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Chapter 1

Introduction

One method for constructing exact solutions of the partial differential
equations is the method of differential constraints proposed by Yanenko in 1964.
The main idea of the method is at the foundation of group analysis and degenerated
hodograph. With differential constraints, the initial system becomes an overde-
termined system. Overdetermined systems of partial differential equations are
systems in which the number of independent equations is greater than the number
of the unknown functions. Finding a solutions of overdetermined system can be
easier than finding a solution of the initial system of partial differential equations.

This research aims to find solutions of nonlinear partial differential equations
in two variables by application of the intermediate integral technique and the
method of differential constraints, through three major cases: the Monge-Ampere,
Korteweg de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations, being
nonlinear equations of second and third order respectively with two independent
variables.

The intermediate integral technique is a special case of differential con-
straints, by assuming differential constraints with order less than order of original
partial differential equations. Using this technique to find a solution of original
partial differential equation means finding a solution of a lower order partial

differential equation that may be easier to find.



1.1 Partial Differential Equations
A partial differential equation
G (1, ey Ty Uy Uy eoey Uy )y Uy gy o-) = 0 (1.1)

involves a function u of independent variables x4, ..., x,,, its partial derivatives and
the independent variables 1, ..., x,. A partial differential equation is called linear
if it is linear with respect to u and its partial derivatives. A partial differential
equation is quasilinear if it is linear with respect to the highest order partial
derivatives appearing in the equation. A partial differential equation is called
nonlinear if it is not linear. For example, a(z,t)u, + b(x, t)u; + c(x, t)u = d(z, t),
where a(x,t), b(z,t), c(x,t) and d(x,t) are known functions and u is unknown
function of the independent variables x and t, is a general form of a linear first
order partial differential equation. The equation u; + uu, = 0 has the nonlinear
term wu, that makes it a quasilinear equation. The equation u; — utt; + Uz = 0
is also a quasilinear equation of third order. The equation u,? + v;> = 1 is an
example of a nonlinear equation.

A function v = @(x1, s, ..., z,) that satisfies a given partial differential
equation is called a solution of the partial differential equation. Obtaining such
a solution for a given partial differential equation is called solving this equation,
and the integral hypersurface of the equation is u — ¢(x1, 23, ...,z,) = 0. The
general solution of an ordinary differential equation is known to be expressed
through arbitrary constants. By using boundary conditions, a particular solution
is then obtained. But for any partial differential equation, its general solution
is expressed through arbitrary functions and for boundary conditions must be
chosen that solution exits and unique. In this thesis, we study a second order

partial differential equation with two independent variables, namely the Monge-



Ampere equation,

U2, — Ugptty = a(x,t), (x,t) € D; (1.2)

xT

and two third order partial differential equations in two independent variables,

namely the Benjamin-Bona-Mahony (BBM) equation,

Uy = Ully + Ugy, (z,t) € D; (1.3)
and the Korteweg de Vries (KdV) equation,

Uy = 6UUL — Ugpy, (x,t) € D; (1.4)

where the independent variables z and t lie in some given domain D in R2.

In 1779 and 1785, Lagrange studied the equation
= ou
P— +R=0, 1.5
2ot =

where P, and R are functions of + = (x1,..,z,) and u. He showed that this

equation may be reduced to a system of ordinary differential equations

dﬂ]l dIL‘Q dxn du
—_— = = e = —/ = —, ]-
P1 PQ Pn R ( 6)

The geometrical theory was studied by Monge, whose research began in 1770.
He introduced the concepts of characteristic curves and characteristic cone. The
characteristic curve is determined by a solution of equations (1.6), which corre-
sponds to equation (1.5), and is defined as the curve in the zu-space. The solution
can then be obtained from this characteristic curves.

Quasilinear Partial Differential Equations and Their Characteristic
Curves

Suppose that the following quasilinear partial differential equation is given:

;pi(x,u)gz =Q(z,u), x=(x1,...,7,).



[ts characteristic curve is defined by a solution x; = z;(t),u = u(t) of the system

of ordinary differential equations

dx; d
dJ; =pi(z,u), i=1,..,n; @ _ Q(z,u).

The characteristic curve passing through any point on the hypersurface u = u(x)
in n+ 1 dimensional zu-space and contained in the hypersurface is necessary and
sufficient for u = u(z) to be a solution of quasilinear equation.

Nonlinear Partial Differential Equations and Their Characteristic
Strips

Consider the partial differential equation

ou

F(zy,...,Tp,u,p1yypn) =0, pi= p

with the surface element (or hypersurface element) defines by the (2n + 1)-
dimensional vector (z1, ..., Tp, u, p1, ..., pn) sSuch that aset (x1(t), ..., z,(t), u(t), p1(t),
., Pn(t)) of surface elements depends on a parameter ¢t and satisfies the system

of ordinary differential equations

W= G =X =R an)
The last system is called a characteristic strip of the previous equation with
characteristic curve x(t),...,z,(t) and u(t). In general, a solution of the partial
differential equation can be obtained from characteristic strip, as initial values

and the surface elements belonging to an (n — 1)-dimensional, union the surface

elements that satisty F'(xq,...,x,, u,p1, ..., pn) = 0.

1.2 Cauchy Problem

One of the fundamental problems in the theory of partial differential equa-

tions is to find a solution (an integral) of a differential equation that satisfies initial



conditions (initial data) specified for ¢ = 0. The solution is required for ¢ > 0.
This problem with the initial data is called a Cauchy problem: it differs from
boundary value problems in that the domain in which the desired solution must
be defined is not specified in advance. However, Cauchy problems, like boundary
value problems, are defined by imposing a limiting condition for the solution on
(part of) the boundary of the domain of definition. The simplest Cauchy problem
is to find a function u(z) defined on the half-line = > xg, satisfying a first order

ordinary differential equation

") (1.7)
where f is a given function and taking a specified value uy at xq:

u(zo) = uo. (1.8)

In geometrical terms, this means that, considering the family of integral curves
of equation (1.7) in the (x,u) plane, one wishes to find the curve passing through
the point (zg,up). The existence of such a function (on the assumption that f
is continuous for all x and continuously differentiable with respect to u) was
proved by A.L. Cauchy (1820-1830) and generalized by E. Picard (1891-1896),
who replaced differentiability by a Lipschitz condition with respect to u. Under
those conditions, the Cauchy problem has a unique solution which, moreover,
depends continuously on the initial data. For linear partial differential equations

Lu = Z aa(a:)% = f(z), (1.9)

lal<m v

the Cauchy problem may be formulated as follows. In a certain region D of
variables © = (x1, ..., ) it is required to find a solution satisfying initial conditions.
This means that it takes on the specified values, together with its derivatives of

order up to and including m — 1, on some (n — 1) dimensional hypersurface S



in D. This hypersurface is know as the carrier of the initial conditions (or the
initial surface). The initial conditions, the Cauchy data may be given in the form

of derivatives of u with respect to the direction of the unit normal v to S:

%quﬁk, o<k<m-1, (1.10)
where the ¢x(z), © € S are known functions. The formulation of the Cauchy
problem for nonlinear differential equations is similar. A concept related to the
Cauchy problem is that of a noncharacteristic surface. If a non-singular coordinate
transformation x — z’ straightens out the surface S in a neighbourhood of zg,

that is, it transforms it into a part of the hyperplane z], = 0, then the coefficient

of (0/0z))™ in the transformed equation (1.9) is proportional to

Qz,v) = Z ao(z)v, v*=uvit v,

la)l=m

The surface S is said to be noncharacteristic at the point xy if

Q(zo,v) # 0.

Cauchy problems are usually studied when the initial surface is a noncharacteristic

surface, that is Q(zo,v) # 0 for all zy € S.

1.3 Cauchy Method

If the partial differential equation is a first order equation, then the solution
can be found by using the method of characteristics (or Cauchy method). Let us
illustrate the method of characteristics with a quasilinear differential equation in

two independent variables x and t. Consider the quasilinear equation:
Pz, t,u)u, + Q(x,t,u)uy = R(x,t,u).

The characteristics are given by:



We solve any two of the following three ordinary differential equations:

de dt de du dt  du

P Q P R Q R
After solving two equations from previous system, one obtains the general solution

of these equations as functions of x,t and u defined by

E(x,t,u) = ¢, n(z, t,u) = co.

The general solution of the original quasilinear equation is then f (&, n) = 0.
Simultaneously, if P, P, ..., P, are functions of n independent variables

1, Ta, ..., T, such that

ou ou ou
P—+P—+..+P,— =0.
181’1 + 28@ et oz,

Then to find the solution of this equation is equivalent to solving the system of

ordinary differential equations:

% _ Ozy oz,
Py

?2 e Pn

If fi, fo, ..., fn_1 are n—1 independent integrals of this equation, then for an arbi-
trary function ¢, u = ¢(f1, fa, ..., fn_1) is a general solution of original equation.

The method of characteristics is extended to use with nonlinear first order
partial differential equations in two independent variables. The most general form
of a first order partial differential equation in two independent variables can be
written as

F(z,t,u,ug,u) =0, (1.11)

Let p = u, and ¢ = u;. Consider an integral surface u = u(z,t) that satisfies
equation (1.11). Its normal vector has the form [u,,u;, —1] = [p,q,—1], and
equation (1.11) requires that at the point (x,¢,u), the components p and ¢ of the

normal vector satisfy the equation

F(z,t,u,p,q) =0. (1.12)



Each normal vector determines a tangent plane to the surface, and equation (1.12)
is seen to generate a one parameter family of tangent planes which could be the
integral surfaces at each point in (x,¢,u) space. For instance, if equation (1.11) is
uzug—1 =0, then F' = pg—1 = 0 with ¢ = 1/p determines a one parameter family
of normal vectors [p,q, —1] = [p,1/p, —1] at each point (x,t,u). These equations
require that F,”+F,” # 0. Equation (1.12) can be considered as a relation between
the point (z,¢,u) on the integral surface u and the direction cosines of a tangent
plane at that point. Therefore the tangent planes at all points of the surface form
a one parameter family. In general, the tangent plane determined by p and gq.
They envelope a Monge cone on u whose vertex is (z,t,u). The tangent plane
at point (x,t,u) on the integral surface u is tangent to this cone along one of
the generating lines, G. The intersection of the Monge cones with the surface
determines a field of a directions on the surface called characteristic directions. A
curve on u whose tangents are all generating lines of this cone is a characteristic

curve. Then the characteristic curve is given by the system of ordinary differential

equations:
de dt du ~ —dp  —dq
Fy Fq_pr+qu_Fx+pFu_Ee+un'

This equation is called the characteristic differential equation or Charpit subsidiary
(auziliary) equation of partial differential equation (1.11). It determines not only
x,t,u but also p and ¢g. The set of these surface elements (z,t,u,p, q), character-
istic manifold, is considered as a part of the integral surface with infinitesimal
width, and in this case it is called a characteristic strip. The characteristic strip

is represented by the equations
T = I()\), t= t()‘)a U= u()‘)a p= p(/\)7 q= Q<)\)

containing a parameter X\. On the integral surface u = u(z, 1),

du B du dx n du dt
d\  drd)\  dt d\



and

du = pdx + qdt. (1.13)

Equation (1.13), called the strip condition such that the previous equation must
satisfy this condition. Generally, a single partial differential equation in one

unknown function defined by

with initial data
x;=w(t), u=wu(t), =12 ..,n (1.15)

is called a Cauchy problem. Here x = (xy, 22, ...,z,) are independent variables,
p=(p1,P2y -, Pn)s Pi = g—;, i=1,2,...,nand t = (t1,ts,...,t,_1) are parameters
of the initial values. The functions wu(t), x;(t) and F(x,u,p) are continuously
differentiable with a set (x(t), u(t),p(t)) of surface elements depending on a pa-
rameter t. The Cauchy problem for equation (1.14) consists of finding an integral
surface passing through a given (n-1)-dimensional initial condition. The Cauchy’s

method uses the following characteristics:

dx; du dp;

g Mk P _(Ep+FE), i=12 .0 (116
ds Pi» dS p DPi ds ( p+ 7,) t n ( )

with initial data at the point s =o0:
r=uxz(t), u=u(t), p=p(t),

where x = z(t) and w = u(t) are characteristic curves determined by equation

(1.15). The initial data p(t) are obtained from equation (1.14) and the tangent

conditions:
8xi
F(z(t),u(t),p(t)) =0, u, () = pi(t)g—tk(t), (k=1,2,..,n—1).
After solving the characteristic system, wu(s,ty,...,t,—1) and z;(s,t1, ..., th_1),

i =1,...,n are obtained. The solution u = u(z) is discovered by the elimination



10

of the parameters s, t1,...,t, 1 from the equations z = z(s,t) and u = u(s,t). The
condition
oNxy,. .., xp Fy,
A= 5 (1’;7 tx ) =det 8 # 0
(57 1y ooy n—l) aﬂjl/atk

is sufficient for this elimination. To find the function u as solution of the partial

differential equation, we can use the following theorem.

Theorem 1.1 The function u(xy, s, ..., x,) is constructed by solving the Cauchy

problem (1.16) with initial data (1.14), (1.15), satisfying the condition
A0ty .y tn1) #0,

gives the solution of the Cauchy problem (1.14), (1.15).

1.4 A Demonstration of the Intermediate Integral Technique

In fact, any system of partial differential equation may be reduced to a
system of first order partial differential equations. After augmenting new unknown
functions and all their partial derivatives, the new system must be complete

(Hazewinkel, 1995). For example, consider the equation
F(‘Ta 757 U, Ug, Uty Ugyy Ugt, utt) =0.

By introducing new unknown functions v = wu, and w = wu; this equation is

reduced to the following system of first order equations.

F(x7t7uavawavz7vt7wt) = 07
U, —v = 0,
Ut — W = 0,

v —w, = 0.
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where the last three equations are independent. One way to reduce the order of
high order partial differential equations to lower order partial differential equations
is the intermediate integral technique. Consider a general partial differential

equation

G (T4, oy Ty Uy Uy ooy Uy s Uy gy ooy Uy, ) = 0. (1.17)

Definition 1.1 A first order differential equation

V(T 1y ey Ty Uy Uy vy Uy, ) = 0 (1.18)

is called an intermediate integral of equation (1.17) if any solution of equation

(1.18) is also a solution of equation (1.17).

With the help of intermediate integrals, solving a partial differential equations is
reduced to finding solutions of less order. For example, consider an intermediate

integral of the second order differential equation

F(xayauap7(.77r> $>t) = 07 (119)

where 7 = Uyy, 5 = Uy, t = Uyy, D = Uy, ¢ = Uuy. Any first order differential

equation
v(z,y,u,p,q) =0, (1.20)

is called an intermediate integral of the equation (1.19) if and only if the solution
of this equation is also a solution of equation (1.19). For simplicity, begin studying

an intermediate integral of quasilinear differential equation

s+ pA(z,y,u) + ¢B(x,y,u) + C(z,y,u) = 0. (1.21)

Conditions for existence of intermediate integrals of this equation will now be

obtained. After differentiating equation (1.20) with respect to x and y, we obtain



12

a system of linear algebraic equations for the second order derivatives is obtained
s+ pA(z,y,u) + ¢B(z,y,u) + C(x,y,u) = 0,

Upl + UgS FUuup+ v, = 0, (1.22)
UpS + vgt +vyq +v, = 0.

The general solution of equation (1.20) has one arbitrary function. Hence, if

equation (1.20) is an intermediate integral, the solution of equation (1.22) should

also have such arbitrariness. Thus

0 1 0
(R 0 = —UpUq = 0.
0 vy, vy

Let v, # 0, v, = 0. Without loss of generality one can take v = p+g(z, y, u)

and from equation (1.22) one has
4(9u — B) + gy +9A—C =0.

Since u(x,y) is an arbitrary solution of equation (1.20), one obtains from the last
equation:

gu—DB =0, g+ Ag—C=0. (1.23)
Note that the last equation of system (1.22) is a linear combination of the first
and second equations. System (1.23) is an overdetermined system for the function

g(x,y,u). From the compatibility condition of g,, = g, one gets
AB+ B, + A,g—C, =0.
If A, =0, then
B,+ AB - C, =0,

and in this case, these conditions are sufficient for the existence of an intermediate

integral. If A, # 0, then
B, +AB - C,
Ay
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Hence, after substituting the function ¢ in the second equation of (1.23) one

obtains

B, +AB - C,

( B, +AB - C,
Ay

Ay

B, +AB - C,

1 - C=0.

)u_B:O> (

)y + A

These conditions provide the existence of the intermediate integral for equation
(1.21). The case v, = 0 is similar.
To illustrate the method of intermediate integrals in a relatively simple

case, we consider the wave equation
2
Ut = C Ugy, (124)

where ¢ is a constant. To use a differential constraint of first order, we assume
that

u = o(Ug,u,x,t). (1.25)

Recall that this differential constraint is called an intermediate integral if any
solution of equation (1.25) is also a solution of equation (1.24). Using the chain

rule, one can derive u,; and wuy from wu, in equation (1.25)

Utp = Py Uzt T PuP + ©Op. (1.27)

Substituting u,; from equation (1.26) into equation (1.27), one gets
U = Op Usz T PupPulle + PugPa + PuP + ¥r.- (1.28)
But from equation (1.24), uy — c*uy, = 0, therefore one obtains
(02, — A tae + PuuPullc + Pus + Pup + 9y = 0. (1.29)
To justify our next steps, let impose the initial condition

u(z, to) = h(zx), (1.30)
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Because the line ¢ = ¢, is noncharacteristic for equation (1.25). For an arbitrary
function h(x), there exists a unique solution of the Cauchy problem (1.25) and

(1.30). The function h(z) can be chosen as
h(z) = %(fc — x0)? + Bz — x0) + 7, (1.31)

where o, # and -~ are arbitrary constants. Now fix an arbitrary = = xy. Then in
a neighborhood of the point (zg,%), there exists a unique solution wu(zx,t) such

that at (zg, %), one has

'U/(.flfo,to) =7, uI(xOJt(]?) = 67 wa(l'(),to,) = Q. (132)

We now cousider all arguments involved explicitly; so that equation (1.29) becomes

(Spur (B? 7, Zo, to) - C2)Oé + Puy (67 v, Zo, tO)qu(ﬁl Y, Zo, tO)B
+§0uz (/67 Y5 To, to)gDm (67 v, Zo, t(]) + Spu(ﬁa v, To, tO)SO(ﬁ? 7, To, tO) (133)

+90t(67 5 Zo, tO) = 07

for all «, (3, v, ¢ and ty. One can now split the equation with respect to «, since

the functions do not have o as an argument. The coefficient of « is

0o (8,7, w0, t0) — & =0, (1.34)

which implies that

(P(ﬁ,")/,iﬂo,to) = /Lﬁ + G(’Y,Z’O’ tO)v (135)

where p = +c. Substituting this result into equation (1.33) one obtains
201040 + aa, + pa, + a; = 0. (1.36)
Now split with respect to § with similar reasoning. Then one gets

2pay, =0, (1.37)
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that is

a(7, o, to) = a(o, to)- (1.38)

Since x, to and [ are arbitrary, substituting equation (1.38) into equation (1.36)
one obtains

pag(x,t) + ay(z,t) = 0. (1.39)

The solution of equation (1.39) is

a(z,t) = g(z — pt). (1.40)

Hence

p = puy + g(z — pt), (1.41)
where ¢ is an arbitrary function. This implies that u, = pu, + g(zr — pt). One
has now obtained the explicit form of u,; in equation (1.25). To obtain u(x,t) as
a solution to the original wave equation, let & = x + ut and n = x — ut. Then

1

w = pug — puy, and u, = ug + u, . That is, u, = g(n). Solving for u, one

gets:
u = —i g(md(n) + p(§)
= o(n) + p(&). (1.42)

where ¢ and p are arbitrary functions. Hence the method of the intermediate

integrals technique yields the same solution as d’Alembert’s solution.

1.5 Differential Constraints: An overview

Another method of finding exact particular solutions of partial differential
equation is that of differential constraints. Its idea is the following. Given a

system of differential equations,

Fi(z,u,U) =0, 7

1,...,n, (1.43)
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we augment differential equations

Op(z,u,U) =0, k=1,...,q, (1.44)
where x = (z1,...,1,) are the independent variables, u = (u',... ,u™) are the
dependent variables and U = (u) is the set of derivatives uf = % with

j:(jlu"‘7jn)7 a:17'”7m7 ’j|SQ7 ‘]|:j1++]n

Definition 1.2 The system (1.44) is called the differential constraint to system

(1.43).

System (1.43)-(1.44) is an overdetermined system and has to be compatible. The

differential constraints (1.44) are said to be admitted by system (1.43).

Definition 1.3 A solution of system (1.43) satisfying (1.44) is called the solution

characterized by the differential constraints (1.44).

Using the method of differential constraints involves two stages. The first stage is
to find the set of differential constraints (1.44) compatible with the overdetermined
system. In the process of compatibility analysis, the overdetermined system
(1.43), (1.44) can be supplemented by new equations. The second stage is to
construct the solutions of the involutive overdetermined system. Since it has more
conditions, then it should be easier to construct particular solutions of the system
(1.43). A classification of differential constraints and their characteristic solutions
can be carried out with respect to the functional arbitrariness of solutions of the
overdetermined system (1.43), (1.44) and the order of highest derivatives included

in the differential constraints (1.44).



Chapter 11

Monge-Ampere Equation

The partial differential equation
U2, — Ugpuy = alz, t). (2.1)

is called the Monge-Ampere equation. If a(z,t) = 0 then equation (2.1) is
called homogeneous;, otherwise it is called nonhomogeneous. If a(xz,t) > 0, it

is hyperbolic. If a(x,t) < 0, it is elliptic.

2.1 Homogeneous Monge-Ampere Equation

Finding the solutions of the Monge-Ampere equation by the intermediate
integral technique, involves assuming the existence of the first order differential
constraint

up = Uy, u, x, 1), (2.2)

Using this condition, one derives u,; and uy:

Ut = Py, Uzt + Oyl + @y (24)

By substituting equation (2.3) in equation (2.4), one obtains

Ut = P Uy + Puy Pully + PuyPu + Pully + P (2.5)
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Substituting (2.3) and (2.5) into equation (2.1), it becomes:

QZ5<J], t, Uy Ugy Ugry Pug ) = (@ux@uux + Pug P — Pup — th)U;m
+20upaUs + Pouz + O

= 0. (2.6)

Let us study the properties of solutions of equation (2.2). According to the
definition of intermediate integral solutions, equation (2.6) has to be satisfied

for any solution of equation (2.2). By imposing the initial condition
u(z,ty) = h(x), (2.7)

when h(z) is an arbitrary function there exists a solution of Cauchy problem (2.2)
and (2.7), since the line ¢ = ¢, is noncharacteristic for equation (2.2). Again one

can choose h as follows
« 2
h(z) = 5(96 —x0)" + B — ) + 1,

where «, (3, v and xg are arbitrary constants. Then in a neighborhood of the
point (xg,to) there exists a unique solution u(z,t) such that at the point (zo, to),

we have:
w(xo,to) =7, uz(zo,t0) =B, Uza(z0,t0) = @,

so that equation (2.6) at the point (o, ) becomes

(qugp (6a 7, Zo, tO)@u(ﬁa Y, Zo, tO)ﬁ + Pug (57 7, Zo, tO)@z‘(ﬁ7 7, Zo, tO)
_¢U<67 75 Zo, tO)gp(ﬁ? 7> Zo, tO) - @t(ﬁv s Zo, tO))a + 2@“(67 7, Zo, tO) (28)

@$(5777$07t0)5 + gpi(ﬁ777 Zo, t0)52 + 802(6777 .flf(),to) = 0.

Comparing (2.6) and (2.8), due to arbitrariness of zo, ty, «, (3 and ~, one can

consider equation (2.6) as an equation ¢(x,t, u, Uy, Uz, Pu, , ---) for the function
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o(uy, u, z,t) with independent variables z, t, u, Uy, Ug,,.... hence the coefficient

of u,, must be 0 as well as the other terms. Thus we obtain:

Pup Pulle + PuyPe — Pup — 02 = 0, (2.9)

and

20uPatie + Pous + 5 = 0. (2.10)
Equation (2.10) can be rewritten as
(utte +¢2)° =0, (2.11)

that is

Oully + @ = 0. (2.12)

After substituting (2.12) into equation (2.9) one obtains

Pup + ¢ = 0. (2.13)

The characteristic equations of quasiliner equation (2.12) are given by

d du, d d dt
& _ M. _du_4ar_ & (2.14)
0 0 Uy 1 0

Invariants of characteristic system of equation (2.14) are ¢ = ¢, u, = ¢,

c3 =u—ur, t = c4, Where ¢y, ¢y, c3 and ¢4 are constants. Thus the general

solution of equation (2.12) is Y (¢, Uz, u — xu,, t) = 0. It can be written as

¢ = W(uy,t, (), (2.15)

where ( = u— zu,. Using equation (2.15), we obtain ¢, = U, and ¢, = V,. After

substituting these values into equation (2.13), the following equation is obtained:

Ul + W, = 0. (2.16)
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To find the solution of this first order quasilinear partial differential equation
(2.16) by the Cauchy method (see chapter I), the following are characteristic

equations of equation (2.16):

dt

d¢ dU
— = —= =
ds

1 _ ar
" ds " ds

= 0.

The general solution of this system is t = s+ k;, ( = Us+ k3 and ¥ = ko, where
ki, ko and k3 are constants. Now using the initial conditions ¢t =0, ¢ = 7, and

U(0,7) = g(7) at the point s = 0, we obtain:
kl = 07 ]{72 = g(T), ]{?3 =T. (217)

Hence

t=s, (=VYs+71, ¥=g(r). (2.18)

From system (2.18), we obtain: ¢ = g(7)t + 7 so 7 = ¢ — g(7)t. Knowing the

function ¢g(7) and using the inverse function theorem, one obtains

T = f((,1). (2.19)

Finally the solution of equation (2.16) is

U= g(f(¢ 1)), (2.20)

an intermediate integral in the homogeneous case.

2.2 Nonhomogeneous Monge-Ampere Equation

In the nonhomogeneous case, we consider (2.1) with a(z,t) = £1. It can
be written as

U2, — Uppyy = 1. (2.21)

First, assuming the existence of a differential constraint of first order as in equation

(2.2), we find the same derivatives u,; and uy in (2.3) and (2.5). After substituting
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these derivatives into equation (2.21), we obtain;

(I)(I7 by Uy Uy, U Pug ) = (@ulgpuux + Pup Pz — PuP — (;Ot)u;m’
20 Pzl + goiui + cpi —€

— 0. (2.22)

where € = +1 in equation (2.22). Let us study properties of solutions of equation
(2.2). According to the definition of an intermediate integral solution of equation
(2.22) has to be satisfied for any solution of equation (2.2). By imposing the
initial condition

u(z,ty) = h(x), (2.23)
then h(z) is an arbitrary function there exists solution of Cauchy problem (2.2)
and (2.23), since the line t = ¢, is again noncharacteristic for equation (2.2). For

example one can choose as follows
o 2
h(z) = (o — o) + Bz — 70) +,

where «, (3, v and xg are arbitrary constants. Then in a neighborhood of the
point (xg,to) there exists a unique solution u(z,t) such that at the point (zo, to),

we have:
w(zo, to) =7, uz(xo,t0) =B, Uz(xo,t0) =,

so that equation (2.22) at the point (zg,ty) becomes

(SOUT (67 Y, Zo, tO)SOu(/BJ v, Zo, tO)ﬁ + Pug <67 v, Zo, to)@x(ﬂ, 7, Zo, tO)
_§0u<ﬁ, 7, To, tO)@(ﬁ? Y5 To, tO) - ¢t(ﬂ7 7, To, tO))a + 2¢U(ﬁ7 Y5 X0, to) (224)

0 (3,7, 70, t0) B + (B, 7, To, t0) 3% + ©2(B,7, T, to) —€ = 0.

Comparing (2.22) and (2.24), and since xg, to, «, [ and ~y are arbitrary, one can

consider equation (2.22) as an equation ®(z,t, u, Uz, Ugz, Pu,, ---) for the function



22

o(uy,u,z,t) with the independent variables x, ¢, w, g, Ugg,.... Hence the
coefficient of u,, must be 0 as well as the other terms. These properties can be

written as the following pair of equations:

Pup Pulle + PuyPe — Pup — @1 = 0. (2.25)

and

PoUZ + @5 + 2putaips — € = 0. (2.26)

The last equation can be rewritten as (U, + ¢.)* — € = 0. It shows that further
analysis of intermediate integral can be done only for ¢ = 1. In this case equation

(2.26) can be expressed as:
Oully + @ +1 =0, (2.27)

or

Oully + . — 1 =0. (2.28)

Note that equation (2.28) can be obtained from equation (2.27) by changing z to

—x. Therefore we study only equation (2.27). Its characteristic equation is

du, du dx dt d
Yo GW_ 0T G0 4P (2.29)
0 w, 1 0 -1

The last equation has invariants of characteristic system: wu, = hy, t = ha,
u—u,x = hs, ¢ + = hy, where hy, ho, hs and hy are arbitrary constants.

Hence the general solution is
K(ug, t,u —uzz,p+2)=0

or

o = Fl(ug, t,§) —x, (2.30)

where { = v — u,x. From equation (2.25) and equation (2.26), we obtain

Pup + Pup + @ = 0. (2.31)
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Because of the representation of equation (2.30), the following derivatives are
obtained
Ouy, = Fup — 0, oy = Fe, o = Fy.
After substituting them into equation (2.31), it becomes
F,, +F.F+F=0. (2.32)
This quasilinear equation (2.32) can be solved by the Cauchy method:
dF  du, dt d¢

— =0, —=1, — =1
ds ’

— =F
ds " ds " ds

The general solution of this system are
Uy =S+, t=5+co, F=rc3, £ =Fs+ ¢y,

where ¢q, ¢y, c3 and ¢4 are arbitrary constants. After using initial values;

At the point s = 0, one can find the constants
c1=0,c0=0, c3=9(7), ca =T.
Hence
U, =8, t=s, &=Fs+1, FF=g(r).

These imply that £ = g(7)t + 7 so that 7 = £ — g(7)t. Knowledge of the function
g(7) and use of the inverse function theorem helps one to obtain the solution of
equation (2.32):

F=g(f(& 1) (2.33)

From equation (2.30), we obtain:

p=g(f(&1)—= (2.34)

is an intermediate integral in this case.



Chapter III

KdV and BBM Equations

The solution of third order partial differential equations, Korteweg de
Vries (KdV) and the Benjamin-Bona-Mahony (BBM) equations are found in this

chapter through the technique of differential constraints.

3.1 Korteweg De Vries Equation

The KdV equation can be written as
Uy — OUUy + Uy = 0, (3.1)

where z and ¢t € R! with u(z,t) € R2 It was proposed by D. Korteweg and
G. de Vries to describe wave propagation on the surface of shallow water. The

differential constraints method will be applied to solve it. Assume that
u = (g, u, z,1) (3.2)

is a differential constraint of equation (3.1). By differentiation of equation (3.2)
with respect to ¢t and x, one derives wy, Uy, Uy, Uz and Uz (0N the computer
using a symbolic calculation system). Note that all these derivatives are functions
of uy,, u,, u, v and t. The derivative u,,, can not be derived by this manner,

but it can be obtained from equation (3.1)
Upgr = — @ + 6UU,. (3.3)

Thus one can find all third order derivatives through u,, u,, u, z and . Since we

are working with enough time continuously differentiable functions, we use the
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following consistency conditions:
Uggrt — Ugatx = 07
Uggtt — Ugtt,x = 0, and (34)
Uzttt — Utttz = 0.
The commas in system (3.4) denote the fourth derivatives that can be taken; we

start working with the first equation of system (3.4). The left side of this equation

is a polynomial function with respect to wu,; :
P(ugy) = Ayl + Agu?, + Astiye + Ay = 0,
where
A1 = Pugupue (3.5)
A = UsPungu, T Puns + Pugusas (3.6)
Az = U Pun, + Uz 2Pz + Pun + 6Pusu, ) + Puz + Pusze — Pupuas (3.7
and finally

(3.8)

- 690%90“ + 290) + o — B(PuszO + Oozz — 690967“6-
In this study we consider the case where the consistency conditions do not produce
new equations of constraint. Then all coefficients with respect to u,, of this

polynomial must be equal to zero. Hence A; = Ay = A3 = A4 = 0. The solution

of equation A; =0 is
1 2
o= §a(u, z, t)u; + b(u, z, t)u, + c(u, x,t), (3.9)

where a, b and ¢ are the functions of independent variables u, x and ¢. Hence

after substituting ¢ into equation As = 0 one has

20,y + ay + b, = 0. (3.10)
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The equation A3 = 0 can be rewritten as

U2 Gy — 3UZ(—Duy — by + a%) — 6Up(— a4y

(3.11)
—3byz — Cyu + ab — 6au) — 6(—byy — Cyz +ac) =0
and equation A4 = 0 becomes:
U2 Gy — U (—3yue + 30,0 — 2byyy) — U (—3uzs + 6a,b
—36a,u + 30,0 — 6byyy + 3bya — 2Cuuy — 6a ) — u2 (6ayc
—y — Uy + 6a,b — 30a5u — 6D,y + 6b,b — 36b,u + 3b,a (3.12)

—6Cuuz) — 2Ug( 3azc + 3byc — ay — Ay + 60,0 — by — byyy
+3b,b — 12b,u — 3cygy + 6¢) — 2( 3byc — ¢4 — Cppa + 6c,u) = 0.

Let us study equation (3.10) and (3.11). The left side of these equation is a
polynomial function with respect to u,. Since consistency conditions do not
produce new equations, all coefficients with respect to u, of this polynomial must

be equal to zero. Therefore
a, =0, a,+0b,=0, (3.13)

4byy — a* =0, Gy + by + Couw — ab+6au =0, by + e —ac=0. (3.14)

After substituting the b, found from system (3.13) into the first equation of system
(3.14), we get

a=0. (3.15)

Hence b, = 0 : that is, the function b depends on independent variables x and ¢.

Therefore the second equation of system (3.14) yields
) (3.16)

This means that

c=c(z, t)u+ oz, t), (3.17)
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where ¢; and ¢y are functions of independent variables x and t. The last equation
of system (3.14) becomes:

[—Y (3.18)
Equation (3.12) can be rewritten as

Up (— by — bygr + 3bpb — 12b,u — 3¢y, + 6ciu+ 6¢o) + 3bico
(3.19)

2
+3b,C1U — C1U — Clppptl + 6C1,U" — Cop — Copuy + 6Cou = 0.

Since in equation (3.19) the left side of this equation is a polynomial function

with respect to u,, the coefficients have to be equal to zero:

by + byre — 3b.0+ 12b,u 4 3¢1,, — 6c1u — 69 = 0,
(3.20)

3 by + 3 byt — LUl — Clypptt + 6C1,u* — Cop — Cogyy + 6Cou = 0.
The left side of system (3.20) is now a polynomial function with respect to wu,

therefore

2bx —C1 = O, bt —3bxb— 6C2 = O, Cly = O,

(3.21)
Bbxcl —C + 662:0 - 07 beCZ — Cot — Coggy = 0.
The third equation of system (3.21) indicates that
= (), (3.22)

with ¢; a function of only the independent variable . Integrating the first equation
of system (3.21), one has
1

b= bl(t) + 561!17, (323)

where b, is a function of the independent variable t. Hence the following equation

is considered instead of the fourth equation of system (3.21):
2c1;, — 12¢9, — 3¢} = 0. (3.24)
Studying the last equation of system (3.21) one obtains

202t - 30102 = 0. (325)
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Consideration of the second equation of system (3.21) yields the following:
4byy + 2¢1,0 — 6bicy — 3cix — 24cy = 0. (3.26)
The left side of equation (3.26) is a polynomial function with respect to x, hence
2c1; — 3¢t =0, 4by;, — 6bic; — 24cy = 0. (3.27)
From equation (3.24) and using the first equation of system (3.27), we find that
ey = cot), (3.28)

Therefore ¢, is a function of one independent variable t. Integrating the first

equation of system (3.27), we obtain:

2
= 3.29
(&1 le _ 3t7 ( )
with some constant k;. We then integrate equation (3.25) to get:
—ky
Cy = m, (330)
where ks is a constant. The second equation of system (3.27) becomes
b14(2ky — 3t) — 3by + 6ks
= 0. 3.31
2k, — 3t ( )
The general solution of equation (3.31) is
—ks — 6kot
by =———— 3.32
1 2]{51 — 3¢ 3 ( )

with some constant k3. Therefore the following differential constraint is obtained:

. —k3—6]€2t+l’ 2u—k2

_ i . 3.33
14 ok —3t T op —at (3.33)

Without loss of generality, by the transformations T = z — ks and t = ¢ — %k,’l, one
can account that k; = 0 and k3 = 0. But ¢ = u,, so that the following equation

is considered instead of equation (3.33) to find the function wu:

3tus + (v — 6kat)u, = ko — 2u. (3.34)



29

This quasilinear equation can be solved by the Cauchy method (see chapter I)

with its characteristic equation:

dt dx du

— = = . 3.3
At last, the solution of equation (3.34) is
1
u(w,t) = Sk + t72BF (2 + 3kot)t/3). (3.36)

If ky = 0, then u(z,t) = ¢t 2AF(zt7'/3) is a solution of the KAV equation

(Ibragimov, editor, 1994), where F' satisties equation

A N 1 - 2«
Fyyy—l—FFy—gyFy—gF:O.

3.2 Benjamin-Bona-Mahony Equation

Another equation of interest to this thesis is the Benjamin-Bona-Mahony

(BBM) equation that can be written as
Up = Uy + Uty (3.37)

where x and t are independent variables and u is a function of these independent
variables. We shall use the method of differential constraints again. First, assume
that

up = @(Uyg, u, x, 1), (3.38)

a differential constraint for equation (3.37). Without loss of generality one can
assume @2 + ¢, # 0. Otherwise, the method of differential constraints does not
work. In this case, u; = ¢(x,t) with no other restrictions for the function p(x,t):
for any solution of the BBM equation one can select the function ¢(z,t). We can

derive the derivatives s, U, Ugpapt, Uzre aDd Uy, as in the KAV equation. After
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substituting u; and uy,, into equation (3.37), the following equation is obtained:

2 2

(3.39)

This thesis studies the equation (3.39) in the case ¢,, # 0. The derivative .,

can be obtained from equation (3.39)

—1 2 2
P (3.40)

+ (Pu + 2Pupa)Uez + (U + 200z ) Uz + Poz — @)
Hence, one can find all third order derivatives through w,,, u,, v, x and t. Since

the function u is a sufficiently continuously differentiable function, we can have

the following consistency conditions:

Ugga,t — ua:a:t,ac - Oa
Ugztt — Ugtt,e — O; (341)
Ugtt,t — Utit,e — 0.

In system (3.41) as before, the commas denote differentiation. As with the KdV
equation in previous section, we start working with the first consistency condition.
The left side of this equation is a polynomial function with respect to u,,. Since

this thesis studies the case where consistency conditions do not produce new

equations, all of coefficients with respect to u2,, u2, and wu,, must be equal to
zero. Therefore,
2

SOUJ?
2 2
Ug <_ 2 Vuugug Oy, T 2 Pty PugusPus — PuPugugusPus T QOuSOumum)
(3.43)
—Ptuzuzr Pus + Ptug Puzug =+ 2()0uzx()0uzuz Pug
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ugzc (=2 PrrguePuPus T 2 Pury PuPugus — @uuuzgpzw

FPuuPuguy @ux) + uw(_QSDutuz Oup T 2000, Pru, — 290uuxx9012%

—2Puiptiy P Pz — 3Puus PuPus T 20wy Pugus Pz T 2PurPugus Pug

—2Puuue Pus P + (PzSDuzuz + 200 PuePusus — 2PuPuguazPus
(3.44)

+3Pugus Pua b + 2000, P — 290uu903z> — PutPu, T Puu, Pup

_quzm&@ix + Q@uuz Puzzf — 390uuz Pus Pz — 290ux‘p12;x — PunPu, ¥

2 PupePusuePe = 2 PugueePusPr T Pusus Pus Pz — 3Pugus Pua® = 0,

and

U Pu(— PunsePus T PunPusue) T Us (—2 PuueaPuPuy + Pune Punp

+ 200, P, U + 200 PulPrugue — PrurnPua P — PuntPus — Punug Pug P
—2 PuuPuPus T PunPrus + PunPusus P + PuPrpuatt + @2 ) + s
=2 PutePuy — 2PurerPup P + 20w, Puz® = 2Puu, Pue P+ Puu, PU
~2 PurPuPun + 2 PucPrun T 2PusPuruaP — 2 PurcPua® — PugP (3.45)
=2 PuuPuPr — PuPupzePu T PuPusuePrz — PuPupu,® T Pru,U
+ 20u,0Pu, U+ Puguy Palh) + Pury PozP — PurePusP — 20PuzPuy Pz
— Puuy O°— Ptez Pus — PuszaPusPo — 2 Pusz Pus P — Pup Pall
FPuptin PrePr — Pugua PP + Pug Paz + PrPu, = 0.

To solve equation (3.42) for ¢, , let V' = ¢, . Equation (3.42) can then be

rewritten as:

VU Uu. V’lL
JUale | TUx
Vi Vv

Integrating the last equation with respect to u,, one gets:

(puccuac - gpuxa(u7 L, t)
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Again integrating this equation with respect to u, yields:
Ou, = a(u,z,t)p + b(u, z,t), (3.46)
and after substituting equation (3.46) into equation (3.43) one gets
—duga,(ap + b) + 2(—4ayp — ay — 2a,ap — 2a,b — 3b, — 2¢,a) = 0. (3.47)

If a # 0, one can find ¢, from the last equation. Thus we study two cases: a)
a#0andb) a=0.
Let a # 0. It will be shown that in this case one obtains a contradiction.

Consider the following derivative in equation (3.47).
1
Ou = %(—ZUxau(agp +b) — da,p — a; — 2a,ap — 2a,b — 3by). (3.48)
Differentiating equation (3.48) with respect to u, yields
1 2
Oun, = —(—ugayalap + b) — 3ayap — 3a,b — aa”p — azab). (3.49)
a
After differentiating equation (3.46) with respect to u one has
1
Pugu = 5(—2%%(@9@ +b) — 2a, — a; — 2a,ap — 2a,b — by,). (3.50)
The following mixed derivatives are equal. Hence,
1
Purg — Pugu = 2—(4auag0 + 6a,b — aga — bya) = 0. (3.51)
a
Differentiating equation (3.51) with respect to u, gives
Ay Py, = 0. (3.52)
After substituting ¢,, in equation (3.46) into equation (3.52), it becomes
aya(ap +b) = 0. (3.53)

Since a(ap +b) # 0, a,, = 0; so:

a=a(z,t). (3.54)
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Equation (3.51) becomes

a; + by = 0. (3.55)

Since the solution of equation (3.46) is

b
o = e d(u,z,t) — —, (3.56)
a

where d is a function of the independent variables u, x and t,
1 au.
Yo = —(a; + €™ dya). (3.57)
a
But, from equation (3.48), by using equation (3.55) one obtains

1
0y = —(a; — e*daay). (3.58)
a

Comparing ¢, in equation (3.57) and (3.58) gives
e *(a,d+d,) = 0. (3.59)
Since e"** is not equal to zero, hence
d, = —azd. (3.60)

Therefore, equation (3.44) becomes:

3% 00 A3 (e — a) + €"*uy a*d?(2ai0 — 200, + 3a*u) + " "a?
(=3 agad® + 2aia,d* + aydyad — azabd® — 2a2bd* + 2a,bad?
(3.61)
—byp@®d® — 2di,0*d + 2dyda® + 3a*bd?) + 2uzaa’d + a®
(—ayad + 2a}d + 2a,a,bd — a;byad + a;dya) = 0.
Because the left side of equation (3.61) is a polynomial function with respect to

e all coefficients of e+ and e+ must be equal to zero. Hence,

a’d*(ag, — a) =0, (3.62)
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Uy a*d?* (200 — 20,0, + 3a*u)
+ a*(—=3 agad® + 2a,a,d*> + a;dyad — az.abd’ (3.63)

— 2a2bd* + 2a,b.ad* — byea*d® — 2d.a*d + 2dd,a® + 3a*bd®) = 0,

and
u azad + a*(—ayad + 2a2d + 2a,a,bd — a;byad + a;dya) = 0. (3.64)
Since d # 0, equation (3.62) gives
Upy = Q. (3.65)

In equation (3.63) the left side of the equation is a polynomial function with

respect to u,. Therefore, one obtains
a*d*(2aia — 2a,a, + 3a’u) = 0. (3.66)

Differentiating the last equation with respect to v one gets a = 0, which contradicts
the assumption. Therefore a = 0.

For a = 0, equation (3.46) gives
Ou, = b(u, x,t). (3.67)

From equation (3.47), one obtains that b is a function of just the independent

variables = and t. After integrating equation (3.67) with respect to u,, one has
o = b(z, t)u, + c(u, z,t). (3.68)
Equation (3.44) can thus be rewritten as follows
3y Coub® — 2b1b + 2b;:b, + bycy — bypb® — Cusb — 2¢u0b* — cuube = 0. (3.69)
The left side of equation (3.69) is a polynomial function with respect to u,, hence,

Couw = 0, —2bib + 2b;by + bicy — byb® — copb — 2¢u.b° = 0. (3.70)
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Solving the first equation of system (3.70) one has
c=c(z, t)u+ oz, t), (3.71)

where ¢; and ¢y being functions of independent variables x and ¢. Hence, equation

(3.45) shows that
Uz (= bizgb + bibyy + 2bic1, + byt — byybpb — bypbey — 2byc1,b
—2b,b% + bybu — 2¢14,b — €14,0% — 2¢1,bc1 — beju — bey) — bycs
+ bicrgp + bicog, — bt — bypcibu — bypco b — 2bbciu (3.72)
— 2b,bcy — c1ypbu + by — c1.bc1u — €14,0c0 — Qszbu
—2¢1,C2,b — 10U + Coyb — Coppyb — Cogbu = 0.

The left side of equation (3.72) is a polynomial function with respect to u,. Thus:

—biyab + bibyy + 2bic1, + Dyu — byy b0 — byybey — 2b,01,0

(3.73)
—2b,b% + bybu — 2¢14,b — €10 — 2¢1,bc1 — beyu — bey = 0,
— bicg + bicipat + biCoyy — biciu — bppcibu — bypconb
— 2bybciu — 2b,bey — ¢y b + 1 bu — ¢ pbciu — €1 4,000 (3.74)

—QCfxbu — 2¢1,Co,b — C1,bU” + Cob — Coppyb — Cobu = 0.
The left side of equation (3.73) and (3.74) are polynomial functions with respect

to u, so:

by +beb—bey =0, —buaeb + bibyy — bppbeb — bypbey — 20,6 —bey = 0, (3.75)

c1p, =0, —bicy —2bybcy + ¢, b— o, b=0,

(3.76)
thQmI — bxxCQ;cb - 2b$b02 + Coy b— thQ — CQta:acb =0.
The first equation of system (3.75) shows that
by + byb
¢ = 200 (3.77)

b
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The second equation of system (3.75) yields:

(—braeb + bibyy — 2by2byb — bypb, — 20,0%). (3.78)

S|

Cy =

After replacing ¢; by equation (3.77) in the first equation of system (3.76), one
has
biby — byyb?

by = (3.79)

Note that from the first equation of system (3.76), ¢; = ¢i(t) is a function of
only independent variable ¢. The second equation of system (3.70) and the second
equation of system (3.76) can be rewritten as:

207 + 2b,.b?

by = ; 7 (3.80)
2b.b,,
= . .81

The next step is to obtain the function b through considering the following two

consistency conditions:
b;rx,t - bt:v,ac = 07 bta:,t - btt,ax = 07 (382)

yielding:

bb2 =0, blb, =0.

Hence, the function b can be considered in two cases: a) b, = 0 and b) b, = 0.
Case 2.1 b, = 0.
In this case

b=b(x). (3.83)
Equation (3.77) gives the representation:

cp = by, (3.84)
and from equation (3.78),

€y = —2byuby — 2b,b. (3.85)
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Using equation (3.83), equation (3.80) becomes
bew = 0. (3.86)
Solving equation (3.86), the following is obtained
b=kz + ko, (3.87)
where k; and ko are constants. The third equation of system (3.76) leads to:
k= 0. (3.88)

Thus, ¢; =0, co =0 and
¢ = kaug. (3.89)
This concludes the consideration of consistency conditions of system (3.41). The

last step in this case is finding the function w itself. After solving the differential

constraint u; = kqu,, one obtains that
u(z,t) = g(kot + ) (3.90)
is a solution of the BBM equation for this case, where ¢ satisfies equation
kog" + g9’ — kag' = 0.

Case 2.2 b, = 0.
In this case b is a function that depends on the independent variable ¢:
b =0b(t). Hence from equation (3.77),

b
¢ = é (3.91)

Equation (3.78) shows that

Hence

c=cu, (3.93)
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and from equation (3.80),

207
The last equation can be rewritten
— = —. 3.95
i (3.9)
After integrating equation (3.95) with respect to t, one gets
by = b’ks, (3.96)

where k3 is a constant. If k3 = 0 then equation (3.96) shows that b is a constant.
Hence the solution can be found in the case b, = 0. If k3 # 0 then equation (3.96)

can be integrated to obtain

-1
b= ——, 3.97
where j is a constant. Thus
ks
= i 3.98
O Tt (3.98)
Therefore the function ¢, defined by equation (3.68), is
-1 —ks3
== Ug + = u. 3.99
4 g+ kst J+ ks ( )
The differential constraint (3.38) becomes:

By using the Cauchy method (see chapter I), with the following characteristic

equations

dt dx du
i 3.101
j -+ k’gt 1 —kgu’ ( )

we obtain the following two invariants

1
I = . In | j+kst|—z, Ty=ue.
3
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They are discovered by

dt dr dx du

Jtkst 11 —ku

. ' 1
respectively. By changing ¢t =t + l{i and a = o one can rewrite
3 3

Ih=z—aln |t].

Hence the general solution of equation (3.100) and the solution of the BBM

equation in this case, is H (£, ue*®) = 0, which can be written as
u(z,t) = G(€)e ks, (3.102)
where ¢ =2 —aIn | 1|, and G satisfies:
G" — 2ksG" + (ki — )G’ — ksBGG’ + kiBG? = 0,

here 3 = e~*s7t,



Chapter IV

Conclusion

4.1 Thesis Summary

The thesis is devoted to applying the intermediate integrals technique and
the method of differential constraints to some partial differential equations.

Firstly, the Monge-Ampere equation
uZ, — ugpuy = a(w,t),

where a is a constant, was studied, applying the intermediate integral technique.
Without loss of generality, the cases a = +1 or a = 0 are sufficient. The

intermediate integral concerned has the form
ur = o(Ug, u, z, ). (4.1)

Full analysis of such intermediate integral is done ( section 2.1) and 2.2) ).

When the same technique was applied to the KdV equation, calculations
showed that there was no intermediate integral of first order for this equation.
Therefore, a more general method; the method of differential constraints, was
applied. This method was also applied to the BBM equation.

For the KdV equation,
U — 6UU, + Upgy = 0.

It was found that the differential constraint of first order (4.1) yielded

T — 6]€2t k?g —2u

3t 3t

Uy =
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where kj is a constant, leading to the solution u(z, t) = t2/3F(xt~/3), when ky = 0
and F satisfies
F=0.

Fyyy+FFy— yFy—

Wl N

For the Benjamin-Bona-Mahony equation,
Ut — YUy — Utgg = O,

the method of differential constraints gives the following two types of differential
constraints (4.1).

The first differential constraint is
up = kouy,

where ky is a constant.  After solving this equation for wu(x,t), one has

u(x,t) = g(kot + x) is a solution of the BBM equation, where g satisfies equation
k2g1//+gg/_k2g/20.

The second differential constraint is

—1 n —ks
= Uy - u,
j + kgt ] + /{3

Uy

where j and k3 are constants. It is solved to obtain the solution u(x,t) = G(£)e **,

where ¢ =1 —aln ||, and G satisfies:
G" —2ksG" + (k3 — )G’ — k3B8GG’ + k3G = 0,

where 3 = e 37t

4.2 Applications and Comments

The method of differential constraints can be applied to any partial dif-

ferential equation. The intermediate integral technique can be considered as a
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particular case of the method of differential constraints. Obtaining solutions
by the intermediate integral technique is easier than the method of differential
constraints.

But sometimes solution of partial differential equations cannot be obtained
by this technique. In this case, one has to use more general techniques. For
example, in the study of KdV and BBM we obtained the negative results: there
are no intermediate integral of first order for these equation. Then the more

general method, differential constraints, was applied.
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Appendix A

KdV Reduce Code

% KAV EQUATION 9%

% The reduce program for solving the " KdV " equation by the
% differential constraint method.

depend phi, ux, q, X, t;

depend f, q, x, t, ux, uxx, UXXX, UXXXX;

% Define the following operator;
dx := df(f,x) + df(f,q)*ux + df(f,ux)*uxx + df (f,uxx)*uxxx $
dt := df(f,t) + df(f,q)*ut + df(f,ux)*uxt + df (f,uxx)*uxxt$

factor ux, uxx, uxxx;

% Assume the existence of the following " differential constraint ":
ut := phi;

% Derive the following derivatives by using previous assumption.
utt := sub(f = ut, dt)$
uxt := sub(f = ut, dx)$

uttt := sub(f=utt, dt)$
uxtt := sub(f=utt, dx)$
uxxt:= sub(f=uxt, dx)$

% The following is the " KdV " equation.
uxxx:= -ut +6*g*ux ;

% Consider the following three constraints:
ssl:= sub(f=uxxx,dt) - sub(f=uxxt,dx)$
ss2:= sub(f=uxxt,dt) - sub(f=uxtt,dx)$
ss3:= sub(f=uxtt,dt) - sub(f=uttt,dx)$

ss:= ss1$

ssq:= df (ss,uxx,3);

j:=df (ssq,df (phi,ux,3));

df (phi,ux,3):= df (phi,ux,3) - ssq/j;
ssq;

% After solving for "
depend a, q, x, t;
depend b, q, x, t;
depend c, q, x, t;
phi:=1/2%(a*ux~2) + b*ux +c;
ss:=ss1$

df (ss,uxx,ux,3);

phi " we obtain:

% Solving for " a " we obtain:
depend al,x,t;

depend a2,x,t;

a:=q*al+a2;



ssq:=df (ss,uxx,2,ux);

% Hence we obtain;
al:=0;

ss:=ss1$

ssq:=df (ss,uxx,2);
df(b,q) := -df(a2,x);
ss:=ss1$

ssq:=df (ss,ux,2,uxx);

% Solving for " a2 " we obtain:
a2:=0;

ss:=ss1$

ssq:=df (ss,uxx,ux) ;

j:=df (ssq,df(c,q,2));

df (c,q,2):=df(c,q,2)-ssq/j;
Ssq;

% After solving for we obtain:
depend c1, x, t;

depend c2, x, t;

c:=cl*q + c2;

ss:=ss1$

ssq:=df (ss,ux,q);

df (b,x) :=1/2%cl;

C

ssq;
ss:=ss1$

ssq:=df (ss,uxx);

j:=df (ssq,df(cl,x));

df (c1,x) :=df(cl,x)-ssq/j;
ssq;

% Solving for " cl " we obtain:
depend c10, t;
cl:=cl0;

% Solving for " b ", we obtain:
depend b1, q, t;

b:=1/2*%c10*x + bil;

ss:=ssl$

ssq:=df (ss,uxx,2);

j:=df (ssq,df(bl,q9));

df (b1,q) :=df(bl,q) - ssq/j;

Ssq;

% After solving for " bl " we obtain;
depend b10, t;

b1:=b10;

ss:=ss1$

ssq:=df (ss,q);

df (c2,x) :=1/12%x(2*df (c10,t) - 3*c10°2);

ss:=ssl;

% Consider the other therm of " ux ", we have:
df (c2,t) :=3/2*c10%c2;

ss:=ssli;

ssq:=df (ss,ux,x);

% After solving for " c10 ", we let " k1 " is a constant, obtaining:
c10:=2x%(1/(-3*t+2xk1));



df (c2,t);

% After solving for " c2 ", we obtain:
depend c20, x;

c2:=(c20)/(-2%k1+3%t) ;

ss:=ss1$

ssq:=df (ss,q);

j:=df (ssq,df (c20,x));

df (c20,x) :=df (c20,x) -ssq/j;

ssq;

% After solving for " c20 ", we let " k20 " is a constant so that:
c20:=k20;

ss:=ssli;

ssq:=df (ss,ux);

% After solving for " bl0 ", we let " k2 " is a constant then:
b10:=(6%k20*t+k2) / (-2xk1+3*t) ;

s5q;
ss:=ssli;
Ss:=ss2;
ss:=ss3;

% Hence we obtain the following differential constraint:
phi;

end;
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Appendix B

BBM Reduce Code

The reduce program to obtain the solution of the BBM equation has three
program, they consider the function u; = p(u,, u, z,t), where ¢, = a(u,x,t)p +
b(u,z,t) in two case: the first case is a # 0, obtained the contradiction. The
second case is a = 0, consider the function ¢ = b(z, t)u, + c(u, z,t) in two case:
case by = 0 and b, = 0 respectively.

Consideration ¢, # 0, where ¢, = a(u,z,t)¢ + b(u, x,t).

B.1 Case a #0

% THE BENJAMIN-BONA-MAHONY EQUATION 7%
% The reduce program for finding the solution
% of the Benjamin-Bona-Mahony equation
% case " df(phi,ux) is not equal to zero ":
depend phi, ux, q, x, t;
depend f, q, x, t, ux, uxx, UuXXX, UXXXX;

% Define the following operator:

dx := df(f,x) + df(f,q)*ux + df(f,ux)*uxx +
df (f ,uxx) *uxxx + df (f,uxxx)*uxxxx$

dt := df(f,t) + df(f,q)*ut + 4df(f,ux)*uxt +
df (f ,uxx) *uxxt + df (f,uxxx)*uxxxt$

factor ux, uxx, uxXxXX, UXXXX;

% Asuming the following " differential constraint ":
ut := phi;

% Using this differential constaint to find the following
% two second derivatives:

utt := sub(f = ut, dt);

uxt := sub(f = ut, dx);

% and the following three third derivatives:
uttt := sub(f=utt, dt)$

uxtt := sub(f=utt, dx)$

uxxt:= sub(f=uxt,dx)$



% Substituting derivatives " ut " and " uxxt " from previous
% step into the following " BBM equation " to obtain:

ss:= ut - g*ux - uxxt$

j:=df (ss,uxxx);

% The following derivative
% the last equation:
UXXX:=uxxx-ss/j;

ss;

UXXXx is discovered from

% Defind the following two operator:
dx := df(f,x) + df(f,q)*ux + d4df(f,ux)*uxx+ df(f,uxx)*uxxx$
dt := df(f,t) + df(f,q)*ut + df(f,ux)*uxt + 4df (f,uxx)*uxxt$

% Consider the following consistency conditions:

ssl:= sub(f=uxxx,dt) - sub(f=uxxt,dx)$
ss2:= sub(f=uxxt,dt) - sub(f=uxtt,dx)$
ss3:= sub(f=uxtt,dt) - sub(f=uttt,dx)$
ss:=ss1$

ssq:=df (ss,uxx,3);
% After solving for "
depend a, q, x, t;
depend b, q, x, t;
phi_ux:=df (phi,ux) :=a*phi + b;
ssq;

phi " obtaining;

ss:=ss1$
ssq:=df (ss,uxx,2);

ss:=df (ssl,uxx,2);
sss:=ssl1$

%hhh%h The case " a neq 0 " %%kh

j:=df (ss,df (phi,q));
phi_q:=df (phl,q) :=df (phi,q)—ss/j >
SS;

% Consider the following constraint:
ss:=df (df (phi,ux),q)-df (df (phi,q) ,ux);
SS:= num ss;

ssq:=df (ss,ux);

j:=df (ssq,df(a,q));

df (a,q) :=df (a,q) -ssq/j;

s5q;

ss;

j:=df (ss,df(b,q));

df (b,q) :=df (b,q)-ss/j;

ss;

ssl:=ss1$

% Solving for " phi " to obtain:
depend cl1,q,x,t;

phi:=cl*ex*(a*ux)-b/a;

% Consider the following results:

o1



phi_ux-df (phi,ux);
phi_qg-df (phi,q);
df(cl,q) :=-cl*df(a,x);
phi_qg-df (phi,q);

ssl:=num ssi$

factor e**(a*ux);

df (ss1,uxx, ex*(ux*a),2);

df (a,x,2) :=a;

df (ss1,uxx,ex*(ux*a),2);
ssq:=df (ssl,uxx,e*x*(ux*a));
ssq:=df (ssq,ux)/cl**2;
ssq:=df (ssq,q) ;

%% The last step show that " a " must be zero %%

end;

B.2 Casea=0

This thesis study two cases

B.2.1 Caseb, =0

% THE BENJAMIN-BONA-MAHONY EQUATION %

% The reduce program for solving the " BBM equation "
% case "df (phi,ux) is not equal to zero" but "a=0":

depend phi, ux, q, X, t;
depend f, q, x, t, ux, uxx, uUXXX, UXXXX;

% Define the following operators:

dx := df(f,x) + df(f,q)*ux + df(f,ux)*uxx + 4df (f,uxx)*uxxx
+ df (f,uxxx) *uxxxx$

dt := df(f,t) + df(f,q)*ut + df(f,ux)*uxt + df (f,uxx)*uxxt
+ df (f,uxxx) *uxxxt$

factor ux, uxx, uXXX, UXXXX;
% First, assume the existence of first order differential
% constraint

ut := phi;

% Next we find the derivative by using previous assumption,
% the following derivatives is obtained:

utt := sub(f
uxt := sub(f

ut, dt);
ut, dx);

uttt := sub(f=utt, dt)$
uxtt := sub(f=utt, dx)$
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uxxt:= sub(f=uxt,dx)$

% Substituting these derivatives in the following " BBM equation ",

% obtaining;
ss:= ut - g*ux - uxxt$

j:=df (ss,uxxx);

% We consider the derivative " uxxx " from previous equation.
UXXX:=uxxx-ss/j;

Ss;

dx := df(f,x) + df(f,q)*ux + d4df(f,ux)*uxx+ df(f,uxx)*uxxx$

dt := df(f,t) + df(f,q)*ut + df(f,ux)*uxt + 4df (f,uxx)*uxxt$

% Consider the following consistency conditions:

ssl:= sub(f=uxxx,dt) - sub(f=uxxt,dx)$
ss2:= sub(f=uxxt,dt) - sub(f=uxtt,dx)$
ss3:= sub(f=uxtt,dt) - sub(f=uttt,dx)$
ss:=ss1$

ssq:=df (ss,uxx,3);

% After solving for phi obtaining;
depend a, q, x, t;

depend b, q, x, t;

phi_ux:=df (phi,ux) :=a*phi + b;
ssq;

ss:=ss1$
ssq:=df (ss,uxx,2);

%% Consider " a = 0O". %%
a:=0;

ss:=ssl$

ssq:=df (ss,uxx,2) ;

ji=df (ssq,df(b,q));

df (b,q) :=df(b,q)-ssq/j;
ssq;

% After solving for we obtain;
depend c,q,x,t;

phi:=b*ux+c;

phi_ux-df (phi,ux);

ss:=ss1$

ssq:=df (ss,uxx,ux) ;

j:=df (ssq,df(c,q,2));

df (c,q,2):=df(c,q,2)-ssq/j;

Ssq;

phi

% After solving for " c2 " we obtain;
depend c1, x, t;

depend c2, x, t;

c:=cl*q+c2;

s5q;

ss:=ss1$

ssq:=df (ss,ux,q);

j:=df (ssq,cl);

cl:=cl-ssq/j;

s8q;
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ss:=ss1$
ssq:=df (ss,ux);
j:=df (ssq,c2);
c2:=c2-ssq/j;
ssq;

ss:=ss1$

ssq:=df (ss,q,2);

j:=df (ssq,df(b,t,x));

df (b,t,x):=df(b,t,x) - ssq/j;
ssq;

ss:=ss1$

ssq:=df (ss,uxx);

j:=df (ssq,df(b,t,2));
df(b,t,2):=df(b,t,2)-ssq/j;
ssq;

ss:=ss1$

ssq:=df (ss,q);

j:=df (ssq,df (b,x,2));

df (b,x,2):=df (b,x,2)-ssq/j;
ssq;

% Consider the following two constraints:
sssl:= df(b,x,2,t) - df(b,t,x,2);
sss2:= df(b,t,x,t) - df(b,t,2,x);

% To find "b" we consider 2 case:
% case 1;

df (b,t) :=0;

ss:=sssl;

% This impies that:
depend b1, x;
b:=b1l;

cl;

c2;

ss:=ss1$

ssq:=df (ss,uxx);

j:=df (ssq,df(b,x,2));

df (b,x,2) :=df (b,x,2)-ssq/j;
s8q;

% Let k1, k2 are constant.
b:=ki1*x + k2;
Ssq;

ss:=ssli;
k1:=0;
Ss;

% Hence the differential constraint is:

phi;

% After solving for " u(x,t) " from the differential

% constraint we obtain the solution of original equation

% the " BBM equation " is " u(x,t)=G((k2*xt+x)/k2) ",
% where " G " is arbitrary function.
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%)

end;

B.2.2 Casebd, =0

% THE BENJAMIN-BONA-MAHONY EQUATION %
% The reduce program for solving the " BBM equation
% by differential constraint.

depend phi, ux, q, x, t;
depend f, q, x, t, ux, uxx, UuXXX, UXXXX;

% Define the following operators:

dx := df(f,x) + df(f,q)*ux + df(f,ux)*uxx + df (f,uxx)*uxxx
+ df (f,uxxx) *uxxxx$

dt := df(f,t) + df(f,q)*ut + df(f,ux)*uxt + 4df (f,uxx)*uxxt
+ df (f,uxxx) *uxxxt$

factor ux, uxx, uxXXX, UXXXX;

% First, assume the existence of first
% order differential constraint:

ut := phi;

% Next we find the derivative by using previous assumption,
% we obtain:

utt := sub(f = ut, dt);
uxt sub(f ut, dx);

uttt := sub(f=utt, dt)$

uxtt := sub(f=utt, dx)$

uxxt:= sub(f=uxt,dx)$

% Substituting these derivatives in the following " BBM equation ",
% obtaining:

ss:= ut - gfux - uxxt$
j:=df (ss,uxxx);

% We consider the derivative
UXXX:=uxxx-ss/j;

UXXX from previous equation.

sS;
dx := df(f,x) + df(f,q)*ux + 4df (f,ux)*uxx+ df (f,uxx)*uxxx$
dt := df(f,t) + df(f,q)*ut + df(f,ux)*uxt + 4df (f,uxx)*uxxt$

% Consider the following consistency conditions:

ssl:= sub(f=uxxx,dt) - sub(f=uxxt,dx)$
ss2:= sub(f=uxxt,dt) - sub(f=uxtt,dx)$
ss3:= sub(f=uxtt,dt) - sub(f=uttt,dx)$
ss:=ss1$

ssq:=df (ss,uxx,3);

% After solving for phi obtaining;



depend a, q, x, t;

depend b, q, x, t;

phi_ux:=df (phi,ux) :=a*phi + b;
ss8q;

ss:=ss1$
ssq:=df (ss,uxx,2);

% Consider case " a =0 ".
a:=0;

ss:=ss1$

ssq:=df (ss,uxx,2);

j:=df (ssq,df(b,q));

df (b,q) :=df (b,q)-ssq9/j;
s8q;

% After solving for " phi " we obtain:
depend c,q,x,t;

phi:=b*ux+c;

phi_ux-df (phi,ux);

ss:=ss1$

ssq:=df (ss,uxx,ux) ;

j:=df (ssq,df(c,q,2));

df (c,q,2):=df(c,q,2)-ssq/j;

Ssq;

% After solving for " c2 " we obtain:
depend c1, x, t;

depend c2, x, t;

c:=cl*q+c2;

s8q;

ss:=ss1$

ssq:=df (ss,ux,q);

j:=df (ssq,cl);

cl:=cl-ssq/j;

s8q;

ss:=ss1$
ssq:=df (ss,ux);
j:=df (ssq,c2);
c2:=c2-ssq/j;
Ssq;

ss:=ss1$

ssq:=df (ss,q,2);

j:=df (ssq,df(b,t,x));

df (b,t,x):=df(b,t,x) - ssq/j;
Ssq;

ss:=ss1$

ssq:=df (ss,uxx);

j:=df (ssq,df(b,t,2));

df (b,t,2):=df(b,t,2)-ssq/j;
Ssq;

ss:=ss1$

ssq:=df (ss,q);

j:=df (ssq,df(b,x,2));

df (b,x,2):=df (b,x,2)-ssq/j;
Ssq;

56



% Consider the the following two constraints:
sssl:= df(b,x,2,t) - df(b,t,x,2);
sss2:= df(b,t,x,t) - df(b,t,2,x);

% Consider case 2:
ss:=sssl;

df (b,x) :=0;

ss;

% Solving for " b " to obtained:
depend b2, t;

b:=b2;

s5Q;

cl;

c2;

df (b2,t,2);

% Solving for " bl " we let " h, k " are constants and obtaining:

b2:= -1/(h+k*t);

ss:=ssli;
SsS:=ss2;
ss:=ss3;

% Hence the following differential constraint is obtained:
phi;

% After solving for " u(x,t) " we obtain

%" u(x,t)=e"(-kx)*g([(h + kt)*e~(-kx)]/k) ",

% where " g " is arbitrary function.

end;
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