l
Multiply both sides by —]; and from {4.19), and (4.22), we have

KT & =vIWF. &, < fi | K| - fKI? + Y2 IK}E — Asllz(8) 1%
(4.24)

Substitute (4.24) into (4.23}), we get

W< AUKN = By K+ far? [K = Allz(@)]]° + ellz@))? - afiz@)ll

= —Qa— )@l + AIKI — LYK + P 1K — oflz(){i.25)
Simplifying (4.25) by using (4.20), (4.21), (4.22 }, we get, by Lemma 4.2,
W< = = a)[z(0)]]°. (4.26)

By virtue of theorem 4.1, the proof is completed. [3

4.4 Example

Consider the following uncertain nonlinear system:

i . Ly — .’L',g
X (i) = _23:1 _ é +

2

(:3;1) Aa()u + b(1)u® + e(t) tanu — 17} (1.27)

Ly
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08 _' ‘ ; '_ ' ' T '_ 1

01 0.2 0.3 04 0.5 06 0.7 0.8 0.9 1
time(per unit)

Figure 4.1: The state trajectories of the feedback-controlled system for (4.27).

where u € Rz = (21,29)7 € B2, -1 < aft) <1,-1 < b(t) < 1,and 5 < ¢(t) < 6
for all £ > ¢, > 0. The coeficients a(t), b(t), and ¢{t) are arbitrarily chosen to
satisfy (4.13), (4.14) and (4.15). The control w is limited by -2 < u(t) < I, and

4
ren=( 277 rea=(2),

2
(¢, z,u) = {a(t)u+ b(t)u® + ct) tanu — 17} .
Choose a positive functional
Wit ,z) = 22} + 3.

Then (4.11) and {4.12) are satisfied with Ay = 1, = 2,p = 2, and ¢ = 2. In

fact,

Allzl|lP = el <Witz) =222 + 22 < 2(x? +3:§) = Xo|z||%



and

v%wmﬂm)=(£?£JW&@¢@w

Ty — 23
= (4:51 s 23‘.’.’2)( 2 ! )

3
—2:1:1 - %&

3,:3
= 4.’]5'] (zg - £?) + 2.’132 ("2.’5] - ?2)

= —4z} -z <0.
From (4.16), we have

®,(t,z,y) : =& z,tan"ty)

= a(t)tan™' y + b(t)(tan " y)? + ¢(t)y — 17
Hence, in {4.13), we have

y @it z,y) = [at) tant y + b(t)(tan"' )] y + c(t)y? — 17y

T K .
> {4+ = 5|y[* — 17
2 =5+ 0 ) i+ ol - 17y
O )
> - (5 + Z) vl +5ly* — [yl* - 17y.

This suggests that in (4.13) we choose

‘?T2

f](t,:f):'- +Z‘~

f2lt,z) =5, and , fa(t,z) = 1.

no | 3

It follows that (4.14) is satisfied. In fact,

2
Rlhe) = 25> 4A(t2)fltz) =45+ )1
16.15.

Q

According to (4.21) with 8 = 1, we have

2 2
Ty + I3 ¢

e*(t, 1) 1= ——=
)=

By (4.22) and (4.20), we obtain

K(t,z) = 4z% + 222,
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and

. 5
62) = SR G T et 2)

With (4.19), (4.13) become

T we L )
o) 2 - (54T ) W sl - b+ 17K
B T wt 2 3 17 -5 (4z% + 2x3)
= (5T W R )
T g 3 17-5-2 (z7 + z3)
> (241 5lyl? —
2 {5+ ) W+ S W+ S e

which imply that {4.13) holds with A3 = 34. Choosing 1 < a = 17 < A3, such
that (4.15) holds, ie.,

AVIW (R, £)F(, )| ~ 4.03 (427 + 223) < 17 (af + 23) = |zl
Finally, owing to (4.18) and (4.19), it can be obtained that

u(t) = tan”'[y(t)]

= tan”' [—(t, z) K7 (t,2)] . (4.28)

By Theorem 4.3, we conclude that (4.27) with the bounded control { 4.28) is
exponentially stable. With a{t) = b(t}) = 1, ¢t} = 5,z:(0) = —0.70, and
72(0) = 0.45, the state trajectories of the feedback-controlled system is depicted
in Fig. 4.1 (see Appendix A for Matlab scripts to solve (4.27) and sketch the
figure 4.1). It can be seen from equation (4.28) that u(t) is bounded by —§ <
u(t) < .00



Chapter V

Conclusion

In this thesis, the exponential stabilization of nonlinear time-varying differ-
ential equations with control constraint has been investigated. We have proposed
3 bounded and continuous state feedback control for the exponential stability for
the closed-loop system. A numerical example has also been given to demonstrate
the nse of our main result.

The result of this thesis will be useful for those who are dealing with dynam-
ical systems governed by nonlinear differential equations with input noniinearly
uncertainties. However, it has some limitation. For example, we have to construct
a Lyapunov function satisfying the conditions (4.3) and (4.4) and three positive
continuous functions must be found with some positive constants to meet the
conditions (4.13)-(4.15).

Besides, recently, the stability problem of retarded systems has been widely
investigated. In further research, one may consider the issue of exponential sta-
bility of a class of uncertain systems with time-delays. The systems which are
described by functional differential equations with uncertainties in both the cur-

rent and delayed state. For example, one may consider the delay system
#(t) = A=) + £t 3(t - h(1))), ¢ 2 0. (5.1)

where A(t) € L{X, X}, f(-) : [0,00) x X = X, X is a Banach space, and A{-) :
[0,00) = R¥,0 < A(t) < a, f(t,0) = 0. One may first assume the autonomous

case that A(t) = A (later A = A(#) in Banach (reflexive) space) is a stable



operator, X is a Hilbert space and

1/t ) < alt) =l

Then find conditions on a(t), m and a such that the system (5.1) is asymptotically

stable. After that apply the stability result above to stabilize the control system
£(t) = Az(t) + Bult) + f(t, z(t — k(1) u(t — h(t}))),

by using feedback control u{t) = g(x(¢)). Moreover, the stability and stabilization
of the results of this thesis and the results above to the case of discrete-time

systems
ok + 1) = f(k, z(k),ulk)), ke Z*.

would be of interest.
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Appendix
Matlab Scripts

The function ODE23 solve differential equations, low order method. ODE23
integrates a system of ordinary differential equations using 2nd and 3rd order

Runge-Kutta formulas. The matlab command
(T, XN = ODFE230wprime , T, T final, X0)

integrates the system of ordinary differential equations described by the M-file
zprime.m. over the interval T0 to T final, with initial conditions X0. Also the

command
i, X1 =0QDE23(F,T0,7 janat, X0, TOL, 1)

uses tolerance TOL and displavs status while the integration proceeds.
INPUT:
F - String containing narme of user-supplied problem description.
Call: xprime = fun(t,x) where F = "fun’.
¢ - Time (scalar).
z - Solution column-vector.
zprime - Returned derivative column-vector: xprime(i) = dx(i)/dt.
t0 - Initial value of t.
tfinal- Final value of 1.
z0 - Initial value column-vector.
tol - The desired accuracy. (Default: tol = 1.e-3).

trace - If nonzero, each step is printed. (Default: trace = 0).



OUTPUT:

T - Returned integration time points {column-vector).

X - Returned solution, one solution column-vector per tout-value.

PLOT:

Plot vectors or matrices. PLOT(X,Y) plots vector X versus vector Y. If X
or Y is a matrix, then the vector is plotted versus the rows or columns of the

matrix, whichever line up.
PLOT(X1,Y1,51,X2,Y2,52,X3,Y3,53,...)

combines the plots defined by the (X,Y,S) triples, where the X’s and Y’s are

vectors or matrices and the S’s are strings. For example,
PLOT(X,Y,ty —1,X,Y,1g0))

plots the data twice, with a solid yellow line interpolating green circles at the
data points.

XLABEL:

X-axis labels for 2-D and 3-D plots. XLABEL(’text’) adds text beside the
X-axis on the current axis.

YLABEL:

Y-axis labels for 2-D and 3-D plots. YLABEL(’text’) adds text beside the
Y-axis on the current axis.

The following are matiab programs used to solve the system (4.27). The
first program, equations.m, describes the state equations of (4.27). The second

program, solve_it.m, calls for ODE23.M to solve and plots the solutions.
equations.m

function xprime = equations(t,x)
k=4xz(1})"2+2+2(2)"2,

esp = {z(1) 2+ 2(2)"2) /(2 + pi/2 + pi"2/4) + exp(—1);
gam = 5/(2 x (abs(k) + eps)};

u = atan(—gam * k);



delt = u+u"2+ 5 tan{u) — 17;

gl = (2) — =(1}"3;

g2=—2+z(1) — 0.5+ 2(2)"3;
zprime = [g1;g2] + [z(1); z(2)] * delt;

solve_tt.m

[t, w]=0de23( 'equations’,0,3,[-0.7 0.45}');
z=uw(,1)

y = w(z2);

k=4x+z2."2+2%y."2;

esp = (z."2+y.72)./ (2 + pi/2 + pi"2/4) + exp(—1);
gam = 5./(2 = (abs(k) + eps));

plot(t, z, 1wt t,y, wh); azis([0 1-0.8 0.8]};grid
xlabel{#time ( perunit )/);

viabel(’z1(t} r2(t)'};
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