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The main goal of this thesis is to study the time dependent behavior
in two dimensional space of an air pollutant which is released into the
atmosphere from the line source in the presence of an inversion layer. We
use the numerical approach, which is based on the discretization of the time
dependent advection-diffusion equation governing the evolution in time of
the concentration of pollutant downwind of the line source at height » above
the ground. The resulting discrete problem is obtained by a fractional
step method. The initial condition is taken to be zero concentration of
pollutant. The flux of pollutant is assumed to be zero at the ground and at
the inversion layer. The concentration of pollutant at the source is assumed
to be a é-function, which gives rise to a steady emission rate of pollutant
from the source. We implement the numerical method using both Maple
and Matlab in order to obtain the solution of the problems. The contour
line of concentrations for different values of advection-diffusion coefficients,

were presented.
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Chapterl

Introduction

Air pollution is the presence of undersirable material in air, in quantities large
enough to produce harmful effects. This definition does not restrict air pollution to
human causes, although we normally only talk about these. The undesirable materials
may damage human health, vegetation, human property, or the global environment as
well as create aesthetic insults in the form of brown or hazy air or unpleasant smells.
Pollutants are known that may do all of these things. Many of these harmful materials
enter the atmosphere from sources currently beyond human control. However, in the
most densely inhabited parts of the globe, particularly in the industrialized countries,
the principal sources of these pollutants are human activities. These activities are
closely associated with our material standard of living. To eliminate these activities
would cause such a drastic decrease in the standard of living that this action is seldom
considered. The remedy proposed in most industrial countries is to continue the

activities and control the air pollutant emissions from them.

1.1 Source of Air Pollution

From the fourteenth century until recently, the primary air pollutants have been
coal smoke and gases released in industrialized areas. Unfortunately, control of
pollutants rarely takes place prior to public outcry, even though the technology for
controlling pollutants may be available. Early recognition of pollutants as health
hazards has not resulted in pollution reduction, only when personal survival is at
stake has effective action been taken against pollutants.

There are a number industrial processes which can also be source of air pollutants,
with each industrial branch having its own problems with keeping the air clean.
A description of the numerous processes with their specific emissions cannot be
undertaken in this thesis. The interested reader is referred to special literature on this
subject.

In developing countries, though, with less industrialization and motorization, the
technical processes applied have not been optimized yet, so that their specific emissions

are frequently higher.



A great deal of industrial pollution comes from manufacturing products from
raw materials (iron from ore, lumber from trees, gasoline from crude oil, and stone
from quarries) Each of these manufacturing processes produces a product, along with
several waste products which we term pollutants. Occasionally, part or all of the
polluting material can be recovered and converted into a unstable product.

Industrial pollution is also emitted by industries that convert products to other
products (automobile bodies from steel, furniture from lumber, paint from solids and
solvent, and asphaltic paving from rock and oil).

Industrial source are stationary, and each emits relatively consistent qualities
and quantities of pollutants. A paper mill, for example, will be in the same
place tomorrow that it is today, emitting the same quantity of the same kinds
of pollutants unless a major process change in made. Control of industrial
sources can usually be accomplished by applying known technology. The most
effective regulatory control is that which is applied uniformly within all segments
of industries in a given region, e.g., “Emission from all asphalt dryers in this

region shall not exceed 230 mg of particulate matter per standard dry cubic meter of air.”

1.2 Effect of Air Pollution

We control air pollution because it causes harmful effects on human health,
property, aesthetics, and the global climate. Because the air pollution laws and other
industrialized countries are mostly concerned with protecting human health, we will
consider the effects on human health.

In Bhopal, India, in December 1984, a release of methyl isocyanate from a
pesticide plant killed about 2500 people. Similar leakages of hydrogen sulfide from
natural gas processing plants have killed hundreds of people. These tragic events
attract wide attention. Normally, they are not considered air pollution evens, but
rather industrial accidents. The damages to human health caused by air pollution
are of a very different type. The materials involved are rarely as toxic as methyl
isocyanate or hydrogen sulfide. They are generally not released in concentrations
nearly as high as those that cause such disasters. Their effects normally do
not result from a single exposure (methyl isocyanate and hydrogen sulfide can

kill in minute or two), but from repeated exposure to low concentrations for long periods.

1.3 Primary Contents on Air Pollution Study

The settlements of the global environmental problem depend on the status of

pollutant emissions, economic developing level, environmental investment intensity,



controlling strategy and managing level in different subregions (Asia, Africa, North
America and Europe). There is abundant evidence that air pollution has adverse
effects on man’s health and well-being, on animal, plants and materials, and on other
environmental media and climate.

East Asia is one of the regions where concentration of acid pollutant due to
man-made emission and secondary pollutants are the highest in the world (Kondo
1991). Many countries in East Asia are speeding up the energy system, population and
economic increase at the top speed. If the present trend is continued, Asia will become
the biggest source of SOy and NOj in the world by the 21st century. A substantial
portion of emission is transported by winds, hundreds to thousands of kilometers from
the source. Many countries are attempting to minimize their local pollution problems
by installing taller stacks. As a result, serious transnational pollution is made in broad
of East Asia.

Comprehensive field experiment on environmental parameters, which include data
of physical, chemical, and biological process, for different biological systems (e.g.
urban, water, forest, agriculture, barren land, grass land, and sands) are very necessary
to obtaining the data on air-land exchange, fluxes of mass momentum and heat, and
ecological effects. The data can provide sound bases for further research on regional
air pollution and biological environment (Tester 1990).

The Cross-Appalachian Tracer Experiment (Draxler 1988) consisted of seven
ground-level tracer gas releases from Dayton, Ohio or Subury, Ontario during
1983. The concentration profiles measured by aircraft 600-900 km downwind of the
release locations were discussed and compared with some model results. In general,
concentration decreased with height in the upper PBL (planetary boundary layer)
where the aircraft measurements were made. The results of a model sensitivity study
suggested that the shape of the profile be primarily due to wind whose velocities
increase with height and relative position of the sampling with respect to the upwind
and downwind edge of the plume.

The tree-dimensional (3-D) wind, temperature and rain fields can be generated
with mesoscale meteorological model (Anthes 1987, Guo 1994, Walko 1995). Different
PBL models (Longhetto, Lumley 1980) can forecast turbulent vertical structures and
variations of turbulence statistics with height in PBL for different terrain. The
mountain and valley breeze, land and lake Breeze, land and river breeze and circulation
of urban heat island are very important to correctly calculate air pollution distribution.

Effect of vertical inhomogeneity and non-stationary of PBL (planetary boundary
layer) parameters on the mesoscale diffusion (IAP 1990) is very obvious. Vertical

exchange processes of species and momentum in troposphere is very complex (Gifford



1988b). The mesoscale turbulent diffusive patterns can be derived by numerical
methods (IAP 1990). Effect of the mesoscale local circulation on diurnal variation of
the concentration can be studied with the meso—/3 model (Walko 1995).

Air pollution law in most industrial countries is based on some kind of permitted
concentration of contaminants. To plan and execute air pollution control programs
designed to meet the requirements of these laws, one must predict the ambient air
concentrations that will result from any planned set of emissions. Even if we did not
use this type of air pollution law, we would probably use some other kind of law
that made some use of predictions of ambient contaminant concentrations. These
predictions are made by way of air pollutant concentration models.

The perfect air pollutant concentration model would allow us to predict the
concentrations that would result from any specified set of pollutant emissions, for any
specified meteorological conditions, at any location, for any time period, with total
confidence in our prediction. The best currently available models are far from this

ideal.

1.4 Mathematical Model Formulation in Air Pollution

Most advection-diffusion models of an air pollutant use the Gaussian plume idea,
whitch also is a material balance model. In it, one considers a point source such as a
factory smokestack (which is not really a point but a small area that can be satisfactorily
approximated as a point) and attempts to compute the downwind concentration
resulting from this point source. The schematic representation and nomenclature are
show in Figure 1.1, where the origin of the coordinate system is placed at the base of the
smoke stack, with the z—axis aligned in the downwind direction, The contaminated gas
stream (normally called plume) is shown rising from the smokestack and then level-

ing off totravel in the x direction and spreadingin the y and z directions as it travels.
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Figure:1.1 Coordinate system and nomenclature for the Gaussian plum idea.

The well known process of diffusion of pollutants downwind from a source is
assumed to be governed by the differential equation

Jc Jc Jc 0 _ e 0 _ de 0 . de

where ¢(z,y, z,t) is a concentration of pollutant at any point (z,y, z) and at the time
t,u, w are the horizontal and vertical components of the wind velocity, and K, K, K.
are the coeflicients of diffusion along the z—, y—, z— directions, respectively.

We make the following assumptions:

(1) The direction of the wind is chosen along the z—axis.

(2) The meteorological conditions are such that horizontal advection by the wind
dominates the horizontal diffusion and that vertical diffusion dominates the vertical
advection by the wind.

By the assumptions, we have

%>>i K% d ﬁ<<ﬁ K%
u@x oz o an w@z 0z 0z )

Omitting the negligible terms of equation (1.1) , we get

de de 0 . Oc 0 . de

Analytic solutions of equation (1.2) for steady-state conditions have been reported

by several investigators (Pasquill 1962, Rounds 1955, Sutton 1953, Smith 1957) for



different boundary conditions and different expression for u, K, K, as functions of the
independent variables. Time dependent analytic solutions of equation (1.2) however,
are not known for arbitrary functions u, K,, K,. We also assume that we have a
uniform line source along the y—axis. Thus we can eliminate the diffusion in the
y—direction. This leads to the equation

b oo _ 0 (i
Ot u@x 0z 0z )

We first simplify the problem further by assuming that the wind velocity w and the
diffusion coefficient K, are independent of x, thus we can write the equation for the

concentration ¢ = ¢(z, z,t) in the final form
dc dc g (.. 0Oc

Suppose we have a source of pollutant at height A on the z—axis. We assume zero flux
of concentration at ground level z = 0 and at height 2 = H, the bottom and the height
of the inversion layers, respectively. Thus, we solve equation (1.3) for all ¢ > 0,2 > 0
and 0 < 2 < H.

The initial condition is assumed to be zero concentration of pollutant everywhere
in the domain. The flux of pollutant is assumed to be zero at the ground and at the
inversion layer located at height H. The concentration of pollutant at the source is
assumed to be a §—function, which gives rise to a steady emission rate () of pollutant
from the line source.

The initial condition:
c(z,2,0)=0 for r>0,0<z<H (1.4)

The boundary condition on the z—axis:

Q

c(0,z,t) = )

d(z—h) for t>0,0<z2< H (1.5)

The boundary conditions on the inversion layers:

0
8—2(90,0,0:0 for  2>0,6>0 (1.6)
Jc

(x,H,t) =0 for x>0,t>0 (1.7)

0z



1.5 Non-Dimensional Form

We now non-dimensionalize the problem by dividing the variables z, z,t, h, ¢, u, K

H?u(H H? H
u(H) H, @ yu(H), K(H), so that

respectively by the expressions

K(H) 77 K(H) u(H)
Remark 1.5.1
D¢olq . Ocolg 0 P d¢olq
Otolq Morod 0z 02014
then
acnew Q—H acnew . Q 1
u(H) u(H)
2 + Upew U(H) 2
atnew — axnew
K(H) K(H)
acnew . Q(HI{)
U
K, K(H
8 new ( ) 8Znew . H
- 8Znew H
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We use the same notation for the non-dimensionalized variables. In these new

variables the resulting system is

Jdc Jdc d Jdc
°° = = Z(rZE Yz > 0,0 1,t>0 1.8
8t+u(2)8x 82( 82) x> <z<1,t> (1.8)
with the initial condition:
c(z,z,0)=0 for r>0,0<2z<1 (1.9)

and the boundary condition on the z—axis:

d(z—h)

c(0,z,t) = o)

for t>0,0<z<1 (1.10)

and the boundary conditions on the inversion layers:

?(x,o,t) — 0 for 2>0,>0 (1.11)
z
de
a(a@,u):o for x> 0,t>0. (1.12)

(Note that in this representation both the emission rate and the height of the inversion

layer base are normalized to unity.)

1.6 The Objective of This Thesis

The main goals of this thesis as follows:

(1) To find the numerical approximation to the solution of the mathematical
model of an air pollutant released into the atmosphere from the line source in the
presence of an inversion layer. The mathematical model consists of the time dependent
advection-diffusion equation. The inversion layer acts as an impermeable barrier to
the flux of the pollutant to higher levels of the atmosphere.

(2) To develop a computer program for predicting the scattering of an air pollutant
by mathematical model.

(3) To use this computer codes to calculated behaviour of an air pollutant for

difference from of wind profiles.

1.7 The Scope and Limitations of This Thesis

We will restrict to the problem given by equations (1.8), (1.9), (1.10), (1.11) and
(1.12). The wind profile and the diffusion coefficient are constants or are functions of

z only.



Chapterll

Preliminaries

2.1 Fractional Step Method

In Yanenko, 1961 the method of splitting (fractional steps) was formulated as a
method for the construction of economical implicit schemes for a system of partial
differential equations. In Yanenko, 1961 only the two-layer systems in fractional steps
were studied. In the paper of G.I. Marchuk and N.N. Yanenko (Marchuk, Yanenko
1966), this method was formulated for systems of differential equations and many-layer
schemes in fractional step for a linear system of integro-differential equations with

respect to an unknown vector function of the form

du

for which the Cauchy problem is correctly posed in some Banach space
u(z,0) = up(z), (2.2)
where
Q=%+ + ...+ Q,, (2.3)

is the representation of integro-differential operator € as the sum of p operators
21,9, ....,9,; the operators €2y, €9, ...., 2, are approximated by operators A;; in such

a way that the following approximate representations are valid

Ao+ A ~ Q5

Ago + Aoy + Aga ~ Qg (2.4)

Ao+ Ay oo+ Ay ~ Q.

(Operators A;; can be of arbitrary structure both difference and integro-differential.)
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The method of splitting is

un—l—l/p —un

= Agou” + Apu P 4 P
-
n+2/p _ ,mn+2/p
- - = Agou” + Agu™ VP 4 Agyut2/P 4 Fy:
’ (2.5)

un‘l'l — un+(p—1)/p

= Apou™ + Aplu”"'l/p + e+ Appu + Fy

T

where

p
Fo=A 3 Y A~E. (2.6)

s=1

2.2 Partial Differential Equations

The subject of PDEs was practically a branch of physics until the twentieth century.

2.2.1 General Form of Partial Differential Equation
The key defining property of a partial differential equation (PDE) is that there is
more than one independent variable z,y,... . There is a dependent variable u, that is
unknown function of these independent variables u(z,y,...). We will often denote its
derivatives by subscripts; thus % = u,, and so on. A PDE is an identity that relates
the independent variables, the dependent variable u, and the partial derivatives of wu.

It can be written as

Faz,y,u(z,y), uz(z,y), uy(z,y)) = F(z, y, u, uy, uy) = 0. (2.7)

This is the most general PDE in two independent variables of first order. The order of
an equation is the highest derivative that appears. Second-order PDE in general case

can be written as
F($7y7u7u1’7 uyvul’x7uxy7uyy) = 0. (28)

A solution of a PDE is a function u(z,y,...) that satisfies the equation identically,

at least in some region of the z, y, ... variables.

2.2.2 First Order Linear Equation

Let us solve
aus + buy =0, (2.9)

where ¢ and b are constants not both zero.
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Geometric method The quantity au; + bu, is the directional derivative of u in the
direction of the vector V = (a,b) = ai + bj where ¢ and j are unit vector of ¢ and
z axes. The directional derivative must be zero. This means that u(¢,2) must be
constant in the direction of V. The vector (b, —a) is orthogonal to V. The lines
parallel to V' have the equations bt — az = constant. They are called the characteristic
lines. The solution is constant on each such line. Therefore, u(t, z) depends on bt — az

only. Thus the solution is
u(t,z) = f(bt — ax) (2.10)

where f is any function of one variable. Let’s explain this conclusion more explicitly.
On the line bt — az = ¢, the solution w has a constant value. Call this value f(c).
Then u(t,z) = f(c) = f(bt — ax). Since c is arbitrary, we have formula (2.10) for all

values of ¢t and z.

Coordinate Method Change variables(or “make a change of coordinates”) to
t = at+ba z = bt — az. (2.11)

Replace all ¢ and 2 derivatives by ¢ and 2" derivatives. By the chain rule,

ou  Ju ot’ ou 9z

=g T arar Tar ar A T
and
_Gu_ auﬁx/_l_@u@t/ .
R T M L T M

Hence au; + bu, = a(auy + bu ) + b(buy — au ) = (a* + b?)uy . So, since a® + b* # 0,

the equation takes the form u, = 0 in the new (primed) variables. Thus the solution

t
is u= f(wl) = f(bt — az), with f an arbitrary function of one variable. This is exactly
the same answer as before.

Now for the sake of simplicity assume that % > 0. Let us study the following
initial-boundary value problem for the equation (2.9), the unknown function u(¢,z)
is given on the sets X = {t =tg,x > 20} and Ty = {t > tp,2 = z9}. Because the
solution of equation (2.9) is a constant along characteristic, then the solution of the

initial-boundary problem can be constructed as follows.

In the domain

{(t,x)pc > x0 + g(t—to)}

the solution is found from the boundary conditions on X.
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In the domain

{(t,w)|x0 <z <wo+ g(t—to)}

the solution is found from the initial conditions on Tj.

2.2.3 Example of Simple Partial Differential Equation
In this section we present a series of examples of PDEs as they occur in physics.
They provided the basic motivation for all the PDE problems. We shall see that most
often in physical problems the independent variables are those of space z,y,z and

time £.
Example 2.2.1 Transport equation

Consider an air pollution, say, flowing at a constant rate u along a horizontal
pipe of fixed cross section in the positive z direction. A substance, say a pollutant,
is suspended in the air. Let ¢(z,t) be its concentration at time ¢. The amount of
pollutant in the interval [0,8] at the time ¢ is M = fob c(z,t)dz. At the later time
t + h, the same molecules of pollutant have moved to the right by « - k. Hence

b btuh
M:/ c(ac,t)dac:/ clz,t+ h)dz.
0 uh

Differentiating with respect to b, we get
c(b,t)y = c(b+ uh,t +h).
Differentiating with respect to h and putting h = 0, we get
0 = ucy(b,t) + (b, 1),
which is equation
¢t + ucy, = 0. (2.12)

That is, the rate of change ¢; of concentration is proportional to the gradient c,.
Diffusion is assumed to be negligible. Solving this equation as in Section 2.2.2, we find
that the concentration is a function of (z — ut) only. This means that the substance is
transported to the right at a fixed speed w. Each individual particle moves to the right
at speed w, that is, in the zt plane, it moves precisely along a characteristic line (see

Figure 2.1).
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Figure:2.1 ¢(z,t).
Example 2.2.2 Parabolic Partial Differential Equation

Parabolic PDEs occur when propagation problems include dissipative mechanisms,
such as viscous shear or heat conduction. The classical example of a parabolic PDE is

the diffusion or heat conduction equation

2
o oas
Interpretation on a Physical Basis Parabolic problems are typified by solutions
which march forward in time but diffuse is space. Thus a disturbance to the solution
introduced at P (in Figure 2.2) can influence any part of the computational domain
for t > t;. However, the magnitude of the disturbance quickly attenuates in moving
away from P.

The incorporation of a dissipative mechanism also implies that even if the initial

conditions include a discontinuity, the solution in the interior will always be continuous.

N F
\ \
% Domain of influence %
N / \ N
R wi N
t= ti § R .P B§
N (xi h) N
u{o,t)=g(t N R 2v(1,4)=h(1)
s )§ E ox'"’
N \
% ! \
P ) 3  AAANEANNNN NN MNN NN

x
1

X =0 u(x,0) = Ug(x)
Figure:2.2 Computational domain for a parabolic PDE.

Appropriate Boundary (and Initial) Conditions For (2.13) it is necessary to

specify Dirichlet initial conditions, e.g.
u(z,0) = ug(x) for 0<z<1. (2.14)
Appropriate boundary conditions would be

u(0,t) = ¢g(t) and —(1,t) = h(t). (2.15)
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For the boundaries C'D and E'F (Figure 2.2) any combination of Dirichlet, Neumann
or mixed boundary conditions is acceptable. However, it is desirable, in specifying
Dirichlet boundary conditions, to ensure continuity with the initial conditions at C
and F. Failure to do so will produce a solution with severe gradients adjacent to '
and F, which may create difficulties for the computational algorithm. For systems of
parabolic PDEs, initial conditions on C'F and boundary conditions on C'D and FEF

are necessary for all dependent variables.
2.3 Finite Difference Approximations

There are several choices that must be made when developing a finite difference
solution to a partial difference equation. Foremost among these are the choice of the
discrete finite difference grid used to represent the continuous solution domain and
the choice of the finite difference approximations used to represent the exact partial

derivatives in the partial differential equation.

y
7
Solution domain D(x,y)

Jjmax
j+l
j
Jj=1
2

! 2 i-1 i i+l imax x

Figure:2.3 Solution domain D(z,y) and finite difference grid.

The solution domain D(z,y) in zy space for a two dimensional equilibrium
problem is illustrated in Figure 2.3. The solution domain must be covered by a
two-dimensional grid of lines, called the finite difference grid. The intersection of these
grid lines are the grid points at which the finite difference solution to the partial
differential equation is to be obtained. For the present, let these grid lines be equally
spaced lines, perpendicular to the # and y axes and having uniform spacings Az and
Ay, respectively. The resulting finite difference grid is illustrated in Figure 2.3.
Nonuniform grids, in which Az and Ay are variable, and generalized grids, in which

the grid lines are not parallel to the coordinate axes. The subscript ¢ is used to denote
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the physical grid lines corresponding to constant values of z [i.e., z; = (i — 1)Az], and
the subscript 7 is used to denote the physical grid lines corresponding to constant
values of y [i.e., y; = (j — 1)Ay]. Thus, grid point (¢, j) corresponds to location (z;,y;)
in the solution domain D(z,y). The dependent variable at a grid point is denoted by
the same subscript notation that is used to denote the grid points themselves. Thus,

the function f(z,y) at grid point (3, j) is denoted by
flxiy)) = fij- (2.16)

In a similar manner, derivatives are denoted by

df (ziyy;)  OF| Fflriy) _ O*f| _

In the development of finite difference methods, a distinction must be made
between the exact solution of the partial differential equation and the approximate
solution of the partial differential equation. For the remainder of this section exact
solutions will be denoted by an overbar on the symbol for the dependent variable
[e.g., f(z,y)], and the approximate solution will be denoted by the symbol for the
dependent variable without an overbar [e.g., f(z,y)]. This very precise distinction
between the exact solution and the approximate solution of a partial differential
equation is required for studies of consistency, order, and convergence.

Exact derivatives such as f,, may be approximated at grid point (4, j) in term of
the values of f at grid point (¢, j) itself and adjacent grid points in a number of ways.
For example, consider the partial derivative f,,.. Writing the Taylor series (see the

Appendix) for ?i—l—l,j and f using grid point (7, j) as the base point gives

i—1,5
— — — 1—
R (2.18)
Fors=Tos— Tl Avt STl B2
i1, — Jiug T Sl 9 Jrrlig
S AU A ) (2.19)
_8 famcx‘%]Ax —I_ﬂ xxxx‘Z]Ax +

where the convention (Az)” — Az™ has been used for compactness. Equations
(2.18) and (2.19) can be expressed as Taylor formulas with remainders (see the

Appendix A). Thus,

o (2.20)
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Tty =Tog = Toliy a4 5 Tl 007
gl A LT At Ry 221
G ) wreli o1 Jeeeeli n
where the remainder term R,y is given by
17

Fon = Gy g O 22
where 2; &4  x;4q and 2,01 &-  x;. If the infinite Taylor series are truncated
after the nth derivative to obtain approximations of ?i—l—l,j and _i—l,jv then the

remainder term R, 1 is the error associated with the truncated Taylor series. In many

cases, our main concern will be the order of the error, which is the rate at which the

error goes to zero as Az — 0. The remainder term depends on Az"*!. Consequently,

as Az — 0, the error goes to zero as Az"1. Thus, the order of the truncated Taylor

series approximation of 7“"21]’ is n + 1, which is denoted by the symbol O(Az"*1).
Adding equations (2.18) and (2.19) and solving for 7“"2}]' yields

_ fir, =2+ i, 1 = 2
fxx‘@j = A2 - E fxxxx‘id‘ Ax®+ .. (223)

Equivalently, from equations (2.20) and (2.21),

Jivi =2+ fiony L B

fm,\m, = A et R (2.24)
which can be written as
. _Z. ,_2_2.,_|__Z._ ,
fm‘m, = Jivr Afx; USH + ... + O(Az™) (2.25)
where
n+2 (¢ n+2
LC= DI S (A TIN (2.26)

Az?  (n+2)! dant2 Ax?
where z;_; & 2441. If the Taylor series is truncated after the second derivative

term (i.e., n = 2), then equations (2.24) and (2.25) give

- fir, —2fi;+fisn; 11— _
fxx‘ = +1,5 Ax,; g Efxxxx(f)sz (227)

]

which can be written as

- B Fivr—2fii+ fiiey

fl’l"i,j : _sz_ ‘|’E(fxx‘z7]) (2 28)
Jiv1;—=2fi;+ fica 9 '
= a2 + O(Az*)

where the remainder term E(fm,‘”) is given by

(T, ) = 5 Toana @007 = O(207). (2.29)
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A finite difference approximation of fm,‘”, which will be denoted by fl’l’|ij7 can
be obtained from equation (2.28) by neglecting the remainder term. Thus,
Jizry = 2fi;+ Jicay
fxx|ij = / o / é 4 =L, (2.30)
’ Az

The remainder term which has been neglected in equation (2.30) is a the truncation
error of the finite difference approximation of fm,‘” Equation (2.30) is called
second-order centered-difference approximation of f,,. at grid point (7, 7).

First-order one-sided approximations of f,, at grid point (i, j) can be obtained by

writing Taylor series for ?i-l-l,jv ?i-l-ljv i—1,; and f;_, ; using grid point (7,7) as the

base point and proceeding in a similar manner. The results are

- B Fiva; —2fip+ Fij

— Jij—2fic1;+ Tiay
Fool,; = =22 A;g 2 4 O(Ax). (2.32)

The terms O(Axz) and O(Az?) are truncation error terms. The notation O(Az),
read as order Az, denotes that truncation error is proportional to Az (i.e., first-order).
Similarly, the notation O(Az?), reads as order Ax?, denotes a second-order truncation
error. In some cases, our only concern will be with the order of the truncation
error. In other cases, we will need to know the exact form of the truncation error.
Equation (2.31) is a first-order forward-difference approximation and equation (2.32)
is a first-order backward-difference approximation. They are rarely used, except at
boundaries. Equation (2.28) is a second-order centered-difference approximation. It is
the most commonly used finite difference approximation of a second derivative.

Performing the analogous procedures in the y direction yields the following result:

— 72 1 272 + 72 i—1 1 A2
fyl/‘i,j == Ayg — - Efyyyy(n)Ay (2.33)

Tl = Jijo2 =2+ i N
yylij Ay?

O(Ay) (2.34)

- Jij—2Fi o1+ fij—
fyy‘i,j == A]yg ==+ O(Ay). (2.35)

Finite difference solutions of a partial differential equation are obtained by
replacing the exact partial derivatives in the partial differential equation by finite
difference approximations, such as equation (2.28) and (2.33), to obtain a finite

difference equation that approximates the partial differential equation.
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2.3.1 The Crank-Nicolson Method

The backward-time centered-space (BTCS) approximation of the diffusion equation
fi = af,, has a major advantage over explicit methods. It is unconditionally stable.
It is an implicit, two-level, single-step method. The finite difference approximation of
f.. derivative is second order. However, the finite difference approximation of the time
derivative is only first-order. Using a second-order finite difference approximation of
the time derivative would be an obvious improvement.

Crank and Nicolson (Crank, Nicolson 1974) proposed approximating the partial
derivative f, at grid point (i,n + 5) by the second-order centered difference
approximation and the partial derivative f, . by the average value

- |n 1 /= n - |n
fxx t+1/2:§(fxx t+1+fxx‘t)' (236)

The order of this approximation is expected to be O(At?). The partial derivatives f,,
at time level n and n + 1 are approximated by the second-order centered-difference
approximations. The resulting finite difference approximation of the one-dimensional

diffusion equation is

fin—l—l — fin = 041 fﬁ:—ll _ inn-l—l + fin__l—ll + Z?E"l — Qon T fin_l (2 37)
At 2 Ax? Ax? ' '
Rearranging equation (2.37) yields the finite difference equation
S A2 D A = 20— D, (239)

where d = a(At/Az?) is the diffusion number.
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ChapterIlI

Numerical Scheme

Air pollution law in most industrial countries is based on some kind of permitted
concentration of contaminants (NAAQS in the United States). To plan the execute
air pollution control programs designed to meet the requirements of these laws, one
must predict the ambient air concentrations that will result from any planned set of
emission. Even if we did not use this type of air pollution law, we would probably use
some other kind of law that made some use of predictions of ambient contaminant
concentrations. These predictions are made by way of air pollutant concentration
models.

The perfect air pollutant concentration model would allow us to predict the
concentration that would result from any specified set of pollutant emission, for any
specified meteorological conditions, at any location, for any specified meteorological
conditions, at any location, for any time period, with total confidence in our prediction.
The best currently available models are far from thus ideal. In this chapter we consider
the mathematical model (1.8), (1.9), (1.10), (1.11) and (1.12).

We use the numerical approach descriebed in (Runca, Sardei 1975), which is based
on the discretization of the time dependent advection-diffusion equation governing the
evolution in time of the concentration of pollutant downwind of the line source at
height h above the ground. Problem (1.8), (1.9), (1.10), (1.11) and (1.12) is solved
with the method of fractional step (Yanenko 1971). According to this technique, the
concentration field at the time ¢ + /At is obtained from that at the time ¢ by separating
the contributions due to advection and diffusion terms as follows:

In the first step the advection equation

Jc Jc

is solved in the whole z — z integration region over the time interval At with the
concentration field at the time ¢ as initial conditions (1.9) and (1.10) as boundary

condition. The diffusion equation

Jdc Jd . Oc
e (Ixza) = 0 (3.2)
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is then solved in the second step over the same time interval. Here the initial condition
is provided by the concentration field obtained from the first step and the boundary
conditions by the relation (1.11) and (1.12). Let us show that the solution of (3.1) and
(3.2) is an approximation of the concentration field at the time ¢ + At.

If we denote

Aic = —u(z)%

a (.. Oc
AQC = & (Iﬁza)

the Cauchy problem for equation (1.8) is

0
{ o= (At A e

c(z,z,0)=co(x, 2).

We can split the previous problem into two problems

and

dc

AT

o~
c(z,z,t,) = (x, 2, t, + 7).

By Tarlor series, we have

ez tat7) = el ) + oo 1 0(r)
T
= c(x,z,tn)—|—T(A1—|—A2)C—I—O(72)

= [E+7(A+A)]c+0O(rH
where F is identity operator. In the same way, we get

*(x,2,t,) + O(1?)
E+1A)e(z, 2,t,) + O(T?)

e,z t,+7) =

( )
( )

Az, 2ty +7) = (FE+71AY)e(,2,t,) +O(?)
(E+ 7A9)c* (2,2, t, + ) + O(T?)
( )

E+ 7A3)(E + rAy)e(x, 2, t,) + O(7?)
= [E+ (A1 + Ad)]e(e, 2, ta) + O(7%)
= c(z,z,t,+ 1)+ 0(7'2)-

If we take 7 — 0 then O(7%) — 0 and

c(z,z,ty +7) = c(z, 2, t, + 7)
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For equation (3.1) a Lagrangian technique is used in order to avoid artificial
diffusion errors associated with the advection step. The diffusion equation (3.2) is

solved with a conventional Eulerian finite-difference scheme.

3.1 The advection step

The solution of equation (3.1) in the Lagrangian formulation

W —0  with (=2 ul (3.3)

is obvious. Equation (3.3) simply means that in a reference frame moving with the
velocity w the concentration does not change in time. Thus equation (3.1) is exactly
satisfied by translating the concentration field at any time step At to the distance
u/At. This procedure is evidently mass conserving.

If the wind velocity is constant in space and time, equation (3.3) can directly
be represented in the Eulerian frame used for equation (3.2) simply by choosing
Az = uAt. A further simplification is provided by the fact that for w —constant
equation (3.1) and (3.2) can be integrated separately not only over a single time
interval, but over the whole integration time. In fact, the advection-diffusion equation
(1.8) can be transformed by introducing Lagrangian coordinates to a pure diffusion
equation valid in frame moving with the velocity .

If the wind velocity is not constant, the described Lagrangian treatment of
equation (3.1) becomes problematic in connection with the Eulerian difference scheme

used for equation (3.2). In fact, for constants At and a variable u, the condition

(TRIWAN
Az
Az

be reached by all particles whose velocity is different from the chosen ratio —. In

At

other words, equation (3.1) cannot be satisfied by translating the whole concentration

= 1 means a variable Axz. Thus, positions not coincident with grid points will

field to the next grid points of an Eulerian frame.
To overcome this difficulty, the given velocity profile u(z) is approximated by a
step function whose discrete values wuy are defined at any vertical grid point k, as

fractions of the maximum wind velocity wmax:

Pk
U = ?umaxv P < 4, k= 17 27 s I (34)
where py and ¢ are positive integers and n is the number of vertical grid points. For a
given distribution of the vertical intervals Az, and a given ¢, the integers pp are
determined from the condition that the step function becomes as close as possible to

the original velocity profile u(z). More precisely, the single u; values are chosen from
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equation (3.4) as the best approximations to the mean values of u(z) over any vertical

02 is approximated

step. Figure 3.1 shows as an example, how the velocity profile u = z
for a constant interval Az = 0.05 and ¢ = 5. For sufficiently small Az and sufficiently
large ¢ = 5, the approximation error of the step function is arbitrarily small.

The horizontal interval Az is defined as

Az = WX Ay (3.5)
q

Consequently, the pollutant moving with the velocity uj is translated at any time
step to the distance ppAz, that is, to positions coincident with grid points. In
particular, the pollutant with the maximum velocity umayx is translated to a distance
gAzx. The front of the advancing material, separating the polluted from the ”clean”
region, moves with the maximum velocity uma.x and is located at © = upmax t . The
described procedure can be immediately extended to include downwind variations of
the wind velocity. (Note that downwind variations of the diffusion coefficient K
are already included.) In this case the given velocity function u(z,z) has to be
approximated by a two dimensional step function wy;. The uy; matrix is related to a
corresponding integer matrix py; according to equation (3.4). The parameters umax
and ¢ can still be taken as constant. Equation (3.5) shows that the horizontal
interval Az is then constant as well. For wugn., we can choose, for example. the
absolute maximum value of u(z, z). The discretization parameter ¢ has to be chosen

large enough to ensure a sufficient approximation of thegiven velocityinthe whole field.

1
09
08
u(2)
07

0.6

NO5F

0.4 uk

0.3

0.2

01p

0,//

I I I )
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
u(z)and uk

0.

Figure:3.1 Wind profile u = 2°? and approximating step function wuy for ¢ = 5 and

uniform vertical grid spacing Az = 0.05.
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3.2 The Diffusion Step

The diffusion equation (3.2) is solved with an implicit centered-space difference
scheme allowing for a variable grid spacing. Let we define Azg is the first interval

above the k grid point
Az = 2pq1 — 2

and for any mesh function vy, ¢ is defined by

Vk+1/2 — Vk—1/2
Svp = +1/ /
Zh41/2 — Fk=1/2

then the second partial derivative of (3.2) as follow,
(S(I(k(S(Ck))

Kip12 0(chyry2) — Kyoiya - 6(cp_1/2)
Zh41/2—Fk—1/2

. Ck+1 — Ck - Ckp — Cp—1
Kiy1)2- e Ky 1o ——
_ Zk41 — Rk ZE — Zk_1
Rk41/2—%k—1/2
R Cky1 — Ck . Cp — Cp—1
K e K e
B k+1/2 N k—1/2 N
Azpy + Az
2
R Cky1 — Ck . Cp — Cp—1
= —— |K e K L
ANz + Az |: kt1/2 Az k=1/2 ANzp_q :|
2 Az, ]
= K c — ) — - K CL — Cp_
Aor (Bans £ Amn) [ k+1/2 (Cha1 — k) Ao Kk (ck — ch-1)
B 2
B Az (Azk_l + Azk)
[ i Az i Az i
N K pg1/2  Chtr — Kpqryo -k — e K2+ A Ky _yyo- Ck—l]

2
Az (Azk_l + Azk) ‘

R (

Az
Azpy

. _Azk_l . I(k—l/Q + I(k-l—l/Q) Ck + I(k-l—l/Z . Ck-|—1:|

Thus the approximation equation of diffusion equation (3.2) is
A

ok = 3(3() + (1 - 0)3(KkI(ch) (3.7)

with appropriate discrete initial and boundary conditions. Here, for any mesh function

vg, 0 is defined by

v Uk41/2 = Yg—1/2
k pun
Zh41/2 — Fk=1/2
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This method is always stable for 3 < 6 <1 in our computations we used 6 =

thus the Crank-Nicholson finite difference method for diffusion equation (3.6) is

C?—At —c _ 1 At 1
- - gt
We can write (3.8) in the form
4
M =A
AL
1 Ch

where M is tridiagonal dominant matrix, which garantee the exist of M1, then

tH At ;
4 51
tH At ‘
Cy ¢
a1
=M A
tH At t
Co1 1

we can find M and A by take a system of 21 equations for 21 unknowns, as

eF e S(KRS(ETAN) 4 8(Kkd(ch))
At o 2
ATOL it ﬁ . 2 .
k k 2 Az (Azk_l + Azk)

Az

%

fk—1
+ (Kyt1/2) Cﬁft + (
Az

Az

- t+ AL
'I(k—l/Q) Ck—l — (A

Zk—1
Az
Azp_y

K12+ Kk-|-1/2) C}:I_

. I(k—l/Q) C}';_l

At

N
“Cp_q

= Wk
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Qr

Ry,

Sk

_(A

t+ A t+ A t 1 i
—Rp-o7 5oLy F @k — R+ Sk 6y

Zk—1

K10+ Kigaye ch+ <Kk-|-1/2) 024—1]

Az + Az

At

Kp_10 1

Azp_y g

Azpy
Kppiz 1

_ (Kk—1/2

Kyy1)2 L
Az Hk

Az Hk

24

9

(3.8)




25
so equation (3.18) for k£ = 2...20, as follow
Qe e (L B 67 = S 17" = Qe oy + (1= Re) 6l + S el

from the boundary conditions (1.11) and (1.12) we take the second order of boundary
conditions,

equation (3.8) for k =1,
—(2A2’1 + AZQ) i AZl + AZQ AZl —0
AZl (AZl + AZQ) “ AZIAZQ 2 AZQ (AZl + AZQ) =
equation (3.8) for k = 21,

2Az90 + Azpg eor + Azyo + Azpg — Azgg P
Azgo(Azyg + Azg) 2 Az19Azg0 20 Az19(Azyg + Azg) e

Let

M . —(2A2’1 + AZQ)
1= AZl (AZl + AZQ)

AZl + AZQ
My,= (===
1.2 ( AZIAZQ )

AZl
Mis=—
13 (AZQ (AZl + AZQ))
Az
M21,19 ( = )

— \Azg(Azg + Azpg)
Azgo + Azg
M _ (2201 2<19
21,20 ( Ao1oAong )
M _ 2Az90 + Azpg
22 Az0(Azgg + Az1g)
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finally, we have

My Mip My 3 . . . 0 Ci—l—m
—Qy 1+Ry —S9 0 . : 0 ciret
0  —Qs 14+Rs —S5 0
0 . 0
0 . . . 0 .

0 —Q20 14 Ry —52% Cé—gm
0 . . . Ma119 Ma120 Moy 1 Cé—{m
0 0 0 S 0 ¢
Qs 1—Ry Sy 0 . . 0 ch
0 @3 l—Rs S5 0

= . 0 . . . 0
0 . . . 0 .

. 0 @20 1-Ryp S cho
0 . . .0 0 0 chy

3.3 Vertical Grid Geometry

In order to provide good resolution of the concentration profile near the source,
where the strongest diffusion occurs, we used a Gaussian distribution of the vertical

grid point “spacing”, centered at the source location, as expressed by

v=k,o=1 for zz>h

1 o 1 —A,‘(Zk—h)2 . .
AZU_Azse v=k—1,1=2 for z<h (3.9)
k=23,..n—1
with
21 = 0
=0l Az, k=230 1 (3.10)
2, =1

Az, is the size of the first interval above and below the source. A; and A, are
parameters of the distribution, n is the number of vertical grid points. Az, and n are

taken as independent parameters.

Example 3.3.3

n=21h=0.2
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choose Az, in the range

1

- Az,

2ei—1) © SFSa—1
1 1
il Az, < —
PTTT)

0.025 < Az, <0.05

if we choose Az, = 0.033 and choose the point at source zg = h = 0.2 then
AZ{, = AZ(; = 0.033.

For grid below the source
zp<h te. v=k—-1,1=2,k=6,5,4,3,2

from (3.9) and (3.10),

1 1 —Az(2,—-0.2)?
- 20, let Ay =
Azt 0.033° : ¢ 2=

Azp_y = 0.033¢%(7x=0.2)*

Az = 0.033¢7702° = 0,033¢7(0-2-02)" — 033
Az = 0.033¢5702° = (0336770~ 22-0.2)° _ () (332(0-033)°
Az = 0.033¢2(470-2)

—  0.033¢2(F= 82— 020-0.2)° _ () 133,0(0.033+42)°

Azy = 0.033¢2(2702)°

— 0.033¢(ze— Az =Dz =N23-02)° _ () 133,(0-033+ A2+ 25)

Az = 0.033¢%(2=0-2)

_ 0 033€a(26—AZ5—AZ4—A23—A22—0.2)2 — 0 0336a(0.033—AZ4+A23+A22)2

and find o by solve
Az 4+ ANzg+ Azzs+ ANzg+ Azs + Nzg = 0.2,
For grid above the source
gz h e v=k1=1,k=7,89,...20

from (3.9) and (3.10),
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Az, = 0.033¢7(x=0-2)7

Nzp = 0.033¢8(27=0.2)?
= 0‘03365(Z6+AZ6—0.2)2 — 0-03365(0'033)2

Azg = 0.033¢5(::-0-2)°

—  0.033° (et A%+ 02 —0.2)° _ () 133,(0.033+4A27)

Azg = 0.033¢7(0-02)
—  (.033eP (et bzt bz +82-02)7 _ () 33,(0.033+ Az Az )°

Az = 0.033¢ (20702
_ 0‘03365(Z6+AZ6+...+A219 —-0.2)? _ 0‘0336a(0.033+AZ7+...+A219)2

and find 3 by solve
AZ7 + AZg + ...+ AZQO =0.8.

The finally, take all of intervals in equation (3.10), then we get vertical grid

Z15 225 -0y 221~
3.4 Handling of the Method

In this section we give some details concerning the practical use of the method.

The input parameters are:
1. Physical quantities : u(z), K(2), h.
2. Numerical quantities : At, ¢, Az, n.

The size of the vertical interval Az is variable and is determined by given values of
Az, and n. Both Az, and z;, as well as A; and A, are calculated by iteration, from
the relations (3.9) and (3.10).

The step function uy approximating the given velocity profiles u(z) is obtained
as follows, The mean values of the velocity u; are calculated over any two adjacent

vertical half intervals from

Az

, zp+ 5
e / u(z)d=. (3.11)

Azpy

2k

2
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Applying equation (3.4) to the w; we get non-integer estimates for py. The py are
then obtained as the nearest integers to these estimates. Finally, the step function uy
is calculated back by substituting py into the relation (3.4).

The concentration profile at the source, expressed as a §—function in the boundary
condition (1.10), is approximated numerically by a one-step function centered at the
source and having width Az,. Its amplitude is determined by requiring the same

emission rate as in (1.10) :

ANz
0<z<h-
c(0,2,t)=0 for { A 2
h+ —2<2<1 (3.12)
S AS
c(O,z,t):usAZs for h— =2 <z<h+ 22

where u, = u; at the source.

The advection-diffusion process is calculated starting at the source and following
the “real” advection motion of the pollutant. At any time step the concentration field
is first translated to the variable distances Axg = up/At, according to the Lagrangian
equation (3.3). Then the contaminant is diffused according to equation (3.2). The
calculations are carried out only inside the region of the x —{¢ plane where the
concentration is time dependent (Figure 3.2). The moving boundaries of this region
are given by the characteristics & = upmaxt and 2 = upint. In fact, no pollutant can
move with a velocity larger than wmax or lower than wy;,. Therefore no pollutant can
exist “on the right” of the characteristic & = upyaxt. Time independent conditions that
¢ = c(z, z) only are established “on the left” of the characteristic & = upint, provided

the emission rate is constant in time.

Cc=C(x,7)
t - C=C(x z t)
&
, ‘_t
- *‘“ c=0
o x

Figure:3.2 Characteristics & = umaxt and & = umint, separating the region where the
concentration is time dependent from the two regions where the pollutant has not yet

arrived and steady-state conditions are established.
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ChapterlV

Numerical Solution

If we attempt to solve the hyperbolic problems involved in the advection steps by
a standard numerical method, it is well known that large artificial diffusion errors
may occur. To avoid this source of error we replace the wind velocity u by a
piecewise constant approximation of u on a suitable chosen mesh in the z—direction.
We then solve the resulting set of equations with constant coefficients on appropriate
z—subdomains by a Lagrangian method. The mesh in the z—direction is chosen so
that all mesh values of ¢ at time level ¢t + At are transported from mesh values of
¢ at time level {. This means that we can eliminate the artificial diffusion errors

completely, however, in approximating u(z) we introduce a new source of errors.

4.1 Computer Implementation of The Numerical Method

Typical examples of the time evolution of the described advection-diffusion
process for constant and variable velocity profiles are shown in Figure 4.1-4.5. The
plots represent, by means of concentration isolines, time sequences of the pollutant

distribution in the z — z plane for u =1, u = 2%, u = 292, u = 25

, U , u=z. In the
first case (Fig 4.1) the "clean” and the polluted regions are seperated by a sharp
front moving with the wind velocity and located at & = wut. Since for u = constant
steady-state conditions are immediately established behind this front corresponding
isolines have the same locations in the 2 — z planes of Figure (4.1). On the
other hand, if a variable velocity wu(z) is given (Figure 4.2-4.5), a time dependent
concentration region exists behind the front 2 = umax! as aready mentioned in the
section 3.4. Comparing the picture in Figure 4.1 with the picture in Figure 4.2-4.5, we
can immediately conclude that the wind shear is responsible (Figure 4.1) for a strong
vertical diffusion of material into high regions above the source and (Figure 4.2-4.5)
for a fast accumulation of material near the ground.

The Matlab codes and Maple codes used to generate the figures

shown in this thesis. In the computations in this section we took

n=21,h=0.2,At =.0005, K(z) = z, Az, = 0.033.
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Figure:4.1 The contour lines of concentration at different time, calculated for v =1
with K=2,h=02and t =40A¢,t=60Att=80Att=100A¢t t=120At
and t = 140 A ¢, respectively, /At = .0005.
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Figure:4.2 The contour lines of concentration at different time, calculated for v = z
with K=2,h=02and t =40A¢,t=60Att=80Att=100A¢t t=120At
and t = 140 A ¢, respectively, /At = .0005.
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Figure:4.3 The contour lines of concentration at different time, calculated for u = 2
with K=2,h=02and t =40A¢,t=60Att=80Att=100A¢t t=120At
and t = 140 A ¢, respectively, /At = .0005.
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Figure:4.4 The contour lines of concentration at different time, calculated for v = z
with K=2,h=02and t =40A¢,t=60Att=80Att=100A¢t t=120At
and t = 140 A ¢, respectively, /At = .0005.
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Figure:4.5 The contour lines of concentration at different time, calculated for u = 2
with K=2,h=02and t =40A¢,t=60Att=80Att=100A¢t t=120At
and t = 140 A ¢, respectively, /At = .0005.
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Chapter V

Conclusion

The mathematical model of advection diffusion equation for an air pollutant was
solved by the numerical method which is called the Fractional Step method. We
performed the calculation into two step using the Lagrangian and Eulerian methods.
We find the auxiliary solution ¢* from the advection part and then find the true
solution ¢ from the diffusion part, using the ¢* as an initial data. By this method,
we assumed that the pollutant move by convection and then by diffusion. In the
case of the constant and variable coefficients of advection and diffusion, the numerical
schemes were developed and solved by Matlab and Maple codes. The concentration
line contours obtained from the computer programs are reasonably agreed with the
former researches, for example in (Runca, Sardei 1975).

In the application of this programs to the real problem in some regions of an
industrial area, we need to know the field data of the wind velocity and the diffusion

coeflicients.
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Appendix A
The Taylor Series

A power series in power of z is a series of the form

o0

Z anx” = ap+ ajx + azx® + ... (A_1)

n=0
A power series in powers of (z — xq) is given by

o0

Zan(w—xo)”:ao—l—al(w—x0)+a2(9€—x0)2+... (A_2)

n=0

Within its radius of convergence r, any continuous function f(z) can be represented

exactly by a power series. Thus,

@)=Y an(e - w0)" (A-3)

n=0

is continuous for (zg — r) < 2 < (zg + 7).

A.1 Taylor Series in One Independent Variable

If the coefficients a,, in equation(A_3) are given by the rule

1 ! 1 1

o = f(900)7 a; = ﬁf (960)7 g = af (960)7 (A—4)

then equation(A_3) becomes the Taylor series of f(z) at = x¢. Thus,

1 .

f(w):f(%):ﬂ

1 1
(o) (x = w0) + 5/ (w0} (w = 20)* + ... (A-5)
Equation(A_5) can be written in the simpler from

! 1 H 1
Fa)=fit | Dat o 1] Ba® 4 [ A (A_6)

where f(") = 2 and Az = (2 — o). Equation(A_5) can be written in the compressed

dz™

form

Fle) =3 L f O ) )" (A7)
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when zg = 0, the Taylor series is known as the Maclaurin’s series. In that case,
equation(A_5) and (A_7) become
1 1

Fla) = [(0) = [ (02 + 5 (0)2" + .. (A-8)
flay =3 (0" (A.9)

It is, of course, impractical to evaluate an infinite Taylor series term by term.
The Taylor series can be written as the finite Taylor series, also known as the Taylor
formula or polynomial with remainder, as follows:

!

F(2) = Flao) = F (w0} (@ — o) + 5 f (o) 2 = 20)? + ..
o FO) () — o)+ R (A-10)

where the term R"*! is the remainder term given by

O o (A1)

where & lies between zg and z. Equation(A_10) is quite useful in numeri-

Rn-l—l —

cal analysis, where as approximation of f(z) isobtained by neglecting the remainder term.

A.2 Taylor Series in Two Independent Variable

Power series can also be written for functions of more than one independent

variable. For a function of two independent variables, f(z,y), the Taylor series of

[(z,y) at (2o, yo) is given by

f(xvy):fO‘l’_';

1 (0%f 2 i ’ 2
-I-a (@ O(JU— vo)” + 2 920y O(x — 20)(y — yo) + Ty O(y—yo) ) + ... (A12)
Equation(A_12) can be written in the general form
— 1 0 a\"
Frn =2 g (@m0 wig ) S (9

where the term (....)" is expanded by the binomial expansion and the resulting
expansion operates on the function f(z,y) and it is evaluated at (xq, yo).

The Taylor formula with remainder for a function of two independent variables is
obtained by evaluating the derivatives in the (n 4 1)st term at the point (2*,y*),

where (2%, y*) lies in the region between points (zq, y0) and (z,y).



Appendix B

The Notation

Table B_1 : Notations Used in This Thesis
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Symbol Brief description Units in English Units in SI
c concentration (Ibmor lbmol)/ ft> | (kg or mol)/m?
H height of inversion layer ft m
h height of source (above the ground) ft m
Ko Ky, K coeflicients of diffusion along the- ) B
x—, y—, z—directions, respectively
Q emission rate lbm/s g/s
t time s s
u horizaotal conponent of the wind velocity | ft/s m/s
w vertical conponent of the wind velocity ft/s m/s
T,Y, 2 coordinate directions or lengths ft m




Appendix C

Computer Program
C.1 Matlab Code

%Step 1 . Compute vertical grid geometry. ( z(k) ; k=1..21)
%choose point source=0.2 at z(6) and choose delta_z(s)=.033=d(5)=d(6)
% 1.1 Lowbisection Compute alpha and d(1),d(2),...,d(5)
n=21;
min=0;
max=100;
tot=10" (-6);
while (max-min) > tot
d=1:5
d(5)=0.033;
tempsum=0.033;
for k=1:4
d(5-k)=0.033%exp((.5* (max+min))*(tempsum) " 2);
tempsum=tempsum+d(5-k);
end
dd=sum(d)-0.2;
if sign(dd)==
max=(max+min)/2;
else
min=(max+min)/2;
end
end
alpha=(max+min)/2;
downd=d;
% 1.2 Upbisection Compute beta and d(6),d(7),...,d(20)
minn=0;
maxx=100;
tott=10" (-6);
while (maxx-minn) > tott

d=1:15
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d(1)=0.033;
tempsum = 0.033;
for k = 2:15
d(k)=0.033*exp((.5*(maxx+minn))*(tempsum) " 2);
tempsum=tempsum-+d(k);
end
dd=sum(d)-0.8;
if sign(dd)==
maxx=(maxx+minn)/2;
else
minn=(maxx+minn)/2;
end
end
beta=(maxx+minn)/2;
upd=d;
% 1.3 Compute dz
dz=1:20
for i=1:5
dz(i)=downd(i);
end
for i=6:20
dz(i)=upd(i-5);
end
% 1.4 Compute meash z
z(1)=0;
z(21)=1;
for k=2:20
z(k)=z(k-1)+dz(k-1);
end
n
alpha
beta
dz
z
%Step 11 . The advection step : to solve by a Lagrangian technique.
% 11.1 Compute step function ubar=pbar/q , calculated p(k)
n=21;
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q=15; % choose q=15 for u=z" 0.2 and u=z" 0.5 and choose q=25 for u=z" 0.1 and u=z
dt=0.001/2;
u=z." .2;
pk=1:21
pk(1)=round(q*(2/dz(1))*quad(’z.”.2°,0,dz(1)/2)));
uk(1)=pk(1)/q;
for k=2:n-1
pk (k) =round(q*(2/ (da(k-1)+dz(K)) *auad (2.” 2, (2(K)-(da (k1) /2)), (oK) + (da(K) /2)))):
uk (k) =pk(k) /a;
end
pk(n)=round(q*(2/dz(n-1))*quad(’z.” .2",(1-(dz(n-1)/2)),1));
uk(n)=pk(n)/q;
pk
uk
i=1
for x=0:0.005:1
if 0<=x <= (1/2)*dz(1)

ukb(i)=0

elseif 7z(2)- (1/2)*dz( ) <=x <= 2z(2)+(1/2)*dz(2)
ukb(i)=uk(1);

elseif z(3)-(1/2)*dz(3) <= x <= z(3)+(1/2)*dz(3)
ukb(i)=uk(2);

elseif z(4)-(1/2)*dz(4) <= x <= z(4)+(1/2)*dz(4)
ukb(i)=uk(3);

elseif z(5)-(1/2)*dz(5) <= x <= z(5)+(1/2)*dz(5)
ukb(i)=uk(4);

elseif z(6)-(1/2)*dz(6) <= x <= z(6)+(1/2)*dz(6)
ukb(i)=uk(5);

elseif z(7)-(1/2)*dz(7) <= x <= z(7)+(1/2)*dz(7)
ukb(i)=uk(6);

elseif z(8)-(1/2)*dz(8) <= x <= z(8)+(1/2)*dz(8)
ukb(i)=uk(7);

elseif z(9)-(1/2)*dz(9) <= x <= z(9)+(1/2)*dz(9)
ukb(i)=uk(3);

elseif z(10)-(1/2)*dz(10) <= x <= z(10)+(1/2)*dz(10)
ukb(i)=uk(9):

elseif z(11)-(1/2)*dz(11) <= x <= z(11)+(1/2)*dz(11)



ukb(i)=uk(10);
elseif z(12)-(1/2)*dz(12) <= x <= z(12)+(1/2)*dz(12)
ukb(i)=uk(11);
elseif z(13)-(1/2)*dz(13) <= x <= z(13)+(1/2)*dz(13)
ukb(i)=uk(12);
elseif z(14)-(1/2)*dz(14) <= x <= z(14)+(1/2)*dz(14)
ukb(i)=uk(13);
elseif z(15)-(1/2)*dz(15) <= x <= z(15)+(1/2)*dz(15)
ukb(i)=uk(14);
elseif z(16)-(1/2)*dz(16) <= x <= z(16)+(1/2)*dz(16)
ukb(i)=uk(15);
elseif z(17)-(1/2)*dz(17) <= x <= z(17)+(1/2)*dz(17)
ukb(i)=uk(16);
elseif z(18)-(1/2)*dz(18) <= x <= z(18)+(1/2)*dz(18)
ukb(i)=uk(17);
elseif z(19)-(1/2)*dz(19) <= x <= z(19)+(1/2)*dz(19)
ukb(i)=uk(18);
elseif z(20)-(1/2)*dz(20) <= x <= z(20)+(1/2)*dz(20)
ukb(i)=uk(19);
else
ukb(i)=1;
end
i=i+1;
end
uk
figure(1)
hold on;
plot(u,z,’b’)
stairs(uk,z,’r”)
xlabel("u(z) and uk’)
ylabel(’z")
hold off;
Ystep 11T . The diffusion step : to solve an implicit central-space
%difference scheme allowing for a variable vertical grid spacing.
Y%implicit central-space difference scheme allowing
%for a variable vertical grid spacingn=21

for k=2:n-1
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U(k)=(dz(k-1)+dz(k))/dt;
QUO=(1/UK)*((2(K) +2(k-1))/ (2*dz(k-1)));
ROO=(1/U(K)(((2(K)+7(k-1)) /(2¥da(k 1)+ (2(K) 420+ 1)) /2¥da())) )
S(k)=(1/U(k))*((z(k)+2(k+1))/(2*dz(k)));
end
for i=1:n
for j=1:n
M(i.§)=0;
A(i,§)=0;
end
end

M=zeros(n,n);
A=zeros(n,n);
M(1,1)= (2#da(1)+d2(2)),/(d2(1)*(d2(1)+d2(2));
M(1,2)=(da(1)+d2(2)/(da(1) *do(2));
M(1,3)=(da(1)),/(d2(2)* (da(1)+d2(2)) ;
M(21,19)=(dz(20))/(dz(19)*(dz(20)+dz(19)));
M(21,20)=-(dz(20)+dz(19))/(dz(20)*dz(19));
M(21,21)=(2*dz(20)+dz(19))/(dz(20)*(dz(20)+dz(19)));
for i=2:n-1
M(i,i-1)=-Q(i);
M(i)=1+R(0);
M(i,i+1)=-S(i);
Af1i1)=Q);
A1) =1-R();
A(1,i41)=S(i);
end
IMA=inv(M)*A
M
A
IMA
Yostep IV . Time sequences of pollutant distribution in xz plane
%calculate for u(z)=1, h=0.2 , K(z)=z , t=.001 , delta_t=delta_x.
t=40;
source= 1/(1*.033);
C=zeros(n,t+1);
C(:,1)=[0;0;0;0;0;80urce;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

1)3
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for i=2:t4+1
C(:,1)=IMA*C(:,i-1);
end
C
figure(2)
xx=linspace(0, n*10" (-3),t+1);
[X,Z]=meshgrid (xx,z);
cvals=[.125, .25, .5, 1, 2, 4, 8, 16, 32];
C_graph=contour(X,Z,C, cvals);
%clable(C_graph,’manual’)
xlabel ("x”)
ylabel(’z")
Yostep V . Time sequences of pollutant distribution in xz plane
%calculate for u(z), h=0.2, K(z)=z, t=.001, delta_t=>5*delta_x.
t=40;
source=1/(((0.2)" (0.2))*.033);
CC=zeros(n,(q*t)+1);
CC(:,1)=[0;0;0;0;0;s0urce;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];
for k=2:n-1
for i=2:pk(k)+1
CC(k,1)=CC(k,1);
end
end
for j=2:q+1
CC(:,j)=IMA*CC(:));
end
for k=2:t
for i=1:n-1
for j=(q*k)+1:-1:pk(i)+1
CC(1,j))=CC(i,j-pk(i));
end
for j=pk(i)+1:-1:2
CC(i,j)=CC(i,1);
end
end
for j=2:(q*k)+1
CC(:,j)=IMA*CC(:));



end
end
cC
figure(3)
xx=linspace(0, n*10" (-3),(q*t)+1);
[X,Z]=meshgrid (xx,z);
cvals=[.125, .25, .5, 1, 2, 4, 8, 16, 32];
CC_graph=contour(X,Z,CC, cvals);
%clable(CC_graph,’manual’)
xlabel ("x”);
ylabel(’z);
Y%plot concentration for fix time t=.0005*t_1
t_1=30; %choose t_1<=t
cfixt=CC(:,q*t-1);
figure(4)
plot(z,cfixt);
xlabel (’z);

ylabel(’concentration’);
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C.2 Maple Code

Numerical Treatment of Time Dependent Advection-Diffusion of An Air Pollutant.
(Computer Implementation of the Numerical Method )
Solve for u(z)=z"0.5 , h=0.2 delta_t=.001 , K(z)=2

Step 1. Compute vertical grid geometry. ( z(k) ; k=1..21)

Start.

% define delta_z(k)=d[k]%

%choose point source=0.2 at z[6 | and choose delta_z[s]=.033=d[5]=d[6]%

n:=21;q:=15.;dt:=.001;uz:=z" 0.5;

z:=array(1..21):d:=array(1..21):

low:=0:up:=100:tot:=10" (-6.):

% choose q=15 for u=z" 0.2 and u=z" 0.5 and choose q=25 for u=z" 0.1 and u=z

%lowbisection% compute alpha and d[1],d[2],...,d[5]%

while (up-low) > tot do
d[5]:=.033;tempsum:=.033;
for k from 1 to 4 do
d[5-k]:=.033*exp((.5* (up+low))* (tempsum) " 2);
tempsum:=tempsum+d[5-k];
od;

dd:=sum(’d[j]’, ’j’=1..5)-0.2;
if (sign(dd)=1) then
up:=(up+low)/2;

else

low :=(up+low)/2;

end if;

od:

alpha:=(up+low)/2.;

% compute beta and d[6],d[7],...,d[20]%

1:=0:u:=100:t:=10" (-6.):
while (u-1) > t do
d[6]:=.033;tsum:=.033;
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for j from 7 to 20 do
d[j]:=.033%exp((.5* (u+1))*(tsum) " 2);
tsum:=tsum+d([j]

od;

ff:=sum(’d[i]’, '1’=6..20)-0.8;
if (sign(ff)=1) then
u:=(u+l)/2;

else

1 :=(u+l)/2;

end if;

od:

beta:=(u+l)/2.;

% compute vertical grids z(k), k=1...21%

z[1]:=0;z[21]:=1;

for k from 2 to 20 do
z[k]:=z[k-1]4+d[k-1];
od;

Step II . The advection step : to solve by a Lagrangian technique.

%compute step function u_bar=p_bar /q , calculated p(k) by $$ p(k)=
$$ u(k)= 2/(d(k-1)+d(k))*(integral(u(z)dz), z = z(k)-(d(k-1))/2.. to ..

) 88 %
p:=array(l..n):u:=array(1l..n):
p[1]:=round(q*(2/d[1])*int(uz,z=0..(d[1]/2))):

u[1]:=p[1]/q:
for k from 2 to n-1 do
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q*u(k) $$ and
z(k)+(d(k))/2

plk]:=round(q*(2/(d[k-1]+d[k]))*int (uz,z=(2[k]-(d[k-1}/2))..(2[k]+(d[k] /2)))):

u[k]:=p[k]/a;

od:
p[n]:=round(q*(2/d[n-1])*int(uz,z=(1-(d[n-1]/2))..1)):
ulnl=plul/a:

Y%plot graph wind profile and step function u_bar. %

step:=x->piecewise(0<=x and x<=(d[1]/2),0,z[2]-(d[2]/2);j=x and
x<=z[2]+(d[2]/2),u[1],2[3]-(d[3]/2) <=x and
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step III . The diffusion step : to solve an implicit central-space difference scheme

allowing for a variable vertical grid spacing.

% implicit central-space difference scheme allowing for a variable vertical grid spacing

%

array(2..n-1):S:=array(2..n-1):U:=array(1..n):

Q:=array(2..n-1):R:
for k from 2 to n-1 do
U[k]:

(d[k-1]4+d[k]) /dt;

1/ U] *((2[k]4-2[k-1]) /(2*d[k-1]));

~—

]

k]:=(1/ UK * (((z[k]+2[k-1]) / (2*d[k-1])) +((z[K]+z[k+1]) /(2*d[K])));

Q[k
R
S[k]:
od:
M:

(1/UTk])*((z[k]+2[k+1]) / (2*d[K]));

array(1l..n,1..n):

array(l..n,1..n):A:

for ifrom 1 ton do

for j from 1 to n do

MIi,j]:=0;

Afi,j]:=0;
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od:

od:

M1, 1}=-(2*dz[1]+dz[2]) / (dz[1]*(dz[1]+dz[2]));
MI[1,2]=(dz[1]+dz[2]) / (dz[1][*dz[2]);
MI[1,3]=-(dz[1])/(dz[2]*(dz[1]+dz[2])) ;
M[21,19]=(dz[20])/ (dz[19]*(dz[20]+dz[19]));
M][21,20]=-(dz[20]4+dz[19])/(dz[20]*dz[19]);

M][21,21]=(2*dz[20]4dz[19])/(dz[20]*(dz[20]4+dz[19]) );
for i from 2 to n-1 do
M i-1]:=-Ql;
M[i,i]:=14R]i];
M[i,i41]:=-S]i];
1=
i,i]:=1-R[iJ;
Ali,i+1]:=S]i];

od:

print(M);

print(A);
with(linalg):
IM:=inverse(M):
S:=multiply (IM,A);

Al
Al

step IV .Time sequences of pollutant distribution in xz plane calculate for u(z)=1,
h=0.2 , K(z)=z , t=.001 , delta_t=delta_x.
compute concentration data.

%uk at source =1%

t:=40;
source:=1/(1*.033);
c[0]:=array(1..n,1..1,[[0],0],[0],[0],[0],[source],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]}):
for i from 1 to t do
c[il:==multiply(S,c[i-1]);
od:

C:=matrix(n,t+1);

for i from 1 to n+1 do
for j from 1 to t+1 do
Clifl=lj 1, 1]

od;
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od:

print(C)

x[1]:=0:

for j from 2 to t+1 do

x[j]:= x[j-1]+evalf(0.1/t):

od:
B:=[seq([seq([z[i],x[j],C[i,j]],i=1..n)],j=1..t+1)]:B[10,10];

IV.1 plot graph of concentration C(21,41) for t=40*delta_t.

t=40
with(plots):

surfdata(B, axes=frame, labels=[z,x,y]);

IV.1I plot graph of concentration C(21,81) for t=80*delta_t.

t=80
with(plots):

surfdata(B, axes=frame, labels=[z,x,y]);

IV.1II plot graph of concentration C(21,121) for t=120*delta_t.

t=120
with(plots):

surfdata(B, axes=frame, labels=[z,x,y]);

IV.IV compare concentration at the same point ( x=.06 ) and difference delta_t ( .001
, 0005, .00025 )
(1) call concentration at x=.06 , delta_t =.001 , column 20 from C(21,41)

T1l:=array(1..10);
for i from 1 to 10 do
T1[i]:=Cli*2,20];
od;

print(T1);

(2) call concentration at x=.06 , delta_t =(.001)/2=.0005 , column 40 from C(21,81)
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T2:=array(1..10);
for i from 1 to 10 do
T2[i]:=C[i*2,40];
od;

print(T2);

(3) call concentration at x=.06 , delta_t =(.001)/4=.00025 , column 80 from C(21,161)

T3:=array(1..10);
for i from 1 to 10 do
T3[i):=C[i*2,80];
od;

print(T3);

(4) call concentration at x=.06 , delta_t =(.001)/8=.000125 , column 160 from
C(21,321)

T4:=array(1..10);
for i from 1 to 10 do
T4[i]:=C[i*2,160];
od;

print(T4);

(5) call concentration at x=.06 , delta_t =(.001)/16=.0000625 , column 320 from
C(21,641)

T5:=array(1..10);
for i from 1 to 10 do
T5[i):=C[i*2,320];
od;

print(T5);

(6) compare concentration at the same point ( x=.06 ) and difference delta_t ( .001 ,

.0005 , .00025 )

print(delta_t=.001,T1);
print(delta_t=(.001)/2,T2);
print(delta_t=(.001)/4,T3);
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print(delta_t=(.001)/8,T4);
print(delta_t=(.001)/16,T5);

step V . Time sequences of pollutant distribution in xz plane calculate for u(z), h=0.2,
K(z)=z, t=.001, delta_t=5*delta_x.
compute concentration data.

uk at source =u(z)=z"0.5 at z=0.2

t:=120;

source:=1/(((0.2)" (0.5))*.033);
e[0):=array (1..n,1..1,[[0}0],[01,0], (0] [source], 01, [0],[0101,[0],01.[01[0].[01 [0} 0], [0 [0, 0] [o]:
for k from 1 to 5 do
c_b[k]:=matrix(n,1);

od:

for k from 1 to n do

for j from 1 to (5*t)+1 do
B[]l 1:=0;

od;

od:

for k from 1 to n-1 do

for i from 2 to p[k]+1 do
c_bli][k,1]:=c[0][k,1];

od;

od:
print(c_b[1],c_b[2],c_b[3],c_b[4],c_b[5])
for i from 1 to 6 do
c[il:==multiply(S,c_bli]);

od:

C:=matrix(n,(5*t)+1);

for i from 2 to n do

for j from 2 to (5*t)+1 do
Cli,j):=0;

od;

od;

for i from 2 to n-1 do

for j from 2 to p[k]+1 do
Clifl=c[- 1 1)

od;



od;

for k from 2 to t do

for i from 2 to n-1 do

for j from (5*k)+1 by -1 to p[i]+1 do
Cli,jJ:==C[i.j-pli]];

od;

for j from pli]4+1 by -1 to 2 do
Clil=Cli, 1)

od;

od;

for m from 1 to n do

for j from 2 to (5*k)+1 do
C[m,j]:=sum(’S[m,n]*C|n,j]’,’n=1..21");
od;

od;

od;

print(C)

x[1]:=0:

for j from 2 to (5*t)+1 do

x[j]:= x[j-1]4+evalf(0.05/((5*t)+1)):
od:
B:=[seq([seq([z[i],x[j],C[i,j]],i=1..n)],j=1..(5*t)+1)]:B[10,10];

V.1 plot graph of concentration C(21,201) for t=40*delta_t.

t=40
with(plots):

surfdata(B, axes=frame, labels=[z,x,y]);

V.II plot graph of concentration C(21,401) for t=80*delta_t.

t=80
with(plots):

surfdata(B, axes=frame, labels=[z,x,y]);

V.III plot graph of concentration C(21,601) for t=120*delta_t.

t=120
with(plots):
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surfdata(B, axes=frame, labels=[z,x,y]);

V.IV compare concentration at the same point ( x=.06 ) and difference delta_t ( .001 ,
.0005 , .00025 )
(1) call concentration at x=.06 , delta_t =.001 ,column 100 from C(21,201)

T1l:=array(1..10);
for i from 1 to 10 do
T1[i]:=C[i*2,100];
od;

print(T1);

(2) call concentration at x=.06 , delta_t=(.001)/2=.0005 , column 200 from C(21,401)

T2:=array(1..10);
for i from 1 to 10 do
T2[i]:=C[i*2,200];
od;

print(T2);

(3) call concentration at x=.06 , delta_t=(.001)/4=.00025 , column 400 from C(21,801)

T3:=array(1..10);
for i from 1 to 10 do
T3[i]:=C[i*2,400];
od;

print(T3);

(4) compare concentration at the same point ( x=.06 ) and difference delta_t ( .001 ,
.0005 , .00025 )

print(delta_t=.001,T1);

print(delta_t=(.001)/2,T2);

print(delta_t=(.001)/4,T3);
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