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Chapter I

Introduction

Almost all important governing equations in physics take the form of nonlinear
partial differential equations, usually as systems of equations. Nonlinearity and
the presence of a large number of variables in the initial equations are sources of
significant mathematical difficulties in the analysis of the solutions of these equa-
tions. Frequently, it is virtually impossible to give explicit solutions, and while
a multitude of numerical methods has been developed to obtain approximate so-
lutions, there remains intense interest in finding exact solutions. Each solution
has value, first, as the exact description of the real process in the framework
of a given model; secondly, as a model to compare various numerical methods;
thirdly, as a basis to improve the models used. One of the methods for con-
structing exact solutions is group analysis of differential equations. At present,
numerous differential equations are being investigated by this method. A histor-
ical review of a group analysis development can be found in Ibragimov, (1999).
Many results of the group analysis are collected in CRC Handbooks edited by
Ibragimov (ed.), (1994), (1995), (1996). Historically, many solutions of partial
differential equations were constructed by educated guesses of the representa-
tions of solutions. Besides producing new solutions, group analysis provides a
more systematic method for constructing such representations.

This research is devoted to an application of group analysis to the equations
which govern the motion of Newtonian viscous fluid. These equations make
it possible to obtain full information about the structure of flows under usual
temperature and pressure, and they play a central role in a variety of research
within the fields of applied mathematics, physics and engineering. We called
these equations viscous gas dynamics equations'. In compact form, the viscous
gas dynamics equations can be written as follows:

d

d_‘tf +7Vp = 7[(A + p)V(divv) + (divv)VA + 2D < Vi > +pAv]

d

d—; —1divv =0, (1.1)
d

d_?; + A(p, 7)(divv) = B(p, 7)(A(divv)? 4+ 2uD : D + (Vk)(VT) + kAT).

'In the literature viscous gas dynamics equations are often called the Navier-Stokes equations




Where ( )
T(p+ U; T
Alp,71) = ———=, B(p,7) = —
(p,7) 7 (P, 7) U,
and v = (ug, us, u3) is the velocity vector, p is pressure, 7 = — is specific volume,

p is density, U is the internal energy, 71" is the temperature, A and p are first
and the second coefficients of viscosity, « is a coefficient of a heat conductivity,
t is time, V and A are the gradient and the Laplacian with respect to the space
variables x = (z1, x9, 3), respectively.

The equations for incompressible fluid (7 is constant) are obtained from the
viscous gas dynamics equations by chooing 7 and p constant. In this case, the
viscous gas dynamics equations consist of two parts, and the first part is

C;—Z = —7(Vp+ pAv) (1.2)

divv = 0.

These equations are called the Navier-Stokes equations.

Many of the invariant solutions of the Navier-Stokes equations have been
known for a long time; however, their systematic analysis became possible only
with the development of the modern methods of group analysis of differential
equations (cf. Ovsiannikov (1978)). The first group classification of the Navier-
Stokes equations in the three-dimensional case was done in Bytev (1972). It was
shown that the Lie group admitted by the Navier-Stokes equations is infinite-
dimensional. Its Lie algebra can be presented in the form of the direct sum
L>® @ L', where the infinite-dimensional ideal L™ is generated by the operators

th‘ 0 = ¢Z (t)afvz + d);(t)aul - ¢;’I(t)$iap
Cd) 0 = w(t)ap

with arbitrary functions ¢;(t) : R — R, (1 =1,2,3), and ¥(t) : R - R .
The subalgebra L' has the following basis:

T-0 = 2t0t + l‘lamz — uﬁuz — 2p8p

If the dilatation operator 7 - 0 is neglected, then the remaining operators of
(1.3) generate a basis of the algebra L'°) the well-known Lie algebra of the
Galilean group G', whose transformations operate on the seven-dimensional
space (t,x,u). Its subalgebra generated by the three operators (j - 0 composes
the Lie algebra SO(3).

Note that there is still no classification of the full group admitted by the
Navier-Stokes equations. In spite of this several papers (cf. Puchnachov (1974),



Lloyd (1981), Boisvert and Ames (1983), Grauel and Steeb (1985), Fushchich
and Popovych (1994), Ibragimov (1994) and Popovych (1995)) are devoted to
invariant solutions of the Navier-Stokes equations. Reviews devoted to invariant
solutions of the Navier-Stokes equations can be found in Puchanchov (1974),
Fushchich and Popovych (1994) and Ludlow, Clarkson and Bassom (1999).

Partially invariant solutions of the Navier-Stokes equations have been less
studied (cf. Puchnachov (1974), Meleshko and Puchnachov (1999)). At the same
time there has been progress in studying such classes of solutions of inviscid
gas dynamics equations (cf. Ovsiannikov (1978), Sidorov, Shapeev and Yanenko
(1984) and Meleshko (1991)). Recently, Ovsiannikov (1995) found one class of
partially invariant solutions, called a special vortex. These solutions are based
on the group of rotations O(3). An ideal fluid and an inviscid gas have the same
class of solutions. Therefore, it is natural to investigate the existence of special
vortex type solutions for the Navier-Stokes equations and viscous gas dynamics
equations.

One part of our study is devoted to answering this question. Along with
the same partially invariant solutions were studied for the viscous gas dynamics
equations.

It is well-known that the main difficulty in the study of partially invariant
solutions is the analysis of the compatibility (cf. Finikov (1948) and Kuranishi
(1967)) of the appearing overdetermined systems. The analysis of compatibility
can be reduced to the consecutive performance of algebraic operations of symbolic
nature. These operations are related with a prolongation of the system, substi-
tution of composite expressions (transition onto manifold), and finding ranks of
matrices. Typically, the compatibility study of systems of partial differential
equations requires a large amount of analytical calculations, and it is necessary
to use a computer system for these calculations.

A brief review of computer systems can be found, for example, in Ibragimov
(1994), (1995), (1996), (1999). In our calculations the system REDUCE (cf.
Hearn (1999)) was used.

The study of partially invariant solutions based on the group of rotations
depends on the value of H which is modulus of velocity vectors V,W in the
spherical coordinates. If the value of H = 0, then the partially invariant solution
is reduced to a singular invariant solution, which is spherically symmetric flow.

Another part of the study in this thesis is devoted to the group classification
of spherically symmetric viscous gas dynamics equations. The group classifica-
tion problem consists of searching for groups of transformations admitted by the
system for all arbitrary elements and all specifications of arbitrary elements. By
a special choice of the arbitrary elements, one can extend the admitted group.

After finding the admitted group, one can try to construct exact solutions:
every subgroup of the admitted group can be a source of invariant or partially in-
variant solutions. There is an infinite number of subgroups, even in cases where
the admitted groups are finite-dimensional. But if two subgroups are similar,
i.e., they are related with each other by a symmetry transformation, then their
corresponding invariant solutions are connected with each other by the same



transformation. Since the set of subgroups can be divided into classes of similar
subgroups, therefore, it is sufficient to find only one representative solution from
each similar class of subgroups. A set of representatives of equivalent subgroup
classes is called an optimal system of subgroups. Because there is a one-to-one
correspondence between groups and Lie algebras one can study the Lie algebra of
the admitted group. In this thesis, representations of all invariant solutions with
respect to subgroups of two-dimensional admitted groups of spherically symmet-
ric viscous gas dynamics equations are presented.

We should also note here that, as for the Navier-Stokes equations, many of
the invariant solutions of the viscous gas dynamics equations have been obtained
by other methods (cf. Williams (1967), Shennikov (1969), Shidlovskii (1972),
Aristov (1990), (1995) and Byrkin (1969), (1970), (1976), (1996)). The group
classification of the viscous gas equations (in case when the first A and the second
p coefficients of viscosity are related by the equation A\ = —2u/3) was done in
Bublik (2000). For some models of viscous gas dynamics equations, group analysis
was used in Bublik (1996) and Meleshko (1998). There also exist other similar
approaches for constructing exact solutions of the Navier—Stokes equations. We
note here two of them: nonclassical symmetry reductions (cf. Ludlow and others
(1998), (1999)) and linear profile of velocity (cf. Sidorov (1989)).

The thesis is organized as follows. Chapter II mainly introduces notations of
group analysis and provides references to well known facts on the application of
group analysis for constructing exact solutions of partial differential equations.
Chapter IIT deals with obtaining the viscous gas dynamics equations. In this
chapter, we establish the derivation of the viscous gas dynamics equations in
the spherical coordinates by using symbolic calculations. The necessity of this
is stipulated by the fact that all textbooks have some misprints in writing the
Navier-Stokes equations in curvilinear coordinates. Chapter IV is devoted to an
analysis of compatibility of partially invariant solutions of the Navier-Stokes and
viscous gas dynamics equations related with the group of rotations. It is proved
that all such partially invariant solutions are reduced to spherically symmetric
solutions, which are singular invariant. The spherically symmetric viscous gas
dynamics equations are studied in the next chapter V. Equivalence and admitted
group for viscous gas dynamics is given in this chapter. Also representations of all
invariant solutions of spherically symmetric viscous gas equations are considered
there.



Chapter 11

Group Analysis

2.1 Lie Groups

In this chapter, we will discuss the group analysis method for constructing
solutions of partial differential equations. Discussions of the Lie group analysis
can be found in the textbooks (cf. Ovsiannikov (1978), Ibragimov (1994), (1995),
(1996)).

We consider invertible point transformations

fi,usa),u7 = @I (2, u;0),
1,2,..,n; j=1,2,....,m).

ZT.:
(i
with (z,u) € V. C Z = R"(z) x R™(u) and a a group parameter, a € A,
where z = (21,29, ...,x,) and u = (u1, ug, ..., u,,) are independent variables and

dependent variables respectively. The set V' is an open set in Z, A is a symmetric
interval of R! with respect to zero.

=

(2.1)

@
I

Definition 1 A set of transformations (2.1) is called a local one-parameter group
G' if it has the following properties:

1. f(z,u;0) =z, p(x,u;0) = u for all (z,u) € V.

2. F(f(,us0), 0, u;0);6) = f(z, 00+ b) and @(f(z,u;0), 9o, u; 0);b) =
o(x,u;a+0b) for all a,b,a+b € A, (z,u) € V.

3. Ifa € A and f(z,u;a) =z, p(x,u;a) = u for all (z,u) € V,then a = 0.

4. fip € Cx(V X A).

The functions f* and ¢/ can be presented via their Taylor series expansion
with respect to the parameter a in the neighborhood of ¢ = 0 and written as the
infinitesimal transformation (2.1)

r;, ~ x4 E(x,u)a
Jy

uwl ~ w4 (z,u)a

l

where

e = 08D g = 28D,

The vector (&, () given by (2.2) where £ = (£}, ...,£"),( = ({1, ..., ™) is a tangent
vector (at the point (z,u) ) to the curve determined by transformation (2.1).

(2.2)



This vector is called a tangent vector field of the group G'. A tangent vector
field can be written in terms of the first-order differential operator

X = 51(1‘7 u)afvl + Cj(xa u)auﬂ (23)

The operator X is transformed as a scalar under a change of variables. There is
a one to one correspondence between group of transformation (2.1) and infinites-
imal generators (2.3).

Theorem 1 A local Lie group of transformations (2.1) can be completely deter-
mined by the solution of the Cauchy problem of ordinary differential equations

! s

L= gi(x’,u’),

T = (2, u) (2.4)

with the initial data

fi(x,u,O) =z, ¢ (x,u,0)=0.

Here equations (2.4 ) are called Lie equations.

Assume that there is a given function u = ug(x). Let us show how to construct
a transformation of this function by the Lie group(2.1). First we substitute ug(x)
into the expression for the transformation of the independent variables (2.1)

= f(w,uo(w); a). (2.5)

because f(z,ug(x),0) = z,then by using the inverse function theorem, in a neigh-
borhood of a = 0 we can get

=gz ,a) (2.6)

Note that after substitution of z = g(z',a) into the first equation of (2.1) we
obtain is the identity

xl = f(g(xla a)vuﬂ(g(x,va)); a)' (27)

The transformed function is obtained after substitution of (2.6) into the second
part of(2.1)

’

ua(z') = p(g(x', a), uo(g(a', a)); a) (2.8)
We arrive at the identity
ua(f (%, u0(2), a)) = p(x, uo(x); a). (2.9)

For applying Lie group to differential equations, one needs to know the trans-
formation of derivatives. Let us study a transformation of the derivatives of the
given function wug(z). This is called a prolongation of group (2.1) to the first
derivatives.



For the sake of simplicity we study this idea in the case n =1,m = 1.
A derivative of the transformed function wu,(z') is found by differentiating
(2.8)

Oua(z) dp Og  Opduy dg

or or 0r | Oudr O0r

. 39 ’ ag@ ’ ’ . 8(10 ’ ’ . 8u0 ’
= 2 @) (0l a), g ) @)+ SE g @), w9, 0)s ) S (gl )
Here the derivative % can be found by differentiating the left and the right
sides of (2.7) with respect to a :
of 0Of Quy,, Og
1 = (=+—=——
(8:v * ou Ox )(6x')
Because
a ’ !
O (ot 0),wolo(a'0);0) =1
a ’ !
gt 0, wolgl', 0):0) = 1
then the value % + %% # 0 in the neighborhood of a = 0.
Hence,
dg 1
Py y e y o (2.10)
o~ G )
Therefore
o Oplu@)ia) | el uo(w)ia) Duo(o)
Ouq(z) _ oz ou oz
oz’ Of (z,ug(x);a) | Of(x,up(x);a) Ou(x)
or + ou oz
— F(z,u0(), p(x); ) (2.11)

ou . o
where py = ~ % and we have the transformation for the derivative

ox
Pa = Q(x, ug, p; a)

We have obtained the first prolongation G of the group G acting in the space
1
(x,up,p). By using the same way, one can find the second prolongation @, etc.
2
The infinitesimal generator of the G is
1

X =&(z,u)0p + n(x,u)dy, + ((z,u, y')a

’
1 y



where ((z,u,p)d, = w la=o and where we have defined 3’ as the derivative

of y. Direct calculations of %—f give that ¢ = D,n—vy Dyn where D = a% + yla% +

n 3
Y o + ...

Here we present the formulas for the case when the number of independent
and dependent variables is greater than one. In this case, the prolonged operator
is obtained by a similar way as explained above. For the derivatives we use the
notations

ou® 0?u”

) axi7 z]_axiaxj,--..

and wu) is a collection of all derivatives of the k-th order w,) = {ujaljk} The
first prolongation of the generator (2.3) is given by

X=X+ (00 ,(a=1,..,m)
1 1
where

Cia = Di(na) T U?Di(gj)a (7’ =1, 7”)
D; =0y, + > ufOye + Zu%@ug + ...
« a,B

The second prolongation of the generator X is

X == )1( +Cz'clti28u‘?‘

2 i1i3

where _
Cioiiz :Di2(Cz'oll) _u?il i2(§J)v(i17i2 = 17"'vn)
In a general case, a k-th prolongation of the generator X is

X = kAi(l + lcilkauflll

where
ioi...is = Dis (Cilmis—l) - u‘?il...is_lDis (gj) ) (ila i27 ) is = 17 ceey Tl)

Now we link Lie groups and differential equations. Let us consider the k-th
order system of partial differential equations.

Fo@,u, uny, w@), - uwy) =0, (@ =1,2,...,5) (2.12)

Definition 2 A one parameter group (2.1) is called group admitted by partial
differential equations (2.12) if

é{) Fo (@, u, ugy, ue), ...,u(k))‘(F) =0. (2.13)

or in a short form as follows:



where the sign |(r) means that equations (2.13) are considered on the manifold
described by equations (2.12). The process of obtaining equations (2.13) consists
of the following steps.

The first step is to get the k-th prolongation of the generator X . The second
step is acting of the k-th prolongation )k( on the equations F,, =0, (« = 1,2, ..., 5)
. The next step is a transition onto the manifold described by equation (2.13).
These equations are called determining equations. The solutions of these equa-
tions compose a Lie algebra of generators. The Lie group corresponding to this
Lie algebra is called an admitted Lie group and the Lie algebra is called an
admitted Lie algebra.

2.2 Lie Algebras

Let _
Xy = gi(x)axl
XZ - é‘%(x)al‘z

be two infinitesimal operators. Their commutator (Lie bracket) is defined by
[X1, Xo] = X1Xo — Xo Xy (2.14)
or

[Xl,XQ] = (X1(§§) - XZ(ﬁ))a:vi

A vector space L of infinitesimal operators is called a Lie algebra L of operators
if it satisfies the following properties:

[aX) + bXo, X5] = a [ Xy, X3] + b[Xs, Xj]

(X1, aXs + bXs] = a[X1, Xo] + b [X1, Xs]
[X17X2] = - [X2,X1]
[[X1, Xo], Xa] + [[Xo, Xa], Xu] + [[X3, X1], Xo] =0

Here X, X5, X3 are arbitrary elements in L; a and b are arbitrary real numbers.
A vector subspace H C L is said to be a subalgebra of the Lie algebra L if it
is closed under commutator, i.e. [H, H] C H.
Let L and K be two Lie algebras of operators. A linear mapping f: L — K
of L onto K is called an homomorphism if it satisfies the relation

f(X, Xo]r) = [f(X0), f(Xo)]x (2.15)

for any X, Xy € L.
A one-to-one homomorphism is called an isomorphism.
Let X1, X5, ..., X, be a basis of vector space L,. If L, is the Lie algebra, then

[XHX]] = C%XOA 727] = ]'7 2’ T
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The constants cf; are called structure constants. If two finite-dimensional Lie
algebras L and K are isomorphic, then there exist bases {Xi,..., X, } € L and
{Y1,...,Y,} € K so that both have the same structure constants. An isomorphism
of L onto itself is called an automorphism.

Assume that Xi,..., X, is a basis of a r-dimensional Lie algebra L,. Any
X € L is written as X = z“X,,.

Let L2 be a Lie algebra spanned by the following operators:

B = cix! Opa ji=1,...71

The algebra L generates the group G* of transformations of the space of
{X1,..., X;,}. These transformations determine automorphisms of the Lie algebra
L,, known as inner automorphisms.

Two subalgebras are similar if there exists an inner automorphism which takes
one subalgebra into the other. The similarity relation divides the set of all subal-
gebras of L, into disjoint classes of similar subalgebras. In this partition, we take
the classes of subalgebras of the same dimension s, and choose a representative
for each of the classes. The set of pairwise nonconjugate subalgebras is known as
an optimal system of s-dimensional subalgebras of the Lie algebra L,.

2.3 Equivalence Groups
Let a system of differential equations
Fo(z,u,p,0) =0;(a=1,2,...,5) (2.16)

be given where § = 0(u, x) are arbitrary elements of the system (2.16).

A nondegenerated transformation that changes the independent variables =z,
dependent variables u and arbitrary elements 6 of system (2.16) to a system of
equations of the same differential structure, is called an equivalence transforma-
tion.

The problem is how to find the transformations which preserve the equations
without changing the differential structure.

Assume that the transformations

f (@, u,0;a)
f(, u,0;a) (2.17)
f9

(z,u,0;a)

!
’
!

SRS

compose a Lie group of such transformations. This group can be found by a
similar way as an admitted Lie group.
Let _
XE = €50, + (" 0o + ("0
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be an infinitesimal generator of the Lie group (2.17) with the coefficients:

e = of*(x,u,0;a) |
N Oa a=0
o = of"(x,u,0;a) |
B Oa =0
0i of°(z,u,0;a)
¢ = 8— |a:0
a

and ‘ ;
€ o4 J
Xl = X+ ("idug, + Ceﬂ”a@%a + c"uﬂagjﬁ + ...

. a gl
be a prolonged generator. Here the coefficients ("=, (%o, ("u#, ... are expressed

by the following :
i = D;i(“a — ug‘ﬁD;i&W

(o3

iz
B = ﬁ;icm 93 De g - Hiﬁf);iCUB
Gik = lN)kaCaj _ Hiaﬁikﬁ‘”“ . giﬁﬁszuB
where
D5 = Oh +uldue + (0, + 0000 )y +
DS = B+ 000y + .
~Zk = Oy + 92,939]' + ...

The determining equations for the Lie group (2.17) are
XF,|po =0, a=1,2,..,s.

The solution of the determining equations gives us coefficients of the infinitesimal
generator. By solving the Lie equations, one can obtain the equivalence group of
transformations (2.17).

We use the main feature of the Lie group that any solution ug(x) of the
systems (2.16) with the functions #(z, u) is transformed by (2.17) into the solution
u = uy(2') of the system (2.16), but with another (transformed) functions 6, (z, u)
which are defined in the following way. By solving the relations for (z, u)

o= [ (r,u,0(x,u);a), u = f"(v,u,0(zx,u);a)
we obtain
=g u'5a), u=g"(2' u;a). (2.18)
Then a transformed function is

0,(2' ') = fO(z,u,0(x,u);a),
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where, instead of (z,u) we have to substitute their expressions (2.18). The trans-
formed solution 7, (u) = u,(x) is obtained by solving the relations

z' = fx(xa Uo(a?), 9(1‘, UU(:U)); Cl)
for x = ¢"(2';a) and substituting these solutions into

ua (') = [z, uo(x), 04 (z, up(x)); a).

Lemma. The transformations T, (u) constructed in this way form a group.
Because the transformed function u,(z') is a solution of the same system with
transformed arbitrary elements 6,(z’,u’), then the equations

Fo (2" ug (2", pl(2"), 0u (2", ue(2")) =0, (e = 1,2,... ,8)

are valid for arbitrary z’. But by virtue of one—to—one correspondence between
x and z’ we have

Fo(f*(2(2), a), f*(2(x), @), fP(2(2), a), f*(2(2)))) = 0, (@ = 1,2,... ,5)

where

Z($) = (x,uo(x),H(x,ug(x))),zp(x) = (x,uo(x),Q(x,uo(x)),p(x),ﬁ(x,uo(x)), : )

After differentiating this equations with respect to the group parameter a we
get the usual algorithm of a finding an admissible group of continuous trans-
formations (equivalence transformations) (2.17). The differences are only in the
prolongation of infinitesimal generator X°.

2.4 Invariant and Partially Invariant Solutions

Let G" be a Lie group admitted by equations (2.12) . Assume that Xy, ..., X, is
a basis of the Lie algebra L", which corresponds to the Lie group G".

Definition 3 A function ¢ (x,u) is an invariant of the group G if it satisfies
the conditions

Xi¢ (z,u)=0,(=1,2,..,1). (2.19)

In order to find an invariant, one needs to solve the overdetermined system
of linear equations (2.19). Note that this system is a complete system. A set of
functionally independent invariants

J = (JNz,u), J*(z,u), .., J" (2, u))
such that any invariant ¢ can be expressed through this set

¢=V(J J? ..., T
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is called a universal invariant.
( 1 Jm-l—n—r
-

Note that if the rank of the Jacobi matrix 0 ‘é(u w) isequal to k , then
1y sy Ym

without loss of generality, one can choose first & invariants .J', ..., J* dependent on

. . . B o(J', ..., J" ..
x and u with the rank of Jacobi matrix k, k = mnkﬁ. The remaining
1 y» YUm
invariants J*t1, Jk+2 . J™+t7=" only depend on the independent variables x.

In order to construct a representation of invariant or partially invariant so-
lutions, one needs to separate the universal invariant into two parts. The group
analysis method requires that the first part be a function of the second part.

For the invariant solutions £ = m: the Jacobian of the first part with respect
to the dependent variables uq, ..., u,, is not equal to zero. Therefore, the invariant
solution has the representation

JE= Wm0 = 1,2, .., m). (2.20)

From the first m invariants J' (i = 1,2,...,m) one can define the dependent
variables as

ut =& (J, ..., J™ ), (i=1,..,m) (2.21)

These expressions of u' after substituting (2.20) into them are called a repre-
sentation of the invariant solution.
Let us consider the construction of a representation of partially invariant

solutions.
a(Jl, ey JTERTT

Assume that rank =k <m.Let 1 <[ <k <m. For par-

3(u1, ey Um)
tially invariant solution group analysis requires that the first / invariants J*', ..., J!
are functions of the remained invariants J'*t, ..., Jmn- .
JO= Wi gk R ey (0 =1,2, ., 1). (2.22)

l

From the first [ invariants J', ..., J' one can find [ functions u*. Without loss of

generality, we consider that
w; = ¢ (J o, T s e g, ), (= 1, .., 1).

These expressions of u; after substituting (2.22) into them are called a represen-
tation of partially invariant solution.

The next step in constructing an invariant or partially invariant solution con-
sists of substituting the representation of the solutions into the original system
of equations. The obtained system on functions ¥’ is called a reduced system.

For invariant solutions, this system is a system of equations for the functions
U’ with n — r independent variables.

For partially invariant solutions, the reduced system is an overdetermined
system of m equations for m — [ functions w1, 419, ..., uy,. Compatibility condi-
tions of this overdetermined system are equations on function W’. The analysis of
partially invariant solutions requires a more difficult analysis of compatibility.



Chapter I1I

Viscous Fluid Dynamics
Equations

3.1 Coordinateless Form of Viscous Fluid
Dynamics Equations

We study unsteady viscous fluid dynamics equations. These equations govern
a three-dimensional motion of a thermal conductive, Newtonian viscous flow

dv

pn = 7div(P) (3.1)

d

d—; — 71divv =0 (3.2)
% =7P : D+ 7div(kVT). (3.3)

Here 7 = 1/p is the specific volume, p is the density, v is the velocity, P is the

‘ ¢ D 1 /0v N (av
stress tensor = — [ — —
’ 2 \ Ox 0x

energy, 1" is temperature, x is the coefficient of heat conductivity, and P : D is a
contraction of tensors P and D. The Stokes axioms for a viscous fluid give

)* ) is the rate-of-strain tensor, U is internal

P = (—p+ Adivv)I + 21D (3.4)

where p is pressure, A and p are the first and the second coefficients of viscos-
ity, respectively. Let us exclude the tensor P from equations (3.1-3.3). After
substituting the stress tensor P from (3.4), into P:D, we get
P:D = ((—p+ AMdivv)I+2uD): D
= (—p+Adivv)I: D+ 2uD : D
= —pl:D+ (Mdivv)I: D+ 2D : D

where I : D = divv. Hence,

P : D = — pdivv + A(divv)? + 2uD : D (3.5)
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and the energy equation becomes

dU
o = —7pdivv + TA(divv)? + 27uD : D + 7div(kVT) (3.6)

For the divergence divP in equation (3.1), we have
divP =div[(—p + Adivv)I 4 2uD]
and
divP = —Vp + V(Adivv)+div(2pD) (3.7)
Substituting equation (3.7) into equation (3.1), we get

Ccii_:f’ = 7(=Vp + V(Adivv)+div(2uD)). (3.8)

A viscous fluid is a two parametric medium. As the main thermodynamic
variables, we choose the pressure p and specific volume 7. The entropy 7, the
internal energy U and the temperature 7" are functions of the pressure and specific
volume

n=np,7), U=Up), T=T(p,1),

which are related by the main thermodynamic identity
Tdn = dU + pdr. (3.9)

The rate form of this equation is

dn dU dr
y—— —. A
at — dr Pt (3:10)

In fluid mechanics, it is that assumed U, # 0. The thermal identity relates
the functions n(p,7), U(p,7), T(p,T) by the formulas

A T A

-
U, =— UT:__7 = S It = S
»T B g = gr T BT
where
T(p+U,) T
A =¥ "7 B = — 3.11
(p77—) Up ? (p77—) Up ( )

or A = B(p + U;). Using the relations U,, = U, and 1,, = 1,, we have

A A T
- (ﬁ)T

() = (5 =Pl (5

B — 1B, = BA, — AB, — B* (3.12)
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and
T(BA, — AB,) = ABT, + T(B — rB,) — BT, (3.13)
after substituting equation (3.12) into equation (3.13), we obtain

B(AT, — rT,) = TB*

7T, = AT, — TB. (3.14)

In the case of an ideal gas, T = R 'pr where R is the gas constant. Hence, the
equation 1, = 1.y, gives

Ur+p Up
( —1 )P = ( —1 )T
R-1pr R-1pr
or
TU; — pU, = 0.
The general solution of this equation is
U =g(rp)

where ¢ is an arbitrary function of one independent variable.
Substituting U, = pg,U, = 7¢ into (3.11), we have

1

or we can rewrite A, B as the following

B = B(mp).

-
For a polytropic gas U = —pl, where 7y is the polytropic exponent. Hence,
N —

P

UT: )
v—1

T

v—1

U, =
Substituting these expressions into A and B in (3.11), we obtain

A = py,
B = v—-1.

For the next study, let us rewrite the energy equation in a suitable form. Since
U="U(p,7), thus

dU dp dr
— =U,— +U,— 3.15
dt P dt + dt (3.15)



17

dUu
After substituting ’ from equation (3.15) into equation(3.3) and using equation
(3.2), we can express the energy equation (3.3) as the following

dp

Up%

+ (tU; + 7p)(divv) = 7A(divv)? + 27uD : D + 7div(kVT).

Because U, # 0, then this equation can be rewritten

ap + M(divv) = L[)\(divv)2 +2uD : D + div(kVT)].
dt U, U,
or
% + A(p, 7)(divv) = B(p, 7)[Mdivv)* + 2uD : D + div(kVT))]. (3.16)
Because
div(kVT) = (Vk)(VT)+ kdiv(VT)
= (Vk)(VT) + kAT), (3.17)
then

% + A(p, 7)(divv) = B(p, 7)[Mdivv)* + 2uD : D + (V&) (VT) + kAT) (3.18)

For the term V(Adivv) in equation (3.8), we have
V(Adivv) = (divv)V A + AV (divv). (3.19)

By the definition of divergence of the tensor 2uD there is

0
adiv(2pD) = 2tr

5-(uD” <a>). (3.20)

By using Leibnitz rule, we get

0
2tr

%(MD* <a>) = 2utr%(D* <a>)+2D*<a>Vyu
= (2udivD 42D < Vi >)a
= a(udivg—z + udiv(g—Z)* +2D <Vu>) (3.21)
Let us consider div(g—;’) and div(g—;’)*:
a-div(g—Z)* = tr(%(% <a>)) = aia(g;‘;aﬁ) = aﬁafzgzﬂ
— aﬂ%(gzz) = ag(%divv)

= a-V(divv)
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and

a-di(2) u;((g;) <a>)) = tr(o(Matn)

= Z Uaaa = Qq Z 8%@3@"%
B

=a-Av
Hence, we can rewrite the equation (3.20) as
div(2uD) =2D < Vu > +uV(divv) + pAv (3.22)
Substituting equation (3.19) and equation (3.22) into equation (3.8), we obtain

d
Y1V = 1[(divv)VA + AV (divy) + 2D < Vi > +uV(divy) + pAv]

dt
= 77+ p)V(divv) + (divv)VA + 2D < V> +puAv]  (3.23)

Therefore, the viscous gas dynamics equations which we study are

d
d—: +7Vp = 7[(\ + p)V(divv) + (divv)VA + 2D < Vi > +uAv],
le—; — 7divv = 0, (3.24)
d
d—f + A(p, 7)(divv) = B(p, 7)(A(divv)? + 2uD : D + (Vk)(VT) + kAT).

3.2 Thermodynamics of Gas and Fluid

The second law of thermodynamic requires that the total entropy production
is not negative:

dS q
= — — > 2
R o + /3w(T)nda >0 (3.25)

where S = fw pndw, q is heat flux given by the Fourier heat conduction law
g = —kVT, and k > 0, is the coefficient of heat conductivity.
We can rewrite equation (3.25) as the following

d
7 pndw + /aw(%)nda > o.

By using the Gauss—Ostrogradskii theorem, we obtain

/[ let —i—dw(T)]dw >0

For continuous motions, one obtains

dt + div(=

>
o 1y>0

T
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or

T

dn
T— di
+ rdiv(q) T

— (q-VT)>0 (3.26)

d
After substituting 77 found from, the rate form of the main thermodynamics
identity (3.10), into equation (3.26), we have

dU dr T
™ rdiv(g) - Z(q-VT) > 2
7 +pdt + 7div(q) T(q VT)>0 (3.27)

By using the energy equation (3.6), we obtain

d
—7pdivv + 7 A(divv)? + 27uD : D+ 7div(kVT) +pd—; +rdiv(q) — %(q -VT) >0
Because
dr divv
—_— =T
dt
and
q=—krVT
we get
TA(divv)? + 2ruD : D + %(WT VT) >0
or
Mdivv)? +2uD : D > 0.
Assume

® = A\(divv)* +2uD : D > 0

Let us consider condition under which ® is always nonnegative, that is ® > 0. In
order to find these conditions, we first of all write values of the function ® with
reference to the principal axes of rate-of-strain tensor:

d 0 0
D=0| 0 d 0 |oO
0 0 dy

where O is an orthogonal transformation. In matrix representation we have
= )\(Jl (D))2 + QMOikdkOlkOiﬁdﬁOlﬁ = )\(Jl (D))2 + 2H5kﬁdk5kﬁdﬁ

then
Mdy + dy + ds)* + 2u(d> + d5 + d3) > 0

SN+ 20)(dy a4 s+ 23((dh — o)+ (dy = ds)? + (dy — )] 2 0

then we get
3A+2u>0,u>0.
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3.3 The Navier-Stokes Equations

The Navier-Stokes equations are obtained from the viscous gas dynamics equa-
tions by setting 7 and p constant. In this case, the viscous gas dynamics equations
consist of two parts. The first part is

— = —7(Vp + pAv) (3.28)

These equations are called the Navier-Stokes equations. The remaining equation
is the energy equation, which can be solved afterwards. For the Cartesian coor-
dinates, the Navier-Stokes equations can be written as the following equations

(%—l—u%—l—v%ﬂL au)__@+ (62u+82u+82u)
P T Ty T8 T Tar T a2 T Bz T a2

ov ov ov dv,  Op v 0%v 0%
= 1% w + a—y2 + @) (329)

(8_w+ 3_w+ 8w+ 8w)_ 8p+ (82w+32w+82w)
Poor T Ty TV’ T T T M e Tz T 822

— 4+ — 4+ —=0 (330)

The dependent variables u, v, w, p are functions of the space variables x, v, z
and time t.

3.3.1 Dimensionless Analysis of the Navier-Stokes
Equations

It is useful to write the Navier -Stokes equations in dimensionless form.
Let us consider the new variables v*, p*,x*, t* by giving v* = 7, p* = p% X' =X

tr = %0, where V,pg, L and T, are velocity, pressure, length and time units,
respectively.
We can rewrite these variables as v = Vv*, p = pop*,x = Lx*,t = Tyt*.
Differentiating these functions with respect to independent variables, we have
ov _Vov: ov _V ov* dp  pyOp*

ox Lox* ot Toot* ox L ox*

(3.31)

and similarly

vV 9V
e Do) (3:32)



21

Substituting equations (3.31) and (3.32) into equation (3.29) and equation
(3.30), we obtain

* 2 * * * * 2, % 2, % 2, %
(%o)aaqf* (%)( *gZ* +“*gZ* +UJ*§Z*) - —%"35* + li_‘;(aa(xgﬁ + 8?;:)2 + 83(23)2)
* 2 * * * Op* 2, % 2 )% 2, %
(%o)aaqt}* + (%)(“*gg + U*gZ* + W*gZ*) =-B 35* + lz_‘;(af()xg)? + 83(;*;)2 + 88(;*})2)
* 2 * * op* 2% 2% 2%
(o) 5 + () Gie +v' 5 + 0 n) = —B 3% + 5 (e + 567 + o)
(3.33)
Vous Vovt Vow*
h ! Y (3.34)

L Oz~ +fay* +faz* N

Multiplying equation (3.33) by p—‘Lﬂ and multiplying equation (3.34) by &, we

get

L \ou* * Ou™ * Ou™ «*0u*\ _ _ poOp 2 9%u* 2%u* 2%u*
(VTO) ot* + (u O™ +v Ay* +w 8z*) L dz* + /)VL(E)(:I:*)2 + a(y*)? + 8(2*)2)
L \ov Ny Y «00*\ _ _ po Op* L[ 9% 8%v* 8%v*
(VTO) ot* + (’LL Oz* +v Oy* +w 82*) T pV?2 oy* + ;JVL(B(w*)2 + A(y*)? + 3(2*)2)
L \oz* * Ou* * Ou* «O0u*\ _ _ po Op* u d2w* D2 w* o2w*
(VTO) ot* + (’LL Oz* +v Oy* +w az*) T pV?2 9zx + pVL(B(w* 7 + A(y*)? + 8(2’*)2)
(3.35)
ou*  Ov*  Ow*
= 0. (3.36)

ox* + oy* + 0z*

The dimensionless constants of the Navier-Stokes equations St = %, FEu =
p’%,Re = % are called the Strouhal Number, Euler Number and Reynolds
Number, respectively. So by choosing the units L, V. T,, py such that

L Po
= —-1.2 1 3.37
VT T pV2 ( )
one obtains
du* N ,ou* N ,ou* N Lou*  Op* N 1 ( 0*u* N 0*u* N 0*u* )
Uu v w et R
ot* or* oy* 0z  Ox*  Re 0(x*)?  0O(y*)2  0(z*)?

ov* +u*8v* +U*8v* W v %—Fi( v N 0?v* N 0?v* )
ot* or* oy* Oz Oy*  Re 0(x*)2  0O(y*)? 0(z*)?

ow* +u*8w* +U*8w* +w*% op* N i( 0*w* N O?w* N O?w* )
ot* or* oy* Ozt 0z Re 0(x*)2  d(y*)?2  0(z%)?

After omitting (*), we have

%+u@+v%+ Ou ——@+i(82u+82u+82u)
ot ox oy 0z  Ox Re'0x2 0y 022
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ov ov ov ov op 1 0% 0*v 0%

E—FU%—F’Ua—y—Fw%——a—y—i—@(w‘i‘a—yZ‘i‘@)

8—w+ua—w+va—w+wa—w——@+i(82w +82w +62w)
ot ox oy 0z 0z Re 0x2 0y? 022

ou, ov o _
or Oy 0z

For the sake of simplicity of the mathematical study in addition to (3.37), one
can choose units such that Re = 1. Then the system of equations become

ou ou  Ou ou op 0*u 0*u 0*u

a—l—u%—l—va—iju%:—% (8x2+8y2+8z’2) (3.38)
%+u%+vg—z+w%=—g—z+(%+%+%) (3-39)
%JFZ—ZJFZ—Z:O (3.41)

From equations (3.38) to (3.41), we can write the system in the short form as
follows:
vy + (v-V)v = =Vp+Av

divv =0
where V and A are gradient and Laplacian with respect to the space variables

x = (z,y, z), respectively.
Alternatively, we can write in the form
dv

— =A 42
o FVp=Av, (3.42)

divv =0 (3.43)

b dv Ly ov
ere — =V, +0'——
v dt ! oz
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3.4 Spherical Coordinates

Here all coordinateless operators of the viscous gas dynamics equations are
given in spherical coordinates.

Let Q C R3}(x) be open set. A one-to-one continuous differential mapping
K : Q — R?is called a coordinate system. We define the mapping by the
formulas

x =K (x) = (K'(x), K*(x), K (x))

Values of the functions K*(x) are called curvilinear coordinates of the point x.
For the spherical coordinates :

K'=r=\/z2+y2+2% K*=0=arctg ¥—— xi—l—y?;
K? = =arctg L.
The inverse mapping K~! is

x=r sinfcosp; y=rsin fsiny; z =r cos 0,
0<p<2m), (0<0<m)

The vectors ¢; = %, (¢ = 1,2,3) compose a basis and they are called basis
vectors. _ _ _ _

The vectors ¢’ = 25 = VK = (25 83[5, 2K, (i = 1,2, 3) are called cobasis
vectors.

For the spherical coordinates system, we get

e; = (sinfcosyp,sinfsinp,cosf) = et
1
- . . 2 o
ey = r(cosfcosp,cosfsingp, —sinb),e = 5
: : 3 1
es = rsinf(—sinp,cosp,0) =€’ = ————e3
r?sin” 0

Definition 4 The tensor < a,b > is called a fundamental tensor. The coordi-
nates of the fundamental tensor are

(9ij) = ei-ej, (g7)=¢"-¢

For the spherical coordinate system, the coordinates of the fundamental tensor

are
[ 1 0 0 -| [ 1
0 7r? 0 (g9 =10

0
(9i5) = [0 - 29J 0 1 (3.44)

r2sin? 9 J
where |g| = det(g;;) then |g| = r*sin? 6.

Definition 5 The values

. Loy 0Gis 39]‘5 _ 8gz'j

c 1
by =59 (am DK 8K5> (3.45)
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are called the Christoffel symbols. For the spherical coordinate system of coordi-
nates, the Christoffel symbols

It =T% = %a [y =T%5 = % [ = -,
(3.46)
I3, =T3, =cot §, Ts, = —rsin® § T2, = —sin 0 cos 0

and the others Christoffel symbols vanish.

Definition 6 The numerical values of the tensor components divided by the
length of the corresponding basis or cobasis vectors are called physical components
of the tensor.

Let v = (v, vy, v,) be the physical components of the vector v. The ten-

sor components of the vector v are (v!,v%v?) = (v, %, Yo )y (v, v9,v3) =
r rsinf
(vy, TVg, 7 SIn OU,).
Here we use the gradient of a function F' as:
oF
VE)! = —
vy = 2L
1 0F
Fy? = —— 4
vy = L9 (3.47
1 oF
(VF)? =

(rsind)? dp

The divergence of vector the v is expressed in the form

ﬁazi (\/EUZ)

For the spherical coordinates system

divv =

1
divv = m(%(rz sin fv,.) + %(TQ sin 9)% + %(TQ sin 6
1.0(r*v,) N 1 Ouvysinf 1 ov, 0 (3.48)

r?2  or rsinfl 00 +rsin98g0_

X%

)

rsin @

The contravariant components of the Laplace operator of a vector v are de-
fined by the formulas

(AV)l = gijvl,ij
iy ov’
= A +2¢9 T
(') + 29" Ty 5

_(or!
q” ( LY N T ) v?, (1=1,2,3)

+

0K ip- s 1j= ps

Let [ =1, then
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2 Jvg 2v 2 Ov 2 cot By
AV =A,) - ==— - =L _ LA
(Av) (vr) r2 00 r2  r2sinf dy r2
and the calculations show that for the spherical coordinates
2 Ovg 2 Ov 2cot @ Ov vy
Av)?Z = A Yoy, 29 20U  _
(&v) ( r )+ r20r 300 r3sinf dp  r3sin?f
2 0 v 2cotf O v
VAN 3 = A U‘p — (¥ _ 4
(&v) (rsin9)+rsin98r(r)+ r3 89(sin9)+

2 Ov, N 2cotf Ouvy
r3sin?f Op  r3sin?f Oy

Here we use the Laplace operator of a scalar function F

AF = div (VF)

In terms of covariant components, it is

) - OF 1 0 . OF
— .. — s . s
AF = g"F (g am) <v|g|g aw)‘ (3.49)

"% T \/maKZ

For the spherical coordinates system

10, ,0F 1 0 oF 1 0*F
AF = ——(r*— ~ (sinfh—) 4+ ——
r2or (r or )+ rZsinf 00 (sin 00 )+ r2sin? § Op?
Therefore,
10,,0v 1 0 ov 1 o%
A, = ==+ ———(inf—) + ——5———
(vr) r2 or (r or )+ r2sin @ 89(Sm 00 )+ r2sin? f Op?
A(%) B 18209 ia%g 1 cosf duy 1 0%y
r’ ror2 3062 r3sinf 00 r3sin? § Op?
v 1 0% 1 ov, 0%
A(Ye _ % 29 9V %
(rsin9) TQSinﬁ(r or? )jL7“3sin9(U“0CSC 0 COteaﬁ * 00? )+
1 9%,
r3sin 6 Op?
d
The coordinates of the acceleration of vector d_‘t/ = % + ?FV (v) are defined by
T
the formulas:
dv., o , o’ o’ o
DR Y — §,,2 — S I‘Z' J a0y N — 1 2
( dt ) at + U v.,s at + U aKS + ]SU U Y (Z7 .] ? ) 3)7
which in spherical coordinates system are
dv., Ov, ov, vy Ov, v, Ov, 1, , 9
AV _ — 4 : — - 3.50
(dt) ot U or +7“ 89+rsm98% r(vg+v‘0) (3:50)
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dv., 1 0vy Ovg v Ovy v, Ovg 1 9
= (L, 0 ) + — (0,09 — cot 3.51
(dt) 7"(815 v 8r+r89+rsin98<p)+r2(vve cot fv,)  (3.51)
A 1 Ov, Ov, vy Ovy, v, 0V, 1
- ) = r - r t0
(dt) rsinﬁ(at v or r 00 +7"sin9 8g0) rzsinﬁ(v Up + vov, 0t 0)
(3.52)
For example, the Navier-Stokes equations in the spherical coordinates are
ov, ov, vy Ov, v, Ov, 1, , 9 op
ot +Ur3r * r 39+rsin980¢, T(U9+U‘p)+8r
10,6 ,0u 1 0 ,.  Ov, 1 0%,
- Z (sin® -
2o o) T e M%) T g 0,2
_3%_%_ 2 8v<p_2(:0t9v9
r? 00 r?2  r?sinf dy r?

1 2 dp
) + ﬁ(Uﬂ)g — cot fvy) + -

1 0Ovg Ovg vy Ovy v, Ovy
PG e T a8 T s op
. 1 821)0 1 827)9 1 cosﬁavg
“rar TP T sing o0

1 827)9 2 avg

r3sin298—<p2 r2 or

2 0v,  2cotf Ov, Vg
300 rdsinf dp r3sin?f

)

1 Ov, Ov, vy Ovy, v, Ov, 1 op
rsin 6 ( ot T or +7 00 + rsinf dp ~  r?sinf (vrvp+vov, cot 6)+ rsin 00y
_ 1 0*v,, LY _cos 6 v, 1 9%,
rsinf 0r2  r3sin®@  r3sin?6 00 r3sinf 002
1 0%, 20, 2 Ov, 2cos’f
- r3sin®f Op?  r3sin@  r2sinf Or  r3sin® 6%
2cos Ov,, 2 Ov, 2cotf Ouvy

+ + LA
r3sin?f 00  r3sin’@ Op  r3sin®h Op

10,, 1 0 1 ov

——(r’v,) + ———(vpsinf) + ———~ =

7“287“( ) rsm989(9 ) rsinf dp
The viscous gas dynamics equations in spherical coordinates are very cumber-
some. For their expressions, we use the REDUCE-program, which is described
in the next section.
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3.5 Application of Computer Algebra for
Constructing the Viscous Gas Dynamics
Equations in Spherical Coordinates

A study of compatibility conditions and rewriting of the gas dynamics equa-
tions in spherical coordinates requires cumbersome symbolic calculations.

The advent of algebraic computing and the use of computer languages for
symbolic computations such as REDUCE, MAPLE, MATHEMATICA etc., have
made possible the use of computers for our goals. In this study, we use the
REDUCE-program (cf. Hearn (1999)).

The main goal of our research is to study partially invariant solutions with
respect to all rotations in three-dimensional space. For rotations, it is convenient
to work in the spherical coordinates.

The procedure of an application of computor algebra can be described as
follows:

1. We write the Navier-Stokes equations and the viscous gas dynamics equa-
tions in the spherical coordinates. Cartesian coordinates of point X (z, vy, 2),
velocity vector v(u, v, w) are related to the spherical coordinates by the for-

mulas
xr = rsinfcosp,
= rsinfsin g, (3.53)
z = rcosf
and
U = wusinfcosp + vsinfsiny + wcosd,
V. = wcosfcosp+ vcosfsing —wsinb, (3.54)
W = —using+vcos.p

From these equations, one can find u, v, w :

u = Usinfcosp+ V cosfcosp — Wsinp,
v = Usinfsing + V cosfsiny + W cos @, (3.55)

w = —Ucosf 4+ vsinf

Here U = v,,V = vy, W = v, are physical coordinates of the velocity
vector. Dependent variables are v,,vg, v, and p which can be rewritten in
computer program as vr, vte, v fi and p respectively. Independent variables
are r,0,p and t, in REDUCE-program we use r,te, fi and t. The full
REDUCE-program for obtaining the Navier-Stokes equations, the viscous
gas dynamics equations are enclosed in Appendix A.
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2. We write the group of rotations in the spherical coordinates. This group
corresponds to the algebra, whose generators in Cartesian coordinates are

X7 = y0, — 20, +v0, — w0,
Xs = 20, — 20, +udy, — wo,
Xy = 20y —y0, +ud, —vo,

In order to transform these generators into the spherical coordinates, we

have to make use of an arbitary function f which depends on x,y, z, u, v, w, U,
V,W,r, 80, as the initial step in using the REDUCE-program. Then we de-

fine variables u, v, w depending on z,y, z and use M, L, K for the variables

U,V,W which depend on 7,0, ¢.

The result of these calculations is the representation of the generators X7, Xg, Xy
in spherical coordinates

X7 = —sinpdy — cos p cot 0, + cos p(sin 8) ™ (Vay — Way) (3.56)
Xg = — cos pdy — sin g cot 00, + sin ¢(sin 8) "1 (V Oy — W) (3.57)
Xy =0, (3.58)

We further simplify operators (3.56)—(3.57) by introducing cylindrical coordinates
(H,w) into the two-dimensional space of vectors (V, W)

V =Hcosw, W =Hsinw (3.59)
or
w=w(V,W), H=HV,W) (3.60)
In this case “inw
Oy = coswiy — Taw

COS W

Haw

Oy = sinwiy +

and the operator
V@W — Wav = Jw

Hence, the generators (3.56)—(3.58) in the spherical coordinates are rewritten as

X7 = —sin pdy — cos pcot 09, + cos p(sin ) 14, (3.61)
Xg = — cos pdy — sin ¢ cot 0, + sin ¢(sin §) ', (3.62)
Xy =0, (3.63)

The full REDUCE-program for the generators of the group of rotations in
spherical coordinates is in Appendix B.



Chapter 1V

Analysis of Compatibility

4.1 Representation of Partially Invariant
Solution

In this section we construct a representation of partially invariant solution
of the viscous gas dynamics equations with respect to the Lie group with the
generators (3.61, 3.62, 3.63). The first step in finding the representation is a
construction of the universal invariant, which is a set of functionally independent
solutions of the equations

X;F = —sin pFy — cos g cot OF, + cos p(sin ) ' F, (4.1)
XgF = —cos pFy — sin g cot OF,, + sin p(sin 0) ™' F,, (4.2)
XoF = F, (4.3)

Here we use the space of the variables ¢, 7,0, o, U, H,w, T, p.

System (4.1)—(4.3) is a overdetermined homogeneous linear system of the first
order equations. For solving these equations, one needs to use Poisson brackets.
Because the generators X7, X5, X9 compose a Lie algebra, then this system is a
complete system. For a complete systems the method of their solving consists of
sequential solving of the equations of the system. For example, from the equation
XoF =0, we have

F=F(tr,0,UHuw,T,p)

By taking linear combinations of the equations X;F = 0 and XgF = 0, these
equations can be rewritten as Fy = 0, F,, = 0. Therefore, the universal invariant
is J = J(t,r,U, H,1,p). The rank of the Jacobi matrix of the universal invariant
with respect to the dependent functions is

o(t,r,U, H,p,T)
o(U,H, p,w, )

) =4

rank (

Hence, according to Ovsiannikov, (1978), there are no nonsingular invariant so-
lutions, only partially invariant solutions are possible. A minimal possible defect
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of the partially invariant solution is equal to one. In this case, a representation
of the partially invariant solution is

U=U(t,r), H=H(t,r),p=p(t,r), T =71(t,r),w =w(tT0,p) (4.4)

The function w(t, r, 8, ) is ”superfluous”: it depends on all independent variables.
If H = 0, then the tangent component of the velocity vector is equal to zero. This
corresponds to the spherically symmetric flows. In our first study, we assume

H#0.

Theorem 2 The class of solutions that is partially invariant with respect to all
rotations is confined to spherically symmetric solutions.

A description of the REDUCE-program of study compatibility conditions is
given in the next section. The result of the calculations is the following:

4.2 Analysis of Compatibility of Partially
Invariant Solution (H # 0)

For the sake of simplicity, we present here the analysis of compatibility of
partially invariant solution for the Navier-Stokes equations, i.e., when 7 and u
are constants.

The analysis of compatibility for the viscous gas dynamics equations is sim-
ilar, but it needs more cumbersome symbolic calculations. After substituting
the representation of the partially invariant solution (4.4) into the Navier-Stokes
equations, ! some combinations of the second and the third equations the initial
system can be split on two subsystems: the invariant system

DoU +p, — [r7 ' H? + (Upyp + 4r~'U, + 2r72U)] = 0 (4.5)
with the operator Dy = 0; + UJ, and the supplementary system

Dy(rH) — (rH),, + (rsin® ) 'H + r H(w? + r2wj +
(rsinf)*w? + 2(r?sinf) "' cot fuw,) = 0 (4.6)

Dow + (rsin#) ™" H (sin # cos wwy + sin ww,, + cos @ sinw) —
W — 2(rH) N (rH)pw, — 1~ %wgg — 12 cot uwy — (rsin ) 2wy, = 0 (4.7)

sin 0 sin wwy — cos ww,, — cosf cosw — sin O(rH) ™' (r*U), = 0 (4.8)

For the analysis of compatibility of system (4.5) and (4.6) it is convenient to use
an implicit representation for the function w = w(t,r,0, ) :

Fw,t,7,0,9) =0, (F,#0), (4.9)

!Here we use the dimensionless representation of the Navier-Stokes equations.
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In this case, the derivatives are

F, = F,w,+F,
Fy = F,wg+ Fy
For = Fowy +wiFu, + Frowr
Fopo = Fwpy + ngww + Fy,we

All derivatives of the function w(t,r,6,¢) can be calculated through the
derivatives of the function F(w,t,7,6, ) :

Wy = _Ft/Fwa Wy = _Fr/Fwa Wy = _FG/Fwa Wy = — Lp/Fw
Wrpr = _FL(Fwww? + 2F,w, + Frr)
h (4.10)
W = —E(Fwwwg + 2F pwy + Fpy)
Wep = —F—lw(Fwwwz) +2F,w, + Fpy)

Then equation (4.8) becomes
sin@sinwFy — coswF, + F,(cosfcosw + ksinf) =0

where the function k¥ = (rH) '(r?U), only depends on t and r. Note that for
the viscous gas dynamics equations, there is the same equation with the function
k(t,r) = (Hrt)"'(=rDy7 + 7(r?U),. The general solution of the last equation is

sin w

F:<I><<p+a7"ctcm( ),sin@cosw—kcos@,t,r).

k sin 6 4 cos 6 cos w
Here the function ® = ®(y;, y2,t,7) is an arbitrary function of the arguments ¢, r

and )
sin w

y1 = ¢ + arctan( ), y2 = sinf cosw — k cos .

ksin 6 + cos 6 cos w
All further intermediate calculations in studying the compatibility of the overde-
termined system (4.5)-(4.8) were made on computer in the system REDUCE
(Hearn (1999)). Here we give the way of computing and the final results.
0(y1,y2,0,t,7)
O(w,0,p,t,1)
(y1, Y2, 0,t,7) as the new independent variables instead of w, 8, ¢, t,r. All deriva-
tives of the function F'(¢,7,0, ) can be written through the derivatives of the
function ®(yy,ys2,t, 7). After that, the equation (4.7) takes the form

Note that the Jacobian

= 0; therefore, one can choose

sinwG1 (Y1, Y2, t, 1, 0) + Go(y1, ya, t,7,0) =0 (4.11)

where the functions G (y1, y2, t, 7, 0) and Ga(y1, y2, t,7,0) do not include w and its
derivatives. In the last equation, sinw can be excluded by using the trigonometry
identity:

G2(1 — (yo + kcos0)?) — G2(1 — cos*#) = 0 (4.12)
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where the equality cosw = sin™ ' f(y, + k cos 0) is found from the representation
of ys.

Further calculations show that the last equation depends on # as the polyno-
mial of the degree 8 with respect to cos8:

8
P = Z ay cost 6 = 0. (4.13)
k=0

The coefficients ay, (k= 0,1,...,8) only depend on yi, yo, ¢, and do not depend
on . This allows splitting the equation with respect to cosf: a = 0, (k =
1,2,...,8).

The equality ag = 0 gives

Doh = h,p + h(k* + 1) 'h,, (4.14)
where h = rH. Substituting h; found from (4.14) into ag = 0, we obtain
ke (K + 1)®, + kk,y2®y,) = 0. (4.15)
If (k* +1)®, + kk,y2®P,, = 0, then the equation ay = 0 gives the equation
ys — (k*+1)=0
or
(sinfcosw — kcosf)? = k* + 1.

Note that substituting the representation of the function w(t,r, @, ¢) found from
this equation into (4.5) to (4.8) and splitting them with respect to cos 6 gives the
expression H = 0 that contradicts the assumption about H.

For the second case in (4.15), when k, = 0 we will obtain a contradiction with
the help of the equation of (4.6). In reality, the same study of the equation of
(4.6) as for the equation (4.7) leads to a polynomial of the degree 10 with respect
to cos 6:

10
Py = Zbk cos* 0 = 0,
k=0
where the coefficients by, (k= 0,1, ...,10) only depend on yy, y2, t, 7. The equality
bip = 0 gives
k=1 2h(k* +1). (4.16)

By virtue of k. = 0, (4.16) and the definition of k& = (r?U),/h one can obtain
that

h(t,r) = 3c(t)r?, r?U(t,r) = k(t)e(t)r® + A(t),
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where c(t) = (k*(t) + 1) "'£’(¢)/3. Substitution of this representation into (4.14)
and splitting it with respect to r gives ¢(t) = 0 which contradicts the assump-
tion H # 0. Similar calculations have been done for the viscous gas dynamics
equations. The analysis that done proves that the partially invariant solutions
of the studied class for the both types of equations (the Navier-Stokes equations
and the full viscous gas dynamics equations), in contrast to inviscid gas and ideal
incompressible inviscid fluid dynamics equations, are only spherically symmetric
solutions.

In order to use REDUCE-program for analysis of compatibility, we summarize
the main steps as follows:

1. Substituting the representation of partially invariant solution into the Navier-
Stokes equations.

2. Using the implicit representation for the function w = w(t, r,, ¢) described
in equations (4.5) and (4.6).

3. Substituting the general solution of equation (4.8) into equations (4.5)-
(4.7).

4. Changing the independent variables from w, @, ¢, t, r into yy, ys, 0, t, 7.

5. Substituting all derivatives of the function F'(¢,r,0, ) through the deriva-
tive of the function ®(yy, yo, t, ) into the system of equations in the previous
step.

6. Splitting modified equation (4.7) with respect to cosf.

7. Analyzing the equations obtained.

For the final result of analysis of the equations, it is found that H = 0 which
contradicts to the initial assumption. This means that there are no partially
invariant solutions in this case.

The full REDUCE-program for analysis of compatibility is in Appendix C.

4.3 Spherically Symmetric Flows of the Navier-
Stokes Equations

Here we study the case H = 0, which corresponds to a spherically symmetric
flow of the Navier-Stokes equations. After substituting the representation
U=U(t,r),V=0,W=0,P = P(t,r) into the Navier-Stokes equations we have

DoU + p, — (Upp + 401U, +2r 2U) =0 (4.17)

(r*U), =0 (4.18)
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where the operator Dy = 0; + Ud,. From equation (4.18) we obtain
r?U = f(t)

or
U=17"f(t)

where f = f(t) is an arbitrary function of time ¢. After substituting the function
U into equation (4.17). we have

1 . 2
2f.

Therefore, the spherically symmetric solution of the Navier-Stokes equations is

PO LW ) o
Ty U=V =0m=0 (4.19)

r2

p=q(t) +

with arbitrary functions ¢ = ¢(t), f = f(t).



Chapter V

Spherically Symmetric Flows

5.1 Spherically Symmetric Flows of a Viscous
Gas

The case H = 0 corresponds to a spherically symmetric flow of a viscous gas.
According to the definitions of group analysis, the case H = 0 corresponds to
a singular invariant solution with respect to the group of rotations O(3). The
viscous gas dynamics equations in this case are

Dot — 7(U, +2r~'U) =0, (5.1)
DoU + 7p, = (A + 20) (U + 207U, — 2r72U) + 67 (1,70 + pppr) +
+7(U, + 2r 'U) (N7 + Appr),
Dop + A(U, +2r~'U) = BIA(U, + 2r~'U)* + 2u(U? + 2r~2U?) +
+5(Tpr 72 + 2Ty Topr + Tppp? + Ty (T + 207 '7) +
+ T, (Drr + 277 'pr) + (Kppr + 1627) (Te T + Ty )],

where Dy = 0, + U0,. In this section we study a group classification of equations
(5.1) with respect to the arbitrary elements A , B, A, u, k, T. Henceforth, we
shall use the letter ¢ for the internal energy because we use U for the velocity.

5.2 Equivalence Transformations

The first stage of group classification requires determining a group of equiv-
alence transformations of equations (5.1). An equivalence transformation is a
nondegenerated change of dependent and independent variables and arbitrary el-
ements, which transforms any system of differential equations of a given class to
a system of equations of the same class. It allows using the simplest representa-
tion of given equations. Here we give a construction of the group of equivalence
transformations without restrictions on the representation of equivalence trans-
formations (Ovsiannikov, 1982). We follow the approach for the calculation of
equivalence transformations developed in Meleshko (1995).

Since arbitrary elements satisfy restrictions (3.14) and A = A(p,7),B =
B(p,7),A = AXp,7),pp = p(p,7), 6 = k(p,7), T = T(p,7), then for calculating
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an equivalence group of transformations we have to append the equations
Ar = O,AtZO,AUZO,Br:O,BtZO,BUZO,

Ar 0, =0, g =0, =0, 4y =0, uy =0,
kr = 0,k =0,k0=0,71,=0,T,=0,Ty =0

to equations (5.1). All coefficients of the infinitesimal generator of the equivalence
group

X =040+ ("0 + 0, + ("0, + (04 + (P OB+ CPON + ("0 + ("0 + (T Or
are dependent on all independent, dependent variables and arbitrary elements
T? t7 U7 7_7 p7 A7 B7 )\7 /’L7 H? T'

With the following notation:

w=U =71, =p at=A4 =B, =\ ad'=p =k d"=T

and

5 . 0db d%a®
at = — af, = ———
P = 5.8 %8 T 5,928

™
I
=3
™
I
\.N
™
I
S
N
N
I
=
N
I

the coefficients of the prolonged operator

Xe—= X°+ Z(Cuiaﬂﬁ + Cuéau;') + anfjaa,;j + ...

k7j
can be constructed with the prolongation formulas:
(" = D,¢" —uy D¢ — D, (t, ¢ = Dy —up D" — uy Dy,

¢ = DpC" = ul, D¢ — ul, D¢
5 5
Cag — e Cak o kDe z* a’-“ﬁ — D¢ a® o k D¢ z*
- 2B a/a zﬁc 9 C = zBC J a]a zﬁc .
a=1 a=1

Here the operators D,, D, denote the total derivative operators with respect to
r and ¢, respectively. For example,

D, =0, +Zu$‘ e —i—Z(ai +Zaijui)8ai +...
« { J

When we use the operator D¢;, we consider z', ..., 2" as independent variables

and a', ...,a% as dependent variables. As a result, we obtain:

DY =05+ aliOu+....
7
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All necessary calculations here as in the previous sections were carried out on
a computer using the symbolic manipulation program REDUCE (Hearn, 1999).

The calculations show that the group of equivalence transformations of equa-
tions (5.1) corresponds to Lie algebra with generators

X{ =0, X5 =0, X§=1r0,+1t0, + N0\ + po, + K0,
X{ =10, +udy + 270; + 2K0y, X{ = —70, + p0, + A4 + A0\ + 110, + KO.

Remark. If instead of the functions A(p,7), B(p,7), one considers the inter-
nal energy e(p, 7), then the operators X§, X5, and X¢ are changed to

X; = 0, — 10,
Xy = 10, +u0, + 270; + 2Kk0, + 2¢0.,
X; = —70; +p0, + \Ox + p0, + KO,.

and there is one more generator X¢ = 0..

Remark. By direct checking, one can obtain that in the general case' (equa-
tions (3.24)) the equivalence group includes the transformations with the gener-
ators

Xi = 0,

X = 9,

X3 = X0k +1t0, + N0\ + 0, + KOy,

X, = xO0x+u0, + 270; + 2k0,,

X; = —710; +p0, + A0s + A0y + 110, + KO,

There are also other generators, for example, that correspond to the Galilei trans-
formations and to the rotations in the three-dimensional case.

5.3 Admitted Group

Finding an admitted group consists of seeking solutions of the determining
equations (Ovsiannikov, 1982). We are looking for the generator

X =0, + 0+ Yoy + (70, + (PO,

with the coefficients depending on r, ¢, U, 7, p. Calculations lead to the following
result.
The kernel of the fundamental Lie algebra is made up of the generator

X:at.

LGroup classification of three-dimensional viscous gas dynamics equations with A\ = —2u/3
was studied in Bublik (2000).
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Extension of the kernel of the main Lie algebra occurs by specializing the functions
A= Ap,7),B=Bp,7),A\=Ap,7), 1t = p(p,7),k = k(p,7),T = T(p, 7). Note
that the functions A = A(p, 1), B = B(p,7),T = T (p, 7) have to satisfy equations
(3.14). There are three types of the generators admitted by system (5.1). Further
«, 3 and 0 are arbitrary constants.

Type (a). If the functions A(7,p), B(7,p), A(1, p), u(7, p), k(, p), T (T, p) sat-
isfy the equations

atA; +A,=0, atB; + B, =0,
atpr + py = B, at A + A, = BA, (5.2)
arT, + T, =0T, atk, + Ky, = (=0 + a+ B)k,

then there is one more admitted generator:
Y, = aU0dy + 2a70; + 20, + (o + 25)r0, + 25t0,.
The general solution of equations (5.2) is

A= A(re ), B = B(te ), u=ePM(re=), A\ = P A(re~ ),
T = ePO(re™), K = e ~0HethP K (reP),

where the functions A(z), B(z) and ©(z) satisfy the equations (z = Te~°P)
—azBA' +2B'(1+aA)= B>+ B, (1+ad)0'=(§A— B)O. (5.3)
The internal energy is represented by the formula
e =e"(p(z) — 2p) + ¥(p), ¥'(p) = Ce™,

where the function (z) and the constant C' can be accounted as arbitrary and
they are related with the functions A(z) and B(z) by the formulas

¢'(2) = 2&2, C=z+ % + azy'(2) — ap(z).

In this case, the function ©(z) has to satisfy the equation
(C =z + ap(2)) ©'(2) = (0¢'(2) — 1)O(2).

Type (b). If the functions A(7,p), B(7, p), A(7,p), u(7, p), £(7,p), T(7, p) sat-
isfy the equations

atA; +pA, = A, atB; +pB, =0,
arT; + pT, =0T, ark, +pl, = (=0 + 2+ a+ P)k,

then there is an extension by the generator

Y, = (1+ «)Udy + 2070, + 2p0, + (o + 23 + 1)rd, + 2/5t0,.
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The general solution of equations (5.4) is

A=pA(rp), B=B(rp~®), p=p’M(rp=), A= pP* ' A(rp®),
T =p'O(rp *), k=p "THRK (rp ),

where the functions A(z), B(z) and ©(z) satisfy the equations (z = 7p~®)
—azBA" + 2B'(1+aA) = B>+ B— BA, (1+aA)20' = (A—B)O. (5.5)
The internal energy is represented by the formula
e =p " (p(z) = 2) + ¥(p), ¥'(p) = Cp",
where the function ¢(z) and the constant C' are arbitrary and they are related

with the functions A(z) and B(z) by the formulas

Ve
C=z2+——

#'(2) = B ST B T az¢'(z) — (@ +1)p(2)

The function O(z) is represented through the function ¢(z) by the formula
(C =2+ (a4 1)p(2)) O'(2) = (0¢'(2) = 1)O(2)

Note that an ideal gas belongs to this type in case of 6 = a + 1 and the function
©(2) satisfies the equation

0(2¢" — ) = C.

Type (c). If the functions A(r,p), B(7,p), A(T,p), u(7, p), (7, p), T (7, p) sat-
isfy the equations

A; =0, B, =0, T = B, TAr = BA,

T, =0T, 7k, = (=0 + 1 + B)k, (56)

then there is one more admitted generator:
Y, =U0y +270; + (1 4+ 20)r0, + 25t0,.
The general solution of equations (5.6) is

A= A(p), B=B(p), pn=1"M(p), A\ = 7°A(p),
T =7°0(p), k=71 "FHK(p),

where the functions A(p), B(p) and O(p) satisfy the equations
BA' — AB'=B?+ B, A@ =(§+ B)O. (5.7)
The internal energy is represented by the formula

e =T19p(p) — 1p,
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where the function ¢(p) is an arbitrary function and is related with the functions
A(p) and B(p) by the formula

o(p) = %-

In this case the function ©(p) is related with the function ¢(p) by the formula

p(p)O'(p) = (1 =6+ ¢ (p))O(p).

Note that if § = 1 and ¢ = Cp, then the gas is ideal.

The final results of the group classification are presented in Table 6.1. In this
table the first column means the type of the extension of the algebra {X}: the
types a, b, or ¢, respectively. The last column means conditions for the state
functions.

Therefore, there are three kinds of admitted by equations (5.1) groups, which
depend on the specifications of the functions A = A(p,7),B = B(p,7),\ =
Ap, 7)1 = p(p, 1),k = k(p,7), T = T(p, 7). These groups are one-dimensional,
two-dimensional and three-dimensional.

The two-dimensional admitted groups are groups with the generators either
{X,Y,} or {X, Y3} or {X,Y.}. The three-dimensional admitted groups are the
groups with the generators either {X,Y,, Y3} or {X,Y,, Y.} or {X, Y}, Y.}

The group with the generators {X,Y,,Y;} is admitted by equations (5.1) if

A=Ay, B=—1, =" N = N7 k= kot T =Tyr, a #0.

In this case the internal energy is ¢ = —(7p + A4y f 7 dr). Instead, the operators
Y, and Y}, one can use their linear combinations:

Y, =08, ¥y = (14 a)Udy 4 270, + (a + 28 + 1)rd, + 25t0,.
The algebra of the type {X,Y,, Y.} is admitted by equations (5.1) if
A=Ay, B=—1, p1=por’e®, \ = \g77e,

K= noTﬁ_A‘)”e(a_”)p, T = Tyr'tAooeop,

In this case the internal energy is ¢ = —(7p + Ap7) and by taking linear combi-
nations of the operators Y, and Y. one obtains another basis of the generators:

Y, =8, + a(rd, + 18,), Y, = Udy + 270, + (28 + 1)rd, + 25t0,.
The third type of the algebras {X, Y}, Y.} is admitted by (5.1) if

A=qp, B=vy—1, p=pr’p't®, X\ = XorPp'te,
K = HOT*y(l—a)-i—,Bpa—é-i-?, T = T0T7(6—1)+1p6, v 7& 1.

The internal the energy in this case is
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and linear combinations of the operators Y, and Y, are:
Y, = Udy + 2pd, + 2a + 1)rd, + 2010, Y, = Udy + 270, + (26 + 1)rd, + 2510,

Note that a polytropic gas belongs to the last case of gases, where 7 is a polytropic
exponent.
In the formulas above Ay, 1, Ao, ko, To, @, 3,7, 9, 0 are arbitrary constants; the
commutators R R R
V.. Vil = 0, [V, Vil =0, 13,7, = 0.

5.4 Optimal Systems of Subalgebras

Here we study subalgebras of the two-dimensional admitted algebras { X, Y, },
{X, v}, {X, Yo}
The commutator [X, Y] of the generators X and Y is

(X, Y] = 2X.

Here either Y = Y, or Y = Y, or Y = Y, and z = 25. Automorphisms are
recovered by the table of commutators and consists of the automorphisms

!/

Ay 7' =a+zyar, Y =y,
A2 s = e_zana y, =Y,

where x and y are coordinates of the operator Z = zX + yY, 2/ and ¢ are
coordinates of the operator Z' after actions of the automorphisms, and ay, as are
parameters of the automorphisms. There is also one involution

E ZU,:—J?, y’:y,

which corresponds to the change of the variables t - —t and U — —U without
changes of equations (5.1). Note that if 2 = 0, then the automorphisms are
identity transformations. This leads to two optimal systems of subalgebras.
If z=0 (or § = 0), then the optimal system of subalgebras consists of the
subalgebras
{X} {Y +nX}, {X Y},

where h is an arbitrary positive constant.
If z# 0 (or B # 0), then the optimal system of subalgebras consists of the
subalgebras

{xX}, {Y} {X v}

Therefore, one can summarize: optimal systems of subalgebras for the two-
dimensional algebras are described by the following system of subalgebras

(X}, {Y + hX}, {X,Y}, Bh=0. (5.8)
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5.5 Representations of Invariant Solutions

The next step in the construction of representations of invariant solutions con-
sists of finding universal invariants. Note that invariant solutions corresponding
to the case of the subalgebra {X} are the well-known stationary solutions. The
universal invariants for the other subalgebras of the optimal system (5.8) of the
algebras {X,Y,}, {X,Y;} and {X,Y.} are presented in Tables 5.2, 5.3 and 5.4,
respectively.

According to the theory of the group analysis (Ovsiannikov, 1982), in the
next step in constructing of invariant solutions, one needs to separate the uni-
versal invariant into two parts: one part has to be solvable with respect to the
dependent variables U, 7, p. After that, the representations of invariant solutions
are obtained by supposing that the first part of the universal invariant depends
on the second part. Because of this requirement, there are no invariant solutions
in the cases: a.1 if h = 0, a.4, b.1, b.5 and ¢.3. The cases a.5, b.6 and c.4 cor-
respond to the special cases of stationary solutions, which we also exclude from
our consideration?.

All possible representations of invariant solutions of equations (5.1) are pre-
sented in Table 5.5, where the functions f*, f7, f? are functions of one indepen-
dent variable presented in the last column. These functions must satisfy ordinary
differential equations, which are obtained after substituting the representation of
solution into system (5.1).

Remark. Invariant solutions a.3, b.2, b.4, ¢.2 are self-similar solutions.

Remark. One of the well-known solutions of the Boltzmann equation (the
BKW-solution®) has the representation (Bobylev,1976; Krook,1977).

f = o(lule”),

where f is a distribution function, |u| is a modulus of the velocity. The invariant
solution of the viscous gas equations, which corresponds to the case b.3 gives

|u|67t(o¢+1)/h — qu(Q),

with ¢ = re” . Therefore this solution can correspond to the BKW-solution
and generalize it on molecules with exponent intermolecular potentials. For the
molecules with exponent intermolecular potentials the coefficients of viscosity and
conductivity are in Bird(1994).

t(a+1)/h

n = :u’OTka KR = K;OTka

where T = Topr, k = (n — 1)/m + 1/2, n is a dimension of the problem, m is
the exponent of intermolecular potentials. In this case « = 1/k— 1= (m +2n —
2)7'(m — 2n + 2). For the Maxwell molecules, for which the BKW-solution was
constructed, the exponent of intermolecular potentials is m = 4, and hence, in
the three-dimensional case a = 0 and k£ = 1.

2If an universal invariant is three-dimensional (consists of three invariants), such as in the
cases of a.5, b.6, c.4, then the representation of the invariant solution is obtained by assuming
that all invariants of the universal invariant are constants.

3This solution is constructed for the Maxwell molecules.
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Table 5.1: Group classification.

A 1 T K A B z Cond.

a ePA(z)  ePPM(z)  ePO(z) eTHAPK () A(2) B(z) Te® (5.3)

b pPHA(2) pPTIM(z) pPO(z)  p TOtIRK(2) pA(z) B(z) Tp (5.5
'Alp)  T'M(p)  mO(p) T HK(p)  A(p) B p (5.7)
Table 5.2: Universial invariants of subalgebras of the algebra {X,Y,}.

N Subalgebra consts Universal invariant

al Y,+hX f=0,aa=0 Ur,t—hp/2r

a.2 [h=0 B=0,aa#0 Urt7mr2p—2atlnrt—ha tlnr

a.3 B#0 Ut (@)/@8) rp=alB py — In(t'/8), rt—(a+28)/(25)

ad X,Y, a+28=0 Ue /2 re=

a.b a+28#£0 Ur/(@t28) rp=2a/(a+28) 4 _ 9(q +28) Inr

Table 5.3: Universial invariants of subalgebras of the algebra {X,Y;} (k = a +

26 +1).
N  Subalgebra consts Universal invariant
b.1 Y,+hX f=0,a=—-1,h=0 U,p/T,rt
b.2 Lh=0 B=0,a# —1,h=0 Ur ! rr2e/(atl) pp=2/(e+l) ¢
b.3 5 — 07 h 7£ 0 Ueft(crkl)/h7 7_672ta/h’p€72t/h, Teft(oH»l)/h
b.4 B£0 Ut (@+D/2B) rp—afB =18 pp—k/(25)
b5 XY, k=0 Up (@02 rp-a
b.6 k#0 Ur—(etD/k pp=2a/k pp=2/k
Table 5.4: Universial invariants of subalgebras of the algebra {X,Y.}.
N  Subalgebra consts Universal invariant
cl Y.+hX =0 Ur=Y7r=2 p,t — hinr
C.2 /BI’L = 0 5 % 0 Ut—l/(%’), Tt_l/ﬂ, p, Tt_(2ﬂ+1)/(26)
c3 XY, 204+1=0 Ur Y pr
c.4 2B+ 140 Ur~'/CB+D 7p=2/C8+1)
Table 5.5: Representations of invariant solutions.
N Representation of invariant solution Ind. variable Model
1 U= fu,7=f",p=2th '+ fP r a.l
2 U=rfY,7=7r2f",p=2a" lnr+ fP t—hatlnr a.2
3 U=t/ fu = olBfr = In(t'/8) 4 fr pt=(a+26)/(26) a.3
4 U=rfur=r2/eth)fr 5 = p2/latl) fp t b.2
5 U= 6t(a+1)/hfu, T = 62t0¢/hf7',p _ 62t/hfp, re—tla+1)/h b.3
6 U =tetD/C8) fu 7 — ga/Bfr p — ¢1/6 fp rt—(@+26+1)/(28)  p 4
7T U=rfu,7=r%fT,p=f? t—hlnr c.l
I ) R e W rt-B/CD)




Chapter VI

Conclusions

6.1 Thesis Summary

In this thesis, partially invariant and invariant solutions of the Navier-Stokes
and viscous gas dynamics equations related with the group of rotations in three-
dimensional space were studied.

6.1.1 Problems

The thesis is devoted to an application of group analysis to the equations
governing a motion of Newtonian viscous fluid. In the compact form, these
equations can be written as follows !

d
d_;’ +7Vp =7[(A + p)V(divv) + (divv)VA + 2D < Vi > +pAv],
d
d—; — rdivv =0, (6.1)
d
d—zt’ + A(p, 7)(divv) = B(p, 7)(Mdivv)® + 2uD : D + (Vk)(VT) + kAT),
where ( v
T(p+U; T
A =¥ "7 B -
(p. 7) T (p, 7) 0,

. : : 1, :
and v = (ug, us, u3) is the velocity vector, p is pressure, 7 = — is specific volume,

p is density, U is the internal energy, T is the temperature, A and p are first
and the second coefficient of viscosity, k is a coefficient of a heat conductivity, ¢
is time, V and A are the gradient and the Laplacian with respect to the space
variables x = (z1, xa, x3), respectively.

In the case of incompressible fluid, 7 and p are assumed to be constants and
the equations are split on two parts: the momentum equations and the continuity
equation

d
d_;’ = —7(Vp + pAv), divv =0.

'Tn the literature, these equations are often called the Navier-Stokes equations.
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Recently, Ovsiannikov (1995) found one class of partially invariant solutions
of inviscid gas dynamics equations (@ = A = k = 0), which is called a special
vortex. This solution is based on the group of rotations in three-dimensional
space. Therefore, it is natural to investigate the solutions of the Navier-Stokes
and viscous gas dynamics equations, which are related with this group.

The group of rotations in three-dimensional space can be described by the
generators as:

Gik, + 0 = %0y, — TOy; + U0y, — U0y, (i < k)

A study of solutions related with the group of rotations requires using the
spherical coordinate system. The derivation of equations (6.1) in the spherical
coordinate system is done by a computer program in REDUCE. Using symbolic
calculations prevents us from errors in doing analytical studies.

The thesis has considered the following problems.

1. Partially invariant solutions with respect to group of rotations have the
representation

U= U(t7 70)? H = H(t,?“), p= p(t7 7”), T = T(t,?“),w = w(t,r,&, 90)

where (U, V, W) is a velocity vector in spherical coordinate system, V = H cosw,
W = Hsinw. Here w = w(t,r,0, ) is a "superfluous” function. The first study is
devoted to establishing a compatibility of essentially (H # 0) partially invariant
solutions of the Navier-Stokes and viscous gas dynamics equations.

2. The case H = 0 corresponds to a singular invariant solution. The problem
is to study the Navier-Stokes and viscous gas dynamics equations by group anal-
ysis. The first step in applying the group analysis is a group classification. The
group classification problem consists of searching for groups of transformations
admitted by the system for all arbitrary elements and all specifications of arbi-
trary elements. By the special choice of the arbitrary elements, one can extend
the admitted group.

After finding the admitted group, one can try to construct exact solutions:
every subgroup of the admitted group can be a source of invariant or partially
invariant solutions. There is an infinite number of subgroups, even in cases where
the admitted groups are finite-dimensional. But if two subgroups are similar, i.e.,
they are connected with each other by a symmetry transformation, then their
corresponding invariant solutions are connected with each other by the same
transformation. Since the set of subgroups can be divided into classes of similar
subgroups, it is sufficient to find only one representative solution from each class
of subgroups. A set of representatives of equivalent subgroup classes is called an
optimal system of subgroups.

6.1.2 Results

1. It is proven that partially invariant solutions of the singular vortex type
of the Navier-Stokes and viscous gas dynamics equations are reduced to singular
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invariant solutions (H=0).

2. The group classification of the spherically symmetric viscous gas dynamics
equations has been done. The kernel of the fundamental Lie algebra is made up
of the generator

X == 3t

Extension of the kernel of the main Lie algebra occurs by specializing the func-
tions A = A(p,7),B = B(p,7),\ = Xp,7),n = p(p,7),6 = k(p,7), T =T(p, 7).
There are three types of generators admitted by system (5.1).
3. An optimal system of subalgebras of the algebra {X, Y} was presented.
4. All representations of invariant solutions of the spherically symmetric vis-
cous gas dynamics equations were constructed.

6.2 Applications

Expected benefits of this research include the following. Exact solutions are
good tests for the comparisons of various numerical methods. By comparison of
the solutions of different simplifications with the solutions of the complete Navier-
Stokes equations can be useful for a determination of scopes of simplifications of
the complete equations.

The immediate beneficiaries of this research will be to those who use the
Navier-Stokes equations for modeling the processes in different kinds of technol-
ogy: superconductor, aerodynamics and geodynamics. In the longer term, the
results of this research will be used by researchers doing theoretical investigations
of the Navier-Stokes equations and other scientific studies.

6.3 Limitations

In the thesis, the group analysis was applied to the Navier-Stokes and vis-
cous gas dynamics equations. Solutions related with the group of rotations were
studied.
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Appendix A

Deriving Equations in Spherical
Coordinates

A.1 The full program for deriving the Navier-Stokes
equations in spherical coordinates

The first part of the program is devoted to deriving the Navier-Stokes Equations
in spherical coordinates by using REDUCE. Here we explain the identificators
and main commands.

The commands
sl:=dvidt+grpl-lapvli;
s82:=dv2dt+grp2-lapv2;
83:=dv3dt+grp3-lapv3;
sd:=divv;

correspond to equations (3.42) and (3.43), where

d d d
dvidt = (d—‘t’)l, dv2dt = (d—;’)Q, dv3dt = (d—‘t’)3

grpl = (Vp)',  grp2 = (Vp)’, grp3 = (Vp)’
lapvl = (Av)}, lapv2 = (Av)?, lapv3 = (Av)?

The commands
depend vr,r,te,fi,t;
depend vte,r,te,fi,t;fi,t;
depend vfi,r,te,fi,t;
depend p,r,te,fi,t;
depend f,r,te,fi,t;
mean that vr, vte, vfi, p and f are functions of the dependent variables
r,te,fi,t. Here vr=U, vte=V, vfi=W are physical coordinates of velocity v.
The command
lap:=df (r**2*df (f,r) ,r) /r**2+df (sin(te) *df (£f,te) ,te) / (r**2*sin(te))
+ df (£f,£1,2)/(r**2*xsin(te) **2);

defines the Laplace operator of the function f.

The command



dd:=df (f,t)+vr*df (f,r)+vtexdf (f,te) /r+vfixdf (f,fi)/(r*sin(te));

D
defines the operator ——

Dt
The identificators
k(1) :=r;
k(2) :=te;
k(3) :=fi;

define spherical coordinates r, 6 and ¢, respectively.

The operators
vs(1) :=vr;
vs(2) :=vte/r;
vs(3) :=vfi/(r*sin(te));
define contravariant coordinates of the velocity vector v.

The following formulas define contravariant (gij )
g(1,1):=1;g(1,2):=0;g(1,3) :=0;
g(2,1):=0;g(2,2):=1/r**2;g(2,3) :=0;
g(3,1):=0;g(3,2):=0;g(3,3) :=1/(r**2*sin(te) **2) ;
and covariant coordinates (gij)
gd(1,1):=1; gd(1,2):=0; gd(1,3):=0;
gd(2, 1) :=O; gd(2,2) :=r**2; gd(2’3) :=O;
gd(3,1):=0; gd(3,2):=0; gd(3,3) :=r**2*sin(te)**2;
of the fundamental tensor. The Christoffel symbols are ga(1, i,j):Féj :

for 1:=1:3 do for i:=1:3 do for j:=1:3 do
ga(l,i,j):= for s:=1:3 sum

g(l,s)*( df(gd(i,s),k(j))+df(gd(j,s),k(i))-df(gd(i,j) ,k(s)) )/2;

The loop

for 1:=1:3 do

for i:=1:3 do

for j:=1:3 do

write(’’ga(’’,1,%,7%,i,7?,%,3,’?) = ??,ga(1,i,j));
output the Christoffel symbols.

The following loop of commands corresponds to equations (3.23):
for 1:=1:3 do begin

ssl:=sub(f=vs(1),lap);

ss2:=for i:=1:3 sum for j:=1:3 sum for s:=1:3 sum
g(i,j)*ga(l,i,s)*df (vs(s),k(j));

883:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum
vs(pk)*g(i,j)*df (ga(l,i,pk) ,k(j));

ssd:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum for s:=1:3 sum

vs(pk)*g(i,j)*ga(s,i,pk)*ga(l,j,s);

s8b:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum for s:=1:3 sum

vs(pk)*g(i,j)*ga(s,i,j)*ga(l,pk,s);
qq(1l) :=ss1+2*ss2+ss3+ss4-ss5;
end;
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Here
lapvi = qq(1) = (Av)’
lapv2 = qq(2) = (Av)’
lapv3 = qq(3) = (Av)’

d
For the components of the acceleration vector (d—‘;)l (3.50)-(3.52)

dvidt:=sub(f=vr,dd) - (vtex*x2+vfi**2) /r;

dv2dt:=sub(f=vte,dd) /r+(vr*xvte-(cos(te)/sin(te) ) *xvfix*2) /r**2;
dv3dt:=sub(f=vfi,dd)/(r*sin(te))
+(vr*vfi+(cos(te) /sin(te)) *vfi*vte)/(r**2xsin(te));

The coordinates of the gradient of p are defined by equations (3.47)

grpl:=df(p,r);
grp2:=df (p,te) /T**2;
grp3:=df (p,fi)/(r*sin(te)) **2;

The divergence of the vector v is

divv:=df (r**2xvr,r)/(r**2)+df (sin(te) *vte,te)/(r*sin(te))
+df (vfi,fi)/(r*sin(te));

The full program can be written as follows:

sl:=dvidt+grpl-nuxlapvi;

s2:=dv2dt+grp2-nukxlapv2;

s3:=dv3dt+grp3-nuxlapv3;

s4:=divv;

factor nu;

depend vr,r,te,fi,t;

depend vte,r,te,fi,t;

depend vfi,r,te,fi,t;

depend p,r,te,fi,t;

depend f,r,te,fi,t;

lap:=df (r**2*df (f,r),r)/r**2+df(sin(te)*df (f,te) ,te)
/(r**2*sin(te))+df (£f,fi,2)/(r**2*xsin(te) **2);

dd:=df (f,t)+vr*df (f,r)+vtexdf (f,te)/r+vfixdf (f,fi)/(r*sin(te));

operator g,gd,ga,k,vs,qq,qqq;

k(1) :=r;

k(2) :=te;

k(3):=fi;

vs(1) :=vr;

vs(2) :=vte/r;

vs(3):=vfi/(r*sin(te));

g(1,1):=1;g(1,2):=0;g(1,3):=0;

g(2,1):=0;g(2,2) :=1/r*x2;g(2,3) :=0;

g(3,1):=0;g(3,2):=0;g(3,3) :=1/ (r**2*sin(te) *x*2);

gd(1,1):=1;gd(1,2):=0;gd(1,3):=0;

gd(2,1):=0;gd(2,2) :=r**x2;gd(2,3) :=0;

gd(3,1):=0;gd(3,2):=0;gd(3,3) :=r**2*sin(te) **2;

for 1:=1:3 do for i:=1:3 do for j:=1:3 do

ga(l,i,j):= for s:=1:3 sum g(l,s)*(df(gd(i,s),k(j))+

df(gd(j,s),k(i))-df(gd(i,j),k(s)))/2;

for 1:=1:3 do for i:=1:3 do for j:=1:3 do write

("ga(",1,",",i,",",j,") = ",ga(l,i,j));

for 1:=1:3 do begin

ssl:=sub(f=vs(l),lap);

ss2:=for i:=1:3 sum for j:=1:3 sum for s:=1:3 sum
g(i,j)*ga(l,i,s)*df(vs(s),k(j));

ss3:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum
vs(pk)*g(i,j)*df(ga(l,i,pk),k(j));

ss4:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum
for s:=1:3 sum vs(pk)*g(i,j)*ga(s,i,pk)*ga(l,j,s);
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ssb:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum
for s:=1:3 sum vs(pk)*g(i,j)*ga(s,i,j)*ga(l,pk,s);
qq(l) :=ss1+2*ss2+ss3+ss4-ssb;
end;
for 1:=1:3 do begin
qqq (1) :=sub(f=vs(1l),lap)+
2%(for i:=1:3 sum for j:=1:3 sum for s:=1:3 sum
g(i,j)*ga(l,i,s)*df(vs(s),k(j)))+
for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum
vs(pk)*g(i,j)*(df(ga(l,i,pk),k(j))+
for s:=1:3 sum
ga(s,i,pk)*ga(l,j,s)-
for s:=1:3 sum
ga(s,i,j)*ga(l,pk,s));
end;
qq(1);
qq(2);
qq(3);
dvidt:=sub(f=vr,dd)-(vtex*x2+vfi**2)/r;
lapvi:=sub(f=vr,lap)-2*df(vte,te)/(r**2)-2+df (vfi,fi)/((r**2)*
sin(te))-2*vr/(r**2)-2%(cos(te)/sin(te))*vte/(r**2);
lapv2:=sub(f=vte/r,lap)+2*df (vte,r)/r**x2+2*df (vr,te) /r*x*3-
2x(cos(te)/sin(te)) *df (vfi,fi)/(r*x3*sin(te))-vte/(r**3*sin(te)**2);
%lapv2:=sub(f=vte/r,lap)+2*df (vte,r)/(r**2)+2*df (vr,te) /(r**3)-
% 2x(cos(te)/sin(te))*df (vEfi,fi)/((r**3)*sin(te)**2)-
% vte/ ((r**3)*(sin(te)**2));
lapv3:= sub(f=vfi/(r*sin(te)),lap)+2*df(vfi/r,r)/(r*sin(te))+
(2% (cos(te)/sin(te))*df(vfi/(sin(te)),te)/(r**3))+
2xdf (vr,fi) /((r**3) *(sin(te)**2) )+
(2% (cos(te)/sin(te))*df(vte,fi)/((x**3)*(sin(te)**2)));
let sin(te)**2=1-cos(te)**2;
ssl:=qq(1)-lapvi;
ss2:=qq(2)-lapv2;
ss3:=qq(3)-lapv3;
pause;
clear sin(te)**2;
lapvl:=qq(1);
lapv2:=qq(2);
lapv3:=qq(3);
grpl:=df(p,r);
grp2:=df (p,te) /r*x2;
grp3:=df (p,fi)/(r*sin(te))**2;
on div;

dv2dt:=sub(f=vte,dd)/r+(vr*vte-(cos(te)/sin(te) ) *vfi**2) /rx*2;

dv3dt:=sub(f=vfi,dd)/(r*sin(te))+(vr*vfi+(cos(te)/sin(te))*vfi*vte)/
(r**2*sin(te));

divv:=df (r**2xvr,r)/(r**2)+df (sin(te) *vte,te)/(r*sin(te))+

df (vfi,fi)/(r*sin(te));

sl:=s1;

s2:=r*¥s2;
s3:=r*sin(te)*s3;
s4:=s4;

ssl:=df (vr,t)+vr*df (vr,r)+vtexdf (vr,te)/r+vfi*df (vr,fi)/(r*sin(te))-
(vtex*2+vfi**2) /r+df (p,r)-nu* (df (r**2+df (vr,r),r)/r**2+
df (sin(te)*df (vr,te),te)/(r**2*sin(te) )+df (vr,fi,2)/(r**2xsin(te)**2)
-2xyr/r**x2-2*xdf (vte,te) /r**2-2xvte*cos(te)/(r**x2*sin(te)) -
2%df (vfi,fi)/(r**2*xsin(te)));
ss2:=df(vte,t)+vr*df (vte,r)+vte*df (vte,te) /r+vfi*df(vte,fi)/(r*sin(te))+
vtexvr/r-vii**2*cos(te)/(r*sin(te))+df (p,te) /r-nu*
(df (r**2*df (vte,r),r) /r**2+df (sin(te) *df (vte,te) ,te)/(r**x2*sin(te) )+
df (vte,fi,2)/(r**2*xsin(te)**2)+2xdf (vr,te)/r**2-
(vte+2*cos(te)*df (vfi,fi))/(r**2*sin(te)**2));
ss3:=df (vfi,t)+vr*df (vfi,r)+vte*df (vfi,te)/r+vfi*df(vfi,fi)/(r*sin(te))+
viikxvr/r+vtexvfixcos(te)/(r*sin(te))+df(p,fi)/(r*sin(te))-nu*
(df (r**2xdf (vfi,r),r)/r**2+df (sin(te) *df (vfi,te),te) /(r**2*sin(te) )+
df (vfi,fi,2)/(r**2*sin(te)**2)-vEi/ (r**2*sin(te)**2)+
2%df (vr,fi)/(r**2xsin(te))+2*cos(te) *df (vte,fi)/(r**2xsin(te) **2));
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ssll:=df (vr,t)+vr*df (vr,r)+vtexdf(vr,te) /r+vfixdf (vr,fi)/(r*sin(te))-
(vtex*x2+vfi**2) /r+df (p,r)-nu* (df (r**2+df (vr,r),r)/r**2+
df (sin(te)*df (vr,te),te)/(r**2*sin(te))+df (vr,fi,2)/(r**2*xsin(te)**2)
-2%vr/r**2-2%df (sin(te)*vte,te)/(r**2*sin(te)) -

2xdf (vfi,fi)/(r**2*sin(te)));

ssl12:=df (vte,t)+vr*df (vte,r)+vte*xdf(vte,te) /r+vfi*df(vte,fi)/(r*sin(te))+
vtexvr/r-vfix*2+cos(te)/(r*sin(te))+df(p,te)/r-nu*
(df (r**2*df (vte,r) ,r)/r**2+df (sin(te)*df (vte,te) ,te) /(r**2*sin(te))+
df (vte,fi,2)/(r**2xsin(te)**2)+2*df (vr,te)/r**x2-vte/(r*sin(te) ) **2-
2xcos(te)*xdf (vEi,fi)/(r**2*sin(te)**2));

ss13:=df (vfi,t)+vr*df (vfi,r)+vte*xdf(vfi,te)/r+vfi*df(vfi,fi)/(r*sin(te))+
vii*xvr/r+vtexvfixcos(te)/(r*sin(te))+df(p,fi)/(r*sin(te))-nu*
(df (r**2*df (vEi,r),r)/r**2+df (sin(te)*df (vfi,te),te)/(r**2*sin(te))+
df (vEi,fi,2)/(r**2*sin(te) **2)-vii/ (r**2*sin(te)**2)+

2%df (vr,fi)/(r**2*xsin(te))+2*cos(te) *df (vte,fi)/(r**2xsin(te) **2));

nodepend vr,te,fi;
depend H,t,r;
nodepend p,te,fi;
depend om,t,r,te,fi;
depend co,t,r,te,fi;

depend si,t,r,te,fi;

let sin(te)**2=1-cos(te)**2;
let sin(fi)**2=1-cos(fi)**2;
s2:=52%r;

s3:=s3*sin(te)*r;

%co:=cos(om);

vfi:=W=H sin(om);
vte:=V=H cos(om);
vte:=H*co;

vfi:=H*si;

df (co,t):= -si*df(om,t);
df(co,r):= -si*df(om,r);
df(co,te) := -sixdf(om,te);
df(co,fi) := -sixdf(om,fi);
df(si,t):= coxdf(om,t);

df (si,r):= co*df(om,r);

df (si,te):= co*df(om,te);

df(si,fi):= coxdf(om,fi);



let

fac

s2;
cle
let
off
s3:

s4;
sl:
s3;
cle
s2:
sd:
s3:

ssl

ss2

ss4

si**2=1-co**2;

tor df(om,t),df(om,r),df(om,te),df (om,fi),
df (om,t,2),df (om,r,t),df (om,t,te) ,df (om,fi,t),
df (om,r,2),df(om,r,te) ,df (om,fi,r),
df (om,te,2),df (om,fi,te),
df (om,fi,2),
df(vr,t),df(vr,r),df(vr,r,t),df(vr,r,2),df (vr,t,2),
df(h,t),df(h,r),df(h,r,t),df(h,r,2),df(h,t,2),
df(p,t),df(p,r),df(p,r,t),df(p,r,2),df(p,t,2);
j:=df (s2,df (om,t));
omt :=df (om, t) :=df (om,t)-s2/j;

ar sin(te)**2;
cos(te)**2=1-sin(te) **2;
nat;
=s3%*si;
j:=df (s4,df (om,te));

omte:=df (om,te) :=df (om,te)-s4/j;

=s1;

ar df(om,te),df(om,t);
=df (om,t)-omt;
=s4;
=s3/r/sin(te);
1= = 4snuxdf (vr,r)*r**x(-1) - nuxdf(vr,r,2) - 2%nusr*x(-2)*vr +

df (vr,t) + df(vr,r)*vr + df(p,r) - h*x*2xr**x(-1);

:= - nux*df(om,r)**2*co*si*x(-1) - 2*nu*df(om,r)*df(h,r)*h*xx(-1) -
2knu*df (om,r) *r**(-1) - nukdf (om,te)**2kcokrk*k(-2)*si*x*(-1) -
nuxdf (om,te)*cos(te)*sin(te)**(-1)*r**x(-2) - nuxdf(om,fi)**2%
sin(te) ** (-2) *co*xr**(-2) *si**(-1) - 2*nuxdf(om,fi)*cos(te)*
sin(te)**(-2)xcoxr*x(-2)*si**(-1) - nu*xdf(om,r,2) -

nu*df (om,te,2)*r**x(-2) - nu*df(om,fi,2)*sin(te)**x(-2)*r*x(-2) +
2knu*df (h,r)*coxhk* (1) *r**(-1)*six*(-1) +

nu*df (h,r,2)*coxhx*(-1)*si**(-1) - nu*sin(te)**(-2)*co*r*x(-2)*si**x(-1) +
df (om,t) + df(om,r)*vr + df(om,te)*coxh*r*x(-1) + df(om,fi)*
sin(te)** (-1)xhkr** (-1)*si*x*(-1)*( - co**2 + 1) -

df (h,t)*coxh**x(-1)*si**(-1) -df(h,r)*coxh**x(-1)*six*x(-1)*vr +
rx*(-1)*si**x(-1)*( - cos(te)*sin(te)**(-1)*co**2xh +

cos(te)*sin(te)**(-1)*h - co*vr);

:= - df (om,te)*h*r*x(-1)*si + df(om,fi)*sin(te)**(-1)*co*xh*r**x(-1)

+ df (vr,r) + r*x(-1)*(cos(te)*sin(te)**(-1)*co*h + 2%vr);
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ss3 := nuxdf(om,r)**2xh + nuxdf(om,te)**2*xh*r**(-2) + nu*df(om,fi)**2x*
sin(te)*x*(-2) xhxr**(-2) + 2xnu*df(om,fi)*cos(te)*sin(te)**(-2)x*
hxr*x(-2) - 2%nuxdf(h,r)*r*x(-1) - nuxdf(h,r,2) +

nuxsin(te)**(-2)*h*r*x(-2) +df(h,t) + df(h,r)*vr + h¥rx*x(-1)*vr;

ssl-si;
ss2-s2;
ss3-s3;

ss4-s4;

end;

A.2 The full program of viscous gas dynamics equa-
tions in spherical coordinates

The last part of the programs is devoted to obtaining equations for compatibil-
ity analysis after substitution of the representation of partially invariat solution.

operator Dgrmu,vu,gu,grmup,Dud,grmuup,grtemd,grkaup,gd,ga,k,qq,qqq; factor apta,bpta;
sl:=dvidt+tauxgrpl-tau*((la+mu)*grdivvi+muxlapvi+gralal*divv+Dgrmu(1));
s2:=dv2dt+tauxgrp2-tau* ((la+mu)*grdivv2+muxlapv2+grala2*divv+Dgrmu(2)) ;
s3:=dv3dt+tauxgrp3-tau* ((la+mu)*grdivv3+mu*lapv3+grala3*divv+Dgrmu(3));
s4:=dtaudt-tau*xdivv;

s5:=dpdt+Apta*divv-Bpta*

(la*divv#*2+mu*contrd+grkapgrtem+kap*laptem) ;

depend vr,r,te,fi,t; depend vte,r,te,fi,t;

depend vfi,r,te,fi,t; depend tau,r,te,fi,t; depend p,r,te,fi,t;

depend tem,r,te,fi,t; depend kap,r,te,fi,t;

depend la,r,te,fi,t; depend mu,r,te,fi,t; depend f,r,te,fi,t;

lap:=df (r**2*df (f,r),r) /r**2+df (sin(te)*df (f,te) ,te) /(r**2*sin(te) )+
df (£,f1i,2)/(r**2*xsin(te)**2);

dd:=df (f,t)+vr*df (f,r)+vtexdf (f,te) /r+vfixdf (f,fi)/(r*sin(te));
divv:=df (r**2xvr,r)/(r**2)+df (sin(te) *vte,te)/(r*sin(te))+

df (vEi,fi)/(r*sin(te));

grdivvi:=df(divv,r); grdivv2:=df(divv,te)/r**2;
grdivv3:=df(divv,fi)/(r*sin(te))**2;

k(1):=r; k(2):=te; k(3):=fi;

vu(1) :=vr; vu(2):=vte/r; vu(3):=vfi/(r*sin(te));

gu(1,1):=1; gu(1,2):=0; gu(1,3):=0;

gu(2,1):=0; gu(2,2):=1/r**2; gu(2,3):=0;

gu(3,1):=0; gu(3,2):=0; gu(3,3):=1/(r**2xsin(te)**2);

gd(1,1):=1; gd(1,2):=0; gd(1,3):=0;

gd(2,1):=0; gd(2,2):=r**2; gd(2,3):=0;

gd(3,1):=0; gd(3,2):=0; gd(3,3):=r**2xsin(te)**2;

for 1:=1:3 do for i:=1:3 do for j:=1:3 do ga(l,i,j):= for s:=1:3

sum gu(l,s)*(df(gd(i,s),k(j))+df(gd(j,s),k(i))-df(gd(i,]),k(s)))/2;

for 1:=1:3 do for i:=1:3 do for j:=1:3 do if not

(ga(l,i,j)=0) then write ("ga(",1,",",i,",",j,") = ",ga(l,i,3));

for 1:=1:3 do begin

ssl:=sub(f=vu(l),lap);

ss2:=for i:=1:3 sum for j:=1:3 sum for s:=1:3 sum
gu(i,j)*ga(l,i,s)*df(vu(s),k(j));

ss3:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum
vu(pk)*gu(i,j)*df(ga(l,i,pk),k(j));

ss4:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum

for s:=1:3 sum vu(pk)*gu(i,j)*ga(s,i,pk)*ga(l,j,s);

ssb:= for i:=1:3 sum for j:=1:3 sum for pk:=1:3 sum

for s:=1:3 sum vu(pk)*gu(i,j)*ga(s,i,j)*ga(l,pk,s);



qq(l) :=ss1+2*ss2+ss3+ss4-ssb;

end; lapvl:=qq(1); lapv2:=qq(2); lapv3:=qq(3);

operator vud;

for j:=1:3 do for 1:=1:3 do vud(j,1):=df(vu(j),k(1))+for s:=1:3
sum (ga(j,1,s)*vu(s));

for kk:=1:3 do for j:=1:3 do write (" vud(",kk,",",j,") = ",vud(kk,j));
divv-for kk:=1:3 sum vud(kk,kk);

for j:=1:3 do for kk:=1:3 do Dud(j,kk):=vud(j,kk)+for be:=1:3
sum for al:=1:3 sum (gu(j,be)*gd(kk,al)*vud(al,be));

for j:=1:3 do Dgrmu(j):=for al:=1:3 sum (Dud(j,al)*grmuup(al));
contrd:=(for j:=1:3 sum for kk:=1:3 sum (dud(j,kk)*dud(kk,j)))/2;
hh:=for j:=1:3 sum for kk:=1:3 sum vud(kk,j)*

(vud(j,kk)+for al:=1:3 sum for be:=1:3 sum
vud(al,be)*gu(j,be)*gd(kk,al));

hh-contrd; grdivvi:=df(divv,r); grdivv2:=df(divv,te)/r**2;
grdivv3:=df(divv,fi)/(r*sin(te))**2;

grmuup(1) :=df (mu,r); grmuup(2):=df(mu,te)/r**2;

grmuup(3) :=df (mu,fi)/(r*sin(te))**2;

grtemd(1) :=df (tem,r); grtemd(2):=df(tem,te);
grtemd(3) :=df (tem,fi);

grkaup(1) :=df (kap,r); grkaup(2):=df(kap,te)/r**2;

grkaup(3) :=df (kap,fi)/(r*sin(te))**2;

grkapgrtem:=for j:=1:3 sum grtemd(j)*grkaup(j);
laptem:=sub(f=tem,lap);

dvidt:=sub(f=vr,dd)-(vtex*2+vfi*x*2)/r;

dv2dt :=sub(f=vte,dd)/r+(vrxvte-(cos(te)/sin(te) ) *vfi**2)/r**2;
dv3dt:=sub(f=vfi,dd)/(r*sin(te))+(vr*vfi+(cos(te)/sin(te))*vfi*vte)/
(r**2*sin(te));

dtaudt:=sub(f=tau,dd); dpdt:=sub(f=p,dd);

gralal:=df(la,r); grala2:=df(la,te)/r*x2;
grala3:=df(la,fi)/(r*sin(te))**2;

grpl:=df(p,r); grp2:=df(p,te)/r**2;

grp3:=df (p,fi)/(r*sin(te))**2;

factor df(tau,t),df(tau,r),df(tau,te),df(tau,fi);

factor df(p,t),df(p,r),df(p,te),df(p,fi);

factor df(vr,t),df(vr,r,2),df(vr,r,te),df(vr,r,fi),

df (vr,te,2),df (vr,te,fi),df (vr,fi,2);

factor df(vte,t),df(vte,r,2),df(vte,r,te),df (vte,r,fi),

df (vte,te,2),df (vte,te,fi),df (vte,fi,2);

factor df(vfi,t),df(vfi,r,2),df(vfi,r,te),df (vfi,r,fi),

af (vfi,te,2),df (vii,te,fi),df (vEi,£i,2);

sl:=sl; s2:=r*s2; s3:=r*sin(te)*s3; sd4:=s4; s5:=s5;

%let sin(te)**2=1-cos(te)**2;

on div; sl:=sl; s2:=s2; s3:=s3; s4:=s4; sb:=sb5;

off div;

Jx*kxkkkkkkkkkkkkx*kk* depend tem,p,tau; depend la,p,tau; depend mu,p,tau; depend kap,p,tau;
df (tem,r) :=df(tem,p)*df(p,r) +df(tem,tau)*df(tau,r);

df (tem,te) :=df (tem,p) *df (p,te)+df (tem,tau) *df (tau,te);

df (tem,fi) :=df (tem,p)*df (p,fi)+df (tem,tau)*df (tau,fi);

df (la,r) :=df(la,p)*df(p,r)+ df(la,tau)*df(tau,r);

df (la,te) :=df (la,p)*df (p,te)+df (la,tau)*df(tau,te);

df (la,fi) :=df(la,p) *df (p,fi)+df(la,tau)*df (tau,fi);

df (mu,r) :=df(mu,p)*df(p,r)+ df(mu,tau)*df(tau,r);

df (mu,te) :=df (mu,p)*df (p,te)+df (mu,tau)*df(tau,te);

df (mu,fi) :=df (mu,p) *df (p,fi)+df (mu,tau)*df (tau,fi);

df (kap,r) :=df(kap,p)*df(p,r)+ df(kap,tau)*df(tau,r);

df (kap,te) :=df (kap,p) *df (p, te)+df (kap,tau) *df (tau,te);

df (kap,fi) :=df (kap,p)*df (p,fi)+df (kap,tau)*df(tau,fi);

sl:=sl; s2:=s2; s3:=s3; s4:=s4; sb:=sb;

Ok sk o Kok ok sk ok ok ok ok ok ok ok ok

nodepend vr,te,fi; depend H,t,r; nodepend tau,te,fi;

nodepend p,te,fi; depend om,t,r,te,fi; depend co,t,r,te,fi;
depend si,t,r,te,fi;

let sin(te)**2=1-cos(te)**2; let sin(fi)**2=1-cos(fi)**2;
sl:=sl; s2:=s2; s3:=s3; s4:=s4; sb:=sb;

% co:=cos(om);

vfi:=W=H sin(om);

vte:=V=H cos(om);
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vte:=H*co; vfi:=H*si; df(co,t):= -si*df(om,t); df(co,r):=-sixdf(om,r);

df (co,te) := -sixdf(om,te); df(co,fi):= -si*df(om,fi);
df (si,t):= co*df(om,t); df(si,r):= co*xdf(om,r);
df (si,te):= coxdf(om,te); df(si,fi):= coxdf(om,fi);

let six*2=1-co**2;

factor df(om,t),df(om,r),df(om,te),df(om,fi),

df(om,t,2),df (om,r,t),df(om,t,te) ,df (om,fi,t),

df (om,r,2),df (om,r,te) ,df (om,fi,r),

df (om,te,2),df (om,fi,te),

df (om,fi,2),

df (vr,t),df(vr,r),df (vr,r,t),df(vr,r,2),df(vr,t,2),
df(h,t),df(h,r),df(h,r,t),df(h,r,2),df(h,t,2),

df (p,t),df(p,r),df(p,r,t),df(p,r,2),df(p,t,2);
j:=df(s2,df(om,t)); omt:=df(om,t):=df(om,t)-s2/j; s2; clear
sin(te)**2; let cos(te)**2=1-sin(te)**2; off nat; s3:=s3*si;
j:=df(s4,df (om,te)); omte:=df(om,te):=df(om,te)-s4/j; s4;
sl:=s1; sb:=s5; s3; clear df(om,te),df(om,t);

s2:=df (om,t)-omt; s4:=s4; s5:=s5; s3:=s3/r/sin(te);

end;

61



Appendix B

Generators of the Group of
Rotations in Spherical
Coordinates

Here we rewrite the generators of rotations in spherical coordinates by using
REDUCE. Let us define these generators as

EQl : = vxFw-wxFv+y*xFz-z*xFy ;
EQ2 : = uxFw-wxFut+x*xFz-z*Fx ;
EQ3 : = uxFv-v*Fut+x*xFy-y*Fx ;

The command
depend f,x,y,z,u,v,w,M,L,K,r,th,fi;

means that f depends on x, y, z, u, v, w, M, L, K, r, th, fi.

The commands

depend u, x, y, z ;

depend v, x, ¥y, 2 ;

depend w, x, y, Z ;

depend M, r, th, fi ;

depend L, r, th, fi ;

depend K, r, th, fi ;

describe that u, v, w depend on x, y, zand M, L, K depend on r, th, fi.
Here M=U, L=V, K=W and they are defined by equations (3.54):

MM:
LL:
KK:

For the spherical coordinates, we use
rr:=SQRT(x"2+y~2+z"2) ;
tht :=ATAN(SQRT (x"2+y~2+z"2) ;
fif :=ATAN(y/x);

For the calculations we use
al:=df (rr,x); a2:=df(tht,x); a3:=df (fif,x);
a4 :=df (MM, th) xa2+df (MM, fi) *a3;
ab:=df (LL,th) *a2+df (LL,fi)*a3;
a6:=df (KK,fi)*a3;

The command

u*sin(th)*cos(fi)+v*sin(th)*sin(fi)+wxcos(th);
u*xcos (th)*cos(fi)+v*cos(th)*sin(fi)-wxsin(th);
—u*sin(fi)+v*cos(fi);
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Fx:=alx*df (f,r)+a2*df (f,th)+a3*df (f,fi)+ad*df (f,M)+
abxdf (f,L)+a6*xdf (f,K) ;
describes the application of the chain rule to the total derivative D, f:

Of or 0f08  Ofdp Of QU dfOV _ Of oW

Daf =5 5 T 900r Too0r T oM or oL or 9K or

By the same way we construct the derivatives D, f and D, f :
Fy:=blx*df (f,r)+b2*df (f,th)+b3*df (f,fi) +bdxdf (f,M)+
b5*df (f,L) +b6*df (f,K) ;

Fz:=cl*df (f,r)+c2*df (f,th)+c3*df (f,fi)+cd*df (f,M)+c5*df (f,L)+
c6xdf (f,K) ;

Here
bl:=df (rr,y); b2:=df(tht,y); b3:=df(fif,y);
b4 :=df (MM, th) *b2+df (MM, fi) *b3;
b5:=df (LL,th)*b2+df (LL,fi) *b3;
b6 :=df (KK, fi)*b3;
cl:=df(rr,z); c2:=df(tht,z); c3:=df(fif,z);
c4:=df (MM, th) *c2+df (MM, fi) *c3;
c5:=df (LL,th) *c2+df (LL,fi)*c3;
c6:=df (KK,fi)*c3;

Similarly for the total derivatives D, f, D,.f and D, f :
Fu:=d1x*df (f,r)+d2*df (f,th)+d3*df (f,fi)+d4*df (f,M)+
d5*df (£,L)+d6x*df (f,K) ;

Fv:=el*df (f,r)+e2*df (f,th)+e3*df (f,fi)+ed*df (f,M)+
ebxdf (f,L)+ebxdf (f,K);
Fu:=f1%df (f,r) +£2%df (f,th) +£3%df (£, £i) +FA*df (£, M)+
£5%df (£,L)+£6xdf (£,K) ;

where the coefficients di, ei and fi, (i=1,2...,6) are
dl:=df (rr,u) ;d2:=df (tht,u) ;d3:=df (fif,u);
d4:=df (MM,u); d5:=df(LL,u);d6:=df (KK,u);
el:=df (rr,v) ;e2:=df (tht,v) ;e3:=df (fif,v);
ed:=df (MM,v); e5:=df (LL,v) ;e6:=df (KK,Vv);
f1:=df (rr,w) ;£2:=df (tht,w) ;f3:=df (fif,w);
fd4:=df (MM,w); £5:=df (LL,w) ;f6:=df (KK,w) ;

The full program can be written as follows:

EQ1:=v*Fu-w*Fv+y*xFz-z*Fy;

EQ2:=uxFu-wxFu+x*Fz-z*Fx;

EQ3:=u*Fv-v*Fu+x*xFy-y*Fx;

depend f,x,y,z,u,v,w,M,L,K,r,th,fi;

ssm:=MM;

ssL:=LL;

ssK:=KK;

MM:= uxsin(th)*cos(fi)+v*sin(th)*sin(fi)+w*cos(th);

LL:= u*cos(th)*cos(fi)+v*cos(th)*sin(fi)-wxsin(th);



KK:
rr:

tht

-u*sin(fi)+v*cos(fi);

SQRT (x**2+yx*2+zx*2) ;
:=ATAN (SQRT(x**2+y*%2)/z);

£if:=ATAN (y/x);

al:
a2:
a3:
a4:
ab:
a6:
bl:

b2

b3:
béd:
b5:
b6:
cl:
c2:
c3:
céd:
ch:
c6:
Fx:
Fy:
r=c1*df (f,r)+c2*df (f,th) +c3*df (f,fi)+céd*df (f,M)+c5xdf (f,L)+c6*df (f,K);

Fz

di:
d2:
d3:
dé:
d5:
d6:
el:
e2:
e3:
e4:
eb:
e6:

f1

£2:
£3:
f4:
£5:
£6:
Fu:

Fv:

=df (rr,x);

=df (tht,x);

=df (fif,x);

=df (MM, th) *a2+df (MM, £i) *a3;
=df (LL,th) *a2+df (LL, i) *a3;
=df (KK,fi)*a3;

=df (rr,y);

:=df (tht,y);

=df (fif,y);

=df (MM, th) *b2+df (MM, £i) *b3;

=df (LL,th) *b2+df (LL,fi) *b3;

=df (KK,fi)*b3;

=df (rr,z);

=df (tht,z);

=df (fif,z);

=df (MM, th) *c2+df (MM, fi) *c3;

=df (LL,th) *c2+df (LL,fi) *c3;

=df (KK,fi)*c3;

=al*df (f,r)+a2xdf (f,th)+al3*df (f,fi)+adx*df (f,M)+abxdf (f,L)+abxdf (f,K);
=b1x*df (f,r)+b2xdf (f,th) +b3*df (f,fi)+bd*df (£f,M) +b5*df (f,L)+b6*df (£,K) ;

=df (rr,u);
=df (tht,u);
=df (fif,u);
=df (MM, u) ;
=df (LL,u);
=df (KK,u);
=df (rr,v);
=df (tht,v);
=df (fif,v);
=df (MM, v) ;
=df (LL,v);
=df (KK,v);

1=df (rr,w);

=df (tht,w);
=df (fif,w);
=df (MM, w) ;
=df (LL,w);
=df (KK,w) ;
=d1x*df (f,r)+d2*df (f,th) +d3*df (f,fi)+d4*df (f,M) +d5*df (f,L)+d6*df (£,K) ;
=el*df (f,r)+e2xdf (f,th) +e3*df (f,fi)+ed*df (f,M)+e5xdf (f,L)+e6xdf (f,K);
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Fu:=f1xdf (f,r)+£2xdf (£, th)+£3*df (f,fi)+f4x*df (f,M) +£5*df (£,L) +£6%df (£,K);

factor df(f,r),df(f,fi),df(f,th),df(£,M),df(£,L),df(£,K);

EQ1l:=v*Fu-wxFv+y*Fz-z*Fy;
EQ2:=u*Fw-w¥xFu+x*xFz-z*Fx;
EQ3:=uxFv-vxFu+x*Fy-y*Fx;

x:=r*sin(th)*cos(fi);

y:=r*sin(th)*sin(fi);

z:=r*cos(th);
u:=M*sin(th)*cos(fi)+L*cos(th)*cos(fi)-K*sin(fi);
v:=M*sin(th)*sin(fi)+L*cos(th)*sin(fi)+K*cos (fi);
w:=M*cos(th)-L*sin(th);

EQ1:=v*Fw-wxFv+y*Fz-z*Fy;
EQ2:=u*Fw-w¥xFu+x*xFz-z*Fx;
EQ3:=uxFv-vxFu+x*Fy-y*Fx;

let sin(fi)**2=1-cos(fi)**2, sin(th)**x2=1-cos(th)**2;
EQ1:=EQ1;

EQ2:=EQ2;

EQ3:=EQ3;

clear sin(th)**2,sin(fi)**2;

let cos(fi)**2=1-sin(fi)**2, cos(th)**2=1-sin(th)**2;
EQ1:=EQ1;
EQ2:=EQ2;
EQ3:=EQ3;
SsSm:=ssm;
ssl:=ssl;
ssk:=ssk;

end;
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Appendix C

Program for Analysis of
Compatibility

Here we describe the program for compatibility analysis of partially invariant
solutions by using REDUCE.

The commands
depend vr,t,r;
depend H,t,r;
depend p,t,r;
depend om,t,r,te,fi;
depend co,t,r,te,fi;
depend si,t,r,te,fi;

mean that vr, H, p, depend on t, and r, the functions om, co and si depend
on t,r,te and fi where we use identificators om= w, cos= cosw, si= sinw and
vr=U.

The commands

df (co,t) := -sixdf(om,t);

df (co,r) := —-sixdf (om,r);

df (co,te) := -sixdf(om,te);

df (co,fi) := -si*df(om,fi);

df (si,t) := co*xdf(om,t);

df (si,r) := coxdf (om,r);

df (si,te) := coxdf(om,te);

df (si,fi) := coxdf(om,fi);

describe the derivatives of the functions cosw and sinw with respect to t,r,te

and fi.
The expressions
sl := - 4xnu*df (vr,r)*r**x(-1) - nu*df(vr,r,2) -2*nuxr**(-2)*vr+

df (vr,t) + df(vr,r)*vr + df(p,r) - h**2xr*x(-1);

82 := - nux*df (om,r)**2%co*si**(-1) -2*nu*df (om,r)*df (h,r)*xh**x(-1)
- 2 *nuxdf (om,r)*r**x(-1) —nu*xdf (om,te)**2*xcoxr**(-2)*xsi**x(-1) —
nuxdf (om,te)*cos(te)*sin(te)**(—1) *r**(-2) — nu*xdf (om,fi)**x2*
sin(te)*x(-2)* co¥rxx(-2)*six*x(-1) -2*xnu*xdf (om,fi)*cos(te)*
sin(te) **x(-2) *co*xr** (-2)* si**x(-1) -nuxdf(om,r,2) - nu*
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df (om,te,2) *r**(-2) - nuxdf(om,fi,2)*sin(te)**(-2)*xr*x*x(-2)+

2*xnu*df (h,r) *coxhxx (-1)*r**x(-1)*si**x(-1) + nu*df (h,r,2)*coxh**x(-1)x*
si**x(-1) - nuxsin(te)**(-2)*co*rx*x(-2)*six*(-1)+ df (om,t) +

df (om,r) *vr +df (om,te)*coxh*r*x(-1) + df (om,fi)*sin(te)**x(-1)x*
h¥xrx*x(-1)*si**x(-1)*( - cox*2 + 1) — df(h,t)*coxh*x(-1)*si*x*x(-1) -
df (h,r)*coxhx*x (-1)*si**(-1)*vr +r**x(-1)*si*x*x(-1)*(-cos(te)*
sin(te)** (-1)*cox*2xh +cos(te)*sin(te)**x(-1)*h - co*vr);

83 := nuxdf (om,r)**2xh + nu*df (om,te)**2xh*r**x(-2) + nu*

df (om,fi)**2*xsin(te) ** (-2) xhxr**(-2) + 2*nu*df (om,fi)*
cos(te)*sin(te) **(-2) xh*r**x(-2) - 2*nuxdf(h,r)*r**x(-1) -

nuxdf (h,r,2) + nu*sin(te)**(-2)*xh*r*x(-2) +df(h,t) + df(h,r)*vr

+ hxr*x(-1)*vr;

s4 := - df (om,te)*h*xr**x(-1)*si +df (om,fi)*sin(te)**x(-1)*

coxh*xrxx(-1) + df (vr,r) +r**x(-1)*x(cos(te)*sin(te)**(-1)*co*h +

2%vr) ;

represent the left sides of equations (4.5), (4.6), (4.7) and (4.8), which are ob-
tained after substituting the representation of solution (4.4) into the Navier-
Stokes equations.

Let us explain an example of a computational trick for solving the linear equation.
The equation S3 = 0 is linear with respect to the derivative H;df (h,t). On the
first step, one can find the coefficient
j:=df(s3,df (h,t));
On the second step the value of the derivative is defined
df (h,t) :=df (h,t) - s3/j.
For the sake of simplicity, we use the function hl = rH instead of H(¢,r). It is
introduced by the commands
depend hi,t,r;
h:=hl/r;
hit:=df (hl,t) :=r*xht;
Substitutions of the derivatives (4.10) have to be done in two steps.
The second derivatives wy,, wWgg, Wyy:
df (om,r,2) :=—(df (F,r,2)+2xdf (F,o0,r)*df (om,r)+df (F,0,2) *
df (om,r) **2) /df (F,0) ;
df (om,te,2) :=—(df (F,te,2)+2%df (F,o0,te)*df (om,te)+df (F,0,2) *
df (om,te)**2) /df (F,o0);
df (om,£i,2) :=—(df (F,fi,2)+2*df (F,o0,fi)*df (om,fi)+df (F,o0,2)*
df (om,fi)**2)/df (F,o0);

have to be substituted in the expressions s1, s2, s4 before the first derivatives,
because the recursive algorithm is used in REDUCE. After that, the expressions
s1, s2, s4 have to be recalculated. On the next step, the first derivatives
Wiy Wy, Wo, W
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df (om,t) :=-df (F,t)/df (F,o0);
df (om,r) :=-df (F,r)/df (F,o0); df(om,te) :=—df (F,te)/df(F,o0);
df (om,fi) :=-df (F,fi)/df (F,o0);

are substituted in expressions for s1, s2, s4.

rU, +2U

For the suitable calculation, we define a = N

by using the commands

depend a,t,r;
df (vr,r) :=(axh-2*vr) /r;

For the functions ¢ in the calculation, we use the identificator ps.
depend ps,t,r,be,la;

Expressions of y; and y, are defined by the identificators bbe and 11la
lla:=cos(o)*sin(te)-a*xcos(te);

correspondingly. Since there is no explicit expression of the bbl, we define only
the derivatives

depend bbe,t,r,te,fi,o; df(bbe,t):=df (arbe,t)/(1+arbe**2);

df (bbe,r) :=df (arbe,r)/(1+arbe**2); df (bbe,t)/df (bbe,r);

df (bbe,te) :=df (arbe,te)/(1+arbe**2); df (bbe,fi):=1;

df (bbe,0) :=df (arbe,0)/ (1+arbe**2) ;

where for the sake of simplicity, we use the idetificator
arbe:=sin(o)/(a*sin(te)+cos (o) *cos(te));

The second derivatives of the function F' expressed through the function ¢ are
defined by the commands.

df (f,r,2) := df (bbe,r)*(df (ps,be,2)*df (bbe,r)+df (ps,be,la)*

df (11a,r)+df (ps,be,r))+df (ps,be) *df (bbe,r,2)+df (11a,r) *

(df (ps,be,la)*df (bbe,r)+df (ps,la,2)*df (11la,r)+df (ps,la,r) )+

df (ps,la)*df (11la,r,2)+df (ps,be,r) *df (bbe,r)+df (ps,la,r)*

df (11a,r)+df (ps,r,2);

df (f,te,2) := df (bbe,te) *(df (ps,be,2) *df (bbe,te) +df (ps,be,la)*
df (11a,te))+df (ps,be) *df (bbe,te,2)+df (11la,te)*
(df (ps,be,la) *df (bbe,te) +df (ps,la,2)*df (1la,te) )+
df (ps,la)*df (1la,te,2);

df (f,fi,2):= df (bbe,fi)*(df (ps,be,2)*df (bbe,fi)+df (ps,be,la)*
df (11a,fi))+ df (ps,be)*df (bbe,fi,2)+df (11la,fi)*
(df (ps,be,la) *df (bbe,fi)+df (ps,la,2)*df (1la,fi))+
df (ps,la)*df (11la,fi,2);

df (f,0,2) := df (bbe,o)*(df (ps,be,2)*df (bbe,o)+df (ps,be,la)*
df (11a,0))+df (ps,be) *df (bbe,0,2)+df (11a,0) *(df (ps,be,la) *
df (bbe, o) +df (ps,la,2)*df (11a,0) )+ df (ps,la)*df(1lla,0,2);

df (f,0,r) := df (bbe,o) *(df (ps,be,2)*df (bbe,r) +df (ps,be,la)*
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df (11a,r)+df (ps,be,r))+df (ps,be) *df (bbe,0,r)+df (11a,0) *
(df (ps,be,la)*df (bbe,r)+df (ps,la,2)*df (11la,r) +df (ps,la,r) )+
df (ps,la)*df (1la,o0,r);

df (f,0,te) := df (bbe,o0)*(df (ps,be,2) *df (bbe,te)+df (ps,be,la)*
df (11a,te))+df (ps,be) *df (bbe,o0,te)+df (11a,0) *(df (ps,be,la) *
df (bbe,te)+df (ps,la,2)*df (11a,te))+df (ps,la)*df (11la,o0,te);

df (f,0,fi) := df (bbe,o0)*(df (ps,be,2) *df (bbe,fi)+df (ps,be,la)*
df (11a,fi))+df (ps,be) *df (bbe,fi,o)+df (11la,0)*(df (ps,be,la)*
df (bbe,fi)+df (ps,la,2)*df (11la,fi))+df (ps,la)*df (11la,fi,o);

According to the REDUCE in order to prevent mistakes, the substitution of the
second derivatives has to be done before the substitution of the first derivatives,
which are given by the commands

df (f,t) :=df (ps,be) *df (bbe, t)+df (ps,la)*df (1la,t)+df (ps,t);

df (f,r) :=df (ps,be) *df (bbe,r)+df (ps,la)*df (11la,r)+df (ps,r);

df (f,te) :=df (ps,be) *df (bbe,te) +df (ps,la)*df (1la,te);

df (f,f1i) :=df (ps,be) *df (bbe,fi)+df (ps,la)*df (1la,fi);

df (£,0) :=df (ps,be) *df (bbe,0)+df (ps,la) *df (11a,0);
After the substitutions of the second and first order derivatives in the equation
s3=0, this equation becomes linear with respect to the sinw. The coefficients G
and G5 in equations (4.11) are defined by the commands

kol:=df (s3,sin(0));

ko2:=83-kol*sin(o);
Then by using trigonometry, we have equation (4.12) which is represented by the
command

83:=kol1**x2%(1-cos (0)**2) -ko2**2;

Here the identificator S3 corresponds to the polynomial Py (4.13). The coefficient
of this polynomial are defined by the commands
s888:=df (s83,cos(te),8)/ (8*x7T*x6x5x4*x3%2) ;

s3:=s3-ss8*cos (te) **8;

887 :=df (s3,cos(te),7)/(T*6x5x4%3%2) ;
s3:=s3-ss7*cos (te) **7;

ss86:=df (s3,cos(te),6)/(6%5x4*x3%2) ;
s3:=s3-ss6*cos (te) *x*6;

ss5:=df (s3,cos(te),5)/ (5%4%3%x2) ;
83:=83-ssb*cos(te) *x*5;

ss4:=df (s3,cos(te),4)/(4x3%2);
83:=83-ssd4x*cos(te) *x*x4;

ss3:=df (s3,cos(te),3)/(3%2);
83:=83-s883%cos (te) **3;

ss2:=df (s3,cos(te),2)/2;
83:=83-s82%cos (te) *x*2;

ssl:=df (s3,cos(te));
ss0:=s3-ssl*xcos(te);
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The result of this calculations is the equation (4.16)
k, = 0.

Substituting this into the first equation (s2 in the program) and splitting it with
respect to cos(f) is given by the following:

off factor;

s2:=num s2;

kol:=df (s2,sin(0));
ko2:=s2-kol*sin(o);
s2:=kol**2%(1-cos (0)**2) -ko2**2;
ss:=df (s2,sin(te));

85810:=df (s2,cos(te),10)/ (10%9*8xT*6x5%x4*x3%2) ;
52:=52-8810*cos (te) *x10;

889:=df (s2,cos(te),9)/ (9*8*xT*6x5*x4*3%2) ;
52:=52-889%cos (te) **9;

ss8:=df (s2,cos(te),8)/ (8xT*6x5%4*3%2) ;
§2:=82-588%cos (te) **8;

ss7:=df (s2,cos(te),7)/ (T*x6%5%4x3%2) ;
§2:=82-887*cos (te) **7;

s56:=df (s2,cos(te),6)/(6x5x4%3%2) ;
§2:=82-586%cos (te) **6;

ss5:=df (s2,cos(te),5)/(5x4%3%2) ;
s2:=82-ss85%cos (te) **5;

ss4:=df (s2,cos(te),4)/(4x3%2);
s2:=82-ss4*cos (te)**4;

ss2:=df (s2,cos(te),3)/(3%2);
s2:=82-882%cos (te) **3;

ss2:=df (s2,cos(te),2)/2;
s2:=s2-ss52%cos (te) **2;

ssl:=df (s2,cos(te));
ss0:=s2-ssl*cos(te);

ss10;

The coefficient 510 = 0 (ss10 in the program) gives

k= r2h(k® +1).

For checking it, we use

df (a,r) :=(a**x2+1)*hl/r**2;
ss10;

The full program can be written as the following:

depend vr,t,r;

depend H,t,r;

depend p,t,r;

depend om,t,r,te,fi;
depend co,t,r,te,fi;
depend si,t,r,te,fi;
df(co,t):= -sixdf(om,t);



df(co,r):= -si*df(om,r);

df(co,te) := -sixdf(om,te);
df (co,fi):= -si*df(om,fi);
df(si,t):= coxdf(om,t);

df(si,r):= coxdf(om,r);
df (si,te):= coxdf(om,te);
df(si,fi):= coxdf(om,fi);

let six*2=1-co**2;

factor df(om,t),df(om,r),df(om,te),df(om,fi),
df(om,t,2),df (om,r,t),df(om,t,te) ,df (om,fi,t),
df (om,r,2),df (om,r,te) ,df (om,fi,r),
df (om,te,2),df (om,fi,te),
df (om,fi,2),
df (vr,t),df(vr,r),df(vr,r,t),df(vr,r,2),df(vr,t,2),
df (h,t),df (h,r),df(h,r,t),df(h,r,2),df (h,t,2),
df(p,t),df(p,r),df(p,r,t),df(p,r,2),df(p,t,2);

sl := - 4xnu*xdf(vr,r)*r**(-1) - nuxdf(vr,r,2) - 2%nuxr**(-2)*vr +
df(vr,t) + df(vr,r)*vr + df(p,r) - hx*2*kr*x(-1);

s2 := - nuxdf(om,r)**2*co*si**(-1) - 2*nux*df(om,r)*df(h,r)*hxx(-1) - 2
snuxdf (om,r)*r**(-1) - nuxdf(om,te)**2kcokrkk(-2)*sikx(-1) -
nu*df (om,te)*cos(te)*sin(te)** (-1)*r**(-2) - nuxdf(om,fi)**2x
sin(te)**(-2) xco*r*x(-2)*si**(-1) - 2%nu*df(om,fi)=*
cos(te)*sin(te)** (-2)*co*r*x(-2)*sixx(-1) - nuxdf(om,r,2) -
nuxdf (om,te,2)*r**x(-2) - nu*df(om,fi,2)*sin(te)**x(-2)*

r** (-2) + 2*nuxdf (h,r)*coxh**x(-1)*r*k*x(-1)*xsi*x*x(-1) +
nu*df (h,r,2)*co*hx*(-1)*si**(-1) - nu*sin(te)**(-2)x*
co*rkx*(-2)*si**(-1) +df(om,t) + df(om,r)*vr + df(om,te)*
coxh*r*x(-1) + df(om,fi)*sin(te)**(-1)*h*r*x*x(-1)*si*xx(-1)*
(- cox*2 + 1) - df(h,t)*coxh**(-1)*si**(-1) -df(h,r)*
coxhk*(-1)*sik*k(-1)*xvr + rk*(-1)*sik*(-1)*( - cos(te)*
sin(te)**(-1)*co**2xh + cos(te)*sin(te)**(-1)*h - co*vr);

s4 := - df (om,te)*h*r**x(-1)*si + df(om,fi)*sin(te)**(-1)*coxh*r**(-1)
+ df (vr,r) + r**x(-1)*(cos(te)*sin(te)**(-1)*coxh + 2%vr);
s3 := nuxdf (om,r)**2xh + nuxdf (om,te)**2xh*r**(-2) + nu*df(om,fi)**2%*

sin(te)**(-2) xhxr*x(-2) + 2xnu*df(om,fi)*cos(te)*sin(te)**(-2)x*
h*r**(-2) - 2*nuxdf (h,r)*r**(-1) - nu*df(h,r,2) + nu*sin(te)**(-2)%*
hxr*x(-2) +df(h,t) + df(h,r)*vr + hxr*x(-1)*vr;

j:=df (s3,df(h,t));

ht:=df (h,t) :=df (h,t)-s3/j;
on div;

depend hil,t,r;

h:=h1l/r;

hit:=df(hl,t) :=r*ht;

clear si**2;

let cox*2=1-si%*2;

s2:=s82;

s4:=s4;

clear df(hi,t);
s3:=s3/h1;

s4:=r*x2*s4/hi;

depend F,o,t,r,te,fi;

df (om,t,2) :=-(df(F,t,2)+2*df (F,o,t)*df (om,t)+df (F,o0,2) *df (om,t) **2) /df (F,0);

df (om,r,2) :=-(df (F,r,2)+2*xdf (F,o0,r) *df (om,r)+df (F,0,2) *df (om,r) **2) /df (F,0);

df (om,te,2) :=-(df (F,te,2)+2*df (F,o0,te)*df (om,te)+df (F,o0,2)*df (om,te)**2)/ df(F,o0);
df (om,fi,2) :=-(df(F,fi,2)+2*df (F,o0,fi) *df (om,fi)+df (F,o0,2)*df (om,fi)**2)/ df(F,o0);
sl:=s1;

s2:=s82;
s3:=83;
s4:=s4;

df (om,t) :=-df (F,t)/df (F,0);
df (om,r) :=-df (F,r)/df(F,o);

71



df (om,te) :=-df (F,te)/df (F,o0);
df (om,fi) :=-df(F,fi)/df (F,0);
si:=sin(o);

co:=cos(o0);

sl:=s1;

depend a,t,r;

df (vr,r) :=(a*xh-2*vr)/r;

sl;

s2:=s52*df (F,0)**3;
s3:=53%df (F,0) **2;

s4:=s4xdf (F,o0);

lla:=cos(o)*sin(te)-axcos(te);
arbe:=sin(o)/(a*sin(te)+cos (o) *cos(te));
depend bbe,t,r,te,fi,o;
df (bbe,t) :=df (arbe,t)/(1l+arbe**2);
df (bbe,r) :=df (arbe,r)/(1+arbe**2) ;
df (bbe,t)/df (bbe,r);
df (bbe,te) :=df (arbe,te)/(1+arbe**2);
df (bbe,fi) :=1;
df (bbe,o) :=df (arbe,0)/(1+arbe**2) ;

depend ps,t,r,be,la;
df(f,r,2):= df (bbe,r)*(df(ps,be,2)*df (bbe,r)+
df (ps,be,la)*df (1la,r)+df (ps,be,r))+
df (ps,be) *df (bbe,r,2)+df (11a,r)*(df (ps,be,la)*df (bbe,r)+
df (ps,la,2)*df (1la,r)+df(ps,la,r) )+ df(ps,la)*df(lla,r,2)+
df (ps,be,r)*df (bbe,r)+df (ps,la,r)*df (1la,r)+df(ps,r,2);
df (f,te,2):= df(bbe,te)*(df(ps,be,2)*df (bbe,te)+df(ps,be,la)*df(1lla,te))+
df (ps,be) *df (bbe,te,2)+ df(lla,te)*(df(ps,be,la)*df(bbe,te)+
df (ps,la,2)*df(1lla,te))+ df(ps,la)*df(lla,te,2);
df (£,£i,2):= df (bbe,fi)*(df(ps,be,2)*df (bbe,fi)+df(ps,be,la)*df(1la,fi))+
df (ps,be)*df (bbe,fi,2)+ df(lla,fi)*(df(ps,be,la)*df(bbe,fi)+
df (ps,la,2)*df (11la,fi))+ df(ps,la)*df(1la,fi,2);
df(f,0,2):= df(bbe,o)*(df (ps,be,2)*df (bbe,o)+df (ps,be,la)*df(1lla,0))+
df (ps,be)*df (bbe,0,2)+ df(lla,o)*(df(ps,be,la)*df(bbe,o)+
df (ps,la,2)*df(1lla,o0))+ df(ps,la)*df(lla,0,2);
df (f,o0,r):=
df (bbe,o0)*(df (ps,be,2)*df (bbe,r)+df (ps,be,la)*df (1la,r)+df (ps,be,r))+
df (ps,be) *df (bbe,o,r)+
df (1la,o0)*(df (ps,be,la)*df (bbe,r)+df (ps,la,2)*df (1la,r)+df (ps,la,r))+
df (ps,la)*df(lla,o,r);
df (f,o0,te) :=
df (bbe, o) *(df (ps,be,2)*df (bbe,te)+df (ps,be,la)*df(1lla,te))+
df (ps,be) *df (bbe,o,te)+
df (1la,o0)*(df (ps,be,la)*df (bbe,te)+df (ps,la,2)*df(1lla,te))+
df (ps,la)*df(lla,o,te);
df(f,o0,fi):=
df (bbe, o) *(df (ps,be,2)*df (bbe,fi)+df (ps,be,la)*df(1lla,fi))+
df (ps,be) xdf (bbe,fi, o)+
df (1lla,o0)*(df (ps,be,la)*df (bbe,fi)+df (ps,la,2)*df(1lla,fi))+
df (ps,la)*df(1lla,fi,o);

sl:=s1;

s2:=s82;

s3:=83;

s4:=s4;

df (f,t) :=df (ps,be)*df (bbe, t)+df (ps,la)*df (1la,t)+df(ps,t);
df (f,r) :=df (ps,be) *df (bbe,r)+df (ps,la) *df (11a,r)+df (ps,r) ;
df (f,te) :=df (ps,be)*df (bbe,te)+df (ps,la)*df (1lla,te);

df (f,fi) :=df (ps,be)*df (bbe,fi)+df (ps,la)*df(1lla,fi);

df (f,0) :=df (ps,be) *df (bbe,0)+df (ps,la)*df (1la,o0);

s2:=s82;
s3:=s3;



s4:=s4;

let sin(o)**2=1-cos(o0)**2;

let sin(te)**2=1-cos(te)**2;

sl:=s1;
s2:=num s2;
s3:=num s3;

s4:=s4;

cos(o):=(lata*cos(te))/sin(te);
factor cos(te);

s2:=num s2;

s3:=num s3;

kol:=df(s3,sin(o));
ko2:=s3-kol*sin(o);
s3:=kol**2%(1-cos(0)**2)-ko2**2;

ss:=df(s3,sin(te));

ss8:=df (s3,cos(te),8)/(8*xTx6x5%x4%3%2) ;
s3:=s3-ss8*cos(te)**8;
ss7:=df(s3,cos(te),7)/(7T*x6%5%4x3%2);
s3:=53-ssT*cos(te)**7;
ss6:=df(s3,cos(te),B)/(6x5x4x3%2) ;
s3:=53-ss6*cos(te)**6;
ssb:=df(s3,cos(te),5)/(5%4x3%2);
s3:=s3-ssb*cos(te)**5;

ss4:=df (s3,cos(te),4)/(4%3%2);
s3:=s3-ssd*cos(te)*x4;
ss3:=df(s3,cos(te),3)/(3%2);
s3:=s3-ss3*cos(te)**3;
ss2:=df(s3,cos(te),2)/2;
s3:=s3-ss2*cos(te)**2;
ss1:=df(s3,cos(te));

ss0:=s3-ssl*cos(te);

on factor;

df (f,0);

depend qq,t,r,be,la;

let df(ps,be)**2=-( df(ps,la)**2*a**4-2+df (ps,la)**2ka*x2xLlax*2-2*df (ps,la)**2kxLax*2+

2*df (ps, la) **2*a**2+df (ps,la) *¥2xla*x*4+df (ps,la)**2) /(ax*2+1) +qq;

ss8:=ss8/qq;
ss7:=ss7/qq;
ss6:=ss6/qq;

ssb:=ss5/qq;



ss4:=ss4/qq;
ss3:=ss3/qq;
ss2:=s52/qq;
ssl:=ssl/qq;
ss0:=ss0/qq;
ss8;

df (hl,t) :=-vr*df (hl,r)+nux(df (hl,r,2)+hi*xdf (a,r)**2/(a**2+1));

ss8;

ss7;

ssB:=ss6;

% first case df(a,r) neq O

df (ps,r) :=-df (ps,la)*axlaxdf(a,r)/(ax*2+1);

ss6;

ssb;

ssé4;

% it’s contradiction: a**2+1=0

clear df(ps,r);

clear df(ps,be)**2;

qq:= df (ps,be)**2+(df (ps,la)**2ka**4-2xdf (ps,la) **2*a**2*lak*2-
2*df (ps, la) **2*la**x2+2*df (ps,la) x*2*ax*2+

df (ps,la)**2xla*x4+df (ps,la)**2) / (a**2+1);

df(a,r):=0;
ss6;
ssb;
ssé4;
off factor;

s2:=num s2;
kol:=df(s2,sin(0));
ko2:=s2-kol*sin(o);

s2:=kol**2*% (1-cos(0)**2) -ko2**2;

ss:=df(s2,sin(te));

ss10:=df (s2,cos(te),10)/ (L0*Ox8*T*B*5x4*3%2) ;
s2:=s52-ss510%cos (te) **10;

ss9:=df (s2,cos(te),9)/(9*8*7T*6x5x4*3%2) ;
s2:=52-559%cos(te)**9;

ss8:=df (s2,cos(te),8)/(8*7*6x5x4%x3%2) ;
s2:=52-s58*cos (te) **x8;
ss7:=df(s2,cos(te),7)/(T*6x5%4x3%2) ;
s2:=s52-ssT*cos (te)*x7;

ss6:=df (s2,cos(te),6)/(6%5%4%3%2);
s2:=s2-ss6%cos(te)**6;
ssb:=df(s2,cos(te),5)/(5%4x3%2);

s2:=s2-ssb*cos(te)**5;
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ss4:=df (s2,cos(te),4)/(4%3%2);
s2:=s2-ssd*cos(te)*x4;

ss2:=df (s2,cos(te),3)/(3%2);
s2:=s2-s52%cos(te)*x3;
ss2:=df(s2,cos(te),2)/2;
s2:=s2-ss2*cos(te)**2;
ssl:=df(s2,cos(te));
ss0:=s2-ssl*cos(te);

on factor;

ss10;

df (a,t) := (a**2 + 1)*hl/r**2;
depend cc,t;

hl:=3%cc*r**2;

ss10;

end;



Appendix D

Program of Deriving
Determining Equations

nx:=2; nu:=3; nua:=0; off echo;
operator s,sk,u,ua,uu,uua,x,rru,ffu,ffua,fu,fua,zu,zua,kx;
algebraic procedure gkk(m,1l,q);
begin h:=1; if m=1 and 1=q then h:=6 else if 1=q or m=1 or m=q
then h:=2; return h; end;algebraic procedure gkkk(k,m,1l,q);
begin h:=1; if k=m then begin

if gkk(m,1,q)=6 then h:=24 else

if gkk(m,1l,q)=2 then <<if m=1 then h:=6 else
h:=4; >>else h:=2; end else h:=gkk(m,l,q); return h; end;
for ju:=1:nu do for ku:=1:nu do depend zu(ju),u(ku);
for ju:=1:nu do for kxn:=1:nx do depend zu(ju),x(kxn);
for jx:=1:nx do for ku:=1:nu do depend kx(jx),u(ku);
for jx:=1:nx do for kxn:=1:nx do depend kx(jx),x(kxn);
for ju:=1:nu do for ku:=1:nu do factor df(zu(ju),u(ku));
for ju:=1:nu do for kxn:=1:nx do factor df(zu(ju),x(kxn));
for jx:=1:nx do for ku:=1:nu do factor df(kx(jx),u(ku));
for jx:=1:nx do for kxn:=1:nx do factor df(kx(jx),x(kxn));
for ju:=1:nu do factor zu(ju); for jx:=1:nx do factor kx(jx);

if not(nua=0) then begin

for ju:=1:nu do for kua:=1:nua do depend zu(ju),ua(kua);

for jua:=l:nua do for ku:=1:nu do depend zua(jua),u(ku);

for jua:=1l:nua do for kxn:=1:nx do depend zua(jua),x(kxn);

for jua:=l:nua do for kua:=1:nua do depend zua(jua),ua(kua);
for jx:=1:nx do for kua:=1:nua do depend kx(jx),ua(kua);

for ju:=1:nu do for kua:=1:nua do factor df(zu(ju),ua(kua));
for jua:=1l:nua do for ku:=1:nu do factor df(zua(jua),u(ku));
for jua:=l:nua do for kxn:=1:nx do factor df(zua(jua),x(kxn));
for jua:=l:nua do for kua:=1:nua do factor df(zua(jua),ua(kua));
for jx:=1:nx do for kua:=1:nua do factor df(kx(jx),ua(kua));
for jua:=l:nua do factor zua(jua);

end;

if nua = 0 then in "groeq2.new" else in "equieq2.new"
for k:=1:nu do for j:=1:nx do for 1l:=(j+1):nx do u(k,l,j):=u(k,j,1);
if not (nua=0) then for k:=l:nua do for j:=1:(nx+nu) do for
1:=(j+1):(nx+nu) do ua(k,l,j):=ua(k,j,1);

koutlet:=-3;

for each nomu in 1,2,3 do
begin
write ("nomu = ",nomu);

% act on the equation by prolonged operator
jjl:= for l:=1:nx sum for m:=1:nu sum

df (s(nomu) ,u(m,1))*ffu(m,l);

if nomu = koutlet then write ("JJ1 = ",jjl);
jj2:= for m:=1:nu sum

df (s (nomu) ,u(m))*zu(m) ;



if nomu = koutlet then write ("JJ2 = ",jj2);
jj3:= for 1:=1:nx sum kx(1)*df(s(nomu),x(1)) ;
if nomu = koutlet then write ("JJ3 = ",jj3);

jj4 := for k := 1l:nu sum
for i:= 1l:nx sum

for j:= i:nx sum
ffu(k,i,j)*df(s(nomu) ,ulk,i,j)) ;
if nomu = koutlet then write ("JJ4 = ",jj4);

if not(nua=0) then

<<jja0:= for m:=1l:nua sum
df (s(nomu) ,ua(m))*zua(m) >>

else jja0:=0; if nomu = koutlet then
write ("JJa0 = ",jja0);

if not(nua=0) then

<<jjal:= for l:=1:nx+nu sum for m:=1:nua sum
df (s(nomu) ,ua(m,1))*ffua(m,l) >>

else jjal:=0; if nomu = koutlet then
write ("JJal = ",jjal);

rru:=jjl+jj2+jj3+jj4+jjal0+jjal;
if nomu = koutlet then write ("rru = ",rru);
clear jj1,jj2,jj3,jj4,jja0,jjal;

% coeff. at the df(derivatives) in the generator
for i:=1:nu do begin
fu(i):=zu(i) - for 1l:=1:nx sum kx(1)*u(i,l);
if nomu = koutlet then write "fu(",i,")=",fu(i);
end ;
if not(nua=0) then begin
% for fua()
for i:=1:nua do begin
fua(i):=zua(i) - ( for l:=1:nx sum kx(1l)*ua(i,l) )
- ( for j:=1:nu sum zu(j)*ua(i,j+nx) );
if nomu = koutlet then write "fua(",i,")=",fua(i);
end;
end;
% for fua()
for i:=1:nu do for j:=1:nx do begin
ffu(i,j):= df (fuli),x(j)) +
for m:=1:nu sum u(m,j)*df(fu(i),ulm)) ;
ffu(i,j):=ffu(i,j)+for k:=1:nua sum
df (fu(i),ua(k))*( ua(k,j) + for l:=1:nu sum ua(k,nx+1)*u(l,j) );
if nomu = koutlet then write "ffu(",i,",",j,")=",ffu(i,j)
end;
if not(nua=0) then begin % for ffua()
for i:=1:nua do begin
for j:=1:nx do begin
ffua(i,j):= df(fua(i),x(j)) + for m:=1l:nua sum
ua(m, j)*df (fua(i) ,ua(m));
if nomu = koutlet then write "ffua(",i,",",j,")=",ffua(i,j);
end;
for j:=1:nu do begin ffua(i,j+nx):= df(fua(i),u(j)) +
for m:=1:nua sum ua(m,j+nx)*df(fua(i),ua(m));
if nomu = koutlet then write "ffua(",i,",",j+nx,")=",ffua(i,j+nx);
end;

end;

end;

% for ffua()

for i := 1:nu do

for j := 1:nx do
for k:= j:nx do
begin
ss:=-for 1l:=1:nx sum

u(i,j,)*(df(kx(1),x(k))+ for kl:=1:nu sum u(kl,k)*df(kx(1),u(kl)) );

if not(nua=0) then
% for df (kx(l),ua()
ss:=ss-for ka:=1:nua sum
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df (kx(1),ua(ka))*( ua(ka,k) + for la:=1:nu sum ua(ka,nx+la)*u(la,k) );
ss:=ss+ df (ffu(i,j), x(k)) + for m:= 1l:nu sum u(m,k)*df(ffu(i,j),ulm));
ss:=ss + for m:= 1:nu sum for kl:=1:nx sum u(m,k,kl)*df(ffu(i,j),ulm,kl));
if not(nua=0) then begin
% for df(ffu(i,j),ua()
ss:=ss + for ka:= 1:nua sum df(ffu(i,j),ua(ka))*( ua(ka,k) +
for la:=1:nu sum ua(ka,nx+la)*u(la,k) );
ss:=ss + for ka:= l:nua sum for kl:=1:nx+nu sum
df (ffu(i, j) ,ua(ka,kl))*( ua(ka,kl,k) +
for la:=1:nu sum ua(ka,kl,nx+la)*u(la,k) );
end;
% for df(ffu(i,j),ua()
ffu(i,j,k) :=ss;
clear ss;

if nomu = koutlet then write "ffu(",i,",",j,",",k,")=",ffu(di,j,k);
end;

rru:=rru;

% second order stuff above

for i:=1:nu do clear fu(i); off nat;

write ("nomu = ",nomu);
if nua=0 then in "groma2.new" else in "equima2.new";

for m:=1:ms do for l:=m:ms do for q:=l:ms do begin h:=gkk(m,1l,q);
ss:=df (df (df (rru,sk(m)),sk(1)),sk(q))/h;
rru:=rru-ss*sk(m)*sk(1)*sk(q) ;
if not (ss=0) then write "fu(",nomu,",",m,",",1,",",q,") := ",num ss;
%clear fu(nomu,m,l,q);
end;
for m:=1:ms do for l:=m:ms do begin if m=1 then h:=2 else h:=1;
ss:=df (df (rru,sk(m)),sk(1))/h; rru:=rru-ss*sk(m)*sk(l);

if not (ss=0) then write "fu(",nomu,",",m,",",1,") := ",num ss;
Yclear fu(nomu,m,1l);

end;

for m:=1:ms do begin ss:=df(rru,sk(m)); rru:=rru-ss*sk(m);
if not (ss=0) then write "fu(",nomu,",",m,") := ",num ss;
clear

ss;

end;

write "result rru(",nomu,") := ",rru;

write ("end of splitting");

end;

end;
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