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Chapter 1

Metric Spaces

1.1 Normed Spaces

In the following, let X denote a vector space over the field R (respectively, C). Then
X is called a real vector space (respectively, complex vector space), and the elements
of the underlying field R (respectively C) are called scalars.

If X is a vector space, we will usually denote its elements by simple letters, such
as z, ¥, or f, g. Scalars will be denoted by Greek letters, o, 3, .... This notation is
ambiguous at times, for example, 0 can denote both the zero vector and the number
zero. It usually is clear from the context, however, what is meant. We choose not
to introduce special symbols for vectors, because this is inconvenient when writing
by hand. In some of the examples we may use different notation though.

1.1.1 Review of Concepts from Linear Algebra

First let us review of concepts from linear algebra:
1. Given finitely many vectors z1,..., 2z, € X and scalars «q, ..., a,, the vector

T
E O = ] + Qoo + -+ - + Ty,

i=1
is called a linear combination of x1,...,z,.

2. A finite subset S = {z,22,...,2,} of X is called linearly independent, if

whenever

Ty + Gy + -+ Ty, = 0
then @y = s = - = a, = 0. That is, the only linear combination of
1, %3, ..., T, which is zero is the trivial linear combination.

The concept of linear independence can be generalized to infinite sets:

3. An arbitrary subset S of X is called linearly independent, if every finite subset
M of S is linearly independent. A subset S of X which is not linearly indepen-
dent is called linearly dependent. Thus S is linearly dependent iff there exist

1



2 CHAPTER 1. METRIC SPACES

finitely many vectors z1,..., %, in X and scalars «, ..., &y, not all zero, such
that

1T+ aste 4+ FanT, = 0

4. Let X # {0}. Then X is called finite dimensional if there exists n € N such
that

(a) there exists a linearly independent subset,

So ={#1,. ., Zn}

of X of cardinality n,
{(b) any subset
{ylv s :yn-l-l}
of X of cardinality n + 1 is linearly dependent.
The number 7 is unique and called the dimension of X. The set S, is called a

basis of X. Note that a basis is not unique. If such an n does not exist, then
X is called infinite dimensional.

1.1.2 Definition of a Normed Linear Space

Throughout, X will be a finite dimensional or infinite dimensional, real or complex
vector space.

Definition 1.1.1. Let X be a real or complex vector space. A norm on X is a
function

|-Il: X =R

satisfying

(N1) |z]| = 0 (positive}

(N2) lz]| =0 < z=0 (definite)

(N3) ezl = lal ||z (positive homogeneous)

(N4) e +yl <zl + iyl (triangle inequality)
for all z,y € X and scalars . The pair (X, || - ||) is called a normed linear space,
abbreviated n.lLs.
Remark 1.1.1. 1. If (X,||-{|} is a normed linear space, we often simply say that

" X is a normed linear space”.

2. If condition (N2) does not hold, then || - || is called a semi norm on X. Note
that by condition (N3), z = 0 implies ||z|| = 0.

3. If X = R™ with the usual vector norm, then the triangle inequality can be
visualized geometrically as indicated in figure 1.1,
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Figure 1.1: The triangle equality for norms: ||z +y|| < ||| + [l

4. The triangle inequality generalizes to any finite number of vectors. Ifzq,...,2, €
X, then
2y + @2 + -+ zal| < flzall + lz2ll + - -+ [lza]l-
This can be proved by induction on n.
5. For all z,y € X, we have by (N3),
—z|l = [{(-Dz||=| =1 =
=zl = [{(=1)zll = | = 1] l=] el
and hence, replacing z by = — y,
ly =zl = | = (z =)l = llz — y]|. (1.1)

From (N3) and (N4) we can derive a second triangle inequality. In fact, for all
z,y € X,

2l =y + @ -l < llyll+[lz -yl
(Na)

so that
lzll = Tyl < llz =¥l (1.2)

Since 1.2 holds for all z and y, we may exchange z and ¥, and obtain
Iyl = ll=ll < [ly — =l
or extracting a minus sign on both sides,
=(llzll = 1lgll) < il = (¥ = 2)]| = iz — ]\ (1.3)
Combining (1.2) and (1.3) we obtain
il = Iyl | = max { 2l = llell, = (llall = lsll) 3 < o = o]

That is

(N4) el =gl | < o= gl
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1.1.3 Examples of Normed Linear Spaces

Example 1.1.1. It is easy to see that if X = R, then the absolute value |z| has the
properties of a norm. That is, (R, ! |} is a normed linear space.

Example 1.1.2. (Euclidean/unitary spaces). Let X = R* or X = C". Given
T=(x1,...,2n) € X, set

2] = Z x| = |z 4 o] -+ 2] (L'-norm)
i=1
n 1/2 (L2-norm, or
| Z]|2 := (Z |:c1-|2) = |z |2+ |2 + -+ |7n 2 FEuclidean norm if X = R,
i=1 unitary norm if X = C)
—_— _ (L°°-norm, or
[ = max fos] = mase{Jos) ... o). o o
The spaces (R™, || - ||2) are called Buclidean spaces, and the spaces (C”, |j- ||2) unitary
spaces.
Exercise 1.1.1. Show that || - ||1, || - [|2 and || - ||ee are indeed norms on R™ and C".

(Hint: To prove (N4) for || - ||2, proceed as follows:

1. Show that 2ab < a® + b2 Va,b € R.

™o

. Show that 37 |l wa] <1 3F 300 faal® = T, [wil* = 1.
3. Show that 350, |zif lwsl < |Z]l2ll@ll2 VZ = (21,3 20). = (¥1,- - ¥0) € X,
4. Prove (N4).

Also note that the proofs for R™ and C™ are essentially the same.)

Definition 1.1.2. Two norms |j - || and || - ||, on a linear space X are said to be
equivalent, if there exists constants a,b > 0 such that

alz| < |lz| < bjj|
forall z € X.
Exercise 1.1.2. Let X = R" or X = C"*. Show:
2l < [lzl1 < nilzfloo
]l < flzllz < VRll2]loo

for all z € X. Then show that any two of the three norms || - ||y, || - ||z and || - |iee
are equivalent,
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Recall from linear algebra: If X is any set, then set set of real valued (respectively

complex valued) functions defined on X,

V(X,R) = {f X — R},

(respectively Vixcy == {f: X — C})

is a real (respectively complex) vector space, with vector space operations f + g and

af defined pointwise,

and Vy, respectively.

(f +g)(x) = flz) + g(z)
(af)(z) = af(z)

for f,g € Vixry (respectively Vi x¢)) and a scalar. To simplify notation, and since
most proofs for the real and complex spaces are identical, we will use the notation
Vx to denote either of Vix gy and Vix¢). (Careful: X here denotes the domain of
the functions f, and is not a vector space !)

Many interesting normed linear spaces arise as subspaces of the spaces Vx for
various choices of X. In the next two examples, we will consider subspaces of Vj,y

Recall that in order to show that a subset W C Vx is a vector space, we only
need to verify that it is closed under vector space operations, that is, we need to
show that whenever f, g € W and « is scalar, then f +g € W and af € W.

Example 1.1.3. (The space Cla,d]). Given a closed interval [a, 8], let us set

C(la, b, R) = {f:[a,b] = R | f is continuous }
C(la,?],C) := {f:[a,b] = C| f is continuous }

with

of \Via,b] .

|l = max | f(z)].

Note that || f||. exists by the Extreme Value Theorem.

For simplicity, let us denote both of the above spaces by Cla,b]. We need to
show that C[a,b] is a vector space, and that || - |, is a norm.
. In fact, from basic analysis we know that if f, g are continuous on {a, ], and a
Is any constant, then f+ g and af are also continuous. Hence, Cfa, 8] is a subspace

To check that || - ||, is a norm, let f, g € Cla, b] be arbitrary, and « a scalar.

(N1): Since |f(x)| > 0 for all z € [a, 8], it follows that || f|]. > 0. Thus, (N1) holds.

(N2): We have

Thus, (N2) holds.

re e ¢

gg[ffg]l(f(m)l=0
|f(z)|=0 Vz € [a,b]
f(z)=0 Yz €la,b
f=0 inCla,b).
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(N3): Note that

Joif = max 1(@f)@)] = max |af (z)

= max |af|f(2)] = |e| max |f(2)]

= [e [1£]w
and hence {N3) holds.

(N4): Finally, ||f+§||u — m[a,x |(f—|—g)($)| = max lf(m) +g($)|

%€ [a,b]
< max (|f(@)] +]g(z)])
< ml'gﬁ:‘g] |#(z)| + max |g(z)]

z€fa,b]
= [Ifllu + gl
so that (N4) holds as well.

We have thus shown that (Cl[a,b], || - [l ) is 2 normed linear space.
Exercise 1.1.3. Let
Cy(R) = {f R—-C | f is continuous and bounded}
CO(R == {f R—-C | f is continuous and hm flz) = 0}

Co(R) is called the set of continuous functions vanishing at infinity. Also, define the
uniform norm on Cy{R) by

[l == igﬂlglf(ﬂ«")l Vf € Cy(R).

1. Show that Cy(R) and C,(R) are vector spaces.
2. Show that || f]l. is indeed a norm on C,(R).
3. Show that C,(R) C Cs(R).

4. Show that when f € Cy(R), then max | f(z)] need not exist.
z€

5. Show that when f € C,(R), then ||fil. = mgﬁclf(m)[.

Example 1.1.4. (The space £*°). Let us set
&g = {f:N-—-R| fis bounded }
(@ = {f:N—>C| fis bounded }.
For simplicity we will denote both of the above spaces by £°°. Also, set

| flleo = Sup f(n)]
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for f e €.
One usually uses a different representation for these spaces. Recall that a func-
tion f defined on N is also called sequence, by setting

Tn = f(n)
for all n € N. Then
¢ = { z={2.}52, : {z.} is bounded },
the space of all bounded sequences in R (respectively C), and for z € £,
l2lloo = sup |za].
For convenience, we may also write a sequence by listing its terms,
z = (1, T2, T3, Td, - . . )

Note that if © = (21, 29, 73, 24, ... ) = {@a}52, and vy = (U1, y2, ¥, ¥s, .- . ) = {w}2,
are two sequences and « is scalar, then

4y = (21 +y, T+ Y2, T3+ Y3, Tat Vs, ) = {Zn + Yy},

and

ar = (ar1, Az, AT3, 0Ty, - .. ) = {az, }22,.

Thus, if  and y are bounded, say |z,| < M and |y,| < N for some M, N > 0 and
all n, then

[Tn 4+ Yn] < |To| +un| <M+ N ¥n

and
loz,| < |a|M  Vn

which shows that = + y and ax are again bounded. Hence, £ is a vector space. It
is left to show that || - |« i$ a norm:

(N1): Since |z,,| > 0 for all n, it follows that ||zl > 0, that is, (N1) holds.

(N2): We have

|z]lso =0 < suplz,| =0
< lz,l=0 ¥n
& z,=0 VYn
& x=0 in £~

Thus, (N2) holds.
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(N3): Note that
laz|e = sup laz,|

= sup |af[z,]
T
= |a]sup |zn]
T

= lo| {|]] oo,
and hence (N3) holds.

(N4): Finally,
|z + Ylloo = sUp |Zn + ynl

< sup ( 13:71| + |yn|)
n
< sup |Zn| + sup |yl

= ||zlloo + [19lico
so that (N4) holds as well.
This shows that (%, || - ||e) is & normed linear space.
Exercise 1.1.4. Show that £*° and C|[a, b] are infinite dimensional.

Exercise 1.1.5. Let

o= {fNoC] Y )<} = {z={e}30 CCT| > lzal <0},

with
oo
Izl = > leal-
n=1
Show that ¢! is a vector space, that £' C £°°, and that || - ||; is a norm on £

1.1.4 Construction of Normed Spaces from Normed Spaces
Subspaces

Let (X, || - ||) be a normed linear space, and V a subspace of X. Then obviously,
(V,|I - |]) is also & normed linear space, called a subspace of (X, | - [|}.

Remark 1.1.2. The meaning of the word ”subspace” is ambiguous. In order to
avoid confusion, we will use the following notation: If X is a vector space, and V'

a subspace, then we will call V a subvectorspace of X. If (X,| - 1) is a normed
linear space, and V' a subvectorspace of X, then we will call (V||| - ||) a subspace of
(XA 1D-

Example 1.1.5. Let X = Cla, b] with the uniform norm. Given K C [a, ], set
Vi={feClabl: flz)=0 VreK}.
Then (V, ]| - ||]]) is & subspace of (X, || - {l.!|}. (Check !)
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Product Spaces

Recall from linear algebra: If X, Xy, ..., X, are sets, then the Cartesian Product
X1 X X x --+ x X, is the set of n-tuples,

ke

HXi = X)X Xogx-- XX, = {(2,29,...,2,) : :: €X;, i=1...0n}
i=1

So if Ey, Es, ..., B, are sets with F; C X; fori=1...n, then
EyxEyx - xE, ={(x1,20,...,2,) s 2 € By, i=1...n}.

is a subset of X x Xy x -+ x X,,.

If each X; is also a real (respectively, complex) vector space, then X; x X3 X
-+ X X, becomes a vector space when we define the vector space operations com-
ponentwise,

(931,332;---,9%)'*‘(?Jlayz:---;yn) = ($1+y11$2+y2:"')$n+yn)
alzy, ze, ..., 2n) = (az1, aa,. .., aT,)

forz = (1,29, ..., Z0n), ¥ = (Y1, Y2, - - -, Yn) € X1 x Xo X -+ - x X,,, and « scalar. This
vector space is called the product space of X1, Xa,..., X, (It is a straightforward
exercise to show that the vector space axioms hold in X7 x Xy x -+ x X,.)

Now suppose, each X; is also a normed linear space. For simplicity of notation,
let’s denote the norm on each X; by | - |I. (Be aware, however, that the spaces X;
are usually different, and thus their norms are defined differently.) There are many
ways to introduce norms in the product space X; x X3 x -+- x X,,, some of which
are:

el =3 llzll = el + lleall + - + llzal
i=1

=1

" 1/2
lzll2 = (Z Hwillg) = VIIz 2 + [l + -+ ol (14)

lalloo = max flasl) = mexc{ Jiea], sl - ) .

This looks just like example 1.1.2 ! In fact, starting with n copies of (R, |- |) we can
consider R™ as a product space

Rt =RxRBx---xR

with the norms || - |1, | - ||z and || - || on R™ defined as in (1.4). Thus, the following
exercise can be solved similarly to exercises 1.1.1 and 1.1.2.

Exercise 1.1.6. Show:

LAl I, - |2 and || - ||oo are indeed norms on X; x X3 x --- x X,,.
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2. We have
7]l < [l2llx < nliz]
[zfleo < [lz]l2 < vrllz]lo
forallz € X; x Xg x --- x X,,.
3. Any two of the three norms || - ||1, || - ||2 and || - || are equivalent.

Example 1.1.6. Let M, , denote the set of all m X n matrices with real entries.
Then M, is a vector space. There are many ways in which one can define norms
on this space, one of which is the following.

Start with {R™, || - [l1), and write the elements of R™ as column vectors,
Ty
€Tr =
T

Since matrices are added columnwise, we can consider M,,, as the product of n
copies of R™,
Mpn =R™ X R™ x .- xR™,

That is, if
(all az ... a,lj . aln\
o1 oz ... ag; .- Qon
A= (aij) a1 dio ... G,.L'j . QAip € Mm "
\O‘,m]_ Amz .- amj - amn/
then
alj
— — — -3 aQJ m 3
A=(d; dy ... @) where & = S leRrR™ j=1...n
amj
Then by exercise 1.1.6,
e
[l = /(@1 @) - - @n)le = max [lasfly = max > las]
7=l..n i=l.n P

is a norm on M,, .
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1.2 Introduction to Metric Spaces

1.2.1 Definition of a Metric Space

The idea is to generalize the notion of ”distance” to arbitrary sets.

Definition 1.2.1. Let X be a set. A metric on X is a function

d: X xX —-R
satisfying
(M1)  d(z,y) >0 (positive)
(M2) dz,y) =0 & z=y (definite)
(M3) d(y, z) = d(z,y) (symmetric)
(M4) d{z,y) <d(z,z) +d{z,y) (triangle inequality)

for all z,y, z € X. The pair (X, d) is called a metric space.

Remark 1.2.1. 1. If (X,d) is a metric space, we often simply say that "X is
a metric space”. Elements z € X are called points and d(z,y) is called the
distance between the points z and y.

2. If instead of (M2) only the weaker condition
(M2’) dlz,z) =0 VzeX
holds, then d is called a pseudometric

3. Property (M4) is called the triangle inequality

Figure 1.2: The triangle equality for metrics.

4. By induction, one easily generalizes the triangle inequality to
d(z1,1,) < d(21,29) + d(T2, T3) + - -+ + d(Tp_1, Tn)

for points x4,...,z, € X.
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Figure 1.3: The usual metric on R

Example 1.2.1. 1. (The real line). Let X = R. Then
d(z,y) =l -yl (zy€ER)
defines a metric on R, called the usual metric or the Fuclidean metric.
2. Let X = R again, but set
o(z,y) = ltan_1 z —tan y|, (z,y € R). (1.5)

Then ¢ is a metric on R. Note that for all z,y € R,

K

2

o(z,y) < |tan~lz| + |tan Ty| < %4- = 7.

Exercise 1.2.1. Verify that the above are metrics.

Example 1.2.2. Let X # 0 be any set, and define

1 ifrs#y
d(a:,y)={0 ifr=y

Then d is a metric on X called the discrete metric. In fact, (M1) — (M3) are obvious.
As for (M4), note that if = y and 2 is arbitrary, then

d(z,y) =0<d(z,2) + d(z,v).

On the other hand, if z # y and z € X is arbitrary, we separate into three cases:
z=gx,0r z =1y, or x # z s y. Then d(z,y) =1 while

0+1=1 ifz=ux
dlz,z) +d(z,y){14+0=1 ifz=y
1+1=2 ife+#z+#y,

that is d(z,y) < d{z, z) + d{z,y) for all z,y, 2z € X. Hence, (M4) holds.
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Figure 1.4: The discrete metric.

1.2.2 Metrics from Norms

The concepts of norms and metrics look similar. In fact, there is a direct connection
between the two:
Given a normed linear space (X, || - ||), let us set

d(z,y) = ||z —yll (1.6)
for z,y € X. We claim that d is a metric on X. In fact, for all z,y, 2z € X we have

M1)  d(z,y)=|z—-yl > 0.
(N1)

(M2) d@y)=0 & [e-yl=0 & z-y=0 & =z=y

M3)  diy2) = ly—=| = =~ ]l = d(z.)

(Md4)  dlz,y)=lz—yl=|(z—-2)+(=—-y)

< lz -zl + |z — yll = d(z, 2) + d(2,y)

{N3)
which shows that d is indeed a metric. It is called the metric on X determined by
the norm || - ||.

Example 1.2.3. Let X = R” or X = C", and consider the norms discussed in
example 1.1.2. The corresponding metrics on X are

n
@) = IF-dlh = (@ -, T =)l = Y |z —wil
i=1

n 1/2
dy(,y) = 1€~ gllz = (21— 15 s 2n = wn)ll2 = (E Iﬂfwyz-lz)

i=]

(Euclidean metric if X = R", unitary metric if X = C")
doolZ, §) = 11T = Fllec = [l(z1 =91, 80 =) |oc = max |z, — yil

for £ = (z1,...,2Zn), = (¥1,...,Yn)} € X. Note that if n = 1, then all three metrics
coincide.
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Figure 1.5: Metrics on R™

Example 1.2.4. Consider X = C[a,b] with the uniform norm || - ||l,. The corre-
sponding metric is

d(f,9) = IS = gllu = max |(f — g)(z)| = max |f(z) - g(z)].

z€[a,b] z€[a,b]

Figure 1.6: The uniform metric on Cla, b].

Exercise 1.2.2. Let X be a vector space.

1. Suppose, X carries a norm || - ||. Show that the metric d determined by this
norm has the following special properties:

(a) (translation invariance)
dlz + 2,9+ z) = d(z,y) (1.7)

(b) (scaling property)
d(G{LL',Cuy) = f04|d(50ay) (18)

for all z,y, z € X and scalars a.

2. Conversely, suppose that X carries a metric d which satisfies properties (1.7)
and {1.8). Show that
]| := d(=,0)

defines a norm on X, and that d is the metric on X determined by this norm.
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Thus, there is a one-to-one correspondence between norms on X and metrics satis-
fying properties (1.7) and (1.8).

Exercise 1.2.3. Show that the discrete metric on R™ is not determined by any
Orm.

1.2.3 Construction of Metric Spaces from Metric Spaces
Subspaces

Definition 1.2.2. Let (X, d) be a metric space, and ¥ C X. Then the restriction
of d to Y is a metric on Y, called the metric on Y induced by d. (Y, d} is called a
(metric) subspace of (X, d).

Example 1.2.5. Q@ is a metric space in the metric induced from R,
dlz,y) =z -y, zyeQ

A Bounded Metric

Example 1.2.6. Let d be a metric on a space X. Set

d(z,y)
olz,y) = —————, T,y € X. 1.9
e RS (19)
We claim that o is also a metric on X. In fact, (M1}, (M2) and (M3) are obvious,
since d possesses these properties. To prove (M4), note that for all 0 < a < b,

b a _bWl4a)—a{l+d) _ b—a >0
1+b 14+a  (1+b)(lL+a) (1+b6)(L+a) —
that is, )
a
< —, 1.10
l+a ~ 145 (1.10)
Setting @ = d(x,y) and b = d(x, 2) + d(z,y), the triangle inequality for d shows that

a < b, and thus by (1.9},

a_ _ b d(z,z) +d(2,9)
l+a = 146 14+d(z,2)+d(zy)
_ d(z, z) N d(z,y)
1+d(m, 2) +d(z,y)  1+d(z,z)+d(z,9)
d(z, z) + d(z,y)
T 1+d(z,2)  1+d(zv)

o{z,y) =

=o(z, 2) + o(z,y).

This proves the claim.
Note that by definition of o,

olr,y) <1 Vz,yeX.
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Exercise 1.2.4. Let d denote the Euclidean metric on R", and ¢ the metric on R®
derived from d as in (1.9). Show that o is not determined by any norm.

Exercise 1.2.5. (Construction of a metric from a separating family of pseudomet-
rics).

1. Give an example of a pseudometric on R? which is not a metric.

2. Let X be a set, and {d;}32, be a family of pseudometrics on X. Set

Show that d is a pseudometric on X, and that d(z,y) < 1 for all 2,y € X.

3. We say that the family {d;}32, separates to points of X if for all pairs z,y € X
with x # y, there exists an 4 such that di(z,y) # 0. Show: If {d,}%, separates
the points of X, then d is a metric.

Product Metrics

Let (X1,01), (X2, 09)...,(X,, 0a) be metric spaces. There are many ways in which
one can turn the Cartesian product X = X| x Xy x -+ x X, into a metric space.
The three most important ones are:

dl(xay) = 0'1(1'1, yl) + 02(m21 y2) +-+ On ﬂfm% Zgz .’E“ yz

k]

dZ(wz y) = \/01 (*Tlu y1)2 + 02(3:2: y2)2 M O'n(xna yﬂ)z = Z U(a:ia %‘,)2
i=1

(1.11)
deo(,y) 1= max{o1(21,51), 02(22,42) -+, On(Tn, Un)} = max o{zi, 3s)

for z = ($1>$2:~--1xn): Y= (yl:y%""yn) e X.
Exercise 1.2.6. Show that d;, ds and d, are indeed metrics on X = X; x X, x
- X X,. Furthermore,

doo(xay) = dl(mvy) < ndoc(xa y)
and
doo(2,Y) < da(,y) < VN doo(, y)-
for all z,y € X. (Hint: Proceed similar to exercises 1.1.1 and 1.1.2.)

Example 1.2.7. Let X; = X3 = -+ = X, = R with the usual metric, o;(z,y) =
|z —y| for all z,y € R, i = 1...7n. Then R" is an n-fold Cartesian product,

RY=RxRx-..xR.
nfa:;:ors

The metrics dy, dz and do, on R™, as defined in example 1.2.3, are simply the product
metrics (1.11).
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1.3 Topology of Metric Spaces

1.3.1 Open and Closed Balls
Definition 1.3.1. Let (X, d) be a metric space. Given a point z, € X and r > 0,

let us set
Bz,)={ze X :dlz,z,) <r}
Bolz,)={x€X : d(z,z,) <r} (the closed ball with center z, and radius r)
Se(zo)={ze€X : dlz, z,) }

(the open ball with center z, and radius r)

(the sphere with center z, and radius r)

T

Note that B,(z,) = B,(z,) U S;(z,), a disjoint union.

Remark 1.3.1. If X is a normed linear space, then since d(z, z,) = ||z — .||, these
sets can also be described by their norms:

Bz,)={zeX :|z—z]| <r}
Bi(ao)={zeX |zl =7}
Se(wa) ={z€X : o —zof =7}

Example 1.3.1. 1. Let X = R. Given z, € R and 7 > 0, then

Bi(z,)={z€R:|z—mz,f <r}=(zo—7z,+7) (an open interval)

Bi(z)={ze€R:lz—uz,|<r}=[z,— 72, +7r] (aclosed interval)
Siz)={reR:|z—z,|=r}={z,—7 To+7} (atwo-point set).

2. Let X = R2.
(a) Give R? the Euclidean metric da. Given Z = (z1,22) € R?, the open ball
BAZ) ={7= () eR®:(n -2+ (2 —2)* <7}
is called an open disc with center Z and radius r, and similarly,
B.(&)={7=(weR: Vn—2)? + (2 —z)? <1}
is called a closed disk with center & and radius 7.

S ={7T=,m R V(g —@)?+ (a—m)t =7}

is a circle with center & and radius 7.

(b) Now give R? the metric deo. Given Z = (21, 2) € R?, we have
S (&) ={v=(n,v) € R*: Jyr — 21| = |yo — 22| =7 }.

This is the square whose vertices are the points Plzy—r,zo—r), Q(z1 +
r, 2y — 1), R(z1 + 729 +7) and S(z1 — 7,22 + 7).

B(@) ={7=nLw) Ry —z1| <7, o —aa| <7}
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is the inside of this square, also called the open interval (z1 — 7, 1 +7) X
(xg — 1,22 + 1), and

E"r(f) = { ¥ = (ylny) eR: ,yi "'$1| < |yQ _$2| < ’F}

is called the closed interval (21 — r, 21 + ] X [B2 ~ 7,29 + 7].

(¢) Finally, give B? the metric dy. Given ¥ = (z1,25) € R2, we have
B(%) ={¢= (1) €R?®: [yy —a1| + [ga —za| <7 }.

This is the inside of a square whose vertices are the points P{z; — r, 22,
Q(z1, 22 — 1), R{xy + 1, 22) and S(xy, z0 + 7).

Figure 1.7: Balls B.(Z) in R? in various metrics.

3. Let X = R® with the Euclidean metric dy. Let & = (21, %9, 23) € R, Then

B (@) ={ 7= v29) €R: (g1 — )2 + (2 — ) + (g5 — 23)> <7 }

and

Be(@) ={7=(yy20) R : V(g1 —21)2 + (g — 22)* + (y3 —23)2 <7 }

are indeed open and closed balls, respectively, while

S(8) ={7=(nv293) €ER*: V(g1 — 21)? + (g2 — 22)? + (ys — 23)2 =1 }
is a sphere. This is why the sets B,(z,), B.(z,) and S,.(z,) carry these names.

4. Let X be an arbitrary set with the discrete metric. Then

B.(z,) {z,} if0<r<1
r\Lo) =
X ifr>1
B () {z,} H0<r<l
T, =
e X if r>1

) fo<rr#1
Sr{o) = {X\{xo} ifr=1.
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5. Let X = Cla, b] with the uniform norm || - ||,.. Given f € Cla, b] we have

B.(f) ={g€Clab]: [if —gllu <€}
={g€Cla,b]: max |f(z) —g(z)| <e}

z€la,b]

Figure 1.8: The ball B, in C[a, b] consists of all functions ¢ inside the e-strip.

Exercise 1.3.1. Describe the open balls, closed balls and spheres for the space [*°
with norm || - ||s.

Definition 1.3.2. (Bounded Set). Let (X, d) be a metric space. A non-empty set
M C X is said to be bounded, if

§(M) = sup d(z,y) < oc.
z,yeEM

5(M) is called the diameter of the set M.

Remark 1.3.2. Let M C X be bounded with diameter 6 = §(M) > 0. Fix
any 7, € M. Then for each z € M we have d(z,z,) < § < ¢ + 1, and thus
M - Bﬁ(a:o) - Bﬁ~|~1($o)- .
Conversely, if M C X is contained in some ball B, (x,) or B.(x,), then obviously,
for all z,y € M,
d(z,y) <d(z,z,) + d(ze,y) <7r-+7=2r

which shows that M is bounded of diameter less or equal to 2r.

Figure 1.9: A bounded set.

We have shown: M C X is bounded < M is contained in some open ball
B.(z,) (respectively closed ball B,(z,)).
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Example 1.3.2. Let (X, d) be a metric space.

1. Let o the metric derived from d as in example 1.2.6,

__d(z,y)
o(z,y) = TTdy)

Then X is bounded, and hence every set M C X is bounded. (If X is a
bounded set, then we call d a bounded metric.)

2. Let d denote the discrete metric on X. Then d is bounded.
3. By example 1.2.1, the metric o(z,y) = |ta11_1 z —tan~!y| on R is bounded.
Exercise 1.3.2. Let (X, |- ||) be a normed linear space. Show: M C X is bounded

< there exists m > 0 such that ||z|| < m for all z € M.

1.3.2 Open and Closed Sets, Neighborhoods
Definition 1.3.3. Let {X, d) be a metric space.

1. A subset U of X is called open if for each point z € U there exists an open
ball B(z) such that
B{z) CU.

(Note that e depends on z.)

2. A subset I of X is called closed if F°¢ is open.

Figure 1.10: An open set and a closed set.

Example 1.3.3. Let (X, d) be a metric space.

L. Every open ball B, (z,) is an open set. In fact, let z € B,(z,) be given. Since
d{z,T,) < r, we can pick € > 0 such that d(z,z,) < d(z,z,) + € < . Now for
every y € Bc(z) we have d{y, z) < ¢, and thus by the triangle inequality,

d(y,x.) < d(y, z) + d(®, To) < €+ d(z,3,) <7,

which shows that Be(z) C B.(z,). Since # € B,(x,) was arbitrary, we conclude
that B,.(z,) is an open set.
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Figure 1.11: An open ball is an open set — a closed ball is a closed set.

2. Every closed ball B, (,) is a closed set. In fact, we need to show that [B,(z,)]”
is open. So let © € [B,{z,)]" be given. Since d(z,z,) > 7, we can pick ¢ > 0
such that » < d(z,z,) — € < d(z,z,). Now for every y € B.(z) we have
d(y,z) < €, and thus by the triangle inequality,

d(z,z,) < d(z,y) +d(y, z,) < ¢ +d(y, z,).
Subtract e,
r < d(z,z,) — € < d(y, o),
which shows that B.(z) C [B,(z,)]". Since z € [B,(z,)]° was arbitrary, we

conclude that [B,(z,)]” is indeed open, an hence B,(z,) closed.

3. A set F' = {x,} consisting of one point ounly is is closed. (Such a set is called
a singleton.) In fact, let x # z, be given. Then ¢ := d(z,z,) > 0. For every
y € B.(z) we have
dy, ) < e = d(z,,2)

and hence y # =, that is, y € F°. This shows that B.(z) C F*. Since z ¢ F°
was arbitrary, it follows F© is open, so that F' is closed.

Definition 1.3.4. Let (X, d) be a metric space, and z € X. A set M C X is called
a neighborhood of X, if there exists e > 0 such that B.(z) C M.
If M itself is an open set, then it is called an open neighborhood of X.

Figure 1.12: Neighborhood of z.

Remark 1.3.3. The following two remarks are obvious:

1. For each € > 0, the ball B.(x) is an open neighborhood of z. For this reason,
B(z) is also called an (open) e-neighborhood of .

2. If M is a neighborhood of z, and M C N, then N is also a neighborhood of z.
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Exercise 1.3.3. Let (X,d) be a metric space, ¥ C X, and d the metric on ¥V
induced by the metric d on X. Show:

L. Given z, € Y, if M = B.(z,) denotes the open ball in Y with respect to (f,
and N = B.(z,) the open ball in X with respect to d, then M = NNY.

2 UCYisopeninY <« U=VnNY for some open subset V of X.
3. FCYisclosedinY <« F=GNY for some closed subset G of X.

Exercise 1.3.4. Let (X, d) be a discrete metric space. (That is, d is the discrete
metric). Show that every set M C X is both, open and closed..

1.3.3 The Topology Determined by a Metric
Theorem 1.3.1. Let (X, d) be a metric space, and let

Ti={UCX U is open }
be the collection of all open sets. Then

(T1) derand X €.
("0 and X are open sets.”)

(12) If {Ustaea C 7, then |J,caUa € 7.
(" The arbitrary union of open sets is open.”)

T3) If U, Us,..., U €T, then(,_, U; €T.
i=1
(*The finite intersection of open sets is open.”)

Proof.

(T1): Since @ contains no points, the statement ”For every z € §§ there exists ¢ > 0
such that B.(x) C (" is true. Hence, @ is an open set.

On the other hand, for every z € X and € > 0, B(z) C X. Hence, X is an
open set.

(T2): Let z € |J,c4 Ua be arbitrary. Then z € U, for at least one a, € A. As U,
is open, there exists € > 0 such that B.(x) C U,,, and hence

B.(2) C | J Ua.

acA

Thus, (J,ca Ua is open.

(T3): Let z € ()—; Ui be arbitrary. Then z € U; for all i = 1...n. Since each U; is
open, there exist €, ¢ = 1...n, such that
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Set € = min ¢ > 0. Since € < ¢; for all 7 we have

i=1..mn
B(z) C B, {x)CU; foralli=1...n,

so that

This shows that [);_; U; is open.
[]

Remark 1.3.4. (General definition of topology) The above properties can be used
to define the notion of open or closed sets without making use of a metric or open
balls. In general, given a set X and a collection 7 of subsets of X satisfying (T1)-
(T3), we call (X, 1) a topological space and T a topology on X. Fach set U € 7 is
called an open set and each F = U® U € 7, a closed set. Many of the properties in
this and the next section carry over to this abstract setting. However, since most of
the topologies we are interested in in this course come from a metric, we will restrict
our attention to metric spaces.

Corollary 1.3.2. Let (X,d) be a metric space. Then
(T1’) @ and X are closed sets.

(T2’) If {Fa}laca is an arbitrary collection of closed sets in X, then
closed. ("The arbitrary intersection of closed sets is closed.”)

aca Fo 18 also

(T3] If F\,Fy, ..., F, are closed sets in X, then \J_, Fi is closed. ("The finite
union of closed sets is closed.”)

Proof.

(T1"): Since § = X° and X is open, it follows that § is closed.
Similarly, since X = §¢ and § is open, it follows that X is closed.

(T2’): Note that

Since each F¥ is open, (T2) shows that |J ., Fg is open; hence (1,4 Fu is
closed.

(T3): Similarly,

Since each FY is open,(T'3) shows that [_; F¥ is open; hence |J_, F; is closed.

O
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Remark 1.3.5. Let (X, d) be a metric space.

1. The infinite intersection of open sets need not be open. For example, let X =R
with the usual metric. For each i € N, set U; = (—3, 1). Then Uj; is open, and

AU= 0 (-4 = {on

|2

But the singleton {0} is not open in R. (Why 7)

2. Similarly, the countable union of closed sets need not be closed. For example,
consider X = R again. For each i € N, set F; = [1,1 — 1]. Then F; is closed,

and o -

But the interval (0, 1) is not closed in R. (Why 7)

3. Every finite subset F = {z1,...,z,} of X is closed, since it is a finite union
of closed sets, F' = |Ji_ {z:},

Exercise 1.3.5. Let (X, d) be a metric space.

1. Show: If U € X is open, and F C X is closed, then

F\U isclosed, and U\F 1is open.

2. Use 1. to show that every sphere S,(z,) is closed.

3. Show: U C X isopen < U is a union of open balls.

1.3.4 Interior, Closure and Boundary

Interior of a Set

Definition 1.3.5. Let (X, d) be a metric space, and M C X. A point z € M is
called an interior point of M, if M is a neighborhood of z. (That is, if there exists
€ > 0 so that B.(z) C M.)

Figure 1.13: z is an interior point of M C R2, y is not.

We set M°® = Int{M) := { € M : z is an interior point of M }. M° is called
the interior of M.
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Example 1.3.4. 1. If X =R and M = [0, 1] U{2}, then M° = (0,1). (Why 7)
2. If X =R and M = @, then Q° = §) by the density of the irrationals in R.
3. If X =R? and M = [a,b) X [¢,d), then M° = (a,b) x (¢,d). (Why 7)
Theorem 1.3.3. Let X be a metric space, and M C X. Then
1. M? 1is open.

2. IfU C M and U is open in X, then U C M°. (That is, M° is the largest
open subset of M.)

3. M isopen & M°=M.

Proof. 1. Let x, € M® be arbitrary. Since z, is an interior point of M, there
exists € > 0 so that B.(z,) € M. We claim that B.(z,) C M°. In fact, since
B.(z,) is an open set (by example 1.3.3), for each = € B.(z,), there exists an
open ball Bs(z) such that z € Bs(z) C B.(z,) C M, that is, z is an interior
point of M, i.e. z € M°. We conclude that B.(z,) C M°, and the claim holds.
Since x, € M° was arbitrary, it follows from the definition of open sets that
M?® is open.

2. Let U € M be open. Then for each z, € U, there exists ¢ > 0 so that
B(z,) € U, and hence B.(z,) € M. That is, z, is an interior point of M,
ie. r, € M°. Since z, € U was arbitrary, it follows that U C M°.

3. = Suppose, M is open. Then M itself is an open set contained in M, so
that by part 2., M C M°. The reverse inclusion, M° C M, always holds by
definition of M°. Hence, M°® = M.

<: Suppose, M° = M. Since M° is open by part 1., it follows that M is open.
O

Remark 1.3.6. It is tempting to believe that the interior of the closed ball B, (z,)
is the open ball Bz,). However, this is not true in general: Let (X,d) be a
discrete metric space, let € = 1 and fix 2, € X. Then B (x,) = X is open, so that
[—Ee(a:o)]o = X, while B.(z,) = {z,}. This shows that Int[Be(z,)] # Be(x,).

However, in case of a normed linear space, this is true:

Exercise 1.3.6. Let (X, || -]|) be a normed linear space. Show: For each closed ball
B.(x,) we have Int Ee(:ro)] = B(z,).

Cluster Points

Definition 1.3.6. Let (X, d) be a metric space and M C X. A point z, € X is
called a cluster point of M (also an accumulation point or a limit point of M), if
every open neighborhood U of z, contains at least one point x € M with = # z,.
(That is, M NU\{z.} # @.)

Let use set

Acc(M) :={z € X : z is a cluster point of M}.
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Remark 1.3.7. The notion of accumulation point, cluster point and limit point is

not standard in the literature. Some authors may give slightly varying definitions

for these notions.

Example 1.3.5. 1. Let X = Rand M = {* : n € N}. We claim that 0 is a
cluster point of M. In fact, given an open neighborhood U of 0, pick € > 0 so

that (—e,€) € U. Now if n > % then 0 < 1 < ¢ so that 1 € U. This proves
the claim.

Note that 0 is the only cluster point of M. (Why 7)

2. Let X = R. Then Acc(Q) = R by the density of the rationals in R.
3. Let X = R and M = (0,1]U{2}. Then Acc(M) = [0,1]. (Why ?) z = 2 is
not a cluster point of M, since By/2(2) = (3/2,5/2) contains no point of M

different from 2. (z = 2 is called an isolated point of M, since it is a point of
M but not a cluster point.)

4. Let X = R? with the usual metric. Set
) 1
M={(z,y)eR*:2>0, y=sin—}.
T

Then Acc(M) = MU{(0,y): -1 <y <1). Why ?)

Exercise 1.3.7. Let (X, d) be a metric space and M C X. Show that the following
are equivalent:

1. z, is a cluster point of M.
2. Every open ball B(xz,) contains a point z of M with z # z,.
3. Every open ball B.(x,) contains infinitely many points of M.

4. Every open neighborhood U of z, contains infinitely many points of M.
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Closure of a Set

Definition 1.3.7. Let (X, d) be a metric space and M C X. The set
M := M U Acc(M).
is called the closure of M.
Theorem 1.3.4. Let (X,d) be a metric space and M C X. Then
1. M is closed.

2. If M C F and F is closed in X, then MCF. (That is, M is the smallest
closed subset of X containing M.)

3. M is closed & M=M.

Proof. 1. Let us show that [M]° is open. For this, let z, € [M]°. Then z, ¢
M and z, ¢ Acc{M). Since z, is not a cluster point, there exists an open
neighborhood U of x, such that

Un(M\{z.}) =10
Since as x, ¢ M either, then

UnM =40

Next we need to "reduce” U in order that U N A = §). Since U is an open
neighborhood of z,, there exists e > 0 so that

Bu(z.,) CUC M® (1.12)

We claim: B,s(z,) € [M]°. For suppose to the contrary, that there exists
71 € Besa(2o) N M. Then by (1.12), ; ¢ M, and hence z; € Acc(M). Thus,
the open neighborhood Bﬁ/g(:cl) of z; contains at least one point z of M. But
by the triangle inequality,

d(z,z,) < d{z, 1) + d(z1,2,) < €/2+€/2=¢

so that € B.(z,) which contradicts (1.12). This proves the claim, and since
z, € [M]¢ was arbitrary, that [M]° is open. Thus, M is closed.

2. Let F C X beclosed with M C F. We claim that Acc(M) C F'. Forifz, € F*,
then since F is open, there exists € > 0 such that B.(z,) € F° C M¢. That
is, B(z,) is an open neighborhood of z, containing no point of M, hence z,
can not be an accumulation point of M. This proves the claim.

It follows now that

M=MUAcc(M) C FUF = F.
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3. =>: Suppose, M is closed. Then F'= M is a closed subset o_f X containing M,
so by part 2., M C F' = M. Tl_lireverse inclusion, M C M, always holds by
definition 1.3.7. It follows that M = M.

«: Suppose, M = M. Since by part 1., M is closed, it follows that M is
closed.
]

Remark 1.3.8. Since M = M U Acc(M), part 3. of the theorem can be rephrased
as: M is closed <  Acc(M)C M.

Example 1.3.6. 1. Let X =R and M = (0,1] U {2}. Then by example 1.3.5,
M = MUAcc(M) = ({0,1]u{2}) U[0,1] = [0, 1]u{2}.

2. Let X = R. If (a,b) is a bounded, open interval, then (a,b) = [a, b].

3. Let X =R. If M = {1 :n €N}, then M = M U{0} by example 1.3.5.

4. Let X =R. I M ={(z,9)€R?: x>0, y=sinl}, then
M=MU{(0,y) eR*: -1 <y <1).

Exercise 1.3.8. 1. Let (X,d) be a metric space. Show: B,(z,) C B,(x,), but
equality does not hold in general.
2. Show that if (X, |- |) is a normed linear space, then B,(z,) = B,(,).
Exercise 1.3.9. Let (X, d) be a metric space, and A, B C X. Show:
1. f AC B, then A° C B° and A C B.
2. (ANB)° = A°NB° and (AUB) = AUB.

3. (AUB)° D A°UB° and (ANB) € AN B. Equality does not hold in general.

Boundary of a Set
Definition 1.3.8. Let (X, d) be a metric space and M C X. Then the set
(M) = M\M®

is called the boundary of M.

Figure 1.14: Boundary of M.
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Note that M = M°U3(M), a disjoint union.
Example 1.3.7. 1. Let X =R and M = (0,1]U{2}. Then

O(M) = M\M° = ((0,1]U{2})\(0,1) = {0,1,2}.

2. Let X =R and M = Q. Then Q = R and Q° = §, hence
Q) =Q\Q°=R\¢ =R
Exercise 1.3.10. Let (X, d) be a metric space, M C X be nonempty, and z € X.

1. Show that the following are equivalent:

(a) z € M.

(b) Every open neighborhood U of z contains a point of M.
(c) Every open ball B.(z) contains a point of M.

(d) For each € > 0 there exists y € M with d{z,vy) < <.

2. Show that the following are equivalent:

(a) z € O(M).

(b) Every open neighborhood U of z contains points of both M and M©.

()

(d) For each € > 0 there exist y € M and z € M*® with d(z,y) < € and
d(z, z) < e

Every open ball B.(x) contains points of both M and M°.
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1.4 Continuous Mappings

1.4.1 Continuous Mappings Between Metric Spaces
Definition 1.4.1. Let (X, d) and (Y, o) be two metric spaces, and
T:X->Y

a mapping (i.e. a function). For simplicity, we write Tz instead of T(z). Then T is
said to be

L. continuous at @ point z, € X, if for every € > 0 there exists § —= d(xoe) >0
such that

o(Tz,Tz,) <€  whenever x € X and d(z, To) < 6. (1.13)

Figure 1.15: T is continuous at z,

2. continuous, if it is continuous at every z, € X.

3. uniformly continuous, if § can be chosen independent of z,, that is, if for every
€ > 0 there exists § = §(¢) > 0 such that

o(Tz,Ty) <e  whenever 2,y € X and d(z, y) < 4. (1.14)

Remark 1.4.1. L. Condition 1.13 can be restated as follows:
T(Bs(z,)) C B(Tz,).

2. Obviously, uniform continuity implies continuity.

Example 1.4.1. 1. Let X = Y = R with the usual metric. Then flz) =22 is
continuous, but not uniformly continuous.

2. Let X =Y =R and f(z) = ﬁ@ Then f(z} is uniformly continuous.
3. Let X =R? and Y = R. The function

=)@ y) #(0,0)
A )_{1 if (z,9) = (0,0)

is continuous at every z, € X, except at 1, = (0,0). The function
iy < | EEA @) # 0,0
T if (z,9) = (0,0)

is uniformly continuous. (Use polar coordinates !)
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Example 1.4.2. If (X, d) is a discrete metric space, then every mappingT : X — Y
is uniformly continuous.

Example 1.4.3. Let (X, d) and (Y, o} be metric spaces, and 7" : X — Y a mapping.
Then T is called an isometry if o(Tx, Ty) = d(z,y) for all z,y € X. (That is, an
isometry preserves distances). Obviously, every isometry is uniformly continuous
(Just choose § = ¢.)

Example 1.4.4. Let X =Y = R? with the usual metric, and write elements of R?

as column vectors. Iix a matrix A = CO.SQ sin g . (Note that A is orthogonal.)
—siné cosf
Then the mapping 7" : R? — R? given by T(f) = AT is an isometry. {Check !)

Remark 1.4.2. Suppose, (X, | - |lx) and (Y, ]| - |y} are normed linear spaces, and
T : X — Y. Then the above definitions become:

1. T is continuous at x, € X, if for every ¢ > 0 there exists & = &(z,,€) > 0 such
that
|Tz — Tx,|ly <e  whenever x € X and ||z — z,||x < §.

2. T is uniformly continuous if for every € > 0 there exists § = d(e) > 0 such that

[Tz —Tylly <e  whenever z,y € X and ||z — yl|x < 4.

1.4.2 Continuity and Open Sets
Let X,Y be two sets, and T : X — Y a mapping. Given V C Y, the set
T Vy={zeX : T)eV}

is called the preimage of V in X. It is easy to verify that for an arbitrary collection
{Va}aca of subsets of V',

T*l(ﬂ VO,) = (T Va) and T-l(U Va) = T ()

acAd oA acA
Also, if V C Y then V = T(T~}V)), while if U C X then U € T~ (T(U)).

Theorem 1.4.1. (Characterization of continuity through open sets) Let (X, d) and
(Y,o) be metric spaces, and T : X — 'Y a mapping. Then T s continuous &
T1(V) is open in X for each open set V C Y.

Figure 1.16: Preimage.
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Proof. = Suppose T is continuous. Let V C Y be open. We need to show that
U :=T"V) is open in X.

If U = () we are done. Otherwise, let z, € U be arbitrary. Since T{x,) € V and
V is open, there exists € > 0 such that

B (Tz,) C V.
Now as T is continuous, there exists § > 0 such that
T(Bs(z,)) C B(Tx,) C V,

that is,
Bs(z,) €T Y{Vy=U.

Since x, € U was arbitrary, it follows that U is open.

Figure 1.17: T( Bs(z,) ) C Be(Tz,).

<: Now suppose that T~1(V) is open in X for each openset V C Y. Let 2, € X
be arbitrary, and € > 0 be given. Since B.(T'z,) is open in Y, it follows from the
assumption that T (B(Tz,)} is open in X. Naw z, € T~1(B(Iz,)), and thus
there exists 0 > 0 such that

Bé(wo) - T (BE(Txo))
and hence
T(Bg(:vc,)) C B(Tz,).

This shows that T is continuous at z,. As z, € X was arbitrary, we conclude that
T is continuous on X. O

Exercise 1.4.1. Let (X,d) and (Y, ) be metric spaces, and T : X — Y. Show
that T is continuous < T71(F) is closed in X for each closed set F C V.

1.4.3 Continuity on Subsets

Let (X,d) and (Y, o) be metric spaces. Recall that if B C X, then (F,d) is itself
a mefric space. Now let T : D(T) € X — Y be a mapping. If E C D(T), then
we say that 1" is continuous on E (respectively uniformly continuous on E), if the
mapping 7' : £ — Y is continuous (respectively uniformly continuous). That is,

L T is continuous on FE, iff for every z, € FE and every ¢ > 0 there exists
d = d(z,, €) > 0 such that

o(Tz,Tx,) <e¢  whenever z € E and d(z,z,) < 6.
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2. T is uniformly continuous on E, iff for every ¢ > 0 there exists § = d(e} > 0

such that

o(Tz,Ty) <e  whenever z,y € F and d(z,y) < 6.

Figure 1.18: T is continuous on F.

Example 1.4.5. Let X =Y = R with the usual metric.
1. f(z) =1 is continuous on E = (0, o), but not uniformly continuous.

2. g(z) = v/z is uniformly continuous on F = [0, c0).

1.4.4 Continuous Linear Maps

In the case of linear maps between normed linear spaces we obtain a simpler char-
acterization for continuity. This comes from the fact that the norm is translation
invariant.

Recall: If X and Y are vector spaces, then a map 7' : X — Y is called a linear
mapping (or a linear transformation) if

1. T(az) = aT(z), and
2. T(x+y)=T(z) +T(y)

for all z,y € X and scalars a. We often simply write Tz instead of T'(z). If 0
denotes the zero vector in X, then by 2., T(0) = T(0+0) = T(0) + 7'(0), and hence
T(0) = 0.

Theorem 1.4.2. Let (X, | - || x) and (Y,| - ||y) be normed linear spaces, and T :
X =Y a linear mapping. Then T.F.A.E. (The following are equivalent):

1. T is continuous at some r, € X.
2. T is continuous.
3. T is uniformly continuous.
4. There exists a constant K > 0 so that
|Tzlly < K ||z]lx (1.15)
forallz e X,
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Proof. 1. = 4.: Suppose, T is continuous at z,. Then for € = 1 there exists § > 0
such that

Tz — Tx,jly <1 whenever z € X and ||z — z,||x < é. (1.16)

First let z € X be such that |lz||x = §. Set 2z = z + z,. Then

I = ellx = lollx = 5 < 6
and hence by linearity of T and (1.16),
| Tzlly = |T(x + zo) — TZo|ly = [Tz — Tx|ly < 1. (1.17)
Now if z € X is arbitrary,  # 0, set u = 2H$II z. Then |lullx = £, so by (1.17),
| Tully < 1.

That is,
‘T:E“Y <1

] 4
()l = Iz )], -
I G e 2J|osnx|
where we have used (N3) and linearity of T. Setting K = 2 we thus have that
1Tzlly < K ||zl|x.

for all  # 0. Finally, if £ = 0 then (1.15) holds trivially.

4. = 3.: Suppose, |Tz|ly < K |jz]|x for all z € X. Given € > 0, set § = &. Then
whenever z,y € X with ||z — y||x < § we have

1Tz = Tylly = IT(z - )lly < K[|z —yllx < Ké =
This shows that T is uniformly continuous.
3. = 2. and 2. = 1. are obvious. O
Example 1.4.6. Consider the real normed linear space X — (Cla, b, | 1)
1. Fix a point z, € X, and define T': C[a, ] — R by

T(f) = f(xo)'

Obviously, T is linear, and |T(f)| = |f(zo)| < ||f||«. Thus, by the theorem, T
is continuous.

2. The mapping T : Cla, b] — R given by

=/abf(t)dt

is linear, and since |T(f)| < (b — a)|if||. for all £, also continuous.



1.4.

CONTINUOUS MAPPINGS 39

3. The mapping S : Cla, b] — Cla, b] given by

sh@ = [ 1w
is linear. Now for each z € [a, b],

[(SF) (@) < (2 = a)ll fliw < (b = @) filu
Thus, ||Sf|. < (b —a)||f]|l. for all f, which shows that S is continuous.

Exercise 1.4.2. Let T : Cla,b] — Cl[a,b] be given by T(f) = f2. Is T linear 7
Show that T is continuous, but not uniformly continuous.

Exercise 1.4.3. Let T : R® — R™ be linear, and let || - || be any norm on R™.
Show:

1. If R™ carries the norm || - ||, then T is continuous.

2. If R™ carries the norm || - {|eo, then T is continuous.

3. If R™ carries the norm || - ||g, then 7" is continuous.

Definition 1.4.2. Let d and ¢ be two metrics on a set X.

1. We say that d and o are equivalent, if there exist constants a, b > 0 such that

ad(z,y) < o(z,y) < bd(z,y)

for all z,y € X.

2. Set

74 ={U C X : U is open with respect to d}

and
7. = {U € X : U is open with respect to o}.

We say that d and ¢ generate the same topology, if 4 = 7,.

Exercise ’1.4.4. Let d and ¢ be two metrics on a set X. Show:

1.

d and o generate the same topology iff the identity maps I : (X, d) — (X, o)
and I : (X,0) — (X,d), given by I(z) = z, are continuous.

If d and ¢ on X are equivalent, then they generate the same topology.

Let (X,d) be an unbounded metric space, (by unbounded we mean that
d{X) = 00}, and let & be the metric on X as defined in example 1.2.6. Then d
and o generate the same topology, but are not equivalent. {Thus, inequivalent
metrics may generate the same topology.)

Let X be a vector space, and || - || and | - || two norms on X. Denote the
metrics determined by these norms by d and o, respectively. Then || - || and
|| - || are equivalent <« d and o generate the same topology.
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1.5 Sequences

1.5.1 Convergence of Sequences

One particular feature of metric spaces is that many topological properties can be
described by the behavior of sequences.

Definition 1.5.1. Let (X, d} be a metric space. A sequence {z,}°>, of elements of
X is said to be convergent, if there exists an x € X such that

lim d(z,,z)=0. (1.18)

n—00

Then z is called the limit of the sequence {z,}%,, and we write

lim z, =z or T, —>z (asn— o0)

n—0o

and say that {z,}2°, converges to z. If the sequence {z,}22,; does not converge,
then it is said to diverge, or be divergent.

Remark 1.5.1. Using the definition of convergence of the sequence {d(z,, w)}zo:
in R, it follows from (1.18) that:

1

lim z, =2 & givene>0 INeN st dz,z)<e VYn>=>N, (1.19)

n—0o0

or also

limz, =2 & givene>0 INeEN st. 1z, € Blzx) Yn=>N. (1.20)

n—00

That is, every open neighborhood of # contains the tail of the sequence {z,}2°;.

Figure 1.19: Convergent sequence

Remark 1.5.2. Let (X, || - ||} be a normed linear space, and {,}°2, a sequence in
X. Then (1.18) becomes

limz, =z <« limz,—z|=0.
n—oc Te—+00

< given € >0 3N € N such that ||z, — z|| < e for all n > N.



1.5. SEQUENCES 37

Example 1.5.1. Let X = (Cla, b}, || - ||u). I {fu}2, C Cla,b], f € Cle,b] then
fn—f & glvene>0 3N €N such that m[azg] |fulz) — fz)|<e ¥Yn=>N
re|a,
&  given € >0 3IN € N such that |fo(z) — f(z)| <e ¥Yn >N, Vz € [a,b).

That is, the sequence {f,}32, converges to f in Cla, b] if and only if f,.(x) converges
uniformly to f(x) on [a, b].

Example 1.5.2. Let (X, d) be a discrete metric space. Suppose, z, — z. Then
given € = 1 there exists N ¢ N such that d{z,,z) < 1 for all » > N. But then
d(z,, z) = 0, that is, z, = z, for all n > N. So the only convergent sequences are
those whose tails are constant.

Theorem 1.5.1. Let (X,d) be a metric space, and {x,}52, a convergent sequence
in X. Then

1. the sequence {x,}22, is bounded, and
2. its limat is unique.

Proof. 1. To prove boundedness, suppose that z, — z. Then, for ¢ = 1 there exists
N &€ N such that d(z,,z) < 1foralln > N. Set

M = max{d{z,z), d(za,z), ..., d(zNy_1,2), 1}.
Then d(z,,x) < M for all n. Then by the triangle inequality, for all n,m € N,
ATy Tn) < d(Tp, z) + d(z, ) < M + M =2M.

This shows that the set {z,}2, is bounded in X.

2. To prove uniqueness, suppose that x, — z and z, — y in X. Then by the
triangle inequality, we have for all n € N,

0 <d(z,y) < d(x,2n) + &z, y)-
Let n — oo. Then
0 <d(z,y) < lim d(z,z,) + lim d(2n,y) =0+0=0

by assumption of convergence. It follows that d(z,y) = 0, and hence by definiteness
of the metric, that x = y. ]

1.5.2 Topological Properties and Sequences

Theorem 1.5.2. (Sequential Characterization of Continuity)

Let (X,d) and (Y, o) be metric spaces, T : X — Y a mapping and z, € X. ThenT
is continuous at v, <  whenever {x,}>2, is a sequence in X with z, — z, in
X, thenTzx, - Tx, inY.
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Proof. =: Suppose, T is continuous at z,, and z, — z, in X. Let ¢ > 0 be given.
As T is continuous at z,, there exists é > 0 such that

o(Tz,Tz,) < ¢ whenever d(z, z,) <?é. (1.21)

On the other hand, as z,, — z,, there exists N € N such that d(z,,z,} < ¢ for all
n > N. Hence by (1.21),

o(Txy,, Tz,) <€ whenever n > N.

Since € was arbitrary, it follows that Tz, — Tz,.

<: Suppose to the contrary, that z, — z, implies 7'z, — T'x,, but 7" is not
continuous at z,. Then there exists ¢ > 0 such that for every § > 0 we can find
r € X with d(z,z,) < & but 6(Tz,Tx,) > e. Choosing § = 2 forn = 1,2,...,
we thus find elements z, € X with d(z,,z,) < %, but o(Tx,, Tx,) > €. That is,
Zn, — T, while Tz, + Tz, a contradiction to our assumption. Thus, T must be
continuous at z,. O

Figure 1.20: T is continuous at z,

Theorem 1.5.3. {Sequential Characterization of Closed Sets)
Let (X,d) be a metric space and M C X be non-empty. Then

1. z € Ace(M) <& there exists o sequence {x,}30, C M with z, # « for all
n, such that z, — x.

2.2 €M <& there exists a sequence {x,}> , C M such that z, — x.

3. M is closed <&  whenever {x,}22, C M converges in X, say z, — =, then
re M.

Proof. 1. =: Let x € Acc(M). Then for each e = 1 the ball Bi(z) contains an
element z,, € M with z, # z. Since "

1
Ogd(mﬂ,m)<g—>0 asn — oo

it follows from the squeeze theorem that d{z,,z) — 0, that is, z,, — z. Hence,
{Zn}22, is the desired sequence.

<: Suppose there exists a sequence {z,}>>, C M, z, # z, such that z, — z.
Let U be any open neighborhood of z. Pick € > 0 such that B.(xz) € U. Now
since x, — z, there exists N € N such that z, € B{z) for allmn > N. In
particular, z is an element of M with zy # z and zy € B.(z) C U. Since U
was arbitrary, it follows that z is a cluster point of M.
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2. = Let 2 € M = MUAcc{M). Thenz € M or z € Acc(M). f z € M, let
{z,}s2q be the constant sequence, z, = x for all n. Then obviously, z,, — z
as n — oo. On the other hand, if x € Acc{M), then by 1., there exists a
sequence {z,}52, in M such that z, — z.

«: Let z € X and suppose, there exists sequence {z,}52; C M such that
z, — . If € M then obviously, z € M and we are > done. If z ¢ M, then
z, # x for all n, and hence by part 1., z € Acc(M) C M.

3. = Suppose, M is closed. Let {z,}52, € M with z, — z € X. Then by part
2.,z € M. But M is closed, that is, M = M, and hence x € M.

<=: Assume that whenever {z,}>°, C M and z, —» = € X, then x € M. Let
x € Acc(M). Then by part 1., there exists a sequence {z,}2%., € M such that

[k

z, — . Then by assumption, z € M. We have shown that Acc(M) C M.
Hence, M = M UAce(M) C M UM = M which shows that M is closed.
O

Example 1.5.3. Let X =R? and M = {Z = (z,7) € R? : |zy| < 1}.

We claim that M is closed. In fact, let {Z,}:2, C M be convergent, say &, =
(Zn, Yn) — & = {(x,y). Then z, — z and y, — y. Since |x,y,| < 1 for all n, by the
comparison test,

lzy| = {(lim z,)(lim y,)| = lim |z,y.] <1
as well, which shows that Z = (z,y)} € M. Hence, M is closed by the theorem.
Example 1.5.4. Let X = Cla, b] with the uniform norm. Fix E C [, b], and let
M={feClab: flz)=0 Vzeck}
We claim that M is closed in Cla,b]. In fact, suppose {f.}5%, <€ M, f € Cla, ]
and f, — f in Cle,b]. Then by example 1.5.1, fo,{z) — f(z) uniformly on [a,b]. In
particular, for all z € F,

flz) = lim fo(z)= lim 0=:0

n—0oQ —+0C

which shows that f € M also. Thus by the theorem, M is closed.
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Theorem 1.5.4. (Continuity of the Metric) Let (X,d) be a metric space.

1. If {z,}22, is a convergent sequence in X, say z, — x, then for ally € X,
d(zn, y) — d(z,y).

2 If{zn )32, and {y. )32, are convergent sequences in X, say &, — = and y, —
y, then
d(wn: yn) - d(iC, y)

Proof. Let us prove 2. first. Suppose z,, — z and 3, — y. Then by the triangle
inequality, for all n € N we have

d(xn, yn) —d{z,y) < (d(xm :L‘) +d(z,y) + d(y,yn)) ~ d(z, y) = d(zn, ) + d(y, yn)
(1.22)

Interchanging z, and z, and ¥, and y in (1.22), we obtain
d(z,y) — d(Zn, Yn) < d(z, 2n) + d(Yn, ¥)
Both inequalities can be combined to
0 < |d(@n, yn) — d(z, )| < d(Tn, T) + d(yn, )

for all n. Now the right-hand side goes to zero as n — co. It follows from the

squeeze theorem that
im |d(zZn, yn) — d(z,y)| =0

T+— 00
and hence
lim d{z,, yn) = d(z,y).
Part 1. now follows immediately by choosing v, == y for all n. O

For normed linear spaces we have:
Theorem 1.5.5. Let (X, || - ||) be e normed linear space.
1. If {z,}22 | is a convergent sequence in X, say x,, — x, then

Jim [z = Jo}}

(That is, the norm is a continuous function.)

2. If {xp}°, and {yn 152, are convergent sequences in X, say T, — = and y, —
n=1 n=1 ' Y
y, and if {an,}2, is a convergent sequence of scalars, say o, — «,then

(a) Tp+yn — T+ Y.

(b) ap,z, — ax.

(That 1s, the vector space operations are continuous.)
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Proof. 1. Suppose, , — z. Then by theorem 1.5.4, part 1,
[Zall = lln = Ol = d(zn, 0) — d(z,0) = ||z — 0| = [|=.
2. Suppose, , — z and ¥, — y. Then
1(zn +yn) — (£ + 9l = (20 — 2) — (¥ — wm)l
S llza =zl -+ ly —yall = 04+0=0

which shows that z, + ¢, — = +y. Now if o, — ¢, then there exists M > 0
such that |a,| < M for all n, so that

lomzn — az|| = ||tnzn — 0n + iz — az|| = ||wa{z, — ) + (0, — @)z]|
< lan(zn = @)l + l(on — e)z|| = |om| l|lzn — ]| + lon — al [I2]
< M|zp —z||+ o, — | |lz]] = 0+0=0

which shows that oz, — azx.

1.5.3 Cauchy Sequences

Definition 1.5.2. Let (X, d) be a metric space. A sequence {z,}52, C X is called
Cauchy if for every € > 0 there exists N = N(¢) € N such that

(L, 2n) <€ forall m,n > N. (1.23)
Remark 1.5.3. It is is easy to see that (1.23)} can be replaced by
d{Tm,x,) <€ forallm>n>N.
Theorem 1.5.6. Let (X, d) be ¢ metric space. Then
1. Ewvery Cauchy sequence is bounded.
2. Every convergent sequence {x,}5, C X is Cauchy.

Proof. 1. Suppose, {z,}2° is Cauchy. Then given ¢ = 1 there exists N € N such
that d(zn, Tm) < 1 for all n,m > N. In particular, d(z,,zy) < 1 for all n > N. Set

M = max{d(z1,zy), d{za, zn), ..., d(zy_1,25), 1 }.
Then for all m,n € N,we have

H Ty Tn) < d{zp,zy) +dlzy, on) <M+ M =2M
which shows that the set {z,}2, is bounded.

2. Suppose, x, — x in X. Let € > 0 be arbitrary, but given. By convergence, there
exists N € N such that

d(zn,z) <e€/2  forallm > N.
Thus if m,n > N we have by the triangle inequality,
A(Zr, Tm) < d(Tp, ) + d{z, z,) < €/2+€/2 =
This shows that {z,}32, is Cauchy. O
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Example 1.5.5. The converse statement of 2. is false: If {x,}3, is Cauchy in X,
it need not converge in X.

For example, let X = (0,1] with the usual metric, and z, = 1. Since the
sequence {z,}°, converges in R, it is Cauchy in R, and hence in X. However, as
T, — 0, and 0 ¢ X, and limits are unique, this sequence has no limit in X.

Loosely speaking, a Cauchy sequence 'wants’ to have a limit, but the space X
may not be large enough to contain a limit.

Definition 1.5.3. A metric space (X,d) is said to be complete, if every Cauchy
sequence {z,}oo; € X converges in X. A normed linear space which is complete
(in the metric induced by its norm) is called a Banach space.

Example 1.5.6. (Example 1.5.5 continued) X = (0, 1], with the usual metric, is
not complete.

Example 1.5.7. In a basic course on mathematical analysis one learns that R is
complete in the usual topology. (This is a consequence of the completeness axiom
for R.) It follows from exercise 1.5.5 below that C, R™ and C” are all complete in
the usual metric.

Example 1.5.8. Suppose (X, d) is a discrete metric space. Let {z,}2>_; be a Cauchy
sequence in X. Then for ¢ = 1, there exists V € N such that

(T, Tm) <1 for all m,n > N,

that is, z, = z,, for all m,n > N. Thus, the tail of every Cauchy sequence is
constant, and hence X is complete.

Exercise 1.5.1. Let (X, d) be a metric space and {z,}22, a Cauchy sequence in
X. Show: If {z,}5°, has a subsequence {z,, };>, which converges, say z,, — « as
k — oo, then x,, — x as n — oo.

Exercise 1.5.2. Let X be a set, and d and o be two equivalent metrics on X. Let
{z.}22 be a sequence in X, and = € X. Show:

1.z, m2zin(X,d) < z,—zin(X, 0)
2. {z,} 18 Cauchy in (X,d) < {z,}is Cauchy in (X, o).
3. (X,d) is complete < (X, o) is complete.
Exercise 1.5.3. Let X = R, with the usual metric d, and let
o(z,y) = |arctanx — arctan y| (z,y € R)
be the metric of exercise 1.5. Show that
1. d and ¢ generate the same topology.

2. d and ¢ are not equivalent.
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3. (R, o) is not complete.

(So even though both metrics have the same open sets, one metric is complete why
the other is not.)

Example 1.5.9. (Cla,d], || - |.) is complete, i.e. a Banach space. In fact, let
{£2}32, € Cla,b] be Cauchy. Then given € > 0 there exists N € N such that

[ fn = foullu = xrél[ifg] |fa(2) = fo(@)] <€

for all n,m > N, which is equivalent to
folz) — f(z)| <e  Vz€lab], Vn,m>N,

That is, the sequence of functions {f.(z)}>°, is uniformly Cauchy on [a,b]. In
particular, for fixed z € {a, b], the sequence of real numbers {f,(z)}2°, is Cauchy in
R (respectively C), and thus converges by completeness of R (or C). We thus can
define a function f by setting

flz) = lim f,(x)

n—co

for z € [a, b].
Claim: f,(z) — f(z) uniformly on [a,b]. For let ¢ > 0 be given. Choose n € N
so that

| fulz) — frn(x)] < €/2 Ve € [a,b], Y n,m > N,

Now let m — oo. By continuity of the absolute value,
Fole) = F@) = [fale) = Mm_ fon(a)| = lim [ful) ~ fule)| Se/2<c  (1.24)

for all n > N and all z € [a, b]. This proves the claim.

Now from basic analysis we know that the uniform limit of a sequence of con-
tinuous functions is continuous. Thus, f € C[a,b] as well. Finally, (1.24) shows
that

||fn_f||'u< €

for all n > N. As ¢ was arbitrary, it follows that f, — f in Cla,b]. We have shown
that Cla, b] is complete.

Example 1.5.10. (A normed linear space which is not complete)
Let X = C10,1], and define

T f (@) da

for f € C[0,1]. Then || - ||; is & norm on C10, 1]. (Check !)
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Figure 1.21: A Cauchy sequence which does not converge

We will show that (X, || - |l1) is not complete. In fact, consider the sequence
{£2}52, in C[0, 1] given by

0 if z < 3
fo(@) = qn(z—3) f3<a<5+;
1 1f%+%<:1:§1

We claim that {f,}32, is Cauchy. In fact, for m > n we have

1
(fur For) = | — Fonll = / Fa(@) = fnl2)] de
141 b4k
= [ i@ - @l [T =

1

2 2

where we have used the fact that f,(z) # fm(z) on [§, 5 + 2] only, and 0 < f,(z) <
fm(z) < 1. Hence,

Sl

d(fny fm) <€
provided that m > n > 1, which shows that {f,}52, is Cauchy.
Next we claim that {f,} does not converge in (X, | - ||1). For suppose to the

contrary that there exists f € Cla, b] such that || f, — f||1 — 0. Then,

1
0= lim 1f, = flh = lim [ |fa(o) - F(@)] ds

= lim (ff|f($)|d9:+/:+% |fn($)—f(a:)d:v—|—/: , 1 —f(g;)|d$)

2+
: 1
:f |f(:c)|d:v+0+/ 11— f(z)|ds
0 !

which only can happen if

i 1
2
f f(z)|dz=0 and / 1 f(z) dz = 0.
0 1
By continuity of f, the left equality implies that f(z) = 0 on [0, %] and the right
equality that 1 — f{z) = 0 on [3,1]. That is, f(1) = 0 while also, f(}) = 1, which
is impossible. This proves the claim, and hence that (X, || - 1) is not complete.
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Note that by exercise 1.5.2, the two norms || - ||, and || - || on C[0, 1] are not
equivalent.

Exercise 1.5.4. Show that {°° and ¢, are complete. (Hint: proceed as in example
1.5.9.)

The next theorem can sometimes be used to test for completeness.

Theorem 1.5.7. Let (X, d) be a complete metric space, and M C X. (Thus, M
itself is a metric space in the metric d). Then M is complete < M is closed in X.

Proof. =: Suppose, M is complete. We need to show that M C M. We may
assume that M is non-empty, for the assertion is obvious if M = .

To this end, let x € M be arbitrary. Then by theorem 1.5.3, there exists a
sequence {z, 3152, C M such that z, — z. Since this sequence converges in X, it is
Cauchy in X, and thus also in M. But by completeness of M, there exists y € M
such that z,, — v in M, and hence in X. Now as limits are unique, it follows that
y = x, that is, x € M. This shows that M C M, i.e. that M is closed.

<=: Suppose that M is closed in X. Let {z,}2°, € M be any Cauchy sequence.
Then {z,}22, is also Cauchy in X, so that by completeness of X, there exists z € X
such that z,, — . Now as x, € M for all n and M is closed, the limit z must be in
M as well by theorem 1.5.3. This shows that M is complete. O

Example 1.5.11. 1. M = [0,1] is a complete metric space (in the usual metric),
since M is a closed subset of R, and R is complete.

2. M = (0,1] is not a complete metric space since M is not closed in R.

3. M= {(z,y) e R*: y =sin, z > 0} is not a complete metric space as M is
not closed in R

Exercise 1.5.5. Let (X1, 02), (X1, 02),...,(X,, 0n) be metric spaces, and let dy, dy
and de, denote the metrics on X = X; x X x -+ X X, as defined in example 1.11.

1. Denote sequences in X by {z®}22, where z® = (z{® 2 2%y 2 €
X;, 2=1,...,n. Show:

(a) {2}, convergesin X <  each component sequence {xgk)}z';l con-

verge in X; (i =1,...,n). Furthermore
lim z®*) = (Iim a:ﬁ"’), lim :E(gk), ..y lim a:;’“))
k—oo k00 k—o0 k—oo

x °, is Cauchy in & each component sequence {z)}22. is
(b) { ““)}Z"l is Cauchy in X h P t { fk)}i‘ll .
Cauchy in X;,i=1,...,n.

2. Show that X is complete < (X1, 02), (X1,02),-..,(Xn, 0,) are all complete.
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1.5.4 Infinite Series in a Normed Linear Space

Let (X - |]) be a normed linear space, and

ixk (mk = X) (1.25)

k=1

be an infinite series. The notion of convergence of this series is defined just as in
the case of a series of real numbers, by considering its partial sums

n
SW,: E Xy.
k=1

Definition 1.5.4. We say that the series (1.25) converges in X, if its sequence of
partial sums {S,}5%, converges. In this case, we define its sum by
o n
= lim S, (= lim Z:ck)
1 k

k=

Note that by definition of convergence of the sequence {S,}52,

Zazk =z <> given € > (0 there exists N € N such that
k=1

N
HZa:k — xH <e¢ forallm > N.
k=1

Definition 1.5.5. We say that the series (1.25) converges absolutely, if

o.9)
> Nzl
k=1

converges in R.

Example 1.5.12. From basic analysis we know that every absolutely convergent
series of real numbers converges. This is no longer true in a general normed linear
space.

For example, let X = C[0, 1] with the norm | - ||;, and {f,}%2, as in example
1.5.10,

0 ifa:<-;-
fol@) = {n(z—1) i<z<i+l
1 ifi+1l<z<l.

Since {fn}52, diverges and is Cauchy, by exercise 1.5.1, the subsequence {fu}$2,
must also diverge. Now set,

9k(T) = forrr — for (k=1,2,...)
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Figure 1.22: The integral is evaluated easily geometrically

We claim that >"7° | gx converges absolutely, but does not converge in (C[0, 1], ||-{|1).
To see this, note that ||gi]|; = fo x) dx is the area of the indicated triangle,
that is,
1 1 1
ol = 5 s = v
Thus,

e o]

S lloh =Y g =g <00
k=1 k=1

so that >"77 | gr converges absolutely. On the other hand, for each N,

N N
D ge= (farrr — for) = faner — fo.
k=1 k=1

Since { fon }%..; diverges, it follows that > .- | g must diverge also. This proves the
claim.

In fact, we have the following:

Theorem 1.5.8. Let (X, || ||) be a normed linear space. Then X is a Banach space
< every absolutely convergent series converges.

Proof. =»: Suppose that X is a Banach space. Let > oo 2 be an absolutely con-
vergent series, that is

37 el < oo, (1.26)

Then the sequence of partial sums of 1.26 is Cauchy in R, that is, given ¢ > 0 there
exists NV € N such that

n

S el <

k=m++1

forall n>m > N. Soif S, => @, then forall n > m > N,

T

>

k=m+1

k)

< Y0 el <

k=m+1

[15n = Smll =
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that is, the sequence of partial sums {S5,}2° ; is Cauchy in X. By completeness, this
sequence converges in X, that is,

o0

E Iy = lim Sn
TL— 00

k=1

exists in X.

«: Now suppose that every absolutely convergent series is convergent in X. Let
{2,322, be a Cauchy sequence in X. We must show that {z,}>, converges. The
idea is to construct a convergent subsequence of {z,}2, first. In fact, since {z,}52,
is Cauchy we can pick n; € N such that

1
|n — Tn, || < 3 for all n > n;.
Next we pick ny > nq such that
1
|20 — Zna |l < 5 for all n > na.
Continuing inductively, we obtain a sequence ny < ny < ng < ... of positive integers

such that 1
|Zn — 2, || < o for all n > ng.

Set Y = Ty, — Tny, (K =1,2...) . Then as ngy1 > ny, we have

Z lyxll = Z [Tns s = Zai| <

that i3, Y ;- yx converges absolutely. Then by assumption,

. >

k=1

1
—k=1:

TTMB

converges to some z € X. But this is a telescoping series, so that

N
= lim Z (Tnpss — Ty ) = Jim (Tanser — Tny )

N—oo
k=1
which shows that

that is, {Zn, }32, converges in X. Now that we have found this convergent subse-
quence of {z,}%,, it follows from exercise 1.5.1 that the sequence {z,}se, itself
converges in X. ]
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1.6 Completion of Metric Spaces

We want to show now that every metric space can be "enlarged” to a complete
metric space.

1.6.1 Density

Definition 1.6.1. Let (X, d) be a metric space. A set M C X is said to be dense
in X,if M =X,

Remark 1.6.1. Let (X,d) be a metric space and M C X non-empty. Since M =
MU Acc(M) it follows directly:

Misdensein X & M=X

e for each z, € X and each open ball B.(x,) there exists x € M N B.(z,)
exer. 1.o,

& for each z, € X and € > 0 there exists x € M such that d(z,z,) < ¢

e 3for each r, € X there exists a sequence {z,}>; in M such that z, — z,.
thm 1.5.

Definition 1.6.2. Let (X, d) be a metric space. X is called separable, if there exists
a countable dense subset M in X.

Example 1.6.1. In a first analysis course, one usually proves the following density
theorem: Given x, < z3 € R, there exists ¢ € QQ such that z; < ¢ < a9,

Now let z, € R be arbitrary. Then for each n, there exists z, € Q with z, <
Tp < Eo + % By the squeeze theorem, lim,,_,o z, = z,. This shows that { is dense
in R, that is, R is separable.

Exercise 1.6.1. Let (X, 01), ..., (X, 0,) be metric spaces, and foreach i =1...n,
let M; be a dense subset of X;. Give X; x --- x X,, the metric d,,. Show:

1. My x -+ x M, is dense in X| x -+ x X,,.
2. If the spaces X, ..., X, are all separable, then so is X := X; x -+ x X,,.

(Since the metrics dy, dy and do, are all equivalent on X; x --- x X,,, they have
the same open sets, and the same convergent sequences by exercise 1.5.5. It follows
that the above statements also hold for the metrics d; and dy. Furthermore, as @ is
dense in R it follows that Q" is dense in R™, thus R™ is separable as well, in any of
the metrics dy, dp and de.)
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Exercise 1.6.2. Let V = {f: N — C|3N = N(f) st. f(n) =0Vn > N}. Show:
1. Vis dense in (€1, ]| - [[) and in (c,, || - [|o)-

2. (€4,]] - Il1) and in (c,, ||  ||oo) are separable. (Hint: Recall that the Cartesian
product of finitely many countable sets is countable, and the countable union
of countable sets is countable.)

Remark 1.6.2. One can show that Cla,b] is separable. This is a consequence of
the Weierstrass Approximation Theorem (See [10], theorem 14.18). On the other
hand, £*° is not separable. (See [4], Example 1.3-9).

1.6.2 Isometries
Definition 1.6.3. Let (X, d) and (Y, ¢} be two metric spaces.
1. Amap T : X — Y is called an isometry if
0Tz, Tre) = d(xy,23) (1.27)
for all z1,x2 € X. (That is, T preserves distances.)

2. Two metric spaces (X, d) and (Y, o) are said to be isometric, if there exists an
isometry 7" of X onto Y.

Remark 1.6.3. 1. Every isometry T : X — Y is one-to-one. In fact, by defi-
niteness [property (M2)] of a metric,

Ty =T, <« U(Tiﬁl, T:Uz) =0 < d(il)‘l, .1'2) =0 & x =z,

Thus, X and Y are isometric iff there exists a bijection 7" of X onto Y pre-
serving distances. Isometric spaces are indistinguishable as metric spaces.

2. Every isometry 7' : X — Y is uniformly continuous. In fact, given € > 0,
choose § = ¢. Then whenever z1,zy € X with d(xy,z3) < 6, we have

o(Tx1,Tre) = d(z;,20) <§=¢.

Example 1.6.2. Let X = C and Y = R?, with the usual metrics. It is easy to see
that the map 7' : C — R? given by T(z + iy) = (z,¥) is an isometry of C onto R2.
Hence, C and R? are isometric spaces.

Remark 1.6.4. Suppose, (X, || - ||x) and (Y, || - ||y) are both normed linear spaces.
Denote the metrics determined by these two norms by d and o, respectively. If
T:X —Y is alinear map, then
T is an isometry < o(T2,Tae) =d(x1,22) V1€ X
= “T:Cl*-TCCg”y: Hil?l—l'QHX Vﬂ?l,ﬂfg e X
= ||T(.I‘1 - .’)32)||y = ||£E‘1 — 372”){ ¥ Zy1,To € X
e ||Tzlly=|z|lx V2zeX (2 =121 — 22)

A linear mapping which is an isometry is called a linear isometry.
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Example 1.6.3. Let (X,| - ||} be a finite dimensional normed linear space (for
example, X = R"™ with the Euclidean norm), and 7' : X — X a linear isometry.
Then T is one-to-one, that is, ker(T") = {0}, so that dim(Ran(7")) = n. Thus, T
maps X onto X.

Example 1.6.4. Let X = £ with the supremum norm || - ||e. Define T : £> — ¢
by
0 ifn=1

(L5} = {f(n—- 1) ifn>1.

In sequence notation, T'(z1, g, 23, ...) = (0,21, Ta, Z3,...). One easily checks that
T ig a linear isometry, but is not surjective.

Lemma 1.6.1. Let (X,d) and (Y,0) be complete metric spaces, V C X and T :
V — Y an isometry. Then there exists a unique isometry T : V 25 T{Y) such
that Te = Tx for allz € V. (We say that T extends T from V to V.)

Proof. 1. Define T. Let z € V be given. Then by theorem 1.5.3, there exists a
sequence {z,}52, C V such that =, — z. In particular, {z,}22, is Cauchy in
V. Since T is an isometry,

o(T2n, Tm) = d(@n, Tm) for all m,n

and thus {Tz,}°, is Cauchy in T(V). Since Y is complete, this sequence
converges, and we can thus define

~

Tr = lim Tx,.

Obviously, Tz € T(V).

2. Show that 7' is well defined. Suppose, {a,}2°, is another sequence in V with
z,, — . We need to show that lim Tz, = lim Tz,.

n—00 n—od

In fact, since metrics are continuous (theorem 1.5.4) and 7" is an isometry,

o( lim Tx,, lim Tz,) = lim o(Tz,, Tz,)

= lim d(z,,z),) = d( lim z,, lim z)} = d(z,z) = 0.

Ti— 00

By definiteness of o, it follows that

lim Tz, = lim Tz,

n— 00 =00

in Y. Note that if # € V, then we can choose z, = z for all n, and obtain
Tx= lim Tz, = lim Tx = Tx. Thus, T extends T to V.

n—0o0 n—0C
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3. Show that 7T is an isometry. Let z,&’ € X, and pick sequences {2z}, and
{z,}2, in V such that z,, — z and z/, — z’. Then by theorem 1.5.4 and the
fact that T is an isometry, we have

o(Tx,Tx,) = o lim Tz, lim T2,) = lim o(Tz,, Tx),)
N—00 nN—CO n—00
~ i o) = i . i ) = ),

which shows that T is an isometry.

4. Show that T is unique. Suppose that TV — Y is another isometry satisfying
Ty =Tz forallz € V. Let ¢ € V be given. Pick a sequence {z,}>2, CV
such that xz, — z. Then by continuity of isometries,

Tz =T(lim z,) = lim Tz, = lim Tz, = lim Tx, = T(lim z,) ="T=,

n—0G N—0 n—00 nN—Co n—o0oQ

that is, Tz =TxforallzeV.

5. Show that T maps V onto T(V). Let y € T(V) be given. Then by theorem
1.5.3, there exists a sequence {y,}22; C T(V) such that y, — y. Since T is
one-to-one, we can set , = T (y,) € V. Since {y.}>°, is Cauchy, and T
is an isometry, it follows that {z,}2° is Cauchy in V, and thus converges to
some x € V by completeness of X. Then

Tz = lim T$n=T}EIC}oyn=y

n—00

Thus, T is onto.

Figure 1.23: T:V —Y extends to T:V 2% T(V). 0

Remark 1.6.5. If V is dense in X and T'(V}) is dense in Y, then by the theorem,
T can be extended uniquely to an isometry 7 : X 25V,
In the above proof, completeness of X was only required to show that the range

of Tisallof T (V). So even if X is not complete, we can still extend T to an isometry

T:V == TLV).
Because Tx = Tx for all z € V, we often simply use the symbol 1" for this
extension.

Exercise 1.6.3. Let (X, || - ||) be a normed linear space, and V a subspace (i.e. a
sub-vectorspace) of X. Show: V is also a subspace of X.
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Corollary 1.6.2. Let X andY be Banach spaces, V' a subspace of X, and T : X —
Y a linear isometry. ThenT extends uniquely to a linear isometry T : V. =5 T(Y).

Proof. Let T be the unique extension of 7" as in the lemma. We need to show that
T is linear.

Let z, 2 € V and o, 3 be scalars. Pick sequences {z,} ; and {z,}%°, in V such
that z, — z and 2z, — 2. Since the vector space operations are continuous, by
theorem 1.5.5,

oLy, + B2, — az + Sz,

Thus by definition of f,
T(az + fBz) = nli_I.EOT(am” + Bz,)
= Tgingo (aTz, + BT z,) (T is linear)
= Off}i_.‘[ilo Tz, + ﬁw}l—{rolo Tz,
=aoTz + ﬁfz.

Thus, T is linear. 1

Exercise 1.6.4. Show that the lemma and the corollary can be generalized as
follows:

1. Let (X,d) and (Y, o) be metric spaces, ¥ complete, VC X and T:V — Y
uniformly continuous. Then there exists a unique uniformly continuous map
T:V =Y such that Tz =Tz forallz € V.

2. Show by example that ordinary continuity of 7' is not sufficient above.

3. Let X, Y be normed linear spaces, ¥ complete, V' a subspace of X and T :
V — Y a continuous linear map, say

|72l < kllell VeV
Show that 7 is also linear, and

ITz| < kliz|| YzeV.

1.6.3 Existence of Completion

Theorem 1.6.3. (Completion of Metric Space)
Let (X,d) be a metric _space. Then there exist a complete metric space (X,d) and
an sometry T': X — X such that T(X) is dense in X.

Furthermore, X is unigue in the sense that if (X d) is another complete metric
space, and T an isometry of X into X such that T(X ) is dense in X then there
exists an isometry U ofX onto X such that U(Tx) =Tx forallxz € X.
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Figure 1.24: Essential uniqueness of the completion of X.

Remark 1.6.6. We call (X,d) the completion of (X, d).

Proof. The proof is very lengthy, and we thus proceed in steps:

1.

2

L]

4

—

Construct (X, d).
. Construct the isometry T'.
. Show that (X, d) is complete.

. Show that X is unique up to an isometry.

. Construct (X, d).

Let us call two Cauchy sequences {z,} and {z} in X equivalent, and write
{za} ~ {zn}, if
lim d(z,,z,) = 0. (1.28)

n—oo

It is easy to verify (do it !} that ~ is an equivalence relation on the collection of
Cauchy sequences in X. Denote the equivalence class of the Cauchy sequence

{zn} by m We now set
X = {# = m : {2} is a Cauchy sequence in X }.
anddeﬁnecf:fx)?aRby

d(#,9) = lim d(zg, yn) =0 (1.29)

nN—r0o0

where & = {;:]-» and § = {@I}
First we must show that d is well defined, that is, we must show that
(a) the limit in (1.29) exists, and

{(b) the limit in (1.29) is independent of the representatives {z,} and {y,} of
Z and .
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To prove existence, let {z,} and {y,} be Cauchy sequences with Z = {/a::; and
4§ = {yn}. Then by the triangle inequality,
d(-’Em yn) < d'(xm mm) + d(xm: ym) + d(yma yn)

so that
d(Zn, Yn) — (@ Ym) < ATpy Trn) + A(Yns Yrm)- (1.30)

Exchanging z,, with y,, and z,, with y,,, we also obtain

_[d(mm yﬂ) - d(xma ym)] = d(xm: ym) - d(xn:yn) < d(ymym) + d(:l:n, xm)-
(1.31)
The last two equations can be combined to

1d($myn) - d(mm, ym)| < d(mn: :Em) + d(ym ym)- (1'32)

for all n and m. Let € > 0 be given. Since {z,} and {y,} are Cauchy, we can
pick N € N such that

A(@n,zm) <€/2  and  d(Yn,Ym) < €/2

for all n,m > N. Thus,

|d(a:n,yn) - d(a:m,ym)| <€
for all n,m > N, that is the sequence {d(z,, )}, is Cauchy in R and as R
is complete, converges in R. Thus, the limit (1.29) exists.

Now let {z! } and {y,} be arbitrary Cauchy sequences in X with {« } ~ {z,}
and {y,} ~ {y.}. By (1.32) (with 2/, and ¥/, instead of z,, and y,,) we obtain

|d(@n, ) — A2, 90)| < d(@n, 27,) + dlvn, U5,). (1.33)

for all n. Now as d{z,,z]

ke

lim [d(an, yn) — d{x, )| =0,

n—00

) — 0 and d(y»,¥,) — 0 as n — oo, it follows that

that is,
lim d{zn, y,) = lim d{z), ).

n—00

This shows that d in (1.29) is well defined.

Next we show that d is a metric on X. For this, let {z,}, {y.} and {z,} be
Cauchy sequences in X. Then

(M1): Clearly, d(z,) > 0 since d{z,, y,) > 0 for all n.

~

(M3): Since (M3) holds for d, we have

~

d(2,9) = lim d(zn,yn) = nlLIng A(Yn, Tn) = cz(@,sﬁ)

n—od
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(M4): Since (M4) holds for d, we have

d(z,9) = lim A(Zn, ) < hm [d(:z:mzn) + d(zn, Yn)]

TT— 00

= lim d(z,, 2,) + hm A2, yn) = d{&, 2) + d(2,9).

nN—00

This shows that d is indeed a metric.

. Construct the isometry T

It is now easy to see how T should be defined. Given z € X, we identify z
with the constant sequence {z,}, where z, = x for all n, and set

T(x)=m ({zn} = (z,z,2,...)).

Let us check that 7" is an isometry. Given x,y € X, set z,, = z and y,, = y for
all n. Then by definition of d,

d(Tz,Ty) = d({.}, {g}) = Jim d(2n,y0) = lim d(z,y) = d(z,y)

which shows that T is an isometry.

We now can show that T'(X) 1s dense in X, that is, that T(X) = X. For this,

let # € X be given, say & = {:cn} for some Cauchy sequence in X, and let
e > 0 be arbitrary. Pick N € N such that

A(Zn, Tm) < =

for all n,m > N. Then in particular,

A, wy) < % (1.34)

for all n > N. Denote by {y,} the constant sequence with y, = xx for all n.
Then by (1.34)

d(#, Taw) = d({za}, fon}) = lim d(z, 30) = lim d(zn, zy) < % <e

It follows from exercise 1.3.10 that & € T'(X). Since & € X was arbitrary it
follows that X = T'(X).

. Now we are ready to show that (X, d) is complete.

Let {2,}22, be a Cauchy sequence in X. Construct a Cauchy sequence {z,}
in X as follows Since T(X) is dense in X, for each e = 1 = we can find z, € X
such that

d(#n, Tza) < S (1.35)

n
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Claim: the sequence {z,} is Cauchy in X. In fact, note that
Az, 2m) = A(T20, T2n) < A(T 20, 80) + d(Zn, ) + d(Em) 2 ).

Now given € > 0, choose N € N such that

for all m,n > N. By (1.35) it follows that if n,m > N then

3 € €
dnam o o a5
(2 z)<3+3+3 €

which proves the claim.
Next we claim that £, — 2 := {z/:} In fact, for each n we have
d(#n, 2) < d(Zn, T2) + d(T20, 2)
< ‘7,11 + J({ml, {ml) = % + lim d(zn, zm).
where we have used the fact that Tz, = {;;}?',?:1 and 2 = {ml Since
{zn} is Cauchy, the last term on the right can be made as small as we wish by

choosing n sufficiently large. Thus, cf(:”cn, 2y — 0 as n — oo, that is, 2, — 2.
This proves the claim.

4. Tt is left to show uniqueness of (X, d).

Suppose that (X d) is another complete metric space, and T:X — X isan
isometry such that T(X ) is dense in X.

Given 2 =Tz € T(X) C X, set
U(z) =U(Tz) = ’f(T"l(:&)) =Tz
Note that U is well defined since T is one-to-one, and U maps T(X) onto
T'(X). Since
d(U(Tz),U(Ty)) = d(Tz, Ty) = d(z,y) = d(Tz, Ty)

it follows that U is an isometry. Then by lemma 1.6.1, U extends to an isom-

etry, also called U, from T(X) = X onto T(X) = X, and essential uniqueness
of X is proved.

O

Remark 1.6.7. For ease of notation, one usually identifies X with its isometric
image T'(X) in X, and writes X C X.
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1.6.4 Completions of Normed Linear Spaces

If X is a normed linear space, then its completion will also be a normed linear space:

Theorem 1.6.4. (Completion of Normed Linear Space)

Let (X, || - ||) be a normed linear space. Then there exist a Banach space cd N
and a linear isometry T:X — X such that T(X) is dense in X.
Purthermore, X is unique in the sense that if (X, ||-1|.) is another Banach space,

and T a linear isometry of X into X such that T(X ) is dense in X, then there exists
a linear isometry U ofX onto X such that U(T:E) Tx foralxe X.

Proof. Let d be the metric on X determined by its norm || - ||, and let (X,d) be the
completion of (X, d) as in theorem 1.6.3. Keeping the notation of theorem 1.6.3, we
need to show that

1. X can be made into a linear space, so that 7T is linear.
2. ||Z]lj, := d(%,0) defines a norm on X, and ||Tz||, = |j|| for all z € X.
3. U is a linear map.

1. First consider T(X) C X. Since T maps X onto T(X) in a one-to-one fashion,
we can identify X with T(X) as a set, and thus transfer the vector space operations
and norm from X onto T(X). That is, if £ § € T(X) and « is scalar, then we define

4§ ="T(x)+T(y) =T(z+y)
. af = aT(z) = T(azx)

1€l = 1T (@) |n = ]l

where # = T'z and § = Ty. In this way, T{X) becomes a normed linear space (over
the same field as X), and T is a linear and preserves norms. Note that

d(Tz,Ty) = d(z,y) = |z -yl = [Tz =Yl = 1Tz = Tyl.,
that is,
d(,9) = 12 — 4l (1.36)
for all 2,9 € T(X). Sodisin fact the metric on T(X) determined by Il -l Setting
y = 0 in the above, we have § = 0 =0, and hence

”i'“/\ = ||§3 - 0”/\ = dﬂ(-ﬁ 0)'

for all £ = Tz € T(X).
Next we make all of X into a linear space. For this, let Z,4 € X be arbitrary.
Pick sequences {&,} and {g,} in T(X) such that £, — & and §, — §. We claim
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that the sequence {Z, -+ §,} is Cauchy in 7(X). In fact, by (1.36) and since || - ||,
is a norm on 7T'(X), we have for all m and n,

~

[{Zn + §a) = (Em + )l
”5%’”» - ﬁm”/\ + “ﬁn - Qm”/\
A Ery Tm) + A(Gnay Gom)-

A

Since the sequences {Z,} and {§,} converge, they are Cauchy, and this inequality

shows that {Z, + #.} is also Cauchy, and hence by completeness of X, converges.
We thus can define

z+7 = lim (£, + §.). (1.37)
Similarly, for each scalar «,
d(Q g, OBm) = ||adn — QBml|s = || |20 — Emlls = d(En, Em)

which shows that {«f,} is also Cauchy, so that by completeness of X we can define

aZ = lim ody,. (1.38)

=00

We must still verify that these operations are well defined, that is, that they are
independent of the choices of {%,} and {§.}. For this, suppose that {2/} and {7’}
are also sequences in T(X) such that Z,, — % and ¢/, — . Then by theorem 1.5.4

d( Jim (&, +9,), lim (&, + ) = lim d((#), +9,), (30 + 00))

= lm ||(&, +4,) — (&n + Gn)lla
n—00

[A

G — Gnlla
= lim (d(&}, &) + d(3},, 5n))
< lim (d(8),,8) + d(#, &) + d(@, §)) + d(.9.)) =0

lim ”jiz — Tplin +|
00

since &, — &, &, — & and ¢/, — ¢ and 3, — §. In a similar way, one easily checks
that
d(lim o, lim a#,) = 0.
=00 TE—r 00

It follows from definiteness of the metric that
lim (Z), 4+ ¢} = lim (2, + )
N—00 n—00

and
- At _ . -~
lim af, = lim o,

N-—C0 n—00
so that the vector space operations are well defined.
It is straightforward, but tedious to show that X with the above defined opera-
tions is a vector space whose zero element is 7(0), so we leave this as an exercise.
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In each case, one uses the fact that T(X) is a vector space, and uses continuity of
d. For example, commutativity is shown as follows:

d(@ + 9,9 + &) = d( Im (2n + ), Lim (G +20))

= lim cf(:&n-}-@m ?}n-i—i‘ﬂ) = lim =0
n—oo r—r00l
since Tn + Un = Gn + &, for all &, 9, € T(X). It follows from definiteness of the
metric that
T+g=9+12
for all &, € X.
2. Next we need to check that |/#]|, := d(z,0) defines a norm on X. (In part 1.
above we have already seen that it is a norm on T(X).) So given £,4 € X, let again
{Z,} and {#.} be sequences in T'(X) with &, — # and §, — §. Note that if || - ||,
is defined on X as above, then by theorem 1.5.4 and (1.36),

o = d(%,0) = d( lim #,,0) = lim d(Z,,0) = lim ||2,].. (1.39)

E 1

Since d is a metric on X, positivity and definiteness of || - ||, follow directly from the
corresponding properties of d and the definition of || ||». Then by (1.38) and (1.39),

ol = | lim (a,) . = i [, = fa] lim gl = o] [2]..
while also by (1.37) and (1.39),
I+l = | Y (G 8a) [ = L 6o+ Gl
< Jim ([ + [9ll) = lim (2] + lim [
= [|12[n + 1gll»

Hence, | - ||, is a norm in X.

3. Finally, we must check that the map U is linear. Note that if 2 = Tz, § =Ty €
T(X) with z,y € X, then by linearity of T and T and definition of U,

Ulaz + 89) = U(aT(z) + 8T()) = U(T(ox + By))
= T(az + By) = oT(z) + BT (y) (1.40)
= olU(Tz) + 5(Ty) = aU(&) + BU(H).
which shows that U is linear on T'(X). Since T(X) = X, and U : X 2% X is the

only isometry extending the linear isometry U/ : T(X) — X, U must coincide with
the linear isometry of corollary 1.6.2. I:!

Example 1.6.5. Let
X=V={f:N->C : 3N such that f(n)=0 Vn> N}

endowed with the supremum norm || - ||. Since V = ¢, and ¢, is complete (see
exercises 1.6.2 and 1.5.4), it follows by (essential) uniqueness of completions, that
the completion of the normed linear space (V||| - ||oc) 15 (¢, || * oo}
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1.7 Compactness

Throughout this section, (X, d) will denote a metric space.

1.7.1 Compact sets
Definition 1.7.1. Let X be a metric space, and M C X. A family O = {O,}aca
of subsets of X is called a cover (or a covering) of M, if
Mc | O
acA

(Note that the index set A need not be countable !} If in addition, each O, is an
open set, then we call {O,}aca an open covering of M.
Let {Oa}taca be a covering of M. A subcollection {Og}aca, (A, C A) satisfying

Mc | 0,

OAEAD

is called a subcovering of {Og}aca.
If A, is a countable (respectively finite) set, then {Og}aca, is called a countable
(respectively finite) subcover.

Example 1.7.1. Let X =R and M = [-1,1]. Fix e > 0.

O={(z—€z+¢) }EEPM]

is an open cover of [—1,1]. The collection

{E-e2+9}iiine

is a countable subcover of 0. Fix a positive integer n with % < €. Then the collection

is a finite subcover of O.

Definition 1.7.2. Let (X, d) be a metric space. A set K C X is called compact, if
every open cover O = {Oq}aca of K possesses a finite subcover {Oa, }7-;.
If X itself is a compact set, then we call (X, d) a compact metric space.

Example 1.7.2. R is not compact. For example, the open cover

3

O ={(n- zn + Dnen

has no finite subcover, since every integer is contained in exactly one of these inter-
vals.

Example 1.7.3. Every finite subset M of a metric space X is compact. (Why 7)
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Continuous maps take compact sets to cotmpact sets:

Theorem 1.7.1. Let (X, d) and (Y, 0) be metric spaces, and T : X — Y be contin-
uous. If K C X is compact, then its image T(K) is compact in Y .

Proof. Let {Os}aca be an open covering of T(K) in Y. For each «, set
Uy = T7H0,).

Since T" is continuous, each U, is open in X. Furtheremore, since T(K) C |J,., O
it follows that

K CTYT(K Y 0a) = T7H0.) = | V.

ach acA oA

Thus {Us}aca Is an open covering of K. Now since K is compact, there exists a
finite subcover {Uy,, Us,, - .., Us, } for K, that is,

nr
j=1
Then "
T(lJ us) = UT s =L=J o

that is, {Oa,}7-; is a a finite subcover of {Oa}aca for T(K). Hence, T(K) is
compact. O

.
'
i

Exercise 1.7.1. Show by example that if T is continuous and T(K) is compact,
then K need not be compact.

Since the definition of compact sets is not easy to use, we want a characterization
of compact sets.

Theorem 1.7.2. Let (X, d) be a metric space, and K C X be compact.
1. For each x € K* there exzist open sets U and V such that

relU, KCV, and UNV =10
2. K s closed.

Proof. 1. Let x € K° be given. For each y € K, pick open neighborhoods U, of
x and V, of y such that
U,nv,=40. (1.41)
(For example, let U, = Bejo(x) and V, = Bes(y), where € < d(z,y).) Then
{Vi}yek is an open covering of K. By compactness of K, there exists a finite
subcovering {V},,..., V,, } for K, that is, K C Uiy Vi, Set

Uzﬁij and V=0Vyj.
j=1

J=1
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Figure 1.25: Point z and set K can be separated by disjoint open sets.

Both sets are open, and z € U (as z € U,;, j =1...n). Note that if y € V,
then y € V,, for some j, and hence y ¢ U,, by (1.41). It follows that y ¢ U,
which shows that UNV = {.

2. Let z € K¢ be arbitrary. By part 1), there exists an open neighborhood U, of
x such that U, N K = @, that is, U, C K*°. It follows that

K°C U U, C U K®=K¢°

ze K- xeK*©
that is,
K= U..
reKe

Since the right-hand set is open, if follows that K¢ is open and hence, K is
closed.
O

Remark 1.7.1. The important ingredient in this proof was property (1.41). Topo-
logical spaces in which distinct points  and y can be separated by open disjoint
open sets in this way are called Hausdorff. Thus, every metric space is Hausdorff.

The first property can be generalized as follows:

Exercise 1.7.2. Let (X,d) be a metric space, and X, M C X be compact with
K N M = (. Then there exists open sets U and V such that

KCU MCV, and UnNnV =§.

Closed subsets of compact sets are always compact:

Theorem 1.7.3. Let (X,d) be a metric space, and K C X be compact. If F C K
8 closed in X, then F is also compact.

Proof. Let {Og}aca be any open covering of F in X. As
Kcx=rurc(|Jo)ur
xEA

and F° is open, we see that
{Oa}aca U{F°}
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is an open cover of K. Then by compactness of K, there exist finitely many sets
Oays - -+ Ou, such that

"

KC (U Oaj) U Fe.

=1

Then -
Fcl 0.,
j=1

that is, {Oay, - . ., O, } 18 a finite subcover of {O,} for F. Hence, [ is compact. [l

1.7.2 Sequential Compactness

Definition 1.7.3. Let (X, d) be a metric space. A set K C X is called sequentially
compact if every sequence {z,}5, C K possesses a subsequence {Z,, }5>.; which
converges to some x € K.

Example 1.7.4. Let X = R”, and let X C R" be closed and bounded. Thus, every
sequence {z,}%_, C K is bounded, and by the Bolzano-Weierstrass theorem, has
a convergent subsequence {Zm,, }3,, say Zm, — = € R® Note that z € K also,
since K is closed. This shows that every closed and bounded subsset K of R” is
sequentially compact. (See also corollary 1.7.7 below).

Exercise 1.7.3. Consider
1. X = C[0,1] with the uniform norm || - |,
2. X = £ with the supremum norm || - ||s.

In both cases, let K = B;(0) denote the closed unit ball. Thus, K is a closed and
bounded set. Show that K is not sequentially compact. (Hint: Find a sequence
{f»} in K which has no convergent subsequence.)

1.7.3 Totally Bounded Sets

Definition 1.7.4. Let (X, d) be a metric space, and M C X. Fix € > 0. A finite
set

Me = {ylayZa"':yn} - X
is called an e-net for M in X, if

i=1

(That is, if every z € M lies within e-distance of at least one point ;).
A set M C X is called totally bounded if for each € > 0, there exists an e-net M,
for M in X.
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Exercise 1.7.4. Show directly, using the above definition: Every bounded subset
M C R" is totally bounded. (Hint: First prove this for the metric d.,. Then use
the equivalence of dy and dy.)

Exercise 1.7.5. Consider X = (£, ]| - |lo), and let K = B1(0) denote the closed
unit ball. Thus, K is a closed and bounded set. Show that K is not totally bounded.

In fact, the notion of totally boundedness is stronger than boundedness:

Theorem 1.7.4. Let (X,d) be a metric space. Then every totally bounded set
M C X is bounded.

Proof. Let M C X be totally bounded. If M = §§ the assertion is obvious. Thus,
we may assume that M # (). Fix any € > 0, and let

{yla Ya, ... ,y'n,}

be a corresponding e-net. Thus, if x, y are any two points in M, then there exist 1, 7
(1 <4,7 < n) such that

d{z,y;) < e and dy,y;) < e

Set
C .=  max d(y:-95).
Then
dz,y) < dlz, ) + d(ys, y;) + dly;,y) <e+C+e=C + 2
This shows that M is bounded. O

The next theorem says that the three notions of compactness, sequential com-
pactness, and total boundedness are essentially equivalent:

Theorem 1.7.5. let (X, d) be a metric space, and K C X. Then T.F.A.E:
1. K is compact.
2. K is sequentiolly compact.
3. K is complete and totally bounded.

Proof. We proceed by first showing that 2. < 3. Then we will show that 1. & 2.
If K = () then the assertion is trivial; thus we may assume throughout that K # 0.

2) = 3): Suppose, K is sequentially compact. We first show that K is complete. To
this end, let {z,}32, C K be Cauchy. Since K is sequentially compact, there exists
a subsequence {,, }32, converging to some z € K. Then by exercise 1.5.1, 2, —
also. Hence, K is complete.

To show that K is totally bounded, let € > 0 be given. We construct an e-net
{11, -, Ym} for K inductively as follows.

(i) Pick y; € K arbitrary.
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(ii) If K C B(y1), then stop. Otherwise, pick y» € K\B.(y1).

m—1
(iii) Suppose, we have picked ¢1,...,ym-1 € K. f K C _91 B.(y;), then stop here.
m—1
Otherwise, pick ¢, € K\ _L_,I]L B (w:).

We claim that this process will stop after finitely many steps. For suppose to
the contrary, that it does not stop. By construction, we then obtain a sequence
{ym}se_; C K such that

m—1
ym & U Bly:)
for all 7n € N. In particular,

A(Ymy Yn) > €

for all m > n, m,n € N. This means that no subsequence of {ym}oo_; can be
Cauchy, which contradicts the assumption that K be sequentially compact. Thus
the claim holds, which means that there exists m & N such that

K g AT_Unl Bﬁ(yﬁ):

that is, {y1,.-.,%m} is an enet for K. Hence, K is totally bounded.

3) = 2): Next, suppose K be complete and totally bounded. We need to show that
K is sequentially compact. -

To this end, let {,}52, be an arbitrary sequence in K. We extract a Cauchy
subsequence as follows:

(i) Since K is totally bounded, given ¢ = 1/2 there exist Yi,. -, Ym in X such
that

K C U Biya (i)

i=1
Now as {z,} has infinitely many terms, at least one of the balls By/z(v:), call
it By, must contain infinitely many z,. Set

Ny={neN:z, € Bi}.
Then N; is an infinite set.

(ii) Similarly, given ¢ = 1/2% theree exist y1,...,¥m in X (m and y; are of course
different from above) such that

K C U Biyoz ().
i=1

Now as N is an infinite set, at least one of the balls By o2 (y:), call it By, must
contain infinitely many of the terms z, in {z, }nen,. Set

N2={HEN13$REBQ}.

Then N, 18 an infinite set.
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(iti) Continue inductively. Suppose we have chosen an infinite set Ny C N and a
ball By, of radius 1/2* such that @, € By for all n € Ni. Then given ¢ = 1/25"!
there exist 41,...,Um in X (m and y; are of course different from above) such
that

KC U B1/2k+1(yi)-
i=1
Now as Ny, is an infinite set, at least one of the balls By (y:), call it Bei,
must contain infinitely many of the terms z, in {Z, }aen,. Set

Nij1={n € Ny, : z, € Biya}.
Then N,y is an infinite set.
We thus arrive at the decreasing sequence
NN DONyg-- - DN 2 N1 2 ... (1.42)

of infinite index sets, and balls By, of radii 1/2* such that z, € By, for all n € N,.
Now pick ny € Ni, ng € N, such that ny > n;, and continue inductively. In
general, having picked ny € N, pick ngq1 € Niyr such that ngiq > . This is
possible as the sets Ny are all infinite. We thus arrive at a subsequence {2y, }i2, of
{z,}, with z,,, € By for all k.
Note that if j > k is arbitrary, then by (1.42), z,, € By as well, and hence

. 1 1
d(Tn,, Ty, ) < diameter(Bg) = 2- oF = 9h 1
which can be made arbitrarily small (< €/2) by choosing & sulfliciently large. This
shows that{z,, }7=, is Cauchy.
Now as K is complete, {n, }§2, converges to some z € K. This shows that K

is sequentially compact.

1) = 2): Suppose, K is compact. We want to show that K is sequentially compact.
To this end, let {z,}°°, be an arbitrary sequence in K.

Claim: There exists z € K so that every ball B.(z) contains infinitely many
terms x,.

For suppose to the contrary, that the claim is false. Then for every 2z € K there
exists €, > 0 such that B, (z) contains only finitely many x,. Now as {Be,(2)}.ex
is an open cover of K and K is compact, there exists a finite subcover {B,, (z:)}7%;
for K, that is,

K Q LmJ Bﬁzi (Zﬁ)
i=1

But then K contains only finitely many terms z,, which contradicts the fact that
all z,, lie in K. This proves the claim.

Let z be as in the claim 1. We now construct a subsequence of {z,}52; which
converges to z. In fact, pick n; € N such that

Tny € Biye(2)
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Then pick ny € N such that
Tng € Byy2(2) and g > Ny

Suppose we have chosen ny so that z,, € By«(2). Then since B ox+1(2) contains
infinitely many terms of z,,, we can pick n = ngy; € N such that

Trypey € Byjorsr(2) and g1 > M.

Continuing inductively, we thus obtain a subsequence {z,, } of {z,} such that

1
d(mnk,z) < 2—k,

for all £, that is, z,, — 2 as & — oo. This proves the claim, and that K is
sequentially compact.

2) = 1): Suppose that K is sequentially compact. Then as shown above, K is
totally bounded as well. Let {Oq}aca be an open cover of K. We need to extract a
finite subcover.

We claim that there exists € > 0 so that every ball B.(z) satisfying B{z)NK # §
is contained in some {O,}. For suppose, the claim does not hold. Then for each
e =1 (n € N) there exists a ball B, := B%(yn) such that B, N K # 0, and

B, Z Oa (1.43)

for all . For each n, pick z, € B, N K. Since K is sequentially compact, the
sequence {z,} has a subsequence {z,, } converging to some z € K. Now {O,} is
a cover of K, so there exists o, € A such that r € O,,. Since O,, is open, there
exists 0 > (0 such that Bs(z) C O,,. Now as z,, — z, we can pick k so that

1 46 o
— <3 and  d(z,,,x) < 3
Then for all y € B, we have
_ 5 20 6
d(y, z) < d{y, Ta,) + d(z0,, v} < diameter(B,, ) + 33 + 3= J,

that is,
Bnk g B5(£L') g an

contradicting (1.43). Thus, the claim must hold.

Now let € be as in the claim. Since K is totally bounded, there exist 41,..., %, €
X such that K C |- Be(y:). Removing some of the y; if necessary, we may assume
that K M Be(y;) # 0 for all i = 1...m. Then by the claim, B.(1;) € O,, for some
a;,€ A, and all 1 = 1...m. (Note that the indices o; need not be distinct), and

hence,
m

K C 0 B.(y:) € | ] O

i=1 i=1
Thus, {Og, }™, is a finite subcover of {O,} for K. This shows that K is compact. [J
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Theorem 1.7.6. Let (X,d) be a complete metric space, and K C X. Then K is
complete < K is closed.

Proof. =: Suppose that K is complete. Let {z,}22; be any convergent sequence in
K, say z, — z € X. Then {z,}72, is Cauchy in X, and hence in K as well, and
by completeness of K, x,, — y for some y € K. It follows from uniqueness of limits
that y = z; in particular, z € K. Hence, K is closed.

<=: Now suppose, K is closed. Let {z,}3°; be a Cauchy sequence in K. Since
X is complete, there exists € X such x, — z. But z, € K for all n, and K is
closed, hence x € K as well. This proves that K is complete. O

Remark 1.7.2. Note that in the "=" part of the above proof, completeness of X
is not required.

Combining theorems 1.7.5 and 1.7.6 we obtain directly:
Corollary 1.7.7. let (X, d) be a complete metric space, and K C X. Then T.F.A.E:

1. K is compact.
2. K is sequentially compact.

3. K s closed and totally bounded.
For X = R™ with the Euclidean metric we have the well known characterization
of compact sets:

Corollary 1.7.8. (Heine-Borel Theorem)
Let K CR™ Then K is compact < K is closed and bounded.

Proof. = Follows from corollary 1.7.7 and theorem 1.7.4.
<: Suppose, K is closed an bounded. By exercise 1.7.4, K is totally bounded.
Now apply corollary 1.7.7. O

Corollary 1.7.9. Every compact metric space (X, d) is separable.

Proof. Let X be a compact metric space. Then by theorem 1.7.5, X is totally
bounded. Thus, for each € = % there exists ygﬂ'), e ,yfﬁf,z in X such that

3

i3

X =) B.@™). (1.44)

-
Il
—

Set -
Y= {0y
n=1

a countable set.
Now let £ € X and ¢ > 0 be given. Pick n > 1. Then by (1.44) there exists

yfn) € Y such that
- 1
d(z, yf N<=<e
n
This shows that Y is dense in X. O
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Corollary 1.7.10. (Estreme Value Theorem) Let (X,d} be a metric space, and
T:X — R be continuous. If K C X is compact, then there exist Ty, zy € K such
that

T{xy) < T{x) < T{xy)
forallz € K.

Proof. Since K is compact and T is continuous, the image T(K) is also compact by
theorem 1.7.1. By the Heine-Borel theorem, T(K) is closed and bounded. Thus,

s:=supT(K)=sup{T(z): z € K} < 0.

Foreach n € N, s — % is not an upper bound of T'(K), hence there exists a sequence
T(z,) in T(K) such that T(z,) — s. But as T(K) is closed, then s € T(K) as well,
that is, s = T(xp) for some zpr € K. Hence, T(z) < T(zpy) for all x € K.

The existence of a minimizing element z., is proved similarly, using inf 7(X). O

1.8 The Contraction Principle

Definition 1.8.1. Let X be a set, and T : X — X a mapping. A point z € X is
called a fized point of T, if
T(z) ==

Example 1.8.1. let X == R and f(z) = z°.

put0,0

Figure 1.26: Fixed points for f(z) = %

Then z = 0 and z = 1 are the only fixed points of f.

Exercise 1.8.1. Let F : [0,1] — [0,1] be continuous. Show that f has at least one
fixed point. (Hint: use the Intermediate Value Theorem.)

Definition 1.8.2. Let (X, d) be a metric space.A mapping 71 X — X satisfying
d(T(x),T(y)) < kd(z,y)
for some constants ¢, 0 < k < 1, and all z,y € X is called a contraction.

Note that every contraction is uniformly continuous. (Give € > 0, simply choose

§=¢)

Theorem 1.8.1. (Banach Fized Point Theorem, Contraction principle) Let (X, d)
be a complete metric space, and TX — X a contraction. Then T has a unique fized
point.
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Proof. Let us first show that T has at least one fixed point. For this, we construct
a Cauchy sequence as follows: Pick x, € X arbitrary. Then set z1y = T(z,}, Tz =

T(z1), zz3 = T(z3), ..., and in general, z,—; = T(x,). Since T is a contraction, we
have

d(:l?g,ﬂ?l) md(T ) S 331,:60

d(z3, x2) = d(T ) < kd(za, 1) < kPd(zy, ;)

d(zpy1, 2n) = d(T(zy, T(2po1)) < kd(Zn, Tao1) < -+ < k™21, 20).
We claim that {z,} is Cauchy in X. In fact, if m > n, then by the triangle inequality,

A(Zrmy Tn) < AT, Tme1) + ATty Tmz) + -+ + d( L1, Tn)
< k™ (3, 3,) + K™ (2, 1) -+ K Ty, 1)
m—n—1 (145)

. e
= d(x1, x,) k" Z k' < d(z1,z0) T %
i=0

Since k™ — 0 as n — oo, we can conclude that {z,} is Cauchy (why 7). This proves
the claim.

Now as X is complete, the sequence {z,} converges to some £ € X. Since
T(x,) = zn41 and T is continuous, it now follows that

T(x) = T(lim z,) = lim T(z,) = hm 0 Tnyy = 7.
—C0 N—r0Q
Hence, z is a fixed point for 7.
Next we show that z is the unique fixed point. For suppose, y is another fixed
point for T', that is, T'(y) == y. Then

d(z,y) = d(T(z),T(y)) < kd(z,y)
which can only hold if d{z,y) = 0, since 0 < k < 1. Thus, z = y. O

Remark 1.8.1. Note that the starting point z, in the above proof is completely
arbitrary. In practical computations, one can only compute finitely many of the
terms z,, and thus obtain an approximation for the fixed point x. Thus, one needs
to know how well the n-th term z,, approximates the fixed point z.

Let us begin with (1.45),

A, 20) < d(m1, 3 7o

Now let m — oc. Then by continuity of the metric,

d(z,z,) = lim d(Zm,z,) < d(:cl,mo)k—

00 1-%

(1.46)
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This is called an epriori estimate, because we can obtain this error estimate before
computing z,. However, another estimate is often more precise: From (1.46) we
obtain

k

d(z, z1) < d(z1,x,) %

for any starting point z,. Thus we may consider z,_; as the staring point, and
obtain k

-k
This is called a posterior estimate, since we can only obtain the estimate once we
have computed z,,.

d(z, zn) < d(x,Tq 1)

Example 1.8.2. let f : [a,b] — [a,b] be differentiable, and suppose that |f/(z)| <
k < 1forall z € [g,b]. Then by the Mean Value Theorem, for all z,y € [a,b] we
have

[f(@) = fFWI <1 (@) lz -yl < klz -~y

where £ is between z and y. It follows from the contraction principle that f has a
unique fixed point.

This argument shows, for example, that f(z) = z? has a unique fixed point on
[, ¢], for any ¢ < 1/2. (This fixed point is of course z = 0.)

An important application of Banach’s Fixed Point Theorem is the proof of Pi-
card’s theorem in the course on ordinary differential equations.

Exercise 1.8.2. Show by example, that completeness of X is necessary for the
contraction principle to hold in general.

Exercise 1.8.3. Show by example that the weaker condition

d(T(z), T(y)) < d(z,y)

is not suflicient for the contraction principle to hold in general. (Hint: Let X =
[1,0) and consider T'(z) = z + 1.)

Exercise 1.8.4. Use the proof of the contraction principle to find a sequence {z,}
converging to /2, and give apriori and posterior estimates for |z, — v/2|. (Hint:

Consider the function f(z) = 2* + 2 — }.)



Chapter 2

Measure Theory

2.1 Sigma-Algebras and Measurable Spaces

2.1.1 Algebras

Definition 2.1.1. Let X be a set. A non-empty collection M of subsets of X is
called an algebra of subsets of X if the following hold:

(Al) If Ae M, then A° € M,
(A2) If A,Be M, then AUB € M.
Remark 2.1.1. Let X be a set, and M be an algebra of subsets of X.

1. Pick any A € M. Then by {Al) and (A2) above we have X = AUA® € M,
and then also @ = X° € M. So every algebra contains both, the empty set
and the space X itsell.

2. Let A,B € M. Then
ANB=[A°UB| e M

by properties (Al) and (A2) above, and then also

A\B=ANB°c M.
3. By induction on n, one easily shows that if A;,..., A, € M, then
OAem and  NHAem
Thus, an algebra is closed under formation of differences, finite unions and finite
intersections.

Example 2.1.1. Let X be any set, and denote by P(X), or 2%, the collection of
all subsets of X. (P(X) is called the power set of X).

1. M = {0, X} is an algebra. In fact, it is the smallest algebra of subsets of X.

75



76 CHAPTER 2. MEASURE THEORY

2. P(X) is an algebra. In fact, it is the largest algebra of subsets of X.
3. Fix any F € X. Then M = {§, E, B¢, X} is an algebra of subsets of X.

4, Suppose that X is infinite. Then
My :={E C X : E is finite}
is not an algebra as (Al) does not hold. However,
My :={F C X : E is finite, or E° is finite}
is an algebra. (check !) |

Exercise 2.1.1. Let X be a set, and let M be a non-empty collection of subsets of
X satisfying

1. If A € M, then A° € M,
2. If A)B € M, then ANB € M.
Show that M is an algebra of subsets of X.

We will often make use of the next theorem which allows us to replace any finite
or countable collection of sets in M with a collection of disjoint sets.

Theorem 2.1.1. Let M be an algebra of subsets of X. If {A;}2, is a countable
family (=sequence) of sets in M, then there exists a family {B;}2, of pairwise
disjoint sets of M satisfying B, C A, for all i, and

Q&:Q& (2.1)
foralln=1,2,.... Furthermore,

UBi= U A,

i=1 i=1

Proof. We construct the sets B; inductively. First, set B; = A;. Then the assertion
is true for n = 1. In general, suppose we have constructed pairwise disjoint sets
By,...,B, € M satisfying B; C A; foralli=1,...,n and

0 B; =0 4. (2.2)

Set By = An+1\£Jl B, € M. Then by construction, the sets By,..., B,y are

pairwise disjoint and

1._ B Bn+1 o ( g B‘L) = ( n+1\%U1 Bﬁ) J (1.51 Bt)
0 (85) 2 (3 4) - Uk
Thus, (2.1) holds. Finally, by (2.1) we have

U Bi=0 (‘ng’;) n_1(UA) =i§1Ai'

n=1 \i=
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2.1.2 Sigma-Algebras

Since we often will deal with countable unions of sets, we need to refine the concept
of an algebra.

Definition 2.1.2. Let X be a set. A non-empty collection M of subsets of X is
called a o-algebra of subsets of X if the following hold:

(Al) If A e M, then A° € M,
(A2") If {A,}22, € M is a countable collection of subsets of M, then EAn € M.

Remark 2.1.2. Let X be a set and M a o-algebra of subsets of X.

1. Let A, B € M. Set
4 = A if nis odd
"B if n is even.

Then -
AUB = (AUB)J(AUB)U(AUB)U--- = U 4, € M,

that is, {A2) holds. Thus, every o-algebra is also an algebra.
2. If {A,}22, € M, we have

:ri An = [nogl Af‘]c €M

by (A1) and {A2’).

Thus, a o-algebra is closed under formation of differences, countable unions and
countable intersections.

Exercise 2.1.2. Let X be a set, and let M be a non-empty collection of subsets of
X. Suppose, M satisfies:

1. Whenever A € M, then A¢ € M,

2. Whenever {A4,}3, C M, then n?jl A, e M.
Show that M is a o-algebra.
Example 2.1.2. Let X be a set. Then

1. M = {0, X} is a o-algebra. In fact, it is the smallest o-algebra of subsets of
X.

2. P(X) is a g-algebra. In fact, it is the largest o-algebra of subsets of X.
3. Fixany F C X. Then M = {0, E, E°, X} is a o-algebra.
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4, Suppose that X is infinite. Then
My :={F C X : F is finite, or E° is finite}
is not a g-algebra. In fact, let {xy, z2, x3,... } be a countable subset of X. Set
E= kogl{xgk} = {2, %4, Zg, . .. }. Now each singleton {za} is in My, while F
and E° are both infinite sets, an hence, E & M. Thus, (A2’) does not hold.
However,

My = {F C X : F is countable, or F° is countable}

is a o-algebra. (Check !} Note that by ”countable” we mean either finite, or
countably infinite.

5. Let X be infinite, and {F,}22; be a countable family of pairwise disjoint
subsets of X. Set

M :={E C X : E is the countable union of some sets E_}.
Then M is a o-algebra.

Theorem 2.1.2. Let A be an index set, and for each o € A, let M, be a o-algebra
of subsets of X. Then
n M,

ach
18 again a c-algebra of subsets of X .

Proof. We need to show that properties (Al) and (A2’) hold.

1. et A € ﬂ M,. Then A € M,, for each & € A. Since each M, is a
o-algebra, then A e M, for each o, and hence

Ae N M,.
ach

2. Let {An}22, C n M. Then {A4,}2, C M, for each a € A. Since M, is
=18

a o-algebra, then ot_jl A, € M,, for all o, and hence

o
U A N .
n=1 n € aEA MQ

Remark 2.1.3. Let K be a collection of subsets of X. Let us set
M, = ﬂ{f\/{a : M,, is a o-algebra containing K'}.

Since P(X) is a o-algebra containing K, then obviously, M, # §. Also, as K C M,
for all o, we have K C M,. Thus by the theorem, M, is a ¢-algebra containing K.
Furthermore, if M, is any g-algebra containing K, then by the above definition of
M., we have M, C M;. Thus M, is the smallest g-algebra containing K, called
the o-algebra generated by K, and denoted by o(K).
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Example 2.1.3. 1. Let X be any set. If £ C X, then
o(E)=1{0,E, E°, X}.
2. Let X be an uncountable set, and K = {E C X : F is finite}. Then
o(K)={F C X : F is countable, or F* is countable}.
(Check 1}

2.2 The Extended Real Numbers

2.2.1 Arithmetic of Extended Real Numbers
The set of extended real numbers is defined to be the set
R* := RU{—o0, 0}

which we also may write as R* = [—o0, ool.
Algebraic operations are extended to R* by setting

1. 0o+ =00 and  (—o0)+z=—00
w+oo=00 and (—o0)+{—0) =00
(Note that oo + (—o0) and —oo + oo are undefined.)

+o0 ifz>0

2. (oo)-z=< Foo  ifz <0
0 ifx=20
3. 00+ 00 = 00 and (—o0) - (—o0) = o0
(—00) - (00) == —00  and  (—00) - (0) = —0c0
for all z € R.

79

Note that the distributive law, and the usual cancellation laws for addition and

multiplication no longer hold:

r+y=z+=2 7 Yy==z

T+y==z 7 rT=2z-Y

zy=1z2 (z#0) #  y==z
The order ”<” on R is extended to R* by setting

—00 < <0

for all z € R. Then oo is an upper bound for every set E C R*, and —oo is a lower

bound. Note that sup F always exists. In fact,

M is finite, if E C R, E # 0 and E is bounded above in R,

sup ' = ¢ oo, if £ C R is not bounded above in R, or if o0 € F,
—o0, if E=10.
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Similarly, inf E always exist.

In order to avoid introducing a topology into R* (which is not difficult to do)
we extend the concept of convergent sequences as follows: Let {x,} C R*. Then for
L € R we have

limz,=L & VYe>0 dN&Nsuchthat L-e<z,<L+e V¥Yn>N,

limz,=0 < VMeceR dN € Nsuchthatz, > M ¥n> N,
limz,=-00 <« ¥Yme&R IN € Nsuchthat z, <m ¥VYn> N,

Note that every increasing sequence {xz,} T C R* converges in R*, either to a real
number (if z,, € R Vn, and the sequence is bounded above in R}, or to co.
Note that in general,

im o) # (fim ) (Jm ). 23

Nn—o0

For example, if z, = n?, 3, = 1, then lim (2,y.) = oo while (lim z,)(lim y,) = 0.
However, if {z,} T, {¥n} T, and , > 0, y, > 0 for all n, then (2.3} holds.

2.2.2 Unordered Sums

Recall that every absolutely convergent series > .. a, in R can be rearranged ar-
bitrarily. In particular,

oo o0 oo

E Ay = E an + E Q.
n=1 n=1 n=1
anZO an <0

In order to extend this concept to R* we make the following definition:

A sum of the form
Z A, {a, € RY)

nelN

(or more general, of the form ) . pa, with P a countable set), will be called an
unordered sum. Tts sum is defined as follows:

1. If 0 < a, < oo for all n, we define

N
a, = lim E a
Z n N-aoo n
n=1

neN
o0
> ln if a,, € R for all n, and this series converges in R
n=1
~ oo if a,, € R for all n, and this series diverges in R

o) if a,, = oo for some n.
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2. Similarly, if a, < 0 for all n, we define

N
. = lim Z a
Z 'n, N—oo "
nelN n=1
o0
> an if @, € R for all n, and this series converges in R
n=1
R R if @, € R for all n, and this series diverges in R
—00 if a,, = —oo for some n.

3. In general, set

Pt:={neN:a, >0} and P :={neN:a, <0}

Zan = Zan-l— Zan

neN neP+ nepP-

and define

provided that the right-hand sum is not of the form oo — o0.

Note that by the above remarks,

( oc 0
> an if 3" |a,| converges in R
n=1 n=1
§ a, = { o0 if > a,=00 and > a, convergesin R
neN nepPt neP-
—00 if > a,=-00 and Y a, converges in R.
neP- nepP+

\

For example,

-1 n+1
s e

neN
is undefined as an unordered sum in the sense above, while
0_1 nt+1

i . =1In2.

n=1

2.3 Measures

2.3.1 Definition of Measure

Definition 2.3.1. Let X be a set, and M a c-algebra of subsets of X. The pair

(X, M) is called a measurable space.
A measure on (X, M) is a function

p: M - [0, 00]

satisfying
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(Measl) u(@) =0,

(Meas2) For any countable collection {E,}oe; € M of pairwise disjoint sets we
have

,u,([j En) = i p(Er) (" o-additivity” ).
n=1 n=1

The triple (XM, u) is called a measure space.

If 4(X) < oo then p is called a finite measure, and (X, M, u) a finite measure
space.

If there exists a countable collection {E,}%; C M such that u(E,) < co for

each n, and X = Otjl E,,, then p is called o-finite, and (X, M, u) is called a o-finite
measure space.

Example 2.3.1. Let X be any set. One easily verifies that all of the following are
measure on M = P(X). (Exercise !)

1. Two trivial measures on P(X) are given by

(a) p(E)=0forall £ C X.
(b) w(@® =0, u(E)=ccforall EC X, E#0.

2. The counting measure on P(X) is defined by

card(E) if F is a finite set
wE) = o
o0 if F is an infinite set

for E C X.

it is a finite measure < X is a finite set.
1 is a o-finite measure < X is a countable set.

3. Fix z € X. The corresponding Dirac-point measure on P(X) is defined by

5,(F) = 1 ifze E
TV o ifzeE

for £ C X. This is obviously a finite measure.

4. Discrete measures on P(X): Suppose, X is infinite. Fix a sequence {z,}72,
of distinct points in X, and a sequence {a,}52; C [0,00]. For E C X, define

WB) = Y o (=Y e (®).
{nizneE} n=1

p is a finite measure < 3o 0, < 00.
i is a o-finite measure < a, < oo for all n.
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5. Let us modify the discrete measure. Suppose that X = {zy,z9,xs,...} I8
countably infinite. Given E C X, let

> &  if E is finite
‘u,(E) = {nzncE}
00 if £ is infinite
N N
It is not difficult to verify that y is finitely additive, i.e. ,u( U En) = > u(E,)
n=1 n=1

for every finite collection {E,}.; C P(X) of pairwise disjoint sets and every
N. However, u is not o-additive. (Why ?7) Hence, g is not a measure.

Example 2.3.2. In probability theory, one considers measure spaces (X, M, u) with
#{X) = 1. Then p is called a probability measure. Elements of M are called events,
M is called the event space, and {X, M, u) a probability space. Given an event E,
p(E) is the probability that event E occurs. @ is the impossible event, and X the
sure event.

For example, throwing a dice once, we could have
X ={1,2,3,4,5,6} and M =P(X).

Then E = {1, 2,3} is the event that the number on the dice is < 3, and u({1,2,3}) =
% if the dice is not loaded.

Exercise 2.3.1. Let (X, M, 1) be a measure space, and A C X be given. Set
My ={ENA:Ee M}
1. Show that M4 is a g-algebra of subsets of A.

2. Show that if A € M, then My C M, and pa{E) := p(E) for all E ¢
M4 defines a measure on the measurable space (4, M,). (We call 14 the
restriction of p to (A, M 4) and sometimes denote it simply by the same symbol
)

2.3.2 Properties of Measures

Theorem 2.3.1. Let (X, M, 1) be a measure space. Then

1. For any finite collection F\, ..., E, of pairwise disjoint sets in M, we have
n n
,U,(U Ei) =STwE)  (finite additivity”).
i=1 i=1

2. Whenever E,F € M and E C F, then

w(E) < u(F) ("monotonicity”).
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3. Whenever E,\F € M with E C F and u(E) < oo, then
W(F\E) = u(F) — p(E) (2.4)

4. For any countable collection {E;}2, € M we have
I ([j Eg) < i pw{ E;) ("o -subadditivity” ).
i=1 i=1
5. For any finite collection £y, ..., F, of sets in M we have
u(o E) < zn: WE)  (Psubadditivity”).
i=1 i=1

Proof. 1. Set E; =0 e Mfori=n+1n+2,.... Then the sets {E;}3, are
pairwise disjoint, hence by o-additivity,

o0

#(CJ Ez) = #(G E) = i#(@) = Zn: u(E:) + Z 1(E;)
= iﬂ( Z 0= Z#

i=n+1
2. Since F and F\FE are disjoint and g > 0, we have by 1. (additivity),
W(E) < u(F\E) + p(E) = p((F\E) U E) = u(F).
3. Since E and F\E are disjoint, we have by 1. (additivity),
W(F) = (B U (F\B)) = ju(E) + u(F\E).
Since p(E) < 0o we can subtract,
WF) — p(E) = p(F\E).

4. Let B; be the disjoint sets in M obtained from E; as in the proof of theorem
2.1.1. Then B; C E; for each 4, and

Now by 2. (monotonicity), u(B;) < p{E;) for each i, so that by o-additivity,

(0 =s(0m) - S < S
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5. This is derived from 4. by arguing as in to 1.
O

Let {E,}22, be a sequence of sets with By C Ey C E3--- CE, C E,.; C....
We call this sequence increasing, and write {E,} T.

Similarly, if F4 2 Fs 2 F3--- 2 E, 2 E,;1 D ..., then we call the sequence
decreasing, and write {E,} |.

Theorem 2.3.2. Let (X, M, u) be a measure space, and {E,}32, a sequence of sets
in M.
o0

1. I {E} 1, then ,u(U En) — lim u(E,).

n—00
n=1

2. If {E,} |, and p(E,,) < oo for some n,, then u(ﬂ E ) = lim u(E,).

N—C0
ﬂ_

Proof. 1. Let B, be the pairwise disjoint sets obtained from FE, as in the proof
n—1
of theorem 2.1.1. That is, By = Ei, B, = E,\ -91 F; = E\E,_1 forn > 2 (in
the last equality, we have used the fact that {¥,} 1), and

OB UE for each n and UB UE
i=1

g1 =1
Then

(o u)

(U ) = (U 8) = S p) = 3By = fim 3 (5

Znh_{%ou(UB) = hm ,u(UE) = hm M(E )

since the sets B; are pairwise disjoint and E,, = UL, E;.

2. For cach n > n,, set F, = E, \E,. Then {F,}2, T, so that by part 1. above,

(U Fo) = lim u(F) = lim u(Ep,\En)

24) lim p(En,) — (En) = p(Ep,) — lima p(E,)
where we have also used the fact that p(E,) < u(E,,) < co. But

U B = U (BB =B\ () En

n=nNg n=ng n=To
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and hence
w(En)=( () Ba) 2 1(Be () Ba) = (U Bu) = (Fn) = lim p(Bn)

from which the assertion follows, again since p(E,,) is finite.
(Il

Remark 2.3.1. In the second case, the condition that p(E,,) < oo can not be
dropped. For example, if X = N, M = P(N) and p is the counting measure, set

E.={nn+1n+2.. .}
Then p(E,) = oo for all n, {£,} |, and oo, E, = @, and thus

([)5) =0 0= i

n=1

2.4 Construction of the Lebesgue Measure

Now that we have defined the concept of a measure, we would like to construct
a measure on R™ which generalizes the notion of volume of an interval. It turns
out that this construction can be applied to a large class of sets, and we therefore
introduce it in a general way.

2.4.1 Semirings

Consider the set X = R™. An n-interval is a set of the form
E=LxLx --xI,
where each I; (j = 1...n) is an interval in R. If each [; is an open interval,
E = (a1,bt) x (az,by) X -+ X (an, bn)
then I is called an open n-interval. Similarly, if each I; is a closed interval,
E = a1, b1] X [ag, ba] X -+ X [an, by]
then E is called a closed n-interval.

Exercise 2.4.1. Show that every open n-interval is an open set, and every closed
n-interval is a closed set, in the usual metric of R™.

In the following, we will consider the collection
So = {EQ R" . E= (al,bl] X (G.g,bz] XKoo X (an,bn]}

with —oo < a; < b; < oc.
Note that the collection & = S, has the following properties:
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Figure 2.1: n-intervals.

(SR1) fed.
(SR2) If A,BcSthen ANBE€S.

(SR3) If A,B & 8, then A\B is a finite disjoint union of elements of S,

AB=|JC, Cies anCi=0if i#j
i=1

These properties are intuitively clear, and they are easy to prove if n = 1. For
arbitrary n they can be proved by induction on n. (Exercise).

Definition 2.4.1. Let X be a set, and & a non-empty collection of subsets of X.
Then § is called a semiring, provided that (SR1) — (SR3) above hold.

Example 2.4.1. 1. Every algebra M, and hence every o-algebra M, is a also
semiring, by property (Al) and remark 2.1.1.

2. Let X be an infinite set, and S = {F C X : F is finite}. Then S is a semiring
(but not an algebra).

If § is a semiring, then the finite or countable union of elements of & need not be
in §. Since we will need to deal which such unions, we make the following definition:

Definition 2.4.2. Let & be a semiring of subsets of X. Then a set £ C X is called
a o-set, if F is the countable disjoint union of elements of S,

E=|JA, AeS AnA=0ifi#j
i=1
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Remark 2.4.1. Obviously, if F is a finite disjoint union of elements of S,
E=JA, AeS AnA=0ifi]

then E is also a ¢-set. Simply choose A1 = Apyo = -+ = 0.
We need the following generalization of (SR3) and of theorem 2.1.1:
Theorem 2.4.1. Let S be a semiring of subsets of X. Then

1. If A€ S, and Ay, Ay, ..., A, € S, then then A\UY, A; is a finite disjoint
union of elements of S,

A\ U A= U C, Cres8, C;NCL=0 if j#k (2.5)

(In particular, A\ Uy_, Ay is a o-set.)

2. If {A.}, C S8, then EJ_Ol A, is a o-set. In fact,

o0 oo 1Min P
ngl A'n. == 'ngl kL—Jl C‘nk: Cﬂ,k € S: {Cﬂk}zllygzl dzsgomt, Cﬂk g An-

3. The countable union of o-sets is a o-set.

4. The finite intersection of o-sets is a o-set.

Proof. 1. We proceed by induction on n.

a) If n =1, then (2.5} is (SR3), so the statement is true.

b) Suppose, the statement is true for some n. Let A € S, and A3, As,..., 4,1 €S
be given. Then by induction assumption, (2.5) holds, so that

A\ jgll Ai = (A\igl Ai) Vnt1 = (kgl Ck) Mnpr = kglck\AnH’

and the collection {Ck\Any1}ir, is disjoint, since Ci\Any1 € Cy, and {Cr}; is
disjoint. Now by (SR3), each set Cy\A,., is a finite, disjoint union of elements of
S,

C\Ani1= U Bis, By €8, {Bu}p disjoint.
J:

Now as {C\Ant1}iL, is disjoint, it follows that { By }i-y, 72 is a disjoint collection,
and

m

+1 m my
A- = g .,
A\ U1 % kL;Jl Ck\An+1 kgljl;Jl Bk;,'

ke
i=
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Thus, the assertion hold for n + 1.
¢) It follows by induction that (2.5) holds for all n.

2. Let {A,}2; C & be given. Let

‘Bli=_A1
.Bg:=.A2\A1

n—1
Bai= A\'U A

be as in the proof of theorem 2.1.1. Then B; N B; =@ for i < 4, as B; C A;, and

a5
n=1 n=1

89

Note that the sets B, need not be in § if § is not an algebra. However, by part 1.,

for each n,

B, = U Crks Couk €S, {Cri}r, disjoint,
k=1

and since {B,}32, is disjoint, the collection {Chnr}22,, %, is also disjoint. Since

Ja=UUcw
n=1 n=1k=1

and U, C B, C A, for each n, the second assertion follows.

3. Let {E,};2, C S be a countable collection of o-sets, and set A = U2, A,. Since

each A, is of the form

An=|)Bu, Bu€S,
k=1

we have

A= JUUBum BuesS,
n=1 k=1
a countable union. It now follows from part 2. that A is a o-set.

4. Let Ay, ..., A, be o-sets. Then each A, is of the form
An=|JBu, Bu €S, {Bu}y, disjoint.
k=1

Then

A 6An= ﬁ (Zank) =p( éBﬂ’ﬂ )

€S by (SR2)

Since for each k, 81 Bnr © By and the family {B}52, is disjoint, it follows that

A is a o-sget.

a
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2.4.2 Premeasures on Semirings

Definition 2.4.3. Let § be a semiring. A function p: & — [0, 00| satisfying
(PM1} (@) =0,

(PM2} Whenever {E,}52, C § are pairwise disjoint with W%, F,, € S, then
o0 o0
w(U B) = 3wk, (? o-additive” )
i=1 i=]

is called a premeasure (or sometimes simply a measure) on S.

Examples of Premeasures

Example 2.4.2. Let (X, M, u) be a measure space. Then obviously, u is a premea-
sure on M.. So the above definition is a generalization of the concept of measure
from the class of o-algebras to the class of semirings.

Example 2.4.3. Let X be a set, and S = {E C X : E is finite}. Set
p(E) = card(E)
for all £ € 8. Then u is a premeasure on 8.
Example 2.4.4. Let X =R, and § = &, the semiring of half-open intervals,
S={{a,b]CR: —~c0<a<b<oc}
Furthermore, fix a function F : R — R with the following properties:
1. F is increasing (i.e. nondecreasing),

2. F'is right continuous. That is, for each a € R we have

lim F(z) = F(a).

z—at
Now define 1 : & — [0, 00) by

u((a,5}) = F(b) — F(a).

Let us verify that p is a premeasure. Property (PM1) is obvious: If a = b then

u(®) = u((a,a)) = F(a) ~ F(a) = 0.



2.4. CONSTRUCTION OF THE LEBESGUE MEASURE 91

In order to prove (PM2), let {E;}32, be a sequence of pairwise disjoint intervals
in S, say Ej = (ax, bi| for each k, satisfying

FE = [.JEkES
k=1

Then £ is also a hali-open interval, say say £ = (a,b]. If £ = () the assertion of the
theorem is trivial, so we may assume that & # §.

a) For given N € N, let’s consider the first N intervals Ei, ..., En. Relabeling
if necessary, we may assume that the intervals are ordered form left to right,

6L <h << < o Lap<bp<ap <by <o <by <0

Then
N N
> B = [F(bx) — Fla)]
< i [Flarer) = Flap)] + [F(on) = Flay)] (b < aiqr, F1)
= F(by) — F(a1) (telescoping sum})
< F(b) — F(a) = p(E) (a < ay, by < b, F7).

Now let N — 00, and obtain

oo

> u(Er) < u(E). (2.6)

k=1

b) Now we need to prove the reverse inequality. For this, let € > 0, § > 0 be
arbitrary, but fixed, with 0 < § < b — a. We enlarge the sets Ej slightly to open
intervals, so that we can use a compactness argument. In fact, since F is continuous

from the right and increasing, for each k¥ we can pick a number ¢, satisfying by < cx
and

Fle) < F(by) + 56,;- (2.7)

Set A, = (ak, Ck). Then F, = (ak, bk] C (ak, Ck) = Ay, for all k.
Consider the compact interval [a + §,5]. Since

la+6,8 C (a,8) = J B c | A
k=1 k=1

and each Ay is open, there exists a finite collection Ay, ..., 4, covering [a + 8, b].
Note that if one of these intervals is contained in another, say Ay, © Ay, then we
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may discard the set Ay, and still have an open cover of [a + &,5]. Thus we may
assume that Ay, & Ay, for all i # 7, = 1... N. Similarly, after discarding some of
the sets Ay, if necessary, we may assume that A, Na + §,b] # @ for all i. Now we
reindex so that the left endpoints of the intervals Ay, are ordered from left to right,

agak1<ak2<ak3-~<akl\,.

Note that as Ax, & Ay, for ¢ # j, the right endpoints must also be ordered from left
to right,
Choy T Cpy < Cpyg " < Chpy

Now since Ag,,...,Ary is a cover of of [a + 6,8], the intervals (ay,c;) and
(@tht1, Chy1) must overlap, that is,

Ay < Chy
foreach 7=1... N, and also

ag, < a+46 and b < Cry-
Because of these inequalities, and as F'T, we have

p((a+3,8]) = F(b) (a+5)<F(CkN)—F(ak1)

= Fleg,) — Flagy) + Z (ak,,,) — Flax,)]  (telescoping sum)
< g;[F(ckl) — Fla,)] < é[F (c) — F(an)]

< ki[F(bk) + 5’} — Flay)] (by (2.7))

= g;[F(bk) Flap)] +e= iu(Ek) te

Now as € was arbitrary, we conclude that

p((a+60) <> u(E).

k=1

But & > 0 was also arbitrary, hence by right continuity of F,
WE) = u((a,b]} = F(b) ~ Fl(a)

= Jim F(b) ~ Fla+0) = Jim ,u,((a+5 B) g;u (E).

This proves the reverse inequality to (2.6), and hence (PM2) holds.
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Remark 2.4.2. The most important case is when F{z) = x, in which case simply
p({a,b]) =b—a.
In this case, we use the symbol A,
M(a,b))=b-a
and call A the Lebesgue premeasure on S.
Example 2.4.5. Consider the semialgebra & = 8, of "half-open” intervals in R”,
S={ECR" : E= (a1, x (ag, ba] X -+ X (G, bs] }
with —oo < a; < b; < 00. Set
ME) = vol(E) = (b1 —ay)(ba —ag) ... (b, — ayn).

Then X is a premeasure on S, again called the Lebesgue premeasure. (The fact that
A is a premeasure is proved using example 2.4.4 and induction on n. The induction
step is easiest proved by using properties of measures which we will study later; thus
we postpone the proof until later in theorem 2.8.6.}

Properties of Premeasures
Remark 2.4.3. Let S be a semiring, and x : § — [0, 0c| a premeasure on §. Then
a) If Ey,..., F,, € S are pairwise disjoint, and @1 E; € §, then

,LL(O E,;) = i w(E;) ("finite additivity”).

i=1 =1
In fact, we simply set 1 = Epqe = -+ - = 0 and apply (PM1) and (PM2).
b) f E,Fe8and ECF, then
w(E) < p(F) (” monotonicity”).
In fact, by theorem 2.4.1, we can write
F\B=0C,  {G)2, 8 disjoint.

Thus,
F= EU(EIC;-),

a finite, digjoint union. It follows from the above remark that



94 CHAPTER 2. MEASURE THEORY

Theorem 2.4.2. Let S be a semiring, and p : & — [0,00] a function satisfying
(@) = 0. Then u is a premeasure < p has the following two properties:

1. Whenever Eq,...,E, € 8§ are pairwise disjoint, E € S and _QJI E; C F, then

> () < ()

2. Whenever E € S, {E,}32, €S and EC U E,, then

u(EY < Z w{En) ("o -subadditivity” ).

n=1

Proof. =: Suppose, 4 is a premeasure on S.
a) Let Ey,...,E, € S be pairwise disjoint, £ € S and ,Ql E; C E. Then by

theorem 2.4.1, F\ '©1 E; 1s a disjoint union of sets in S,
E\ _@1 E; = kgl Cr, {Ci}iv, C S disjoint.

Thus,
5= (0,5)u(0a).
i=1 k=1
a disjoint union. Then by finite additivity of g (see remark 2.4.3),

W(B) = 3" u(E) + 3 p(C) 2 3 (B,

Thus, a) holds.
b) Let E €S, {E,}22, CSwith £ C Ole E,,. Then by theorem 2.4.1,

U Eu=0 UCm  Cu€S Con C By {Cutditii disjoint.

n=1 n=1
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Now by a) we have, since U™ C,x. C F,, that

My

> ilCoi) < p(En) (2:8)

k=1

for all n. Now

E=8n(8 E)=8n(0 U cuw) =0 UEncw,

n=1k=1 n=1k=1

a digjoint union. Since ENChi € § by {SR2), we have

w(E) = M(nglkgl(Eﬂan)) (Fo12) ;;M(Eﬂcnk) (%) ;N(En)

which shows that b) holds.

«: Now suppose that 4 : & — [0, 0o] satisfies () = 0 together with a) and b). Let
{E,152, C S be disjoint, with E = otjl E, € S. then for each N € N,

N
91 E,CE
and hence
N oo
D u(En) < wE) <> u(E,)
n=1 a) b) n=1
Let N — oco. We obtain
> u(En) < WE) <> p(E)
n=1 n=1
that is,
WE) = ()
n=1
Thus, (PM2) holds, so that u is a premeasure on S. O

2.4.3 Outer Measures

Suppose, S is a semiring of subsets of X, and p : § — [0, c0] a premeasure on S.
(For example, § = &, is the semialgebra of ” half-open” intervals defined earlier, and
# the volume of elements of S,.) We now want to extend p to a measure on the
o-algebra generated by S§. To do so, we first we extend u to a function on all of
P(X) which, while not a measure, is still monotone and o-subadditive.
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Definition 2.4.4. Let X be a set, S a collection of subsets of X containing the
empty set, and p: S — [0, cc] a function satisfying (@) = 0. (For example, S is a
semiring of subsets of X and p a premeasure.) For E C X, set

pe(B) 1= mf{ S u(A)  {A)2, €S, BC Ja} (2.9)

1

Then 0 < u.(E) < oo. (Note that inf (§) = oo is a possibility if £ can not be
covered at all by some countable family {A4;}32, of sets in S.) We call y, the outer
measure induced on X by (S, u).

Theorem 2.4.3. i, has the following properties.
(OM2) If E CF then

(B < pu(F), ("monotonicity”)

(OM3) For any countable collection {E,}32, € P(X) we have
J7m (U En) < Z pn(Ep), ("o -subadditivity”) (2.10)
n=1 n=1

(4) Forall E € 8, we have
1(E) < u(E),

(6) If S is a semiring and p a premeasure on S, then

(a) for all E € S, we have

(b) the sets A; in definition 2.4.4 may be assumed to be pairwise disjoint,
that s,

(B = inf{Z#(Cj) O C© S, {CYR, disjoint, E C UOj}‘
7=1 j=1

(2.11)

Proof. (4): Let £ € S be given. Set By = E and for i > 2, set B; = 0. Then

E C|JZ, Bi, so that by definition of .,

palB) = it 3o p(A) - {AYE €8, BSJA} <Y (B = w(By) = u(B),

that is, pu(E) < u(E).
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(OM1): If E =@, then by (4) and assumption on g we have 0 < p (®) < u(@) =0,
so that u, (@) = 0.

(OM2): Let E C F be subsets of X. If {4;}22, C 8 issuch that F C [J;2, A;, then
obviously, £ C |JZ; A; as well, so that

u(E) = int{ SouBy) : (B s, Ec| B} < > (4.

Taking the infimum over all possible collections {A4;}2, C & covering F, we have

GAi} = pa(F).

pe(B) < inf{ 37 p(A) : {ARE €S, FC
i=1 =1
(OM3): Let {E,}2, C P(X). If u.(E,) = oo for some n, then 2.10 is obvious.
Thus, we may assume that p.(F,) < oo for all n.
Let € > 0 be given. By definition of p., for each n there exists a collection of
sets {Ag”)}zl C & such that

BocUAY  amd Y uAP) < (B4
Then - - i: o
Ue. ¢ Jl4a"
and hence by definition of ., "~ T
it (Q E) < ggumgm) < g(u*(ﬁ:ﬂ) + 55) = g“*(ﬂ‘) +e.

Since € was arbitrary, it follows that
#(U En) <Y (B,
n=1 n=1

(5): Suppose that S is a semiring and x a premeasure on S.
(a) Let £ € S be given. Note that if {A4;}°, is any collection in & such that
E CJZ, A;, then by theorem 2.4.2,

and hence, taking the infimum over all coverings {A4;}2, € S of E,

WE) < it 3 u(4)  (A3zi 5, BCJA) = o).

1=1
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It now follows from (4) that p.(E) = p(£).
(b) Let E € § be given. If {A;}52, is any collection of sets in § with £ C i@l A,

then by theorem 5, there exists a disjoint collection {Cix}$2,, 1, of sets in S with

Ja-UUen
i=1 i=1 k=1

and Cj, C A;. Thus by theorem 6, for each ¢,
> p(Ci) < pl(A)
k=1

so that

S wCa) = 3wl

My

Reindexing the countable collection {Ci}32;, %, to {C;}32, we have
> u(Ch) < u(A).
3=1 =1

Taking the infimum over all disjoint collections {C‘j}?il of subsets of & covering £
we have

def

pe(B) = mf{ 3 n4) (4328, B A

i=1
< inf{ ST u(C)) {0 €S, {Ch)R, disjoint, EC | cj} < Y (4.
j=1 j=1 i=1

Now this inequality holds for every countable collection {A;}°, of subsets of S
covering E. Thus we have by definition of .,

w(E) < inf{ STuC) - {C}2, €8, (G2, disjoint, EC | (Jj}
i=1

=1

< inf{ ;umn {A}Z,CS, BC QAt-} = t(B).

=1

It follows that (2.11) holds.
O

Remark 2.4.4. For the proof of (5), we had to make use of g-subadditivity of u
which, by the proof of theorem 2.4.2, is a consequence of the semiring structure of
S and of (PM2). If § is not a semiring, it may happen that . (E) # u(E) for some
Ees.
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For example, let X = {1,2,3}, S = {0,{1},{1,2}} and u(@) = 0, p({1} = 2
and p({1,2}) = 1. Then obviously, x.({1}) = 1 # u({1}). The reason for this is
easy to see: While {1} C {1,2} we don’t have the monotonicity property; u({1}) £

u({1,2}).

In general, we define:

Definition 2.4.5. Let X be a set. A function p, : P(X) — [0, oo] satisfying (OM1),
(OM2) and (OM3) above is called an outer measure on X.

Remark 2.4.5. Let p, be an outer measure on X. Then for any finite collection
{E:} € P(X) we have

. (O Ez) < i s (E3). (”finite subadditivity”)
i=1 i=1

This is proved by setting E; = () for ¢ > n and using ¢-subadditivity, just as in the
proof of theorem 2.3.1.

Example 2.4.6. Consider the semialgebra S = {F C X : E is finite} and premea-
sure pu(E) := card(E) of example 2.4.3. The corresponding outer measure on X

is
card{F if E is finite
Pl E) = (®) e o
o0 if £ is infinite.

Note that p, is even a measure on P(X), namely the counting measure.

In the following, in order to simplify notation, we will simply use the symbol s
to denote an outer measure.

Example 2.4.7. (An outer measure which is not a measure.) Let X = [0,1] and
for each E C X, define

0 if E is countable
u(E) = o
1 if F is uncountable.

Let us verity that p is an outer measure.

Obviously, #(@) = 0 and u(E) < u(F) if E C F. Now let {E,} be a countable
family of subsets of X. We distinguish two possibilities:

1. All E, are countable. Then ‘b_"l E, is also countable, so that

,u,([j En) —0= io - i,u(En).

n=1 n=1

2. At least one E,, say E,  is uncountable. Then ole E, is also uncountable, so
n=
that

o0

.U'(U En) =1=p(k,,) < iﬂ*(En)-

n=1 n=1%
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Thus, g is an outer measure.
Note that i is not a measure in P(X). To see this, let £ = [0, 3] and F = (3,1].
Then E and F' are disjoint, while
wEUF)=p([0,1]) =1#2=pu(E) + pu(F).
Thus, u is not even finitely additive.

This example shows that in general, an outer measure is not a measure. The
reason is that the o-algebra P(X) is way to large. However, if we restrict our
attention to a o-subalgebra of P(X), then we can obtain a measure:

2.4.4 Measurable Sets

Definition 2.4.6. Let i be an outer measure on a set X. A set £ € P(X} is said
to be u-measurable, if for all sets A C X we have

u(A) = (AN E) + p(AN E°). (2.12)
Set
M, ={E C X : Eis p-measurable}.

To check whether a set E is measurable, it is enough to verify a weaker condition
than (2.12):

Lemma 2.4.4. Let p be an outer measure on X, and £ C X. Then
EeM, & upd)>pANnE)+pu(ANE®)
for all A C X with p(A) < oo.

Proof. = This implication is obvious from (2.12).
<. Suppose, the inequality u(A) > (AN E)+ (AN E°) holds for all sets A with
u{A) < 0o. Then trivially, it also holds for all A C X with p(A) = occ.

On the other hand, since g is an outer measure, the reverse inequality,

HA) = s(ANB)U(ANEY) < p(ANE)+u(ANE")

holds for every A € X by subadditivity. Thus, (2.12) holds, that is, £ € M,. O

Definition 2.4.7. Let u be an outer measure on X. A set £ C X with y(E) =0
is called a null set.

Lemma 2.4.5. Let i be an outer measure on X. Then every null set is measurable.
Proof. Suppose, u(E) = 0. Then for all A C X,

mA) = p((ANE)U(ANEY)) < p(ANE)+pu(ANE)

(OM3)

< p(E)+(4) = u(A).

(OM2)

That is,
wA) = pANE)+ pu(ANE),

which shows that £ ¢ M,,. O
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Example 2.4.8. Recall example 2.4.7 of an outer measure: X = [0, 1] and

(B) = 0 if ¥ C X is countable
a )1 if £ C X is uncountable.

Let us find all the p-measurable sets.
Suppose that £ C X is g-measurable. Then in particular, choosing A = X,

1= p(X) = (X N E)+u(XNE°) = p(E) + p(E°).

Thus, exactly one of E or E° must be uncountable.

Conversely, suppose that £ C X has the property that exactly one of &/ or E°
is uncountable. Let A C X be given.
Case 1. A is countable. Then AN E and AN E° are both countable, so that

p(ANE)Y+ u(ANES)=0-+0=0= u(A).

Case 2: Aisuncountable. Then at least one of ANE and ANE® must be uncountable,
since A = (AN E)U(AN E°). On the other hand, by assumption on E, at most one
of AN E and AN E° can be uncountable. Thus, exactly one of the two sets is
uncountable.

140 (if AN FE is uncountable) | 1 = u(A)
0+1 (if AN E°is uncountable) [~ ~ VY

p(ANE)+ p(ANE®) = {
We thus have shown that
M, ={E C[0,1] : exactly one of E or E is uncountable }. (2.13)

Note that the countable sets are the null sets.

The next theorem says that the collection M, in (2.13) is a ¢-algebra.

Theorem 2.4.6. Let ;1 be an outer measure on X. Then M, is a o-algebra, and u
is a measure on M.

Proof. We already know that § € M,,, and that u(@) = 0. For the remainder of the
theorem, we proceed as follows:

1. Show that M, is an algebra.
2. Show that w is finitely additive on M,,.
3. Show that p is o-additive on M,,.

4. Show that M, is a c-algebra.
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1. We need to show that (A1) and (A2) hold. If F € M, then it follows directly
from (2.12) that £E¢ € M, Thus, (Al) holds.

To show (A2), suppose that E, F' € M,. We need to show that FEUF € M,,.
By lemma 2.4.4, it is enough to show that for all 4 C X,

Ay = p(AN[EUF]) + p(ANEUF]).
Note that
AN[EUF] = [ANE|UANE*NF]
and hence,
p{AN[EUF]) + p(AN[EUF])
= p([ANEJU[ANE°NF]) + p{AN[EUF)?)
< p(ANE) + p(ANENF) + u(ANENE®)

subadditive

= pANE)+u(ANEY) = u(A).

FEMp EcM,,

Thus, F U F is measurable, so that (A2) holds.

2. We want to show that u is a finitely additive measure on M,. Since M, is an
algebra, # € M,. Furthermore, as p is an outer measure, u(f) = 0. Thus, (Measl)
holds. It is left to show finite additivity.

Claim: If Fy,..., B, are pairwise disjoint sets in M, then for each A C X,

0 (Am (igl E)) — iu(/m E). (2.14)

Fix A and proceed by induction on n.
(i) n=1: Obvious.
(ii) Assume we have shown that for some & < n,

u (An (@1 E)) - ;M(Am E). (2.15)

Then

w(4n(55) 1, 20, 1 (40 (Z B) 1 Bisr) + ulaAn(G 2) L)

Epp1eMp

= ,u(AﬂE;H_l) + ,u(A ﬂ(ig Ei)) (since the {E;} are disjoint)
- ,u(AﬂEkH) + zk:u(AﬂE,;) - kifu(AﬂEi).
i=1

2.15%
¢ ' =)

This proves the claim. Now choosing A = X in (2.14) we obtain that

«(8,B) = Sou) 219
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Thus, u is finitely additive.

3. Next let {E;}¢; € M, be pairwise disjoint. Set F = U, F;. We want to show
that E € M, and p(E) =3 o, p(E).
To show that E' is measurable, let A C X with u(A) < co be arbitrary. Then

WANE) = (Am(UE)) (HAHE) Z,u,AﬂE (2.17)

(OM3) 4

Now as M, is an algebra, UL, E; € M, for each n, and hence

00 > p(A) = u(Aﬂ(LnJlEé))”(A“(QEﬂ')C)

= =

(L=J1 (ANE; )+,u (ANE)  asE°C (UE)

(0M2) i1

™

Z,u, ANE) + p(ANES).

(2 14)

Now u{ANE) < u(A) < oo, and hence

3" WANE) < () ~ w(AN EY)

i=1

for each n. Let n — oco. We obtain that
> wANE) < p(A) — p(ANE®).
i=1

Hence by (2.17),
WANE) < p(A) — p(ANES),

that is,
#(A) 2 u(ANE) + p(AN E°).

It follows from lemma 2.4.4 that E € M,,.
Now by monotonicity, subadditivity and (2.16) we have for each n,

> u(m) = u({JE) < ) < S ucE).

i=1

Let n — oo. We obtain that

Thus, p is o-additive on M,,.
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4. Next let {A;}32; € M, be arbitrary. We need to show that U2, A; € M,,.
Since M, is an algebra, by theorem 2.1.1, there exists a sequence { E; }&2;, C M,
of pairwise disjoint sets such that E; C A; for all 4, and U2, E; = U2, A;. Now in
3. above we have shown that, since the sets E; are pairwise disjoint, £ := U2, E; €
M,,. Hence, U2, A; € M,,. This proves the theorem. O

Definition 2.4.8. A measure space (X, M, u) is said to be complete, if every subset
of a null set is measurable. (That is, £ € M and p(E) = 0 imply that A € M for
al AC E.)

Remark 2.4.6. Let (X, M, 11.) be the measure space constructed from an outer
measure [, as above. Then (X, M, p.) is complete.

In fact, let A C E where E' € M, and u.(E) = 0. Then by monotonicity of the
outer measure,

0< U*(A) < N*(E) =0
which shows that p.(A) = 0. By lemma 2.4.5, A is measurable.

Remark 2.4.7. In definition 2.4.6 above, we have introduced the notion of mea-
surable set through an outer measure p,. We have found that the collection M,
of measurable sets forms a o-algebra, and that p, is a measure on M,. That is,
(X, M,, ) 1s a measure space. In general, if (X, M, ) is a measure space, then
we call the elements of M p-measurable sets.

2.4.5 Extensions of Measures

Let us summarize what he have done so far.
1. We started with a semiring S of subsets of X, and a premeasure i on S.
2. Then we defined an outer measure p, on P(X) by setting
pe(B) =inf{ 3" w(A), Ae s, BCJa}.
i=1 i=1
If £ €8, then p{E) = pu(E).

3. If we restrict p. to the o-algebra M, of all p. measurable sets, then p, is a
measure on M,,.

The next question is: Is § € M,,, that is, is every set £ in & measurable 7 The
answer is yes:

Theorem 2.4.7. Let S be a semiring of subsets of X, and p : S — [0,00] a
premeasure on S. Let p, denote the outer measure on X determined by p as in (2.9),
and let M, denote the o-algebra of p.-measurable subsets of X. Then § € M,,.
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Proof. Let E € §. We need to show that
pr(A) 2 p (ANE) + (AN E°) (2.18)
for all A € X with u.(A) < co. If E = {, this is obvious, so we may assume that

£+
Let € > 0 be given. By definition of y,, there exist {4,322, C & such that

AC ntilAn and Zlu(An) < peA) + e

First consider AN E.

ANEC (GAn)ﬂE= G(AnmE)
=l 5

n=1
so that
JANE)Y < p, A.NEY} < H(ANE = A, NE).
w(4nh) < w(UnB) <> udnd), 2 S uAND)
(2.19)
Next consider AN E°. Since S is a semiring, by (SR2) for each n,
ANE = ANE = Coj,  Cnj €8, {Cuy}2, disjoint.
J=1
Hence - - - m
aneec (|J ) nE = JAnnE) = | J U Cws
n=1 n=1 n=1 j=1
so that - - m
plANED) < 303 ulCg) DD 1lCuj) (2.20)
(©M2) 721 T tm243(5)n_-lj =
(OM3)
Combining (2.19) and (2.20) we have
(ANE) + (AN E) <Y (WANE) + D u(Co))
n i=1

M &

(PM2) . #(An) < paA) te

3
I

where we have used the fact that (A, N E) U (U7 Crj) = (A, NE)U(A4, N E°) = A,
and this union is disjoint, because Cp,; € A, N E°. As € was arbitrary, it follows that
(2.18) holds. Then by lemma 2.4.4, E € M, which proves the theorem. O
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Remark 2.4.8. It follows from the theorem that ¢(8) € M,,. The two o-algebras,
however, are usually different. (See example 2.4.6 where

o(8)={EF C X: Eiscountable or E° is countable }
while M, = P(X).)

Remark 2.4.9. Because § C M, u, is a measure on M, and p.(E) = p(E) for
all E € 8, we call p, an eztension of p (from ) to M,,. For ease of notation, we
often simply denote this extension by .

Now that we have extended the measure p from the semiring & to the g-algebra
M, the question is, is this extension unique ? First some notation.

Definition 2.4.9. Let S be a semiring of subsets of X, and p : § - [0, 00| a premea-
sure on §. Then p is called o-finite, if there exists a countable family {E,}32, C S

such that u(E,) < oo for all n and X = OL_jl E,. (Compare with the definition of a

o-finite measure !)

Remark 2.4.10. In the above definition, we may assume that the sets {E,,}32., are
pairwise disjoint. In fact, by theorem 5, part 2., we can write

oo Min

X={JUUCuw  Cu€S, CuC En, {Cur}i2iP disjoint.

n=1k=1

Then by monotonicity of p, p(Cur) < u(E,) < oo for each n and each k. That is,
X is the countable digjoint union of sets in § of finite measure.

Example 2.4.9. Let X = R", § the semiring of "half-open” intervals,
S=8,={E={a,b] x - x(anby)] : —0<a;<b<o00,i=1...n}
and A the Lebesgue premeasure on S,
ME) = (by ~— a1)(by — as) ... {by — an).
Then R is o-finite. In fact, we can write R* = ;L:le E;. where
Er={(=kk x(=k k] x--- x(=k, k]
and A(Ey) = 2"k" < oo for all k.
We can also write R™ as a disjoint union: For each k = (ki, ks,. .., k,) € Z", set
Er = (ki k1 + 1] x (Ko, kg + 1] % - x (kn, K + 1]

Then the sets Ejp are unit cubes whose vertices are the points of Z". The sets

{Ex}uczn are pairwise disjoint, A(Eg) = 1 for all k, and R™ = i[cLJZ E..
G n



24. CONSTRUCTION OF THE LEBESGUE MEASURE 107

Theorem 2.4.8. (Uniqueness of extension). Let S be a semiring of subsets of X,
and p : & — [0,00] a premeasure on S. Let p, denote the outer measure on X
determined by p as in (2.9), and let M, denote the o-algebra of p.-measurable
subsets of X. Suppose, M is another o-algebra with

SCMC M,

and v is a measure on M satisfying v(E) = u(E) for all E € 8. (That is, p. and
v are both extensions of p from S to M). If X is o-finite, then v(E) = p.(E) for
all E € M.

Proof. 1) First we show that v(E) < p(E) for all E € M.
Let E € M be arbitrary. If {4,}2, C § is such that £ C otjl Ay, then by

monotonicity and o-subadditivity of v,

v(E) < v(@An) <3 A = Yu(A)

n=1 onS n=1

Taking the infimum over all covers of F by countably many sets in & we get
v(B) < iif > u(An) (B €8, B UlAn} = 1(E).

2) Now we need to show the reverse inequality.
a) First let £ € M be such that u.(EF) < oo. Let € > 0 be arbitrary. Then by
(2.11), there exist {A,}22; C S, pairwise disjoint, so that

EgGAn and Z,u ) < u(E) + e
n=1

Set B = OL_jl A, € M. Then E C B and by o-additivity,

o 0] [eo]
=) plAn) =D p(An) < pu(E) +e.
n=1 n=1

By part 1), and since u,(F) is finite,
V(B\E) < t(B\E) = ux(B) — pi(E) < €.

Since p, and v are measures and coincide on &, we have

pa(E) < pa(B) = > (A, f > v(An = W(E) + v(B\E) < v(E) +e¢.

As € was arbitrary, it follows that p.(E) < v(F), and thus by part 1),

V(E) = p(E).
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b) Now let E ¢ M be arbitrary. As X is o-finite, there exist {En}52, € S,
pairwise disjoint, so that

w(E,) <oco ¥n  and X = U E..

Now as u.(E N E,) < p(E,) < oo, we have by part a) that
v(ENE,) =m(ENE,)

for all n. Also,

E=EmX:En(GEn) = G(EﬂEn),

n=1 n=1
a disjoint union, so that by c-additivity,

o0 00

v(E)=> v(ENE,) =Y p(ENE,) = u(E).

n=1 n=1

This proves the theorem.
|

Remark 2.4.11. The assumption that X be o-finite can not be dropped. For
example, let X =R,
S = {{a,b] : —oo <a<b< oo}

and define 1 : S — [0, 0c] by

oo else

0 ifE=0
W(E) = {
for all E € 8. It is straightforward to check that u is a premeasure on &, that

M, = P(X) and that
0 iftRE=10
u(E) = {
oo else

for all £ ¢ X. However, the counting measure,

V(E) = card(E)} Tf E ?s §n1t<?
o0 if £ is infinite
is another extension from S to P(X) different from p,.

Exercise 2.4.2. Let S be a semiring of subsets of X, u: S — [0, 0] a premeasure
on S and u, the outer measure induced by (S, ). Show: For each £ C X there
exists A € o(S) such that

ECA and  p(4) = u(E).
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2.5 Properties of the Lebesgue Measure

2.5.1 The Lebesgue Measure

Using the procedure outlined in the previous section, we now construct a measure
on R™.
Start with the semiring &, of "half-open” intervals,

So= {E-: H(G@,bi] - (CL,bl] X (ag,bg] Koo X (CLn,bﬂ] o0 < g < bz < o0,
i=1
i=1...n} (2.21)

and the Lebesgue premeasure A on S,

n

ME) =[]0 — a;) = (b1 — @) (b2 — a3) ... (bn — a,)

i=1

for E = [[(a;, b € S,. The outer measure A, on R* determined by X is called the
i=1
Lebesgue outer measure,

ME) = mf{ i)\(Ak) ALY, CS,, EC GAk }
k=1 k=1

_ _ . o o e s -
255 ) mf{ ;A(Ak) c {A}2, CS,, {Ar}i, disjoint, £ C kszlAk }

for £ C R™ arbitrary. The o-algebra of A,-measurable subsets of R™ will be denoted
by M,, and its elements are called Lebesque measurable sets. By theorems 2.4.6
and 2.4.7, A, is the (unique by theorem 2.4.8) extension of A from S, to M, called
the Lebesque measure on My, and is simply denoted by A. The measure space
(R™, My, A) is complete, by remark 2.4.7.

The following question now arises naturally: Can we characterize the elements

OfM)\?

2.5.2 Borel Sets

Definition 2.5.1. Given a metric space X {or more generally, a topological space
X, let

7:={UCX : Uisopen}

be the collection of open sets. Then o(7), the o-algebra generated by the open sets,
is called the Borel o-algebra on X, and is denoted by B(X). The elements of B{X)
are called Borel sets.
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Remark 2.5.1. A set of the form M = iﬁl Gy, with G, open for all 7, is called a G5

set. Note that a G5 set need not be open. Similarly, a set of the form M = ,CL:Jol L,

with F; closed for all 4, is called an F, set. An F, set need not be closed.

Since o-algebras are closed under formation of complements, countable unions
and countable intersections, it follows that B(X) contains all closed sets, all Gs sets,
and all Fj sets.

Lemma 2.5.1. (Lindeldf’s Theorem for n-intervals)
Every open set U © R™ is the countable union of bounded, open n-intervals whose
vertices have rational coordinates.

Proof. Let U be an open subset of R". Since the metrics dy and d, are equivalent,
U is also open in the metric do,. Thus, for each z = (21,...,z,) € U, there exists
e > 0 such that

n

Bo(z) =[] —e.z:i+€) CT,
i=1
B.(z) denoting an open ball in the d,, metric. For each i = 1...n, pick a;,b € Q
such that
$¢—€<ai<$i<bi<$i+€.

Then (a;,b;) C (z; — €, %; + €) for all ¢, and thus

n mn

Jm = H(a“b-,,) - H(.’L‘z — €, ‘|‘E) g U.

i=1 i=1

That is, J, is a bounded, open n-interval whose vertices have rational coordinates,

and x € J, CU. Then
v=|J{ztclJrcv

zel el

which shows that
=]/ (2.22)

zel
But there exist only countably many bounded, open non-empty n-intervals whose
vertices have rational coordinates, in fact, the map

i)

H(a@, bg) — (al, oy g, bl, cas bn)

i=1

is an isomorphism of the collection of such n-intervals into R?*. Hence, the union in
(2.22) is really a union of countably many distinct intervals only. This proves the
lemma. O

Theorem 2.5.2. Let 8, denote the semiring of “half-open” intervals in R™, as in
(2.21). Then B(R™) = o(S,).
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Proof. 1) First we show that o(S,) C B(R™). Since ¢(S,} is the smallest o-algebra
containing &,, it is enough to show that S, € B(R™). To this end, let £ € S, be
arbitrary, say

n
F= H(ai, bﬁ]
i=1
Then E is a countable intersection of open intervals,

T

~ 1
E: E h E = iy Ui PN
Q & where " H(a b+k)

i=1

Since each Ej, is open (Ey is an open ball in the d,, metric, and as the metrics dy
and d,, are equivalent, also an open set in the dy metric), By € B{R"). Now every
a-algebra is closed under countable intersections; hence E € B(R™). We have shown
that S, C B(R™), and hence o(S,) C B(R™).

2} Now we show that B(R™) C ¢(S,). First, if I = [](a;, ;) is a bounded, open

i=1
n-interval, then

Hence, I € {S,).
In general, if U C R” is open, then by lemma 2.5.1,

"
k=1

with each I; a bounded, open n-interval. By the above, I € o(S,) for each k,
and hence U € o(S,). We have shown that ¢(S,) is a o-algebra containing all

open sets. But B(R™) is the smallest o-algebra containing all open sets, and hence
B(R™) C o(S,). O

Exercise 2.5.1. 1. Show that B{R™) = ¢(F), where F denotes the collection of
all closed subsets of R™.

2. Show that B(R) = o(H), where ‘H denotes the collection of all infinite half-
open intervals in R,

H={(-00,b]:beR }.
Remark 2.5.2. Since M, is a g-algebra containing S,, it follows that B(R™) ¢ M.
One can show (see [1], [3]) that this is a proper inclusion, that is, there exist Lebesgue

measurable sets which are not Borel sets.

Example 2.5.1. Let us present some Borel subsets of R™.



112 CHAPTER 2. MEASURE THEORY

1. let B = {Z} be a singleton, where ¥ = (x;,...,z,). Then F is closed, hence
FE € B(R"). Furthermore,

ke

- (ﬁH o) 2, Jm AT 0d) = fim 2 =0

i=1

2. Next let E = {z%*)}# | be a countable subset of R?, with A/ € NU{co}. Then
by finite additivity, respectively o-additivity,

M M M
5) = M(UE) = 320z = Yo -
k=1 k=1 k=1

3. Let E be a bounded, open n-interval, say E = [](a;,b;). Then
i=1

1

ME) = []b: ~a).

=1

4. Let E be a bounded, closed n-interval, say £ = []._,[ai, b;]. Then

T

AE) =[] — ).

=1

5. Let & be a bounded n-interval, say F = H I;, with each I; an interval in R
having endpoints a; < b;. Then E € B(R”) and

T

ME) = J](b: — a).

i=1

6. Let E be an unbounded, proper n-interval, say E = [][ I;, with each [; an
=1
interval in R having endpoints a;, b; satisfying —oo < @; < b; € o0. Then
E € B{R"), and
AME) = oo.

7. Let E be a coordinate plane in R", that is,
E={(z,...,2n) € R" : z;, = 0 for some fixed j,, 1 < j, <n}.
Then E € B(R™), and A(E) =

Exercise 2.5.2. Prove 3. — 7. above. (In the case of unbounded intervals, assume
for the sake of simplicity that E = (—o0,b1) x {ag, bal X (a3, bs] X - - - X {an, b,) with
all a;, b; finite numbers. In the case of a coordinate plane, assume that j, = 1.)
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0

?

Exercise 2.5.3. Show that for all F C R",
1) mf{ Z)\ Ar) + Ag is a bounded open n-interval, E C U Aj, }
k=1

ot

inf { Z A(Ag) © Ag is a bounded n-interval, E C U A
k=1

2) AM(E)=

Example 2.5.2. Recall the Cantor set

where
Gi=(D G= (UG, Gi=(h2IUE &) UG BIUE.2),
and in general, G, is the digjoint union of 2"~! open intervals, each of length L 3
and Gpyy € GE. Thus, AG,) = 2;.,: , and the sets {G,}32, are also disjoint, so
that
o0 oG oo 2:n.-1 1 1
MU6n) = 3 M6 = 3= —32 =37z = !
n=1 n=1 n=1 3
Hence
UG =1-1=0.

AC) = A([0,1])

The Cantor set is an uncountable set of measure zero !
Theorem 2.5.3. Let A, denote the Lebesgue outer measure on R®, and )\ the

Lebesgue measure. Then
1. For every compact subset K of R", A(K) < oo.

2. For every subset E of R",
M(E) =mf{NT): ECU, U open } ("outer regularity”).

3. For every Lebesque measurable subset E of R®

ME)=sup{ A(K): K CE, K compact } ("inner regularity” ).

Proof. 1. Let K C R™ be compact. Then K is bounded, so there exist M > 0 such
1
that K C I := [[(—M, M]. By monotonicity of the measure

7=l

ME) < M) = 2°M" < oo,
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2. Let E € R" be arbitrary. If U is an open set with I C U, then by monotonicity,
AE) < A(U) = AU)

and hence
MAE) <inf{ A(U}: ECU, U open }.

We must show the reverse inequality. If A\,{F) = o0, then obviously,
AdE) =00 =inf{XU)}: ECU, U open }.

Thus we may assume that A\(E)} < oco. Let € > 0 be given. Then by exercise 2.5.3,
there exists a collection {Ex}32, of bounded, open n-intervals such that

k=1

i ME) < M(E) + ¢

Set U = |Jpo, Bx. Then U is open, E C U, and by o-subadditivity,

=/\(DEk <§:)\Ek<)\ + €.
= k=1

Thus,

inf{\MU): ECU, Uopen} < M(E)+e
As € > 0 was arbitrary, it follows that

inf{ \(U): ECU, Uopen} < A(F).

This proves 2.

3. Let E € My. If K C E is compact, then by monotonicity, A(K) < A E), and
hence,
sup{ A(K) : K C F, K is compact } < A(E).

We must show the reverse inequality.
Case 1: E is bounded. Then E is also bounded, and hence is compact. In
particular, A(E) < ME)) < cc.
Let ¢ > 0 be given. Applying part 2. to the set E\E, there exists U C R™ open
such that
E\ECU and AU)<XAE\E)+e

Set K := E\U. Then K is also compact, and

K=B\UCE\(B\E)=E
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Now

EC(E\UY)UU =KUU,
a disjoint union, and hence
ME) = MK) + MU) < ME) + AME\E) + e = MNK) + ME) = ME) +¢

as A\(E) is finite. Thus,
AE) < AK) +e

so that
ME) <sup{ A\(K) : K C E, K is compact } + €.

Since € was arbitrary, it follows that
ME) <sup{ A(K): K C E, K is compact }.
Case 2: E is unbounded. Set
Ey = EN B(0), k=1,2,....
Then {FEx}1 and E = kogl Ej. By case 1, for each k there exists Cy C Ej; compact,
such that

M) - 7 < MG

k k
Set K}, := _U1 C;. Then K, is compact, {Ki}T, Ki C ‘Ul E; = E}, and thus
i= =

ME) — 7 < ACk) <MKW) < MEY

for all k. Let & — oco. We obtain
A(E) = lim (MEx) - %) < Jim MKy) < Jim A() = A(E).
Since {A(Kx)}T, and K C Ej for all k, we have

AME) = lim MK}) = sup MK) < sup{ \(K) : K C E, K is compact }.
k

k—o0

This proves the theorem. 0
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Definition 2.5.2. Let X be a metric space (or more generally, a topological space),
and y a measure on B(X). (i.e., p is a Borel measure.) Then pu is called a regular
Borel measure if

1. 4{K) < oo for all K € X compact,

2. w(F) =inf{ w(U), EC U, U open }forall E e B(X),

3. u(E)=sup{ p{K): K C E, K is compact } for all £ C X open.
Thus by the theorem, the Lebesgue measure is a regular Borel measure.

Exercise 2.5.4. Let £ C R*. Show: E € M, <«  for every ¢ > 0 there exist
an open set U € X and a closed set F' C X such that

1. FCECU,
2. MU\F) < .

2.6 Measurable Functions

2.6.1 Characterization of Measurable Functions

Definition 2.6.1. Let (X, M) be a measurable space. An extended real valued
function f: X — R* is called M-measurable, if

1. f7YU) e M for all U C R, U open,
2. f7H(—o0) € M and f~l(o0) € M.

Remark 2.6.1. In case that f is real valued, f : X — R, we have f 1(—0) =
f~Yoo) = B € M, so that the above definition reduces to

f is M-measurable <« f~}(U) € M for all U CR, U open.

Remark 2.6.2. Suppose that X is also a metric space (or more general, a topological
space), and B{X) C M. (For example, X = R™ and M = B(R"), or M = M,.)
Let f: X — R be continuous. Then for all U C R is open, f~'(U) is open in X,
and thus f~1(U) € B(X) € M. Thus, every continuous function is M-measurable.

Theorem 2.6.1. Let (X, M) be a measurable space, and f : X — R*. Then
TFAE.:

1. f is M-measurable.

2. {zeX:flz)>aeMforallacR (a€Q).
3 {zeX : flz)<a}leMforallaceR (a Q).
4 {reX f(z)<aleMforallacR (acQ).
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5. {zeX:flz}>a}eMforallacR (acQ)

Proof. We first prove that 2.-5. all all equivalent. Then we will prove that 1. and
2.-b. are equivalent.

2. = 3.: Suppose, that 2. holds. Then for each fixed a € R (a € @), we have

{reX:flz)Sat=X\{z€X: f(z)>a} e M.
Eﬂd‘gy 2.

3. = 4.: Suppose, that 3. holds. Then for each fixed a € R (a € @), we have

1
{reX: flz <a,}mU{a:eX f(z )<a+E}GM.

n=1 -

EﬁA by 3

(Note that if @ € Q then a + ﬁ € Q also.
4. = 5.: Suppose, that 4. holds. Then for each fixed a € R (a € Q), we have

{fzeX:flz)2a}=X\{z€X: f(z)<a} e M.

€M by 4.

5. = 2.: Suppose, that 5. holds. Then for each fixed ¢ € R (a € @), we have

{mEX:f(:c)>a}=G{xeX:f(m)za—l-%}eM.

n=1 ‘-

eM by 5.

(Note that if @ € Q then a + 1 € Q also.

1. = 2.: Suppose that f is M-measurable. Then for each a € R we have
by definition 2.6.1,

{zeX:f(z)>a}=f(a,00)) U ft(o0) € M.

open

2.-5. = 1.: Suppose that 2-5. hold for all a € Q.

a) fHoo) = {:CEX flz >n}EM
n” €M by 5.
b) fi-o)= N{zeX: f@ <-n}em
EAA by 3.

¢) Let U C R be open. Then by Lindel6fs theorem (lemma 2.5.1) we can write

= O I (2.23)
k=1
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where each [ is an open interval with rational endpoints, I = (ag, by), and
ay < by, ap, by, € Q. Now for each k&,

FHI) = {33 € X: flz) > a;&}ﬂ{ic € X: flz) <bs} € M.

W e
cM by 2. EM by 4.

Thus by (2.23),
)= (U s) = U e M
k=1 k=1
since M is a o-algebra.
Hence, f is M-measurable. |

Exercise 2.6.1. Let (X, M) be a measurable space, and f : X — R. Show: f is
M-measurable < f71(B) € M for every Borel set B C R.

If f,g: X — R are functions and g(z) = 0 for some =, then ﬁ% is not defined.

For this reason, let us make the convention that ﬁ is the function defined by
flz) i
g 0 if g(z) = 0.
This convention is not problematic when discussing measurable functions:

Theorem 2.6.2. Let (X, M) be a measurable space, and f,g : X — R be M-
measurable. Then

1. the constant functions h(z) = ¢,

2. f+g,
3. af [(xeR),
4. fg,
5. 4
g

are all M-measurable.

Proof. We will make use of theorem 2.6.1.
1. Let h{z) = ¢. Then for each a € R,

X ife<a
{:J:EX:f(:z:)<a}={(a fe>a e M.
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2. Note that for all ¢ € Q,
{zeX (f+9)(z)<a}= U{CL'EX f(z) <7 and g{z) <a-—r}
reQ

—U[{xeX fla)<rin{ze X: g() a—t}]EM
reQ eM eM

3. We separate into 3 cases: o >0, a =0, and o < 0. If & = 0 then af = 0; hence
af is M-measurable by part 1. If a > 0 then

{z€X:(af)(z) y<a}={zeX: flz)<— }EM
while if o < 0 then
{zeX:(af)z)<a}={zeX: flz)> }eM

4. Note that

fg— (f+9)2;(f—9)2_

By 2. and 3., it is enough to show that whenever h is M-measurable, then A2 is
M-measurable. So let A be M-measurable. Then for all a € R,
{z € X h(z)<a}

{LBEX h{z) > \/_}ﬂ{a:EX h(z <\/_} (if a > 0)
= eM eM € M.
1} (if a < 0)

5. Exercise. (By 4., it is enough to show that _% is M-measurable.) L)

If f,g are extended real valued, then (f -+ ¢)(z) does not exist if f(z) + g(z) is
of the form 0o — 00 or —o0 + 0o, We thus only consider non-negative functions.

Theorem 2.6.3. Let (X, M) be a measurable space, and f,g : X — [0,00] be
M-measurable. Then

1. f+y,
2. aof (aeR),
are all M-measurable.
Proof. The proof is exactly the same as that of theorem 2.6.2, parts 2. and 3. O
Definition 2.6.2. Given a function f: X — R*, let us set
ff:=max(f,0) and  f~:=—min(f,0).
Then f=f*— f~and |f|=ft+f.
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. Theorem 2.6.4. Let (X, M) be a measurable space, and f,g : X — R* be M-

measurable. Then

1. max(f,g),

2. min(f, g),

8. f*, f~ and|f|
are all M-measurable.
Proof. 1. For all ¢ € R,

{z € X :max(f,g){(z) <a} = {xeXf <a}ﬂ{a:eXg ) <aj €M
EM EM

2. For all o € R,

{r € X :min(f,g)(z) <a} = {:CEX f <a}U{a:€X g <a}€M
EM EM

3. Since f* = max(f,0), f~ = —min(f,0) and |f| = f* + f7, this follows from
parts 1. and 2., and theorem 2.6.3. O

Lemma 2.6.5. Let (X, M) be a measurable space, and f,g : X — R be M-
measurable. Then

Az e X f(x) > g(z)} € M, and
2. {reX: f(zr)=g(z)} e M.

Proof. 1. Note that

{zeX: fz (z)} = U{:UGX f(x) > 7> g(2)}
re@
_U[{xeX f(z >fr}ﬂ{:c€X g( <7;}]€M
el eM eM
2. Tt follows that
{reX: f(z } {zeX: flz }n{meX f(z) > g(z)}
={reX: f( }ﬂ{mEX f( }EM

EMbyl E.M by 1.
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Recall that if {a,}32, is a sequence of extended real numbers, then

lim sup a, = inf (sup ax) = Um (sup az);
n o k>n o0 k>n

the right equality holds since the sequence {supay}°2, is decreasing. Similarly,
k>n

lim inf @,, = sup (inf ax} = lim (inf az).

>n n—oo k>n

Then lim a, exists < limsupa, = liminfa,, in which case
n

n—00 n

lim a, = limsup a, = liminf a,,.

n—od n T
We now apply these concepts to sequences of functions.

Definition 2.6.3. Let X by a set and {f,,}52, a sequence of functions, f, : X — R*.
Define the following functions from X to R*,

sup fn : by (sup fu){(z) := sup fn(z),
nff,: by (inf £)(a) 2= inf £ @),
limsup £, : by (lim sup f){z) := limsup f,(z),

k)

liminf f, : by (liminf f,){z) := liminf f,(z).

Note that these functions always exist in the system of extended real numbers !
Furthermore, if the sequence {f.(x)} converges for each z € X, then we say that
{fn}22, converges pointwise, define

lmf,: by (lixa £,)() = lim fa(),
and write f, — f where f = lim f,.

We also denote these functions by sup f,, liminf f,, lim f,, lim f,. etc.
n T n nN—Cco

Remark 2.6.3. 1. By the above definition, we have for all z,

(lim sup f.)(x) = limsup f,.(z) = inf sup fn.(z)

n 7 k>n
= inf((sup fx)(z)) = (inf(sup f)) (z).
n k>n T k>n
That is,
limsup f, = inf(sup fi)
7 k>n

Similarly,
lim inf f,, = sup(inf f;)
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2. By the above definition,
lim f, exists < nh_)ngo fo(z) exists for all z € X
& limsup fu.(z) = limninf folz) forall z € X
& limnsup frn = liminf f,,
and in this case, since
T}l_r& frlz) = limsup fa(x) and ?}EIC)lo folz) = lir%Iinf falz)
for all z € X, then
lim f,, = limsup f, = liminf f,. (2.24)
3. Note that if f, : X = Rand f: X — R, then
fo— f < Givenz e X ande >0, 3N € Nst |fu.(z) - f(z)|<e Vn2> N,

If € can be chosen independent of x, then we say that { f.} converges uniformly
to f on X, and write f, ?f. That is

fn:X>f < Givene>0, 3N eNst |fo(z) — f(z)|<e ¥n> N, z € X.
It is easy to show that if fn?f and ¢, =9 then af, + ﬁgnzx:»af + g, for
any choice of constants « and S.

Recall from analysis that the pointwise limit of continuous functions need not
be continuous. However, the pointwise limit of measurable functions is always mea-
surable:

Theorem 2.6.6. Let (X, M) be a measurable space, and fr, : X — R*. If each fp
is M-measurable, then so are

sup fp, inf fn, limsupf,, liminff, and lim f, (if it exists).

Proof. Let a € R be arbitrary. Then

{xEX:i%ffn(a:)<a}mU{g:EX:fﬂ(:c)<aj,}€M.
n=1 eM

Hence inf f,, is M-measurable. Similarly,

{$6X¢Sgpfn($)>“}=U{§€X=§L($)>%}€M-

n=1

eM

Hence sup f, is M-measurable.
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It now follows that for each n,

Jn = sup fx and hy = inf f;
k>n k>n

are M-measurable, and hence
limsup f, = inf g, and lim inf f,, = sup A,

are M-measurable. In particular, by (2.24) lim f,, is M-measurable if it exists. [
Tt

2.6.2 Simple Functions

Definition 2.6.4. Let X be a set, and A C X. The characteristic function of A,
denoted x4, is defined by

xalz) =

1 ifxe A
0 itz & A.

Remark 2.6.4. 1. Let A, B C X. It is eagy to verify that

XAnB = XAXB

and
XAUB = XA+ XB — XAnB-
(Exercise !) In particular,

XauB =Xa+Xxp & ANB=0

2. Now let (X, M) be a measurable space. Then

XA I8 M-measurable < A€ M.

Proof. Given a € R set

e M ifa>1
S,={xeX:xalz)>a}=(CA if0<a<l
XeM ifa<O.

Then x4 is M-measurable < S, e Mforalla & AeM. O

Definition 2.6.5. A function ¢ : X — R (or ¢ : X — C) is called simple if its
range is a finite set.

Remark 2.6.5. 1. Obviously, every characteristic function x4 is simple.
2. Let ¢ be a simple function with range {c;, ¢s,....c,}. (all ¢z distinct.) Set
Av=v ({a}) = {r € X : ¢(z) = al,
for k=1,...,n. Then
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(a) The sets Ay, As,..., A, are pairwise disjoint,
(b) X = kQI Ay, and

(c) =2 A
k=1

This is called the canonical representation of ¢, and obviously, it is unique up
to rearrangement of the sum. If ¢z = 0 for some k, then we may drop the
corresponding term in (c) to obtain an even simpler representation of .

Every linear combination of simple functions is again a simple function. For
suppose, ©1, @3, . . . , ©m are simple functions, with finite ranges My, M, . . ., M,
respectively, and let oy, ag, ..., a., be scalars numbers. Set

m
Y= Z o Pj
i=1

Then
range(p) C M = {Z oy y; € M }
J_
Note that M is a finite set, as each M, contains only finitely many numbers
Yj-

In particular, every function of the form

K11
= Do
k=1

(A, € X, {Ag}P_, not necessarily disjoint, ¢ scalar) is simple, as it is a linear
combination of characteristic functions.

Finite products of simple functions are simple. In fact, let

n m
o= arxs, end  $=> bixs,
P =1

Then

= abixaxn, = Z Z akb;

XAkﬂB
k=1 =1 k=1 j= 1 “
Cl,;

which is a simple function. The assertion now follows by induction on the
number of factors.

k)

Let (X, M) be a measurable space, and ¢ = > Ay + X — R. If each
k=1
A, € M, then by remark 2.6.3, each xa, is an M-measurable function, so

that by theorem 2.6.2, ¢ is also M-measurable.
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Conversely, let ¢ : X — R be an M-measurable simple function, and

o= cdy (2.25)
k=1

its canonical representation. Then
={zeX plz)>a}nN{z e X p(z)<a} e M,
for each £ = 1,...,n. That is, each set A; is measurable.

{Note that if (2.25) is not the canonical representation of ¢, then the sets Ay
need not be measurable in general !)

7. In the special case where X = R" and each I is an n-interval, a simple function

n
Y= Z cedy
k=1

is called a step function. Note that a step function is B(R")-measurable {and
hence M -measurable) since each I is a Borel set.

2.6.3 The Structure Theorem for Measurable Functions

Theorem 2.6.7. Let (X, M) be a measurable space, and f : X — R* an M-
measurable function. Then there exists a sequence {@,}2, of real valued, M-
measurable simple functions such that

1 Jen(@)| < [f(z)] for all z € X,
2. nh_}ngo on(x) = flz) for allz € X.

If f > 0, then we may choose v, > 0 and {@,}T.
If f is bounded, then we may choose {p,} so that (pn?f (i.e. @, converges umi-

formly to f).
Proof. 1. Assume first that f > 0. Set

(0 if0< f(z) <}
pi(z) =<1 i< f(z)<l

(1 if f(z) > 1.

Then set

(0 if0< f(z) <}

bt < flo) <]
902(93)zj%: if%zgf(x)<%

T i< f@)<2

2 if f(z)>2
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. In general, given z € X we set

o () = {“2;,} if f(z)<nand St < f(z) < 5 for some 1 <4< n2" (2.26)

n if f(z)=>n
Note that

n2” .

i—1
Pn(z) = Z o XA T XA
i=1

where we have set
A= A(")—{:EGX _f() } (1<i<n2), and
AO::AB” :={:U€X:f( >n}.

Then by theorem 2.6.1, 4; € M for all ¢, 0 < ¢ < n2". Hence, each ¢, is an
M-measurable simple function, and @, > 0. Furthermore by (2.26), ¢, < f.

We now show that {¢,}1. In fact let n be fixed, and z € X.
a) Suppose, 0 < f(z) < n. Then there exists ¢, 1 <4 < n2", so that

i—1

5f()<2¥n,

(z). The above inequality gives

and @n(z) = "’;2‘,”1

24— 2 24
2n+1 — f( ) 2n+1'

If

22 < f(z) < Z5L, then by (2.26),

2 — 2
prir(z) = S = 9nlz),

while if 251 < f(z) < =47, then

20—1_ 21—-2
Pniil?) = oo 2 o = PnlT).

b) Suppose, n < f(z) < n+ 1. Then ¢,(z) = n, and

i—1
(1071"'1(3:) = 2n+1

where ¢ is the unique positive integer satisfying 25k < f(z) < g7 Note that
ik > nosince f(z) > n. Hence,

kA
(P’H-'Fl( ) 2n+]_ —n(pn( )

¢) Finally, suppose that f(z) > n+ 1. then

onir(z) =n+1>n=p.(2).
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This shows that ¢,1(z) > ¢, forall z € X.

Next we show that ¢, — f. In fact, let € X be given.
a) If f{x) = oo, then ¢, = n for all n, and hence

on(z) =n — 00 = f(z)

as 1 — 00.
b) If 0 < f(z) < oo, then there exists N = N(z) € N such that f(z) < N. By
construction (2.26) of ¢,, we have for all n > N that

0< £(5) = (o) < 5 = 0
as n — oo. Hence, @,(z) — f(z).

Note that if f is bounded, then there exists N € N such that f(z) < N for all
z € X. By construction (2.26) of ¢, we have

0< f(z) ~ ulo) <

for all z € X and all n > N. Hence, p,(z) % f(x). This proves the theorem in case
f=0.

2. Next let f be arbitrary, M-measurable. Then f* and f~ are M-measurable.
Let {¢n}1, {¥m}1 be sequences of simple, M-measurable functions constructed in
1., with

0<pn < f7, 0<¢n<f-

for all n, and
on = fF a— f7
Then {p, — ¥, } is a sequence of M-measurable simple functions satisfying

L |(Pn_¢n|5|‘Pn|+|"rbn|:¢n+¢n§f++f_:|f|:a'nd

2. lim (¢, — ¥n)(z) = lim @.(z) — lim ¥,(z} = fF(z) —~ f~(z) = f(x), for all

r e X.
Finally, if f is bounded, then f* and f~ are also bounded, as 0 < f*, f~ < |f], so
that by part 1., cpn?f"‘ and wn?f“. Then @, — ¢n§>f+ —f=f O

2.6.4 Almost Everywhere

Definition 2.6.6. Let (X, M, 1) be a measure space, and let P be a statement
about the elements of X. Set

B:={z € X : P is not valid}.

We say that P holds p-almost everywhere (written ”a.e.”), if there exists £ € M,
with 4(E) =0 and B C F.
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Note that the set B itself need not be measurable. However, if (X, M, u) is
complete, then the above definition is equivalent to

P holds pra.e. < Be€ M and u(B)=0.

Example 2.6.1. 1. Let f,g : X — R*. Then " f(z) = g(z) a.e.” means that
there exists £ € M, u(E) = 0, such that

flzy=g(x) VaeX, z¢gFE.

2. Let f: X — R* Then ” f(z) is finite a.e.” means that there exists £ € M,
i(E) = 0, such that

—o< flz}y<oo VzeX, z¢F.

3. Let fo,f + X — R* Then 7 f,.(x) — f(z} a.e” means that there exists
E e M, u(E) =0, such that

lim fo(z) = f(z) VzeX, z¢E.

n—00

4. Let A denote the Lebesgue measure on R.

Set
_J1 ifre@
f@)_{o it 2 € R\Q.

Then f{z) = 0 l-a.e.
Next let f,(z) = =", Then

0 ifz#£0
h@yﬁ{l ifz =0,
that is, fu.(z) — 0 A-a.e.
Finally, let g,(z) = cos™ (z). Then
gn(z) = 0 if z 5 kx
gn(z) — 1 if z = 2km

gn(z) diverges  if z = (2k + ).
That is, g.(z) — 0 A-a.e.

Theorem 2.6.8. Let (X, M, 1) be a measure space, and f,g : X — R*. Suppose
that

1. f s M-measurable

2. f{z) = g(z) p-ae.
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3. (X, M, p) is complete.
Then g is also M-measurable.

Proof. Let
B:={zeX: f(z) # g(z)}.
By assurnption, B € M and p(B) = 0. Now let a € R be arbitrary. Then

{reX g(z)>a}={ze€ B g{z) >a}U{zx € B:glx) > a}
={z e B°: f(z)>a}U{z € B:g(z) >a}

:(\é’;ﬂ{ice}(:f(a:)>%})U{3:EB:Q($)>CE}eM.
eM eM

eMby completeness
Hence, g is M-measurable. O

Exercise 2.6.2. Show that if (X, M, p) is not complete, then the assertion still
holds, provided that there exists a set F € M of measure zero such that f(z) = g(z)
for all x € E, and that g is constant on FE.

2.6.5 Complex Valued Measurable Functions

Recall: If z = x + 1y is a complex number, then its real part and tmaginary part are
given by

Z;Z and %(z)=y=z_z.

Furthermore, the absolute value, or modulus, of z is

o = VE = VBT

R(z) =z =

Then obviously,

Rz) <[R(2)[ < [z] and  S(z) <[IH(2)] < [2].

Now let X be a set, and f : X — C a function. We define its conjugate f, its
real part R(f) and its imaginary part S(f) pointwise, that is, by

flay=f(z),  [R(N)@) =R(f2),  [S(N](z) =3(f(2))
It is easy to verify that

_f+7

R(f) = 5

(f) = ,and  F=R(f)+i3(f)

where as usual, the vector space operations on functions are also defined pointwise.
If f, : X — Cisasequence of functions, then by (777), fu(z) — f(z) < R{(f.)(z) —

R(f) and I(fn)(z) — S(f)(2).
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_ Definition 2.6.7. Let (X, M) be a measurable space, and f : X — C. We call f
M-measurable if R(f): X — R and &(f) : X — R are both M-measurable.

Theorem 2.6.9. Let (X, M) be a measurable space, and f, fn,9: X — C be M-
measurable. Then f+g¢, fg, f, |f], %, lim f, (if it exists) are all M-measurable.

Proof. Since f, g, fn are all M-measurable, so are their real and imaginary parts, by
definition.

1. By theorem 2.6.2,
R(f+9)=R(f)+R(g) and  S(f+g)=5(f)+ )
are both M-measurable. Hence, f + g is M-measurable.
2. Note that
R(fg) = R(HR(9) —S(AHS(g)  and  F(fg) = R(/)S(g) + R(g)S(S).

By theorem 2.6.2, both these functions are M-measurable. Hence, fg is M-
measurable.

3. Note that by theorem 2.6.2,
[FI? =R +3(f)?
is M-measurable. Now if a € R is arbitrary, we have

T : 2 2 if 0
{xGX:If(m)l>a}={£(§j\i |f(x)]? > a®} € M ;Zio_

Hence, |f| is M-measurable.

4. Since _
F=R(F) —iS(f) = R(H) +i(-3())
it follows from theorem 2.6.2 and the definition that f is M-measurable.

5. Recall that as in theorem 2.6.2, we define =§ by

Py {53 iel@) #0
(9)()_{0 if g{z) = 0.

With this definition applying to each fraction below, we have
f_fg_ . 1

fanand - g .
g gF |g]?

It now follows from parts 2.,3., and 4. above, and theorem 2.6.2 that Jgf is
M-measurable.
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6. Now suppose that lim f,(z) exists for all z € X. Then

lim f, = lim R(f,) +¢ lm I{fn)

n—oo N—r00 n—o0

M-meas, by thm 2.6.2 M-meas, by thm 2.6.2

Hence, lim f, is M-measurable.
nN—CcQ

]

Theorems 2.6.7 and 2.6.8 can easily be extended to complex valued M-measurable
functions (Exercise).

2.7 Definition of the Lebesgue Integral

Throughout, (X, M, ) will denote a fixed measure space.

2.7.1 The Integral of a Non-negative Simple Function
Definition 2.7.1. Let us set

ST=8T(X,M):={f: X —[0,00)] f is simple and M-measurable}.

Let ¢ € ST have canonical representation

P =D arxa,
k=1

where ay,...,a, = 0 and Ay,..., A, € M are disjoint. We define its integral by

/cpd,u = Zak,u(Ak). (2.27)
k=1

Note that [ ¢ du € [0, 00].

Remark 2.7.1. The integral of ¢ € 8T is independent of its representation, in the

following sense: If
= Z ijBj
j=1

is any representation of ¢, where by,...,b, = 0 and B,,..., B,, € M are disjoint,
then

f@o dp = i biu(B;). (2.28)
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~ Proof. Since the union of the sets B; need not be the whole of X, we set By :=
x\ U B; € Mand b =0, 0 that
=

o= bixs,
§=0

with b, ...,bm >0, Bo, ..., Bm € M disjoint, and X = _'E}OBj. Then
J:

f‘Pdﬂf = Zakﬂ(Ak) = Zak,u(AkﬂX) = Za’“"u(Ak N U Bj)
k=1 k=1 =0

Z @kM(G AN B; ) {a disjoint union)

:Slt

Ms

a,k,u(Ak n BJ)

Il
o

k

1j
Now note that if AN B; =@, then
axpt(Ax N B;) = 0 = bju(Ax N By)

while if A, N B; # 0, then for all z € A, N B; we have a), = p(z) = b;, and hence

also
arii(Ax N Bj) = bjju(Ax N Bj).

Thus the above becomes

e

f@dﬂf =3 "> hu(AnB) =Y > biu(ANBy)

k=1 j=0 j=1 k=0

= Zm:bjﬂ(o AN B; ) (a disjoint union)
= k=1

:j;’:;bju((UAk)mBj)

== ij,u,(XﬂBj) = ijM(BJ)

=1
]
Theorem 2.7.1. Let o, € 8T and a > 0. Then
1. f(go—l—?,b) dp = /god,u-l—/wd,u (”additive”)
2. / apdy =« ] wdp ("positive homogeneous”)

3. If o<+ then /soduﬁ /T,Dd,u (*monotone”)
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Proof. Let
0 = ZakXAk and S Z biXB; (2.29)
k=1 j=1
be the canonical representations of ¢ and 4, respectively. Then ax, b; = 0, Ay, B; €
M, {Az} are disjoint, {B;} are disjoint, and X = k[ﬂl Ay, = _’Gl B;.
= 1=
1. Obviously
T m T n T m
P+ =) > aXauns Z > bixans; = Z Z(Gk +b;)XAcn B
k=1 j=1 j=1 k=1 k=1 j=1

Thus by remark 2.7.1 and definition of the integral,

Jorna = >3 (tbuans)

2. Since

we have by definition of the integral,

n

foccp dy = Z(Ozak),u(Ak) = aZak,u(Ak) = a/tpd,u.

k=1 k=1

3. Suppose, ¢ < 4. Then as in part 1.,

T m n T

w:ZZakXAmBj and P == ijXAmBjﬂ

k=1 j=1 k=1 j=1

and the sets {A; N B;}3_ 7L, are pairwise disjoint. Now if z & A, N B;, then by
assumption,
a = () < v(z) =bj,
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and hence
arp(Ax N B;j) < bju(Ax N By),

and summing over all £ and j,

/(pd,u, ZZak,uAkﬂB ZZbJ,U,AkﬁB /z,bd,u,

=] j=I1 k=1 j=1

2.7.2 The Integral of a Non-negative Function
Definition 2.7.2. Let us set
LY =L7(X,M):={f: X~ [0,00]]| f is M-measurable}.

By the Structure Theorem for measurable functions, given f ¢ LT, there exists a
sequence {@,}7 in S such that ¢, (z) — f(x) for each z € X. (For simplicity, we
will only write ¢, — f). By theorem 2.7.1, the sequence of integrals { [ ¢, du} is
also increasing in R*, and we can thus define

ffd,u = lim /tpnd,u. (2.30)
Note that [ fdp € [0, o).
Theorem 2.7.2. /fd,u, is well defined for f € LT.

Proof. We must show: If {©,}T, {¢n}1 are two sequences in ST with ¢, — f and
Yn — f, then

hm On dp = hm fwn ds. (2.31)
The main part of the proof consists of the following lemma:

Lemma 2.7.3. Suppose, h € S* satisfies

h < lim¢g,.

/hdug lim /gond,u.

Proof of the Lemma:  Let

Then

m
h=3_cixs,
=1

be the canonical representation of h. Then

[ hau- icj,u(Eg)
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In the following, given € > 0 we will consider the sets

Ay =Ane={z € X |n{z) > h(z) — €} € M.

Then {A,}1. Furthermore, given x € X, we have by assumption that

lim @z > h{z) > h(z) — ¢,

Tt—+ 00

so that x € A, for n sufficiently large. That is,

Case 1: Assume first that /h,d,u < o0, Set

E .= U E; (:{$6X|h(x)>0})

{jie;>0}

and set
¢:= max ¢; (: maxh(a:)).

1<i<m TeX

135

Then by assumption, u(E) < co. Let € > 0 be arbitrary, and A, = A, as above.

Then for each n,

h=hxe = h(XBnAs + XE\AL)

< (P + €)XEN A, T CXE\AR (as h < ¢, +€on Ay)

< On t EXEN A, T CXE\A,-

By theorem 2.7.1,

fhd,uﬁ f@ndM+G/XEnAndM+CfXE\An dp

= [tpn dp +ep(ENAy) + cu( E\A,).

Let n — oc. Since p(F) < oo we obtain

fhd,ug lim f@ndu+e lim u(ENA,) +c lim p(ENAL)

= lim. / Ondp + ep(E) + C#(ﬁ (BN Af:,))

n=1

e —’
={

= lim [ @.du+ ep{E).

n—oo
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As e > 0 was arbitrary, we conclude that
fhdu < lim fgond;u-
n—a

Case 2: Now assume that fhd,u = 00. Then there exists 7, 1 < 7 < m, so that

This proves the assertion.

1(E;) = oo. Pick any € with 0 < ¢ < ¢;. We have

oo = pu(E;) = u(Ej N G An) = M(G 1 E; ﬂAn)) = lim u(F; ﬂAn));
n=1 n=1

the last equality holds since {A4,}1. Now since @, (z) > h(z) — € for all z € A,,, we
have

for all n, so that by monotonicity of the integral in ST,

/%dﬂf > /[Cj —€lXEna.dp = (¢ — € |u(E; N Ay).

Letting n — oc we obtain

TT—00

lim [ ¢, dp > [¢; — €] lim ,LL(EjﬂAn)z[cj—e]-oo=oo=/hdu.

Thus, the lemma is proved.

Return to the proof of the theorem. Since
= f= lim g,
for each &, then by the lemma,
[ondn< i [ onau
for each k. Let & — oc. We obtain
,}LIEO/M dp < T}Lngo/tpn dp.

Exchanging ¢, and v in the above argument, we obtain similarly that

lim f ¢,dp < klim f Wy, dis.

n—oo

Thus, {2.31) holds. O
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Theorem 2.7.4. For all f,g € L™ and o > 0 we have
1. f(f—i—g) dy = /fd,u-f—/gd,u (" additive”)
2. /af dpi == oz/ fdu ("positive homogeneous™)
3. If f<g then ffd,u < fgd,u {"monotone”)

Proof. Let f,g € L be given. Pick sequences {¢,}7 and {#,}T in ST such that
©n — [ and ¥ — g.

1. Obviously, ¢, + ¥, € ST for each n, {p, + ¥, }1 and ¢, + 1, — f +g. Hence
by definition of the integral in £+,

f(f+9)du = lim f(son+%)du = lim (/sondwrf%du)
ef. n—o0 thm 2.7.2 n—00
= lim f{pndu—l— lim f’g[)nd,u = /fd,u-%—/gd,u,.

2. Similarly, atp, € S for each n, {op,}T and ayp, — «f, so that by definition
of the integral in £,

fafd,u = lim [ ap,dp = lim (afcpnd,u,)

def. n—0c0O thm 2.7.2 n—00

=« lim gondyiaffd,u.

3. Now suppose that f < g. Since it is not assured that ¢, < v¥,, we modify each
Yy, and set

¥, = max{pn, 1 }.

Then 4, is M-measurable, simple, and ¢/, > 0, that is, ¢/, € ST. Furthermore,
as {¢n} and {¢,} are increasing, we have

wiﬂ-l = ma‘x{@n+l:"pn+1} > max{cpn,wn} = 7,[);”

that is, {¢/,}1. Now as ¢, < ¢/, < g and ¢, — g, we conclude that ¥/, — ¢
as well. Since by definition, ¢, < ¢, for each n, then by monotonicity of the
integral in S* (theorem 2.7.2),

[entu< [vian
for all n. Hence,

ffdﬂi lim [ @, du < 1im/w;dui fgd#-
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O

Exercise 2.7.1. Consider the measure space (R, M, ). Use the definition of the
integral to compute

ffd)\ where f(z) = {§ z>0

z <0

2.7.3 The Integral of an Extended Real Valued Function

Definition 2.7.3. Let f: X — R* be M-meagurable. Then f*,f~: X — [0, ]
are also M-measurable, that is, f*, f~ e L*,and f = ft — f~.

1. If at least one of

ff"' de  and /f_ du (2.32)
is finite, we define [ fdu by

[tau=[srau- [ an (2.33)

If both integrals in (2.32) are infinite, then [ f du is undefined.

2. We say that f is integrable, if both integrals in (2.32) are finite.
Thus, f is integrable iff [ f dy is defined, and is finite.
Remark 2.7.2. 1. fis integrable < |f| is integrable. In this case,

[ ran] < [1r1am

Proof. Suppose that f is integrable. Then [ f*du < oo and [ f~dp < oo so

that
[inda= [ar= a5 [rraus [rau<ce

Hence, |f| is integrable.

Conversely, suppose that |f| is integrable. Since 0 < ft,f~ < |f| it follows
monotonicity of the integral in £7 (theorem 2.7.4, part 3.) that

OS/f+dqu|f|du<oo and 0§ff”du3f1f|du<00-

Hence, f is integrable.

In this case, by the triangle inequality,

[ sau] =\ [ rdu= [ 5o
<|[aur [ aul =] [171d0] = [ 17100
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2. If p(X) < oo, then every bounded, M-measurable function f is integrable. For
suppose, |f(z)| < M for all z € X. Then by monotonicity of the integral in
Theorem £t (theorem 2.7.2, part 3.),

0< [1r1d< [ e dn = M) < oo
3. Let ¢ be a simple, M-measurable function, say

n
= chXAka Ay € M, {Ag} disjoint.
k=1

Then . N
ot= 3 axa and @ = > (—axa
{k:cp >0} {kiep<0}
so that
_ + - dy = - _
f@dﬂ = fﬁP d#—f@ du= Y aplA)— D (—e)ulA)
{k:ck>0} {k:ck<0}
= 3 aw(A)+ D am(A)+ Y ().
{k:cp >0} {k:cp<0} {k:cp=0} =0
That is,

/90 dp = i crit{Ar).

k=1
4. If f is integrable, then f is finite a.e.
Proof. Let

A={reX: flz)=00}teM
B:={zecX: f(z)=—o0} €M

We need to show that both sets have measure zero.

For each n € N,
ff>nxa and f7 2nxs,

so that by monotonicity of the integral in L%,
[rrauz [ rocadis = nuta)
/f_‘ dp > /an dp = ny(B).
That is,
1 + 1 -
OS,LL(A)SE frdp  and OSM(B)SE fdup

for each n. Let n — oo. Since [ fdu < oo and [ f~ du < oo we obtain that
p(A) =0 and u(B) = 0. O
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Let us set
L= Lg = L(X, M, 11;R) := {f : X - R| f is M-measurable and integrable}.
So if f is real-valued and M-measurable, then
feL & f|f[d,u<oo < ff+du<ooand /f‘du<oo.

Theorem 2.7.5. £{X, M, j;;R) is a real vector space, and the integral is linear and
monotone. That is, for all f,g € L(X, M, 1;R) and o € R we have

1. /(f +g)du= /fd,u + /gd,u (7 additive”)
2. /af djt = oz/fd,u {"homogeneous”)
3. If f<g then /fd,ugfgdu {"monotone”)

Proof. Let f,g € £ and « scalar. Then

/|f|d,u<oo and /|g|du<oo.

Since |f + g] < |f|+ |g| and |af| = |a||f], it follows from theorem 2.7.5 that

J1r=gldus [ani+lohdu= [1f1du+ [oldu< oo

and
J1aftdns [lalifidn=1al [1f1du< oo
Thus, f+ ¢ € £ and af € £, which shows that £ is a real vector space.

1. Note that
frg=F+g" = (f+9) (2.34)

while also
frg=UT=F)+g"~g97) (2.35)
Equating (2.34) and (2.35) we obtain
(f+o"+f"+g =(f+9) +f+g"

so that

/((f+g)++f‘+g‘) du=f((f+g)“+f++g+) dy.
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Since all functions involved are in £, we obtain by additivity of the integral
in £ (theorem 2.7.5) that,

f(f+9)+du+/f‘du+]g‘du=f(f+g)“du+/f+dg+/g+a:p.

As all integrals are finite, we may subtract,

/(f+g)+du—f(f+g)“du=ff*dn—ff‘dqufg*duP/g‘d#,

that is,
Ju+oa=[rau+ [

2. Suppose first that o > 0. Then (af)" = afT and (af)” = af . Hence,

/O‘fd“ - f<af)+du—f(af)-du=/af*du—faf-du
than 276 a/f+d“_aff_dﬂ:a(/f+dﬂ"/f_du) = Cvffd,u.

Similarly, if o < 0, then (af)T = |a|f~ and (af)” = |a|f*, so that

[oran = [afyran= [(as) du= [lolf=du= [1olr*an
o= ol [ duta [ rrau=lo( [ £ au= [ £+ au)
:—|al(ff+dﬂ‘ff_dﬂ) = oz/fdu-

3. Now suppose, f < g. Then g — f > 0, so that

Jto-nauzo.

By parts 1. and 2. above,

fgdu—ffduzo
[taus [odn

so that
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2.7.4 'The Integral of a Complex Valued Function

Definition 2.7.4. Let f: X — C be M-measurable. We say that f is integrable,
if both, R(f), (f) : X — R are integrable. In this case we define

[ fani= [ au+i [$0)dn
We set
Le=LX,M,p;C):={f: X - C| f is M-measurable and integrable}.

Theorem 2.7.6. L(X, M, u; C) is a complex vector space, and the integral is linear.
That is, for all f,g € L(X, M, 1;C) and o € C we have

L. /(f+9) dp = ffdwr/gdu (" additive”)
2. faf du =« f fdu ("homogeneous”)
Furthermore

3. fele & fele, inwhich case /fd,u:/fd,u,
4. fele & |fl€Lr, inwhich case ’/fd,u)gmdu.

Proof. 1-2. Let f, 9 € L¢ and o € C.

Since f and g are integrable, then R(f), 3(f), R(g), {g) : X — R are integrable.
It follows from theorem 2.7.5 that R(f-+g) = R(f)+R(g) and I(f+¢g) = (/) +S(g)
are also integrable; hence f + g is integrable.

Note that if o = a + b, then

af = (a+ib)(R(f) +13(f)) = (aR(f) = b3(f)) +#(aS(f) + BR()).
Applying theorem 2.7.5 again, it follows that R(af) = aR(f) — bI(f) and J(af) =

a¥(f) + bR(f} are integrable. Hence, af is integrable.
This shows that L¢ is a vector space. Using the above notation, we now obtain

[Grayinz [Ris+gyduti [0+ du
— [ @)+ R@) du+i [(3()+(0))
oo ([ RNt [R@an) +i( [ S0+ [ 800)d0)
=/fdy+/gd;z.
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and

J@nau= [((am)~43(0) +i(a30r) + 8R(5) o
= / (aR(f) — bS(f)) dp + i f (aS(f) + BR(f)) dus

def.

s (o [ R =0 [ (P < i(a [ S+ [ 007 an)
~G+it)( [ Ry dpri [S(hdu) = o [ fdn
3. Since f = R(f) —i(f) = R(f)} + i(=S(f)) we have
fele & RNHHele < R(f),-S(flelr = Felc

def, thm 2.7.5

and

[Fau= [(RO)+i(-20)) du = [ duri [(-3() du

def.

= [®du=i [s(dn = [RDau+i [s(du = [ ran

4. Since

IR 1S < VR + ()2 = If] S [FRAOI+IS]

(A}

we see by (A) that

/|f|du<oo = /|§R(f)|d,u<oo and f|i‘9(f)|d,u<oo = f is integrable
while by (B},

f is integrable = f]%(f)!d,u<oo and /|%(f)|d,u,<oo = /|f|d,u<oo.

Thatis f € L & |f| € Lg.
Now if f € L¢, let us use the polar notation for its integral and write

ffd,u, =re?, r>0, —m<8<n7. (2.36)

—¥ we obtain

r=e [ fdu = f e fdu = f R{e ™™ f) du +i f S(e™®f)dp.  (2.37)

Since r > 0, all terms in this equation are real, and in particular, S(e_m f) dp = 0.

Multiplying by e

Since R(z) < |2| for all z € C, it follows from (2.37) together with monotonicity of
the integral in £F that

‘/fd#’ =|rei9|=r=/§R(e*i9f) d“£/|e_i9f|d,u:f|fld,u.

This proves the theorem. O
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. Exercise 2.7.2. Consider the measure space (R, My, A). Show that each of the

following functions f is B{R)-measurable, and using the definition of the Lebesgue
integral, find [ f dX if defined.

1 0<z <1l
1. flz) =4 -2 1<z<2
0 else

n—1<z<n neN

1
2 flz) = {8 else

L n—1<z<n, n&Neven
3. flz)=¢—-2 mn—-1<z<n neNodd
0 else.

2.8 Properties of the Lebesgue Integral

Throughout this section, (X, M, p) will denote a measure space. By ” f is M-
measurable” or ” f is measurable” we will mean that f : X — R*, or f: X —-0C
and f is M-measurable. Recall from the previous section that if f is M-measurable,
then

f is integrable < /|f|d,u < 0.

For ease of notation, we will often drop the symbol "du” in the integral, and
simply write [ f instead of [ f du.

2.8.1 Integral Over a Set

Definition 2.8.1. Let f be M-measurable and A € M. Then fx4 is also M-
measurable, and we can define

ffdu :=ffodu
A

provided that the integral on the right-hand side is defined.

Remark 2.8.1. 1. If / f dy is defined (for example, if f € £, or f is integrable)

then obviously / fdu is also defined for all A € M.
A

2. If u(A) =0, then /f dy is always defined, and ffd,u, =0.
A A
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Proof. (a) First let f € ST. Then f is bounded, so there exists M > 0 such
that 0 < f(z) < M for all z. Thus by monotonicity,

0SA/fdu=/foduS/MxAd#:Mu(A)=0,

which shows that ] fdu=0.

(b) Next let f € L*. Pick {¢,} € 8+, {¥.}7, such that ¢, — f. Then
{‘PnXA} C &, {Gf’nXA}Ta and @,xa — fxa. Hence

/f:ffXA=limfganXA—llm0 0.
def. def. n—0C (a} n—oQ
A

(¢) Now let f: X — R*. Note that (fxa)t = f*xa and (fxa)~ = fxa.
Then by (b),

ffXA f}”r a=0 and /fXA ff xa = 0.

Hence, f fxa is defined, and

f = [ fxa = /(fXA)+“f(fXA)_=0—O:O.

def.

(d) Finally, let f : X — C. Note that R(fxa) = R(f)xa and S(fxa) =
f)xa. By part {c), these functions are integrable, and

fm Fxa) = /m A =0, f%(fXA)=f%(f)XA=O. (2.38)

Hence, [ fxa is defined, and

/ = [fXA = /%(fx,;)—i-i/%(fXA):O-l—iO:U.

For example, / 2 d\ = 0. O
Q
3. Let A, B € M be disjoint. Then
/ fdu is defined < /fd,u—l—/fd,u is defined. (2.39)
AUB A B

In this case,

/ fdu=Affdu+B/fdu-

AUB
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Proof. The main ingredient in the proof is the fact that xaup = xa + x&,
because ANB = §.

(a) First let f € £L*. Then both sides in (2.39) are defined, and

/ f=/fXAuB=/f(XA+XB)
=/fXA+ffXB=/f+ff- (2.40)
A B

(b) Next let f: X — R*. Note that
(fxavs)™ = fTxavs = FfTxa+ fTxs
(fxaus)” = f"xave=F"xa+ [ x5,

so that

(2.41)

/(fXAuB +=/f+XA+/f+XB and
/XAUB /fXA""/fXB

It follows that f Fxaupdp is defined

< at least one of the two sums

/f+XA+/f+XB and /f"xAJr/f‘xB

is finite
& /fXA + /fxg is not of the form oo + (—oc) or —oo + co.
Thus, (2.39) holds. In this case

/ f=/foUB:f(fx,quaﬁ—f(fmg)-

AUBRB

/f+XA+f+xB) /(f x4+ ["xge)
/f+XA_/f X4 ff+XB—ffXB
= (Jtrx = [ )+ ([ - [x))
:ffXA+ffXB=ff+/f'
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(¢) Nowlet f: X — C. Since |R(f), |S(H)| < |fI < |R(F)| + I1S(f)| we have

by monotonicity of the integral and (a) above,

fl.ﬂXAuB <00
o [RDxas+ [ (avs < oo
& [wOba+ [BOke+ [180ha+ [ B0 <
N /|f|XA+f|f|XB<oo.

This shows that
/ fdu is defined < ffd,u + f fdy  is defined.
AUB A B

In this case, as fxaus, fxa, fxp € L(X, M, ; C), the computations of
equation (2.40) remain valid by additivity of the integral.

[

4. Recall that by exercise 2.3.1, My = {EF C A : F € M} is a c-algebra
of subsets of A, and the restriction p4 of p to M, is a measure, where
wal(E) = u(E) for all E € My. That is, (A, Ma, fya) is & measure space.
Now let f : X — R* (resp. C) be M-measurable. It is obvious that the
restriction fla : A — R* (resp. C) given by fia(z) := f(z) for z € A, is
M s-measurable, and it is an easy exercise to show, using the definition of the
integrals, that

f fdu isdefined < f fladua is defined,
A

and that both integrals coincide whenever they are defined.

Changing the values of a function on a set of measure zero does not affect its
integral:

Theorem 2.8.1. Let f, g be M-measurable, with f(z) = g(z) a.e. Then

/fd,u is defined < /gd,u is defined.

Furthermore, both integrals coincide whenever they are defined.

Proof. Set E .= {z € X : f(z) # g(z)}. Then F € M as f, g are measurable
(why 7), and by assumption, u(E) = 0.
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=: Suppose, f f du is defined. Then by part 3. of remark 2.8.1,

[roe [ 5= [r+[1= [res- froo- [oo]

(X\EYUE X\E E X\E X\E X\E
as f = g on X\E and p(E) = 0. It follows by the same remark that [ gdp exists,
and
/g=/g+fg=/f-
X\E B
<«: Follows by symmetry. O
Theorem 2.8.2. Let f ¢ L*. Then

/fd,u=0 < f=0 ae

Proof. <: Follows directly from theorem 2.8.1.
=>: Suppose, that [ fdy = 0. Set

A={zeX:flz)>0}eM and A, ={zcX:flz)>L}eM

forn=1,2,.... Then x4, < nf for all n, so that by monotonicity of the integral,
0 < p(4s) =/xAnd#S /nfd,u=n/fdu=0,

that is u(A,) = 0. Now since A = EJ_ol A,, it follows from subadditivity of the
measure that

0 < u(A)y <D u(An) =0.

Hence u(A) = 0, that is, f(z) =0 a.c. O

2.8.2 Functions Defined Almost Everywhere

Suppose, f is defined a.e. on X and measurable. By this we mean that there exists
Y € M with p{X\Y)=0and f:Y — R* (resp. f : Y — C} is My-measurable,
where My = {E € M : E C Y} is defined as in exercise 2.3.1.

There are many ways to extend f to an M-measurable function f: X >R
(resp. f:Y — C). Since for any measurable extension f ,

[ 1Alau= [ 1fldu+ f flds= [ 1f1du+0, (2.42)

it does not matter for the integral how we define f, so for convenience we set

z flz) ifzeY
0 if x € X\Y.
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It is easy to check that f is M-measurable. Furthermore, computing as in (2.42)
we see that f € L1(X) (resp. fod,u is defined, resp. f € L(X, M, ; R), resp. f €
LX, M, 1,C)) & feL*(Y) (resp. fyfd,u, is defined, resp. f € L(Y, M, i1; R),
resp. f € L(Y, M, p1;C)), in which case

fxfdu=/yfdu.

We usually identify f with f, and thus consider f an M-measurable function
defined on X.

Example 2.8.1. 1. f(z) = ﬁ can be considered an element of £¥([0, 1], Mo 5).

2. g(z) =

n—lz n—1<z<n, neven
——-721-2— n—1<x<n, nodd

is not defined if x is integer. However, it can be considered an element of
L(R, My, A;R).

Example 2.8.2. Let {f,}22; be a sequence of M-measurable functions converging
a.e. That is, there exists Y € M, u(X\Y) = 0 such that {f.(z)}>>, converges for
all z € Y. We can thus define f(z) := lim, .. fn(z) for all z € Y. By theorem
2.6.6, f is My-measurable. The measurable extension f of f above will simply be
denoted by lim f,,, that is

(lim fp)(z) =

N-—+00

lim f.(z) ifreY
0 if x € X\Y.

2.8.3 Convergence Theorems

In this section we investigate conditions under which we may exchange limits with
integrals. That is, are we allowed to write

i [ fudi= [(lim f)du 7 (2.43)

T—0C

In general, this is not true. For example, consider the measure space (R, My, A} and

fn(:c)={” oSas.

0 else.

Then lim f,(z) =0, but lim [ f, =1 0= f(limf,). Recall that in the case
T—00 T 00

of the Riemann integral, we don’t even know whether lim f, is integrable, unless

convergence of {f,} is uniform, in which case (2.43) holds. On the other hand, in

the case of the Lebesgue integral, since each f,, is measurable, the pointwise limit

f(z) = lim f,(z) is always measurable, and is integrable provided that [ |f|dp <

0.
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~ Theorem 2.8.3. (Monotone Convergence Theorem).
Let fn, > 0 be M-measurable, and {f,}1. Then

/ (lim fn)du = lim / fadu. (2.44)

Proof. Since the sequence {f,}52, is increasing, by monotonicity of the integral, the
sequence of integrals { [ fn dp}32, is also increasing. Thus, both sides of (2.44) are
defined in R*. Set f(z) = lim fn(z).

By the Structure ’I‘heonreronQ for measurable functions, for each n there exists a
sequence {@nite; C &1, {@ni}T, such that khjgo nk(z) = fo(z). Consider the

following diagram:

i1 < 12 < ooz < < i < — h
IA
P S o2 X owan < < pon < — fa
IA
w31 < @32 < o3z < < pan, < — f3
IA
A
©n1 S Qon,Q S (Pn,B S S (pn,n S - f'n,
. . . . |
f

For each k set
d)k = maX{ C1k: P2k, P3ks - - on,k}-

Then ¥4 is simple, M-measurable, and ¢ > 0, that is ¢, € S* for all k. Also, as
Cnkt1 = Pnk for all k,n, we have

Wepr = Max{ ©1er1, P2ty - - Photls Pl krl)
> max{ 1k, ok -y Prk} = Vs

That is, {4} 1; in particular, klirglo Yy, exists. By construction,
Onk <Y< fir  Vn<k (2.45)
so letting & — oo,
fo=lm @np < lim gy < lim fi=f Vn

Letting n — oo,
f: lim fngkhm wk Sf;

that is, f = klim ). Then by the definition and monotonicity of the integral in £,
ade 4]

/fz lim [ ¢ < lim/kaIim/fsz.
def. k—oo (2.45) k—oo k—00
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Hence,
Jr=pm [
This proves the theorem. ]

Exercise 2.8.1. Show that the theorem remains valid if its assumptions are changed
from

1. 7 fu(2) 2 0 for all " to” fo(z) 2 0 a.e.”
2. " fu(z) > 0 a.e” to "there emists g € L(X, M, u; R) with fo.(x) > g{z) a.e”

Exercise 2.8.2. Use exercise 2.8.1 to show: -
Let f, > 0 a.e. be M-measurable for all n. Then > f, is defined a.e., and
n=1

/(gfn)dﬂ=gjfnd#-

If the sequence {f.} is not increasing, then it need not converge. However, we
still have:

Theorem 2.8.4. (Fatou’s Lemma). Let f, > 0 be M-measurable for all n. Then

/(liminf fr)dp < liminfffn djt. (2.46)
Proof. For each n, set
g = 0 Tk

Then g, is M-measurable, 0 < g, < f,, and {g,}1. Furthermore,
liminf f, = lim inf f;, = lim g,. (2.47)

n—oo k>n

Applying the Monotone Convergence Theorem to {g,}, we obtain

[ (tma0) = tm, [ o
[ (it ) =t [ o0 = i [ on < i [ s,

where on the right we have used monotonicity of the integral. (|

That is,

Exercise 2.8.3. Show that the theorem remains valid if its assumptions are changed
from

1. 7 folx) = 0 for all 7 to " fo(z) > 0 a.e”

2. " fu(z) 2 0 a.e” to "there exists g € L(X, M, 1; R) with f.(z) > g(z) a.e.”
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Theorem 2.8.5. (Lebesgue Dominated Convergence Theorem).

Let {fo}pl, be a sequence of M-measurable functions. Suppose {f,(x)} converges
(pointwise), and there exists g € L{X, M, ;R) such that |f.(z}| < g(z) for all
x € X. Then f, and ?}Lnolo fn are integrable, and

f (lim fo)dp = lim / fa dps. (2.48)

Proof. Since
|[fnl2)] < 9(2)

for all =, then also
| lim fa(2)] < g(2)

for all . By monotonicity of the integral,

/|fn|$/9<oo and /|r}i_,rﬂlof”|5f9<0°

which shows that f, and lim,, ., f, are integrable.

1. Assume first that f, : X — R*. Then as |f,(z)| < g(z) for all z, we have that
fo: X — R, so by the above, f, € £{X, M, u; R). Since

—g(z) < falz) < g(=)
for all n and z, we obtain that
g+f=20 and  g—fu 20 (2.49)
for all n. The left-hand inequality gives
/g—i—/ lim f, = / lim (g -+ f,) < liminf [ (g+ f.) = /g+liminf/fn,
n-r00 thm 2.7.5 n—+00 Fatou H—00 n—00
that is,

/ lim f, <liminf [ f..

n—00 n—oo

Similarly, the right-hand inequality in (2.49) gives
/g—f lim f, = /lim (9—fo) < liminf/(g~fn)
—00 thm 2.7.5 n—o0 Fatou "—00

= /g+liﬂi£f(—/fn) =/gwliinj£pffm

limsup/fn < / lim f,.
— 00 n—ro0

Combining the two inequalities we obtain that

/lim fa Sliminf/fn Slimsup/fn < / lim £,

that is,
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which shows that lim [ f, exists, and

lim [ f, = / lim f,.

n—oo

2. Now let f, : X — C. Set f(z) = lim f,(z). By exercise 1.5.5,

R(fn)@) = R(f)(z)  and  S(fa)z) — S(f)(2).

Since [R(f5)(z)], [3(fa)(@)] < |falz)| < g(2), we can apply part 1. to [ lim R(f,)
and to [ Jim 3(f,) and obtain that

[ ta=[1 = [R+i[o0) o m [0+ m o)
= tim ([ (5 +3 [ 9(4)) = Jim [ 1.
CJ

This proves the theorem.

Exercise 2.8.4. Show that the theorem remains valid if its assumptions are changed
from " { f.(z)} converges (pointwise) and |f.(x)| < g(x) for all 2" to " {fn(z)} con-
verges a.e. and |fo(z)| < g(z) a.e”.

Exercise 2.8.5. Use exercise 2.8.4 to show: -
Let {fn}52, be a sequence in L(X, M, u; C) such that 3 f,.(z) exists a.e. on X,
n=1

and such that > [ |fa|de < 0o. Then
n=1

ifn € L(X,M,;;C)  and f(ifn) du = i/fnd,u.

n=1

Exercise 2.8.6. Let f € £t or f € L(X, M, 1;C), and let {A4,}5°, € M. Show:
1. If {Ai} are disjoint, then

fw fdp = Z/ dy.
L;IIAk k=1 Ap

k

2. If {Ak}1, then

/ fdu = lim djt.
Bl dn

k

We are now ready to complete example 2.4.5 of section 2.4.
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Theorem 2.8.6. Consider the semialgebra S = 8™ of "half-open” intervals in R™,
S":={ECR" : E=(a,h] x (ag,bg] X+ X (an, ba] }
with —oo < a; < b; < oco. Set
AME)=XYE) = (by —a1)(ba — a2) ... (b — an),
for E€ S. Then A™ is a premeasure on S™.

Proof. It is obvious that A™(@) = 0. Thus, we must only prove that A" is o-additive.

We proceed by induction on n.

1. n=1. This was already proved in example 2.4.4.

2. Suppose, we have shown that A! and A" are premeasures on St and 8", respec-

tively. Then as shown in section 2.4, A! and A" extend to the Lebesgue measures

on R and R, respectively, and we thus have the integration machinery in R and in

R™ available. :
Consider the semiring S™*!. Let £ € S™*! be a countable disjoint union of

elements of S**1,

E = U E;, E; € §*t1, {E;} disjoint.

Then I and E; are of the form
E=1x(a,b and  E; =1I; x (a;, b)]

for some n-intervals I, I; € S™. Since the sets {E;} are disjoint, we have
XIx{ab] = XB = XU B; = ZXE, ZXIjx(aj.bj]-
Write elements of R™™! as pairs (Z,¢), with © € R™, ¢t € R. Then
X1{E)X (@i () = Xix(an) (T, 1) ZXI,x(a, b;) (Z, 1) ZXI, L)X (a;.5;)(t)-
For fixed &, consider the functions g, : R — [0, 1] consisting of the partial sums

ZXIJ Z)X(a;.8;)(t)-

Then ¢, € ST(R), {vw}T and

or(t) — p(t) = x1(@)x @y (t)
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for each . Thus by the Monotone Convergence Theorem,

/ipkd)\l —)\/(pdAl :/Xl(f)X(a,b](t) d}\l,
R R R

and by monotonicity of the integral, { f; ¢r dA'}1. That is,

ZXI Wby — a5} — ¥(&) == x1(Z)(b — a)
and {¢¥+(Z)}1. Applying the Monotone Convergence Theorem again, we obtain

lim | ¢d\"= | da",

k—*OO B RBRn
that is

Z )(b; — a;) = A(I){(b — a)

or equivalently,
S OBy = XU(E).
j=1

This shows that A*t! is o-additive, and proves the theorem. 0
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Chapter 3

Function Spaces

3.1 Spaces of Integrable Functions

Throughout, (X, M, 1) will denote a measure space. All functions (real or complex
valued) defined on X will be assumed to be M-measurable; for simplicity we call
such functions simply measurable.

Definition 3.1.1. For a fixed real number p, 1 < p < 00, let
L X, M p)={f: X->C i f is M-measurable, and /|f|pd,u < o0},

and for each f € L, set
1/p
I£li= | [ 1P au] 6.1

Definition 3.1.2. Let (X, M, ) be a measure space. An M- measurable function
f is called essentially bounded, if there exists M > 0 so that

p({zeX : [f(@)| > M}) =0,
Such a number M is called an essential bound of f. Set
LoX, Mp)={f: X —-C | f is p-measurable, and essentially bounded},
and for each f € L, set
| flleo = ess-sup f := inf{ M : M is an essential bound of f}. (3.2)

Example 3.1.1. Consider the measure space ([0, 1], M(o,1), A).

f(m):{% ifx#0

1. If

0 ifz=0
then f € £,[0,1] (= £,([0, 1], Mpa,\)) & 1<p<2

157
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2. 1f
1

1 else

then f € £,00,1] for all 1 < p < o0, and in fact, ||f}|, = 1, since f(z) =1 a.e.
Note that f is essentially bounded, but not bounded.

Remark 3.1.1. 1. For ease of notation, the spaces £,(X, M, 1) are often de-
noted simply by £,(X) or £,.

2. Sometimes, L£,(X, M, ;1) is considered as a space of real-valued functions f :
X — R. If we want to make this distinction explicit, we may use the notation
Lp(X, M, 1, RY and L,(X, M, p; C), respectively.

Since L,(X, M, 11;R) C L,(X, M, 11;C) we will always assume in this section
that £,(X, M, 1) consist of complex valued functions; all results apply to the
case of real valued function spaces as well without modification of the proofs.

3. If f € L, then || f]l is an essential bound of f.
In fact, note that every M > || f|| is an essential bound of f. (Why 7) So if
we Set

Xn:={x EX:|f($)|>”f”oo+l}, n=12...

n
then p(X,) = 0. Let

Xo={z e X :[f(@) > [ fll}

Then X, = | )77, X,,, and hence by sub-additivity, 4(X,) = 0 also. This shows
that || f|lcc is an essential bound of f, in fact, by (3.2) it is the smallest essential
bound of f.

4. Let f be an M-measurable function defined on X, and 1 < p < cc. Then

It = [ [1apan] ™

is always defined in R*, possibly co. Thus,
fely, & |fll,<oe.

Similarly,
felew © |flle<oc.

5. We obviously have
1A= [UPds=11rPl (<p<oo) (33
6. We have for 1 < p < o0,

Il =0 & [1fPdu=0_ o 1@F=0se = f@)=0ue

Also
(fle=0 & wu{zeX:|fz)>0}) =0 < flx)=0ae
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3.1.1 Holder’s Inequality

Definition 3.1.3. For 1 < p < oo, set

q is called the conjugate of p.
Remark 3.1.2. 1. Obviously, 1 < ¢ < oo.

2. It is easy to see that
1

+—-=1 3.4
: (3.4)

B

3. Ifp=1, weset g =o00. If p=oc, we set ¢ = 1. Then (3.4) still holds if we
set é =0.

Remark 3.1.3. 1. If p = 2 then ¢ = 2. We say that p = 2 is self-conjugate.

2. Since (p — 1)¢ = p we have

[1rdu= [ = [ (507 au

Thus,
FeLyX) & |fF'eLyX)
and also

171 = {11771

for 1 < p < 0.
Lemma 3.1.1. Let 1 < p < 00, and q its conjugate. Then for all a,b > 0,

¥y g
< ¥ (3.5)
P g

Proof. If a = 0 or b = 0, then (3.5) holds trivially, so we need to show that (3.5)
holds for all @ > 0 and b > 0.

Note that setting v = ¢ and v == b9, inequality (3.5) is equivalent to

u/Pylft < u 4+ E,
r q
or dividing by v # 0, to

wyie  1lu 1

()" <g2e!

v v q
for all u,v > 0. Setting £ = %, this in turn is equivalent to

1

t
ﬂ”§5+§ (3.6)
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for all £ > 0.
Thus, we must show that (3.6) holds for all ¢ > 0. For this, consider the function

:E 1_1/10
f(t) p+q t (t > 0).

Using elementary calculus {check!) one easily shows that f(£) has an absolute min-
imum at t =1, and f(1) = 0. Hence,

t 1
0= f)< f)=—+=—¢l/P
(1) < f() s
for all £ > 0, that is, (3.6) holds. This proves the lemma. O

Theorem 3.1.2. (Hélder’s Inequality; p = 2: Cauchy-Schwarz Inequality)
Let (X, M, p) be a measure space, 1 < p < o0 and le + % =1 If f e L(X, M, )
and g € L (X, M, ), then fg e Li(X, M, pn) and

fglls < 171 llglia- (3.7)

Proof. We consider several cases.
Cagse 1: 1 <p < oo. Then 1 < g < oo also. Let f € £, and g € £, be given.

1. If ||f|!i,,x0re zgllfm()a.e. = fg=0a.e = Ifglls = 0, so that

fg € £4 and (3.7) holds.

2. Similarly, if |lg||; = 0, then fg € £ and (3.7) holds.

3. I || flly # 0 and ||g||y # 0 we can apply lemma 3.1.1 to a = L@l ang b = ||g($)‘

nd obtai @) @) _ L@ 1 le@)
x)| |g{z g{z)|?
e Tdle = 5 1B 7 e

for all z € X. We integrate both sides and obtain by linearity and monotonic-
ity of the integral,

) d Wd )7d
IIfIIpllgllq/ 7 (@)g(e)] dy —pufupf ) dye qnguq/ lo@)I"du

1
= ST+ el =

Multiply by || fll» liglle:

f F@e@) du < 171, lglle

This shows that fg € £1 and (3.7) holds.
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Case 2: p=1and g = oo. Let f € £, and g € L be given. Since [|g]/c is an
essential bound for g, then

l9(2)] < ||g]leo a-e.

and hence
|f(@)g(z)| = [f{)]lg(z)] < [f{@)]]|glle a-e.

By linearity and monotonicity of the integral in £%,,

[ it@@ldn< [ 1@ ole =, ol [ 1) di= £l ol

m 2.7.5

Thus, fg € £; and (3.7) holds.
Case 3: p = cc and ¢ = 1. This follows from case 2 by symmetry. O

3.1.2 Minkowski’s Inequality
Theorem 3.1.3. Let (X, M, i) be a measure space, and 1 < p < oo. then

1. L,(X, M, u) is a vector space,

2. |- |l is a semi-norm on L,(X, M, p). In particular,
f+gll, < NIflle+llgllp (" Minkowski’s Inequality”)

for all f,g € L,(X, M, p).

Proof. Since £,(X, M, p) is a subset of the vector space Vx discussed on page 5,
in order to prove 1 we only need to show that £,(X, M, u) is closed under vector
space operations. Furthermore, it is obvious that || f||, > 0 for all f € £, and all p,

so in order to prove 2 we only need to show that || - ||, is positive homogeneous and
that the triangle inequality holds. We separate again into three cases.
Case 1: p=1.

Note that £,(X, M, u) coincides with the space L£(X, M, u;R), respectively
L(X, M, u;C), hence by theorems 2.7.5 and 2.7.6 is a real, respectively complex,
vector space. Thus we only need to show that | - ||, is a seminorm.

Let f,g € £, and « be scalar. Then by linearity and monotonicity of the integral,

i) nafn1=~[hxﬂdux:/WaHfhﬂL=|ay/Lﬂdu==kunfm

i) Hf+ﬂh=fU4@Mquﬂﬂ+MU@L
=/m@+]mw:wmﬂwy

This proves the theorem in case p = 1.

Case 2: 1 <p < o0. Let f,g € £, and o be scalar. Then
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i) By homogeneity of the integral,

[laspdu=tap [ 11 du= 1 151 < oo
This shows that af € £, and taking p-th roots, that
a1l = Lol £l (3.8)
i) Since the function ¢ — #* is increasing on [0, 00), we have
(@) +g@)P < [2max{|7(@)], lo()|})°
— 2 max{f@P, lo@P} < 2 [IF@F +lo@)P]

for all z € X. Thus, by monotonicity of the integral,

[ivopan < [ 2 lp+iar]a

_ U|f|pdu+/|g|w4 <

This shows that £, is a vector space. Next we show that || - ||, is a seminorm. By
{3.8) we only need to prove that the triangle inequality holds. Using monotonicity
and linearity of the integral together with Hélder’s inequality, we have

ol = [15+ordn = [1F+ollf+or dn
< f[|f||f+9|”"1 + lgl\f+gP ] d
=/|f| If + g™ du+f|g\ If +glP' du

€Ly ELg (rem. 3.1.3) €Ly €Lg (rem. 3.1.3)

Hb%lerlifllplllerglp’lllq + Nlgllp I11£ + gl llg

= (Iflls + llgllo) 1 + gl

where in the last line we have used the fact that ||[f + g[P7' | = ||f + gll§ ; see
remark 3.1.3. Thus,

Hence, f + g € L.

I+ gl < 1l + llglls

(Even if [|[f +gll, =0!) But p—2=p(1— 1) p— = 1, so we obtain
If +glls < iflle + lglle-
This shows that || - ||, is a seminorm.

Case 3: p = 0. Let f, g € Lo and o scalar.We set

Ni={zeX:[f@)|>flle} and No:={z€X:l|g@)]>llgll}
so that u(N7) = p(N2) = 0.
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i) If z € Ny then
((f)(@)] = lel|f{@)] < lalllflle

which shows that |a| {|f||e is an essential bound for o f. It follows that af €
Lo, and
leflloe <l llf lloo-

Arguing as in case 2, from here we obtain easily that
laflle = || || flloo-
ii) If z & Ny UNo, then

(F+9)@)| < [f@)] + 9@ < (flleo + lgllec
which shows that || f]|o +||g]/c is an essential bound for f +g. It follows that

f+g€ Ly and
17+ gl < IIfllec +lglico-

This proves the theorem. O
In general, || - ||, is not a norm on £,. In fact, we have already seen in remark
3.1.1 that

Ifl,=0 & f=0ae

We thus need to "reduce” our space as follows:
Exercise 3.1.1. For fixed p, define a relation ~ on £, by
frg & [f=gae
1. Show that ~ is an equivalence relation on L,.
2. Given f € L, let [f] denote its equivalence class, and set set
IP(X, M, 1) = Lp(X, M, p) = L] [ € Lp(X, M, ) }
Show that the following operations on LP(X, M, 1) are well defined:
(@) [f1+[g]={f +4d]
(b} alf] := [af]
() NLfHp = [l

where f,g € £, and « is scalar.

3. Show that LP(X, M, i) is a vector space with the above vector space opera-
tions.

4. Show that ||[f] ||, is 2 norm on LP(X, M, u).

Remark 3.1.4. One often confuses the spaces LP(X, M, u) and L£,(X, M, p), and
considers the elements in £,(X, M, ) as functions.

For example, when on writes ”let f be a function in I#” one really means "let f
be a representative in £, of the equivalence class [f] € LF.
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3.1.3 Completeness of L?
Theorem 3.1.4. The spaces LP(X, M, ) are Banach spaces for 1 < p < cc.

Proof. The idea is to show that very absolutely convergent series in IP converges.
The case p = oo needs to be treated separately.

Case 1: 1 < p < co. For this, let {fi} C L? be such that > ;- |(full, < c0. We
proceed as follows:

1. Show that > .o, fu(z) converges pointwise a.e. on X.
2. Show that f(z):=> i, fu(z) € L7

3. Show that Y ,_; /& e # as n— oo,

1. For each n € N, set

gn() o= (Zlfk(w)l) and set  g(z) = (Zlh(@l)
k=1 k=1

Then gn, g : X — [0, 00] are measurable {as sums, limits and powers of measurable
functions are measurable), {g,}1 and g,.(z) — g(z) for all z € X. Note that

/gndu = /(kz;:(fk[)pdﬂ = ‘:szil lfk[”pr
e[ S0L] < [ S

by assumption. Applying the Monotone Convergence Theorem, then

o0 r
/gdu = fT}i_lgologndu N T}Lrgofgndu < {Zﬂfk“p} < 0.
k=1

Thus, ¢ is integrable, and in particular, g(x) is finite valued a.e. Then by definition

of g,
D i)
k=1

ig finite a.e., that is, there exists a set N € M such that

p
<X

A

1. u(N)=0, and

2. > |fu(z)| converges for each x € X\N.
k=1
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However, every absolutely convefgent series in R (respectively C) is convergent, thus
oC

> fu{z) converges for each z € X\N.

k=1

2, We can thus set

fla) = ;fk(a:) ifzgN
0 ifz € N.

Then f is measurable, and

f@)lF < (Zlfk(-f)l) —g(x) fzgN

0 <g(z) ifzeN.
Since g is integrable, it follows that | f|? is integrable as well, that is, f € LP(X, M, u).
3. Now for every z € N we have by definition of f that

n—od =00

im | £(2) 3" o) || = {hm:f(l')—ifk(m)’r =¥ =0 (39
k=1 k=1

while also

n

1@ =Y s = | 3 @)

k=1 k=n+1

"< [Sln@] =)

As g is integrable, we can apply the Lebesgue Dominated Convergence Theorem to
obtain that

YIS WY S IECE ] ¢
LDOT /Jln&o‘f(m)”ifk(ﬂi) “dp = /Od,u =0
k=1

by (3.9)
and thus taking p-th roots,

lime— ka — 0.
This shows that

L

-1l
E fo — as n — oo.
k=1

We have shown that every absolutely convergent series converges in IP: hence L? is
a Banach space by theorem 1.5.8.
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Case 2: p = oo. Again, let {fp} € L* be such that > 1o || felleo < 0.
1. For each k, set

Ne={z€X:|flz} > | fill }
and set

N = Ne.

(G

o
If

1

Then pu(N) = 0. Furthermore, if z € X\N, then [fi(z)| < ||fille for all &, and
hence

K

D@ < D Il <00 (3.10)
k=1

ES
1

1

which shows that Y. fi(z) converges in R (resp. C.)
k=1
2. We thus can set

x if X\N
) = g HO e X
0 ifx e N.

Then f is measurable, and

F@) < Y el
k=1

for all z € X\N. This shows that f € L®.
3. Finally, if x € X\ N then

@ - h0)] = |3 A0 < 3@ < Y Il
k=1

k=n+1 k=n+1 k=n-1

so that > 5”1 || felleo is an essential bound for | flz) =31, fu(z) f Thus,

1= 8] = wssun| 1@ -3 @] < 3 Il = 0
k=1 k=1

k=n+1

as n — oc. This shows that

n

E b I-llog f asn — oo

k=1

Applying theorem 1.5.8 again, it follows that L> is a Banach space. a
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3.2 Approximation Theorems

3.2.1 Convergence in the Mean and Pointwise Convergence

Let {h,}2., be as sequence in LP(X, M, 11). We have seen two ways in which this
sequence may converge to a measurable function h:

1. Convergence almost everywhere.
hn — hae <& INeM, u{N)=0 st. hp(z) — h(z) V€ X\N.

(Note that because elements of LP(X, M, i) are equivalence classes of functions
which are equal almost everywhere, it does not make sense to talk about
everywhere convergence here.)

2. Convergence in the p-mean. If h € IP(X, M, p), then
ho 2 o lim (B — A, = 0.

In general, both types of convergence are not equivalent:
Example 3.2.1. Consider the space L*[0, 1] = L7([0, 1], Mo,q, A), with 1 < p < 0.

a) Let
n f0<z<i

o1 e LP[0,1].

ha(@) = nxp 1)(2) = {
Then h,(z) — h(z) =0 a.e., while
1/p -~ Pt
=l = ol = [ [ w003 = (112 = 05" 0.

b) Let

1 if 0 < 1
{0 fo<or<; EL”[O,l].

h(z) = = —
(@) =2 Xz ifl<z<l

B

Then h,(z) — h(z) = L a.e.; however, h & L[0,1].
¢) Observe that every n € N can be written uniquely as
n=2+m with kmeNU{0}, 0<k<oo, 0<m<2F

Given n € N, set

ho(z) = 1 ifze (R 3
" 0 else,

and let A(x) = 0. Then

— P m m 7=
o = hIE = I sl =

’
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Figure 3.1: A, converges in the p-mean, but not pointwise a.e.

as n — oo. That is, hn%h. However, if z € (0,1] then h,(z) = 1 for

infinitely many values of n, and hence
ha(z) / h(z) a.e.

Note: While {h,} does not converge to h{x) = 0 a.e., there are however many

subsequences of {h,} converging to 0. For example, consider the subsequence
{hor}32, of {hn}2,. Then

1 ifze(0, %
hon(z) = {0 2 0]

Given z € (0,1] is arbitrary, pick & such that & < z. Then for all k > K we
have hqx(z) = 0, and hence hq: () — 0. Thus,

hor(z) — 0 ae.
The last remark in c) is true in general, and is a consequence of the proofs of

theorems 1.5.8 and 3.1.4:

Theorem 3.2.1. Let (X, M, i) be a measure space, and 1 < p < oo. If {hn}sl; C

IP(X, M, pn), h € LP(X, M, ) are such that hy, wh, then there exists a subse-

quence {hy, } of {hn} such that
Pn, (z) — h{z) a.e.

Proof. Since {h,} converges, it is Cauchy in LP(X, M, u). As shown in the proof of
the = part of theorem 1.5.8, we can pick a subsequence {h,,} such that

1
Hh”k+1 _h’nk”iﬂ < ﬁ

for k=1,2,... . Next consider the telescoping series

Z fr where fio = Py — By
k=1
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Proof. Since
ha(2)lP < g(z)°  ae.

then also
|A(z)]P < (=) ae

By monotonicity of the integral,

/|hn|pdu§/gpdu<oo and /[hlpdugfgpdu<oo.

That is, h, € LP(X, M, p) and h € LP(X, M, ).
Now for almost all z € X,
iha(z) = h(2)]P < [Ba(@)] + |R(2)] 17 < [20(2) ] = 2P(2)? € L}(X, M, ).

It follows from the Lebesgue Dominated Convergence Theorem (see exercise 2.8.4)
that

lim ||h, — Al = lim /|hn—h|”d,u = [1im |hn—h|pd,u=/0d,u:0.

DCT

That is, h, M, h. ]

The statement of the above theorem is not true if p = oo, even if X is a finite
measure space:

Exercise 3.2.2. Find a sequence {h,}22; in L=[0, 1] such that h,(z) — 0 a.e., and

a) {||Anlloo}., is bounded, but A, # 0 in the norm [} - ||, or

b) {[Anlloo — 0.
Corollary 3.2.3. (Uniqueness of limit under different types of convergence)

Let (X, M, j1) be a measure space and 1 < p < 0o. Suppose, {hn}52; C LP(X, M, ),
heIP(X, M,u) and g+ X — C are such that

L
and
ho(z) — g(x) a.e
Then g(z} = h(z) a.e.

Proof. Since hy, e h, by theorem 3.2.1 (or exercise 3.2.1 in case p = co) there exist

a subsequence {hn, } of {h,} and a a set Nq of measure zero such that
hny () —= R(z)

for all z € X\N;. On the other hand, since h,(x) — g(z) a.e., there exists a set
N, of measure zero such that

hy () — g(x)
for all z € X\N,. By uniqueness of limits (in C, resp. R},

h(z} = g{z) for all z € X\(N1UNj).
That is, g{z) = h(z) a.e. O
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Exercise 3.2.3. Show: If 4(X) < oo, then
LYX, M, u) € LP(X, M, 1)

for all 1 < p < ¢ < o0. Furthermore, there exists a constant & (depending on p and
g) such that
-ty < K- g

Remark 3.2.1. If [ is an interval, we usually use the notation
IP(I) = LP(I, My, X).
The above exercise shows that
Lia,b] C LP(a,b]
whenever 1 < p < ¢ < oo.

Exercise 3.2.4. Let 1 < p < ¢ < 0o. Show that there exist f € L(R} such that
f ¢ LYR), and conversely, that there exists g € LY(R) such that g ¢ LP(R). That
is, neither the inclusion LP(R) C L¢(R), nor the reverse inclusion LI(R} C LP(R)
hold.

Exercise 3.2.5. Let X = {1,2,...,n} and p the counting measure on P({X).
1. Find all M-measurable functions f: X — R.
2. Find a simple formula for [ f dp.
3. Show: There exists an isometric isomorphism of LP( X, P(X), u; R} onto
(@) R ) i p =2,
(b) R™, || lls) if p = o0
(c) (R |- li) ifp=1.
Exercise 3.2.6. Let X = N and p the counting measure on P(N). Set
= IP(N,P(N), i1; C).
1. Find all M-measurable functions f: N — C.
2. Find a simple formula for [ fdp.
3. Show that

o0 o0 1/p
(a) &£ = {f:NeC:Z[f(n)|p<oo} and ||fll, = {Zu(n)w}

n=1

for1 <p < oo.
(b) £ = {f:N—C: fisbounded } and ||| = sup|f(n)]
neN
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( Note that setting x, = f(z) we have

oo 00 1/p
£ = (e e Ll <o} Handly = {Z mﬂ
n= n=1
> = {{za}2, © € {za} is bounded }, - [l{@n}fleo = sup 2o
Thus, £ and £' coincide with the spaces discussed in example 1.1.4 and ex-
ercise 1.1.5, respectively.)
4. Show that #2 C #% for all 1 < p < ¢ < oo, and this inclusion is proper.
Exercise 3.2.7. Consider the measure space { {0, 00), M(p.00), A)-

1. Set
1

o) = Ja L+ [loga)
Show that g € L*(0,00), but g & LF(0, 00} for p # 2.

(0 <z < o0).

2. Use part 1. to show that for every p, 1 < p < o0, there exists a function
f € LP(0,00) such that f & L"(0, c0) whenever r # p, 1 <r < oo.

Exercise 3.2.8. Show: If u(X) < oo, then

Jon fifflp =1 Flleo Vf e L¥(X, M, p).

3.2.2 Approximation by Simple Functions
Let (X, M, 1) be a measure space, and 1 < p < 0o. Denote

S:={p: X — C (resp.R) | f is simple and M-measurable. }

Given p € S, let
@ = Z QX Ay
k=1

be any representation with ax # 0 and Ay € M for all &, and ANAg=0fori#k.
It is now easy to see that

1. f1<p<oo, then p e LAX, M,p) & p{dy) <ooVk
2. 8§ C L®(X, M, p).
Note that SN LP(X, M, ) is a vector space.

Theorem 3.2.4. Let (X, M, 1) be a measure space, and 1 < p < co. Then &SN
LP(X, M, ) is dense in LP(X, M, ).
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Proof. Let f € LP(X, M, ). We must find a sequence {p,} € SN LY (X, M, u)
such that {|¢, — f|l, — 0.

Case 1: 1 < p < cc.

1. Suppose first that f is real valued. Then by the Structure Theorem for Mea-
surable Functions, there exists a sequence {¢,} C S of real valued simple,
measurable functions, 0 < |¢,| < |f], such that ¢,(z) — f(z) for all X. As
|f| € LP(X, M, u), it follows from theorem 3.2.2 that

nlg{olo H(Pn - f||£ = 0.
2. If f is complex valued, write f = R(f) + S(f). Note that

ROP <P and [P <|fF

and thus R(f),3(f) € LP(X, M, u;R). Now by the first part, there exist
sequences {on}, {¢¥n} C SN LP(X, M, pn) such that

lim flof, = fil, =0 and  lim |l = fll = 0.

Set
bn = Pn + ithy € SN LP(X, M, p).

Then by the triangle inequality,
tim g = Flly = Jim [ fon + 5] — RS) + 3] Iy
< Tim [llen = Rl + o = S(F)llp] = 0.

Case 2: p = 00. Then f € L>®(X, M, u).

1. Suppose first that f is real valued. Set

N={zeX: f(z)>|fll}-
Then p(N)=0.
Now given ¢ > 0, pick real numbers ag < a1 < --- < a, such that
(@) [~1flls 1 flloc] € (a0, an), and
(b) a; — ;1 <€, (i=1...n),

and set
A,; = f"i(ai_l,ai] EM (Z=1Tb)

Then {A;}*, is a disjoint collection. Set

T
e 1= ZaiXAf € S.
=1
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If z € X\N, then there exists a unique ¢ such that a; 1 < f(z) < a;, and thus
z € A; and ¢ (z) = a;. Hence,

|pe(z) = f(@)i = lai = f(2)| = & = f(2) <@ — a1 <€
for all z € X\ N, so that

e = flloo <€

L (n=1,2,...) we thus obtain a sequence {¢,} C S such that

Choosing € = -,
ln — flloo — 0.

2. The situation of complex valued f is now treated exactly as in case 1.

3.2.3 Approximation by Continuous Functions

Remark 3.2.2. We say that a function f : R® — C has compact support, if there
exists a closed n-interval I such that f(z) =0 for all z ¢ I. Let us set

CPR") :={f:R"—C | f is infinitely differentiable and has compact support}.
Also, set

C.(R*):={f:R"—=C i f is continuous and has compact support}.

Then C2(R™) C C.(R*) C LP(R™, My, A) for all p. One can show that C°(R") is
dense in LP(R™, M, A) for each 1 < p < o0, but not for p = cc.

Similar statements hold for the corresponding spaces of real-valued functions, and
for spaces defined over intervals. For example, C([0,1];R) is dense in L*([0, 1]; R)
for all 1 < p < co. It folows that L#([0, 1];R) is the completion of C{([0, 1];R) with
respect to the norm || - ||,. (See example 1.5.10).
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