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CHAPTER I 

INTRODUCTION

1.1 Background

Holography is a technique to store three-dimensional (3-D) optical

information on a light-sensitive medium such as a photographic film. In in-line

particle holography, coherent illumination of opaque or semi-transparent particles

illuminated produces an interference pattern between light waves diffracted from the

particles and a directly transmitted light wave. After development, the recorded

pattern is referred to as a hologram. As for micrometer size of particles, the diffraction

caused by particles at a few tens of centimeters of recording distance can be

categorized as a Fraunhofer diffraction. Thus, this type of hologram can be referred to

as an in-line Fraunhofer hologram.

The interference pattern of the hologram contains information about both the

3-D spatial position and size of the particles. In a conventional analyzing method, this

information is extracted by illuminating the hologram with the same coherent light.

The transmitted light reconstructs images of the particles at the same distance as the

recording distance. By analyzing this reconstructed image, the desired information

can be obtained.

Particle sizing and tracking is one of potential applications of in-line

Fraunhofer holography. The in-line holography was not only used for measurement of

spherical objects such as fog and marine plankton (Thompson, 1974), its application
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to the characterization of thermal insulator fibers has also been found to be very

promising (Belaid, Lebrun and Özkul, 1997). Although the desired information can be

obtained by analyzing the optically reconstructed image, we may deal with a huge

number of particles in real applications. As a consequence, the conventional

reconstruction process is very tedious and time consuming.

In order to overcome this problem, Murakami employed a microscope to

observe directly the transmittance of the developed in-line hologram (Murakami,

1987). He established a relation between the density and the diameter of interference

fringes in the hologram which could provide the desired information. However, his

method is applicable only to a small far-field number that corresponds to either a very

big diameter of particles or a very short recording distance. As for a large far-field

number, the density of fringes does not vary significantly. This leads to inaccuracy of

the method. An alternative solution for all-optical analysis of particle holograms using

a wavelet transform (WT)-based correlator was proposed (Widjaja, 1998). In the

method, the optically reconstructed image of a target particle is compared to the

image of a reference particle by using a joint transform correlator technique. The

interesting feature of this method is that the WT is used to enhance edge features of

both images by imaging an image of a wavelet filter onto the joint Fourier spectrum

of the images of the target and the reference particles. By correlating these two edge-

enhanced images, the position and the size of particles can be accurately determined.

Although the method is indeed useful for analyzing irregularly shaped particles, the

problem in the method is that the optical system becomes complicated. Recently, the

WT has also been used to extract information about the 3-D position of particles from

digitally-recorded in-line holograms (Lefebvre, Coëtmellec and Özkul, 2000). This
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method is based on an interpretation of the diffraction process as a wavelet

transformation with a spherical wave for the wavelet and an axial distance of the wave

propagation for its dilation (scale change). To determine the position of particles, the

digital hologram is wavelet transformed by using a spherical wave-based analyzing

wavelet. The position of particles can be obtained if the resultant WT gives a

maximum value. In fact, this approach is equivalent to searching the in-focus image

plane of particles reconstructed from the hologram. However, since the dilation factor

is determined by the axial recording distance, this method is useful only for the short

axial distance. For the longer distance, the dilation increases. As a result, the

admissibility condition of the wavelet is so violated that this method becomes invalid.

1.2 Significant of the study

In this thesis, a new digital method for extracting the information about the

size and the recording distance of the object directly from the in-line Fraunhofer

holograms is proposed. Instead of treating the diffraction process from the viewpoint

of the WT, the proposed method is based on the signal processing approach applied

directly to the holograms. This obviates the need for searching all depth planes. In this

thesis, the WT is used to extract the axial position of particles. Here, the dilation

factor is an independent variable whose value is not determined by the axial distance.

The size of particles is determined by using either a reconstruction of the envelope

function or an absolute values of the WT methods. In comparison with the previous

methods, the proposed method has the following advantages. First, since the hologram

is used to extract the above information, the method is free from unwanted virtual and

out-of-focus images appearing in the reconstruction process from the hologram.
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Second, it gives information about the spatial position and the size of particles. Third,

since the method is independent of the fringe density, a wider dynamic range of

measurement is expected. Fourth, a longer depth can be measured because the dilation

factor does not depend on the axial distance. Finally, the accuracy of measurements

can be maximized by taking advantage of a multi-resolution property of the WT.

1.3 Research objective

The purpose of this research is first to invent a new digital method for

measuring the size and position of particles from the digital in-line holograms. The

position information is extracted from the hologram by using the WT, while the size

can be obtained from either the combination of the WT and the envelope construction

method or the absolute values of the WT method. The feasibility of the method will

be verified by calculating error of measurement. Second, the system performance of

the method will be studied.

1.4 Scope and limitation of the study

In this dissertation, the in-line holograms of 1-D and 2-D objects are studied. An

optical fiber is used as the 1-D specimen, while for the 2-D object it is a circular

pinhole. The in-line holograms of a single object are simulated and experimentally

generated. The generated holograms are analyzed by using the WT, the envelope

reconstruction and the absolute values of the WT methods.

Since a charge-coupled device (CCD) sensor is used to capture the

interference pattern of the holograms, the finite resolution and finite aperture of the

CCD sensor determine the information quality of the captured holograms. In order to

sample correctly the interference pattern, the spatial resolution of the sensor must
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satisfy the Nyquist sampling theorem (Oppenheim and Schafer, 1989). Whereas the

aperture size of the sensor must be wide enough to record the interference pattern.

Thus, these conditions limit the allowable recording distance and size of the objects.

Furthermore in real world applications, analysis of the in-line holograms of multiple

objects may have to be done. In this case, the hologram may contain multiple

interference patterns which overlap each other. Therefore, it is important to study

these effects on the performance of the analyzing method.

1.5 Organization

The organization of this dissertation is divided into seven chapters. This is the

first chapter which gives an introduction of the dissertation. The principles of in-line

Fraunhofer holography and the WT are given in Chapter II which includes the

mathematical discussions of the holograms of the 1-D line and the 2-D spherical

objects. In Chapter III, an algorithm for simulating holograms of single and multiple

objects and an optical setup used for generating the holograms are discussed. The

extraction of the recording distance from the simulated and the optically generated

holograms by using the WT is discussed in Chapter IV. Chapter V discusses the

methods for extracting the object size from the holograms by using the envelope

reconstruction and the absolute values of the WT. The measurement results by using

these methods are given and discussed. In Chapter VI, the system performance of the

proposed method for the case of single and multiple objects are analyzed. Finally, the

conclusions of the dissertation are provided in Chapter VII. All rigorous mathematical

derivations used in this dissertation are given in Appendix.



CHAPTER II 

THEORY

2.1 In-line Fraunhofer holography

Holography is a lensless imaging method proposed by Dennis Gabor in 1948

(Goodman, 1996). In this method, both the amplitude and phase of the light field

diffracted of the object being studied is recorded into light-sensitive media such as a

photographic-film through interference with a coherent reference wave. Although in

general the phase of the light field cannot be recorded by intensity-sensitive media,

the recorded intensity encodes the amplitude and phase information of the object

wave into the interference pattern.

In in-line holography, the object and the light source are located in-line along

an axis normal to the recording plane as shown in Fig. 2.1.

Laser
beam

Recording
plane (x,y)

Object
plane (ξ,η)

z

Figure 2.1  Formation of an in-line hologram.

Collimating
lenses
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When the object located at plane (ξ,η) is illuminated with the collimated coherent

plane wave, the intensity of the light incident on the recording medium placed a

distance z behind the object is

( ) ( )

( ) ( ) ( )
2

2

2 * *

, ,

, , , ,

I x y R o x y

R o x y R o x y Ro x y

= +

= + + + (2.1)

where R is the amplitude of the reference plane wave and ( ),o x y  represents the

complex amplitude of the scattered light at the recording plane. Here, the object plane

is assumed to be highly transmittive such that the amplitude of the reference wave is

greater than the object wave ( ), .R o x y  After development, the recorded

interference pattern is called a hologram. The existence of ( ),o x y  in the third term of

Eq. (2.1) ensures that both the amplitude and the phase of the diffracted light are

preserved into the intensity of the hologram.

In the reconstruction process, the developed hologram is illuminated with the

uniform plane wave as shown in Fig. 2.2. Assume that the exposure is controlled such

that the amplitude transmittance of the hologram is linearly proportional to the

incident intensity, the reconstructed field immediately behind the hologram can be

written as

( ) ( ) ( ) ( ){ }2 2 * *, , , , ,U x y C R o x y R o x y Ro x yβ= + + + (2.2)

where β is the constant of proportionality introduced in the developing process, while

C is the amplitude of the illuminating light. Since the amplitude transmittance of the

film is always less than one, the first term can be considered as an attenuated plane
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wave passes directly through the hologram without scattering. Due to a highly

transmittive object plane, the field of the second term is very small compared to the

first term so that it is negligible. The third term represents the field that is proportional

to the original scattered wave ( ),o x y . Since this wave field appears from the original

position of the object, it forms a virtual image of the object. The fourth term is

proportional to ( )* ,o x y , which leads to the formation of real image at the distance z

behind the hologram.

2.1.1 Line object

In case of a small line-shaped object such as a vertical wire placed at the

y-axis having the amplitude distribution function described by

1        for
( )

0 ,

a
A

a

ξ
ξ

ξ

⎧ ≤⎪= ⎨
>⎪⎩ (2.3)

the amplitude transmittance of its hologram at the recording plane (x,y) a distance z

behind the object plane can be mathematically expressed as (Tyler and Thompson,

1976)

Laser
beam

Hologram
plane (x,y)

Virtual image
plane (ξ,η)

z

Real image
plane (μ,ν)

z

Figure 2.2  Reconstruction of the in-line hologram.

Collimating
lenses
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2

2 2
2 2sin sin4 4( , ) 1 cos .2 24

ax ax
a x az zI x y ax axz zz

z z

π π
π π λ λ

π πλ λλ
λ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎛ ⎞

= − − +⎢ ⎥ ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

(2.4)

Here, a represents the radius of the object while λ is the wavelength of illuminating

light. The rigorous mathematical derivation of Eq. (2.4) is done by assuming that the

illuminating wave is a unit amplitude plane wave (see Appendix). It can be seen from

Eq. (2.4) that the hologram consists of three mathematical terms. The constant in the

first term caused by the directly transmitted light corresponds to the uniform

background in the hologram. This term is equivalent to the first term of Eq. (2.1). The

second term is a modulation of a chirp signal by a sinc function that corresponds to

the summation of the third and the fourth terms of the Eq. (2.1). Since the frequency

of the sinc function is much lower than that of the chirp signal, the amplitude of the

chirp signal is modulated by the sinc function. The third term of Eq. (2.4) associated

with the second term of Eq. (2.1) is a square of the sinc function whose the amplitude

is much smaller compared with the other terms. Thus, the hologram is mainly

constructed by the first and the second term with the sinc function representing the

envelope function and the chirp signal is the carrier signal. Note that the second term

becomes very important for particle analysis because the frequency of the chirp signal

is inversely proportional to the recording distance z, while the minima positions which

are the zero-crossing positions of the sinc function are determined by the size of the

particles. Plot of the Eq. (2.4) is shown as a solid line in Fig. 2.3, where the broken

line represents the envelope function. From this figure, the above properties of the

three terms can be obviously observed.
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2.1.2 Spherical object

For a circular cross-section spherical object with the amplitude distribution

function defined by

2 2

2 2

1        for
( , )

0 ,

a
A

a

ξ η
ξ η

ξ η

⎧ + ≤⎪= ⎨
+ >⎪⎩ (2.5)

where a is the radius of the object, the amplitude transmittance of its hologram at the

recording plane (x,y) a distance z behind the object plane can be mathematically

expressed as (Tyler and Thompson, 1976)

2

2 2 2 41 1

2 2

2 22 2
2( ) 1 sin .2 2

ar arJ J
a r az zI r ar arz z z

z z

π π
π π πλ λ

π πλ λ λ
λ λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥= − +⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(2.6)

Figure 2.3  Simulated in-line hologram of a line object.
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J1 denotes the first-order Bessel function, while r is the radius coordinate in the

hologram plane which is defined by

2 2 .r x y= + (2.7)

As in the case of the line object, the illuminating light is assumed to be of unit

amplitude. The derivation of Eq. (2.6) is given in Appendix. The interpretation of Eq.

(2.6) is similar to that of the Eq. (2.4). However, in case of a spherical object, the

envelope function is now represented by the Bessel function instead of the sinc

function. Plot of Eq. (2.6) by using the same parameters as the ones used for plotting

of Eq. (2.4) is shown in Fig. 2.4, where the broken line represents the envelope

function. It can be seen that, because of the Bessel function, the envelope function of

the 2-D spherical object is wider than that of the 1-D case.

Figure 2.4  Simulated in-line hologram of a spherical object.
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2.2 The wavelet transform

The wavelet transform (WT) is a mathematical technique which has been

introduced in signal analysis to overcome the inability of Fourier analysis in providing

local frequency spectra. The WT of a signal pattern s(r) is defined as (Kronland-

Martinet, Morlet and Grossmann, 1987)

*1( , ) ( ) ,r tW t d g s r dr
dd

∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ (2.8)

where g(r) is the analyzing wavelet function with d and t being the dilation (scale) and

the translation (shift) parameters, respectively. According to Eq. (2.8), the WT is

computed by correlating the analyzed signal with a set of dilated wavelets whose

frequency contents are inversely proportional to the dilation values. When the signal

s(r) has the same frequency content as that of the dilated analyzing wavelet g(r/d) in

the region subtended by g* [(r-t)/d], a correlation peak is generated in the WT domain.

Thus, the WT of the signal s(r) is a description of the signal across a range of

frequencies. The resultant WT gives many wavelet coefficients W which are a

function of scale and position. Since the WT is computed at given continuous values

of the dilation and the translation, this type of WT is called the continuous WT. By

using a correlation property, Eq. (2.8) can be computed by using a Fourier transform

(FT)

( ){ } ( )

( ) ( ){ }( )

1 *

1 *

1( , )

,

rW t d g s r t
dd

dG df S f t

−

−

⎧ ⎫⎧ ⎫⎛ ⎞= ⎨ ⎨ ⎬ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎩ ⎭

= −

F F F

F (2.9)
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where F and F-1 denote the forward and the inverse FTs which are defined by

(Goodman, 1996)

( ){ } ( ) 2j frs r s r e drπ
∞

−

−∞

= ∫F (2.10)

and

( ){ } ( )1 2 ,j frS f S f e dfπ
∞

−

−∞

= ∫F (2.11)

respectively.

In this thesis, the Morlet wavelet defined as (Kronland-Martinet et al., 1987)

( )
2

2 2g
ri f rg r e eπ −

= (2.12)

is used as the analyzing wavelet with fg denoting the frequency of the wavelet. Plots

of the real value of the dilated Morlet wavelet with fg = 0.001 lines/mm versus its

spectrum for different dilations are shown in the left column of Fig. 2.5. When the

scale value is high, the wavelet is dilated. While it is compressed for small value of

the scale. The inverse proportional relationship between the dilation and the frequency

response of the wavelet can be obviously observed from the right column of the

figure. When the wavelet is dilated in the space domain, its center frequency and

bandwidth decrease. However, the compressed wavelet gives higher center frequency

and broader bandwidth. It can also be seen from Eq. (2.9) and Fig. 2.5 that the

computation of the wavelet coefficients equivalent to the filtering operation of the

analyzed signal by the set of band pass filters having center frequency of fg/d. The

filtered signal is the wavelet coefficients at the corresponding dilation value d.
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If the spatial width and the bandwidth of the wavelet are regarded as the spatial and

the frequency resolutions respectively, the small scale gives a wavelet analysis with

high spatial resolution and low frequency resolution. In contrast, the high scale

corresponds to wavelet coefficients with low spatial resolution and high frequency

resolution. This is known as the multi-resolution property of the WT. This property is

suitable for analyzing non-stationary signals whose high-frequency components occur

in short period, while its low-frequency components exist for a longer period.

Therefore, analysis of single-shot signals such as spikes must be done by using the

( ){ }Re g r d ( )d G df

Figure 2.5  Morlet wavelet and its spectrum for different dilation values.



15

compressed wavelet because its spatial width is narrow and its center frequency is

high. However, the decomposition of the low-frequency components of signals which

occur in a longer period requires the dilated wavelets. This yields wavelet coefficients

with higher frequency resolution.

Figure 2.6 illustrates the real value of the resultant wavelet coefficients of the

hologram shown in Fig. 2.3. The horizontal axis corresponds to the spatial translation

of the interference pattern, while the vertical axis indicates the dilation parameter

plotted in a logarithmic scale. The black and white colors represent the minimum and

the maximum values of the wavelet coefficients, respectively. The solid lines

represent the theoretical value of the space varying spatial frequency of the chirp

signal. Since the frequency of the chirp signal becomes higher as the position x

Figure 2.6 Plot of the real value of the continuous wavelet

coefficients of the simulated hologram in Fig. 2.3.
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increases, the dilation values decreases. It can be seen from the Fig. 2.6 that the

resultant continuous WT of the interference pattern agree well with the predicted

theoretical values.

Unlike the continuous WT which is computed at any given continuous values

of the translation and the dilation, a discrete WT computes the wavelet coefficients

only in a dyadic interval of the translation 2 jt = and the dilation 2 jd =  (Misiti,

Misiti, Oppenheim and Poggi, 2001). The discrete WT coefficients are obtained by

means of a series of filtering and subsampling operations. As for the discrete signal s

having N samples, these operations are done by passing the signal through high-pass

and low-pass filters whose cutoff frequencies are half of the maximum frequency of

the analyzed signal s. The output of the high-pass filter contains detail information D

of the signal with frequencies that are higher than its cut off frequency, while the low-

pass filter produces coarse information A. Since the frequency contents of the filtered

signals are reduced by half, they can be faithfully described by only N/2 samples. This

allows the information A and D to be down-sampled by a factor of 2 without loss of

frequency resolution. The results after down sampling are the detail coefficients and

the approximation coefficients which are represented by CD and CA, respectively. Fig.

2.7 shows a block diagram of a single level decomposition process, where H and L

denote the high-pass and low-pass filters, respectively. This process is repeatly

applied to the detail coefficient CA until it consists of single sample. The detail

coefficients resulting from these processes are the WT coefficients in the

corresponding level of decomposition.

Figure 2.8 plots the discrete wavelet coefficients of the interference signal

shown in Fig. 2.3. The first level decomposition gives the discrete wavelet
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coefficients that corresponds to the high frequency content of the interference pattern,

H Down

sampling

by 2

s

D CD

L

A CA

N samples

N/2 samples

N/2 samples

Figure 2.7 Single level decomposition of the signal s (Misiti,

Misiti, Oppenheim and Poggi, 2001).

Figure 2.8 Plot of the discrete wavelet coefficients of the simulated

hologram in Fig. 2.3.
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while the ninth level decomposition represents the low frequency information.

Although the discrete WT could reveal the space-varying frequency of the analyzed

signal, the accuracy of this information is much lower than that of the continuous WT.

This is because the discrete WT is computed only at the dyadic intervals. Therefore,

in order to analyze accurately the particle holograms, this thesis employs the

continuous WT. For the sake of simplicity, the term WT will henceforth be used in

regard to the continuous WT.



CHAPTER III 

HOLOGRAM FORMATION

In order to study feasibility of the proposed method, the holograms of line and

spherical objects are both digitally and optically generated. The study also takes into

account the presence of multiple objects in the object plane. In the simulation all

parameters used to generate holograms are based on technical specifications of

instruments employed in the experiment. All digital computations are conducted by

using the Matlab 6.1 software run on the Windows XP based computer IBM NetVista

6578-TBT with the 966 MHz Intel Pentium III processor and 256 MB of RAM.

In the experimental verification, the CCD sensor HAMAMATSU C5948

having the resolution of 640×480 pixels in the area of 8.3×6.3 mm was employed to

capture the hologram. However, since this type of CCD has analog output, the pixel

size in the stored hologram depends on the image-captured board used. In order to

calibrate the pixel size of the sensor, a small spot of a laser beam was used to

illuminate the CCD sensor mounted on a micrometer stage. The average pixel size of

the sensor was obtained by dividing a measured distance between two different

positions illuminated by the beam by the number of pixels contained by this distance.

By doing this calibration, the average pixel sizes in the horizontal and the vertical

directions are found to be 12.99 μm and 11.03 μm, respectively.
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3.1 Single object

The holograms of single line and spherical objects were generated for different

object sizes and recording distances. The holograms are simulated with the same

recording distances as those used in the experiment. However, due to the different

experimental setup and the limited experimental space, the range of the recording

distances for the line and the spherical objects are different.

3.1.1 Line object

The holograms of line objects having the radius a of 20 μm and 62.48 μm are

simulated by using Eq. (2.4) for the recording distances of 10 cm 20 cm.z< <

According to the resolution of the CCD sensor, the number of samples N used for

simulating the hologram is 640 pixels with the sampling interval Δx of 12.99 μm, and

the wavelength of illuminating light λ is 543.5 nm.

According to Eq. (6.3) in Chapter VI, the length x measured from the center of

the interference pattern that can be correctly sampled must less than λz/2Δx.  In the

case of the line object recorded at the distance 20 cm the maximum length is 4.2 mm.

Fig. 3.1 shows the simulated hologram of the line object with a radius of 62.48 μm

recorded at the distance z = 20 cm. Although the simulated hologram satisfies this

condition, some distortions can still be observed at the higher-order lobes of the

signal. This is because the frequency of the chirp signal increases as a function of the

position x while the sampling frequency is fixed at 1/Δx lines/mm. As a result, large

amount of distortion will be introduced to the portion of the signal having higher

frequencies than the Nyquist frequency, 1/2Δx lines/mm, such that the contents of
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those frequencies is loss. When the frequencies of the digitized signal are lower than

the Nyquist frequency, their frequencies content is preserved. However, smaller

distortion still exists in the 3rd and 4th lobes of the digitized hologram.

For the optical generation of the holograms, an optical fiber having a radius of

62.48 μm was employed as the line object. This size was obtained by measuring the

fiber using a microscope OLYMPUS CH30RF200. The optical setup used to generate

the holograms is shown in Fig. 3.2. It consisted of a He-Ne laser source Melles Griot

05-LGR-193 with a wavelength of 543.5 nm, a spatial filter, a collimating lens with a

focal length of 300 mm and a CCD sensor. The spatial filter was constructed by using

a microscope objective lens with focal length of 14.8 mm and the pinhole having a

diameter of 25 μm. The laser beam was expanded by using a combination of the

spatial filter and the collimating lens to generate a uniform plane wave. Next, the

Figure 3.1 Simulated in-line hologram of the line object

with a = 62.48 μm and z = 20 cm.
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Figure 3.2 Experimental setup for generating the in-line hologram

of the optical fiber.

Laser source

Spatial filter
Collimating lens

Object’s holder
CCD sensor

Figure 3.3  Optical fiber mounted on the holder.
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generated plane wave was used to illuminate the optical fiber mounted on the holder

as shown in Fig. 3.3. Figure 3.4 illustrates the resultant interference pattern captured

by the CCD sensor at the recording distance z = 20 cm. It can be seen that the

captured interference pattern has non uniform background. This may be caused by an

imperfect collimation of the laser beam. In order to eliminate this background noise, a

recorded holograms was digitally subtracted with the intensity of the illuminating

beam recorded without the object depicted in Fig. 3.5. The subtraction of these two

patterns resulted in modified holograms with significantly less background noise (Lai

and Lin, 1996). Figure 3.6 shows that the subtraction of Fig. 3.5 from Fig. 3.4 entirely

removes the noise. However, although the background noise can be removed, the

hologram is still corrupted by a speckle noise. This is because the recorded speckle

patterns caused by the scattered illuminating beam without and with the object are

different. As a result, the subtraction cannot remove the speckle noise.

Figure 3.4 In-line hologram of the optical fiber recorded at  z = 20 cm.



24

Figure 3.5  Recorded intensity of the reference beam at  z = 20 cm.

Figure 3.6 In-line hologram of the optical fiber recorded at

z = 20 cm with the background removed.
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Figure 3.7 shows the 1-D profile of the hologram obtained by scanning the intensity at

the 240th row of Fig. 3.6. In comparison with Fig. 3.1, it is understood that the speckle

noise appears as random intensity fluctuation of the hologram. In order to reduce the

speckle noise, intensities of all pixels are averaged along the vertical direction. The

effectiveness of this averaging process is shown in Fig. 3.8 which is computed from

the middle four hundred lines of the Fig. 3.6, because the first few lines shown as a

thick black line on top row of Fig. 3.5 have no information.

Figure 3.7 1-D intensity profile of the 240th row of the hologram

shown in Fig. 3.6.
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3.1.2 Spherical object

Although a spherical particle is the most common 2-D object found in the

applications of particle holography, the size of the available standard spherical objects

is very small. As a result, the generated interference pattern is very broad so that the

CCD sensor could not record faithfully the pattern. For this reason, instead, the

pinhole with larger diameter was used as the 2-D test object, because it has the same

circular cross-sectional shape as the spherical opaque particle. However, the

amplitude distribution function of the pinhole is the reversal of that of an opaque

spherical object, since the incident light is blocked from passing the pinhole outer

area. Since this light should constitute the reference beam, the hologram of the

pinhole could not be generated by using the optical setup of the in-line holography

Figure 3.8 1-D averaged intensity profile of the middle 400 rows of

the hologram shown in Fig. 3.6.
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shown in Fig. 2.1. In order to overcome this problem, the Mach-Zehnder

interferometer shown in Fig. 3.9 is employed. The interferometer consists of two

optical paths separated by the beam splitter BS1. The first path is the object path that

contains the mirror M1 and the object to be studied. The second one is the reference

path that contains the mirror M2. The mirrors M1 and M2 are used for beam steering

purpose. After being diffracted by the object located at the input plane (ξ,η ) the

object beam is recombined with the reference beam by the BS2. Finally, the

interference pattern of these two waves at a distance z behind the object plane is

captured by the CCD sensor.

Due to the different optical setup, Eq. (2.6) is not valid mathematical

expression for the generated hologram of the pinhole. The hologram is now the

interference of the diffraction of the pinhole and the reference plane wave which can

be mathematically expressed as

Figure 3.9 Mach-Zehnder interferometer setup for recording the

in-line hologram of the pinhole.

Laser
beam

Recording
plane (x,y)

Object
plane (ξ,η)

z

BS2

M2

M1

BS1
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(3.1)

The proof of Eq. (3.1) is provided in Appendix. The difference between Eq. (3.1) and

Eq. (2.6) is that the chirp function has an additional phase factor π. However, since

the information of the recording distance and the object size are still encoded into the

interference pattern in a similar manner as the hologram of the opaque spherical

object, the in-line holograms of pinhole can be used for verifying the proposed digital

analyzing method. The plot of Eq. (3.1) by using the same parameters as the ones

used for plotting Fig. 2.4 is shown in Fig. 3.10. From these two figures, the initial

phase different of π can be noticed.

Figure 3.10  Simulated in-line hologram of a pinhole.
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In this study, the in-line holograms were simulated by using pinholes having

the radius a of 20 μm and 77.78 μm at the recording distance of 12 cm 24 cm.z< <

Figure 3.11 shows the simulated hologram of the circular aperture having a radius of

77.78 μm recorded at the distance of 20 cm.

In the optical generation of the holograms of spherical objects, a pinhole

having a radius of 77.78 μm was employed as the test object. This size was obtained

by measuring the pinhole using the microscope OLYMPUS CH30RF200. Figure 3.12

shows the picture of the pinhole mounted on the slide holder. The Mach-Zehnder

interferometer shown in Fig. 3.13 was used to generate the holograms of the pinhole.

The same coherent light source and the spatial filter were used for providing light

Figure 3.11  Simulated in-line hologram of a circular aperture

with the radius 77.78 μm and distance z = 20 cm.
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Figure 3.13 Experimental setup for generating the in-line hologram

of the pinhole.

Laser source

Spatial filter

Collimating lens

BS1

M2

M1
BS2

CCD sensor

Object holder

Figure 3.12  The pinhole mounted on the slide holder.
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wave to be expanded. The beam was expanded by using a collimating lens with a

focal length of 400 mm. A cube beam splitter Melles Griot 03BSC013 with a

thickness of 40 mm which was used as a BS1 produced the reference and the object

beams. The mirrors M1 and M2, Melles Griot 02MFG019/023, were used for steering

the object and the reference beams, respectively. After passing through the pinhole,

the diffracted wave was recombined with the reference wave by the beam splitter

BS2. In order to prevent aberration of the diffracted object wave caused by thickness

of the beam splitter, the optical flat glass Sigma OFBP-50C05-10-5 having a

thickness of 5 mm was employed as the BS2. However, since the surfaces of the flat

glass do not have anti-reflection coating, the beam passing through the glass may

undergo multiple reflection. As for the collimated reference beam, the multiple

reflected beams produced interference fringes which could be seen as a periodic

diagonal pattern shown in Fig. 3.14. In the object path, the multiple reflection of the

Figure 3.14  Recorded intensity of the reference beam at  z = 20 cm.
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object beam produces a weak Airy pattern on the left side of the desired Airy pattern

as shown in Fig. 3.15. Figure 3.16 shows the hologram of the pinhole recorded at the

distance z = 20 cm with the unwanted diagonal interference pattern appearing as

background. According to the background removal technique discussed in the

preceding section, the unwanted background can be removed by subtracting digitally

the generated hologram shown in Fig. 3.16 with the intensity of the reference beam

shown in Fig. 3.14. The resultant subtraction is depicted in Fig. 3.17. It is clear that

the unwanted background can be successfully removed. The unwanted interference

pattern on the left side of Fig. 3.17 may be generated by the multiple reflections of the

object beam inside the flat glass. It is very weak and does not overlap with the desired

interference pattern. Thus, the distortion of the hologram from this interference

pattern is minimal.

Figure 3.15  Recorded intensity of the object beam at  z = 20 cm

Weak Airy pattern
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Figure 3.17 In-line hologram of the pinhole recorded at z = 20 cm

with the background removal.

Weak interference pattern

Figure 3.16  In-line hologram of the pinhole recorded at z = 20 cm.
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As in the case of the hologram of the optical fiber, the generated holograms

are also distorted by speckle noise. This can be seen from the 1-D intensity profile of

the hologram depicted in Fig. 3.18. This profile was obtained by scanning the

intensity variation along the 229th row which is the center row of the interference

pattern. In order to remove this speckle noise, an angular averaging of the intensities

of the corresponding pixels of the interference pattern was used. Due to the circular

symmetry of the pattern, the outer most pixel that can be averaged is determined by its

position in the vertical direction. Figure 3.19 shows the 1-D intensity profile of the

angular averaged interference pattern with 1-degree angular increment. The reduction

of the speckle noise can be clearly seen from this figure and this result agrees with the

simulated hologram illustrated in Fig. 3.11.

Figure 3.18 1-D intensity profile of the 229th row of the hologram

shown in Fig. 3.17.
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3.2 Multiple objects

In real situation, the particle field may consists of many particles. In this case,

the complex field incident on the recording plane becomes the interference between

the reference plane wave and the object wave which is a summation of the waves

scattered from the individual object. Thus, the recorded intensity at the hologram

plane can be mathematically expressed as

( ) ( ) 2
, , ,I x y R O x y= + (3.2)

where R is the complex amplitude of the reference plane wave and ( ),O x y  represents

the scattered light defined by

Figure 3.19 1-D angular averaged intensity profile of the desired

interference pattern shown in Fig. 3.17.
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( ) ( )
1

, , .
K

k
k

O x y o x y
=

= ∑ (3.3)

Here, ( ),ko x y  is the wave scattered from the kth object while K represents the number

of the objects. Thus, the amplitude transmittance of the hologram becomes

( ) ( ) ( ) ( )22 * *, , , , ,I x y R O x y R O x y RO x y= + + + (3.4)

where the interference among the object waves denoted by the second term of Eq.

(3.4) can be found from

( ) ( ) ( )2 *

1 1
, , , .

K K

k l
k l

O x y o x y o x y
= =

= ∑∑ (3.5)

For the sake of consistency with the hologram of a single object, the interference of

the object waves from the same and different objects are separately written from each

other. As a result, Eq. (3.5) becomes

( ) ( ) ( ) ( ) ( )2 * *

1 1 1

, , , , , .
K K K

k k k l
k k l

l k

O x y o x y o x y o x y o x y
= = =

≠

= +∑ ∑∑ (3.6)

Substitution of the Eqs. (3.6) and (3.3) into the Eq. (3.4) resulted in

( ) ( ) ( ) ( )

( ) ( ) ( )

2 * *

1 1

* *

1 1 1

, , , ,

, , , .

K K

k k k
k k

K K K

k k l
k k l

l k

I x y R o x y o x y R o x y

R o x y o x y o x y

= =

= = =
≠

= + +

+ +

∑ ∑

∑ ∑∑ (3.7)

In comparison with the Eq. (2.1), aside from the constant term 2 ,R  the hologram of

multiple objects is simply a linear summation of the hologram from the individual



37

object with the extra addition of the interference among the object waves from

different objects denoted by the fifth terms of the Eq. (3.7).

In case of multiple-line objects, the intensity of the recorded hologram can be

mathematically expressed as
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(3.8)

where ak, zk and xk are the radius, the recording distance, and the translation position

of the kth object, respectively. Figure 3.20 shows the simulated hologram of two

optical fibers with the same radius of 62.48 μm which are separated by 5 mm distance

in both the x and the z directions. Its 1-D intensity profile plotted in Fig. 3.21 shows

that the interference pattern of one of the fibers is distorted by the interference pattern

of the other fiber.

Similarly, the hologram of multiple spherical objects can be mathematically

written as
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Figure 3.21  1-D intensity profile of the hologram shown in Fig. 3.20.

Figure 3.20 Hologram of two optical fibers separated by 5 mm

distance in both x and z direction.
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(3.9)

The rigorous mathematical derivation of the Eqs. (3.8) and (3.9) is given in Appendix.

The hologram of two identical spherical objects having the radius of 77.78 μm which

are separated by 5 mm distance in the r and the z directions is shown in Fig. 3.22, and

its 1-D intensity profile is plotted in Fig. 3.23. In comparison with Fig. 3.21, the

distortion of the hologram shown in Fig. 3.23 is smaller. This is because firstly the

amplitude of the side lobe of the Bessel function in the second term of Eq. (3.9) is

smaller than that of the Sinc function of the Eq. (3.8). Secondly, the multiplicative

factor of the second term of Eq. (3.9) is smaller than that of Eq. (3.8).

Furthermore, it is found from Eqs. (3.8) and (3.9) that the amplitude of the

third term is much smaller than that of the second term so that the third term does not

affect significantly the resultant interference pattern. As for the fourth terms of both

equations, their amplitudes are determined by the multiplication of two envelope

functions centered at different positions. Therefore they are smaller than the third

term. As a consequence when the separation between the two objects decreases, this
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Figure 3.23 1-D intensity profile of the hologram shown in Fig. 3.22.

Figure 3.22 Hologram of two spherical objects separated by 5 mm

distance in both x and z direction.
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amplitude increases. The value of the amplitude of the fourth term becomes maximum

when one of the object overlaps another. Since this maximum amplitude is

comparable to the amplitude of the third term, the effect of the fourth term on the

resultant interference pattern is also not significant.



CHAPTER IV 

EXTRACTION OF OBJECT POSITION FROM

IN-LINE HOLOGRAMS

In order to extract the 3-D position of the object from the digital hologram, the

numerical method can be used to reconstruct the image of the object from the

hologram by solving Fresnel diffraction integral (Schnars and Jüptner, 1994). The

object position is obtained by searching for the best focus plane of the reconstructed

image. However, as the number of object increases, the analysis by using the

numerical reconstruction requires considerable computational time. In this thesis, a

new method for extracting the object position through a direct analysis of the in-line

hologram by using the WT is proposed. The method has advantages in that the

information of the position can be directly obtained without searching for the best

focus plane.

In Chapter II, Eqs. (2.4) and (2.6) reveal that the axial position of the objects is

encoded as

chirp

,xz
fλ

= (4.1)

where fchirp represents the frequency of the chirp signal at position x. Thus, the

extraction of the axial position z from the hologram can be performed, provided that

the space-varying frequency fchirp of the interference pattern is known. Since the WT

can represent simultaneously the space-spatial frequency information of the analyzed
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signal, this Chapter discusses the use of the WT for extracting the axial positions of

the objects from the holograms.

The WT of the 1-D intensity profile of the hologram can be calculated by

using Eq. (2.9). Although the WT can be theoretically calculated at any given

continuous values of dilation and translation, the digital computation of the

continuous WT is accomplished by using the discretized dilation and translation. The

accuracy of the resultant WT is determined by the dilation interval of the discretized

dilation and the spatial resolution of the CCD sensor used to capture the hologram.

Since the reduction of the dilation interval increases the dilation resolution as well as

the computation time, the WT must be computed with sufficient number of dilation in

short computation time. In the case of the chirp signal with wide bandwidth, the

discretized dilation used in the WT computation must be chosen to cover this

bandwidth. In order to maintain short computation time and good accuracy, the

dilation is discretized as exponentiation with base 10 (Lewalle, 1995). If the first

dilation is defined as 110b , then the nth discretized dilation is mathematically expressed

as

( ){ }1 110 ,b n b
nd + − Δ= (4.2)

where Δb is a logarithmic interval given by ( ) ( )10 1 10log log .n nb d d+Δ = −  For given M

dilations the interval Δb can be found from

1 ,
1

Mb bb
M
−

Δ =
−

(4.3)
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where b1 and bM are the predefined exponents. Since the WT is in fact a correlation

operation, its computation done in the frequency domain will be faster than that in the

space domain. This is because the spectrum of the signal can be obtained by

employing the fast FT algorithm. Figure 4.1 shows the flow chart for computing the

WT in the frequency domain by using the Eq. (2.9). First, the analyzed signal s is

Fourier transformed. Then, the first dilation d1 is generated. The parameter b1 and bM

must be defined such that the lowest dilation value 110b gives the dilated wavelet with

Start

S = F{s}

( ) { }( ) ( )1 *1,m m m
m

W x d g S x
d

−
⎧ ⎫⎪ ⎪= ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

F F

( )( )1
1

1
110

Mm b b
b

M
md

⎧ ⎫− −⎡ ⎤⎪ ⎪+⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭=

m = 1

m = m +1

2

2

2
exp

2
g

m
m m

i f x xg
d d
π⎡ ⎤

= −⎢ ⎥
⎣ ⎦

m M≤ End

Y

N

Figure 4.1  Block diagram for calculating the WT of the signal s.
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higher frequency than the highest frequency content of the analyzed signal s while the

highest dilation value 10 Mb  gives the frequency of the wavelet that is lower than the

lowest frequency of the signal. As this condition is achieved, the resultant WT will be

confined within the range of the calculated dilations as shown in Fig. 2.6. If the

selected range of dilations is not suitable, the resultant WT will appear in the lower or

the upper part of the Fig. 2.6 and may be cut by either the top or the bottom horizontal

axis. In this case, the WT must be recalculated using a wider range of dilations. It is

found that by using b1 and bM as –5 and –3, respectively, the frequency range of the

dilated wavelet covers the frequency band of the interference pattern used in this

study. Here, the number of dilations M are 256 samples. Next, the generation of the

dilated Morlet wavelet g(x/d) is started with the dilation d = d1. In this computation,

the frequency of the mother wavelet fg is 1 lines/mm, while the spatial position x is

generated with the same number of samples and sampling interval as those of the

analyzed signal s. The wavelet coefficients corresponding to the dilation d1 are then

calculated by using Eq. (2.9). The computations of the dilated wavelet and the wavelet

coefficients are then repeated for every values of the generated dm. By concatenating

these resultant wavelet coefficients, the 2-D function of the wavelet coefficients such

as the one shown in Fig. 2.6 can be formed.

The next step is to extract the information of the recording distances z from the

resultant WT coefficients. Since the WT is a correlation operation, the highest

amplitude of the wavelet coefficients is generated when the frequency content of the

wavelet matches with that of the signal. Thus, the positions of the maximum and

minimum values of the wavelet coefficients give the space varying frequency
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information of the analyzed signal. In order to extract this information, these positions

must be determined. In the numerical computation of the WT, the resultant real value

of the WT W(x,d) is obtained as a 2-D matrix. Figure 4.2 shows the M×N matrix of

the wavelet coefficients, where the horizontal and the vertical axes correspond to the

translation x and the dilation d, respectively. The number in each entry of the matrix

corresponds to the value of the wavelet coefficient. The value of the wavelet

coefficient Wmn is maximum or minimum if it is greater or smaller than the values of

its 8 neighboring coefficients, ie. Wm-1,n-1, Wm-1,n, Wm-1,n+1, Wm,n-1, Wm,n+1, Wm+1,n-1,

Wm+1,n, Wm+1,n+1, respectively. In Fig. 4.2, the value of W23 = 45 is maximum, while

W34 = 19 is minimum. However, although the amplitude of W41 = 12 is minimum

compared to its neighboring coefficients, this coefficient cannot be considered as

having minimum value because it is compared to only 5 neighboring coefficients.

M 16 12 15 42 14 23 24 26 34

. 20 17 19 40 15 24 15 19 33

. 19 20 22 16 31 16 17 27 26

. 23 21 19 17 26 19 31 32 19

5 33 16 30 18 23 29 22 35 21

4 12 19 24 31 26 25 24 39 22

3 23 25 30 19 30 24 18 29 30

2 30 32 45 39 31 19 17 19 31

1 20 15 41 23 22 24 19 36 18

1 2 3 4 5 . . . N

n

m

Figure 4.2  M×N matrix of wavelet coefficients.
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Figure 4.3 Block diagram for determining the local maxima and minima

of the WT coefficients.
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Therefore, in order to solve this problem, the wavelet coefficients along the outermost

rows and columns of the matrix, i.e. W1n, Wm1, WMn, and WmN, are not included in

searching the local maxima and minima.

Figure 4.3 shows the algorithm for determining the maximum and minimum

amplitudes of the resultant wavelet coefficients W(x,d). First, the amplitude of W22 is

compared to the values of the 8 neighboring wavelet coefficients that are W11, W12,

W13, W21, W23, W31, W32, and W33. If it is larger or smaller than the amplitude of all

these positions, the position of W22 is stored as the coefficient with maximum or

minimum values. This process of amplitude detection is repeated for every coefficient

except those located along the outermost rows and columns. Figure 4.4 illustrates a

plot of the resultant wavelet coefficients with maximum and minimum amplitudes

Figure 4.4 The resultant WT coefficients with maximum and minimum

amplitudes generated from the real value of the WT of the

hologram shown in Fig. 2.3.
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generated from the real value of the WT of the hologram shown in Fig. 2.3. The

maximum and the minimum amplitudes are represented by the plus and the cross

symbols, respectively. In this example, instead of b1 = − 5, the WT is calculated by

using the dilation parameter with the first exponent b1 = − 4.5 which corresponds to

the frequency = 1/d1 = 104.5 = 31.6 lines/mm. This is because the recording distance z

of the hologram which is equal to 40 cm yields the highest frequency of the chirp

signal xmax/λz = 19.1 lines/mm. It is obvious that the predicted theoretical space-

varying frequency denoted by the solid line coincides with several wavelet

coefficients with maximum and minimum amplitudes. The remaining wavelet

coefficients which do not coincide with the theoretical spatial frequency variation

cannot be used for the calculation of the axial position z. They can be considered as

the unwanted information. Thus, in order to extract the recording distance with high

accuracy, this unwanted information must be eliminated.

However in most real situations, the micro-objects being studied may be

embedded in a test volume constructed from a glass container with a known thickness

as shown in Fig. 4.5. If the glass container is located at a distance zc in front of the

zc

Δz
CCD sensor

Glass container

λ

Figure 4.5 A glass container with embedded micro-objects

used in the recording setup.
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Figure 4.6 Theoretical space varying frequencies correspond to

the shortest and the longest recording distances

defined by the thickness of the glass container.

Figure 4.7 The desired wavelet coefficient after discarding the

unwanted information.
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CCD sensor and its thickness is Δz, the possible positions of the micro-objects inside

the container will be confined to a distance 2 2.c cz z z z z−Δ ≤ ≤ + Δ  Figure 4.6

shows the theoretical spatial-frequency variations correspond to the shortest and the

longest recording distances, 2cz z−Δ  and 2,cz z+ Δ  represented by using the dash

and the dot lines, respectively. For the sake of clearness of the graph, the lines are

drawn by using Δz = 6 cm. However in this dissertation, the thickness Δz = 2 cm is

employed. It is obvious that the desired wavelet coefficients are in the region confined

by these two lines. Therefore, the unwanted coefficients located outside the two lines

can be discarded. Figure 4.7 shows the resultant wavelet coefficients after discarding

the unwanted information.

Due to the discretization, the wavelet computation by using the discretized

dilations may not always yield the desired wavelet coefficients. Since the correct

wavelet coefficients may not be produced, the determination of the maximum and the

minimum amplitudes of the wavelet coefficients may give wrong space-varying

frequency information. This can be seen from Fig. 4.8 which is the enlargement of

Fig. 4.7. In this figure, several maxima and minima appeared at different translations

have the same dilations. Since the frequency of the interference pattern is a function

of position, it is not possible that the same value of frequencies occur at different

position of the signal. It can be seen from the Fig. 4.8 that if there are more than one

translations with the same dilation value, the maximum or the minimum amplitude

corresponds to the first translation appear closer to the theoretical value than the

others. Therefore, the wavelet coefficient of the first translation is used in the

calculation of the recording distance. Figure 4.9 shows the desired maxima and
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Figure 4.8 Enlarged version of Fig. 4.7 shows some maxima and minima

of different translation having the same dilation values.

Figure 4.9 The desired maxima and minima of the Fig. 4.8 after discarding

those with the same dilation denoted by circle sign.
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minima after discarding those having the same dilation values denoted by the circle

signs.

After discarding the unwanted maxima and minima in the WT domain, the

recording distance of the object given by

.xdz
λ

= (4.4)

is calculated from the desired maxima and minima. However, since each maximum

and minimum may give slightly different value of z, the resultant recording distance

extracted by the WT is obtained by averaging of those values.

4.1 Position of line objects

The errors in measurement of the recording distance from the simulated

holograms of line objects having the radius of 20 μm and 62.48 μm are shown in Fig.

4.10 as the cross and the circle signs, respectively. The simulation results show that

the WT could extract the axial position of both objects recorded at several recording

distances with the small error of less than 1 percent. Figures 4.11 and 4.12 show the

1-D scan of the optically generated holograms of the optical fiber recorded at the

distance z = 10 cm and 20 cm, respectively. As discussed in Chapter III, these signals

are obtained by averaging along the vertical direction the middle four hundred lines of

the captured 2-D interference pattern. Due to the limited resolution of the employed

CCD sensor, a part of the signals with high frequency components cannot be correctly

sampled. This effect can be clearly seen in the Fig. 4.11, because the shorter the

recording distance the higher the chirp frequency. The effect of the CCD size and

resolution on the captured hologram is rigorously discussed in Chapter VI.
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Figure 4.10 Errors in measurement of z from simulated holograms

of line objects by using the WT.

Figure 4.11  In-line hologram of the optical fiber recorded at  z = 10 cm.
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Figure 4.12  In-line hologram of the optical fiber recorded at  z = 20 cm.

Figure 4.13 Errors in measurement of z from the optically generated

holograms of the optical fiber by using the WT.
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Figure 4.13 shows the errors of the recording distances measured from the optically

generated holograms of the optical fiber. In the experiment, the errors are about 1

percent. This is slightly higher than those of the simulation, because the imperfection

of the holograms which are resulted from the optical noises generated by the

employed equipment during the experiment, the speckle noises that overlap the

hologram, etc.

4.2 Position of spherical objects

In the case of the spherical object, the errors in measurement of the recording

distance from the simulated holograms are shown in Fig. 4.14, where the cross and

the circle signs represent the measurement errors of the objects having the radius of

20 μm and 77.78 μm, respectively. It can be seen that the errors of the measurement

Figure 4.14 Errors in measurement of z from simulated holograms

of spherical objects by using the WT.
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Figure 4.15  In-line hologram of the pinhole recorded at  z = 12 cm.

Figure 4.16  In-line hologram of the pinhole recorded at  z = 24 cm.
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are less than 1 percent as in the case of the line objects. The 1-D intensity profile of

the optically generated holograms of a pinhole recorded at the distance z = 12 and 24

cm are shown in Figs. 4.15 and 4.16, respectively. Figure 4.17 shows the errors

obtained from the holograms of pinhole which are slightly higher than those of the

simulation with the maximum value of around 1.1 percent.

The simulation and the experimental results confirm that the WT can be used

to extract accurately the axial position of the line and spherical micro-objects from the

in-line Fraunhofer holograms.

Figure 4.17 Errors in measurement of z from the optically generated

holograms of the pinhole by using the WT.



CHAPTER V 

EXTRACTION OF OBJECT SIZE FROM

IN-LINE HOLOGRAMS

Object size is one of the desired information encoded into the in-line

holograms. It is obvious from Eqs. (2.4) and (2.6) that the minima positions of the

interference pattern can be used to determine the object size. In this chapter, two

methods for extracting the object size are discussed. The first method discussed in

Section 5.1 is accomplished by reconstructing the envelope function. The second one

is done by computing the absolute values of the wavelet transformation of the

interference pattern. The reason for this is that the frequency of the chirp signal at the

minima positions also contains the information about the object size. Section 5.2

discusses the second method. It is found that the second proposed method could

extract the information of the object size from the hologram with a higher accuracy

than the first one.

5.1 Object sizing by using reconstruction of the envelope function

According to Eq. (2.4), the minima positions of the in-line hologram of the

line object appear when the argument of the sinc function equal to nπ, where n is an

integer number which represents the order of the minimum. Thus, the radius of the

line object can be determined from

line ,
2 n

n za
x
λ

= (5.1)
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with xn denotes the position of the nth minimum. In analogy, the radius of a spherical

object can be determined from Eq. (2.6)

sphere ,
2

n

n

c za
r
λ
π

= (5.2)

where rn is the position of the nth minimum measured in radius coordinate and cn is a

constant factor corresponds to the nth root of the Bessel function. For the first three

minima, these constant factors are equal to c1 = 3.83, c2 = 7.02, and c3 = 10.17

(Gradshteyn and Ryzhik, 1994).

From Eq. (5.1) and Eq. (5.2), the object size can be calculated if the minima

positions, the wavelength of the illuminating light, and the recording distance are

known. Since the wavelength of the illuminating light is known and the recording

distance can be obtained by using the WT discussed in Chapter IV, the minima

positions are the only unknown parameter to be obtained. In the first proposed

method, these positions are obtained through the reconstruction of the envelope

function.

In order to reconstruct the envelope function, the pixels of the hologram

having maximum and minimum amplitudes compared to its neighboring pixels must

be determined. Let us consider that the 1-D intensity profile of the digitized hologram

s consists of N pixels. The amplitude of the pixel sn can be maximum or minimum if it

is larger or smaller than the pixels sn-1 and sn+1, respectively. However, since the first

and the last pixels, i.e. s1 and sN, have only one neighboring pixel, they are not

included in the reconstruction of the envelope function. A block diagram of an

algorithm for reconstructing the envelope function of the signal s is shown in Fig. 5.1.

First, s2 is compared to its neighboring elements, i.e. s1 and s3. If its amplitude is



61

larger or smaller than that of the neighboring pixels, a new variable max or min is

used for storing the value of the amplitude and position of the pixel s2. The process of

searching for the maximum and the minimum amplitudes is repeated for other pixels

until sN-1. The resultant reconstructed envelope function of the hologram shown in

Fig. 2.3 is depicted in Fig. 5.2, where the plus and the cross signs represent the

Figure 5.1 A block diagram for reconstructing the envelope function by

determining the local maxima and minima of the analyzed signal s.

Start

n = 2

n = n + 1

Store sn in max

End

Y

N

Y

N

Y

N

sn >
neighboring

2 pixels

sn <
neighboring

2 pixels

n ≤ N-1

Store sn in min
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maximum and the minimum amplitudes, respectively.

After the envelope is reconstructed, the minima positions of the interference

pattern are determined by finding the pixels whose amplitudes give the smallest

difference. Figure 5.3 shows an algorithm for finding the smallest difference between

the maximum and the minimum amplitudes. First, the pixels with the maximum and

the minimum amplitudes obtained from the previous step are sorted according to their

horizontal positions as a new variable m. The percentage of the amplitude difference

between m1 and m2 is calculated with respect to m1. If it is smaller than a certain

threshold value, the position of both m1 and m2 are stored in a new variable h. The

threshold value is determined by the amplitude of the interference pattern. The

interference pattern with larger amplitude requires a higher threshold value than that

with smaller amplitude. In this dissertation, the threshold values of 0.1 to 3 percent

are used. The process of finding the smallest amplitude difference is repeated for

Figure 5.2  Reconstructed envelope function of the hologram in Fig. 2.3.
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Start

n = 1

Define
t1 = threshold1

1 100n n

n

m m
diff

m
+−

= ×

diff < t1

n = n + 1

Store mn and
mn+1 in h

Y

N

n <
length(m) End

Y

N

Figure 5.3 Block diagram for determining the local maxima and minima whose

their amplitude different are smaller than a threshold value.

m = concatenate max and min

Sort m by horizontal position
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every element of m. The resultant h contains information of the pixels with small

amplitude differences located around the minima positions of the interference pattern.

Figure 5.4 shows the enlargement of area around the first and the second minima of

Fig. 5.2, where ⊕ and ⊗ represent the pixels having maximum and minimum values

whose differences are small, respectively. The minima positions of the interference

pattern are then determined by averaging the horizontal positions of hn from the same

minimum. The algorithm for accomplishing this task is shown in Fig. 5.5. First, the

horizontal positions of h1 and h2 are compared. If the difference of their positions is

less than 20 pixels, they are considered as from the same minimum position and then

they will be stored in a new variable k. This process is repeated until the difference

between the horizontal positions of hn and hn+1 is larger than 20 pixels. At this state, k

contains information of the pixels located around the same minimum position of the

Figure 5.4 Maxima and minima whose amplitude differences are

smaller than a threshold value.
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interference pattern. Finally, the minimum position is simply determined by averaging

the position of elements of k. This process can be further carried out for determining

the next minimum. Figure 5.6 shows the resultant minima positions of the hologram

denoted by the vertical lines which are obtained by using the envelope reconstruction

method. After the minima of the interference pattern are obtained, the object size is

Start

n = 1
k = 0

Define
t2 = 20 pixels

n = n + 1

Store hn and hn+1 in k

Y

N

n <
length(h) End

Y

N

Minimum position =
average of k

k = 0

Figure 5.5 Block diagram for determining the minimum position of

the interference pattern.

1 2n nh h t+ − <
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calculated by using either Eq. (5.1) or Eq. (5.2) for the line and the spherical objects,

respectively.

The measurement results of the object size from the holograms of the line and

the spherical objects by using the envelope function reconstruction method are shown

in Figs. 5.7, 5.8, 5.9 and 5.10. In Fig. 5.7, the cross and the circle signs represent the

measurement errors obtained from the simulated holograms of the line object having

the radius of 20 μm and 62.48 μm, respectively. It is found that a small error of lower

than 1 percent could be obtained from both sizes of the object. However, the

experimental results depicted in Fig. 5.8 are slightly higher than that of the simulation.

This may be caused by the remaining speckle noise that cannot be completely

removed by the averaging technique discussed in Chapter III. Since the amplitude of

the holograms around the minima is very small, it can be significantly disturbed by

the speckle noise. As a result, the minima positions of the optically generated

Figure 5.6  Detected minima positions.
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Figure 5.7 Errors in measurement of a from the simulated holograms of

the line objects by using the envelope reconstruction method.

Figure 5.8 Errors in measurement of a from the holograms of the optical

fiber by using the envelope reconstruction method.
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holograms cannot be accurately determined. Moreover, the calculation of the object

size employs information of the recording distance extracted from the hologram by

using the WT. The error of measurement of the recording distance reduces the

accuracy of the measurement of the object size.

In the case of the spherical objects, the results are in agreement with those

from the line objects. The simulation results depicted in Fig. 5.9 show that the errors

are smaller than 1% for both sizes of 20 μm and 77.78 μm. However, as illustrated in

Fig. 5.10, slightly higher errors are obtained from the experimental results.

Figure 5.9 Errors in measurment of a from the simulated holograms of spherical

objects by using the envelope reconstruction method.
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5.2 Object sizing by using absolute value of the WT

In order to improve the accuracy in the measurements of the object size

obtained from the envelope reconstruction method, a novel method for sizing the

objects by using the absolute value of the WT is proposed. This interest stems from

the fact that the absolute value of the WT extracts the minima positions of the

interference pattern. In the WT domain, these minima are functions of the dilation and

the spatial translation. The frequencies of the fringes at the minima are directly

obtained by using values of the dilation of the wavelet at the corresponding minima.

Since the object size is inversely proportional to these frequencies, the object size can

be measured.

Figure 5.10 Errors of measurement of a from the holograms of pinhole

by using the envelope reconstruction method.
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The relationship between the object size and the frequency of the chirp signal

can be derived by considering the frequency of the chirp signal given by

chirp ,xf
zλ

= (5.3)

while the minima positions appear at

line

.
2n
n zx
a
λ

= (5.4)

By substituting Eq. (5.4) into Eq. (5.3), the frequency of the chirp signal at the nth

minimum position is found to be

chirp@minima
line

.
2

nf
a

= (5.5)

Thus, the radius of a line object can be calculated from

line
chirp@minima

.
2

na
f

= (5.6)

In a similar fashion, the radius of a spherical object is equal to

sphere
chirp@minima

.
2

nca
fπ

= (5.7)

Unlike the Eqs. (5.1) and (5.2) in which two unknown parameters, xn and z, are

demanded for the calculation of the object size, the only required information

depicted by the Eqs. (5.6) and (5.7) is the frequency of the chirp signal at the minima

positions. In this dissertation, this frequency is extracted by computing the absolute

values of the WT.
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5.2.1 Absolute values of wavelet transform

The computation of the WT of the signal s(r) is actually a cross correlation

between the analyzed signal and the dilated wavelet. In the general case of signals

where s(r) is an amplitude-modulated signal, the amplitudes of the resultant

correlation peaks are determined by the amplitude of the envelope function.

Therefore, besides its excellent ability of providing the space-frequency information

simultaneously, the WT extracts the modulating information of the signals being

analyzed. A further insight into this property may be gained by analyzing

mathematically the modulated signal on the use of the WT.

For the sake of simplicity, we consider that a modulated signal is given by

( ) ( )1 0( ) cos 2 cos 2 ,s x f x f xπ π= (5.8)

where the first cosine term corresponds to the carrier signal while the second one is

the envelope signal. Here, the carrier frequency f1 is greater than the modulating

frequency f0. The wavelet transformation of the signal s(x) by using the Morlet

wavelet as the analyzing wavelet is found to be

( ) ( ){
( ) ( )

( ) ( )

( )

22 2
0 1 0 1

22 2
0 1 0 1

22 2
0 1 0 1

2 2
0 1 0

( , )  exp 2  2
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                exp 2  2

                exp 2  2

g

g

g

g

dW t d i f f t d f d f f

i f f t d f d f f

i f f t d f d f f

i f f t d f d f f

π π π

π π

π π

π π

⎡ ⎤= − + − + +⎢ ⎥⎣ ⎦

⎡ ⎤+ − − + − − +⎢ ⎥⎣ ⎦
⎡ ⎤+ − − − + −⎢ ⎥⎣ ⎦

+ − − − − − −( ) }2

1  ,⎡ ⎤
⎢ ⎥⎣ ⎦

(5.9)

where fg denotes the frequency of the wavelet. Since the first and second terms of Eq.

(5.9)  are  much  smaller  than the other  terms, the first  two  terms can  be  neglected.
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Therefore, Eq. (5.9) may be approximated as

( ) ( ){
( ) ( ) }

22 2
1 0 0 1

22 2
1 0 0 1

( , )  exp 2  2
8

                exp 2  2  .

g

g

dW t d i f f t d f d f f

i f f t d f d f f

π π π

π π

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦

⎡ ⎤+ + − − −⎢ ⎥⎣ ⎦ (5.10)

The absolute value of the WT given by Eq. (5.10) results in

( )
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(5.11)

Equation (5.11) shows that the first two terms are the summation of two Gaussian

functions while the third term is multiplication of the cosine function corresponding to

the envelope function with a product of two other Gaussian functions. The first and

third Gaussian functions have the same mean values, while the means of the second

and fourth Gaussians are also the same. Since f1 >> f0, the difference between the

values of the two means is not significant, nor are their variances. As a result, either

the summation or the multiplication of the two Gaussian functions produces a

Gaussian-like function whose maximum peak appears at the same position of the

average value of the two means, d = fg/f1. This can be mathematically verified by

substituting this average value into the first and second derivatives of the summation

and the multiplication of the Gaussian functions. The first derivative test yields zero
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for the critical value d = fg/f1, while the second derivative test gives a negative result.

These tests verify that the peak position of the Gaussian-like function is at d = fg/f1.

This position is regarded as the one where the frequency of the dilated wavelet fg/d

matches the frequency of the modulating signal f1. Therefore, the cosine function in

the third term of Eq. (5.11) is confined by the Gaussian-like function centered at the

dilation d = fg/f1.

When the dilation d = fg/f1 is achieved, Eq. (5.11) reduces to approximately

( )
1

2 2 2
0

02
1 1

2
( , ) exp cos 2 .

2
g

g g
f

d
f

f f f
W t d f t

f f
π π

π
=

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
(5.12)

Equation (5.12) confirms that the absolute value of the WT gives the information

about the envelope function with its absolute value |cos(2πf0t)|. The rigorous

mathematical derivation of Eq. (5.9) to Eq. (5.12) are given in Appendix. Figure 5.11

shows the modulated signal s(x) of Eq. (5.8) and the normalized absolute value of its

WT given by Eq. (5.12), which are represented by the solid and broken lines,

respectively. Here, the carrier frequency f1 is 5 times higher than the modulating

frequency f0. It is clear from the figure that the minima of the absolute value of the

resultant WT output coincide with the zero-crossing points of the carrier signal of Eq.

(5.8).

Since the modulus of the envelope function appears along the dilation

corresponding to the frequency of the carrier signal in the absolute of the WT, the

holographic interference pattern is analyzed by computing the absolute value of its

wavelet transformation. Figure 5.12 shows the simulated in-line hologram of the line

object equivalent to Fig. 2.3 and the absolute value of its WT which is obtained by
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Figure 5.11 Modulated signal s(x) of Eq. (5.8) and the normalized

absolute value of its WT given by Eq. (5.12).

Figure 5.12 Simulated in-line hologram of the line object and the

normalized absolute value of its WT which is retrieved

along the dilation d = fg/f1.
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retrieving the amplitude of the resultant absolute value of the WT along the dilation d

= fg/f1. In the case of in-line holograms, f1 stands for the frequency of the chirp signal

determined by r/λz. As a function of dilation 2a/d, Fig. 5.13 illustrates a 3-D plot for

the absolute value of the WT of the fringe which is cut along the dilation d = fg/f1

represented by the dashed line. In the WT domain, the path of the dilation is

nonlinear, because it is inversely proportional to the space-varying frequency f1 of the

chirp signal. Evidently, the minima of the absolute value of the resultant WT output

appear at the correct zero-crossing points of the chirp signal. By determining the

frequencies of the chirp function at these minima, the object size can then be

calculated.

In order to obtain accurately the object size by using the proposed method, the

frequency of the chirp signal at the minimum position must be accurately determined.

Figure 5.13 The 3-D plot of the absolute value of the WT which

is cut along the dilation d = fg/f1.
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This can be achieved by computing the WT with fine dilation intervals. However,

since the computation of the WT with fine dilation interval requires long computation

time, the WT of the interference pattern is computed twice as shown in the block

diagram of Fig. 5.14. The first computation of the WT uses coarse and logarithmic

dilation interval. This gives coarse WT output. By computing the absolute value of

Start

Compute WT of the signal s by
using logarithmic dilation interval.

Compute |WT|

Determine frequency of the chirp signal
at minimum position from the minimum
detected in the |WT| domain.

Compute the WT of the signal s using a fine and
linear frequency interval. The frequency detected
from the above step is used as a center frequency.

Compute |WT|

Determine frequency of the chirp signal 
at minimum position from the minimum 
detected in the |WT| domain.

Calculate the object size from
either Eq. (5.6) or Eq. (5.7).

End

Figure 5.14  Block diagram for calculating the object size from |WT|.
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the resultant WT the rough estimate of the chirp frequency at the minimum position

fc = 1/dc can be obtained. Figure 5.15 show the top-view plot of the absolute values of

the WT of the hologram shown in Fig. 2.3. In this example, its first minimum position

gives fc = 10 

3.92 = 8.32 lines/mm. The interference pattern is next analyzed by the

second WT with the analyzing wavelets generated at the frequencies 
21 Mf f f< < ,

where M2 is the number of dilations used in the second WT. Here, the first dilation

1 11d f=  and the last dilation 
2 2

1M Md f=  are selected with respect to the center value

of dilation 
2 2M cd d= . In order to obtain accurate frequency information at the

minimum position, the dilation interval is set to produce a frequency interval that is

always constant and linear. Thus, for a desired frequency interval of Δf, the generated

frequency fn must satisfy

1st minimum

log10(dc)

Figure 5.15 Approximated frequency fc = 1/dc obtained from the detected

minimum in the absolute values of the first WT.
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( )1 1 ,nf f n f= − − Δ (5.13)

For given dilations 1d  and 
2Md , the frequency interval Δf can be calculated from

22 1

1 1 1 .
1 M

f
M d d

⎛ ⎞
Δ = −⎜ ⎟⎜ ⎟− ⎝ ⎠

(5.14)

By substituting Eq. (5.14) into Eq. (5.13) and taking the inverse of the result, the

dilations used in the second WT are found to be

2

1

1 2 1

1 1 1 1 .
1n

M

nd
d M d d

−
⎧ ⎫⎛ ⎞⎛ ⎞−⎪ ⎪= − −⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟−⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

(5.15)

As a function of Δf, Fig. 5.16 shows the errors in measurement of the object size from

the holograms of a line object having the radius of 62.48 μm and 20 μm represented

Figure 5.16 Errors in measurement of a as a function of the frequency

interval Δf.
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by using the solid and the dash lines, respectively. Here, the recording distance of

both holograms are z = 20 cm. It is found that at large frequency interval, the

fluctuation of the errors is higher than that of the smaller interval. Thus, in order to

obtain a small error of measurement, the small frequency interval of Δf = 0.008

lines/mm is employed for the computation of the second WT. Here, the computation

is performed with the number of dilations M2 = 64.

Figure 5.17 to Fig. 5.20 show the comparison of the errors in measurement of

the object size by using the absolute values of the WT and the envelope reconstruction

method which are represented by the broken and the solid lines, respectively. In Fig.

5.17, the errors in measurement of a from the simulated holograms of the line object

having the diameter of 20 μm and 62.48 μm are represented by the cross and the

Figure 5.17 Errors in measurement of a from the simulated holograms of

line object by using the envelope reconstruction method and

the absolute value of WT.
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circle sign, respectively. It is obvious from the figure that, in comparison with the

envelope reconstruction method, the errors in measurements by using the absolute

value of the WT are significantly reduced for both sizes of the object. The reason of

this reduction is that this method employs only the frequency of the chirp signal at the

minimum position of the envelope function for evaluating the object size. By

analyzing the hologram with fine frequency interval, the high accuracy frequency

information at the minima positions of the interference pattern can be obtained. Since

the information of the recording distance is not required, its measurement errors do

not affect the measurements in the size of the object. The improvement of the

accuracy of the measurement is verified by applying this method to the

experimentally generated holograms of the optical fiber as shown in Fig. 5.18.

Figure 5.18 Errors in measurement of a from the experimentally generated

holograms of the optical fiber by using the envelope reconstruction

method and the absolute value of the WT.
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Similarly, significant reduction of the errors is obtained from the measurements of the

size of the spherical objects by using the absolute values of the WT. The errors in

measurement of the simulated holograms of spherical object are shown in Fig. 5.19.

Here, the cross sign represents the error in measurement of the size of the spherical

object having the radius of 20 μm, while the circle sign corresponds to those of the

radius 77.78 μm. The experimental results illustrated in Fig. 5.20 agree well with the

simulation. Therefore, the results confirm the effectiveness of the method on

improving the accuracy in measurement of the object size from the in-line holograms.

Figure 5.19 Errors in measurement of a from the simulated holograms

of 2D object by using the envelope reconstruction method

and the absolute value of WT.



82

Figure 5.20 Errors in measurement of a from the experimentally generated

holograms of the pinhole by using the envelope reconstruction

method and the absolute value of the WT.



CHAPTER VI 

SYSTEM PERFORMANCE

In the proposed digital analysis method, the CCD sensor is employed for

capturing the in-line holograms. As a consequence, the finite size and the finite

resolution of the CCD sensor become the factors that determine the amount of

information which can be faithfully recorded. For this reason, it is important to study

the system performance of our proposed method. In the case of holograms of single

objects, the analysis of the system performance is based on these two limiting factors

of the employed CCD sensor. As for the case of the holograms of multiple objects, the

analysis is done by using information in the wavelet domain, because the desired

wavelet coefficient from one object is not always distorted by the others. Thus, the

feasibility of the proposed method depends on the separation of the wavelet

coefficients.

6.1 Single object

The interference pattern recorded on the CCD sensor is a modulation between

the chirp signal and the envelope function. The frequency of the chirp signal is

determined by the recording distance, while the minima positions of the envelope

function depend on the object size. As discussed in Chapter IV, the recording distance

of the object is extracted by determining the frequency of the chirp signal using the

WT. In order to achieve this, the interference pattern must be correctly sampled by the

CCD sensor or the spatial resolution of the sensor must satisfy the Nyquist sampling
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theorem (Oppenheim and Schafer, 1989). Moreover, in order to determine the object

size, the area of the CCD must be wide enough to record the minima positions. In the

following discussion the CCD sensor is assumed to have a square-shaped aperture

with the size of X × X and the pixel size of Δx × Δx. The sampling spatial frequency in

either the horizontal or the vertical directions of the CCD can be mathematically

expressed as

CCD
1 .f
x

=
Δ

(6.1)

6.1.1 Line object

Since the spatial resolution of the sensor must satisfy the Nyquist sampling

theorem, the relationship between the frequency of the chirp signal and the sampling

frequency fCCD can be expressed as

CCD chirp2 .f f> (6.2)

Substitutions of the chirp frequency fchirp by x/λz and Eq. (6.1) into Eq. (6.2) give

,
2

zx
x

λ
<

Δ
(6.3)

which describes the length of the interference pattern that can be correctly sampled by

the CCD sensor placed at the distance z. Therefore, for a given recording distance z,

the analyzable area on the CCD is confined in the region of 0 < x < λz/2Δx. When the

recording distance becomes longer, the size of the analyzable area increases, because

the longer recording distance causes the smaller frequency of the chirp signal. As a

consequence, when the right term in the inequality of Eq. (6.3) is bigger than the CCD
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aperture size, the range of the recorded hologram that can be analyzed becomes 0 < x

≤ X. This condition is achieved if the recording distance z is bigger than 2XΔx /λ. We

define this factor as a critical distance. Therefore, the analyzable area is determined as

follows

2if 0
2

z X xx z
x

λ
λ
Δ

< < ≤
Δ

(6.4) (6.4a)

and

2if X xx X z
λ
Δ

≤ > (6.4b)

On the other hand, in order to measure the size of the object, a minimum

number of the minima  nmin of the envelope Sinc function must be recorded by the

CCD. As a result, the following relationship

min
2ax n

zλ
≥ (6.5)

is obtained. By substituting Eqs. (6.4a) and (6.4b) into Eq. (6.5), the smallest size of

the line object that can be measured is found to be

min

min

2      if  0

.
2      if    

2

X xn x z

a
zn X xz

X

λ

λ
λ

Δ⎧ Δ < ≤⎪
⎪

≥ ⎨
⎪ Δ⎪ >
⎩

(6.6)

Furthermore, in order to reconstruct faithfully the envelope function, a large

number of interference fringes must be present within the first minimum of the sinc

function at x = λz/2a. Since the zero of the chirp function occurs at ( )1 4x z nλ= −
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where n is the number of fringes, the number of interference fringes within the first

minimum is found to be

( )2
1 .
42

zn
a

λ
= + (6.7)

By using the far-field condition z >> π(2a)2/λ  (Goodman, 1996) Eq. (6.7) reduces to

1 4n π +  or

1
2

za λ
π

<< (6.8)

Equation (6.8) describes the upper limit of the measurable object size as a function of

the recording distance.

6.1.2 Spherical object

Since the chirp signal is solely determined by the axial position of the object,

the analyzable area of the interference pattern for spherical objects can also be

described by Eqs. (6.4a) and (6.4b) with the replacement of the variable x by r.

However, the positions of the minima for the Bessel function and the sinc function are

different. The absolute value of the Bessel function becomes minimum when the

argument is 1.22π, 2.23π, 3.24π, etc. (Gradshteyn and Ryzhik, 1994). By taking this

consideration into account, a minimum number of the minima nmin of the envelope

function can be approximately described by

( )min
2 0.23 .ar n

zλ
≥ + (6.9)
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To find the smallest measurable size of the spherical particle, the finite extent of the

analyzable area of the interference pattern is applied. This gives

( )

( )

min

min

20.23       if  0

.
0.23 2      if    

2

X xn x z

a
z n X xz

X

λ

λ
λ

⎧ Δ
+ Δ < ≤⎪

⎪⎪≥ ⎨
⎪ + Δ⎪ >
⎪⎩

(6.10)

By using the far-field condition to account for the number of fringes within the first

minimum of the Airy function, the biggest size of the measurable particle becomes

1 .
2

za λ
π

<< (6.11)

In summary, the lower limit of the measurable size for spherical objects is higher than

that for line objects, while the upper limits for both objects are the same. This is due

to the fact that the width between the two minima of the Airy function is wider than

that of the sinc function. Figure 6.1 shows the ranges of the object size and the

recording distance in a logarithmic scale that can be measured. The ranges of

measurements for line and spherical objects are confined by the triangles drawn with

the solid and the broken lines, respectively. The base and the right side of the triangle

correspond to the lower limits of the measurable size of the object for the recording

distances being smaller and bigger than the critical value, respectively. The left side

of the triangle associates with the upper limit of the measurable size. Since the upper

limits of the measurable size for both objects are the same, the two lines coincide. The

maximum measurable size of the object must have a smaller value than the upper

limit as described by Eqs. (6.8) and (6.11). At the recording distance which is greater
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than the critical value, the longest recording distance and the largest size of particle

could be mathematically determined by equating the maximum and the minimum

values of the particle size a. In the case of line objects, this yields zline,max = X2/πλn2
min

and aline,max = X/2πnmin, while for spherical particles the maximum recording distance

and the maximum size are given by zspherical,max = X2/πλ(nmin+0.23)2 and aspherical,max =

X/2π(nmin+0.23), respectively. In a similar fashion, when the recording distance is

smaller than the critical value, the shortest recording distance and the smallest size of

line objects that can be measured becomes zline,min = 4πΔx2n2
min/λ  and aline,min = Δ

xnmin, respectively. In the case of spherical objects we obtain zspherical,min = 4πΔx2

(nmin+0.23)2/λ  and  aspherical,min = Δx(nmin+0.23).

Figure 6.1  Measurable size of objects and their recording distances.
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6.2 Multiple objects

In the case where the object field consists of multiple objects, Eqs. (3.8) and

(3.9) show that the in-line holograms can be mathematically described by the

summation of the holograms from the individual object and the interference pattern

between the object waves diffracted from the different objects. Since the hologram of

the object being studied may be overlapped by the hologram from the other objects,

the proposed analysis method may not be able to accurately extract the required

information from the hologram. In this section, the feasibility of the proposed method

for analyzing the holograms of multiple objects is studied through the computer

simulation.

Since the WT is a linear operation, the resultant WT of the hologram of

multiple objects can be determined by a linear summation of the WT of each term of

Eqs. (3.8) or (3.9). However, the amplitudes of the interference between the object

waves corresponding to the third and the fourth terms are very small compared to the

second term, that is the interference between the object and the reference waves. As a

consequence, the resultant amplitudes of the WTs of the third and the fourth terms are

also very small compared to the WT of the second term. Thus, they can be neglected.

This is verified by taking the WT of the holograms of two objects simulated with and

without both the third and the fourth terms. It is found that the errors in measurements

of the object size and its recording distance obtained from both holograms are not

different significantly. Although the holograms of multiple objects are generated by

using Eqs. (3.8) and (3.9), for the sake of simplicity, the following mathematical

analysis uses the first and the second terms of those equations.
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6.2.1 Extraction of the object size

As discussed in Section 5.2, the absolute values of the WT can be used to

extract the size of the object from the holograms by determining the frequency of the

chirp signal at the minima positions of the interference pattern. However, in the case

of the multiple objects, the desired interference pattern may be overlapped by the

interference pattern of the other objects. This overlap may distort the positions of the

minima. As a result, the accuracy of measuring the object size by using the absolute

values of the WT is reduced. In order to keep the high accuracy of the measurement,

the minimum separation between the objects is mathematically derived and verified

through the computer simulation.

Figure 6.2 shows the top-view of the recording setup of the hologram of two-

line objects, P1 and P2, placed at distances z1 and z2 in front of the recording plane,

respectively. Here, dx represents the separation between the objects along the

horizontal direction. Figure 6.3 illustrates the 1-D intensity profile of the simulated

hologram of two optical fibers having the radius a1 = a2 = 62.48 μm recorded at the

recording distance z1 = 40 cm and z2 = 35 cm with the separation dx = 5 mm and the

z2

z1

dx

P2

Recording
plane

x

λ

P1

Figure 6.2  Recording of in-line hologram of 2 line objects.
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Figure 6.3  Hologram of two optical fibers.

P1 P2

dx

Figure 6.4 Local maxima and minima of the real values of the WT of

the hologram shown in Fig. 6.3.

dx

P1 P2

A

B

x1 x2
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wavelength λ = 543.5 nm. Figure 6.4 illustrates the maximum and minimum

amplitudes of the real values of the resultant WT of the hologram shown in Fig. 6.3

which are denoted by the plus and the cross signs, respectively. For the sake of better

visualization of the frequency variation of the interference pattern, the real values of

the WT is chosen in this figure. In Fig. 6.4, point A corresponds to the first minimum

of the interference patterns of the first fiber P1, x1 and x2 are the distances between the

first minimum A and the centers of the resultant WT of the fiber P1 and P2,

respectively. Point B is the wavelet coefficient of the resultant WT of the second fiber

P2 which appears at x1. In order to extract the size of the fiber P1, the resultant WT at

the minimum point A is required and must not be corrupted by any wavelet

coefficient of the interference pattern of the fiber P2. This is achieved if the wavelet

coefficient B is well separated from the point A. In the frequency domain, the

separation of two wavelet coefficients with respect to the frequency at the point A can

be mathematically written as

B A

A

,
f f

p
f
−

> (6.12)

where p is the ratio of the frequency difference to the frequency at the point A. By

rewriting Eq. (6.12), the frequency fB corresponding to the wavelet coefficient B can

be expressed as

( )B A 1f f p> + (6.13)(6.13a)

or

( )B A 1 .f f p< − (6.13b)
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Substitutions of the frequency at the points A and B, fA = x1/λz1 and fB = x2/λz2, into

Eq. (6.13) give

( )2 1

2 1

1x x p
z zλ λ

> + (6.14)(6.14a)

or

( )2 1

2 1

1 .x x p
z zλ λ

< − (6.14b)

Since the distance x1 is equivalent to nλz1/2a1, the distance x2 can be calculated from

|dx−nλz1/2a1|. Substitutions of the values of x1 and x2 into Eq. (6.14a) yield

( )2 1
1

1
2x
nd z p z
a
λ

> + +⎡ ⎤⎣ ⎦ (6.15)(6.15a)

or

( )2 1
1

1 ,
2x
nd z p z
a
λ

< − + −⎡ ⎤⎣ ⎦ (6.15b)

while the same substitutions into Eq. (6.14b) give

( ) ( )2 1 2 1
1 1

1 1 .
2 2x
n nz p z d z p z
a a
λ λ

− − − < < − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ (6.15c)

Equation (6.15) define the allowable separation dx between the fibers P1 and P2 that

the radius a1 of the fiber P1 can still be extracted from the hologram by using the

absolute values of the WT.

In order to obtain the practical value of the factor p, the error of measurement

of the radius a1 from the simulated holograms of two line objects P1 and P2 with a1 =
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25 μm, z1 = 30 cm and a2 = 50 μm, z2 = 29 cm is plotted in Fig. 6.5 as a function of

the separation dx. Here, the holograms are generated with the separation interval Δdx =

0.1 mm. The negative and positive values of dx represent the situation that P2 is

located on the left and on the right side of P1, respectively. In this computation, the

radius a1 is measured from the first minimum of the interference pattern (n = 1). It can

be seen from Fig. 6.5 that there are three ranges of dx where the errors in finding a1

are small. The most right region corresponds to the condition defined by Eq. (6.15a),

while the most left region is associated with Eq. (6.15b). Equation (6.15c) gives the

allowable dx in the middle region of the graph. However, the errors obtained from the

region defined by the Eq (6.15c) are higher than that of the Eqs. (6.15a) and (6.15b).

Thus, the region of dx defined by the Eq. (6.15c) cannot be used and is neglected. By

(6.15b) (6.15a)

Figure 6.5 Errors of measurement of a1 as a function of dx for a1 = 25 μm,

z1 = 30 cm and a2 = 50 μm, z2 = 29 cm.

dx1 dx2

(6.15c)
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defining the critical separation dx1 and dx2 as the value of dx at the boundary between

the regions with low and high errors, the small errors of measurement of a1 are

obtained when dx < dx1 or dx > dx2. If the maximum error is set to be 0.5 percent the

critical separations found from Fig. 6.5 are dx1 = −1.4 mm and dx2 = 8.1 mm.

Substitutions of these values of dx1 and dx2 into their corresponding Eqs. (6.15b) and

(6.15a) give the values p1 = 0.48 and p2 = 0.53, respectively.

The measurement of the spatial separation dx obtained by analyzing the

simulated holograms generated from different conditions of the object size and the

recording distance are summarized in Table 6.1. Two object sizes of 25 μm and 50

μm are used in the simulation with the recording distances z1 of the object P1 are 10

cm and 30 cm. As for the object P2, the recording distance z2 is varied from 9, 10 to

11 cm for z1 = 10 cm, while z2 = 29, 30 and 31 cm for z1 = 30 cm. It is found that

although the critical separation distances dx1 and dx2 are different significantly for

different objects, their corresponding values of p are still in the range of 0.4 to 0.8.

These results confirm the feasibility of Eqs. (6.15) for determining the required

separation dx between the objects in order to extract its size by using the absolute

values of the WT method. However, in order to employ Eqs. (6.15) for determining

the range of the allowable dx, the value of p must be selected such that the resultant

values of dx are consistent with the simulation results depicted in the Table 6.1. If a

small value of p is substituted into Eqs. (6.15), the resultant separation between the

object is shorter than that obtained from the simulation. As for an example, a

substitution of p = 0.4, a1 = 25 μm, z1 =30 cm, a2 = 25 and z2 = 30 cm into Eqs. (6.15)
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Table 6.1 Measurement of the critical separation dx and the frequency ratio p from

the WT of the simulated holograms of two line objects.

a1 z1 a2 z2 dx1 dx2 p1 p2

25 10 25 9 -0.4 2.7 0.52 0.65

25 10 25 10 -0.6 2.8 0.55 0.58

25 10 25 11 -0.8 2.9 0.58 0.52

25 10 50 9 -0.5 2.6 0.62 0.55

25 10 50 10 -0.5 2.8 0.46 0.58

25 10 50 11 -0.7 2.9 0.49 0.52

25 30 25 29 -1.7 7.8 0.57 0.44

25 30 25 30 -1.8 8.3 0.55 0.55

25 30 25 31 -2 8.6 0.56 0.58

25 30 50 29 -1.4 8.1 0.48 0.54

25 30 50 30 -1.6 8 0.49 0.45

25 30 50 31 -1.8 8.3 0.50 0.50

50 10 25 9 -0.3 1.4 0.72 0.75

50 10 25 10 -0.4 1.5 0.74 0.76

50 10 25 11 -0.4 1.6 0.58 0.77

50 10 50 9 -0.3 1.4 0.72 0.75

50 10 50 10 -0.4 1.4 0.74 0.58

50 10 50 11 -0.5 1.6 0.75 0.77

50 30 25 29 -0.8 4 0.54 0.50

50 30 25 30 -0.9 4.1 0.55 0.51

50 30 25 31 -0.9 4.2 0.50 0.53

50 30 50 29 -0.9 4 0.61 0.50

50 30 50 30 -0.9 4 0.55 0.45

50 30 50 31 -0.9 4.3 0.50 0.58
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gives dx < −1.3 mm and dx > 7.8 mm, while the results obtained from the simulation

are dx < −1.8 mm and dx > 8.3 mm. On the other hand, when the value of p is too high,

the separation between the object will be wider than from the simulation result. This

can be easily obtained if p = 0.8 are substituted into Eqs. (6.15) which gives dx < −2.6

mm and dx > 9.1 mm. Figure 6.6 illustrates the region of allowable dx for different

conditions of p. The solid line represents the real allowable dx which is obtained from

the simulation, while the broken lines are those calculated by using Eqs. (6.15). It can

be seen that in the case of small p, the calculated dx exceeds the allowable dx from the

simulation results. However, dx calculated by using high value of p agrees with the

simulation results. For this reason, it is better to use the highest value of p = 0.8

obtained from the simulation for calculating the allowable dx given by Eqs. (6.15).

The analysis for the separation between the spherical objects is in analogy

with those of the line objects. Since the minima positions of the hologram of spherical

object appear at rn = (n+0.23)λz/2a while those of the line object can be found at xn =

nλz/2a, the criteria for the separation dr between the spherical objects can be simply

obtained by substituting n in Eqs. (6.15) with n+0.23. This yields

( ) ( )2 1
1

0.23
1 ,

2r

n
d z p z

a
λ+

> + +⎡ ⎤⎣ ⎦ (6.16)(6.16a)

Figure 6.6 dx calculated by using Eqs. (6.15) for different values

of p in comparison with the simulation result.
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and

( ) ( )2 1
1

0.23
1 .

2r

n
d z p z

a
λ+

< − + −⎡ ⎤⎣ ⎦ (6.16b)

As in the case of the line objects, the hologram of two spherical objects are generated

by using the Eq. (3.9) with the same object sizes and recording distances. The

measurement results of the analysis of these holograms are summarized in Table 6.2.

It can be seen from these results that the values of the parameter p in Eqs. (6.16) are

varied from 0.4 to 0.7. In analogy with the analysis of the line objects, the smallest

value of p cannot be used since its may give inconsistent results. For example, by

substituting p = 0.4, a1 = 25 μm, z1 = 30 cm, a2 = 50 μm and z2 = 30 cm into Eqs.

(6.16), the allowable dr are found to be dr < −1.6 mm and dr > 9.6 mm which is

inconsistent with the simulation results which are dr < −2.4 and dr > 10.3 mm. Thus,

the highest value of p = 0.7 is used for determining the required separation between

the spherical objects from Eq. (6.16).

6.2.2 Extraction of the axial position of objects

As discussed in Chapter IV, the recording distance is extracted from the

hologram by determining the space-varying frequency of the interference pattern.

These frequencies and their corresponding spatial positions are determined from the

dilation and the translation of all wavelet coefficients with maximum or minimum

amplitudes, respectively. However, since the determined spatial position corresponds

to the horizontal distance measured from the center position of the interference

pattern, the exact information of the center position of the interference pattern is

required. In the case of the single object, this center position can be easily determined
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Table 6.2 Measurement of the critical separation dx and the frequency ration p from

the WT of the simulated holograms of two spherical objects.

a1 z1 a2 z2 dr1 dr2 p1 p2

25 10 25 9 -0.5 3.2 0.53 0.55

25 10 25 10 -0.7 3.4 0.52 0.54

25 10 25 11 -0.8 3.6 0.45 0.54

25 10 50 9 -0.5 3.2 0.53 0.55

25 10 50 10 -0.7 3.4 0.52 0.54

25 10 50 11 -0.9 3.6 0.52 0.54

25 30 25 29 -1.9 10 0.52 0.54

25 30 25 30 -2.2 10.3 0.55 0.57

25 30 25 31 -2.5 10.4 0.57 0.54

25 30 50 29 -2.1 10.2 0.58 0.60

25 30 50 30 -2.4 10.3 0.60 0.57

25 30 50 31 -2.5 10.5 0.57 0.57

50 10 25 9 -0.3 1.6 0.61 0.55

50 10 25 10 -0.4 1.7 0.60 0.54

50 10 25 11 -0.4 1.8 0.45 0.54

50 10 50 9 -0.3 1.7 0.61 0.71

50 10 50 10 -0.4 1.7 0.60 0.54

50 10 50 11 -0.4 1.8 0.45 0.54

50 30 25 29 -0.9 4.8 0.50 0.44

50 30 25 30 -1 5.1 0.50 0.54

50 30 25 31 -1.1 5.1 0.50 0.49

50 30 50 29 -1 5 0.55 0.54

50 30 50 30 -1 5.1 0.50 0.54

50 30 50 31 -1.1 5.2 0.50 0.54
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by detecting the pixel around the symmetrical axis of the hologram. However, for the

holograms of multiple objects, the interference pattern of particular interest may be

distorted by the others. For example, the center position of the interference pattern of

the fiber P1 shown in Fig. 6.3 is difficult to detect. Thus, the feasibility of the method

for extracting the recording distance from the hologram of multiple objects is mainly

determined by the accuracy of detecting the center position of the interference pattern.

On the other hand, due to shift-invariant nature of the WT, the analysis of the

holograms by the WT gives symmetrical wavelet coefficients. Figure 6.7 shows the

maximum and minimum amplitudes of the real values of the wavelet coefficients

obtained from the hologram shown in Fig. 6.3. It is found that the wavelet coefficients

with the maximum amplitudes which are pointed to by the arrow signs appear at the

Wavelet coefficients with maximum
amplitudes appeared at the center
position of the interference pattern.

Figure 6.7  The WT of the hologram shown in Fig. 6.3.
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center positions of both objects. The disturbance from the hologram of the other

objects in the WT domain is minimum because of their frequency difference. Since

the frequency of the chirp signal at the center position of the interference pattern is

low, its wavelet coefficient appears at high scale, while the high-frequency

components appear at lower scales. As a consequence, in the WT domain, the

disturbance at the center position by the hologram of the other object is very small

provided the two objects do not exactly overlap. Thus, the detection of the center

position of the object being studied can be discussed by using the maximum real value

of the wavelet coefficients.

Although the dilation corresponding to the maximum value of the wavelet

coefficient at the center of the object is not required for determining the recording

distance, the position of this wavelet coefficient as a function of both the dilation and

the translation is needed for analyzing mathematically the allowable separation

distance dx. In order to obtain the dilation value at this maximum wavelet coefficient,

the WT of the hologram around its center position is mathematically investigated.

However, since the modulation effect of envelope function at this center position is

not significant, the envelope function can be neglected. The first column of Fig. 6.8

shows the original hologram of a line object ( )s x  and its approximation ( )1u x . The

mathematical expression of the simplified holograms of line and spherical objects can

be mathematically written as

( ) ( )2
1 1 cos ,u x A Bx C= − − (6.17)

where 4 ,A a zλ=  B zπ λ=  and 4C π=  for the line object while 22 ,A a zπ λ=

B zπ λ=  and 2C π=  are for the spherical object. The second column of Fig. 6.8
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are their resultant WTs. It is obvious that the center position and the wavelet

coefficient at this center obtained from the hologram approximation appear at the

same positions as those of the original hologram. This is because, around the center

position the amplitude and the frequency content of the signal of both holograms are

the same. Therefore the approximation of the hologram can be justified. By using the

Morlet wavelet, the WT of the Eq. (6.17) can be mathematically written as

( ) ( )2 2, 2 exp 2 gW t d d fπ π= −

Figure 6.8 Hologram of a line object and the chirp function (left column)

versus their WT (right column).

Hologram ( )s x ( ){ }Re ,W t d

Hologram approximation  ( )1u x ( ){ }Re ,W t d
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(6.18)

In order to obtain the maximum value of the wavelet coefficient at the center position

of the interference pattern, Eq. (6.18) is evaluated at the translation t = 0. This yields

( ) ( )

( )
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2 2

2 21
2 4 4

2 4
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2 4 4
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2 1 4
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1 4 2
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1 4 2
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g
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W d d f

fdA B d
B d
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B d

fdA B d
B d
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π
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π
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−

−

−
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− + ⎢
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⎡ −
− + ⎢

+⎢⎣
⎤⎧ ⎫−⎪ ⎪⎥− + −⎨ ⎬+ ⎥⎪ ⎪⎩ ⎭⎦

( )
( )

( )

2 2
2 2

1 2 4
2 4 4

1 22 2 2

2 4
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cos .
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⎛ ⎞−
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⎧ ⎫⎪ ⎪× − +⎨ ⎬+⎪ ⎪⎩ ⎭
(6.19)

Plot of Eq. (6.19) for the line object with the parameters a = 60 μm, z = 40 cm and λ =

543.5 nm is shown in Fig. 6.9. From this figure, the maximum value of the wavelet
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coefficient which appears at ( )10 0log 3.3d = −  can be clearly observed.

In order to determine mathematically the dilation that gives this maximum

value, the derivative of the Eq. (6.19) with respect to the dilation is performed. The

value of the dilation d0 that gives the first derivative equals to zero corresponds to

either the minimum or the maximum value of the wavelet coefficient W(0,d). It is

found that the dilation d0 is approximately equal to 1 .05 zλ  and 1.22 zλ  for the

line and the spherical objects, respectively. The mathematical proof of this result is

given in Appendix. It can be seen that the mathematical expression of dilation d0 is in

the form of c zλ  where c is a constant factor. Since the derived d0 is obtained from

the hologram approximation u1(x), some mathematical approximations are done

during the derivation, the resultant constant c obtained in the derivation may contain

Figure 6.9 The wavelet coefficients at the translation t = 0 is

plotted by using the Eq. (6.19).
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an error. In order to minimize this error, the value of c is verified by computing the

WT of the holograms s(x) simulated at various recording distances. By detecting the

dilation d0 from the maximum value of the wavelet coefficients along the translation

t = 0, the constant c can be calculated from 0c d zλ= . From these computations,

the maximum positions d0 are found to be

0 1.0439d zλ= (6.20)(6.20a)

and

0 1.1902 ,d zλ= (6.20b)

for the line object and the spherical object, respectively.

In the case of multiple objects, this maximum value may be disturbed when

the WT of the hologram of the other objects overlaps with the hologram of the object

being studied along the dilation d0. Thus it is necessary to know the range of

significant wavelet coefficient of the other object at any given dilation d0.

In order to obtain the range of significant wavelet coefficient at any given

dilation, the analytical WT of the hologram must be investigated. However, since the

desired dilation d0 corresponds to the low-frequency content of the interference

pattern at the center position, the study of the WT of the signal having the same low

frequency component as those from the hologram can provide the required

information. The effect of high frequency information of the signal along the dilation

d0 can be neglected. Thus, for the sake of simplicity, the hologram is approximately

expressed as

( ) ( ) ( )2
2 1 cos cos ,u x A Bx C Dx= − − (6.21)
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where the cosine function is used as the envelope function, instead of the sinc and the

Bessel functions. Here, A, B and C are the same parameters used in the derivation of

Eq. (6.17). The parameter D is chosen such that the first minimum position 2x Dπ=

of the simplified hologram coincides with that of the original hologram. The first

minimum of the hologram of a line object appears at 2 ,x z aλ=  while that of the

spherical object is at 3 .83 2 .r z aλ π=  By substituting this x into the first

Figure 6.10 Hologram of a line object and the modulating signal of Eq. (6.21)

(left column) and their real value of the WT scanned along the

dilation d = d0 (right column).

Hologram ( )s x ( ){ }0Re ,W t d

Hologram approximation  ( )2u x ( ){ }0Re ,W t d
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minimum position, the parameter D for the line and the spherical objects are found to

be D a zπ λ=  and 2 3.83 ,D a zπ λ=  respectively. The top row of Fig. 6.10 shows

the original hologram generated by using Eq. (2.3) and the real value of its resultant

WT which is scanned along the dilation d = d0, while those obtained from Eq. (6.21)

are depicted in the bottom row. It can be seen from the left column of this figure that

both signals confined by the main lobes are similar. The real value of the wavelet

coefficients at d = d0 shown in the right column of Fig. 6.10 for both signals are also

identical. This is because the wavelet coefficients at dilation d = d0 represent the low-

frequency component of the analyzed signal. Since the low-frequency information of

the signal given by Eq. (6.21) is the same as those of the Eqs. (2.3) and (2.4), the

hologram approximation of Eq. (6.21) can be employed for studying the width of the

wavelet coefficient at dilation d = d0.

Analysis of Eq. (6.21) by using the Morlet wavelet along the dilation d0 gives

( )

( )}
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( )}2 2 3 2 2 2 2 4 3
0 0 0 08 4 4 .g g gj Bt Dt f B d t f Bd BD d f BDdπ π π ⎤+ − − + + + + ⎦ (6.22)

Equation (6.22) is a summation of four terms. Each term is a multiplication between a

Gaussian and a complex exponential function. The slowly varying Gaussian function

acts as an envelope function, while the complex exponential with high-frequency

components represents a carrier signal. Since the width of the resultant WT is

determined by the width of the summation of these envelope functions, the

multiplicative complex exponential functions can be neglected in the following

analysis.

The first and the second Gaussian functions of the Eq. (6.22) are centered at

0
2gf Bd D Bπ −  and 

0
2 ,gf Bd D Bπ− +  while those of the third and the fourth

terms are at 
0

2gf Bd D Bπ +  and 
0

2 ,gf Bd D Bπ− −  respectively. Figure 6.11

shows these four Gaussian functions and their summation result which are represented

by the dot and the dash lines, respectively. The solid line represents the plot of the real

value of Eq. (6.22). In comparison with Fig. 6.10, the amplitude of this wavelet output

is smaller, because it is computed from the analytical derivation of the wavelet

transformation, instead of the numerical calculation. Moreover, it can be seen from

Fig. 6.11 that the summation of these four Gaussian functions corresponds to the

envelope function of the WT output at d = d0. Equation (6.22) shows that the

separation between the center positions of the second and the fourth Gaussian

functions and between the first and the third Gaussians are equal to D/B. By

substituting the mathematical definitions of the parameters D and B, the separation

between the Gaussians are equal to a and 3.83aπ  for the line and the spherical

objects, respectively. However, the value of the object radius a is very small. Thus,
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the center position of the first and the third Gaussian functions are approximately the

same. This approximation is also valid for second and the fourth Gaussians. By taking

this approximation into consideration and neglecting the constant complex phase

factor, the envelope function defined as ( )E t  reduces to the summation of two

Gaussian functions

( )
2

0
02 4

0

2

0
02 4

0

12exp 2 2
1 4 2

12exp 2 2 .
1 4 2

g

g

DdE t Bd t f
B d

DdBd t f
B d

π

π

⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥∝ − − +⎨ ⎬⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭⎣ ⎦
⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥+ − + +⎨ ⎬⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭⎣ ⎦

(6.23)

Summation of four Gaussians

3rd Gaussian

1st Gaussian

4th Gaussian

2nd Gaussian

Figure 6.11 Plot of the real value of the WT along the dilation d = d0

together with the four Gaussian functions of Eq. (6.22)

and their summation result.

( ){ }0Re ,W t d
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In order to determine the width occupied by the envelope function ( )E t , the width of

a Gaussian function

( ) ( )2

exp ,
t

f t
α β

γ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

(6.24)

shown in Fig. 6.12 is determined. When its amplitude is equal to 1 ,w  Eq. (6.24)

becomes

( )2
1 exp .

t
w

α β
γ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

(6.25)

This amplitude appears at the translation

WG

β
α

ln wβ γ
α

+ln wβ γ
α

−

Figure 6.12 The Gaussian function and its width WG which is

determined by the parameter w.

t
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ln .wt β γ
α

±
= (6.26)

As a result, the width WG of the Gaussian function measured from the position where

its amplitude is equal to 1/w can be expressed as

G
2 ln .wW γ

α
= (6.27)

As w increases, the width WG of the Gaussian becomes wider.

By taking Eq. (6.27) into account, the width of the Gaussian functions ( )1E t

and ( )2E t  which correspond to the first and the second terms of Eq. (6.23) can be

mathematically determined as

( ) ( )2 4
0

G
0

2 1 4 ln
.

2

B d w
W

Bd

+
= (6.28)

Figure 6.13 plots the envelope Gaussian functions ( )E t  of two line objects P1 and P2

from Eq. (6.23) by using the solid and the broken lines, respectively. Here, the

amplitude of each Gaussian function is normalized by the factor 2 in order to obtained

the maximum amplitude of 1. The separation between the objects is dx. The value of t1

corresponds to the center of the Gaussian function in the second term of Eq. (6.23) is

1
0

,
2

gf Dt
Bd B
π

= + (6.29)

while t2 can be determined from the half width of that Gaussian function
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( ) ( )2 4
0

2
0

1 4 ln
,

2

B d w
t

Bd

+
= (6.30)

where the parameters B and D are defined for the object P2. In order to extract

accurately the center position of the object P1, the envelope Gaussian function from

the other object P2 must not disturb this position. This condition can be

mathematically expressed as

1 2.xd t t> + (6.31)

Substitutions of Eqs. (6.29) and (6.30) into Eq. (6.31) and taking the possibility of

negative value of dx into account gives

dx

t2 t1

Figure 6.13 Gaussians function determined the envelope function of the real value

of the WT of the hologram of two line objects separated by dx.

P1 P2

( )2E t( )2E t ( )1E t( )1E t
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( ) ( )2 4
0

0 0

1 4 ln
.

2 2
g

x

B d wf Dd
Bd B Bd
π +

> + + (6.32)

Equation (6.32) defines the separation between two objects where the center position

of the WT output at the dilation d = d0 can be extracted in order to obtain the

recording distance of the object P1. By substituting the mathematical definitions of d0,

B and D into the Eq. (6.32), the separation dx can be rewritten as

( ) ( )2 2 2
2 12 2

1 1

4.75 ln

1.0439 2 1.0439 2
g

x

z z wf z ad
z z

λ πλ
π

+
> + + (6.33)

and

( ) ( )2 2 2
2 12 2

1 1

8.03 ln
,

1.1902 2.44 1.1902 2
g

r

z z wf z ad
z z

λ πλ
π

+
> + + (6.34)

for the line and the spherical objects, respectively. In this derivation, the width of the

Gaussian function is measured at the position where its amplitude is equal to 1/w. In

order to determine the suitable value for the parameter w, the center position of the

object P1 is determined from the WT of simulated holograms of two objects.

Figure 6.14 shows the errors of detecting the center position from the

holograms of two line objects P1 and P2 having the radius a1 = 25 μm and a2 = 50 μm

while their recording distance are z1 = 30 cm and z2 = 29 cm, respectively. It is found

that this error becomes higher than 1 pixel when 1.2 1.2xd− < <  mm. In this figure,

dx3 = –1.2 mm and dx4 = 1.2 mm are defined as the critical separations of the objects

that cause high error. By substituting these values of the critical separation dx, the

object size a and the recording distance z into the Eq. (6.33), the value of w can be
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obtained. In this case, dx3 and dx4 yield w3 and w4 that are equal to 6.32. Tables 6.3

and 6.4 summarize the results of measuring the center position of the object P1 in the

present of the other object P2 for the line and the spherical objects, respectively. It can

be seen from these results that the maximum desired values of w are 7.0 and 9.9 for

the line and the spherical object, respectively. Thus, in order to ensure the feasibility

of the method for measuring the recording distance from the hologram of multiple

objects, the object separation must satisfy Eq. (6.33) or (6.34) with the large value of

the parameter, i.e. w > 7.0 and w > 9.9, for the line and the spherical object,

respectively.

Figure 6.14 Errors of detecting the center position of the object P1 from

the WT of the holograms of two line objects having a1 = 25

μm, z1 = 30 cm, a2 = 50 μm, z2 = 29 cm as a function of dx.

dx3 dx4
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Table 6.3 Measurement of the spatial separation dx and w from the WT of the

simulated holograms of the line objects.

a1 z1 a2 z2 dx3 dx4 w3 w4

25 10 25 9 -0.6 0.7 3.43 7.04

25 10 25 10 -0.6 0.7 2.98 5.88

25 10 25 11 -0.7 0.6 4.95 2.61

25 10 50 9 -0.7 0.7 6.38 6.38

25 10 50 10 -0.7 0.7 5.35 5.35

25 10 50 11 -0.7 0.7 4.53 4.53

25 30 25 29 -1.1 1.2 4.05 6.14

25 30 25 30 -1.1 1.2 3.84 5.79

25 30 25 31 -1.1 1.2 3.65 5.47

25 30 50 29 -1.2 1.2 5.81 5.81

25 30 50 30 -1.2 1.2 5.49 5.49

25 30 50 31 -1.2 1.2 5.18 5.18

50 10 25 9 -0.5 0.5 1.97 1.97

50 10 25 10 -0.6 0.6 2.98 2.98

50 10 25 11 -0.6 0.6 2.61 2.61

50 10 50 9 -0.6 0.7 3.17 6.38

50 10 50 10 -0.6 0.6 2.77 2.77

50 10 50 11 -0.7 0.7 4.53 4.53

50 30 25 29 -1 0.9 2.81 2.07

50 30 25 30 -1.1 1.2 3.84 5.79

50 30 25 31 -1.1 1.2 3.65 5.47

50 30 50 29 -1.1 1.2 3.85 5.81

50 30 50 30 -1.1 1.2 3.67 5.49

50 30 50 31 -1.2 1.2 5.18 5.18
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Table 6.4 Measurement of the spatial separation dr and w from the WT of the

simulated holograms of the spherical objects.

a1 z1 a2 z2 dr3 dr4 w3 w4

25 10 25 9 -0.7 0.6 5.16 2.91

25 10 25 10 -0.7 0.6 4.57 2.64

25 10 25 11 -0.6 0.6 2.41 2.41

25 10 50 9 -0.7 0.8 4.84 9.59

25 10 50 10 -0.8 0.8 8.30 8.30

25 10 50 11 -0.8 0.8 7.21 7.21

25 30 25 29 -1.2 1.3 4.68 6.80

25 30 25 30 -1.2 1.3 4.49 6.50

25 30 25 31 -1.2 1.3 4.32 6.22

25 30 50 29 -1.4 1.4 9.86 9.86

25 30 50 30 -1.3 1.4 6.25 9.39

25 30 50 31 -1.3 1.3 5.98 5.98

50 10 25 9 -0.6 0.6 2.91 2.91

50 10 25 10 -0.6 0.6 2.64 2.64

50 10 25 11 -0.6 0.6 2.41 2.41

50 10 50 9 -0.7 0.6 4.84 2.77

50 10 50 10 -0.6 0.6 2.51 2.51

50 10 50 11 -0.6 0.6 2.30 2.30

50 30 25 29 -0.9 0.9 1.94 1.94

50 30 25 30 -1 1 2.42 2.42

50 30 25 31 -1 1 2.35 2.35

50 30 50 29 -1.2 1.3 4.51 6.53

50 30 50 30 -1.2 1.3 4.33 6.25

50 30 50 31 -1.2 1.3 4.17 5.98
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In order to extract both information of size and recording distance from the

hologram of multiple objects, the object separation dx must satisfy all three conditions

defined by Eqs. (6.15a), (6.15b) and (6.33) or Eqs. (6.16a), (6.16b) and (6.34) for the

line and the spherical objects, respectively. Figure 6.15 shows the plots of Eqs.

(6.15a), (6.15b) and (6.32) represented by the solid, the dot and the dash lines,

respectively, for a1 = 50 μm, z1 = 10 cm and a2 = 25 μm as a function of z2. The figure

is plotted with the value of the parameter p = 0.8 and w = 7. For positive value of dx,

which mean that P2 is located on the right side of P1, the WT can be used to extract

the size and the position of the object P1 provided dx satisfy the condition defined by

Eq. (6.15a). In this case, the value of dx and z2 must be inside the shaded area above

the solid line. In the case of dx having negative value, both conditions of Eqs. (6.15b)

and (6.32) must be satisfied. This can be achieved if the value of dx and z2 are

Eq. (6.15a)

Eq. (6.15b)

Eq. (6.32)

Figure 6.15  Plot of the Eqs. (6.15a), (6.15b) and (6.32).
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confined within the lower shaded area. It can be seen that the required separation |dx|

is larger for positive value of dx than that of the negative one. This is because the

information about the object size is extracted from the frequency of the chirp signal at

the first minimum position which is located on the right side of the axis of symmetry

of the hologram (n = 1). If the first minimum in the left side is used (n = −1), the

graph will be flipped along the axis dx = 0. This gives shorter allowable |dx| for the

positive dx in comparison with the negative one. However, for the same value of z2,

the condition given by Eqs. (6.15b) and (6.33) give a shorter allowable separation |dx|

than that of the Eq. (6.15a). Since in real situation the sign of dx cannot be controlled,

the condition of the Eq. (6.15a) is used for both positive and negative values of dx. By

taking this consideration into account, Eq. (6.15a) can be rewritten as

( )2 1
1

1 .
2x
nd z p z
a
λ

> + +⎡ ⎤⎣ ⎦ (6.35)

As dx satisfy Eq. (6.35), all of the conditions in the Eqs. (6.15a), (6.15b) and (6.33)

are also satisfied. In analogy, the condition for the separation of the spherical object is

( ) ( )2 1
1

0.23
1 .

2r

n
d z p z

a
λ+

> + +⎡ ⎤⎣ ⎦ (6.36)

It can be seen that the separation is proportional to a combination of the recording

distance and is inverse proportional to the object size. The hologram of a larger object

recorded at a shorter recording distance gives the shorter allowable separation. As for

a fixed size of the objects, the hologram must be recorded at a shorter distance in

order to be able to analyze the higher concentration of the objects. However, higher

resolution of the recording material is required for recording such a hologram.



CHAPTER VII 

CONCLUSIONS

In this dissertation, new methods for extracting size and recording distance of

small objects directly from the in-line Fraunhofer holograms by using the WT are

studied. The proposed method obviates the conventional optical image reconstruction

which is very tedious and time consuming process. The recording distance of the

object being studied is obtained from the space-varying frequency of the holograms

provided by the WT, while the size is extracted by either reconstructing the envelope

function or taking the absolute values of the resultant WT output. The feasibility of

the methods is verified by determining error of measurements from the digitally and

experimentally generated holograms of the line and the spherical objects. The system

performance of the proposed method for the case of holograms of the single and the

multiple objects are analyzed.

In Chapter III, the algorithm for simulating and the optical setup for

generating the holograms of the line and the spherical objects are discussed. In the

simulation, the holograms are digitally generated by computing the Fraunhofer

diffraction integral via the Matlab software. In the experiments, the holograms of the

line object are generated by using the optical fiber as a test object with the CCD

sensor is used to capture the generated interference pattern. As for the spherical

object, because its available size is too small the generated interference pattern

contains high frequency signal which cannot be faithfully captured by the CCD



120

sensor. In order to solve this problem, the holograms of the circular pinhole having a

larger diameter are generated by employing the Mach-Zehnder interferometer. In the

final discussion, the mathematical expressions of the holograms of the multiple line

and spherical objects are presented.

The extraction of the recording distance from the holograms by using the WT

is discussed in Chapter IV. Since the WT gives the spatial-varying frequency

information of the analyzed signal, it is employed to extract the recording distance

which is encoded into the frequency of the chirp signal. By determining the maximum

and minimum positions of the wavelet output, the recording distance can be

calculated. The simulation results show that the method can be accurately extract the

recording distance information with small errors of less than 1 percent for both line

and spherical objects. As for the experimental results, the errors are slightly higher,

because the speckle noise cannot be completely removed from the holograms.

In Chapter V, two methods for extracting the object size from the digitized

holograms are discussed. Since the object size is encoded into the minima positions of

the interference pattern, the first method determines these positions in space domain

by reconstructing the envelope function. By determining the minima positions and the

recording distance obtained from the WT, the object size can be calculated. The

simulation results show that the errors in measurement of the object size is smaller

than 1 percent for the line object, while it is slightly higher for the spherical object.

This may be caused by the fact that the envelope signal of the spherical object which

is the Bessel function has minima with slower varying amplitude than the sinc

function of the line object. As a consequence, the accuracy in detecting the minima of
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the Bessel function is smaller than that of the sinc function. Furthermore, the

experimental results give the slightly higher errors than the simulation.

The second proposed method determines the minima of the envelope function

in the wavelet domain by computing absolute values of the WT. Beside the positions

of minima, this method provides the frequency of the chirp signal at those minima

positions. The object size which is solely a function of this frequency can then be

determined. In this method, the accuracy of determining the object size depends on

the accuracy of detecting the frequency at the minima positions. By increasing the

resolution of the dilation interval in the WT computation, the frequency information

at the minima can be obtained with high accuracy. The simulation and experimental

results show the improvement of the accuracy in measuring the object size from the

absolute values of the WT over the envelope reconstruction method.

In Chapter VI, the system performance for analyzing the holograms of single

and multiple objects are discussed. Since the CCD sensor is employed for capturing

the interference pattern, its finite size and finite resolution limit the amount of

information that can be captured. By taking these limitations into account, the

relationship between the object size, the recording distance, the wavelength of the

illuminating light and the resolution and size of the CCD can be obtained. It is found

that the largest size of the object is proportional to the CCD size and inverse

proportional to the minimum position used for the calculation, while the smallest size

is proportional to the multiplication between the minimum position and the pixel size

of the employed CCD sensor. Thus, it can be concluded that the radius of the object

cannot be smaller than the pixel size of the employed CCD sensor. As for the

recording distance, the longest value is proportional to the square of CCD size and is



122

inverse proportional to the product of the square of the minimum position and the

wavelength of the illuminating light, while the smallest value is proportional to the

multiplication between a square of pixel size and a square of the minimum position

and is inverse proportional to the wavelength. Since the Bessel function has wider

main lobe than that of the sinc function, the shortest recording distance and smallest

size of spherical object is larger than that of the line object, while its largest size and

longest recording distance are smaller.

In the case of multiple objects, the hologram can be approximated by the

summation of the interference pattern from the individual object. As a result, the

resultant WT of the hologram is proportional to a linear summation of the WT from

the individual interference pattern. Since the measurements of the size and the

recording distance are done by computing the WT of the hologram, the feasibility of

the method depends on a degree of distortion of the resultant WT. In order to extract

the object size from the frequency at minimum position of the interference pattern, a

certain frequency difference from the object being studied along its minimum position

and that from the other objects is required. This criterion is employed for the

mathematical derivation of the required separation between the objects. As for the

recording distance, the accuracy in measurement is mainly determined by the

accuracy of detecting the center position of the interference pattern. This study found

that the WT coefficient at this center position is always maximum. In order to utilize

this maximum position, its WT coefficient must not be disturbed by the WT of the

other interference patterns. By taking this consideration into account, the required

separation between the object is mathematically derived. The obtained separation is

then confirmed by comparing with the allowable separations of the objects obtained
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from the simulation. The comparison shows that the derived separations are in a good

agreement with those of the simulations. It is found that the extraction of the object

size requires a larger separation than that of the recording distance. Thus, in order to

extract both the size and the recording distance from the holograms of multiple

objects, the separation between the objects must satisfy the most severe conditions of

the separation which are found to be proportional to a linear combination of the

recording distances and are inverse proportional to the object size. Therefore, either

the shorter the recording distance or the bigger the object size, the higher the

concentration of objects that can be analyzed.
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MATHEMATICAL DERIVATION

A1. In-line Fraunhofer holograms of single object

The amplitude transmittance of the in-line hologram is proportional to the

intensity incident at the recording plane ( ),x y . This intensity can be mathematically

written as

( ) ( )

( )

2

2

, ,

, ,

I x y U x y

R o x y

=

= + (A1.1)

where ( ),U x y  is the complex amplitude of the light field incident at the recording

plane. Here, R represents the directly transmitted reference plane wave, while ( ),o x y

is the wave diffracted from the object.

A1.1  Hologram of opaque line object

Let us consider a 1-D opaque object with the amplitude distribution ( )A ξ

located in the object plane of the optical setup shown in the Fig. 2.1. The light field at

the recording plane can be derived from the Fresnel diffraction integral (Goodman,

1996)

[ ] ( ) ( )2exp 2
( , ) 1 exp ,

2
jkz jkU x y A x d

zj z
ξ ξ ξ

λ

∞

−∞

⎧ ⎫= − −⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎩ ⎭∫ (A1.2)

where k, z and λ are the wave number defined by 2k π λ= , the recording distance of
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the object and the wavelength of the illuminating light, respectively. By separating the

integrals, Eq. (A1.2) can be rewritten as

[ ] ( )

( ) ( )

2

2

exp 2
( , ) exp

2

exp .
2

jkz jkU x y x d
zj z

jkA x d
z

ξ ξ
λ

ξ ξ ξ

∞

−∞

∞

−∞

⎧ ⎧ ⎫= −⎨ ⎨ ⎬
⎩ ⎭⎩

⎫⎧ ⎫− −⎨ ⎬ ⎬
⎩ ⎭ ⎭

∫

∫ (A1.3)

The first integral of Eq. (A1.3) is

( )
2 2

2exp exp exp .
2 2 2
jk jkx jk jkxx d d
z z z z

ξ ξξ ξ ξ
∞ ∞

−∞ −∞

⎛ ⎞ ⎧ ⎫⎧ ⎫− = −⎨ ⎬ ⎨ ⎬⎜ ⎟
⎩ ⎭ ⎝ ⎠ ⎩ ⎭

∫ ∫ (A1.4)

By using the identity (Gradshteyn and Ryzhik, 1994)

( )
2

2 2
2exp exp ,

4
qp x qx dx

p p
π∞

−∞

⎛ ⎞
− ± = ⎜ ⎟

⎝ ⎠
∫ (A1.5)

the integral on the right side of Eq. (A1.4) becomes

222

2

exp exp 4
22 2

exp
2

jk jkx jkx jkd
z zz z jk z

jkxj z
z

ξ ξ πξ

λ

∞

−∞

⎧ ⎫⎛ ⎞⎧ ⎫ −⎪ ⎪⎛ ⎞− = ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟
⎝ ⎠−⎩ ⎭ ⎝ ⎠⎪ ⎪⎩ ⎭

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

∫

∴ ( )2exp .
2
jk x d j z
z

ξ ξ λ
∞

−∞

⎧ ⎫− =⎨ ⎬
⎩ ⎭∫ (A1.6)

The second integral of the Eq. (A1.3) is

( ) ( )2exp
2
jkA x d
z

ξ ξ ξ
∞

−∞

⎧ ⎫−⎨ ⎬
⎩ ⎭∫
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( )
2 2 2exp exp exp

2 2
jkx jk j xA d

z z z
ξ π ξξ ξ

λ

∞

−∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

∫

Under the far-field (Fraunhofer) condition (Goodman, 1996)

2
max ,
2

kz ξ (A1.7)

the quadratic phase exponential term ( )2exp jk zξ λ  can be neglected. This yields,

( ) ( )
2

2exp exp ,
2 2
jk jkx xA x d A
z z z

ξ ξ ξ
λ

∞

−∞

⎛ ⎞⎧ ⎫ ⎛ ⎞− =⎨ ⎬ ⎜ ⎟ ⎜ ⎟
⎩ ⎭ ⎝ ⎠⎝ ⎠

∫ (A1.8)

where xA
zλ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the 1-D Fourier transform of ( )A ξ  defined by

( ) 2exp .x j xA A d
z z

π ξξ ξ
λ λ

∞

−∞

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ (A1.9)

Substituting the Eqs. (A1.6) and (A1.8) into Eq. (A1.3) results in

( ) ( )2exp 2
, exp 1

2
jkx zjkz xU x y A

zj z λλ

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Since the intensity is the information being recorded on the recording medium, the

constant complex exponential can be neglected. As a result, the complex field at the

recording plane becomes

( ) ( )2exp 2
, 1 .

jkx z xU x y A
zj z λλ

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

(A1.10)

Thus, in the case of a 1-D object, the reference wave R can be regarded as a plane

wave with unity amplitude, while the object wave is
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( )
2

1 D
1, exp .

4
x xo x y j A
z zz

π π
λ λλ−

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

(A1.11)

For a line object whose amplitude distribution function is

( ) 1    for

0 ,

A a

a

ξ ξ

ξ

= ≤

= > (A1.12)

its Fourier transform becomes

( ) 2exp

2exp

2exp
2

2 2exp exp
2

2sin

a

a

a

a

x i xA A d
z z

i x d
z

z i x
i x z

z i ax i ax
i x z z
z ax
x z

ξ

ξ

πξξ ξ
λ λ

πξ ξ
λ

λ πξ
π λ

λ π π
π λ λ

λ π
π λ

∞

−∞

−

=

=−

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫

∴

2sin
2 .2

ax
x zA a axz

z

π
λ

πλ
λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎢ ⎥=⎜ ⎟

⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

(A1.13)

By substituting Eq. (A1.13) into Eq. (A1.11), the diffracted wave from the line object

is found to be

( )
2

L

2s in
2, exp2 4

ax
a xzo x y jax zz

z

π
π πλ

π λλ
λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥ ⎡ ⎤⎛ ⎞⎝ ⎠⎢ ⎥= − −⎢ ⎥⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦
⎢ ⎥⎣ ⎦

(A1.14)
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Let us define

L
2 ,aC

zλ
= − (A1.15) (A1.15a)

L

2sin
,2

ax
zQ ax

z

π
λ

π
λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=

⎢ ⎥
⎢ ⎥⎣ ⎦

(A1.15b)

and

2

L ,
4

x
z

π π
λ

Φ = − (A1.15c)

Eq. (A1.14) can be rewritten as

( ) ( )L L L L, exp .o x y C Q j= Φ (A1.16)

Thus, the intensity recorded at the hologram plane is

( ) ( )

( )

2
L

2
L L L

2 2
L L L L L

, ,

1 exp

1 2 cos .

I x y R o x y

C Q j

C Q C Q

= +

= + Φ

= + Φ + (A1.17)

Substituting Eqs. (A1.15) into Eq. (A1.17) results in

2

2 2
2 2sin sin

4 4( , ) 1 cos .2 24

ax ax
a x az zI x y ax axz zz

z z

π π
π π λ λ

π πλ λλ
λ λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥= − − +⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(A1.18)



133

A1.2  Hologram of opaque spherical object

In the case of recording the hologram of an opaque 2-D object by using the in-

line optical setup depicted in the Fig. 2.1, the field at the recording plane can be

calculated by using the Fresnel diffraction integral as

[ ] ( )

( ) ( )2 2

exp
( , ) 1 ,

exp
2

jkz
U x y A

j z
jk x y d d
z

ξ η
λ

ξ η ξ η

∞ ∞

−∞ −∞

= −⎡ ⎤⎣ ⎦

⎧ ⎫⎡ ⎤× − + −⎨ ⎬⎣ ⎦⎩ ⎭

∫ ∫

[ ] ( ) ( )

( ) ( ) ( )

2 2

2 2

exp
exp

2

, exp .
2

jkz jk x y d d
j z z

jkA x y d d
z

ξ η ξ η
λ

ξ η ξ η ξ η

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

⎧ ⎧ ⎫⎡ ⎤= − + −⎨ ⎨ ⎬⎣ ⎦⎩ ⎭⎩
⎫⎧ ⎫⎡ ⎤− − + −⎨ ⎬ ⎬⎣ ⎦⎩ ⎭ ⎭

∫ ∫

∫ ∫ (A1.19)

Under the far-field condition, Eq. (A1.19) becomes

( ) ( ) ( )2exp 2
, exp 1 , ,

j jkr z x yU x y jkz A
z z zλ λ λ

⎡ ⎤⎛ ⎞⎢ ⎥= + ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

(A1.20)

where 2 2 2r x y= + , while ,x yA
z zλ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the 2-D Fourier transform of

( ),A ξ η  defined by

( ), , exp 2 .x y x yA A j d d
z z z z

ξ η π ξ η ξ η
λ λ λ λ

∞ ∞

−∞ −∞

⎛ ⎞⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎝ ⎠

∫ ∫ (A1.21)

By neglecting the constant phase exponential in Eq. (A1.20), the diffracted wave from

the opaque 2-D object can be mathematically expressed as

( )
2

2 D
1, exp , .

2
r x yo x y j A

z z z z
π π

λ λ λ λ−

⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

(A1.22)
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In the case of a spherical object, its amplitude transmittance function is defined by

2 2

2 2

( , ) 1    for

0 .

A a

a

ξ η ξ η

ξ η

= + ≤

= + > (A1.23)

This can be rewritten in polar coordinate as

( ) 1   for
0 ,

A a
a

ρ ρ
ρ

= ≤
= >

where 2 2 .ρ ξ η= +

Since the function ( ),A ξ η  is circularly symmetric, its Fourier transform can be

calculated by using the one-dimensional Fourier-Bessel transform (Goodman, 1996)

( ) 0
0

2 ( ) (2 )A r A J r dπ ρ ρ πρ ρ
∞

= ∫

0
0

22 .
ar rA J d

z z
πρπ ρ ρ

λ λ
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫

By changing of the variables 2 ,r
z

πρρ
λ

′ =

22

0
0

1 ( ) .
2

ar
zr zA J d

z r

π
λλ ρ ρ ρ

λ π
⎛ ⎞ ⎛ ⎞ ′ ′ ′=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ∫

Using the identity

( ) ( )0 1
0

,
x

J d xJ xξ ξ ξ =∫ (A1.24)
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the Fourier spectrum of the spherical object is

1
2 .r a z arA J

z r z
λ π

λ λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∴
1

2

22
.2

arJ
r zA a arz

z

π
λπ πλ

λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎢ ⎥=⎜ ⎟

⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

(A1.25)

Substitution of Eq. (A1.25) into Eq. (A1.22) gives the object wave of the spherical

object

( )
2 21

S

22
exp .2 2

arJ
a rzo r jarz z

z

π
π π πλ

πλ λ
λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥ ⎡ ⎤⎛ ⎞⎝ ⎠⎢ ⎥= +⎢ ⎥⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦
⎢ ⎥⎣ ⎦

(A1.26)

Define

2

S ,aC
z

π
λ

= (A1.27)(A1.27a)

1

S

22
,2

arJ
zQ ar

z

π
λ

π
λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥=

⎢ ⎥
⎢ ⎥⎣ ⎦

(A1.27b)

and
2

S ,
2

r
z

π π
λ

Φ = + (A1.27c)

the object wave in Eq. (A1.26) can be rewritten as

( ) ( )S S S Sexp .o r C Q j= Φ (A1.28)

The intensity at the hologram plane can be calculated from
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( ) ( )

( )

2
S

2
S S S

2 2
S S S S S

1 exp

1 2 cos .

I r R o r

C Q j

C Q C Q

= +

= + Φ

= + Φ + (A1.29)

Substitution of Eq. (A1.27) into Eq. (A1.29) gives the intensity of the hologram of the

opaque spherical object as

( )

2

2 2 2 41 1

2 2

2 22 2
21 cos .2 22

ar arJ J
a r az zI r ar arz z z

z z

π π
π π π πλ λ

π πλ λ λ
λ λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥= + + +⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(A1.30)

By using the identity

( )cos sin ,
2
πθ θ⎛ ⎞+ = −⎜ ⎟

⎝ ⎠
(A1.31)

Eq. (A1.30) becomes

( )

2

2 2 2 41 1

2 2

2 22 2
21 sin .2 2

ar arJ J
a r az zI r ar arz z z

z z

π π
π π πλ λ

π πλ λ λ
λ λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥= − +⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(A1.32)

A1.3  Hologram of circular aperture

In the case of recording a hologram of a 2-D circular aperture by using the

Mach-Zehnder interferometer shown in the Fig. 3.9, the complex field incident on the

recording plane can be mathematically expressed by

( ) ( ) ( )

( ) ( )2 2

exp
( , ) exp ,

exp .
2

jkz
U x y jkz t

j z
jk x y d d
z

ξ η
λ

ξ η ξ η

∞ ∞

−∞ −∞

= +

⎧ ⎫⎡ ⎤× − + −⎨ ⎬⎣ ⎦⎩ ⎭

∫ ∫

(A1.33)
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Here, ( ),t ξ η  is the amplitude transmittance function at the object plane. The first

term of the Eq. (A1.33) represents the reference wave, while the second term is the

diffracted wave from the object. Under the far-field condition, Eq. (A1.33) becomes

( ) ( ) ( )2exp 2
, exp 1 , ,

jkr z x yU x y jkz T
j z z zλ λ λ

⎡ ⎤⎛ ⎞⎢ ⎥= + ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

(A1.34)

where ,x yT
z zλ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the 2-D Fourier transform of ( ),t ξ η . Thus, by neglecting the

phase exponential, the object wave is equivalent to

( )
2

2 D
1ˆ , exp , .

2
r x yo x y j T

z z z z
π π

λ λ λ λ−

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

(A1.35)

For a pinhole having a radius of a, the amplitude transmittance function at the object

plane can be mathematically expressed by

2 2

2 2

( , ) 1    for

0 .

t a

a

ξ η ξ η

ξ η

= + ≤

= + > (A1.36)

Its Fourier transform is given by

1
2

22
.2

arJ
r zT a arz

z

π
λπ πλ

λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎢ ⎥=⎜ ⎟

⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

(A1.37)

Substitution of Eq. (A1.37) into Eq. (A1.35) gives the diffracted wave from the

pinhole as
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( )
2 21

P

22
exp .2 2

arJ
a rzo r jarz z

z

π
π π πλ

πλ λ
λ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥ ⎡ ⎤⎛ ⎞⎝ ⎠⎢ ⎥= −⎢ ⎥⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦
⎢ ⎥⎣ ⎦

(A1.38)

Thus, in analogy with the derivation of the hologram of an opaque spherical object,

the hologram of the pinhole becomes

( )

2

2 2 2 41 1

2 2

2 22 2
21 cos .2 22

ar arJ J
a r az zI r ar arz z z

z z

π π
π π π πλ λ

π πλ λ λ
λ λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥= + − +⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(A1.39)

Since

( )cos sin
2
πθ θ⎛ ⎞− =⎜ ⎟

⎝ ⎠
(A1.40)

and

( ) ( )s in sin ,θ π θ+ = − (A1.41)

as a result

( )cos sin .
2
πθ θ π⎛ ⎞− = − +⎜ ⎟

⎝ ⎠
(A1.42)

By using the identity in Eq. (A1.42), the hologram of the pinhole in Eq. (A1.39) is

found to be

( )

2

2 2 2 41 1

2 2

2 22 2
21 sin .2 2

ar arJ J
a r az zI r ar arz z z

z z

π π
π π πλ λπ π πλ λ λ

λ λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥= − + +⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(A1.43)



139

A2. In-line Fraunhofer holograms of multiple objects

In the case where there are multiple objects in the object field, the optical field

at the hologram plane can be found from

( ) ( ), , ,U x y R O x y= + (A2.1)

where ( ),O x y  is the summation of the object waves scattered from the individual

objects

( ) ( )
1

, , ,
K

k
k

O x y o x y
=

= ∑ (A2.2)

with K representing the number of objects in the object field. The intensity at the

hologram plane can be calculated from

( ) ( )

( )

( ) ( ) ( )

2

2

2*

, ,

1 ,

1 , , , .

I x y U x y

O x y

O x y O x y O x y

=

= +

= + + + (A2.3)

Here, the reference wave is assumed to be a constant 1. For a kth line object that is

centered at the position kxξ = on the ( ),ξ η  plane, the object wave scattered from this

line object can be mathematically expressed as

( )
2

L

2
sin

2, exp .
2 4k

k k

k kk

k k kk

k

a x x
z x xao x y j

a x x zz
z

π
λ π π

π λλ
λ

⎡ ⎤⎛ − ⎞
⎢ ⎥⎜ ⎟ ⎡ ⎤⎛ ⎞−⎝ ⎠⎢ ⎥ ⎢ ⎥= − ⎜ − ⎟⎢ ⎥ ⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

(A2.4)

In analogy, the object wave of the kth spherical object centered at krρ =  is
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( )
212

S

2
2

exp .
2 2k

k k

k kk

k kk k

k

a r r
J

z r rao r j
a r rz z

z

π
λ ππ π

πλ λ
λ

⎡ ⎤⎛ − ⎞
⎢ ⎥⎜ ⎟ ⎡ ⎤⎛ ⎞−⎝ ⎠⎢ ⎥ ⎢ ⎥= ⎜ + ⎟⎢ ⎥ ⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥
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The object wave of the line object can be written in the form
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where
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for spherical objects. Substitution of Eq. (A2.6) into Eq. (A2.2) gives
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= Φ∑ (A2.9)

Thus, the interference between the reference and the object waves is
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while that between the object waves is
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By separating the interference between the same object waves from those between the

different objects, Eq. (A2.11) can be rewritten as

( ) ( )2 2 2

1 1 1

, exp .
K K K

k k k l k l k l
k k l

l k

O x y C Q C C Q Q j
= = =

≠

= + Φ −Φ⎡ ⎤⎣ ⎦∑ ∑∑ (A2.12)

Substitution of Eqs. (A2.10) and (A2.12) into Eq. (A2.3) gives
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Thus, by substituting Eqs. (A2.7) and (A2.8) into Eq. (A2.13), the intensity of the

recorded hologram of multiple objects are found to be
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for multiple line and multiple spherical objects, respectively.

B.  Wavelet Transformations

B1.  Absolute value of the WT

Consider a modulated signal

( ) ( ) ( )0 1cos 2 cos 2 ,s x f x f xπ π= (B1.1)
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where 1 0f f> . Its WT calculated by using the Morlet wavelet of Eq. (2.12) is
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Here, the definition
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where(B1.5)
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In analogy, Eqs. (A1.5b), (A1.5c) and (A1.5d) become
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Substitution of Eq. (B1.7) into Eq. (B1.4) results in
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Equation (B1.8) is a summation of four terms which can be rewritten as
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The amplitude of each component in Eqs. (B1.10) is determined by the last

multiplicative exponential term which is
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respectively. Since the range of dilated frequency used in the calculation of the WT

corresponds to the frequency content of the analyzed signal, the argument of the

above four exponential terms vary around the frequency 1f . In addition, by using the

assumption that 1 0f f> , the inequality
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is obtained. By taking this consideration into account, the first and the second terms of

Eq. (B1.9) which are much smaller than the third and the fourth terms can be

neglected. Plot of Eqs. (B1.11) by using the parameter fg = f0 = 1,000 lines/mm and f1

= 5,000 lines/mm is shown in Fig. A1. Since the maximum amplitude of W13(d) is in

the order of 10-22 and that of W23(d) is 10-17
,
 they appear as straight lines around the

zero scale compared to W33(d) and W43(d) which have maximum amplitude of 1.

These results ensure that the first and the second terms of Eq. (B1.8) can be neglected.

After neglecting the first and the second terms, Eq. (B1.8) reduces to

( ) ( ){
( ) ( ) }

22 2
0 1 0 1

22 2
0 1 0 1

( , ) exp 2  2
8

                exp 2  2  

g

g

dW t d j f f t d f d f f

j f f t d f d f f

π π π

π π

⎡ ⎤= − − − + −⎢ ⎥⎣ ⎦

⎡ ⎤+ − − − − − −⎢ ⎥⎣ ⎦

( ) ( ){ }{ 22
1 0 0 1exp 2  2

8 g
d j f f t d f d f fπ π π⎡ ⎤= − − + −⎢ ⎥⎣ ⎦

Figure A1  Plot of Eqs. (B1.11) as a function of the dilation d.
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The absolute value of ( ),W t d  can be calculated from
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Substitution of Eq. (B1.13) into Eq. (B1.14) gives
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At 1 ,gd f f=  Eq. (B1.15) becomes

( ) ( ) ( ) ( ) ( ){ }{
( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ } }

1

221 2
0 1 1 1 0

222
0 1 1 1 0

222
0 0 1 1 1 0

1
2 222

0 1 1 1 0

, exp 4
8

exp 4

2cos 4 exp 2

2

g

g
f g gd
f

g g

g g

g g

f f
W t d f f f f f f f

f f f f f f f

f t f f f f f f f

f f f f f f f

π
π

π

π π

π

=
⎡ ⎤= − − − −⎢ ⎥⎣ ⎦

⎡ ⎤+ − + − +⎢ ⎥⎣ ⎦
⎡+ − − − −⎢⎣

⎤− + − + ⎥⎦

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

2
2 1 0 12

0 1
1 1 1 0

2
2 1 0 12

0 1
1 1 0

2
2 1 0 12

0 0 1
1 1 0

2 1 0 12
0 1

1 1

exp 4
8

exp 4

2cos 4 exp 2

2

g g g

g g

g g

g g

f f f f f f
f f

f f f f

f f f f f
f f

f f f

f f f f f
f t f f

f f f

f f f f f
f f

f f f

π
π

π

π π

π

⎧ ⎡ ⎤⎧ ⎫− −⎪ ⎪ ⎪⎢ ⎥= − −⎨ ⎨ ⎬−⎢ ⎥⎪ ⎪⎩ ⎭⎪ ⎣ ⎦⎩
⎡ ⎤⎧ ⎫+ −⎪ ⎪⎢ ⎥+ − + ⎨ ⎬+⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

⎡ ⎧ ⎫− −⎪ ⎪⎢+ − − ⎨ ⎬−⎢ ⎪ ⎪⎩ ⎭⎣

+ −
− +

+( )

1
2 2

0

⎫⎤⎧ ⎫⎪ ⎪ ⎪⎥⎨ ⎬ ⎬
⎥⎪ ⎪⎩ ⎭ ⎪⎦⎭

( ) ( )

2
2 02

0 1
1 1 1 0

exp 4
8

g gf f f
f f

f f f f
π

π
⎧ ⎡ ⎤⎧ ⎫−⎪ ⎪ ⎪⎢ ⎥= − −⎨ ⎨ ⎬−⎢ ⎥⎪ ⎪⎩ ⎭⎪ ⎣ ⎦⎩



151

( ) ( )

( ) ( ) ( )

( ) ( )

2
2 02

0 1
1 1 0

2
2 02

0 0 1
1 1 0

1
2 2

2 02
0 1

1 1 0

exp 4

2cos 4 exp 2

2

g

g

g

f f
f f

f f f

f f
f t f f

f f f

f f
f f

f f f

π

π π

π

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥+ − + ⎨ ⎬+⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
⎡ ⎧ ⎫−⎪ ⎪⎢+ − − ⎨ ⎬−⎢ ⎪ ⎪⎩ ⎭⎣

⎫⎤⎧ ⎫⎪ ⎪ ⎪⎥− + ⎨ ⎬ ⎬+ ⎥⎪ ⎪⎩ ⎭ ⎪⎦⎭

( )

2 2 2 2 2 2
0 0

2 2
1 1 1

1
2 2 2 2 2 2 2

0 0
0 2 2

1 1

4 4
exp exp

8

2 2
2cos 4 exp

g g g

g g

f f f f f
f f f

f f f f
f t

f f

π π π

π π
π

⎧ ⎛ ⎞ ⎛ ⎞⎪= − + −⎜ ⎟ ⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

⎫⎛ ⎞⎪+ − −⎜ ⎟⎬⎜ ⎟⎪⎝ ⎠⎭

( )
1

2 2 2 2 2 2 2
0 0

02 2
1 1 1

4 4
2exp 2cos 4 exp

8
g g gf f f f f

f t
f f f

π π π
π

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + −⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

( ){ }
2 2 2 1

0 2
02

1 1

2
exp 1 cos 4

4
g gf f f

f t
f f

π π
π

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
(B1.16)

By using the identity

( ) ( )2cos 2 2cos 1θ θ= −

( ) ( )1 cos 2 2 cos ,θ θ+ = (B1.17)

Eq. (B1.16) reduces to
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B2.  Determination of the dilation d0

Consider the chirp signal described by
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Its wavelet transform calculated by using the Morlet wavelet of Eq. (2.12) is
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By using Eq. (B1.6), the first integral of Eq. (B2.2) becomes
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The second term of Eq. (B2.2) becomes
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The third term of Eq. (B2.2) becomes

( )

( )

2
2 2

2

2

2 2

21exp exp
2 2

2

exp exp
1 12 4

2 2

g

g

j fA tjC jB x x dx
d d d

j ft
d dA jC

jB jB
d d

π

π
π

∞

−∞

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞− − + + −⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟− ⎢ ⎥⎝ ⎠= − ⎢ ⎥⎛ ⎞ ⎛ ⎞− + − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫

( )

2 22

4 3 2

2 2

2 2

4 4

exp exp
1 22 1 24

2 2

g gj f t ft
A d d djC

j Bd j Bd
d d

π π
π

⎡ ⎤
⎢ ⎥− −
⎢ ⎥= −
⎢ ⎥+ ⎛ ⎞+
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

( ) ( )
2 2

2 2

2 22

4 3 2

2exp exp
2 1 2 2 1 2

4 4g g

A d djC
j Bd j Bd

j f t ft
d d d

π

π π

⎡
⎢=−

+ +⎢⎣
⎤⎛ ⎞

− − ⎥⎜ ⎟⎜ ⎟⎥⎝ ⎠⎦

( ) 2 2

2
2 2

2

2 1exp exp
2 1 2 1 2

2
2

2
g

g

Ad jC
j Bd j Bd

j f tt f
d d

π

π
π

⎡
= − ⎢+ +⎣

⎤⎛ ⎞
− − ⎥⎜ ⎟

⎝ ⎠⎦
(B2.5)

Substitution of Eqs. (B2.3), (B2.4) and (B2.5) into Eq. (B2.2) gives
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The second term of Eq. (B2.6) is
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The third term of Eq. (B2.6) is
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Thus, Eq. (B2.6) becomes

( ) ( )

( ) ( )

( ) ( )

2 2

1 21
2 4 4

2 2 2 2 2 2 2 3 2 2 2

2 4

1 21
2 4 4

2 2

, 2 exp 2

tan 2
1 4 exp

2 2

4 2 2 8 4
exp

1 4

tan 2
1 4 exp

2 2

4 2
exp

g

g g g g

g

W t d d f

BddA B d j C

jBt f tBd f B t d j f tB d j f Bd
B d

BddA B d j C

jBt f tBd

π π

π

π π π π

π

π π

−
−

−
−

= −

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− + −
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞+ − − + −
⎜ ⎟⎜ ⎟+⎝ ⎠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− + − −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− − − 2 2 2 2 2 3 2 2 2

2 4

2 8 4
1 4

g g gf B t d j f tB d j f Bd
B d

π π⎛ ⎞− + +
⎜ ⎟⎜ ⎟+⎝ ⎠

( )2 22 exp 2 gd fπ π= −



159

( )

( )

( )

2 2 2 2 21
2 4 4

2 4

1 22 2 3 2 2 2

2 4

2 2 2 2 21
2 4 4

2 4

12 2 3 2 2 2

2 4

4 2 2
1 4 exp

2 1 4

tan 28 4
1 4 2

4 2 2
1 4 exp

2 1 4

tan8 4
1 4

g g

g g

g g

g g

f tBd f B t ddA B d
B d

BdBt f tB d f Bd
j C

B d

f tBd f B t ddA B d
B d

Bt f tB d f Bd
j

B d

π ππ

π π

π ππ

π π

−

−

−

−

⎡ − −
− + ⎢

+⎢⎣
⎤⎧ ⎫+ −⎪ ⎪⎥+ + −⎨ ⎬+ ⎥⎪ ⎪⎩ ⎭⎦

⎡− − −
− + ⎢

+⎢⎣

− −
− +

+
( )22

.
2

Bd
C

⎤⎧ ⎫⎪ ⎪⎥−⎨ ⎬
⎥⎪ ⎪⎩ ⎭⎦

(B2.7)

At 0,t =  Eq. (B2.7) becomes
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Plots of the first and the second terms of Eq. (B2.8) are shown in Fig. 6.19, where its

maximum value that corresponds to the center of the object appears at the dilation

log10(d0) = –3.3. In order to determine mathematically the dilation d0, the derivative of
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Eq. (B2.8) with respect to d is calculated. The value of the dilation that gives this

resultant derivation equals to zero is equal to the dilation d0. However, as illustrated in

Fig. A2, plots of each term of the Eq. (B2.8) by using the same parameters as those

used in Fig. 6.19 show that the first term is much smaller than the second term. Thus

the first term can be neglected. In this figure, the first term appears as a straight line

because its amplitude is in the order of 10-10, while that of the second term is 10-3.

After neglecting the first term, Eq. (B2.8) reduces to
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2nd term
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Figure A2  Plot of each term in the Eq. (B2.8).

-3.3
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which is a multiplication of three terms. A plot of each term of Eq. (B2.9) is shown in

Fig. A3. It can be seen that the first term varies slowly and can be approximately

considered as a constant compared to the second and the third term. Thus, by

neglecting the first term, Eq. (B2.9) reduces to
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The derivative of the Eq. (B2.10) with respect to d is
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Figure A3  Plot of each term in the Eq. (B2.9).
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The maximum position can be determined when Eq. (B2.11) is equal to zero. This

yields

( )
2 2 2

1 2
2 4

2 2 2

2 2 2 2 2 4 2 4

4 1tan tan 2
1 4 2

16
.

4 16 1 4

g

g

g g

f Bd
Bd C

B d

f Bd
f f B d B d

π

π
π π

−
⎧ ⎫⎪ ⎪− +⎨ ⎬+⎪ ⎪⎩ ⎭

=
− − −

(B2.12)

Arctan of Eq. (B2.12) is
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where n is an integer number which represents the periodicity of the tangent function.

By grouping the arctan functions, Eq. (B2.13) becomes
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In order to determine the value of d that gives the desired maximum, the right hand

side (RHS) and the left hand side (LHS) of Eq. (B2.14) are plotted as a function of

dilation for different value of n. Figures A4.a and A4.b show the plots of Eq. (B2.10)

and the RHS-LHS of Eq. (B2.14), respectively. The RHS is represented by using the

dashed line, while the LHS by the solid line. The dilations at the crossing points of the
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two lines are the solution of the Eq. (B2.14). It is clear that for n = −1, there are two

crossing points one of which corresponds to the desired maximum. Let us assume that

the solution of Eq. (B2.14) is in the form of

cd
B

= (B2.15)

n = 1

n = 0

n = -1

n = -2

n = -3

(a)

(b)
LHSRHS

Figure A4 Plot of Eq. (B2.10) (top) and the LHS and RHS of Eq.

(B2.14) (bottom).
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with c is a constant. Substitution of Eq. (B2.15) and n = −1 into Eq. (B2.14) gives
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Plots of the RHS and the LHS of Eq. (B2.16) as a function of c are shown in Fig. A5

by using the dash and the solid lines, respectively. Here, the parameter C = π/4 is used

for the line and C = π/2 for the spherical object. It is found that there are two solutions

for each type of the objects. However, from Fig. A4, the solution that gives the higher

value of the dilation produces the desired maximum. Thus, c = 1.86 and c = 2.16 are

used as the solutions of the Eq. (B2.16) for the line and the spherical objects,

respectively. By substituting these values of c and the definition of the parameter B

C = π/2

C = π/41.86 2.16

Figure A5  Plots of the LHS and the RHS of Eq. (B2.16).

RHS

LHS
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into Eq. (B2.15), the dilation d0 that gives the maximum is equal to

0 1.05d zλ= (B2.17)

and

0 1.22 ,d zλ= (B2.18)

for the line and the spherical objects, respectively.

B3.  WT of modulation of chirp signal by a cosine function

Consider a modulated signal
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Its WT calculated by using the Morlet wavelet given by the Eq. (2.12) is
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By taking Eq. (B2.3) into account, the first integral of Eq. (B3.2) is equal to
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(B3.3a)

By using the definition of Eq. (B1.6), the second integral of Eq. (B3.2) becomes
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In analogy, the third, the fourth, and the fifth integrals of Eq. (B3.2) becomes
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respectively. Substitution of Eqs. (B3.3) into Eq. (B3.2) yields
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The first term of Eq. (B3.4) is(B3.5)
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The second term of Eq. (B3.4) is
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The third term of Eq. (B3.4) is
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The fourth term of Eq. (B3.4) is
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The fifth term of Eq. (B3.4) is

( )
2

2 2 2

2 2 2
2 2

2

21 2 1exp exp exp
2 4 1 2 1 2

2
2 2

2 2

g

g
g g

j f tt Ad jC
d d j Bd j Bdd

j ft D djD t f f Dd
d d

π π

π
π π

⎡⎛ ⎞ ⎧− −
+ ⎨⎢⎜ ⎟ + +⎩⎝ ⎠ ⎣

⎤⎫⎛ ⎞⎡ ⎤ ⎪− + − − − ⎥⎜ ⎟⎬⎢ ⎥
⎥⎣ ⎦ ⎪⎝ ⎠⎭⎦

( )
2

2 2 2

2 2 2
2 2

2

2 1exp exp
1 2 1 2 24

2 2
2 2

2 2
g g

g g

Ad tjC
j Bd j Bd dd

j f j f tD d tjD t f f Dd
d d d

π

π π
π π

⎛ ⎧−
= ⎜ ⎨+ + ⎩⎝

⎞⎡ ⎤ ⎫
− + − − − − + ⎟⎬⎢ ⎥

⎭⎣ ⎦ ⎠

( )

( ) ( )

2

2 2 2

2 2 2
2 2 2 2

2

22 1exp exp
4 1 2 1 2 2

2
2 2 1 2 1 2

2 2

g

g
g g

j f tA d tjC jDt
j Bd j Bd d d

j f tD d tf f Dd j Bd j Bd
d d

ππ

π
π π

⎛ ⎧−
= − −⎜ ⎨+ + ⎩⎝

⎞⎫
− − − − + + + ⎟⎬

⎭⎠



175

( ) ( )

( )

2
2

2 2 2

2 2
2 2 2

2 1exp exp 1 1 2
4 1 2 1 2 2

2
1 1 2 2 2

2
g

g g

A d tjC j Bd
j Bd j Bd d

j f t D dj Bd jDt f f Dd
d

π

π
π π

⎛ ⎧− ⎡ ⎤= − +⎜ ⎨ ⎣ ⎦+ + ⎩⎝
⎞⎫⎡ ⎤− − + − − − − ⎟⎬⎣ ⎦ ⎭⎠

( ) ( )

( )

2
2

2 2 2

2 2
2 2 2

2 1exp exp 2
4 1 2 1 2 2

2
2 2 2

2
g

g g

A d tjC j Bd
j Bd j Bd d

j f t D dj Bd jDt f f Dd
d

π

π
π π

⎛ ⎧−
= −⎜ ⎨+ + ⎩⎝

⎞⎫
− − − − − − ⎟⎬

⎭⎠

( ) {

})

2
2 2

2 2 2 2

2 1exp exp
4 1 2 1 2

4 2 2 2g g g

A djC jBt
j Bd j Bd

f Bdt jDt f D d f Dd

π

π π π

⎛−
= −⎜+ +⎝

− − − − −

( )

{ })

2

2 2 2

2 2 2 2 2

2 1 1 2exp exp
4 1 2 1 2 1 2

4 2 2 2g g g

A d j BdjC
j Bd j Bd j Bd

jBt f Bdt jDt f D d f Dd

π

π π π

⎛ ⎡ ⎤− −
= ⎜ ⎢ ⎥+ + −⎣ ⎦⎝

− − − − − −

( ) {

})

2
2

2 2 4

2 2 2 2

2 1 2exp exp
4 1 2 1 4

4 2 2 2g g g

A d j BdjC jBt
j Bd B d

f Bdt jDt f D d f Dd

π

π π π

⎛− −
= −⎜+ +⎝

− − − − −

( ) {

})

2
2 2 4

2 2 2 2 2 2 2 2 3

2 2 2 2 2 4 3

2 1exp exp 4
4 1 2 1 4

2 2 2 2 8

2 4 4

g

g g g

g g

A djC jBt f Bdt
j Bd B d

jDt f D d f Dd B d t j f tB d

BDtd j f Bd jBD d j f BDd

π π

π π π

π π

− ⎛= − −⎜+ +⎝

− − − − − +

− + + +

( )

{
2 2 4

2 2 2 2 2 2 2 2

2 1exp exp
4 1 2 1 4

2 2 4 2 2 2g g g

A djC
j Bd B d

B d t BDtd f Bdt f Dd D d f

π

π π π

− ⎛= ⎜+ +⎝

⎡ ⎤− + + + + +⎣ ⎦



176

})2 2 3 2 2 2 2 4 38 4 4g g gj Bt Dt f tB d f Bd BD d f BDdπ π π⎡ ⎤+ − − + + + +⎣ ⎦

( )

})

2 2 4

2
2

2 3 2 2 2 2 4 3

2 1exp exp
4 1 2 1 4

2 2
2

8 4 4 .

g

g g g

A djC
j Bd B d

DdBdt f j Bt Dt

f tB d f Bd BD d f BDd

π

π

π π π

− ⎛= ⎜+ +⎝

⎧ ⎡ ⎤⎛ ⎞⎪ ⎡− + + + − −⎨ ⎢ ⎥⎜ ⎟ ⎣⎝ ⎠⎣ ⎦⎪⎩

⎤+ + + + ⎦ (B3.5e)

Substitution of Eqs. (B3.5) into Eq. (B3.4) yields
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Equation (B3.6) consists of five terms. The first term is constant, while the other

terms are the multiplication of a Gaussian function and a complex exponential

function. The amplitude of each terms is determined by the Gaussian function which

acts as an envelope function. Figure A6 shows the plots the first term and the
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Gaussian function of the other four terms of the Eq. (B3.6) along the dilation

0 1.05 .d zλ=  It is found that the amplitude of the first term which is in the order of

1010−  is much smaller than those of the other four terms which are in the order of

310− . Thus, the first term can be neglected and Eq. (B3.6) reduces to
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Figure A6 Plots of the first term and the Gaussian functions of the

other four terms of the Eq. (B3.6) at the dilation d0.
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