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PARTICLE HOLOGRAMS/IN-LINE HOLOGRAPHY/WAVELET

TRANSFORM/DIGITAL ANALYSIS

New digital methods for sizing and tracking particles from in-line particle
holograms by using wavelet transform (WT) are studied. The holograms are obtained
by capturing the interference pattern with a charge-couple device (CCD) sensor. In
the study, the recording distance is extracted by computing the WT of the holograms.
The WT output gives the space-frequency information of the interference pattern
which are determined by the recording distance. As for the particle size, two digital
methods are studied. The first method is based on the determination of the minima
positions in the space domain by using the envelope function reconstruction method.
The second method extracts the frequency of the carrier signal at the minima positions
by computing absolute values of the WT. The feasibility of the methods is verified by
analyzing the simulated and the experimentally generated holograms of line and
spherical objects. Analysis of the system performance of the methods for the case of
the holograms of the single and the multiple objects are discussed. The analysis for
the hologram of the single object is based on the finite size and finite resolution of the
employed CCD sensor. As for the case of multiple objects, the hologram can be
approximately represented by summation of the interference patterns of the individual
objects. Thus, the system performance depends on the separation between the WT of

each interference pattern in the WT domain. The equations that determine the



required separation between each hologram are derived and are verified by analyzing

the simulated holograms of the multiple line and spherical objects.
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CHAPTER I

INTRODUCTION

1.1 Background

Holography is a technique to store three-dimensional (3-D) optical
information on a light-sensitive medium such as a photographic film. In in-line
particle holography, coherent illumination of opaque or semi-transparent particles
illuminated produces an interference pattern between light waves diffracted from the
particles and a directly transmitted light wave. After development, the recorded
pattern is referred to as a hologram. As for micrometer size of particles, the diffraction
caused by particles at a few tens of centimeters of recording distance can be
categorized as a Fraunhofer diffraction. Thus, this type of hologram can be referred to
as an in-line Fraunhofer hologram.

The interference pattern of the hologram contains information about both the
3-D spatial position and size of the particles. In a conventional analyzing method, this
information is extracted by illuminating the hologram with the same coherent light.
The transmitted light reconstructs images of the particles at the same distance as the
recording distance. By analyzing this reconstructed image, the desired information
can be obtained.

Particle sizing and tracking is one of potential applications of in-line
Fraunhofer holography. The in-line holography was not only used for measurement of

spherical objects such as fog and marine plankton (Thompson, 1974), its application



to the characterization of thermal insulator fibers has also been found to be very
promising (Belaid, Lebrun and Ozkul, 1997). Although the desired information can be
obtained by analyzing the optically reconstructed image, we may deal with a huge
number of particles in real applications. As a consequence, the conventional

reconstruction process is very tedious and time consuming.

In order to overcome this problem, Murakami employed a microscope to
observe directly the transmittance of the developed in-line hologram (Murakami,
1987). He established a relation between the density and the diameter of interference
fringes in the hologram which could provide the desired information. However, his
method is applicable only to a small far-field number that corresponds to either a very
big diameter of particles or a very short recording distance. As for a large far-field
number, the density of fringes does not vary significantly. This leads to inaccuracy of
the method. An alternative solution for all-optical analysis of particle holograms using
a wavelet transform (WT)-based correlator was proposed (Widjaja, 1998). In the
method, the optically reconstructed image of a target particle is compared to the
image of a reference particle by using a joint transform correlator technique. The
interesting feature of this method is that the WT is used to enhance edge features of
both images by imaging an image of a wavelet filter onto the joint Fourier spectrum
of the images of the target and the reference particles. By correlating these two edge-
enhanced images, the position and the size of particles can be accurately determined.
Although the method is indeed useful for analyzing irregularly shaped particles, the
problem in the method is that the optical system becomes complicated. Recently, the
WT has also been used to extract information about the 3-D position of particles from

digitally-recorded in-line holograms (Lefebvre, Coétmellec and Ozkul, 2000). This



method is based on an interpretation of the diffraction process as a wavelet
transformation with a spherical wave for the wavelet and an axial distance of the wave
propagation for its dilation (scale change). To determine the position of particles, the
digital hologram is wavelet transformed by using a spherical wave-based analyzing
wavelet. The position of particles can be obtained if the resultant WT gives a
maximum value. In fact, this approach is equivalent to searching the in-focus image
plane of particles reconstructed from the hologram. However, since the dilation factor
is determined by the axial recording distance, this method is useful only for the short
axial distance. For the longer distance, the dilation increases. As a result, the

admissibility condition of the wavelet is so violated that this method becomes invalid.

1.2 Significant of the study

In this thesis, a new digital method for extracting the information about the
size and the recording distance of the object directly from the in-line Fraunhofer
holograms is proposed. Instead of treating the diffraction process from the viewpoint
of the WT, the proposed method is based on the signal processing approach applied
directly to the holograms. This obviates the need for searching all depth planes. In this
thesis, the WT is used to extract the axial position of particles. Here, the dilation
factor is an independent variable whose value is not determined by the axial distance.
The size of particles is determined by using either a reconstruction of the envelope
function or an absolute values of the WT methods. In comparison with the previous
methods, the proposed method has the following advantages. First, since the hologram
is used to extract the above information, the method is free from unwanted virtual and

out-of-focus images appearing in the reconstruction process from the hologram.



Second, it gives information about the spatial position and the size of particles. Third,
since the method is independent of the fringe density, a wider dynamic range of
measurement is expected. Fourth, a longer depth can be measured because the dilation
factor does not depend on the axial distance. Finally, the accuracy of measurements

can be maximized by taking advantage of a multi-resolution property of the WT.

1.3 Research objective

The purpose of this research is first to invent a new digital method for
measuring the size and position of particles from the digital in-line holograms. The
position information is extracted from the hologram by using the WT, while the size
can be obtained from either the combination of the WT and the envelope construction
method or the absolute values of the WT method. The feasibility of the method will
be verified by calculating error of measurement. Second, the system performance of

the method will be studied.

1.4 Scope and limitation of the study

In this dissertation, the in-line holograms of 1-D and 2-D objects are studied. An
optical fiber is used as the 1-D specimen, while for the 2-D object it is a circular
pinhole. The in-line holograms of a single object are simulated and experimentally
generated. The generated holograms are analyzed by using the WT, the envelope
reconstruction and the absolute values of the WT methods.

Since a charge-coupled device (CCD) sensor is used to capture the
interference pattern of the holograms, the finite resolution and finite aperture of the
CCD sensor determine the information quality of the captured holograms. In order to

sample correctly the interference pattern, the spatial resolution of the sensor must



satisfy the Nyquist sampling theorem (Oppenheim and Schafer, 1989). Whereas the
aperture size of the sensor must be wide enough to record the interference pattern.
Thus, these conditions limit the allowable recording distance and size of the objects.
Furthermore in real world applications, analysis of the in-line holograms of multiple
objects may have to be done. In this case, the hologram may contain multiple
interference patterns which overlap each other. Therefore, it is important to study

these effects on the performance of the analyzing method.

1.5 Organization

The organization of this dissertation is divided into seven chapters. This is the
first chapter which gives an introduction of the dissertation. The principles of in-line
Fraunhofer holography and the WT are given in Chapter Il which includes the
mathematical discussions of the holograms of the 1-D line and the 2-D spherical
objects. In Chapter 111, an algorithm for simulating holograms of single and multiple
objects and an optical setup used for generating the holograms are discussed. The
extraction of the recording distance from the simulated and the optically generated
holograms by using the WT is discussed in Chapter IV. Chapter V discusses the
methods for extracting the object size from the holograms by using the envelope
reconstruction and the absolute values of the WT. The measurement results by using
these methods are given and discussed. In Chapter VI, the system performance of the
proposed method for the case of single and multiple objects are analyzed. Finally, the
conclusions of the dissertation are provided in Chapter VII. All rigorous mathematical

derivations used in this dissertation are given in Appendix.



CHAPTER Il

THEORY

2.1 In-line Fraunhofer holography

Holography is a lensless imaging method proposed by Dennis Gabor in 1948
(Goodman, 1996). In this method, both the amplitude and phase of the light field
diffracted of the object being studied is recorded into light-sensitive media such as a
photographic-film through interference with a coherent reference wave. Although in
general the phase of the light field cannot be recorded by intensity-sensitive media,
the recorded intensity encodes the amplitude and phase information of the object
wave into the interference pattern.

In in-line holography, the object and the light source are located in-line along

an axis normal to the recording plane as shown in Fig. 2.1.
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Figure 2.1 Formation of an in-line hologram.



When the object located at plane (&,7) is illuminated with the collimated coherent
plane wave, the intensity of the light incident on the recording medium placed a

distance z behind the object is

I(x,y)=|R+0(x, y)|2
= IRl +|o(xy)|" +R'o(x,y)+Ro"(x,y), @.1)

where R is the amplitude of the reference plane wave and o(x, y) represents the
complex amplitude of the scattered light at the recording plane. Here, the object plane
is assumed to be highly transmittive such that the amplitude of the reference wave is

greater than the object wave R o(x, y). After development, the recorded

interference pattern is called a hologram. The existence of o(x, y) in the third term of

Eqg. (2.1) ensures that both the amplitude and the phase of the diffracted light are

preserved into the intensity of the hologram.

In the reconstruction process, the developed hologram is illuminated with the
uniform plane wave as shown in Fig. 2.2. Assume that the exposure is controlled such
that the amplitude transmittance of the hologram is linearly proportional to the
incident intensity, the reconstructed field immediately behind the hologram can be

written as
U(xy)=4C {|R|2 +[o(x, y)|2 +R0(x,y)+Ro"(x, y)} (2.2)

where S is the constant of proportionality introduced in the developing process, while
C is the amplitude of the illuminating light. Since the amplitude transmittance of the

film is always less than one, the first term can be considered as an attenuated plane



wave passes directly through the hologram without scattering. Due to a highly
transmittive object plane, the field of the second term is very small compared to the

first term so that it is negligible. The third term represents the field that is proportional

to the original scattered wave o(x, y) . Since this wave field appears from the original

position of the object, it forms a virtual image of the object. The fourth term is

proportional to o*(x, y), which leads to the formation of real image at the distance z

behind the hologram.

Collimating
lenses
Laser i
z . z
beam !
Virtual image Hologram Real image
plane (&,n) plane (x,y) plane (u,v)

Figure 2.2 Reconstruction of the in-line hologram.

2.1.1 Line object
In case of a small line-shaped object such as a vertical wire placed at the

y-axis having the amplitude distribution function described by

for |¢]<a

1
A(&) =
(<) {o £] > a, (2.3)

the amplitude transmittance of its hologram at the recording plane (x,y) a distance z
behind the object plane can be mathematically expressed as (Tyler and Thompson,

1976)



sin 2rax sin 2rax
_ 4a 7Z'X2 T Az 4a2 Az
I (X, y)_l——TLZ COS(H—Z} Do + . D7 . (2.4)
Az Az

Here, a represents the radius of the object while A is the wavelength of illuminating
light. The rigorous mathematical derivation of Eq. (2.4) is done by assuming that the
illuminating wave is a unit amplitude plane wave (see Appendix). It can be seen from
Eq. (2.4) that the hologram consists of three mathematical terms. The constant in the
first term caused by the directly transmitted light corresponds to the uniform
background in the hologram. This term is equivalent to the first term of Eq. (2.1). The
second term is a modulation of a chirp signal by a sinc function that corresponds to
the summation of the third and the fourth terms of the Eq. (2.1). Since the frequency
of the sinc function is much lower than that of the chirp signal, the amplitude of the
chirp signal is modulated by the sinc function. The third term of Eq. (2.4) associated
with the second term of Eq. (2.1) is a square of the sinc function whose the amplitude
is much smaller compared with the other terms. Thus, the hologram is mainly
constructed by the first and the second term with the sinc function representing the
envelope function and the chirp signal is the carrier signal. Note that the second term
becomes very important for particle analysis because the frequency of the chirp signal
is inversely proportional to the recording distance z, while the minima positions which
are the zero-crossing positions of the sinc function are determined by the size of the
particles. Plot of the Eq. (2.4) is shown as a solid line in Fig. 2.3, where the broken
line represents the envelope function. From this figure, the above properties of the

three terms can be obviously observed.
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Figure 2.3 Simulated in-line hologram of a line object.

2.1.2 Spherical object

For a circular cross-section spherical object with the amplitude distribution

function defined by

AET) 1 for J&+n*<a
177 =
0 JE +n® >a, (2.5)

where a is the radius of the object, the amplitude transmittance of its hologram at the

recording plane (x,y) a distance z behind the object plane can be mathematically

expressed as (Tyler and Thompson, 1976)

2rar 2rar
23 ( ) 23 ( j
2 2 1 2,4 1
1(r)=1— 2ra sin r Az Lz a Az (2.6)
Az

A1z 2rzar 127° 2zar
Az Az
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J1 denotes the first-order Bessel function, while r is the radius coordinate in the

hologram plane which is defined by

r=+x>+y°. (2.7)

As in the case of the line object, the illuminating light is assumed to be of unit
amplitude. The derivation of Eq. (2.6) is given in Appendix. The interpretation of Eq.
(2.6) is similar to that of the Eq. (2.4). However, in case of a spherical object, the
envelope function is now represented by the Bessel function instead of the sinc
function. Plot of Eq. (2.6) by using the same parameters as the ones used for plotting
of Eq. (2.4) is shown in Fig. 2.4, where the broken line represents the envelope
function. It can be seen that, because of the Bessel function, the envelope function of

the 2-D spherical object is wider than that of the 1-D case.

I I 1 I I I I I I
11} RN -
ﬁ (\ I
1.05 X i
[
:‘3 \
[a+]
N \
A
g N 4
Q) A\
~—
: N
P \ /
0.95 | \ / s
\\\ ///
09} S i
1 1 1 1 1 1 1 1 1

7 (mm)

Figure 2.4 Simulated in-line hologram of a spherical object.
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2.2 The wavelet transform

The wavelet transform (WT) is a mathematical technique which has been
introduced in signal analysis to overcome the inability of Fourier analysis in providing
local frequency spectra. The WT of a signal pattern s(r) is defined as (Kronland-

Martinet, Morlet and Grossmann, 1987)
l < * r_t
W(t,d)=—7 — |s(r)dr, 2.8
to- o 5 s 28)

where g(r) is the analyzing wavelet function with d and t being the dilation (scale) and
the translation (shift) parameters, respectively. According to Eq. (2.8), the WT s
computed by correlating the analyzed signal with a set of dilated wavelets whose
frequency contents are inversely proportional to the dilation values. When the signal
s(r) has the same frequency content as that of the dilated analyzing wavelet g(r/d) in
the region subtended by g~ [(r-t)/d], a correlation peak is generated in the WT domain.
Thus, the WT of the signal s(r) is a description of the signal across a range of
frequencies. The resultant WT gives many wavelet coefficients W which are a
function of scale and position. Since the WT is computed at given continuous values
of the dilation and the translation, this type of WT is called the continuous WT. By
using a correlation property, Eq. (2.8) can be computed by using a Fourier transform

(FT)

W (t,d) :fl{%f{g*(ﬂ}f&(r)}}(t)
= # VG (—df ) s (f)}(1), (2.9)



13

where F and F' denote the forward and the inverse FTs which are defined by

(Goodman, 1996)

s(r)e ¥ dr (2.10)

—~
w
—~
=
e
—_—
Il

§ =3

and

S(f)e'*"df, (2.11)

iR
—_——
wn
—_
—
~
==
Il
é"—'.S

respectively.

In this thesis, the Morlet wavelet defined as (Kronland-Martinet et al., 1987)
g(r)= g2t (2.12)

is used as the analyzing wavelet with fy denoting the frequency of the wavelet. Plots
of the real value of the dilated Morlet wavelet with f; = 0.001 lines/mm versus its
spectrum for different dilations are shown in the left column of Fig. 2.5. When the
scale value is high, the wavelet is dilated. While it is compressed for small value of
the scale. The inverse proportional relationship between the dilation and the frequency
response of the wavelet can be obviously observed from the right column of the
figure. When the wavelet is dilated in the space domain, its center frequency and
bandwidth decrease. However, the compressed wavelet gives higher center frequency
and broader bandwidth. It can also be seen from Eq. (2.9) and Fig. 2.5 that the
computation of the wavelet coefficients equivalent to the filtering operation of the
analyzed signal by the set of band pass filters having center frequency of fy/d. The

filtered signal is the wavelet coefficients at the corresponding dilation value d.
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Figure 2.5 Morlet wavelet and its spectrum for different dilation values.

If the spatial width and the bandwidth of the wavelet are regarded as the spatial and
the frequency resolutions respectively, the small scale gives a wavelet analysis with
high spatial resolution and low frequency resolution. In contrast, the high scale
corresponds to wavelet coefficients with low spatial resolution and high frequency
resolution. This is known as the multi-resolution property of the WT. This property is
suitable for analyzing non-stationary signals whose high-frequency components occur
in short period, while its low-frequency components exist for a longer period.

Therefore, analysis of single-shot signals such as spikes must be done by using the
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compressed wavelet because its spatial width is narrow and its center frequency is
high. However, the decomposition of the low-frequency components of signals which
occur in a longer period requires the dilated wavelets. This yields wavelet coefficients

with higher frequency resolution.

Figure 2.6 illustrates the real value of the resultant wavelet coefficients of the
hologram shown in Fig. 2.3. The horizontal axis corresponds to the spatial translation
of the interference pattern, while the vertical axis indicates the dilation parameter
plotted in a logarithmic scale. The black and white colors represent the minimum and
the maximum values of the wavelet coefficients, respectively. The solid lines
represent the theoretical value of the space varying spatial frequency of the chirp

signal. Since the frequency of the chirp signal becomes higher as the position x

X (mm)

Figure 2.6 Plot of the real value of the continuous wavelet

coefficients of the simulated hologram in Fig. 2.3.
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increases, the dilation values decreases. It can be seen from the Fig. 2.6 that the
resultant continuous WT of the interference pattern agree well with the predicted

theoretical values.

Unlike the continuous WT which is computed at any given continuous values
of the translation and the dilation, a discrete WT computes the wavelet coefficients
only in a dyadic interval of the translation t=2'and the dilation d =2’ (Misiti,
Misiti, Oppenheim and Poggi, 2001). The discrete WT coefficients are obtained by
means of a series of filtering and subsampling operations. As for the discrete signal s
having N samples, these operations are done by passing the signal through high-pass
and low-pass filters whose cutoff frequencies are half of the maximum frequency of
the analyzed signal s. The output of the high-pass filter contains detail information D
of the signal with frequencies that are higher than its cut off frequency, while the low-
pass filter produces coarse information A. Since the frequency contents of the filtered
signals are reduced by half, they can be faithfully described by only N/2 samples. This
allows the information A and D to be down-sampled by a factor of 2 without loss of
frequency resolution. The results after down sampling are the detail coefficients and
the approximation coefficients which are represented by Cp and Ca, respectively. Fig.
2.7 shows a block diagram of a single level decomposition process, where H and L
denote the high-pass and low-pass filters, respectively. This process is repeatly
applied to the detail coefficient Ca until it consists of single sample. The detail
coefficients resulting from these processes are the WT coefficients in the
corresponding level of decomposition.

Figure 2.8 plots the discrete wavelet coefficients of the interference signal

shown in Fig. 2.3. The first level decomposition gives the discrete wavelet
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coefficients that corresponds to the high frequency content of the interference pattern,

(O RC
H Down N/2 samples
Cs) N samples sampling
by 2
(O
L N/2 samples

Figure 2.7 Single level decomposition of the signal s (Misiti,

Muisiti, Oppenheim and Poggi, 2001).

Decomposition levels

x (mm)

Figure 2.8 Plot of the discrete wavelet coefficients of the simulated

hologram in Fig. 2.3.
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while the ninth level decomposition represents the low frequency information.
Although the discrete WT could reveal the space-varying frequency of the analyzed
signal, the accuracy of this information is much lower than that of the continuous WT.
This is because the discrete WT is computed only at the dyadic intervals. Therefore,
in order to analyze accurately the particle holograms, this thesis employs the
continuous WT. For the sake of simplicity, the term WT will henceforth be used in

regard to the continuous WT.



CHAPTER Il

HOLOGRAM FORMATION

In order to study feasibility of the proposed method, the holograms of line and
spherical objects are both digitally and optically generated. The study also takes into
account the presence of multiple objects in the object plane. In the simulation all
parameters used to generate holograms are based on technical specifications of
instruments employed in the experiment. All digital computations are conducted by
using the Matlab 6.1 software run on the Windows XP based computer IBM NetVista
6578-TBT with the 966 MHz Intel Pentium I11 processor and 256 MB of RAM.

In the experimental verification, the CCD sensor HAMAMATSU (C5948
having the resolution of 640x480 pixels in the area of 8.3x6.3 mm was employed to
capture the hologram. However, since this type of CCD has analog output, the pixel
size in the stored hologram depends on the image-captured board used. In order to
calibrate the pixel size of the sensor, a small spot of a laser beam was used to
illuminate the CCD sensor mounted on a micrometer stage. The average pixel size of
the sensor was obtained by dividing a measured distance between two different
positions illuminated by the beam by the number of pixels contained by this distance.
By doing this calibration, the average pixel sizes in the horizontal and the vertical

directions are found to be 12.99 um and 11.03 um, respectively.
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3.1 Single object

The holograms of single line and spherical objects were generated for different
object sizes and recording distances. The holograms are simulated with the same
recording distances as those used in the experiment. However, due to the different
experimental setup and the limited experimental space, the range of the recording

distances for the line and the spherical objects are different.

3.1.1 Line object

The holograms of line objects having the radius a of 20 um and 62.48 um are
simulated by using Eg. (2.4) for the recording distances of 10 cm <z <20 cm.
According to the resolution of the CCD sensor, the number of samples N used for
simulating the hologram is 640 pixels with the sampling interval Ax of 12.99 um, and
the wavelength of illuminating light 4 is 543.5 nm.

According to Eg. (6.3) in Chapter VI, the length x measured from the center of
the interference pattern that can be correctly sampled must less than Az/2Ax. In the
case of the line object recorded at the distance 20 cm the maximum length is 4.2 mm.
Fig. 3.1 shows the simulated hologram of the line object with a radius of 62.48 um
recorded at the distance z = 20 cm. Although the simulated hologram satisfies this
condition, some distortions can still be observed at the higher-order lobes of the
signal. This is because the frequency of the chirp signal increases as a function of the
position x while the sampling frequency is fixed at 1/Ax lines/mm. As a result, large
amount of distortion will be introduced to the portion of the signal having higher

frequencies than the Nyquist frequency, 1/2Ax lines/mm, such that the contents of
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Figure 3.1 Simulated in-line hologram of the line object

with a = 62.48 um and z = 20 cm.

those frequencies is loss. When the frequencies of the digitized signal are lower than
the Nyquist frequency, their frequencies content is preserved. However, smaller

distortion still exists in the 3" and 4™ lobes of the digitized hologram.

For the optical generation of the holograms, an optical fiber having a radius of
62.48 um was employed as the line object. This size was obtained by measuring the
fiber using a microscope OLYMPUS CH30RF200. The optical setup used to generate
the holograms is shown in Fig. 3.2. It consisted of a He-Ne laser source Melles Griot
05-LGR-193 with a wavelength of 543.5 nm, a spatial filter, a collimating lens with a
focal length of 300 mm and a CCD sensor. The spatial filter was constructed by using
a microscope objective lens with focal length of 14.8 mm and the pinhole having a
diameter of 25 um. The laser beam was expanded by using a combination of the

spatial filter and the collimating lens to generate a uniform plane wave. Next, the
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Laser source

/

Figure 3.2 Experimental setup for generating the in-line hologram

of the optical fiber.

Figure 3.3 Optical fiber mounted on the holder.
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generated plane wave was used to illuminate the optical fiber mounted on the holder
as shown in Fig. 3.3. Figure 3.4 illustrates the resultant interference pattern captured
by the CCD sensor at the recording distance z = 20 cm. It can be seen that the
captured interference pattern has non uniform background. This may be caused by an
imperfect collimation of the laser beam. In order to eliminate this background noise, a
recorded holograms was digitally subtracted with the intensity of the illuminating
beam recorded without the object depicted in Fig. 3.5. The subtraction of these two
patterns resulted in modified holograms with significantly less background noise (Lai
and Lin, 1996). Figure 3.6 shows that the subtraction of Fig. 3.5 from Fig. 3.4 entirely
removes the noise. However, although the background noise can be removed, the
hologram is still corrupted by a speckle noise. This is because the recorded speckle
patterns caused by the scattered illuminating beam without and with the object are

different. As a result, the subtraction cannot remove the speckle noise.

"

o -:;-d-.-'-l\‘b;%nl%&%i_ i

ol Aot
v

100 200 300 400 500 600
x (pixel)

Figure 3.4 In-line hologram of the optical fiber recorded at z = 20 cm.
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Figure 3.5 Recorded intensity of the reference beam at z = 20 cm.
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Figure 3.6 In-line hologram of the optical fiber recorded at

z = 20 cm with the background removed.
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Figure 3.7 shows the 1-D profile of the hologram obtained by scanning the intensity at
the 240™ row of Fig. 3.6. In comparison with Fig. 3.1, it is understood that the speckle
noise appears as random intensity fluctuation of the hologram. In order to reduce the
speckle noise, intensities of all pixels are averaged along the vertical direction. The
effectiveness of this averaging process is shown in Fig. 3.8 which is computed from
the middle four hundred lines of the Fig. 3.6, because the first few lines shown as a

thick black line on top row of Fig. 3.5 have no information.
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Figure 3.7 1-D intensity profile of the 240" row of the hologram

shown in Fig. 3.6.
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Figure 3.8 1-D averaged intensity profile of the middle 400 rows of

the hologram shown in Fig. 3.6.

3.1.2 Spherical object

Although a spherical particle is the most common 2-D object found in the
applications of particle holography, the size of the available standard spherical objects
is very small. As a result, the generated interference pattern is very broad so that the
CCD sensor could not record faithfully the pattern. For this reason, instead, the
pinhole with larger diameter was used as the 2-D test object, because it has the same
circular cross-sectional shape as the spherical opaque particle. However, the
amplitude distribution function of the pinhole is the reversal of that of an opaque
spherical object, since the incident light is blocked from passing the pinhole outer
area. Since this light should constitute the reference beam, the hologram of the

pinhole could not be generated by using the optical setup of the in-line holography
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shown in Fig. 2.1. In order to overcome this problem, the Mach-Zehnder
interferometer shown in Fig. 3.9 is employed. The interferometer consists of two
optical paths separated by the beam splitter BS1. The first path is the object path that
contains the mirror M1 and the object to be studied. The second one is the reference
path that contains the mirror M2. The mirrors M1 and M2 are used for beam steering
purpose. After being diffracted by the object located at the input plane (&7 ) the
object beam is recombined with the reference beam by the BS2. Finally, the
interference pattern of these two waves at a distance z behind the object plane is
captured by the CCD sensor.

Due to the different optical setup, Eq. (2.6) is not valid mathematical
expression for the generated hologram of the pinhole. The hologram is now the
interference of the diffraction of the pinhole and the reference plane wave which can

be mathematically expressed as

Object Recording
plane (&,7) plane (x.y)

M1 BS2

Y

Laser
beam

Y
Y

BS1 M2

A\ 4
Y

Figure 3.9 Mach-Zehnder interferometer setup for recording the

in-line hologram of the pinhole.
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The proof of Eq. (3.1) is provided in Appendix. The difference between Eq. (3.1) and
Eq. (2.6) is that the chirp function has an additional phase factor z. However, since
the information of the recording distance and the object size are still encoded into the
interference pattern in a similar manner as the hologram of the opaque spherical
object, the in-line holograms of pinhole can be used for verifying the proposed digital
analyzing method. The plot of Eq. (3.1) by using the same parameters as the ones
used for plotting Fig. 2.4 is shown in Fig. 3.10. From these two figures, the initial

phase different of 7 can be noticed.
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Figure 3.10 Simulated in-line hologram of a pinhole.
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In this study, the in-line holograms were simulated by using pinholes having
the radius a of 20 um and 77.78 um at the recording distance of 12 cm <z <24 cm.
Figure 3.11 shows the simulated hologram of the circular aperture having a radius of

77.78 um recorded at the distance of 20 cm.
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Figure 3.11 Simulated in-line hologram of a circular aperture

with the radius 77.78 um and distance z = 20 cm.

In the optical generation of the holograms of spherical objects, a pinhole
having a radius of 77.78 um was employed as the test object. This size was obtained
by measuring the pinhole using the microscope OLYMPUS CH30RF200. Figure 3.12
shows the picture of the pinhole mounted on the slide holder. The Mach-Zehnder
interferometer shown in Fig. 3.13 was used to generate the holograms of the pinhole.

The same coherent light source and the spatial filter were used for providing light
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MELLES CRIOT

Figure 3.12 The pinhole mounted on the slide holder.

Laser source - Collimating lens
Obiject holder

l Spatial filter ‘f | M1
oot o 1
i O BN .

Figure 3.13 Experimental setup for generating the in-line hologram

of the pinhole.
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wave to be expanded. The beam was expanded by using a collimating lens with a
focal length of 400 mm. A cube beam splitter Melles Griot 03BSC013 with a
thickness of 40 mm which was used as a BS1 produced the reference and the object
beams. The mirrors M1 and M2, Melles Griot 02MFG019/023, were used for steering
the object and the reference beams, respectively. After passing through the pinhole,
the diffracted wave was recombined with the reference wave by the beam splitter
BS2. In order to prevent aberration of the diffracted object wave caused by thickness
of the beam splitter, the optical flat glass Sigma OFBP-50C05-10-5 having a
thickness of 5 mm was employed as the BS2. However, since the surfaces of the flat
glass do not have anti-reflection coating, the beam passing through the glass may
undergo multiple reflection. As for the collimated reference beam, the multiple
reflected beams produced interference fringes which could be seen as a periodic

diagonal pattern shown in Fig. 3.14. In the object path, the multiple reflection of the
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Figure 3.14 Recorded intensity of the reference beam at z =20 cm.
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object beam produces a weak Airy pattern on the left side of the desired Airy pattern
as shown in Fig. 3.15. Figure 3.16 shows the hologram of the pinhole recorded at the
distance z = 20 cm with the unwanted diagonal interference pattern appearing as
background. According to the background removal technique discussed in the
preceding section, the unwanted background can be removed by subtracting digitally
the generated hologram shown in Fig. 3.16 with the intensity of the reference beam
shown in Fig. 3.14. The resultant subtraction is depicted in Fig. 3.17. It is clear that
the unwanted background can be successfully removed. The unwanted interference
pattern on the left side of Fig. 3.17 may be generated by the multiple reflections of the
object beam inside the flat glass. It is very weak and does not overlap with the desired
interference pattern. Thus, the distortion of the hologram from this interference

pattern is minimal.

Weak Airy pattern
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Figure 3.15 Recorded intensity of the object beam at z =20 cm
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Figure 3.16 In-line hologram of the pinhole recorded at z = 20 cm.
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Figure 3.17 In-line hologram of the pinhole recorded at z = 20 cm

with the background removal.
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As in the case of the hologram of the optical fiber, the generated holograms
are also distorted by speckle noise. This can be seen from the 1-D intensity profile of
the hologram depicted in Fig. 3.18. This profile was obtained by scanning the
intensity variation along the 229" row which is the center row of the interference
pattern. In order to remove this speckle noise, an angular averaging of the intensities
of the corresponding pixels of the interference pattern was used. Due to the circular
symmetry of the pattern, the outer most pixel that can be averaged is determined by its
position in the vertical direction. Figure 3.19 shows the 1-D intensity profile of the
angular averaged interference pattern with 1-degree angular increment. The reduction
of the speckle noise can be clearly seen from this figure and this result agrees with the

simulated hologram illustrated in Fig. 3.11.
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Figure 3.18 1-D intensity profile of the 229™ row of the hologram

shown in Fig. 3.17.
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Figure 3.19 1-D angular averaged intensity profile of the desired

interference pattern shown in Fig. 3.17.

3.2 Multiple objects

In real situation, the particle field may consists of many particles. In this case,
the complex field incident on the recording plane becomes the interference between
the reference plane wave and the object wave which is a summation of the waves

scattered from the individual object. Thus, the recorded intensity at the hologram

plane can be mathematically expressed as

1(x,y)=|R+0(x.y) ", (3.2)

where R is the complex amplitude of the reference plane wave and O(x, y) represents

the scattered light defined by
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O(x,y)= kZ::ok (X, y). (3.3)

Here, o, (x, y) is the wave scattered from the k™ object while K represents the number

of the objects. Thus, the amplitude transmittance of the hologram becomes

=|R[ +[o(x,y)[ +RO(xy)+RO"(x, ), (3.4)

where the interference among the object waves denoted by the second term of Eq.

(3.4) can be found from

O(x | zK:ZK:ok X, Y)o (X, Y). (3.5)

k=1 1=1

For the sake of consistency with the hologram of a single object, the interference of
the object waves from the same and different objects are separately written from each

other. As a result, Eq. (3.5) becomes

K K
o xy|:z xyokxy+220kxyolxy). (3.6)
k=1 1=1

12k

x

Substitution of the Egs. (3.6) and (3.3) into the Eq. (3.4) resulted in

R0 (% y)+ 3310, (%,¥)0; (%,¥). (37)

In comparison with the Eq. (2.1), aside from the constant term |R|2, the hologram of

multiple objects is simply a linear summation of the hologram from the individual
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object with the extra addition of the interference among the object waves from

different objects denoted by the fifth terms of the Eq. (3.7).

In case of multiple-line objects, the intensity of the recorded hologram can be

mathematically expressed as

278, [x—X|
1Y) = 1- 371 2 cos rhoxf x)| T g,
Y)= = \/ﬂzk Az, 4 27zak|x—xk|
Az,
2
4a Sinznak/J:_Xd S| 4aa Sinznak/J:_Xd
4K k + K k
Az,| 2ma |x—X| kz‘lz:l: AJzz, | 2ma |x—x|
Az, - A1,
. 27ay|x— x|
sin —— 1= 2 2
Az, expl | x=x|  7zlx=x| .
27a, [x— x| Az, 2z ’ (3.8)
Az,

where ay, zx and xi are the radius, the recording distance, and the translation position
of the k™ object, respectively. Figure 3.20 shows the simulated hologram of two
optical fibers with the same radius of 62.48 um which are separated by 5 mm distance
in both the x and the z directions. Its 1-D intensity profile plotted in Fig. 3.21 shows
that the interference pattern of one of the fibers is distorted by the interference pattern

of the other fiber.

Similarly, the hologram of multiple spherical objects can be mathematically

written as
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Figure 3.20 Hologram of two optical fibers separated by 5 mm

distance in both x and z direction.
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Figure 3.21 1-D intensity profile of the hologram shown in Fig. 3.20.
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The rigorous mathematical derivation of the Egs. (3.8) and (3.9) is given in Appendix.
The hologram of two identical spherical objects having the radius of 77.78 um which
are separated by 5 mm distance in the r and the z directions is shown in Fig. 3.22, and
its 1-D intensity profile is plotted in Fig. 3.23. In comparison with Fig. 3.21, the
distortion of the hologram shown in Fig. 3.23 is smaller. This is because firstly the
amplitude of the side lobe of the Bessel function in the second term of Eq. (3.9) is
smaller than that of the Sinc function of the Eq. (3.8). Secondly, the multiplicative

factor of the second term of Eq. (3.9) is smaller than that of Eq. (3.8).

Furthermore, it is found from Egs. (3.8) and (3.9) that the amplitude of the
third term is much smaller than that of the second term so that the third term does not
affect significantly the resultant interference pattern. As for the fourth terms of both
equations, their amplitudes are determined by the multiplication of two envelope
functions centered at different positions. Therefore they are smaller than the third

term. As a consequence when the separation between the two objects decreases, this
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Figure 3.22 Hologram of two spherical objects separated by 5 mm
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Figure 3.23 1-D intensity profile of the hologram shown in Fig. 3.22.
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amplitude increases. The value of the amplitude of the fourth term becomes maximum
when one of the object overlaps another. Since this maximum amplitude is
comparable to the amplitude of the third term, the effect of the fourth term on the

resultant interference pattern is also not significant.



CHAPTER IV

EXTRACTION OF OBJECT POSITION FROM

IN-LINE HOLOGRAMS

In order to extract the 3-D position of the object from the digital hologram, the
numerical method can be used to reconstruct the image of the object from the
hologram by solving Fresnel diffraction integral (Schnars and Jiptner, 1994). The
object position is obtained by searching for the best focus plane of the reconstructed
image. However, as the number of object increases, the analysis by using the
numerical reconstruction requires considerable computational time. In this thesis, a
new method for extracting the object position through a direct analysis of the in-line
hologram by using the WT is proposed. The method has advantages in that the
information of the position can be directly obtained without searching for the best
focus plane.

In Chapter Il, Egs. (2.4) and (2.6) reveal that the axial position of the objects is

encoded as

X
Af

=

, (4.1)

chirp

where feirp represents the frequency of the chirp signal at position x. Thus, the
extraction of the axial position z from the hologram can be performed, provided that
the space-varying frequency feirp Of the interference pattern is known. Since the WT

can represent simultaneously the space-spatial frequency information of the analyzed
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signal, this Chapter discusses the use of the WT for extracting the axial positions of

the objects from the holograms.

The WT of the 1-D intensity profile of the hologram can be calculated by
using Eq. (2.9). Although the WT can be theoretically calculated at any given
continuous values of dilation and translation, the digital computation of the
continuous WT is accomplished by using the discretized dilation and translation. The
accuracy of the resultant WT is determined by the dilation interval of the discretized
dilation and the spatial resolution of the CCD sensor used to capture the hologram.
Since the reduction of the dilation interval increases the dilation resolution as well as
the computation time, the WT must be computed with sufficient number of dilation in
short computation time. In the case of the chirp signal with wide bandwidth, the
discretized dilation used in the WT computation must be chosen to cover this
bandwidth. In order to maintain short computation time and good accuracy, the

dilation is discretized as exponentiation with base 10 (Lewalle, 1995). If the first
dilation is defined as 10™, then the n™ discretized dilation is mathematically expressed

as
dn _ 10{b1+(n—l)Ab} , (42)

where Ab is a logarithmic interval given by Ab =log,,(d,,,)—log,,(d,). For given M

dilations the interval Ab can be found from

_bM _b1
Ab = VIR (4.3)
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where b; and by are the predefined exponents. Since the WT is in fact a correlation
operation, its computation done in the frequency domain will be faster than that in the
space domain. This is because the spectrum of the signal can be obtained by

employing the fast FT algorithm. Figure 4.1 shows the flow chart for computing the

S =Fs}

m<M End
Y

m=m+1

Figure 4.1 Block diagram for calculating the WT of the signal s.

WT in the frequency domain by using the Eq. (2.9). First, the analyzed signal s is

Fourier transformed. Then, the first dilation d; is generated. The parameter b, and by

must be defined such that the lowest dilation value 10™ gives the dilated wavelet with
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higher frequency than the highest frequency content of the analyzed signal s while the

highest dilation value 10° gives the frequency of the wavelet that is lower than the
lowest frequency of the signal. As this condition is achieved, the resultant WT will be
confined within the range of the calculated dilations as shown in Fig. 2.6. If the
selected range of dilations is not suitable, the resultant WT will appear in the lower or
the upper part of the Fig. 2.6 and may be cut by either the top or the bottom horizontal
axis. In this case, the WT must be recalculated using a wider range of dilations. It is
found that by using b; and by as -5 and -3, respectively, the frequency range of the
dilated wavelet covers the frequency band of the interference pattern used in this
study. Here, the number of dilations M are 256 samples. Next, the generation of the
dilated Morlet wavelet g(x/d) is started with the dilation d = d;. In this computation,
the frequency of the mother wavelet fy is 1 lines/mm, while the spatial position x is
generated with the same number of samples and sampling interval as those of the
analyzed signal s. The wavelet coefficients corresponding to the dilation d; are then
calculated by using Eqg. (2.9). The computations of the dilated wavelet and the wavelet
coefficients are then repeated for every values of the generated d,,. By concatenating
these resultant wavelet coefficients, the 2-D function of the wavelet coefficients such

as the one shown in Fig. 2.6 can be formed.

The next step is to extract the information of the recording distances z from the
resultant WT coefficients. Since the WT is a correlation operation, the highest
amplitude of the wavelet coefficients is generated when the frequency content of the
wavelet matches with that of the signal. Thus, the positions of the maximum and

minimum values of the wavelet coefficients give the space varying frequency
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Figure 4.2 MxN matrix of wavelet coefficients.

information of the analyzed signal. In order to extract this information, these positions
must be determined. In the numerical computation of the WT, the resultant real value
of the WT W(x,d) is obtained as a 2-D matrix. Figure 4.2 shows the MxN matrix of
the wavelet coefficients, where the horizontal and the vertical axes correspond to the
translation x and the dilation d, respectively. The number in each entry of the matrix
corresponds to the value of the wavelet coefficient. The value of the wavelet
coefficient Wy, iIs maximum or minimum if it is greater or smaller than the values of
its 8 neighboring coefficients, ie. Wn-1n1, W10, Win-tn+1, Wimnn-1, Wmn+1, Wmnsin-1,
Wh+1n, Wmern+1, respectively. In Fig. 4.2, the value of W,3 = 45 is maximum, while
W34 = 19 is minimum. However, although the amplitude of Wy; = 12 is minimum
compared to its neighboring coefficients, this coefficient cannot be considered as

having minimum value because it is compared to only 5 neighboring coefficients.
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neighboring
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W as position of
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of the WT coefficients.

Figure 4.3 Block diagram for determining the local maxima and minima
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Therefore, in order to solve this problem, the wavelet coefficients along the outermost
rows and columns of the matrix, i.e. Wi, Wn1, Wwn, and Wy, are not included in

searching the local maxima and minima.

Figure 4.3 shows the algorithm for determining the maximum and minimum
amplitudes of the resultant wavelet coefficients W(x,d). First, the amplitude of W5, is
compared to the values of the 8 neighboring wavelet coefficients that are W11, Wi,
Wiz, Wa1, Wos, W31, Wap, and Was. If it is larger or smaller than the amplitude of all
these positions, the position of Wy, is stored as the coefficient with maximum or
minimum values. This process of amplitude detection is repeated for every coefficient
except those located along the outermost rows and columns. Figure 4.4 illustrates a

plot of the resultant wavelet coefficients with maximum and minimum amplitudes

x (mm)

Figure 4.4 The resultant WT coefficients with maximum and minimum
amplitudes generated from the real value of the WT of the

hologram shown in Fig. 2.3.
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generated from the real value of the WT of the hologram shown in Fig. 2.3. The
maximum and the minimum amplitudes are represented by the plus and the cross
symbols, respectively. In this example, instead of b; = — 5, the WT is calculated by
using the dilation parameter with the first exponent b; = — 4.5 which corresponds to
the frequency = 1/d; = 10*° = 31.6 lines/mm. This is because the recording distance z
of the hologram which is equal to 40 cm yields the highest frequency of the chirp
signal Xmax/Az = 19.1 lines/mm. It is obvious that the predicted theoretical space-
varying frequency denoted by the solid line coincides with several wavelet
coefficients with maximum and minimum amplitudes. The remaining wavelet
coefficients which do not coincide with the theoretical spatial frequency variation
cannot be used for the calculation of the axial position z. They can be considered as
the unwanted information. Thus, in order to extract the recording distance with high

accuracy, this unwanted information must be eliminated.

However in most real situations, the micro-objects being studied may be
embedded in a test volume constructed from a glass container with a known thickness

as shown in Fig. 4.5. If the glass container is located at a distance z. in front of the

A7 Glass container

|«—>| CCD sensor
— 3 |e
1 —> ,.-z- -------------------------- /
— > |, e
| Zc >

Figure 4.5 A glass container with embedded micro-objects

used in the recording setup.
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Figure 4.6 Theoretical space varying frequencies correspond to
the shortest and the longest recording distances

defined by the thickness of the glass container.
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Figure 4.7 The desired wavelet coefficient after discarding the

unwanted information.
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CCD sensor and its thickness is Az, the possible positions of the micro-objects inside

the container will be confined to a distance z,—Az/2<z<z +Az/2. Figure 4.6

shows the theoretical spatial-frequency variations correspond to the shortest and the

longest recording distances, z, —Az/2 and z_+Az/2, represented by using the dash

and the dot lines, respectively. For the sake of clearness of the graph, the lines are
drawn by using Az = 6 cm. However in this dissertation, the thickness Az = 2 cm is
employed. It is obvious that the desired wavelet coefficients are in the region confined
by these two lines. Therefore, the unwanted coefficients located outside the two lines
can be discarded. Figure 4.7 shows the resultant wavelet coefficients after discarding

the unwanted information.

Due to the discretization, the wavelet computation by using the discretized
dilations may not always yield the desired wavelet coefficients. Since the correct
wavelet coefficients may not be produced, the determination of the maximum and the
minimum amplitudes of the wavelet coefficients may give wrong space-varying
frequency information. This can be seen from Fig. 4.8 which is the enlargement of
Fig. 4.7. In this figure, several maxima and minima appeared at different translations
have the same dilations. Since the frequency of the interference pattern is a function
of position, it is not possible that the same value of frequencies occur at different
position of the signal. It can be seen from the Fig. 4.8 that if there are more than one
translations with the same dilation value, the maximum or the minimum amplitude
corresponds to the first translation appear closer to the theoretical value than the
others. Therefore, the wavelet coefficient of the first translation is used in the

calculation of the recording distance. Figure 4.9 shows the desired maxima and
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Figure 4.8 Enlarged version of Fig. 4.7 shows some maxima and minima

of different translation having the same dilation values.
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Figure 4.9 The desired maxima and minima of the Fig. 4.8 after discarding

those with the same dilation denoted by circle sign.
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minima after discarding those having the same dilation values denoted by the circle

signs.

After discarding the unwanted maxima and minima in the WT domain, the

recording distance of the object given by

Z=—. (4.4)

is calculated from the desired maxima and minima. However, since each maximum
and minimum may give slightly different value of z, the resultant recording distance

extracted by the WT is obtained by averaging of those values.

4.1 Position of line objects

The errors in measurement of the recording distance from the simulated
holograms of line objects having the radius of 20 um and 62.48 um are shown in Fig.
4.10 as the cross and the circle signs, respectively. The simulation results show that
the WT could extract the axial position of both objects recorded at several recording
distances with the small error of less than 1 percent. Figures 4.11 and 4.12 show the
1-D scan of the optically generated holograms of the optical fiber recorded at the
distance z = 10 cm and 20 cm, respectively. As discussed in Chapter 111, these signals
are obtained by averaging along the vertical direction the middle four hundred lines of
the captured 2-D interference pattern. Due to the limited resolution of the employed
CCD sensor, a part of the signals with high frequency components cannot be correctly
sampled. This effect can be clearly seen in the Fig. 4.11, because the shorter the
recording distance the higher the chirp frequency. The effect of the CCD size and

resolution on the captured hologram is rigorously discussed in Chapter VI.
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Figure 4.10 Errors in measurement of z from simulated holograms
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Figure 4.11 In-line hologram of the optical fiber recorded at z =10 cm.
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Figure 4.12 In-line hologram of the optical fiber recorded at z = 20 cm.
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Figure 4.13 Errors in measurement of z from the optically generated

holograms of the optical fiber by using the WT.
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Figure 4.13 shows the errors of the recording distances measured from the optically
generated holograms of the optical fiber. In the experiment, the errors are about 1
percent. This is slightly higher than those of the simulation, because the imperfection
of the holograms which are resulted from the optical noises generated by the
employed equipment during the experiment, the speckle noises that overlap the

hologram, etc.

4.2 Position of spherical objects

In the case of the spherical object, the errors in measurement of the recording
distance from the simulated holograms are shown in Fig. 4.14, where the cross and
the circle signs represent the measurement errors of the objects having the radius of

20 um and 77.78 um, respectively. It can be seen that the errors of the measurement

1 I I I I I

——  a=20pum

08 —— a=77.78 um | -

Error (%)

12 14 16 18 20 22 24
z (cm)

Figure 4.14 Errors in measurement of z from simulated holograms

of spherical objects by using the WT.
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Figure 4.15 In-line hologram of the pinhole recorded at z =12 cm.
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Figure 4.16 In-line hologram of the pinhole recorded at z =24 cm.
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are less than 1 percent as in the case of the line objects. The 1-D intensity profile of
the optically generated holograms of a pinhole recorded at the distance z = 12 and 24
cm are shown in Figs. 4.15 and 4.16, respectively. Figure 4.17 shows the errors
obtained from the holograms of pinhole which are slightly higher than those of the

simulation with the maximum value of around 1.1 percent.

2 | I I I I

—— a=77.778 pm
16 | 1

12 14 16 18 20 22 24
z (cm)

Figure 4.17 Errors in measurement of z from the optically generated

holograms of the pinhole by using the WT.

The simulation and the experimental results confirm that the WT can be used
to extract accurately the axial position of the line and spherical micro-objects from the

in-line Fraunhofer holograms.



CHAPTER V
EXTRACTION OF OBJECT SIZE FROM

IN-LINE HOLOGRAMS

Object size is one of the desired information encoded into the in-line
holograms. It is obvious from Eqgs. (2.4) and (2.6) that the minima positions of the
interference pattern can be used to determine the object size. In this chapter, two
methods for extracting the object size are discussed. The first method discussed in
Section 5.1 is accomplished by reconstructing the envelope function. The second one
is done by computing the absolute values of the wavelet transformation of the
interference pattern. The reason for this is that the frequency of the chirp signal at the
minima positions also contains the information about the object size. Section 5.2
discusses the second method. It is found that the second proposed method could
extract the information of the object size from the hologram with a higher accuracy

than the first one.

5.1 Object sizing by using reconstruction of the envelope function
According to Eq. (2.4), the minima positions of the in-line hologram of the

line object appear when the argument of the sinc function equal to nx, where # is an

integer number which represents the order of the minimum. Thus, the radius of the

line object can be determined from

nz (5.1)
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with x, denotes the position of the »™ minimum. In analogy, the radius of a spherical

object can be determined from Eq. (2.6)

Apore = —2—, (5.2)

where r, is the position of the »™ minimum measured in radius coordinate and ¢, is a
constant factor corresponds to the n™ root of the Bessel function. For the first three
minima, these constant factors are equal to ¢; = 3.83, ¢; = 7.02, and ¢; = 10.17
(Gradshteyn and Ryzhik, 1994).

From Eqg. (5.1) and Eq. (5.2), the object size can be calculated if the minima
positions, the wavelength of the illuminating light, and the recording distance are
known. Since the wavelength of the illuminating light is known and the recording
distance can be obtained by using the WT discussed in Chapter 1V, the minima
positions are the only unknown parameter to be obtained. In the first proposed
method, these positions are obtained through the reconstruction of the envelope
function.

In order to reconstruct the envelope function, the pixels of the hologram
having maximum and minimum amplitudes compared to its neighboring pixels must
be determined. Let us consider that the 1-D intensity profile of the digitized hologram
s consists of N pixels. The amplitude of the pixel s, can be maximum or minimum if it
is larger or smaller than the pixels s,.1 and s,+1, respectively. However, since the first
and the last pixels, i.e. s; and sy, have only one neighboring pixel, they are not
included in the reconstruction of the envelope function. A block diagram of an
algorithm for reconstructing the envelope function of the signal s is shown in Fig. 5.1.

First, s, is compared to its neighboring elements, i.e. s; and s3. If its amplitude is
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End

Sy >
neighboring
2 pixels

Store s,, in max

Sy <
neighboring
2 pixels

Store s, in min

N [«

Y

n=n+1

Figure 5.1 A block diagram for reconstructing the envelope function by

determining the local maxima and minima of the analyzed signal s.

larger or smaller than that of the neighboring pixels, a new variable max or min is
used for storing the value of the amplitude and position of the pixel s,. The process of
searching for the maximum and the minimum amplitudes is repeated for other pixels
until sy.1. The resultant reconstructed envelope function of the hologram shown in

Fig. 2.3 is depicted in Fig. 5.2, where the plus and the cross signs represent the
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Figure 5.2 Reconstructed envelope function of the hologram in Fig. 2.3.

maximum and the minimum amplitudes, respectively.

After the envelope is reconstructed, the minima positions of the interference
pattern are determined by finding the pixels whose amplitudes give the smallest
difference. Figure 5.3 shows an algorithm for finding the smallest difference between
the maximum and the minimum amplitudes. First, the pixels with the maximum and
the minimum amplitudes obtained from the previous step are sorted according to their
horizontal positions as a new variable m. The percentage of the amplitude difference
between m; and m is calculated with respect to m;. If it is smaller than a certain
threshold value, the position of both m; and m, are stored in a new variable 4. The
threshold value is determined by the amplitude of the interference pattern. The
interference pattern with larger amplitude requires a higher threshold value than that
with smaller amplitude. In this dissertation, the threshold values of 0.1 to 3 percent

are used. The process of finding the smallest amplitude difference is repeated for
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Figure 5.3 Block diagram for determining the local maxima and minima whose

their amplitude different are smaller than a threshold value.
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every element of m. The resultant /# contains information of the pixels with small
amplitude differences located around the minima positions of the interference pattern.
Figure 5.4 shows the enlargement of area around the first and the second minima of
Fig. 5.2, where @ and ® represent the pixels having maximum and minimum values
whose differences are small, respectively. The minima positions of the interference
pattern are then determined by averaging the horizontal positions of %, from the same
minimum. The algorithm for accomplishing this task is shown in Fig. 5.5. First, the
horizontal positions of 4; and 4, are compared. If the difference of their positions is
less than 20 pixels, they are considered as from the same minimum position and then
they will be stored in a new variable k. This process is repeated until the difference
between the horizontal positions of 4, and 4,.; is larger than 20 pixels. At this state, £

contains information of the pixels located around the same minimum position of the
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Figure 5.4 Maxima and minima whose amplitude differences are

smaller than a threshold value.
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Figure 5.5 Block diagram for determining the minimum position of

the interference pattern.

interference pattern. Finally, the minimum position is simply determined by averaging
the position of elements of k. This process can be further carried out for determining
the next minimum. Figure 5.6 shows the resultant minima positions of the hologram
denoted by the vertical lines which are obtained by using the envelope reconstruction

method. After the minima of the interference pattern are obtained, the object size is
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Figure 5.6 Detected minima positions.

calculated by using either Eq. (5.1) or Eq. (5.2) for the line and the spherical objects,

respectively.

The measurement results of the object size from the holograms of the line and
the spherical objects by using the envelope function reconstruction method are shown
in Figs. 5.7, 5.8, 5.9 and 5.10. In Fig. 5.7, the cross and the circle signs represent the
measurement errors obtained from the simulated holograms of the line object having
the radius of 20 um and 62.48 pum, respectively. It is found that a small error of lower
than 1 percent could be obtained from both sizes of the object. However, the
experimental results depicted in Fig. 5.8 are slightly higher than that of the simulation.
This may be caused by the remaining speckle noise that cannot be completely
removed by the averaging technique discussed in Chapter Ill. Since the amplitude of
the holograms around the minima is very small, it can be significantly disturbed by

the speckle noise. As a result, the minima positions of the optically generated
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Figure 5.8 Errors in measurement of a from the holograms of the optical

fiber by using the envelope reconstruction method.
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holograms cannot be accurately determined. Moreover, the calculation of the object
size employs information of the recording distance extracted from the hologram by
using the WT. The error of measurement of the recording distance reduces the

accuracy of the measurement of the object size.

In the case of the spherical objects, the results are in agreement with those
from the line objects. The simulation results depicted in Fig. 5.9 show that the errors
are smaller than 1% for both sizes of 20 um and 77.78 um. However, as illustrated in

Fig. 5.10, slightly higher errors are obtained from the experimental results.
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Figure 5.9 Errors in measurment of a from the simulated holograms of spherical

objects by using the envelope reconstruction method.
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Figure 5.10 Errors of measurement of a from the holograms of pinhole

by using the envelope reconstruction method.

5.2 Object sizing by using absolute value of the WT

In order to improve the accuracy in the measurements of the object size
obtained from the envelope reconstruction method, a novel method for sizing the
objects by using the absolute value of the WT is proposed. This interest stems from
the fact that the absolute value of the WT extracts the minima positions of the
interference pattern. In the WT domain, these minima are functions of the dilation and
the spatial translation. The frequencies of the fringes at the minima are directly
obtained by using values of the dilation of the wavelet at the corresponding minima.
Since the object size is inversely proportional to these frequencies, the object size can

be measured.
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The relationship between the object size and the frequency of the chirp signal

can be derived by considering the frequency of the chirp signal given by

X

= 53
f;:hlrp Az ( )
while the minima positions appear at
x =142 (5.4)
2aline

By substituting Eq. (5.4) into Eqg. (5.3), the frequency of the chirp signal at the »"

minimum position is found to be

n

fchirp@minima = (55)
2 line
Thus, the radius of a line object can be calculated from
n
e = ———. (5.6)
! 2fchirp@minima
In a similar fashion, the radius of a spherical object is equal to
C
asphere = . ' (57)

2ﬂ-j;:hirp@minima

Unlike the Egs. (5.1) and (5.2) in which two unknown parameters, x, and z, are
demanded for the calculation of the object size, the only required information
depicted by the Egs. (5.6) and (5.7) is the frequency of the chirp signal at the minima
positions. In this dissertation, this frequency is extracted by computing the absolute

values of the WT.
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5.2.1 Absolute values of wavelet transform

The computation of the WT of the signal s(r) is actually a cross correlation
between the analyzed signal and the dilated wavelet. In the general case of signals
where s(r) is an amplitude-modulated signal, the amplitudes of the resultant
correlation peaks are determined by the amplitude of the envelope function.
Therefore, besides its excellent ability of providing the space-frequency information
simultaneously, the WT extracts the modulating information of the signals being
analyzed. A further insight into this property may be gained by analyzing
mathematically the modulated signal on the use of the WT.

For the sake of simplicity, we consider that a modulated signal is given by

s(x) = cos (27 fox)cos(27 fyx), (5.8)

where the first cosine term corresponds to the carrier signal while the second one is
the envelope signal. Here, the carrier frequency f; is greater than the modulating
frequency fo. The wavelet transformation of the signal s(x) by using the Morlet

wavelet as the analyzing wavelet is found to be

W(t,d)=\/%{ exp[—iZﬁ(fO +f) t=27%d(f, )d + 1 +flﬂ
voxp| —i2z(~fy+ ;) t-27°d> (1, Jd - f +f1)2}

vexp| -i2z(f,— ) t—272'2d2(fg/d+fo—f1)2}

+exp:—i27z(—fo—f1) t—27z2d2(fg/d—fo—fl)2} } (5.9)

where f, denotes the frequency of the wavelet. Since the first and second terms of Eq.

(5.9) are much smaller than the other terms, the first two terms can be neglected.
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Therefore, Eq. (5.9) may be approximated as

W(t,d):\/”—?{ exp[i27z(f1—f0) t—27z2d2(fg/d+fo—fl)2}
+exp[i2;z(fl+f0) z-zﬂzdz(];/d—]g—jq)z} } (5.10)

The absolute value of the WT given by Eq. (5.10) results in

piea)- 2 {exp{ (fo—fl)Z[ L f”

2 2 fg i
+exp {471 (fo+ 1) {d_fﬁfo} }

+2cos(4rx [t )exp {an(fo —fl)z[ fff }

22 (fy+ 1) {d—i} H . (5.11)

St 1o

Equation (5.11) shows that the first two terms are the summation of two Gaussian
functions while the third term is multiplication of the cosine function corresponding to
the envelope function with a product of two other Gaussian functions. The first and
third Gaussian functions have the same mean values, while the means of the second
and fourth Gaussians are also the same. Since f; >> f;, the difference between the
values of the two means is not significant, nor are their variances. As a result, either
the summation or the multiplication of the two Gaussian functions produces a
Gaussian-like function whose maximum peak appears at the same position of the
average value of the two means, d = fi/fi. This can be mathematically verified by
substituting this average value into the first and second derivatives of the summation

and the multiplication of the Gaussian functions. The first derivative test yields zero
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for the critical value d = f,/f1, while the second derivative test gives a negative result.
These tests verify that the peak position of the Gaussian-like function is at d = f,/f1.
This position is regarded as the one where the frequency of the dilated wavelet f,/d
matches the frequency of the modulating signal f;. Therefore, the cosine function in
the third term of Eq. (5.11) is confined by the Gaussian-like function centered at the

dilation d = f,/f1.

When the dilation d = f,/f1 is achieved, Eq. (5.11) reduces to approximately

/e

= exp

2,

5. 2,2 42
W(.d)|, . = [ 27 JeJo
h

r }|cos(2ﬂ o)) (5.12)

1

Equation (5.12) confirms that the absolute value of the WT gives the information
about the envelope function with its absolute value |cos(2zfof)]. The rigorous
mathematical derivation of Eq. (5.9) to Eq. (5.12) are given in Appendix. Figure 5.11
shows the modulated signal s(x) of Eq. (5.8) and the normalized absolute value of its
WT given by Eqg. (5.12), which are represented by the solid and broken lines,
respectively. Here, the carrier frequency £, is 5 times higher than the modulating
frequency f;. It is clear from the figure that the minima of the absolute value of the
resultant WT output coincide with the zero-crossing points of the carrier signal of Eqg.

(5.8).

Since the modulus of the envelope function appears along the dilation
corresponding to the frequency of the carrier signal in the absolute of the WT, the
holographic interference pattern is analyzed by computing the absolute value of its
wavelet transformation. Figure 5.12 shows the simulated in-line hologram of the line

object equivalent to Fig. 2.3 and the absolute value of its WT which is obtained by
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Figure 5.11 Modulated signal s(x) of Eg. (5.8) and the normalized

absolute value of its WT given by Eqg. (5.12).
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Figure 5.12 Simulated in-line hologram of the line object and the
normalized absolute value of its WT which is retrieved

along the dilation d = f,/f1.
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retrieving the amplitude of the resultant absolute value of the WT along the dilation d
= f4f1. In the case of in-line holograms, f; stands for the frequency of the chirp signal
determined by »/Az. As a function of dilation 2a/d, Fig. 5.13 illustrates a 3-D plot for
the absolute value of the WT of the fringe which is cut along the dilation d = f,/f1
represented by the dashed line. In the WT domain, the path of the dilation is
nonlinear, because it is inversely proportional to the space-varying frequency f; of the
chirp signal. Evidently, the minima of the absolute value of the resultant WT output
appear at the correct zero-crossing points of the chirp signal. By determining the

frequencies of the chirp function at these minima, the object size can then be

calculated.

1500

1000

Amplitude (a.u.)

500

Figure 5.13 The 3-D plot of the absolute value of the WT which

is cut along the dilation d = f,/f1.

In order to obtain accurately the object size by using the proposed method, the

frequency of the chirp signal at the minimum position must be accurately determined.
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This can be achieved by computing the WT with fine dilation intervals. However,
since the computation of the WT with fine dilation interval requires long computation
time, the WT of the interference pattern is computed twice as shown in the block
diagram of Fig. 5.14. The first computation of the WT uses coarse and logarithmic

dilation interval. This gives coarse WT output. By computing the absolute value of

Compute WT of the signal s by
using logarithmic dilation interval.

|

Compute |WT]|

|

Determine frequency of the chirp signal
at minimum position from the minimum
detected in the |WT| domain.

|

Compute the WT of the signal s using a fine and
linear frequency interval. The frequency detected
from the above step is used as a center frequency.

{

Compute |WT]|

{

Determine frequency of the chirp signal
at minimum position from the minimum
detected in the |WT| domain.

{

Calculate the object size from
either Eq. (5.6) or Eq. (5.7).

|

End

Figure 5.14 Block diagram for calculating the object size from |WT].
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the resultant WT the rough estimate of the chirp frequency at the minimum position
f. = 1/d. can be obtained. Figure 5.15 show the top-view plot of the absolute values of
the WT of the hologram shown in Fig. 2.3. In this example, its first minimum position
gives f; = 10*% = 8.32 lines/mm. The interference pattern is next analyzed by the

second WT with the analyzing wavelets generated at the frequencies f, < f<f, .
where M, is the number of dilations used in the second WT. Here, the first dilation
d, =1/ f; and the last dilation d,, =J/ Ju, are selected with respect to the center value
of dilation d,, ,=d,. In order to obtain accurate frequency information at the

minimum position, the dilation interval is set to produce a frequency interval that is
always constant and linear. Thus, for a desired frequency interval of Af, the generated

frequency f,, must satisfy

1% minimum

|0g10((1’(,)

log,(d)

¥

X (mm)

Figure 5.15 Approximated frequency f. = 1/d. obtained from the detected

minimum in the absolute values of the first WT.



78

/= fi—(n=1)Af, (5.13)

For given dilations 4, and d,, , the frequency interval Afcan be calculated from

ar=—t |t 1] (5.14)
M,-1d, d,

By substituting Eqg. (5.14) into Eqg. (5.13) and taking the inverse of the result, the

dilations used in the second WT are found to be

dn:{i—( n-l j(i—i} . (5.15)
d, \M,-1)\d, d,

As a function of Af, Fig. 5.16 shows the errors in measurement of the object size from

the holograms of a line object having the radius of 62.48 um and 20 um represented
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Figure 5.16 Errors in measurement of « as a function of the frequency

interval Af.
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by using the solid and the dash lines, respectively. Here, the recording distance of
both holograms are z = 20 cm. It is found that at large frequency interval, the
fluctuation of the errors is higher than that of the smaller interval. Thus, in order to
obtain a small error of measurement, the small frequency interval of Af = 0.008
lines/mm is employed for the computation of the second WT. Here, the computation

is performed with the number of dilations M, = 64.

Figure 5.17 to Fig. 5.20 show the comparison of the errors in measurement of
the object size by using the absolute values of the WT and the envelope reconstruction
method which are represented by the broken and the solid lines, respectively. In Fig.
5.17, the errors in measurement of a from the simulated holograms of the line object

having the diameter of 20 um and 62.48 um are represented by the cross and the

3 : : ] T
—— a=20 pum, env. rec.
25T o~ a=62.48 um, env. rec. | |
,L % a =20 um, [WT)| _
-o-  a=62.48 um, |WT]|

Error (%)
o

z (cm)

Figure 5.17 Errors in measurement of a from the simulated holograms of
line object by using the envelope reconstruction method and

the absolute value of WT.
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circle sign, respectively. It is obvious from the figure that, in comparison with the
envelope reconstruction method, the errors in measurements by using the absolute
value of the WT are significantly reduced for both sizes of the object. The reason of
this reduction is that this method employs only the frequency of the chirp signal at the
minimum position of the envelope function for evaluating the object size. By
analyzing the hologram with fine frequency interval, the high accuracy frequency
information at the minima positions of the interference pattern can be obtained. Since
the information of the recording distance is not required, its measurement errors do
not affect the measurements in the size of the object. The improvement of the
accuracy of the measurement is verified by applying this method to the

experimentally generated holograms of the optical fiber as shown in Fig. 5.18.

5 I I 1 1
—>—  env. rec.

4l s |WT] §
S 1
—
o
£
4 2F -

z (cm)

Figure 5.18 Errors in measurement of a from the experimentally generated
holograms of the optical fiber by using the envelope reconstruction

method and the absolute value of the WT.



81

Similarly, significant reduction of the errors is obtained from the measurements of the
size of the spherical objects by using the absolute values of the WT. The errors in
measurement of the simulated holograms of spherical object are shown in Fig. 5.19.
Here, the cross sign represents the error in measurement of the size of the spherical
object having the radius of 20 um, while the circle sign corresponds to those of the
radius 77.78 um. The experimental results illustrated in Fig. 5.20 agree well with the
simulation. Therefore, the results confirm the effectiveness of the method on

improving the accuracy in measurement of the object size from the in-line holograms.

3 | . , : T
—— a=20 pum, env. rec.
25 —o~ a=77.78 um, env. rec. | |
oL %= a=20 pm, [WT]| _
o~ a=77.78 um, |WT]

Error (%)

Figure 5.19 Errors in measurement of a from the simulated holograms
of 2D object by using the envelope reconstruction method

and the absolute value of WT.



5 I I I I I

—— env. rec.

4t e W |

Error (%)

12 14 16 18 20 22 24
z (cm)

Figure 5.20 Errors in measurement of a from the experimentally generated
holograms of the pinhole by using the envelope reconstruction

method and the absolute value of the WT.
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CHAPTER VI

SYSTEM PERFORMANCE

In the proposed digital analysis method, the CCD sensor is employed for
capturing the in-line holograms. As a consequence, the finite size and the finite
resolution of the CCD sensor become the factors that determine the amount of
information which can be faithfully recorded. For this reason, it is important to study
the system performance of our proposed method. In the case of holograms of single
objects, the analysis of the system performance is based on these two limiting factors
of the employed CCD sensor. As for the case of the holograms of multiple objects, the
analysis is done by using information in the wavelet domain, because the desired
wavelet coefficient from one object is not always distorted by the others. Thus, the
feasibility of the proposed method depends on the separation of the wavelet

coefficients.

6.1 Single object

The interference pattern recorded on the CCD sensor is a modulation between
the chirp signal and the envelope function. The frequency of the chirp signal is
determined by the recording distance, while the minima positions of the envelope
function depend on the object size. As discussed in Chapter 1V, the recording distance
of the object is extracted by determining the frequency of the chirp signal using the
WT. In order to achieve this, the interference pattern must be correctly sampled by the

CCD sensor or the spatial resolution of the sensor must satisfy the Nyquist sampling
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theorem (Oppenheim and Schafer, 1989). Moreover, in order to determine the object
size, the area of the CCD must be wide enough to record the minima positions. In the
following discussion the CCD sensor is assumed to have a square-shaped aperture
with the size of X x X and the pixel size of Ax x Ax. The sampling spatial frequency in
either the horizontal or the vertical directions of the CCD can be mathematically

expressed as

1
feep = s (6.1)

6.1.1 Line object
Since the spatial resolution of the sensor must satisfy the Nyquist sampling
theorem, the relationship between the frequency of the chirp signal and the sampling

frequency fccp can be expressed as

fCCD > 2 fchirp' (62)
Substitutions of the chirp frequency fenirp by X/Az and Eq. (6.1) into Eq. (6.2) give
Az
iy 6.3
2AX (6:3)

which describes the length of the interference pattern that can be correctly sampled by
the CCD sensor placed at the distance z. Therefore, for a given recording distance z,
the analyzable area on the CCD is confined in the region of 0 < x < Az/2Ax. When the
recording distance becomes longer, the size of the analyzable area increases, because
the longer recording distance causes the smaller frequency of the chirp signal. As a

consequence, when the right term in the inequality of Eq. (6.3) is bigger than the CCD
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aperture size, the range of the recorded hologram that can be analyzed becomes 0 < x
< X. This condition is achieved if the recording distance z is bigger than 2XAx /4. We

define this factor as a critical distance. Therefore, the analyzable area is determined as

follows
x< 2L if p<z<2XAX (6.42)
2AX
and
X< X it 7> 22 ax (6.4b)

On the other hand, in order to measure the size of the object, a minimum
number of the minima nmi, of the envelope Sinc function must be recorded by the

CCD. As a result, the following relationship

2ax
—2>N . 6.5
Az ™ (65)

is obtained. By substituting Egs. (6.4a) and (6.4b) into Eq. (6.5), the smallest size of

the line object that can be measured is found to be

n.,Ax if 0<z< 2XAX
az
Azn, PRI 2XAX (6.6)
2X A

Furthermore, in order to reconstruct faithfully the envelope function, a large

number of interference fringes must be present within the first minimum of the sinc

function at x = Az/2a. Since the zero of the chirp function occurs at x =,/4z(n—1/4)
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where n is the number of fringes, the number of interference fringes within the first

minimum is found to be

Az 1
n= (za)z +Z. (67)

By using the far-field condition z >> 7(2a)/4 (Goodman, 1996) Eq. (6.7) reduces to

n>rz+1/4 or

a<< 14z (6.8)
2\«

Equation (6.8) describes the upper limit of the measurable object size as a function of

the recording distance.

6.1.2 Spherical object

Since the chirp signal is solely determined by the axial position of the object,
the analyzable area of the interference pattern for spherical objects can also be
described by Egs. (6.4a) and (6.4b) with the replacement of the variable x by r.
However, the positions of the minima for the Bessel function and the sinc function are
different. The absolute value of the Bessel function becomes minimum when the
argument is 1.22x, 2.23n, 3.24x, etc. (Gradshteyn and Ryzhik, 1994). By taking this
consideration into account, a minimum number of the minima np;, of the envelope

function can be approximately described by

2ar
== >(n,,, +0.23). 6.9
7 > (M +0:23) (6.9)
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To find the smallest measurable size of the spherical particle, the finite extent of the

analyzable area of the interference pattern is applied. This gives

(N, +0.23) A% if 0<z< 22X
az=
Az(n . +0.23 .
(ménx ) if g5 2XAX (6.10)

By using the far-field condition to account for the number of fringes within the first

minimum of the Airy function, the biggest size of the measurable particle becomes

a<< 1 E (6.11)
2\ 7

In summary, the lower limit of the measurable size for spherical objects is higher than
that for line objects, while the upper limits for both objects are the same. This is due
to the fact that the width between the two minima of the Airy function is wider than
that of the sinc function. Figure 6.1 shows the ranges of the object size and the
recording distance in a logarithmic scale that can be measured. The ranges of
measurements for line and spherical objects are confined by the triangles drawn with
the solid and the broken lines, respectively. The base and the right side of the triangle
correspond to the lower limits of the measurable size of the object for the recording
distances being smaller and bigger than the critical value, respectively. The left side
of the triangle associates with the upper limit of the measurable size. Since the upper
limits of the measurable size for both objects are the same, the two lines coincide. The
maximum measurable size of the object must have a smaller value than the upper

limit as described by Eqgs. (6.8) and (6.11). At the recording distance which is greater
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Figure 6.1 Measurable size of objects and their recording distances.

than the critical value, the longest recording distance and the largest size of particle
could be mathematically determined by equating the maximum and the minimum
values of the particle size a. In the case of line objects, this yields zjinemax = X*/TAN min
and ajine,max = X/2mNmin, While for spherical particles the maximum recording distance
and the maximum size are given by Zspherical,max = X2 A(Nmin+0.23) and Aspherical,max =
XI2n(nmint0.23), respectively. In a similar fashion, when the recording distance is
smaller than the critical value, the shortest recording distance and the smallest size of
line objects that can be measured becomes Ziinemin = 4nAX*N’min/ A and @jinemin = A
XNmin, respectively. In the case of spherical objects we obtain Zghericalmin = 4TAX®
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6.2 Multiple objects

In the case where the object field consists of multiple objects, Egs. (3.8) and
(3.9) show that the in-line holograms can be mathematically described by the
summation of the holograms from the individual object and the interference pattern
between the object waves diffracted from the different objects. Since the hologram of
the object being studied may be overlapped by the hologram from the other objects,
the proposed analysis method may not be able to accurately extract the required
information from the hologram. In this section, the feasibility of the proposed method
for analyzing the holograms of multiple objects is studied through the computer
simulation.

Since the WT is a linear operation, the resultant WT of the hologram of
multiple objects can be determined by a linear summation of the WT of each term of
Egs. (3.8) or (3.9). However, the amplitudes of the interference between the object
waves corresponding to the third and the fourth terms are very small compared to the
second term, that is the interference between the object and the reference waves. As a
consequence, the resultant amplitudes of the WTs of the third and the fourth terms are
also very small compared to the WT of the second term. Thus, they can be neglected.
This is verified by taking the WT of the holograms of two objects simulated with and
without both the third and the fourth terms. It is found that the errors in measurements
of the object size and its recording distance obtained from both holograms are not
different significantly. Although the holograms of multiple objects are generated by
using Egs. (3.8) and (3.9), for the sake of simplicity, the following mathematical

analysis uses the first and the second terms of those equations.
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6.2.1 Extraction of the object size

As discussed in Section 5.2, the absolute values of the WT can be used to
extract the size of the object from the holograms by determining the frequency of the
chirp signal at the minima positions of the interference pattern. However, in the case
of the multiple objects, the desired interference pattern may be overlapped by the
interference pattern of the other objects. This overlap may distort the positions of the
minima. As a result, the accuracy of measuring the object size by using the absolute
values of the WT is reduced. In order to keep the high accuracy of the measurement,
the minimum separation between the objects is mathematically derived and verified
through the computer simulation.

Figure 6.2 shows the top-view of the recording setup of the hologram of two-
line objects, P, and P, placed at distances z; and z, in front of the recording plane,
respectively. Here, dyx represents the separation between the objects along the
horizontal direction. Figure 6.3 illustrates the 1-D intensity profile of the simulated
hologram of two optical fibers having the radius a; = a, = 62.48 um recorded at the

recording distance z; = 40 cm and z; = 35 cm with the separation dy = 5 mm and the

A
—> P2

ﬂ, 4’ dx
y

[ Zl
I P1

Recording
plane

Figure 6.2 Recording of in-line hologram of 2 line objects.
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Figure 6.3 Hologram of two optical fibers.
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Figure 6.4 Local maxima and minima of the real values of the WT of

the hologram shown in Fig. 6.3.
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wavelength 4 = 543.5 nm. Figure 6.4 illustrates the maximum and minimum
amplitudes of the real values of the resultant WT of the hologram shown in Fig. 6.3
which are denoted by the plus and the cross signs, respectively. For the sake of better
visualization of the frequency variation of the interference pattern, the real values of
the WT is chosen in this figure. In Fig. 6.4, point A corresponds to the first minimum
of the interference patterns of the first fiber Py, Xx; and x; are the distances between the
first minimum A and the centers of the resultant WT of the fiber P; and P,
respectively. Point B is the wavelet coefficient of the resultant WT of the second fiber
P, which appears at x;. In order to extract the size of the fiber P, the resultant WT at
the minimum point A is required and must not be corrupted by any wavelet
coefficient of the interference pattern of the fiber P,. This is achieved if the wavelet
coefficient B is well separated from the point A. In the frequency domain, the
separation of two wavelet coefficients with respect to the frequency at the point A can
be mathematically written as

|fB_ fA|
fA

>p, (6.12)

where p is the ratio of the frequency difference to the frequency at the point A. By
rewriting Eq. (6.12), the frequency fg corresponding to the wavelet coefficient B can

be expressed as

fy > f, (1+p) (6.13a)

or

fo < f,(1-p). (6.13b)
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Substitutions of the frequency at the points A and B, fa = x1/4z; and fg = X2/A2y, into

Eq. (6.13) give

2 oA
—>—(1 6.14a
Az, g /Izl( *P) ( )
or
5 oA
——<—(1-p). 6.14b
Az, ) }tzl( P) ( )

Since the distance x; is equivalent to nAz;/2a;, the distance X, can be calculated from

|dx—nAza1/2a;|. Substitutions of the values of x; and x, into Eq. (6.14a) yield
d >ﬁ[z2 (1+p)+2z] (6.15a)
X 2a1
or
d < —M[z2 (1+p)-2], (6.15b)
X zal
while the same substitutions into Eq. (6.14b) give

nA nA
28 z,(1-p)-z]<d, <£[22 (1-p)+z]. (6.15¢)

Equation (6.15) define the allowable separation dy between the fibers P; and P, that
the radius a; of the fiber P, can still be extracted from the hologram by using the

absolute values of the WT.

In order to obtain the practical value of the factor p, the error of measurement

of the radius a; from the simulated holograms of two line objects P; and P, with a; =
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25 um, z; = 30 cm and a; = 50 um, z, = 29 cm is plotted in Fig. 6.5 as a function of
the separation dy. Here, the holograms are generated with the separation interval Ady =
0.1 mm. The negative and positive values of dy represent the situation that P, is
located on the left and on the right side of Py, respectively. In this computation, the
radius a; is measured from the first minimum of the interference pattern (n = 1). It can
be seen from Fig. 6.5 that there are three ranges of dy where the errors in finding a;
are small. The most right region corresponds to the condition defined by Eq. (6.15a),
while the most left region is associated with Eqg. (6.15b). Equation (6.15c) gives the
allowable dy in the middle region of the graph. However, the errors obtained from the
region defined by the Eq (6.15c) are higher than that of the Egs. (6.15a) and (6.15b).

Thus, the region of dy defined by the Eq. (6.15c) cannot be used and is neglected. By

dxl dx2
3 T T
<+ > ’ < >
(6.15b) (6.15¢) \ (6.15a)
25 7]
2 | -
S
5 15} .
=
84|
1 | -
0.5 f V‘
0 ! /\%/'/\'IJ ] N ] \ )
-10 -5 0 5 10 15

d. (mm)

Figure 6.5 Errors of measurement of a; as a function of dy for a; = 25 um,

z; =30 cmand az =50 um, z; =29 cm.
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defining the critical separation dy; and dy; as the value of dy at the boundary between
the regions with low and high errors, the small errors of measurement of a; are
obtained when dy < dy; or dyx > dy,. If the maximum error is set to be 0.5 percent the
critical separations found from Fig. 6.5 are dy = —1.4 mm and dy, = 8.1 mm.
Substitutions of these values of dy; and dy, into their corresponding Egs. (6.15b) and

(6.15a) give the values p; = 0.48 and p, = 0.53, respectively.

The measurement of the spatial separation dy obtained by analyzing the
simulated holograms generated from different conditions of the object size and the
recording distance are summarized in Table 6.1. Two object sizes of 25 um and 50
um are used in the simulation with the recording distances z; of the object P; are 10
cm and 30 cm. As for the object P,, the recording distance z, is varied from 9, 10 to
11 cm for z; = 10 cm, while z; = 29, 30 and 31 cm for z; = 30 cm. It is found that
although the critical separation distances dyx; and dy, are different significantly for
different objects, their corresponding values of p are still in the range of 0.4 to 0.8.
These results confirm the feasibility of Egs. (6.15) for determining the required
separation dy between the objects in order to extract its size by using the absolute
values of the WT method. However, in order to employ Egs. (6.15) for determining
the range of the allowable dy, the value of p must be selected such that the resultant
values of dy are consistent with the simulation results depicted in the Table 6.1. If a
small value of p is substituted into Egs. (6.15), the resultant separation between the
object is shorter than that obtained from the simulation. As for an example, a

substitution of p = 0.4, a; = 25 um, z; =30 cm, a; = 25 and z; = 30 cm into Egs. (6.15)
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Table 6.1 Measurement of the critical separation dy and the frequency ratio p from

the WT of the simulated holograms of two line objects.

a1 4} a 2, it O p1 P2

25 10 25 9 -04 2.7 0.52 0.65
25 10 25 10 -0.6 2.8 0.55 0.58
25 10 25 11 -0.8 2.9 0.58 0.52
25 10 50 9 -0.5 2.6 0.62 0.55
25 10 50 10 -0.5 2.8 0.46 0.58
25 10 50 11 -0.7 2.9 0.49 0.52
25 30 25 29 -1.7 7.8 0.57 0.44
25 30 25 30 -1.8 8.3 0.55 0.55
25 30 25 31 -2 8.6 0.56 0.58
25 30 50 29 -14 8.1 0.48 0.54
25 30 50 30 -1.6 8 0.49 0.45
25 30 50 31 -1.8 8.3 0.50 0.50
50 10 25 9 -0.3 14 0.72 0.75
50 10 25 10 -04 15 0.74 0.76
50 10 25 11 -04 1.6 0.58 0.77
50 10 50 9 -0.3 14 0.72 0.75
50 10 50 10 -04 14 0.74 0.58
50 10 50 11 -0.5 1.6 0.75 0.77
50 30 25 29 -0.8 4 0.54 0.50
50 30 25 30 -0.9 4.1 0.55 0.51
50 30 25 31 -0.9 4.2 0.50 0.53
50 30 50 29 -0.9 0.61 0.50
50 30 50 30 -0.9 4 0.55 0.45
50 30 50 31 -0.9 4.3 0.50 0.58
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gives dy < —1.3 mm and dx > 7.8 mm, while the results obtained from the simulation
are dx < —1.8 mm and dyx > 8.3 mm. On the other hand, when the value of p is too high,
the separation between the object will be wider than from the simulation result. This
can be easily obtained if p = 0.8 are substituted into Egs. (6.15) which gives dx < -2.6
mm and dy > 9.1 mm. Figure 6.6 illustrates the region of allowable dy for different
conditions of p. The solid line represents the real allowable dx which is obtained from
the simulation, while the broken lines are those calculated by using Egs. (6.15). It can
be seen that in the case of small p, the calculated dy exceeds the allowable dy from the
simulation results. However, dy calculated by using high value of p agrees with the
simulation results. For this reason, it is better to use the highest value of p = 0.8

obtained from the simulation for calculating the allowable dx given by Egs. (6.15).

D P Highp
< 5 (l) é 1|o ) 4, (mm)
<4----- - == =3 Small p

Figure 6.6 d calculated by using Egs. (6.15) for different values

of p in comparison with the simulation result.

The analysis for the separation between the spherical objects is in analogy
with those of the line objects. Since the minima positions of the hologram of spherical
object appear at r, = (n+0.23)Az/2a while those of the line object can be found at x, =
nAz/2a, the criteria for the separation d, between the spherical objects can be simply

obtained by substituting n in Egs. (6.15) with n+0.23. This yields

(n+0.23

A
> % ) [2,(1+p)+z], (6.16a)

r
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and

0.23) 2
d, <—%[z2 (1+p)-2]. (6.16h)

As in the case of the line objects, the hologram of two spherical objects are generated
by using the Eg. (3.9) with the same object sizes and recording distances. The
measurement results of the analysis of these holograms are summarized in Table 6.2.
It can be seen from these results that the values of the parameter p in Egs. (6.16) are
varied from 0.4 to 0.7. In analogy with the analysis of the line objects, the smallest
value of p cannot be used since its may give inconsistent results. For example, by
substituting p = 0.4, a; = 25 um, z; = 30 cm, a; = 50 um and z, = 30 cm into Egs.
(6.16), the allowable d, are found to be d; < —1.6 mm and d, > 9.6 mm which is
inconsistent with the simulation results which are d, < -2.4 and d, > 10.3 mm. Thus,
the highest value of p = 0.7 is used for determining the required separation between

the spherical objects from Eq. (6.16).

6.2.2 Extraction of the axial position of objects

As discussed in Chapter 1V, the recording distance is extracted from the
hologram by determining the space-varying frequency of the interference pattern.
These frequencies and their corresponding spatial positions are determined from the
dilation and the translation of all wavelet coefficients with maximum or minimum
amplitudes, respectively. However, since the determined spatial position corresponds
to the horizontal distance measured from the center position of the interference
pattern, the exact information of the center position of the interference pattern is

required. In the case of the single object, this center position can be easily determined
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Table 6.2 Measurement of the critical separation dy and the frequency ration p from

the WT of the simulated holograms of two spherical objects.

a1 4} a 2, dr1 dr2 p1 P2

25 10 25 9 -0.5 3.2 0.53 0.55
25 10 25 10 -0.7 3.4 0.52 0.54
25 10 25 11 -0.8 3.6 0.45 0.54
25 10 50 9 -0.5 3.2 0.53 0.55
25 10 50 10 -0.7 3.4 0.52 0.54
25 10 50 11 -0.9 3.6 0.52 0.54
25 30 25 29 -1.9 10 0.52 0.54
25 30 25 30 -2.2 10.3 0.55 0.57
25 30 25 31 -2.5 10.4 0.57 0.54
25 30 50 29 -2.1 10.2 0.58 0.60
25 30 50 30 -24 10.3 0.60 0.57
25 30 50 31 -2.5 10.5 0.57 0.57
50 10 25 9 -0.3 1.6 0.61 0.55
50 10 25 10 -04 1.7 0.60 0.54
50 10 25 11 -04 1.8 0.45 0.54
50 10 50 9 -0.3 1.7 0.61 0.71
50 10 50 10 -04 1.7 0.60 0.54
50 10 50 11 -04 1.8 0.45 0.54
50 30 25 29 -0.9 4.8 0.50 0.44
50 30 25 30 -1 51 0.50 0.54
50 30 25 31 -11 5.1 0.50 0.49
50 30 50 29 -1 5 0.55 0.54
50 30 50 30 -1 51 0.50 0.54
50 30 50 31 -11 5.2 0.50 0.54
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by detecting the pixel around the symmetrical axis of the hologram. However, for the
holograms of multiple objects, the interference pattern of particular interest may be
distorted by the others. For example, the center position of the interference pattern of
the fiber P; shown in Fig. 6.3 is difficult to detect. Thus, the feasibility of the method
for extracting the recording distance from the hologram of multiple objects is mainly

determined by the accuracy of detecting the center position of the interference pattern.

On the other hand, due to shift-invariant nature of the WT, the analysis of the
holograms by the WT gives symmetrical wavelet coefficients. Figure 6.7 shows the
maximum and minimum amplitudes of the real values of the wavelet coefficients
obtained from the hologram shown in Fig. 6.3. It is found that the wavelet coefficients

with the maximum amplitudes which are pointed to by the arrow signs appear at the

Wavelet coefficients with maximum
amplitudes appeared at the center
position of the interference pattern.

'3 I I>< 1 1 ! I I |
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Figure 6.7 The WT of the hologram shown in Fig. 6.3.
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center positions of both objects. The disturbance from the hologram of the other
objects in the WT domain is minimum because of their frequency difference. Since
the frequency of the chirp signal at the center position of the interference pattern is
low, its wavelet coefficient appears at high scale, while the high-frequency
components appear at lower scales. As a consequence, in the WT domain, the
disturbance at the center position by the hologram of the other object is very small
provided the two objects do not exactly overlap. Thus, the detection of the center
position of the object being studied can be discussed by using the maximum real value

of the wavelet coefficients.

Although the dilation corresponding to the maximum value of the wavelet
coefficient at the center of the object is not required for determining the recording
distance, the position of this wavelet coefficient as a function of both the dilation and
the translation is needed for analyzing mathematically the allowable separation
distance dy. In order to obtain the dilation value at this maximum wavelet coefficient,
the WT of the hologram around its center position is mathematically investigated.
However, since the modulation effect of envelope function at this center position is

not significant, the envelope function can be neglected. The first column of Fig. 6.8

shows the original hologram of a line object s(x) and its approximation ul(x). The

mathematical expression of the simplified holograms of line and spherical objects can

be mathematically written as

u (x)=1-Acos(Bx* -C), (6.17)

where A=4a/\/Az, B=x/Az and C =x/4 for the line object while A=27a?/Az,

B=7x/Az and C =x/2 are for the spherical object. The second column of Fig. 6.8
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Hologram s(x)
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Figure 6.8 Hologram of a line object and the chirp function (left column)

versus their WT (right column).

are their resultant WTs. It is obvious that the center position and the wavelet
coefficient at this center obtained from the hologram approximation appear at the
same positions as those of the original hologram. This is because, around the center
position the amplitude and the frequency content of the signal of both holograms are
the same. Therefore the approximation of the hologram can be justified. By using the

Morlet wavelet, the WT of the Eq. (6.17) can be mathematically written as

W (t,d)=+2zd exp(-27°f)
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4rftBd —27°f7 —2B’t*d?
A1+ 4B%4) 0 | 2d exp{ Al - 278234
_+_

Bt?+87f,tB%d*—47*f?Bd? tan™(2Bd’) H
-C

+ +
J 1+4B%d* 2

d —Arzf tBd —27%f? —2B%%d?
~A(1+4B%d* ) = exp i
+

Bt? -8z f tB%d®—4~%f?Bd? tan *(2Bd?
j{ Gl G ekl ( )—c (6.18)

1+4B%d* 2

In order to obtain the maximum value of the wavelet coefficient at the center position

of the interference pattern, Eq. (6.18) is evaluated at the translation t = 0. This yields

W (0,d)=~/27d exp(-27°f})

o —27°f?
“A(1+4B%d*) ¢ [ exp| ——9
( ) 2 p[1+482d4

—47°f2Bd? tan”(2Bd?) H
—C

+

+
J 1+4B%d* 2

L d —27°f?
~A(1+4B%d*) 4 |2 exp| —— L
( ) > P 1 am7d

{ _47°?Bd? tan”'(2Bd?) H
-] + -C

1+4B%*d* 2

_2 2f2
= J2rd exp(-27°f7)- Av2zd 1exp{1 L:TBZ(j“J
(1+4B%d* )" "
47*f?Bd? tan"*(2Bd?)
XCOS - +C 1. (6.19)
1+4B-d 2

Plot of Eq. (6.19) for the line object with the parameters a =60 um,z=40cmand A =

543.5 nm is shown in Fig. 6.9. From this figure, the maximum value of the wavelet
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Figure 6.9 The wavelet coefficients at the translationt =0 is

plotted by using the Eg. (6.19).

coefficient which appears at log,, (d, ) =—3.3 can be clearly observed.

In order to determine mathematically the dilation that gives this maximum
value, the derivative of the Eg. (6.19) with respect to the dilation is performed. The
value of the dilation dy that gives the first derivative equals to zero corresponds to

either the minimum or the maximum value of the wavelet coefficient W(0,d). It is
found that the dilation dy is approximately equal to 1.05v4z and 1.22\ Az for the
line and the spherical objects, respectively. The mathematical proof of this result is
given in Appendix. It can be seen that the mathematical expression of dilation dp is in
the form of cv/Az where c is a constant factor. Since the derived d is obtained from

the hologram approximation u;(x), some mathematical approximations are done

during the derivation, the resultant constant ¢ obtained in the derivation may contain
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an error. In order to minimize this error, the value of c is verified by computing the
WT of the holograms s(x) simulated at various recording distances. By detecting the

dilation do from the maximum value of the wavelet coefficients along the translation
t = 0, the constant ¢ can be calculated from ¢ = do/\//iz . From these computations,

the maximum positions do are found to be

d, =1.04391z (6.20a)
and
d, =1.1902/z, (6.20b)

for the line object and the spherical object, respectively.

In the case of multiple objects, this maximum value may be disturbed when
the WT of the hologram of the other objects overlaps with the hologram of the object
being studied along the dilation do. Thus it is necessary to know the range of
significant wavelet coefficient of the other object at any given dilation d.

In order to obtain the range of significant wavelet coefficient at any given
dilation, the analytical WT of the hologram must be investigated. However, since the
desired dilation do corresponds to the low-frequency content of the interference
pattern at the center position, the study of the WT of the signal having the same low
frequency component as those from the hologram can provide the required
information. The effect of high frequency information of the signal along the dilation
do can be neglected. Thus, for the sake of simplicity, the hologram is approximately

expressed as

u, (x) =1- Acos(Bx* —C)cos(Dx), (6.21)
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where the cosine function is used as the envelope function, instead of the sinc and the
Bessel functions. Here, A, B and C are the same parameters used in the derivation of
Eq. (6.17). The parameter D is chosen such that the first minimum position x = z/2 D
of the simplified hologram coincides with that of the original hologram. The first

minimum of the hologram of a line object appears at x = Az/2a, while that of the

spherical object is at r=3.831z/2za. By substituting this x into the first

Hologram s(x) Re{w (t,d,)}
2000
1000
0
-1000
-2000
4 2 0 2 4 4 2 0 2 4
Hologram approximation u, () Re{W (t,d,)}
1.6 2000
1.4
1000
12
1 0
0.8
-1000
0.6
0.4 -2000
4 3241 012 3 4 4 2 0 2 4
x (mm) ¢ (mm)

Figure 6.10 Hologram of a line object and the modulating signal of Eq. (6.21)
(left column) and their real value of the WT scanned along the

dilation d = do (right column).
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minimum position, the parameter D for the line and the spherical objects are found to
be D=ra/lz and D =7z2a/3.83;tz, respectively. The top row of Fig. 6.10 shows

the original hologram generated by using Eq. (2.3) and the real value of its resultant
WT which is scanned along the dilation d = do, while those obtained from Eq. (6.21)
are depicted in the bottom row. It can be seen from the left column of this figure that
both signals confined by the main lobes are similar. The real value of the wavelet
coefficients at d = do shown in the right column of Fig. 6.10 for both signals are also
identical. This is because the wavelet coefficients at dilation d = do represent the low-
frequency component of the analyzed signal. Since the low-frequency information of
the signal given by Eq. (6.21) is the same as those of the Egs. (2.3) and (2.4), the
hologram approximation of Eq. (6.21) can be employed for studying the width of the

wavelet coefficient at dilation d = do.

Analysis of Eq. (6.21) by using the Morlet wavelet along the dilation do gives

Aexp(—jC) | 2xd 1 pd, \ |’
W (t,d,)=— 0__exp| —————1—| V2Bd,t-| V27 f, - —=
(t.d.) 4 1-i2Bd? P 1+4B%d; V2Bdt-| V2r, J2

+j(Bt? + Dt +87 f,Bdt — 47 fBd? - BD’d{ +4x f, BDdg’)H

_Aexp(JC) | 2zd, exp! 1 {{ﬁBdotJ{\@zngdoﬂz

4 1+i2Bd? ' |1+4B%d; V2

+j(~Bt" + Dt+87 f,Bdt + 47" f7Bd] + BD’d; - 47 f,BDA] )| |

_Aexp(-jC) [ 2xd, xp[;{{ﬁBdot(ﬁﬂngr Ddoﬂz

e
4 1-i2Bd? 1+4B%d; V2

+j(Bt? - Dt +8x f,B2d%t — 47* £ 2Bd? - BD?d; — 4x f, Bde)}}

_Aexp(jC) [ 2xd, exp[ 1 {—{ﬁ8d0t+[x/§7zfg+[)d°ﬂ2

4 1+i2Bd? | 1+4B%; J2
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+j(~Bt*~ Dt+87 f,Bdt + 472 £ 2Bd? + BD?d; + 4 f, BDdg)}J. (6.22)

Equation (6.22) is a summation of four terms. Each term is a multiplication between a
Gaussian and a complex exponential function. The slowly varying Gaussian function
acts as an envelope function, while the complex exponential with high-frequency
components represents a carrier signal. Since the width of the resultant WT s
determined by the width of the summation of these envelope functions, the
multiplicative complex exponential functions can be neglected in the following

analysis.

The first and the second Gaussian functions of the Eq. (6.22) are centered at

zf,/Bd —-D/2B and -z f,/Bd_+D/2B, while those of the third and the fourth
terms are at zf,/Bd +D/2B and —xf,/Bd —D/2B, respectively. Figure 6.11

shows these four Gaussian functions and their summation result which are represented
by the dot and the dash lines, respectively. The solid line represents the plot of the real
value of Eq. (6.22). In comparison with Fig. 6.10, the amplitude of this wavelet output
is smaller, because it is computed from the analytical derivation of the wavelet
transformation, instead of the numerical calculation. Moreover, it can be seen from
Fig. 6.11 that the summation of these four Gaussian functions corresponds to the
envelope function of the WT output at d = do. Equation (6.22) shows that the
separation between the center positions of the second and the fourth Gaussian
functions and between the first and the third Gaussians are equal to D/B. By
substituting the mathematical definitions of the parameters D and B, the separation

between the Gaussians are equal to a and 7a/3.83 for the line and the spherical

objects, respectively. However, the value of the object radius a is very small. Thus,
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Figure 6.11 Plot of the real value of the WT along the dilation d = do

together with the four Gaussian functions of Eq. (6.22)

and their summation result.

the center position of the first and the third Gaussian functions are approximately the
same. This approximation is also valid for second and the fourth Gaussians. By taking

this approximation into consideration and neglecting the constant complex phase

factor, the envelope function defined as E(t) reduces to the summation of two

Gaussian functions

E(t) 2exp[ﬁ{—[ﬁ8dot—(ﬁﬁfg + [\)/%’HZH

+2 exp[m{{ﬁ%ot +(\/§7rfg + [\)/%0 H H (6.23)




110

In order to determine the width occupied by the envelope function E(t) , the width of

a Gaussian function

M} ’ (6.24)

shown in Fig. 6.12 is determined. When its amplitude is equal to 1/w, Eq. (6.24)

becomes

ﬂ} 625

Amplitude (a.u.)

B—+ylnw B p+yinw

(24 a a

Figure 6.12 The Gaussian function and its width Wg which is

determined by the parameter w.

This amplitude appears at the translation
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- AENrinw (6.26)

a

As a result, the width W of the Gaussian function measured from the position where

its amplitude is equal to 1/w can be expressed as

W :Z—\W/MW_ (6.27)

G
a
As w increases, the width W¢ of the Gaussian becomes wider.
By taking Eq. (6.27) into account, the width of the Gaussian functions E, (t)

and E, (t) which correspond to the first and the second terms of Eq. (6.23) can be

mathematically determined as

2,/(1+4B%; ) In(w)
J2Bd, '

W, =

(6.28)

Figure 6.13 plots the envelope Gaussian functions E(t) of two line objects P; and P,

from Eq. (6.23) by using the solid and the broken lines, respectively. Here, the
amplitude of each Gaussian function is normalized by the factor 2 in order to obtained
the maximum amplitude of 1. The separation between the objects is dy. The value of t;

corresponds to the center of the Gaussian function in the second term of Eq. (6.23) is

f
AL (6.29)
Bd, 2B

while t, can be determined from the half width of that Gaussian function
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Figure 6.13 Gaussians function determined the envelope function of the real value
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of the WT of the hologram of two line objects separated by d.

2441
- \/(1+ 4B%d;)In(w) 630

J2Bd, ’

where the parameters B and D are defined for the object P,. In order to extract
accurately the center position of the object Py, the envelope Gaussian function from

the other object P, must not disturb this position. This condition can be

mathematically expressed as
d, >t +t,. (6.31)

Substitutions of Egs. (6.29) and (6.30) into Eq. (6.31) and taking the possibility of

negative value of dy into account gives
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7t +R+\/(l+482d5‘)ln(w).

d 9
| x| > Bdo B \/EBdO

(6.32)

Equation (6.32) defines the separation between two objects where the center position
of the WT output at the dilation d = do can be extracted in order to obtain the
recording distance of the object P;. By substituting the mathematical definitions of d,

B and D into the Eqg. (6.32), the separation dy can be rewritten as

f A 22 +4.7572%2 )In(w
d | > —22 T e M :)in(w) (6.33)
1.0439\z, 2 1.04397,/2z2,
and
f Az +8.037°2% )In(w
o>z |2, 2 J (= Jin(w) (6.:34)
11902z, 2.44 1.19027 /22,

for the line and the spherical objects, respectively. In this derivation, the width of the
Gaussian function is measured at the position where its amplitude is equal to 1/w. In
order to determine the suitable value for the parameter w, the center position of the

object Py is determined from the WT of simulated holograms of two objects.

Figure 6.14 shows the errors of detecting the center position from the
holograms of two line objects P; and P, having the radius a; = 25 um and a; = 50 um
while their recording distance are z; = 30 cm and z; = 29 cm, respectively. It is found
that this error becomes higher than 1 pixel when -1.2<d, <1.2 mm. In this figure,
dws =-1.2 mm and dys = 1.2 mm are defined as the critical separations of the objects

that cause high error. By substituting these values of the critical separation dy, the

object size a and the recording distance z into the Eq. (6.33), the value of w can be
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Figure 6.14 Errors of detecting the center position of the object P, from
the WT of the holograms of two line objects having a; = 25

um, z; = 30 cm, a; = 50 um, z; = 29 cm as a function of d,.

obtained. In this case, dy3 and dy4 yield ws and w, that are equal to 6.32. Tables 6.3
and 6.4 summarize the results of measuring the center position of the object P; in the
present of the other object P, for the line and the spherical objects, respectively. It can
be seen from these results that the maximum desired values of w are 7.0 and 9.9 for
the line and the spherical object, respectively. Thus, in order to ensure the feasibility
of the method for measuring the recording distance from the hologram of multiple
objects, the object separation must satisfy Eq. (6.33) or (6.34) with the large value of
the parameter, i.e. w > 7.0 and w > 9.9, for the line and the spherical object,

respectively.



Table 6.3 Measurement of the spatial separation dyx and w from the WT of the

simulated holograms of the line objects.

a Z; a 2 dxs Oxa W3 Wy
25 10 25 9 -0.6 0.7 3.43 7.04
25 10 25 10 -0.6 0.7 2.98 5.88
25 10 25 11 -0.7 0.6 4.95 2.61
25 10 50 9 -0.7 0.7 6.38 6.38
25 10 50 10 -0.7 0.7 5.35 5.35
25 10 50 11 -0.7 0.7 4.53 4.53
25 30 25 29 -1.1 1.2 4.05 6.14
25 30 25 30 -1.1 1.2 3.84 5.79
25 30 25 31 -1.1 1.2 3.65 5.47
25 30 50 29 -1.2 1.2 5.81 5.81
25 30 50 30 -1.2 1.2 5.49 5.49
25 30 50 31 -1.2 1.2 5.18 5.18
50 10 25 9 -0.5 0.5 1.97 1.97
50 10 25 10 -0.6 0.6 2.98 2.98
50 10 25 11 -0.6 0.6 2.61 2.61
50 10 50 9 -0.6 0.7 3.17 6.38
50 10 50 10 -0.6 0.6 2.77 2.77
50 10 50 11 -0.7 0.7 4.53 4.53
50 30 25 29 -1 0.9 2.81 2.07
50 30 25 30 -1.1 1.2 3.84 5.79
50 30 25 31 -1.1 1.2 3.65 5.47
50 30 50 29 -1.1 1.2 3.85 5.81
50 30 50 30 -1.1 1.2 3.67 5.49
50 30 50 31 -1.2 1.2 5.18 5.18
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Table 6.4 Measurement of the spatial separation d; and w from the WT of the

simulated holograms of the spherical objects.

a Z; a 2 dr3 drg W3 Wy
25 10 25 9 -0.7 0.6 5.16 291
25 10 25 10 -0.7 0.6 4,57 2.64
25 10 25 11 -0.6 0.6 241 241
25 10 50 9 -0.7 0.8 4.84 9.59
25 10 50 10 -0.8 0.8 8.30 8.30
25 10 50 11 -0.8 0.8 7.21 7.21
25 30 25 29 -1.2 1.3 4.68 6.80
25 30 25 30 -1.2 1.3 4.49 6.50
25 30 25 31 -1.2 1.3 4.32 6.22
25 30 50 29 -14 14 9.86 9.86
25 30 50 30 -1.3 14 6.25 9.39
25 30 50 31 -1.3 1.3 5.98 5.98
50 10 25 9 -0.6 0.6 291 291
50 10 25 10 -0.6 0.6 2.64 2.64
50 10 25 11 -0.6 0.6 241 241
50 10 50 9 -0.7 0.6 4.84 2.77
50 10 50 10 -0.6 0.6 251 2.51
50 10 50 11 -0.6 0.6 2.30 2.30
50 30 25 29 -0.9 0.9 1.94 1.94
50 30 25 30 -1 1 2.42 2.42
50 30 25 31 -1 1 2.35 2.35
50 30 50 29 -1.2 1.3 451 6.53
50 30 50 30 -1.2 1.3 4.33 6.25
50 30 50 31 -1.2 1.3 4.17 5.98
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In order to extract both information of size and recording distance from the
hologram of multiple objects, the object separation dyx must satisfy all three conditions
defined by Eqgs. (6.15a), (6.15b) and (6.33) or Egs. (6.16a), (6.16b) and (6.34) for the
line and the spherical objects, respectively. Figure 6.15 shows the plots of Egs.
(6.15a), (6.15b) and (6.32) represented by the solid, the dot and the dash lines,
respectively, for a; = 50 um, z; = 10 cm and a; = 25 um as a function of z,. The figure
is plotted with the value of the parameter p = 0.8 and w = 7. For positive value of d,
which mean that P, is located on the right side of Py, the WT can be used to extract
the size and the position of the object P, provided d satisfy the condition defined by
Eq. (6.15a). In this case, the value of dyx and z, must be inside the shaded area above
the solid line. In the case of dx having negative value, both conditions of Egs. (6.15b)

and (6.32) must be satisfied. This can be achieved if the value of dx and z, are

Eq. (6.15a)

d. (mm)

of qu. (6.32) -
o ; ------ ——
4k Eq. (6.15h) '
5 = = 20 20 50 60

z, (cm)

Figure 6.15 Plot of the Egs. (6.15a), (6.15b) and (6.32).
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confined within the lower shaded area. It can be seen that the required separation |dy]
is larger for positive value of dy than that of the negative one. This is because the
information about the object size is extracted from the frequency of the chirp signal at
the first minimum position which is located on the right side of the axis of symmetry
of the hologram (n = 1). If the first minimum in the left side is used (n = -1), the
graph will be flipped along the axis dx = 0. This gives shorter allowable |d,| for the
positive dy in comparison with the negative one. However, for the same value of z,,
the condition given by Egs. (6.15b) and (6.33) give a shorter allowable separation |d|
than that of the Eq. (6.15a). Since in real situation the sign of dy cannot be controlled,
the condition of the Eq. (6.15a) is used for both positive and negative values of dy. By

taking this consideration into account, Eq. (6.15a) can be rewritten as

A
|dx|>27‘1[22(1+ p)+2]. (6.35)

As dy satisfy Eq. (6.35), all of the conditions in the Egs. (6.15a), (6.15b) and (6.33)

are also satisfied. In analogy, the condition for the separation of the spherical object is

|o|r|>(n+§%)’1[z2 (1+p)+z]. (6.36)
It can be seen that the separation is proportional to a combination of the recording
distance and is inverse proportional to the object size. The hologram of a larger object
recorded at a shorter recording distance gives the shorter allowable separation. As for
a fixed size of the objects, the hologram must be recorded at a shorter distance in
order to be able to analyze the higher concentration of the objects. However, higher

resolution of the recording material is required for recording such a hologram.



CHAPTER VII

CONCLUSIONS

In this dissertation, new methods for extracting size and recording distance of
small objects directly from the in-line Fraunhofer holograms by using the WT are
studied. The proposed method obviates the conventional optical image reconstruction
which is very tedious and time consuming process. The recording distance of the
object being studied is obtained from the space-varying frequency of the holograms
provided by the WT, while the size is extracted by either reconstructing the envelope
function or taking the absolute values of the resultant WT output. The feasibility of
the methods is verified by determining error of measurements from the digitally and
experimentally generated holograms of the line and the spherical objects. The system
performance of the proposed method for the case of holograms of the single and the
multiple objects are analyzed.

In Chapter Ill, the algorithm for simulating and the optical setup for
generating the holograms of the line and the spherical objects are discussed. In the
simulation, the holograms are digitally generated by computing the Fraunhofer
diffraction integral via the Matlab software. In the experiments, the holograms of the
line object are generated by using the optical fiber as a test object with the CCD
sensor is used to capture the generated interference pattern. As for the spherical
object, because its available size is too small the generated interference pattern

contains high frequency signal which cannot be faithfully captured by the CCD
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sensor. In order to solve this problem, the holograms of the circular pinhole having a
larger diameter are generated by employing the Mach-Zehnder interferometer. In the
final discussion, the mathematical expressions of the holograms of the multiple line

and spherical objects are presented.

The extraction of the recording distance from the holograms by using the WT
is discussed in Chapter IV. Since the WT gives the spatial-varying frequency
information of the analyzed signal, it is employed to extract the recording distance
which is encoded into the frequency of the chirp signal. By determining the maximum
and minimum positions of the wavelet output, the recording distance can be
calculated. The simulation results show that the method can be accurately extract the
recording distance information with small errors of less than 1 percent for both line
and spherical objects. As for the experimental results, the errors are slightly higher,
because the speckle noise cannot be completely removed from the holograms.

In Chapter V, two methods for extracting the object size from the digitized
holograms are discussed. Since the object size is encoded into the minima positions of
the interference pattern, the first method determines these positions in space domain
by reconstructing the envelope function. By determining the minima positions and the
recording distance obtained from the WT, the object size can be calculated. The
simulation results show that the errors in measurement of the object size is smaller
than 1 percent for the line object, while it is slightly higher for the spherical object.
This may be caused by the fact that the envelope signal of the spherical object which
is the Bessel function has minima with slower varying amplitude than the sinc

function of the line object. As a consequence, the accuracy in detecting the minima of
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the Bessel function is smaller than that of the sinc function. Furthermore, the
experimental results give the slightly higher errors than the simulation.

The second proposed method determines the minima of the envelope function
in the wavelet domain by computing absolute values of the WT. Beside the positions
of minima, this method provides the frequency of the chirp signal at those minima
positions. The object size which is solely a function of this frequency can then be
determined. In this method, the accuracy of determining the object size depends on
the accuracy of detecting the frequency at the minima positions. By increasing the
resolution of the dilation interval in the WT computation, the frequency information
at the minima can be obtained with high accuracy. The simulation and experimental
results show the improvement of the accuracy in measuring the object size from the
absolute values of the WT over the envelope reconstruction method.

In Chapter VI, the system performance for analyzing the holograms of single
and multiple objects are discussed. Since the CCD sensor is employed for capturing
the interference pattern, its finite size and finite resolution limit the amount of
information that can be captured. By taking these limitations into account, the
relationship between the object size, the recording distance, the wavelength of the
illuminating light and the resolution and size of the CCD can be obtained. It is found
that the largest size of the object is proportional to the CCD size and inverse
proportional to the minimum position used for the calculation, while the smallest size
is proportional to the multiplication between the minimum position and the pixel size
of the employed CCD sensor. Thus, it can be concluded that the radius of the object
cannot be smaller than the pixel size of the employed CCD sensor. As for the

recording distance, the longest value is proportional to the square of CCD size and is
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inverse proportional to the product of the square of the minimum position and the
wavelength of the illuminating light, while the smallest value is proportional to the
multiplication between a square of pixel size and a square of the minimum position
and is inverse proportional to the wavelength. Since the Bessel function has wider
main lobe than that of the sinc function, the shortest recording distance and smallest
size of spherical object is larger than that of the line object, while its largest size and
longest recording distance are smaller.

In the case of multiple objects, the hologram can be approximated by the
summation of the interference pattern from the individual object. As a result, the
resultant WT of the hologram is proportional to a linear summation of the WT from
the individual interference pattern. Since the measurements of the size and the
recording distance are done by computing the WT of the hologram, the feasibility of
the method depends on a degree of distortion of the resultant WT. In order to extract
the object size from the frequency at minimum position of the interference pattern, a
certain frequency difference from the object being studied along its minimum position
and that from the other objects is required. This criterion is employed for the
mathematical derivation of the required separation between the objects. As for the
recording distance, the accuracy in measurement is mainly determined by the
accuracy of detecting the center position of the interference pattern. This study found
that the WT coefficient at this center position is always maximum. In order to utilize
this maximum position, its WT coefficient must not be disturbed by the WT of the
other interference patterns. By taking this consideration into account, the required
separation between the object is mathematically derived. The obtained separation is

then confirmed by comparing with the allowable separations of the objects obtained
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from the simulation. The comparison shows that the derived separations are in a good
agreement with those of the simulations. It is found that the extraction of the object
size requires a larger separation than that of the recording distance. Thus, in order to
extract both the size and the recording distance from the holograms of multiple
objects, the separation between the objects must satisfy the most severe conditions of
the separation which are found to be proportional to a linear combination of the
recording distances and are inverse proportional to the object size. Therefore, either
the shorter the recording distance or the bigger the object size, the higher the

concentration of objects that can be analyzed.
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MATHEMATICAL DERIVATION

Al. In-line Fraunhofer holograms of single object
The amplitude transmittance of the in-line hologram is proportional to the

intensity incident at the recording plane (x,y). This intensity can be mathematically
written as

(% y)=u (x )f
=|R+0(x, y)|2, (Al1.1)

where U (x, y) is the complex amplitude of the light field incident at the recording

plane. Here, R represents the directly transmitted reference plane wave, while o(x, y)

is the wave diffracted from the object.

Al.1 Hologram of opaque line object
Let us consider a 1-D opaque object with the amplitude distribution A(f)
located in the object plane of the optical setup shown in the Fig. 2.1. The light field at

the recording plane can be derived from the Fresnel diffraction integral (Goodman,

1996)

exp| jkz/2

U(xy)= 7 ] T[l— A(cf)]exp{%(x—f)z}df, (AL2)

where k, z and A are the wave number defined by k =27/, the recording distance of
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the object and the wavelength of the illuminating light, respectively. By separating the

integrals, Eq. (A1.2) can be rewritten as

UK y) = exp[ sz/2 {]; { }dg
_T exp{ —§)z}d§}. (AL3)

—00

The first integral of Eq. (A1.3) is

f ik ike®  jkx&
— : Al4
jwexp{zz( -¢) }df exp( ]Iexp{ (8 (ALY
By using the identity (Gradshteyn and Ryzhik, 1994)

ool it)
ex 2> +gxJdx = —ex Al.5
j p(—p*x* +qx)d o P 25 (AL5)

the integral on the right side of Eq. (A1.4) becomes

© (ke jkxe Jz jlox Y k)
_Lexp{ 2 1 }dfz\\/—jk/m exp{(zj /4[ 22]}

_. 2
JAz exp Jkx J

jexp{ K (x }dg Jirz. (AL.6)

The second integral of the Eq. (A1.3) is

ZA(é)exp{%(x—é)z}df
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:exp(JkX ]TA exp[- je p( szzxfjdf

Under the far-field (Fraunhofer) condition (Goodman, 1996)
2
> ké% (AL1.7)

the quadratic phase exponential term exp( J kfz/;tz) can be neglected. This yields,

J Ao (- o -ex| 25 X ) (AL8)

—0

where A(%) is the 1-D Fourier transform of A(&) defined by
z

(x0T _J2xxé
A(Ej_JA(f)exp( - jdf. (AL.9)

—0

Substituting the Egs. (A1.6) and (A1.8) into Eq. (A1.3) results in

s )

Since the intensity is the information being recorded on the recording medium, the

constant complex exponential can be neglected. As a result, the complex field at the

recording plane becomes

U(xy)=1 exp( jkx /ZZ)A(MJ (AL10)

Jilz

Thus, in the case of a 1-D object, the reference wave R can be regarded as a plane

wave with unity amplitude, while the object wave is
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1 (X2 x|+ X
0. 5(Xy)= _ﬁEXp[J(H_ZH A(Ej (A1.11)

For a line object whose amplitude distribution function is

A() =1 for |f<a
=0 |£] > a, (A1.12)

its Fourier transform becomes

x0T Q27X
A(E]_jA(g)exp( — jdg
b 278X
_Iexp[ 5 )df

:_iexp[_ﬂﬂ]

Az fea

Az ( i27raxj (iZﬁaxj
=———<exp| - —exp
|27rx{ Az Az

F=a

. [ 2max
x sm(/u)
Az

By substituting Eq. (A1.13) into Eqg. (A1.11), the diffracted wave from the line object

is found to be

o (xy)=-7= 2 j exp{i[”fz —%ﬂ (A114)



Let us define

and

Eq. (A1.14) can be rewritten as
o (x,y)=C.Q_exp(j®,).
Thus, the intensity recorded at the hologram plane is

1(x, y):|R+0L(x, y)|2
:|1+CLQL exp(jCI)L)|2

=1+2C, Q, cos®, +CQ/.

Substituting Egs. (A1.15) into Eq. (A1.17) results in

2max A7
Az

sin 2rax sin
4a (72’_)(2 72'] V¥ +4a2 y)
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(Al.15a)

(A1.15h)

(A1.15¢)

(A1.16)

(A1.17)

(A1.18)
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Al.2 Hologram of opaque spherical object

In the case of recording the hologram of an opaque 2-D object by using the in-
line optical setup depicted in the Fig. 2.1, the field at the recording plane can be
calculated by using the Fresnel diffraction integral as

k o0 00
U(xy) = exp[” [ [[2-AEn)]

—00 —00

><exp{%[(x—§)2 +(y—77)2}}d§dn

_exp| jkz] {

jAz

f [o{ gl +ty-n) ]z

—00 —00

o0 00

_J'IA(é,U)EXP{%[(X—g)Z+(y_n)2}}d§d77} (A1.19)

—00 —00

Under the far-field condition, Eq. (A1.19) becomes

U(x y)exp(jkz)[1+ jexp(jkrz/zz)l\(i, y j] (AL.20)

Az Az E

where r®=x*+y?, while A(/%%J represents the 2-D Fourier transform of
z

z

A(&,n7) defined by

% . . y
(/12 ﬂzj '[)_LA &) exp( JZ”{{zjf{z]ﬂﬂdfdﬂ- (A1.21)

By neglecting the constant phase exponential in Eq. (A1.20), the diffracted wave from

the opaque 2-D object can be mathematically expressed as

1 (ar® 7z x vy
V)= COEA Y Al1.22
%0 (%Y) AzeXp[J(ﬂ,z i Zﬂ (ﬂ,z Az} ( )
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In the case of a spherical object, its amplitude transmittance function is defined by

A(&,n) =1 for &2 +n®<a
=0 JET+n® >a.

This can be rewritten in polar coordinate as

A(p)=1 for p<a
=0 p£>a,

where p=+E+n°.

(A1.23)

Since the function A(&,7) is circularly symmetric, its Fourier transform can be

calculated by using the one-dimensional Fourier-Bessel transform (Goodman, 1996)

A(r) = Zﬁij(p)Jo (27mpr)d p

~(r T 2mpr
Al = |=2z[ p3 | 2P N4 p.
(zzj ”!p ( Py j P

By changing of the variables p' = ZZ’Or :
z

22”3%12
A[rj 1(3] [ P3,(0dp

Using the identity

[£3,(¢)de =3, (x),

(Al1.24)
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the Fourier spectrum of the spherical object is

(b5

r Zjl(zzjrj
(Y. oAz )
A(ﬂzj ral| — | (A1.25)
Az

Substitution of Eq. (A1.25) into Eq. (A1.22) gives the object wave of the spherical

object
ra’ 2‘]1[27/;?”} (xr® n
0s(r) = P ot exp[j(ﬁ+iﬂ. (A1.26)
Az
Define
c - (AL.272)
Sz’ '
22
Qs = srar | (A1.27b)
Az
2
and o, =" Z (AL.27c)
Az 2
the object wave in Eq. (A1.26) can be rewritten as
05 (r)=CsQsexp(jds). (A1.28)

The intensity at the hologram plane can be calculated from
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2
I(r) =|R+og(r)
. 2
=[1+CsQs exp( js )|
=1+2C,Q, cos®, +CZQZ, (A1.29)
Substitution of Eq. (A1.27) into Eq. (A1.29) gives the intensity of the hologram of the

opaque spherical object as

2za’ xr? oz Zjl(zzjrj r*a’ zjl(zzjr]
I(r)= 1+7COS(H+EJ Drar +/1222 >rar . (A1.30)
Az Az

By using the identity
cos(0+%j=—sin(t9), (A1.31)

Eq. (A1.30) becomes

2zar 2277 2zar
Az Az

2rar 2rar
278t ( ar’ ZJl(/izj 7’ 2*(42)
I(r)=1- sin + . (AL32)

Al.3 Hologram of circular aperture
In the case of recording a hologram of a 2-D circular aperture by using the
Mach-Zehnder interferometer shown in the Fig. 3.9, the complex field incident on the

recording plane can be mathematically expressed by

(jke) % =
U (x,y)=exp( jkz)+ JZ Ift(f

xexp{%[(x—f)z +(y—n)2}}d§dn. (A1.33)
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Here, t(é,n) is the amplitude transmittance function at the object plane. The first

term of the Eq. (A1.33) represents the reference wave, while the second term is the

diffracted wave from the object. Under the far-field condition, Eq. (A1.33) becomes

B _ exp(jkri/2z) . x
U(xy)= exp(jkz)[1+ iz T (EZJ] (A1.34)

where f(%%} is the 2-D Fourier transform of t(cf,ry). Thus, by neglecting the
Z Az

phase exponential, the object wave is equivalent to

. 1 (7r® x| X yj
0 X,y)=—=8x —_— [T —,=|. Al.35
20 (%Y) Az p{’[zz 2H (/12 Az ( )

For a pinhole having a radius of a, the amplitude transmittance function at the object

plane can be mathematically expressed by

t(&,n) =1 for &2+n°<a
=0 JE+n® >a. (A1.36)

Its Fourier transform is given by

r ZJl(Zz?rj
r _ 2
T(Mj_za — | (A1.37)
Az

Substitution of Eq. (A1.37) into Eq. (A1.35) gives the diffracted wave from the

pinhole as
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——fﬂ. (A1.38)
YA

Thus, in analogy with the derivation of the hologram of an opaque spherical object,

the hologram of the pinhole becomes

I(r)=1+——

Since

and

as a result

2
) r*a* zjl(zzjr]
+ . (A1.39)

cos(e—%j:sin(e)
sin(0+7z)=-sin(0),

cos[@—%j:—sin(ewr).

2rar

Az

(A1.40)

(A1.41)

(A1.42)

By using the identity in Eqg. (A1.42), the hologram of the pinhole in Eqg. (A1.39) is

found to be

2ra

I(r)=1- P

=]
A2 )1 (AL43)

2rar

Az
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A2. In-line Fraunhofer holograms of multiple objects

In the case where there are multiple objects in the object field, the optical field

at the hologram plane can be found from

U(x,y)=R+0(x,y), (A2.1)

where O(x, y) is the summation of the object waves scattered from the individual

objects
O(x,y)= Zok (x,y), (A2.2)

with K representing the number of objects in the object field. The intensity at the

hologram plane can be calculated from
(% y)=u (x y)f

=[1+0(x, y)|2

=1+0(x,y)+0"(x, y)+|O(x, y)|2. (A2.3)

Here, the reference wave is assumed to be a constant 1. For a k™ line object that is

centered at the position & = x, on the (5,77) plane, the object wave scattered from this

line object can be mathematically expressed as

Sin{27rak|x—xk|

Az, J exp{j[ﬂ|xxk|2 _z] .

2a,
o, (Xy)=- A2.4
L (%) Sz | 2max=x] Az, 4 (hz4)

Az,

In analogy, the object wave of the k™ spherical object centered at p = ris
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23 [Zﬂak|r—rk|j
raz| Az, (zfr-n]" =
Osk(r):;tzk 278, |r - 1| EXp[J(l—ZkJrE]]' (A2.9)
Az,

The object wave of the line object can be written in the form

ok(X: Y):CkaeXp(jq)k), (A2.6)
where
2a
C =2 (A2.72)
JAz,
sm(ZEak/Jx_qu
Zk
= , A2.7b
Q 278, [x— %] ( )
Az,
zlx-x| =
and q)k :T—Z, (A27C)
k
while
2
c, =%, (A2.8a)
Az,
2 —
le( ﬂa;|zr rk|j
k
= A2.8b
R 27, |r—r| ( )
Az,
zlr-r[ =
o, = K _Z (A2.8¢c)
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for spherical objects. Substitution of Eq. (A2.6) into Eq. (A2.2) gives

O(x,y)=>.C.Q.exp(j®,). (A2.9)

k=1

Thus, the interference between the reference and the object waves is
O(x,y)+0"(x ZZC Q. cos(®,), (A2.10)
while that between the object waves is

o(xy) = iiCKC.QkQ. exp (@, —D,) ] (A2.11)

k=1 1=1

By separating the interference between the same object waves from those between the

different objects, Eq. (A2.11) can be rewritten as

o(xy)f => ciQ? +ZZCKC.QKQ. exp| j(@, -P))] (A2.12)

Substitution of Egs. (A2.10) and (A2.12) into Eq. (A2.3) gives

K K
1(x,y)=1+2> C,Q cos(®,)+> CQ;
k=1 k=1

+3°>°C.CQQ exp[ j(®,~,)] (A2.13)

Thus, by substituting Egs. (A2.7) and (A2.8) into Eq. (A2.13), the intensity of the

recorded hologram of multiple objects are found to be

in 278 x=x|

|
_ S 4ak 7Z|X_Xk|2 . Az,
I(X y) 1 z ,lzk [ ﬂzk 4 27Z.ak|x_xk|

Az,
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- 27ay |x—X,| . 27ay | x—X|
4a’ l 2, +iZK: 4a a, l A7,
Az, | 2ma|x—x| ==l WNER) 2ma |x—X,|
Az, " Az,
Sin27za||x X| 2 2
y 24 lexpl | 7l x] (A2.14)
2ma,|X— x| Az, Az, ' '
Az,
and
2ra, |r—r,
K| 27a’ 7r|l’—|’k|2 2J1(7[E1|Zkk|]
1(r)=1- Csi
") kZ:;‘ Az, oI Az, 273, |r—r|
Az,
2ma,|r—r,| ’ 27a |r—r|]
2J | ==k K 2] | ==k
22z} 2ma |r—r,| = %72, 27a|r—r,|
Az, i Az,
23 (foalr—rlj 2 2
1 ,12, exp j 7z|r—rk| _7z|r—l’,| (A2 15)
273, |r—r| Az, Az, ’ '
Az,

for multiple line and multiple spherical objects, respectively.

B. Wavelet Transformations

B1. Absolute value of the WT

Consider a modulated signal

s(x)=cos(2z f,x)cos(27 f,x), (B1.1)
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where f, > f,. Its WT calculated by using the Morlet wavelet of Eq. (2.12) is

vt ool 5o 5

><{exp(127zfox)+exp(—127rf0x)}

2
j2rf —jorf
x{eXp(‘ il 1X)+26Xp( 17 1X)}dx. (B12)
Here, the definition
cos(@):eXp(19)+eXp(_J6) (B1.3)

2

is employed. Equation (B1.2) can be rewritten as

1 % —j2xf x j2xft X2 —2xt +t2
W(t,d):mjexp( 5 S 4 r 9 exp| — T

x{exp(j2z fyx+ j27 fx)+exp(-j2z fyx+ j27 f,x)

+exp(j2z fx— j2z f,x)+exp(—j2z fox— j2 fx)} dx

_ 1 exp ety ¢ Texp (—ijx% t_Jent, X
aJd d 2d?)? 2d? 2 d

x{exp[(j2x f,+ j2x f,)x]+exp[(-j2x T, + j2r f,)X]

+exp[(j2rt,—j2rt)x]+exp[(-j2x f, - j27 f;)x]}dx

1 2zttt t?
:4\/aexp[ 7; —ZdzJ[Wl(t,d)erz(t,d)
+w, (t,d)+w, (t,d)], (B1.4)

where
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2 j2r f
w, (t,d)= Iexp[(—z(ljzjx%{;—z—] Z 1 +j27zf0+j27rfljx}dx (B1.5a)

2 j2r f
Wz(t,d)=Iexp{(—zzzjx%[%—J Z g—j27rf0+j27zfljx}dx (B1.5b)

. jor f
w,(t,d)= jexp{(—glzsz+(é—J ;[ : +j27rf0—j27zf1Jx}dx (B1.5¢)

. jor f
w, (t,d)= jexp{(—glzsz+(%—J g : —j27zf0—j27zfljx}dx. (BL.5d)

By using the identity

s} _ _BZ
exp(Ax2+Bx)dx=.|—Zex B1.6
L pAX®+BX)dx=,/— p(4A] (B1.6)
t  jonf ? 1
—T . . —
N d2f t .. (f, ’
= 27zdeXp 7 F—JZﬂ' F-i' f0+f1

2 S I G t
= 27Z'dexp 7 F—J47Z' ?‘I' fo+f1 F

2
—47r2(i+f + f] ]}
d 0 1 !

2 f f i
=2zd exp{ v j27z(§+ fo+ fljt—Zﬁzdz(?g-i- f,+ fl] } (B1.73)

2d?
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In analogy, Egs. (A1.5b), (Al.5c) and (Al.5d) become

2 f f ?
w, (t,d)=+27d exp{#—j&z(?g— f, + flJt—Zﬁzdz(Fg— f, + flj } (B1.7b)

2 f f 2
w, (t,d) =~/27d exp{% j27{j’+ f,— fljt—andz(ngL f,— fl] } (B1.7¢)

2 f f i
w, (t,d)=+27d exp{# jZﬁ[FQ— f,— fljt—andz(Fg— f, - flj } (B1.7d)

Substitution of Eq. (B1.7) into Eq. (B1.4) results in

W (t,d) = /%{ exp[—jZﬂ( fo+ ) t—277d2(f, /d + f, + fl)z]

vexp| —j2z(~f, + ) t—27r2d2(fg/d—f0+fl)2}

vexp| - j2r(f,— 1) t-22%0% (1, /d + f, - flﬂ

voxp| —j2r(~f,— 1,) t-277d2(f, Jd— f, - fl)z} } (B1.8)

Equation (B1.8) is a summation of four terms which can be rewritten as

W (t,d) =W, (t,d)+W,(t,d)+W,(t,d)+W,(t,d), (B1.9)

where

W, (t,d)= /%exp[—jZn( fo+ ) t=272d% (1, /d + f,+ fl)z] (B1.10a)

W, (t,d)= /? exp[—jZ;r(—fo 1) t=277d?(f, jd — f,+ fl)z] (B1.10b)
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W, (t,d)= /% exp[—jZﬂ( fo—f,) t-27°d2(f, /d + f, - fl)z] (B1.100)

W, (t,d)= /% exp[—jZ;r(—fo 1)) t—27%d2(f, Jd— T, - fl)z] (B1.10d)

The amplitude of each component in Egs. (B1.10) is determined by the last

multiplicative exponential term which is

W, (d) =exp

W, (d)=exp

W, (d ) =Eexp

W,,(d)=exp

—22%07 (1, Jd+ o+ 1)

—22%0% (1, Jd— T, + )’

22207 (1, /d+ o~ f,)’

2% (f, Jd—f,~ 1,)

(B1.11a)

(B1.11b)

(B1.11c)

(B1.11d)

respectively. Since the range of dilated frequency used in the calculation of the WT

corresponds to the frequency content of the analyzed signal, the argument of the

above four exponential terms vary around the frequency f,. In addition, by using the

assumption that f, > f, the inequality

(fy/d+f,+

or

exp[—27r2d2 (f, /d+f,+ fl)z} < exp[—27z2d2 (f, /d+ f,- fl)z}

) > (f,/d=f-1,)

(B1.12)
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Figure Al Plot of Egs. (B1.11) as a function of the dilation d.

is obtained. By taking this consideration into account, the first and the second terms of
Eqg. (B1.9) which are much smaller than the third and the fourth terms can be
neglected. Plot of Egs. (B1.11) by using the parameter fy = fo = 1,000 lines/mm and f;
= 5,000 lines/mm is shown in Fig. Al. Since the maximum amplitude of Wy5(d) is in
the order of 10 and that of W,3(d) is 10 they appear as straight lines around the
zero scale compared to Ws3(d) and Wy3(d) which have maximum amplitude of 1.
These results ensure that the first and the second terms of Eq. (B1.8) can be neglected.

After neglecting the first and the second terms, Eq. (B1.8) reduces to

W (t,d) =\/%{exp[—j27r(fo— f,) t—272%0% (1, /d + f, - fl)z]

vexp| ~j2r(~f, - §,) t-27¢* (1, fd - f,~ )| }

W
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+exp[j27r(fl+ fy) t—27z2{d(fg/d— fo— fl)ﬂ }

P ol st 1) -2, a1 1)

vexp| j2r (14 1) t-27 {1, -4 (fy+ )] |

- \/%{exp[jh(fl—fo) t—Z”z{(fo_fl)[fg/(fO_f1)+di|}2j|
+exp[j27r(fl+ f) t—27° {( f,+ fl)[fg/( fo+ fl)_d:l}z:| }

@{%[Jzﬂ(fffﬂ 2" (fo = £)" {a =1, /(% }]

vexp] j22(f,+ 1) t-272 (1 + ) {d = 1, /(1 1,)) } (BL13)

The absolute value of W (t,d) can be calculated from

W (t,d)]= W (t,d)W" (t,d). (B1.14)
Substitution of Eq. (B1.13) into Eq. (B1.14) gives

zd

|W(t,d)|:{ ?{exp[jZﬂ(f - 1,) t=22(fy = ) {d - £ /(- ) |
(f,+1,) t—22%( +f){d—f/(f+f)}2”

exp| —j27(f,~ ) t=22(fy~ 1) {d - /(1 )} |

-2z (f+ o) t-2 +f1)2{d_fg/(f1+f0)}2} H;



\/Hexp j2m (= f,) t=27" (f,— )" {d =, /(.= 1)}

—j2r(fi- 1) =22 (= ) {d = £, (1= )]

+exp

+exp

it ) 207 (1 {0 1 /(0 )

o]
(
i
—j2x(f,—f,) t—272(f, —f) {d—fg/(fl‘fo)}z}
i
(
[

+exp| j2z(f+f,) t— 27’ f+f1)2{d—f /( o)}
1
2

—j2x(f+ 1)) t=272°(f,+ 1)) {d f/(fi+ 1o }}}

2

_j47z-f0t—27r2(f0— fl)z{d— fg/( f, - fo)}

{
[
27 (f,— £, {d =1, /(f,- fo)ﬂ
[
(

N |-

+exp[_4”2(fo + fl)z{d -ty (it f")}z}}

\/%{exp[—wrz(fo — 1) {d—f, /(f,— 1, )}2}
+exp[—47r2(f0 P {d—1, /(f,+ fo)}z}
+{exp( jax fot)+exp(—jaxfit)}

coo] 22" (1- 1) [6- 1,/ 1)

1

27 (f,+ 1) {d— 1, /(f,+ fo)ﬂ}z

j2z(f,+ 1) t—27° f+f1)2{d_fg/(f1+fo)}2

jor ) t—27? f—1;)2{o|—fg/(fl—fo)}2

149
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W (t,d)| :\/%{exp[—wrz ( fo— f1)2 {d - fg/( fi- fo)}z:i
vexp| 47 (14 1) fd = 1, /(f+ 1))
+2c0s (47 fot)exp[—Zﬁ2 (fo— ) {d =T, /(f,— )}

1

27 (fy+ ) {d— 1, /(f,+ fo)}z}}z. (B1.15)

Atd=f /1, Eq. (B1.15) becomes

), =" ool w17 1, 2) 10 )
+exp[—47r2(fo+ ) (g /f)—f /(f+ f )}2}

+200$(47zf0t)eXp[ (fo—1,) {( ) fg/ }2

=27 (fo+ 1) {( £,/ 1) = £ /(£ + )} }}

2
f f(f—f)—f f
= |7l exp —47r2(f0—f1)2 o(fi-fo)-
8f1 fl(fl_fo)
2
f(f+f)-ff
+exp[—47r2(fo+ fl)z{ g(f1(+f i)f )g 1} ]
1 1 0

£ (f—f)—f, )
+2cos(4z ft)exp| —27%(f, - f, )12+t ¢/ o1
(ax1) [ (-t alp

1

27 (fo+ ) { : (: (+ flfi)f_o)fg : }2” |
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2
f f
+exp[—4ﬂ2 (fo+ 1) {ﬁ} ]
1 1 0

2
—f f
+2cos(4xft)exp| —272(f, — ) —9 0
( 0) p[ (O 1) {fl(fl—fo)}

1
2772
f f
o7 (f )P — 90

(0 1) {fl(f1+fo)} :l}
f Ar*f2f? Ar*f2f?
= 4 exp _ﬂ-—go +exp _ﬂ-—go

8f, f, f,

1
27126, 2’117 J}Z

f? f?

+2cos(4r fot)expL—

1
f Ar?f2 2 4722522
Al 2exp —7[—30 +2cos(4z fot)exp —”—30
8f f, f,

1

272 f 2 f2 1
= g exp(—uj{l+cos(4ﬂ fot)}2 (B1.16)

By using the identity

cos(20)=2cos*(6)-1

JL+c0s(20) =+2|cos(9)], (B1.17)

Eq. (B1.16) reduces to

W t,d)]| 1 = 7, ex 27t [cos (27 ft)| (B1.18)
et =428, 7P T2 wlol |
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B2. Determination of the dilation dg

Consider the chirp signal described by
u, (x)=1- Acos(Bx* -C). (B2.1)
Its wavelet transform calculated by using the Morlet wavelet of Eq. (2.12) is

w (t,d)=%1exp{—j27z f, (XT‘tj}exp{—[(X—zt)/d ]Z}

[1— Acos(Bx’ —C)]dx

_i ]3 exp —j272'ng+ j272'fg'[ ~ x2 = 2xt +12
\ﬂi_w d d 2d?

{1—§(exp[j(8x2 —C)}rexp[—j(sz —C)})}dx

1 (0 jerty fex ¢ (1 deaty)
= —— | ——
da P e g ) TP T

[1—§exp{j(8x2 —C)}—?exp{—j(sz —C)}}dx

d
A N . 1 t j2xf
~Lexp(-jc) [e B——— [x*+]| -~ |xld
> xp(-j ).[O xp{(J 2d2jx +(d2 ] ]x} X

A N f . 1 t j2xf
——exp(jC) | expi| —jB——— |X*+| —— g
Al )L p{( : 2d2j +(d2 d

By using Eqg. (B1.6), the first integral of Eq. (B2.2) becomes



2 x2 t j27rfg
Jexpi—om* g

d?( t°
:\/ﬂd exp 7(

=/2zd exp(

xbdx= |—Z _exp
~1/2d?
j4ﬁfJ__4ﬂJf;J}

t2
2d?

The second term of Eq. (B2.2) becomes

_gexp(—jc)zexp{—(

A .
=—Zexp(-jC
2exp( iC)

T e

L —ijsz{

2d

2

FEEE

j2rft ~

A . 2702
= —_—— —_ C _—
2exp( J )Vl—jZdeeXp{z(

1- j2Bd?)

X
1- j2Bd?

2d?

t?  jarft 47r2fg2
d¢ d® 2

d2
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(B2.3)
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:——ex
P(- V1— ZBd2 [1 j2Bd?

(;;2 2z it j} (B24)

The third term of Eq. (B2.2) becomes

A N[ 1
_EeXp(JC)_[CeXp{_(ZdZ

exp

ﬁ_ jarft _47r2 fg2
.Lzexp d4 d3. d2
1+ j2Bd 4(1+128d2j

A .
=2 C

2exp(J )
2d® 2d°?

__éexp(jc) Zﬂ—dzexp d—2
2 1+ j2Bd? 2(1+ j2Bd?)
t*>  jarxft Ar? fg2
d¢ d® d?

Ad . 27 1
= ———eX C ex
y Pl )V1+j25d2 p{1+j28d2

t? 2z f t
(Zdz-J 5 g-—ZHZfJJ} (B2.5)

Substitution of Egs. (B2.3), (B2.4) and (B2.5) into Eq. (B2.2) gives




2 j2rft
W(t,d):iexp(— LS Ll

Jd 242

d

2 2z f t
]{x/ﬂdexp[t _1eml _2ﬂ2f2j

2d? d g
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Ad . 2 1 t2  j2xft
——e€X — C ex _ g _2 21:2
2 XPICN s p{l—jZde(Zdz a

2 j27f t
“Adexp(jC) ?ﬂ _exp _1 : t 2_] ADJPIPS
2 1+ j2Bd 1+ j2Bd*| 2d d

= 2zd exp(-27°17)

A
——exp

27d

—ic) |—===
2 (=i¢) 1- j2Bd?

t2

1
ex —
" p{(l—jZde

A
——exp

:

27zd

2d2

oy [2rd
2 (i¢) 1+ j2Bd?

(

1 1 jZﬂTgt_ Zﬂzf;
1- j2Bd’ d  1-j2Bd?

1 t? 1 jerft 27 f}
exp - 2—1 > . 2_1 g- : g .
1+ j2Bd 2d 1+ j2Bd d 1+ j2Bd
=2zd exp(-27°17)
. zd

—Aexp(-JC) —/————~

P(-ic) 2(1- j2Bd?)

tZ

j2Bd?
exp : -
1-j2Bd

—Aexp(jC)

2d

t2

zd

j2Bd? )j2rft 27°f?
> {1-j2Bd?) d  1-j2Bd?

2(1+ j2Bd?)

ex —j2Bd? —j2Bd? \j2zft  27°f]
P 1+ j2Bd? )2d® |1+ j2Bd? d 1+ j2Bd?®

=2zd exp(-27°1})

—Aexp(-jC)

7d (j8ﬁ+4szBd—2ﬁH;J
j p

eX
2(1- j2Bd?

1- j2Bd?

|
|



—jBt2—477fgth — 27712

. T
—-Aexp(JC) | ———eX
P(ic) 2(1+ j2Bd?) p( 1+ j2Bd’
The second term of Eq. (B2.6) is

—Aexp(-jC)

d jB'[2+47rfgth—27z2 fg2
——————5 eXp . 5
2(1- j2Bd?) 1- j2Bd

2
_ hexp(-iC) / Ji-j2Bd?
2 \J1- Jzeol2 \/1 j2Bd?

ox jBt +47[fth 27[2f2 1+j2|3d
P 1- jZBd2 1+jZBd

2
- Aexp(_jC) /2d {\/1 i2Bd® 1+ j2Bd’ }

1- j2Bd? 1 j2Bd?
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g J (B2.6)

[jBtz +47f,tBd —27°f2 —2B’t*d* + 8z f tB%d® -
exp

1+4B3d*

= —Aexp(—-jC) | —

7d | |/(1- j2Bd?)(1+ j2Bd?)(1+ j2Bd?)

2 1+4B%d*

j47z2fngd2]

ex
P 1+4B3d*

zd | |1+ j2Bd
= Aexp(-iC)\ - {\/m}

[jBtz +4rftBd - 2717 —2B’t*d* + j8x f tB°d® -

j47z2fngd2]

1+4B3d*

(jBtz +4r f,tBd —27°f2 —2B*t*d” + |8z f tB’d® -
exp

244
:—Aexp(—jC)@ [x/1+4Bd exp{Jtan ZBd }}

J1+4B%d*

j47z2fngd2]
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jB? + 47 f tBd 272 fZ ~2B%2d? + 8 f tB%d° - j4x*f2Bd?
ex
P 1+4B%d*

1 tan™'(2Bd?
~A(1+4B%d*) 4@exp[j{#—cﬂ

jBt? +4rf tBd —27°f> —2B**d* + j8x f tB*d® - j4x*f’Bd?
exp g 9 9 g

1+4B3d*

The third term of Eq. (B2.6) is

7d —jBt? —4rftBd -2 fg2
1+ j2Bd?) P 1+ j2Bd?

2
_ _nexp(jC) [zd Ji+ j2Bd?
\/1+12de \/1+128d2

ox —jBt’ -4z f tBd -27°f; 1-j2Bd’
P 1+jZBd2 1= j2Bd?

—Aexp(jC) 2(

2 H 2
_ Aexp(JC) /2d {Jlﬂzsd 1 j2Bd }

1+ j2Bd? 1- j2Bd?

—jBt? —4rf tBd —27°f2> - 2B°t*d* + j8x f tB*d® + j4x*f’Bd®
exp g g g 9
1+4B%d*

[zd |1+ j2Bd?)(1- j2Bd?)(1- j2Bd?
= -Aexp(i0) |5 ! )(1+452d4 ! )

—jBt?—4xf tBd —27°f? —2B’t*d* + j8x f tB*d® + j4r* f’Bd?
exp J g g g g
1+4B%d*
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. [zd | f=j2Bd?
= hexei€) 7{\/m}

[—jBt2—47zfgth — 2717 —2B’d* + j8x f tB°d® + j4x® fngdzJ
exp

1+4B3d*

~ _nexp(jc), ™4 [mexp{jtan‘l(—zw)}};

2 V1+4B%d*

ox —jBt2—47rfg'[Bd—27z'2 f92—282t2d2+ jgﬂfgtBZdS_,_ j472'2 fngdz
P 1+4B*d*

L tan™(2Bd?
= —A(1+4B%d*) 4@exp[j£%)cﬂ

oy o ZIBE 47 ftBd 277 £ - 2Bd” + jBr {,tB7d° + j4x® f7Bd”
P 1+4B%d*

Thus, Eq. (B2.6) becomes

W (t,d)=+2zd exp(-27°f7)

1 tan™'(2Bd?
~A(1+4B%d*) 4@exp{j[¥—cﬂ

ox jBt? +4xf tBd —27°f-2B%°d* + j87 f tB*d° - j4z°f’Bd’
P 1+4B%d*

1 tan *(2Bd?
~A(1+4B%d*) 4\/?“{1'[%(:}}

oy o ZIBE 47 f,tBd 27" 17 2B’ + jBr {,tB7d° + jax’ f7Bd”
P 1+48%d°

= 2zd exp(-27°17)
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Azt tBd-27°f7 —2B’*d?
~A(1+4B%" ) | 2d exp{ A - Z82;4
+

Bt?+87,tB%d*~47*f?Bd? tan™(2Bd’) H
+] -C

+
1+4B%d* 2

d —A7zf tBd — 272 f? —2B%%d?
~A(1+4B%d* ) = exp i
+

.{BtZSﬂfgthd34ﬂ2fngd2 tan*(2Bd?) H
- —ct|

+
1+4B%d* 2

(B2.7)

At t=0, Eq. (B2.7) becomes

7z'd X —272'2 fgz
P 1+4B3d*

~477f2Bd? tan”'(2Bd?) CH

_+_

1+4B%d* 2
L d —27°f?
“A(1+4B%d*) [T exp| —F e
( ) 2 P T amd

~47%f?Bd? tan*(2Bd?)

-] —+ -C

1+4B%d 2

_2 2 f 2
=27zd eXp(—27Z'2 fgz)_Lﬂ-dlexpL#J

(1+4B%d* )" L+48%d"

47%f2?Bd? tan‘l(Zde)
0s g - +C+.

B2.8
1+4B%d* 2 ( )

Plots of the first and the second terms of Eq. (B2.8) are shown in Fig. 6.19, where its
maximum value that corresponds to the center of the object appears at the dilation

10g10(do) = —3.3. In order to determine mathematically the dilation do, the derivative of
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Amplitude (a.u.)

log,(d)
Figure A2 Plot of each term in the Eq. (B2.8).

Eq. (B2.8) with respect to d is calculated. The value of the dilation that gives this
resultant derivation equals to zero is equal to the dilation do. However, as illustrated in
Fig. A2, plots of each term of the Eq. (B2.8) by using the same parameters as those
used in Fig. 6.19 show that the first term is much smaller than the second term. Thus
the first term can be neglected. In this figure, the first term appears as a straight line
because its amplitude is in the order of 10, while that of the second term is 107.

After neglecting the first term, Eq. (B2.8) reduces to

[ _2 21:2
W(01d):_Lﬂ-dlexp %
(1+ap7gt)e  \1T4B

4z*f?Bd? tan*(2Bd?)
XCOS - +C (B2.9)
1+4B“d 2
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which is a multiplication of three terms. A plot of each term of Eqg. (B2.9) is shown in
Fig. A3. It can be seen that the first term varies slowly and can be approximately
considered as a constant compared to the second and the third term. Thus, by

neglecting the first term, Eq. (B2.9) reduces to

W (0.g —27°f; 47°12Bd’ tan‘l(Zde) cl. @210
, =—exXp| ————— |CO0S - + . .
(0.d) P\ T3 28%° 1+4B%d* 2
1F i
~ 05F i
= 2" term
Q
:3 0
g 1% term 3 term
05 | P -
1 i
45 -4 35 -3
log,,(d)

Figure A3 Plot of each term in the Eq. (B2.9).

The derivative of the Eq. (B2.10) with respect to d is

—27° fg2

87° f/Bd* —327° f7B°d° —2Bd (1+4B°d*)

W'(O,d):exp(

.

1+4B%d*

4z*f7Bd’

1+4B%d*

(1+4B%*)

1(28d2)+C}—

—ltan‘
2

327°2B%d°
(1+ 4|32d“)2



162

ex ~27°ty cos 4r7f, Bd 1tan71(28d2) ¢ (B2.11)
27} 4r°17Bd” 1 + :
Pl TraB7d 1+4B%d" 2

The maximum position can be determined when Eq. (B2.11) is equal to zero. This

yields

47 f?Bd?
n L“—itan‘l(ZBdZ)JrC
1+4B“d 2

1672'2fngd2

TIAt ler B 1 4Bt (A1)
Arctan of Eq. (B2.12) is
4 2 f Zde
%_itan'1(28d2)+C+n7z
1+4B°d" 2
st gl (B2.13)
B 4r*fl -167°f’B°d* -1-4B*d* ’ :

where n is an integer number which represents the periodicity of the tangent function.

By grouping the arctan functions, Eq. (B2.13) becomes

47 f2Bd?
1+4B%d°

1[ 167 f2Bd? J
+C+nr=tan

4r*f? 167" ?B%d* ~1-4B%d*

+ltan’1(28d2) (B2.14)
2

In order to determine the value of d that gives the desired maximum, the right hand
side (RHS) and the left hand side (LHS) of Eq. (B2.14) are plotted as a function of
dilation for different value of n. Figures A4.a and A4.b show the plots of Eg. (B2.10)
and the RHS-LHS of Eq. (B2.14), respectively. The RHS is represented by using the

dashed line, while the LHS by the solid line. The dilations at the crossing points of the
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Figure A4 Plot of Eq. (B2.10) (top) and the LHS and RHS of Eq.

(B2.14) (bottom).

two lines are the solution of the Eq. (B2.14). It is clear that for n = —1, there are two

crossing points one of which corresponds to the desired maximum. Let us assume that

the solution of Eq. (B2.14) is in the form of

d= (B2.15)

©
NE)
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with c¢ is a constant. Substitution of Eq. (B2.15) and n = —1 into Eq. (B2.14) gives

4r*fic?
Trac O

I 167 2c?
B 47°f7 —167"f2c* —1-4c*

}+%tan‘1(202). (B2.16)

Plots of the RHS and the LHS of Eq. (B2.16) as a function of ¢ are shown in Fig. A5
by using the dash and the solid lines, respectively. Here, the parameter C = /4 is used
for the line and C = /2 for the spherical object. It is found that there are two solutions
for each type of the objects. However, from Fig. A4, the solution that gives the higher
value of the dilation produces the desired maximum. Thus, ¢ = 1.86 and ¢ = 2.16 are
used as the solutions of the Eq. (B2.16) for the line and the spherical objects,

respectively. By substituting these values of ¢ and the definition of the parameter B

1 0 | I I I

5
s
[P
he]
Ei
=
g
<
}LHS
4 I ] ! I
0 1 2 3 4 5

c(a.u.)

Figure A5 Plots of the LHS and the RHS of Eq. (B2.16).



into Eq. (B2.15), the dilation do that gives the maximum is equal to
d, =1.05v1z
and

d, =1.224/2z,

for the line and the spherical objects, respectively.

B3. WT of modulation of chirp signal by a cosine function

Consider a modulated signal
u, (x) =1- Acos(Bx* —C)cos(Dx).

Its WT calculated by using the Morlet wavelet given by the Eqg. (2.12) is

W (t,d):%iexp{—jh f, [%)}exp{w}

[l— Acos(Bx2 —C)cos(Dx)]dx

jex { j2xt, x+j27;fgt_[x2—22;2t+tzj}
{1—§(exp[1('3x2—C)}exp[_j(sz_C)])

x%{exp(jDx)+exp(—ij)}}dx

_%T t L fJx+j(Bx2+Dx—C)}dx

—t*  j2rft NG t  J2rf,
T (d d J{Iex'{zdz (df a ™

165

(B2.17)

(B2.18)

(B3.1)
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x—j(sz—Dx—C) dx

At ¢ [t jeaf,

+ —_—
2d® (d? d
AT -x* [t j2xf,

207 a2 d

X+ j(Bx2 —~ Dx—C) dx

. 2 2 f ]
A X t _Jerly x—j(Bx2+Dx—C) dx} (B3.2)

207 (07 d

By taking Eq. (B2.3) into account, the first integral of Eq. (B3.2) is equal to

< X2 t jenf
I exp{—ﬁ+(F—Tg]X}dX

2 j27f t
:\/ﬂdexp(ztdz—J 7; g —anfgzj. (B3.3a)

By using the definition of Eq. (B1.6), the second integral of Eq. (B3.2) becomes

< —x? j2rf
jexp{ZSZJ{%—J Z g)x+j(Bx2+Dx—C)}dx

2 j2r f
:exp(—jC)J'exp{{Z;2 —jB}(2 +(%_J Z 0 +jD]x}dx

—00

) _ s ~(t/d? ~ j2xf, /d + D)
w10 e

=exp(—jC) —Zﬂdz exp —2d2
1- j2Bd? 4(1- j2Bd?)

£_47r2fgz Do j47zfgtJr j2Dt+47zng
4 2 3 2
d d d d d
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. 2 d?
=d Te /
exp(-iC) 1—j28d26Xp{2(1—j28d2)

(t? {j4nfg_jzo}t_4ﬂ2g{_ : 4ﬂ¢gDJ}

L R ERT D™+

d? d
] 27 1
=dexp(-jC ex
(-] )V1-j28d2 p{l—jZde

2 2 f 242
(thz_{l Z g_jD}t—Zﬂzfgz—Dzd +27rngdJ} (B3.3b)

In analogy, the third, the fourth, and the fifth integrals of Eq. (B3.2) becomes

< —x? j27 f
J‘exp[222+(é—J Z g]x—j(sz—Dx—C)}dx

) 27 1
=dex C ex
p(i )\jl+j28d2 p{1+j28d2

2 '2 f 242
U 1378 ipli—2z2e2-P9 ortpa |l (B3:30)
2d? d g 2 ‘

< —x? 27 f
{ X (L_J ” gJX+j(BX2—DX—C):|dX

) 27 1
=dexp(-jC ex
p(-] )Vl—jzsdz p{l—jZde

2 2 f 242
[t _[J T, }I—Z;ﬁfgz_Dzd _Zﬂngdj}, (B3.3d)

4D
.

and

K —x? j2r f
J.exp{zgzj{%—J ;r gjx—j(Bx2+Dx—C)}dx

] 2 1
=dex C ex
(i )V1+j23d2 p{1+j28d2
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2 2 f 242
t 2_ 17 L ipft—27252 -0 4" _ortDd |l (B3.3¢)
2d d 2 ’

respectively. Substitution of Egs. (B3.3) into Eq. (B3.2) yields

242 4 207 d 9

—A—dex (-iC) 2%__ex L

g PN 2807 PP |10 2B

2 2 f 242
U137, ipf-2s2¢2 P9 ort D
207 | d T :
Ad . 2r 1
———exp(JC ex

5 PUC) T opd p{1+j28d2

2 2 f 242
U137 L iplt-2s2¢2-P9 1 ort D
20 | d T :

—A—dexp(—jC) 27 exp 1
4 1- j2Bd? 1- j2Bd?

2 2 f 242
( t {J Ak +jD}—2;z2f;—D d —ZﬂngdJ}
2

—t2  j2xf t 2 j27f t
W(t,d):\/laexp{ LT j{@dexp[t 17, —Zﬂzfzj

242 | d

—_Adexp(jC) 2z exp 1

4 1+ j2Bd? 1+ j2Bd?

12 jerf. D3d?

(Zdz_[ hipjior ;-2 oripalll @34

The first term of Eq. (B3.4) is

2 j2xft 2 j2xft
J\Z/_%d ex (2;2+J 7; d ]exp(ztdz—J 7; : —27z2f92]
=2zd exp(-27°17). (B3.5a)

The second term of Eq. (B3.4) is



2 [j2rf “d*
exp .l 2 tz_ J ﬂ-g_jD '[—272'2f2_Dd +27f,Dd
1-j2Bd?|2d | d T2 g

—ﬂexp(—jc) 2r exp 1 t2
aJd 1- j2Bd?® 1-j2Bd* | 2d?

it 242 2 2z f t
S [ELCAL RN 1 ST PET SR P oY SR il
q g 2 9 2d d

A ' 27[d 1 tz J27Z'ft .
_Aon(—ic) |27 - .+ jDt
7 XPEIC) T8 p(l—jZBdZ{Zd2 a

D22 : t* i 2 gt
~27* i = —+271,Dd —(1- j2Bd?) - +(1- ‘Zde)Tg}j

_A . 27d 1 t’ i
_-A ic 1-(1- j2Bd?
5 P )mexp£1—j25d2{2dz[ (2607

~ j2”fgt[l—(l—j28d2)]+ th—27z2fgz_ D22d2 +27zngd}]

—t>  j2xft
_E—exp(2;2+1 i gj{—AdEXp(‘jC) -

d
A ) 27d 1 t
_Aesn(ic e 2Bd?
exp(-i )\/1_1-7(,2 Xpil_jzsdz{ZdZ(J )
2z ft

242
(j2Bd?)+ th—zszgz—%”ﬂngd}]

_A . 27d 1 i
=—exp(-jC ex Bt
2 p(-iC) 1- j2Bd? p[1—j28d2{1

+47f Bdt+ jDt-27f; - D*d*/2+ 27 f,Dd})

- Pexp(-iC) |20 exp| | L1260
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{iBt*+47f Bdt+ jDt-27"f - D*d*/2+ 27 f Dd})

H 2
ZE I 1+12|z,d4{.8t2
1- j2Bd 1+4B%d

+47f Bdt+ jDt-27f7 -D*d*/2+27f,Dd})

_A - 27Z-d 1 - 2
=—oexp(-jC ex Bt®+4r~f Bdt
¢ PEIC e '0(1+4E52d4{J s

+jDt—277f} - D?d?/2+ 27 f,Dd - 2B?*d*’ + j8r f tB*d’
~2BDtd® - j4z* f?Bd? - jBD?d* + j47rngDd3})

-A .
=Zexp(-jC
2 exp(-jC)

27d exp(
1- j2Bd? 1+4B%d*

{~[2B°d’t* + 2BDtd’ — 47 f Bdt—27 f,Dd + D*d’/2+27° ]

-A .
="exp(-jC
2 exp(—jC)

+j[ B’ + Dt+87ftB’d*~4z" f7Bd* ~BDd" + 47 f,BDJ’ |}

- Aex (-iC) 27d exp( L
— g P 1- j2Bd? 1+4B%d*

{—[\/EBdt—(\/Eﬂ' f, —DTSHZ +j[ Bt* + Dt

+87 1B’ ~ 47 1/Bd* ~BD’d* + 47, BDA" |} (B3.5b)

The third term of Eq. (B3.4) is

1 ox -t Jeriyt A ex

—_— + — —

N P(J 2Bd2 1+JZBd2
2 2 f 242

(%{J . —jD}t—Zﬁzfgz D | 2nt Dd]H
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_—Ad exp(jC) 27 exp 1 t?
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47 Bdt+ jDt-27f -D’d*/2+ 27 Dd})

_A - 27Td 1 - 2
= Lexp(jC) [—Z5 _exp| ———{-jBt*— 4z Bdt
5 &Plic) 11 j2Bd? p[1+452d4{ . "

+jDt—277f? - D?*d?/2+ 27 f,Dd - 2B?*d*t’ + j8r f tB*d’®
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The fourth term of Eq. (B3.4) is

1 ox —t? j27rfgt
+
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{iBt +47fBdt- jDt-27"f - D’d*/2-27f Dd})

27d 1+jZBd2 .
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+47f Bdt- jDt-27"1 -D’d’/2-271,Dd})
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+2BDtd® - j4z* f?Bd? - jBD?d"* - j47rngDd3})

—_—Aexp(—jC) 27d exp( L
4 1- j2Bd? 1+4B%d*

{~[2B°d** -2BDtd* ~ 47 f Bdt+27f,Dd + D’d*/2+27° ]

g
+j[ B’ ~Dt+87ftB’d*~4x" f/Bd* ~BD’d* ~47f,BDJ’ |}
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1- j2Bd? 1+ 4B%d*
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+87f,tB’d° —47"{7Bd* ~BD’d* ~47f,BDA’ }) (B3.5d)

-A .
= exp(-jC
2 exp(-jC)

The fifth term of Eq. (B3.4) is
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+j[~Bt* - Dt+87f 1B’ +47° 1/Bd’ + BD’d* + 47, BDJ" |}

—_—Aexp(jC) _2md exp[—1
4 1+ j2Bd? 1+4B%d*

{[ﬁBdh{ﬁﬂ f, +DTSJT +j[-Bt* - Dt

+87f,tB’d +47°f/Bd” +BD’d* +471,BDd° ]}, (B3.5¢)
Substitution of Egs. (B3.5) into Eq. (B3.4) yields

W (t,d) =~/2zd exp(-27° f;)

_Aexpi—jC) li’;gdzexp[m{ {\/_Bdt [\/_ﬂf _ﬁﬂz

+j(Bt* + Dt+87f B’d’t ~47° f7Bd” - BD*d"* + 47 f,BDA’)} |

Aexp(jC) | 2xd ’
- Bt —
4 1+j25d2eXpL+4 ’q* { {\/_ J{‘/—” \/Eﬂ

+(~B* + Dt+87 ,B’d’t + 47° {7Bd” + BD’d* ~ 47, BDA’ )} |

Aexp(-jC) [ 2xd Dd |
- — | V2Bdt-| V2r f, + ==
4 1- j2Bd? p[1+4B 2q* { {J— (Iﬂ 9+J§ﬂ

+j(Bt* - Dt+87f,B%d* - 47" {7Bd” ~-BD’d" -4z f,BDA’ )| |

Aexp(jC) | 2xd ’
_ Bdt f
4 1+j25d2eXpL+4 d* { {\/_ J{\/—ﬂ +\/EH

+j(~Bt" - Dt +87f,B°d’t+ 47" f7Bd* + BD'd" + 47 1,BDA’)} |  (B36)

Equation (B3.6) consists of five terms. The first term is constant, while the other
terms are the multiplication of a Gaussian function and a complex exponential
function. The amplitude of each terms is determined by the Gaussian function which

acts as an envelope function. Figure A6 shows the plots the first term and the
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Figure A6 Plots of the first term and the Gaussian functions of the

other four terms of the Eq. (B3.6) at the dilation do.

Gaussian function of the other four terms of the Eqg. (B3.6) along the dilation

d, =1.05v4z. It is found that the amplitude of the first term which is in the order of

107*° is much smaller than those of the other four terms which are in the order of

107%. Thus, the first term can be neglected and Eq. (B3.6) reduces to

__Aexp(=jC) | 2xd ~ Dd i
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Aexp(—jC) | 2zd Dd T’
~ exp| ——5— Bdt | V27 f, +—=
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Aexp(jC) [ 2zd 1 pd\|
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