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-ABSTRACT

This project was a first, preliminary part of the project to study viscous
incompressible fluid flow in helical circular pipes under given pressure drop. In this
report a set of incompressible viscous fluid mechanics equations in an arbitrary
curvilinear coordinate system are presented. The form of the Navier-Stokes equations

in helical coordinate system was obtained as particular case.
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1. Introduction
1.1  Background

Helical pipes are used extensively in various industrial applications, especially in
cooling or heating devices. In the research of biological fluid mechanics, blood
vessels are also typically curved pipes. It is verified experimentally in Ref. [1] that
secondary flow affects the various aspects of the fluid flow in curved pipes
considerably. For its importance, many efforts have been made in this field. However,
because of its complexity, there exist many problems to be solved as indicated Refs.
[2,3].

The previous researches on this subject can be briefly divided into three stages. The
first stage was emphasized on the finding of the secondary flow. In the second stage, the
early analytical work was done by Dean Ref. [4], who studied the flow in  planar
curved pipe using a concentric toroidal coordinate system. Afterwards, numerous
authors utilized Dean’s coordinates to investigate the flow in toroidal pipes.
Subsequently, in third stage, the study of flow in curved pipes with non-zero torsion as
helical pipes deserves attention. However, so far most research efforts focused on planar
curved pipe flows, studies on the flow in helical pipes are relatively limited.

In those previous studies of helical pipe flows, Murata et al. [5], Wang [6] and
Germano [7] did the fundamental investigation. Although some differences exist in their
results such as the order of the torsion effect, they have successfully deduced the Navier-
Stokes equations in a non-orthogonal or orthogonal coordinate system, respectively.
Now their works are being carried further and some attitudes have been put forward to
solving the disagreements between them. For instance, like Masliyah [8] and
Murata et al. [S] and Kao [9] found that the definition of stream function cannot
reflect the strength of the secondary flow, which must be illustrated by
corresponding velocity vectors. Comparing the results derived with series expression
and numerical methods, Kao tried to address the paradox between Wang and Murata et
al. and Germano. However, the mechanism of the torsion effect is still not clear.
After detailed interpretation of the relationship between the two coordinate systems
used by Wang and Germano, in Ref. [10] Tuttle solved the flow in pipes of elliptical
cross-section and circular cross-section, successively. Then he qualitatively stated
that the order of the torsion effect on secondary flow depended on the frame of
reference of the observer. Without any approximation in the governing equations,
Chen [11] obtained the flow solutions for helical circular pipes by the double series
expansion method. But considering the series forms of dimensionless axial velocity and
stream function used in his article, the method also has the same drawbacks as
perturbation technique.

In the literature, the commonly used methods are theoretical analysis and numerical
discretization. It is known that the analytical techniques have the major advantage over
numerical discretization techniques of providing physical insight into the nature of the
solution of the problem. Perturbation technique, as an approximately theoretical
analytical technique, is the most important method used in this field. Despite its
usefulness, perturbation technique also has two major drawbacks. Firstly, for practical
applications, the perturbation series has to be restricted to few terms; secondly, in order
to obtain solutions of acceptable accuracy, the perturbation parameters are limited to be
small. And as one of the methods of weighted residuals, Galerkin technique might
overcome these limitations and obtain high-order semianlytical solutions that are
unavailable by direct numerical discretization as pointed Ref. [12].
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To sharpen the focus of the study and to avoid the complication connected with the
interpretation of covariant and contra-variant velocity components, Germano’s
orthogonal coordinate system is employed in the present work.

1.2 Objectives

The objectives of the project were:

1) To formulate the mathematical model of fluid flow through coiled pipes with
prescribed pressure drop. A
2) To find analytical or approximate solution of the above problem for fully developed
flow in helical pipe.

1.3 Hypothesis

The main hypothesis in such kind of an investigation is that fluid is viscous
incompressible, the mass forces are equal to zero and the governing equations are the
Navier-Stokes equations.

1.4 Usefulness and benefits

The immediate beneficiaries of this project are the mathematical model (Navier-Stokes
equations in curvilinear and helical coordinate systems) which may be useful for
modeling internal fluid flows in curved pipes.
Longer term results of this project are the following:
e It can be used by researchers doing numerical modeling of internal fluid flow
through curve pipes;
e It can be used to find the dependence between pressure drop and mass flow rate of
flow through curve pipe.

1.5 Scope and limitations.

The present research describe the mathematical models of fluid flow within curve duct
on the example of viscous incompressible flow in helical pipe. We will consider only
the flow for which on the inflow and outflow section of duct the value of pressure and
tangent component of velocity are known us boundary conditions.

2. Navier-Stokes equation in orthogonal coordinate system.

Consider an arbitrary space curve described by (see Figure 1)

R(s)=F (s)i+ F,(s)j+ F,(s)k ¢))

where i, j,k are unite vectors and s is the arclength along the curve, F,(s), F,(s), F,(s)
are functions of s. The Frenet triad of unit vectors T,N,B can be given
ngg, N=l£,B=TxN 2)
ds k ds



and the Frenet formulas are used

Fig. 1. Sckech of Frenet triad for an arbitrary curve in space.

ﬂ: —kT + 7B, —C—i—B-z ~7N, £=——kN. 3)
ds ds ds

Now x-y coordinates are defined in the plane constructed N and B, and the axial
directions of x and y are coinciding with N and B, respectively, so that the position
vector of a general point in space can be represented by

r=R+xN+ yB, “4)

Here, the natural base vectors (e e e,), which corresponding to coordinates (x,y,z),

are non-orthogonal, whereas, the physical base vectors (N,B,T) are orthogonal, and
the relationship between these two coordinate systems is

e 1 0 O)YN
e, |=| 0 1 0B}, m=1-kx (5)
e, -7y —-tx m)\ T

Thus the metric tensors are

[G..] = 0 1 X , (6)

-y X m2+2'2(x2+y2)

and non-zero Christoffel symbols are



kty kr*y?

=0 =—"=, T),=0},=-71 T, =km-7"x+ -M,
m
2
T T k
szszrglz— F§3:_ y+M2’ I‘133“1-‘3‘ — F§3=EX—M3, @)
m m m m

2
ey M=y, M=t
m n m

Here and later &', 7' denote the derivative with respect to s .

After further standard tensor operation refer to Ref. [13], we obtain following basic
equations in a curvilinear orthogonal system continuity equation

ou Jdv Tyow zxow 1low &k
i e 2 - -——u=0, 8
ax+ay m Ox m8y+m8s m ®)

Navier-Strokes equations
1dp 2
TotUS AVt | Ty =Tt v hw | = ——==+v(VIV),  (9)
0

u|= _lgp_+ v(viv)?, (10)

?—vf—+ua—w+va—w+h}- T a—W—-’z')cézv—+a—M—)-—ku =
a “ox oy ml Y 3y o a
LN O B A (v?v)”
om dx dy Os ’
where
o 1 d*u , 0 %u
(VZV) :——TI:(mz'*‘TZ 2)ax2+(m2+T 2)—8‘}'1—2‘4'&5——2 2 3 a +2Ty"a~xg
0%u du du du , OV dv ov ow
-2 AZ B0y Yo —20 4 2kry Y
oy A B, O T Y T Ir g, Ty, t Ry
—2kTx -aﬂ+2k-a-”ﬁ (K*+7)u—Dv+Ew]|, (12)
dy ds

viy (2)=L m2+1'2y2 _ai_*_ e+t 0%y +§2—__2 2 i__}_z It
m ax2

: a)’2 3 dy axas
2
—ZTxayas+22'zygz -27%x ZZ+ZT%E—+A%—BS—;+C%+DL¢ fv+k2'w:’ (13)
® 1 *w ) 3w 9w o*w o*w
(VZV) =?[(m2+’l'2y2) P +(m + 7% )8y2 ——27 ny%+21y N
*w Ju du du ow ow ow
-2 —2kTy—+2kTx——2k—+ A——B——+C—— Eu+krv —k* 4
R T P M R W N } (14)
and



2.2 2
A=Ky —x—km+M,, B="2+M,, Czk—TX+M3,
m m m
k7 kK’ (1)
D="2irveM, E=""Lik+iM,.

m m
3. Geometry of helical pipe

A helical pipe is constructed by winding a pipe of radius R around a cylinder of radius
(r,—R) (see Fig. 2). With the pitch p_, defined by the increase in elevation per

revolution of coils &, =27 p,, the curvature k and torsion 7 of the helical pipe axis can

be calculated from

. r, — Dy
s L )

The curvature and torsion of centerline of the pipe are all constants. So the partial
derivatives of parameters k and 7 with respect to s are all equal to zero. Obviously if
torsion 7 is zero, the pipe is the same as the planar curved pipe studied by Dean.

]

=
i

Fig. 2. Helical coiled pipe

4. Equations of the laminar flow in a helical pipe.
4.1 Equations of steady fully developed laminar flow.

Secondary flow is the main phenomenon studied in curved pipes. Because turbulence
itself is very complex, so far it is still difficult to predict the disciplinarian of turbulent
secondary flow in curved pipes according to Ref. [14]. However, the problem of
laminar flow is relatively simple, and its analysis might directly reveal the mechanism of
the secondary flow. So, we thought it wise to confine this research within the range of
laminar flow. Because of the influence of k¥ and 7, the turbulent transition point will
be raised, as reported in Ref. [15]. In other words, many practical engineering
applications may be in the field of the laminar flow.



Now we make the following assumptions:
(1) the flow is steady and laminar;
(2) the end effects are ignored and the fluid flow in the pipe is fully developed so
that
ad oV

_a_-;=0, 5;zo,ﬂ p(x,y,8) =cs+ py(x, ), (16)

where the axial pressure gradient ¢ = (dp/ds) is constant.

In order to render the governing equations dimensionless, all lengths are referred to
radius R . So

x=Rx, y=Ry, s=Rs, k=Rk, 7=Rrz, (17)
and the dimensionless expressions of velocity and pressure are
- == u v wy — RY
(u,v,W)z(_‘,‘—,—“), =—p_(_ ’ (18)
Uuuvu VA%
where a velocity scale is defined by
__% R
ds 4u

Based on it, we have Reynolds number Re = UI% (for the reason of simplicity, the

&6 <6

superscript is omitted and variables appearing later are all dimensionless) and Dean
number K =2k(Re)®. Since the axial velocity component w is perpendicular to (x,y)
plane, and to find the global property of a helical pipe, we define the flow ratio as

1= o L;dQ
e g [ w2

where Q is the area of the cross-section and Q denotes the flux in a helical pipe and Q,

the flux in a straight pipe for the same pressure gradient as that in a helical pipe.
Analogous to Masliyah [8], the stream function ', which satisfies the continuity

equation, is defined as

u=—l—(ﬂ/——z'yw], v=——1-(?—z—rxw). (20)
m\ dy

Substituting Eq. (20) into Navier-Stokes equations and eliminating the pressure terms,
the following equations are obtained (where the subscripts denote derivatives)

{f(iwy%{yf(—%}%%} w? [ﬁ_%}(vzv)m}y

AT A s S e L e
m m m m

X




—Tyf(;l;ll’y) —Txf(%wx]+ T (x2 + yz)f(;:") +gnj—2(xwl//y - }’WW,) +
(22)
f[mf (w) __kzwaz 4Re+m (VZV)(B) -7y (VZV)(I) + Tx(VZV)m ,

where the operator
1 d )
v )

According to above analysis result the problem becomes how to get the solutions of the
stream function y and the axial velocity component w under the wall boundary

conditions

‘//=0’ —_=0, W=0, (23)

where n is the independent variable along the direction of the inner normal of the wall
boundary.

4.2 Governing equations of unsteady flow.

As suggested by Germano [7], an orthogonal ‘helical coordinate system is introduced
with respect to a master Cartesian coordinate system (x;,x,,x;). By using the helical

coordinate s for axial direction, r for radial direction and & for the circumferential
direction, the position of any given point X inside the helical pipe can be described by

the vector x
x=P(s)—r sin(@—s)N(s)+r cos(6—7s)B(s)

Here T ,7\7, and B are the tangential, normal and binormal directions to the generic

curve of the helical pipe axis, P(s) at the point of consideration (see Fig. 3.)

Fig.3. Description of the orthogonal
helical (s,r,8) - coordinate system, as

introdused by Germano (1982, 1989)

The metric of the orthogonal helical coordinate system is given by

dx-dx=(1+krsin(@ —75))*ds* + dr* + r’d6* (24)



where ds, dr, and d@ are the infinitesimal increments in the axial, radial, and
circumferential directions. With this metric one obtains the scale factors h ,h and h,

h =1+krsin(@—-7s), h =1, h,=r.

(25)

The incompressible N:alvier-Stokes equations, expressed in these orthogonal helical

coordinates read in non-dimensional form:

(a) Continuity equation

) d )
g(ms)+-é—;(hxru,)+£(hsu9)=0.
(b) s-momentum equation:
du, 10 1 1 9
5 e h —
o 73 k)t ra( ) g i) +

ksin(@ —7s) ksin(@—ts)
+ ; uu, + P u,

:_ia_p+ 2 0( 13,
h, Os h VAT

dfu Jou
k g— e | s .
+k cos( Ts)ug))+ or ( T r( s)%—r SJ+

N hh d u; +
hraﬁ Y h, as
+ksin(«9-—rs)( ( ’J+ J
10 1 Ou,
+kcos(«9—rs)( 5——( ) Wh, g‘ﬂ,

8

(26)

@7



(c) r-momentum equation:

T Ml g h 1 J 3
at * hs aS (usur) * hsr ar( Sruru’)+ hsr ae (h’s uruG)
_ksin(ﬁ—rs)u u - Ul _
h s%s ’

3

__ 9 110 ii‘_ L 10
T or Re | h os| *or h, Os

(28)
+._2__a_( au +_1__2.. h 1 au’ +_a_(y_9_) —
hrorl ™ or h, 08 raf or r
_Zksin(6 - 75) (au: +ksin(@ —zs)u, +
h.h, ds
+k cos(0—7s)u )———(au‘9+ )
7 rr\ 096
(d) 6 momentum equation
d 1 d d
=+ oy (o) g (i) 4= ()
_kcos(H—Ts)ux x+y_&=
h, r
1dp 1|1 9d[h 9 (u ], 109y
=Lty = | =yt
r06 Re|h, os| r 00 h,) h, Os
1 0 ou,
il iy A 29
+h5rar( f(aa "ar )Jr 29)

2 9 ou
A I A ke
+hrr89( (39+ ')J

-BheosO= )| S ksingo -, +
hh, ds

+kcos(d —Ts)u,) + (—1—3—‘;-+; (ue)ﬂ,
r

The pipe radius R has been used to non-dimensionalize coordinates and scale factors.

The mean friction velocity u, and Ru are proper velocity and time scales. The
T

dimensionless mass density is set to 1. The mean friction velocity is defined as the

square root of the wall shear stress averaged over the circumference:

w,m

2
u, = |20, with 7,, == [7,(6)d0 (30)
p 27 o




The dimensionless curvature k and torsion 7 are scaled by the pipe radius R.
The Reynolds, Dean and Germano numbers based on these scaling quantities are:

Ru

Re,=—=, Pe=+kRe, Gn=7Re (31)
1 %4

The Reynolds number .* represents the ration of inertia and viscous forces. The Dean
and Germano numbers represent the ratio of the product of the inertia and centrifugal
forces to the viscous forces.

5. On analytical and approximate solutions

Many investigations have been conducted regarding fluid flow in curved and
helicoidal pipes with circular cross sections. One of the principal features of the fluid
flows in a helical pipe is the occurrence of a secondary flow in planes normal to the
main flow, which causes the momentum and energy transport in the curved pipe to be
substantially different from that of the flow in a straight pipe and dramatically increases
the difficulty of theoretical analysis of the physical problem in a helical pipe.

The first theoretical study on the flow of a Newtonian fluid in a curved pipe was made
by Dean [19,20], who found the dependence of dynamic similarity of the fully
developed flow on a nondimensional parameter

1
D _ —a-—. 2a2W02 A
R V2

where W, is the mean velocity along the pipe, v the kinematics viscosity, and a the

radius of the pipe, which is bent in a circle of radius R. Dean studied the problem by
perturbing the solution with respect to small Dean number (D) on the basis of
Poiseuille's flow.

The curved pipe has pitch if it is bent more than one turn. The helical pipe with pitch
has been used extensively in various industrial applications to enhance the rate of heat,
mass and momentum transfer. In order to improve the performance of these devices, an
accurate and reliable analysis of the flow in the helical pipe is necessary. The flow in the
helical pipe has been studied for circular (Wang, 1981 [6]; Murata et al., 1981 [5];
Germano, 1982 [7]; Chen and Fan, 1986 [21]; Kao, 1987 [9]; Xie, 1990 [22]; Tuttle,
1990 [10]; Chen and Jan, 1992 [11]) and elliptical (Germano, 1989 [18]) cross-sections.
The previous theoretical studies of the helical pipe flow mentioned above are limited to
small curvature and torsion.

Liu and Masliyah (1993 [23]) numerically solved the problem of laminar flows in a
circular pipe having a non-zero pitch. They discussed in detail secondary flow patterns
in a cross-section of the pipe. However, their analysis is limited to small Dean number
and small curvature. Yamamoto et al. (1994 [24]) investigated numerically the flow
through a helical pipe for a wide range of the Dean number, curvature and torsion. They
employed the orthogonal coordinate system and solved the equations numerically by
applying the spectral method. Yamamoto et al. (1995 [25]) also conducted experiments

-10-



on the flow in helical circular tube over a range of Reynolds numbers from about 500 to
2000. The results reveal rather a large effect of torsion on the flow.

5.1 Analytical approximate solution.
In the literature, the commonly used methods are theoretical analysis and numerical dis-
cretization. It is known that the analytical techniques have the major advantage over
numerical discretization techniques of providing physical insight into the nature of the
solution of the problem. Perturbation technique, as an approximately theoretical
analytical technique, is the most important method used in this field. Despite its
usefulness, perturbation technique also has two major drawbacks. Firstly, for practical
applications, the perturbation series has to be restricted to a few terms; secondly, in
order to obtain solutions of acceptable accuracy, the perturbation parameters are limited
to be small. And as one of the methods of weighted residuals, Galerkin technique might
overcome these limitations and obtain high-order semianalytical solutions that are
unavailable by direct numerical discretization.
To obtain the solution for flow in a helical pipe, the Galerkin technique is adopted. The
solutions of the stream function ¥ and the axial velocity component w under the wall
boundary conditions

dy

W=O,—é;l—=0,W:0, (32)

where n is the independent variable along the direction of the inner normal of the wall
boundary.

Firstly, the base function series {Wi} and {w j}, (i,j=1,2,...) are chosen, i and w are

expressed as

n )
1//=ZC,-V/,~, W:ijwj, (33)
i=1 J=1

where n,, n, denote the numbers of the terms in series {y;} and {w,}.

In order to satisfy the boundary conditions (32), ¥;, w;, are simply given as follows:
2 2
v, =[1- "+ 3 [ W Wy =[1-+ 3] wy

where the series {Wy;} » {wy,}, (i,j=12,...) can be selected from linear irrelative

power series as {xiyj}, G, j=12,...).

Secondly, substituting Eq. (33) into Egs. (21) and (22) and integrating them by Galerkin
criterion, we can obtain a set of equations concerning those coefficients b 5 € -
Solutions of b;, ¢; are listed below for different dimensionless values of k, 7 and Re

provided they are replaced by Eq. (33).
Using this data we can immediately obtain corresponding approximate semianalytical
solutions.

The solutions for the helical circular pipes with different parameters of k and 7 . c¢s
is the coefficients of base functions y; and cw is the coefficients of base functions w;.

-11 -



Planar curved pipes

The selected base functions are

{oxey, x*y, ¥ oy, %9 2y, oy Y Ky,
x3_y3’ x.yS, x6_y’ x4 _y3, xZ_yS, y7, x'l'y, x5'y3,
x3-y5, x-y7, xs-y, x6-y3, x4-y5, xz-y7, y9’ xg-y, x7-y3, xs-ys, x3~y7, x-yg}
for i, and

{1, x, x*, y*, X, x- ¥,

x4, x2.y2, y4’ xS, x3.y2, X‘y4, x6’ x4 .y2, x2‘y4’

yﬁ, x7, xS . y2’ x3 . y4,X' y6,x8’ x6 . y2’ x4 . y4’

X yS ¥, 0 Xy eyt By, eyt X,

xS .yZ,xG . y4, x4 . yﬁ, x2 . y8, le, xll, x9 . y2, x7 . y4’
Xy, 0 y8, x-y°)

for w. In some cases, the corresponding coefficients of these bases are as follows:

D) k=0.01, Re =100

cs = {-0.0136011, 0.0019697, 0.00300443, 0.00318328,-0.00102175,

-0.00103148, 0.000392012, 0.000675116, 0.000282771, 0.000183283,
0.000370624, 0.00018734, -0.000202783, -0.00057964, -0.000551095,
-0.000174239, 0.0000376974, 0.000112526, 0.000111998, 0.0000371698,
0.0000516213, 0.000201541, 0.000295084, 0.000192032, 0.0000468674,
-0.0000251516, -0.00010006, -0.000149294, -0.0000990126, -0.0000246278 };

Y

V V V V

cw = {0.988913, -0.149107, 0.0522874, 0.330089, 0.157918, 0.159392,
-0.0843738, -0.139312, -0.0548318, -0.0375955, -0.0781548, -0.0405668,
0.0663112, 0.182527, 0.165857, 0.0496409, -0.0315306, -0.0921868,
-0.0897614, -0.0291052, -0.0261025, -0.102309, -0.150069, -0.0976206,
-0.0237579, 0.0223779, 0.0886286, 0.131599, 0.868232, 0.0214752,
0.00423684, 0.0218186, 0.044825, 0.0459316, 0.0234783, 0.00478999,
-0.00538846, -0.026822, -0.0533968, -0.0531429, -0.0264411, -0.0052615}

VVVVVY

(2) k=0.05, Re = 100

¢s = {-0.0519733, 0.0228646, -0.00277109, 0.00169482, 0.0000669753,
0.000424743, 0.00794113, 0.0203529, 0.0127148, -0.0115318, -0.0268187,
-0.0153807, 0.00190328, -0.00162642, -0.0098619, -0.00634314,
0.00695402, 0.0249026, 0.0291472, 0.0111999, -0.00190688, -0.00491976,
-0.00280932, 0.00152519, 0.00132168, -0.00150356, -0.00738378,
-0.0132318, -0.0103277, -0.00297618};

VvV V V VYV

-12-



cw ={0.866075, -0.375426, 0.452664, 0.364562, 0.00903087, -0.0136394,
-0.319629, -0.795097, -0.487978, 0.586728, 1.36388, 0.781013, -0.339092,
-0.462905, 0.145876, 0.27027,-0.394109, -1.57918, -1.99072, -0.805711,
0.558184, 1.74223, 1.80367, 0.611979, -0.00763865, -0.043975, 0.161784,
0.767529, 0.873951, 0.312181, -0.209025, -0.901423, -1.48294, -1.1297,
-0.371144, -0.0319878, 0.0729989, 0.259752, 0.301475, 0.0758221,
-0.0787673, -0.0398675}

VVVVVYV

(3)k =0.05, Re =500

cs = {-0.0333715, -0.00757938, -0.00494806, -0.0493697, 0.0362666,
-0.0121968, -0.044979, -0.0501575, -0.0635308, 0.0847873, 0.366537,
0.21519, -0.016949, -0.0258582, 0.0965767, 0.0839798, -0.10495,
-0.536138, -0.581609, -0.162041, 0.0371521, 0.1204, 0.0893902,
-0.00792362, -0.0169364, 0.0281796, 0.19893, 0.314676, 0.162044,
0.0178938};

VvV V.V VYV

cw = {0.465881, -0.265519, 0.541209, 0.775909, -0.366097, -0.103976,

> 0.0767799, -0.109164, 0.842459, -0.134997, -2.9027, -1.33759, 1.8523,
> 4.9397, 1.98518, -0.711493, -0.873688, 2.11391, 1.16305, -1.48754,

> -3.75298, -13.8821, -17.3538, -8.85126, -1.61037, 2.9674, 8.64339,

> 15.401, 15.9776, 6.21148, 1.77433, 8.3943, 15.4159, 14.0451, 6.51412,
> 1.27098, -1.67919, -7.63398, -16.8003, -20.9455, -13.5947, -3.49393}

(4) k=0.5 Re=20

cs = {-0.11191, 0.00592478, 0.0232902, 0.0233443, -0.00572275, -0.00583517,
0.00442198, 0.0044002, 0.0000497176, 0.00395448, 0.00524411, 0.00129413,
-0.00192894, -0.00399484, -0.000839882, 0.00112813, -0.000386158,
0.000268643, 0.00242005, 0.0017349, 0.000996813, 0.00364289, 0.00436538,
0.00170063, 6.29611 * 10% - 6, 0.00192592, 0.00056755, 0.000182284,
-0.000619558, -0.000417892};

VvV V.V VYV

cw ={0.90193, 0.0889081, 0.142641, 0.201261, 0.3034, 0.38609, -0.00444416,
-0.19691, -0.263529, -0.0589189,--0.289219, -0.2832, 0.109447, 0.267758,
0.320385, 0.194324, 0.00993847, 0.0421307, 0.148575, 0.136541,
-0.0623018, -0.215673, -0.269702, -0.192244, -0.0823239, -0.000849267,
0.0162203, 0.0165683, -0.0450485, -0.0498734, 0.010763, 0.0535704,
0.0961453, 0.0840662, 0.0484134, 0.0176455, -0.00296688, -0.0159449,
-0.0325528, -0.0229767, 0.0070944, 0.0105755 }

VVVVVY
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Helical pipes

The selected base functions are

{1’ x ¥, x2’ Xy, y2, x3’ xZ.y’ x- y2’ y3’£‘x4a x3.y, x2_y2’

x.y3’y4’ ]CS, x4 -y, x3:.y2, X2 'y3, .X'y4, }’5, x6’ xS.y’ x4 .yZ’ x3 _yS, x2 . y4’ x_yS’
yc’ X, x5 y, X yz’ . y3’ - y4’ 2. ys’ x- ys’ y7’ £, x y, x5 - yz’ X5 ya,
x4.y4’ x3'y5’ x2-y6’ X‘y7, y8}

for ¢ and

Lx,y 2 xyy, 2,y xy, 2 2y,

x2 . yz, X y3, y4, xs, X4 Yy, x3 . y2, x2 : y3, X y4, ys,

X, 3y, xRy eyt x-ys, e, %7, x6-y,

xS_yZ’ x4.y3’ x3_y4, x2.y5, .X‘y6, y7, x8’ x? -y, X6'y2,

xS . y3’ x4 . y4, x3 . yS’ x2 _y6’ x.y7’ y8, x9’ x8 . y, x7 . y2’

% y3’ - y4, xS, 3. yﬁ, - v x- 95,95,
for w. In some cases, the corresponding coefficients of these bases are as follows.

(1) k=0.05,x=0.1, Re =20

cs= {-0.0248882, -0.0012192, -0.0139442, -0.0000581824, 0.000123405,

> -0.000155551, 0.000436779, 0.00343005, 0.000435015, 0.00343176,

> 0.0000181083, -0.000101653, 0.0000941946, -0.000101582, 0.0000762716,

> -0.000203246, 0.0000230267, -0.000405818, 0.0000394039, -0.000202562,

> 0.0000163796, -5.65523 * E-06, 0.0000587232, -0.0000308348, 0.000117008,
> -0.0000448924, 0.000058285, -0.0000197136, 0.000028804, -5.05408 * E-06,
> 0.000086969, -0.0000120321, 0.0000875154, -8.89893 * E-06, 0.0000293505,
> -1.92088 * E-06,0, -9.17128 * E-06, 4.01345 * E-06, -0.0000272493,

> 0.00001243828, -0.0000269842, 0.0000126507, -8.90615 * E-06, 4.25022 * E-06};

cw ={0.998675, 0.00547226, 0.00898449, 0.00211156, 0.000619652, 0.00288532,
0.0353207, -0.00492927, 0.0354188, -0.00497833, -0.000983888,
-0.000324348, -0.00472752, -0.000327555, -0.00375152, -0.0148657,
0.00371974, -0.0299647, 0.00748802, -0.0150996, 0.00376853, 0.00140719,
0.00025098, 0.00527498, 0.000504944, 0.00634466, 0.000253972,
0.00247689, 0.00150888, -0.00160201, 0.00464065, -0.00484939,
0.00475594, -0.00489308, 0.00162416, -0.00164571, -0.000629338,
-0.0000935552, -0.00254312, -0.00028199, -0.00386051, -0.000283319,
-0.00260904, -0.0000948839, -0.00066231, 0.0000284995, 0.000271819,
0.000100436, 0.00110368, 0.00012969, 0.00168031, 0.0000720664,
0.00113686, 0.0000143135, 0.000288409}

VVVVVVVYVVYV

(2)k=0.05,1=0.1, Re =100

cs={-0.0162417, -0.00966635, -0.052046, 0.00168474, 0.016527, -0.0147042,

> 0.00691662, -0.000904487, 0.0123034, -0.00105541, -0.00383404,

> 0.00495473, 9.71291 * E-06, 0.00572502, 0.00379442, -0.0018611,

> 0.00814212, -0.00385503, 0.021433, -0.00185773, 0.0133701, 0.00295886,
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V V.V Vv Vv

-0.0121577, 0.00810731, -0.0254303, 0.00946565, -0.0132534, 0.00434416,
-0.000343084, -0.000932743, -0.00256758, -0.00622004, -0.00435395,
-0.00963789, -0.00213082, -0.00434991, -0.000962907, 0.00465002,
-0.00413409, 0.0143963, -0.00802421, 0.0148052, -0.00752598, 0.00505874,
-0.00267296};

.

cw = {0.869707, -0.325366, 0.186191, 0.414993, -0.102432, 0.392156,

VVVVVVVY

-0.019985, -0.0499992, -0.0367487, -0.0425871, -0.402434, -0.00289807,
-0.927729, -0.00770253, -0.52658, 0.637493, -0.155417, 1.32061,
-0.398444, 0.682932, -0.243669, 0.0522123, 0.182941, 0.420724, 0.379812,
0.68559, 0.196914, 0.317007, -0.57487, 0.138895, -1.7726, 0.5579,
-1.81983, 0.700424, -0.622105, 0.281417, 0.0659776, -0.113865, 0.129408,
-0.351037, -0.00750136, -0.360521, -0.139239, -0.1233438, -0.0683068,
0.159774, -0.0298619, 0.656116, -0.184845, 1.00916, -0.3760555, 0.689072,
-0.317022, 0.176253, -0.0959496 }

(3)k=0.5,x=0.1, Re = 20

cs= {-0.0167545, -0.0104463, -0.112288, -0.00530582, 0.00434975, -0.011363,

vV VVVVVYVVYV

0.00128365, 0.222171, -0.000883376, 0.227457, 0.00105446, -0.00572929,
0.0055799, -0.0054761, 0.00625028, -0.00138491, 0.00427007, -0.0015075,
0.00450759, 0.000875696, 0.000364372, -0.000709087, 0.00460373,
-0.00189821, 0.00666046, -0.00285664, 0.00196665, -0.00226174,
0.000127661, -0.000688699, 0.00109812, -0.000720591, 0.000834093,
0.00115119, -0.000212494, 0.00109608, 0.0000641834, -0.000803243,
0.000719949, -0.00127172, 0.00131354, -0.000249292, 0.00119648,
0.000712071, 0.000635205};

cw= {0.900765, 0.0921124, 0.0579251, 0.1435, 0.0467995, 0.200797, 0.30364,

VVV VYV VYV VY

0.029574, 0.385369, -0.00646557, -0.00419899, 0.0153569, -0.18939,
-0.0104511, -0.25255, -0.0745913, -0.00894663, -0.3123, -0.0318029,
-0.283795, -0.00606903, 0.0992918, -0.00555632, 0.237286, -0.00794405,
0.280943, 0.00648977, 0.164031, 0.0381854, 0.0109535, 0.126583,
0.0374812, 0207501, 0.0410834, 0.131484, 0.00932264, -0.0441174,
0.00314239, -0.14157, 0.00514204, -0.169204, 0.000650195, -0.114734,
-0.00312935, -0.0437959, -0.0186071, -0.00283599, -0.0635889,
-0.0158574, -0.0909627, -0.0282521, -0.0784728, -0.0198661, -0.0334223,
-0.00389483}

(4)k=0.51=0.1, Re =100

cs = {0.00233357, -0.0137179, -0.120275, -0.00547251, 0.0218337, -0.0123663,

>
>
>

0.00192338, -0.0487675, -0.0230827, -0.126464, -0.00297668, 0.1308,
-0.0321586, 0.106227, -0.0275854, 0.00485175, -0.053651, 0.0427915,
-0.000279989, 0.0349278, 0.0608826, 0.00748365, -0.145917, 0.0535403,
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-0.238862, 0.0683199, -0.0801644, 0.0240166, -0.00616753, 0.0764526,
-0.0301009, 0.161127, -0.0416005, 0.0922389, -0.0164132, 0.0057535,
-0.00624541, 0.0648743, -0.0318375, 0.157217, -0.0504068, 0.110566,
-0.0290492, 0.0161888, -0.00530173};

vV VvV VYV

cw = {0.519391, -0.130914, -0.0179296, 0.461915, 0.0723412, 0.932946,
-0.275051, 0.212005, 0.0124242, 0.20466, 0.596823, -0.0666406, 0.468797,
0.016528, -0.197056, 0.821136, -0.0721033, 1.00405, 0.0421431, 0.144646,
0.0244597, -1.52666, 0.0533458, -3.93912, 0.0280879, -3.21548,
-0.0937243, -0.850821, -0.476177, -0.0858593, -0.75759, -0.511484,
0.0798708, -0.731707, 0.293368, -0.244488, 0.917343, -0.010026, 3.19174,
-0.00943223, 4.18632, 0.0513861, 2.41267, 0.0660606, 0.537111, 0.202769,
0.0610178, 0.407293, 0.339838, -0.0300465, 0.668582, -0.473654,
0.531278, -0.216056, 0.13069 }

VVVVVVVY

These semi-analytical solutions can be used to test numerical algorithm to study flow in
curved pipes.

5.2 Experimental data.

Here we demonstrate the experimental data of Yamamoto [25]. These data can be
useful to test numerical algorithm to find approximate solution of flow through the
helical tube.

Description of experimental data

Fig. 4 shows a schematic diagram of the laboratory experiment. The helical tube is made
of a vinyl tube reinforced by a steel wire. The tube is wound inside the acrylic straight
circular pipe. Table 1 shows the dimensions of test section employed in the experiment,
i.e., the diameter 2a and the pitch 27zb

2a
yAam O 1l 1
>
n @ 3
L /7

Fig. 4. Arrangements of test section of helical tube.

of the helical vinyl tube, and the distance ¢ between the centers line of the acrylic
pipe and the center of the helical vinyl tube. The lengths of the test section are about
800 mm for GC, FC and EC tubes and 1600 mm for other tubes. The non-
dimensional curvature &, the non-dimensional torsion 7, and the torsion parameter

B, defined by
ac ab 7,

=9 -_% p_ %
b+ ¢t b +c? Py 28
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are also shown in Table 1. The diameter of the helical tube was obtained by putting
water inside and measuring its total volume together with length along the tube. The
parameter O, is the so-called representative curvature and is considered for three cases,

d, =0.01, 0.05 and 0.1 The torsion pai:ameter B, is taken for seven cases by changing
it from 0.45 to 1.72. Each corresponding tube has almost the same /.

Table 1. Dimensions of helical tubes

Label c(mm) 2a (ram) b (rmm) ) T 5,
(@) 8, = 0.01

GA 1.00 11.80 24 .47 0.0098 0.241 1.72
GB 1.50 15.21 33.51 0.0101 0.226 1.59
GC 1.50 8.50 25.94 0.0094 0.163 1.19
GD 3.00 15.24 47.34 0.0102 0.160 1.12
GE 2.50 8.68 33.45 0.0096 0.129 0.93
GF 5.00 11.81 54.54 0.0098 0.107 0.77
GG 15.00 15.19 105.00 0.0101 0.071 0.50
()5 =005

FA 1.00 11.81 10.91 0.0492 0.537 1.71
FR 1.50 15.43 14.93 0.0514 0512 1.60
FC 1.50 8.54 11.52 0.0475 0.364 1.18
FD 3.00 15.16 21.00 0.0505 0354 1.11
FE 2.50 8.79 14.79 0.0488 (0.289 0.92
FF 5.00 11.93 23.98 0.0497 0.238 0.76
FG 15.00 15.38 45.00 0.0513 0.154 048
(c) 4,=0.1

EA 1.00 11.81 7.68 0.0984 0.756 1.70
FR 1.50 15.18 10.50 01012 0708 157
EC 1.50 8.53 8.08 0.0947 0510 1.17
ED 3.00 15.35 14.70 0.1023  0.501 1.11
EE 2.50 8.68 10.31 0.0964 (.398 0.91
EF 5.00 11.84 16.58 0.0987 0.327 0.74
EG 15.00 15.26 30.00 0.1017 0.203 0,45

Definition of friction factor

The pressure inside the helical tube may vary along the circumferential direction as well
as the axial direction of the tube. A line on which the helical tube touches the inside of
the acrylic straight pipe is helical and may be called a contact line. The pressure gradient
along the helical tube can be obtained from the pressure at two different holes on the
contact line. The friction factor A4 is defined by the following equation:

_4p 2
L pw?

where Ap is the pressure drop between two pressure holes on the contact line, L the

distance between these two holes (1400 mm or 700 mm), d = 2a the tube diameter, and
p the water density. The average axial velocity w is defined by the flux Q as
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The Reynolds number is defined by

where v is the kinematic viscosity.

Experimental results and discussion
Friction factor of the straight vinyl tube

In the present experiment three types of vinyl tube of different diameters to form helical
tubes was used. The friction factor A, of each type of tube is first measured when tube

is set in a straight line. If the inside surface of the tube is smooth enough, it will retain
the same flow characteristics as a straight pipe. Fig. 5 shows the results. The open
symbols in this figure mean the experimental data when the tube is smoothly connected
with the outlet of the settling chamber, while the filled symbols stand for the data when
there is a thin-plate circular orifice at the junction between the tube and the outlet of the
settling chamber in order to disturb the flow. The height of the orifice is 6% of the tube
diameter. The straight line denoted by 1 is drawn from the well-known Hagen-Poiseuille
equation

_6

A =/1H—Re

5

(34)

which is valid for the laminar flow, and the straight line denoted by 2 shows the Blasius
equation for the turbulent flow:

A =2, = 0.3164: (35)

R e0.25

The experimental results for all types of tube agree quite well with Eq. (34) for laminar
flow and Eq. (35) for turbulent flow. This shows that the vinyl tube reinforced with a
steel wire has a smooth inner surface. It is also seen that the transition to turbulence
occurs at Re = 2300 when there is a thin-plate orifice at the inlet of the tube.

Friction factor of the helical tube

Fig. 6 shows the friction factor of the helical tube as a function of the Reynolds number
for different torsion parameters f3,. Here, the straight curves 1 and 2 are drawn from

Egs. (34) and (35), respectively. The curve 3, which expresses the friction factor for
laminar flow through a toroidal pipe (£, =0), is drawn from equation obtained

theoretically by Yanase, Goto, and Yamamoto (1989) [26] and this is given by

A=A =4, {0.0938[Rex/5]% + 0.557}. (36)
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This equation is in good agreement with Hasson's experimental formula (see Berger et
al. 1983 [2]) given by

;o A=4, { 0.0969[ Re JE]% + 0.556}. (37)

The straight line denoted by 4 expresses Ito's equation (1959) [27] for turbulent flow
through a toroidal tube (£, =0) given by

0.316v5
A=A =——7 (38)
( Red )
In Egs. (36) and (38), the local curvature & is used instead of % in their original

equations.

K WUER TR 00 0 9 90 4

As

101

AR NAR L ] 31111:1 1
10° 104
Re
Fig. 5. Friction factor of straight tubes.
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-20-

LI N B 0 R T R TTTTTTEATY 'n(a)(SO:O.OI

(b) §,=0.05



L AR B R ] i ¥ IR BLLAEE] H

(©) 6,=01

T
<
o
4

s bt [ [l
U’t-h-u‘--&*\lﬁo

Lo r.el

Re

Fig. 6. (c) Friction factor of helical tubes

When the flow is in a laminar state, the friction factor seems to be well described by Eq.
(36) (or curve 3 for J,=0.01 and 0.05, and S, <0.9. The experimental data, however,
lie a little bit above the curve 3 for J;=0.1 and £, <1.1. The friction factor then
decreases and approaches that of a straight tube ( Eq. (34)) for all J, as S, increases
further.

The friction factor of fully turbulent flow for which the Reynolds number may be greater
than 8000 is in good agreement with Eq. (38) for the toroidal tube when S is less than
about 0.5. Thus, the friction factor increases more than Eq. (38) as /3, increases in the
range of 0.5< f, <1.1. It decreases for further large /3¢ toward the value of the straight

tube. This tendency is clear for large 4.

6. Conclusion

e A set of Navier-Stokes equations in an arbitrary curvilinear coordinate system is
obtained. According to the different values of the parameters k, 7 helical

circular pipes have four special types: straight pipe, planar curved pipe, twisted
pipe and helical pipe.

e The form of Navier-Stokes equation for incompressible fluid flow in arbitrary
curvilinear coordinate system may be advantageous to promote the theoretical
and numerical research of flow through curved pipes. The effect of curvature and
torsion on fully developed flow in pipe can be studied with help of these
equations.

3. The semi-analytical solutions are found in the literature for the fully developed laminar
flow in helical circular pipes.
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e The results of experimental study of a helical tube flow are represented from
[25]. This experiment covers laminar, transition, and turbulent flows for
different cases of curvature and torsion of pipe. The data for the friction factor are
demonstrated as well.
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