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The construction of admissible functions for the continuous wavelet trans-
form associated with a closed subgroup H of GL,(R) is discussed.

For this purpose, a generalized cross-section for the action of H on Euclid-
ean space is introduced, and it is shown how to obtain admissible functions from
generalized cross-sections. If there exists a compact generalized cross-section hav-
ing the property that the orbit map is open, and if orbits satisfy some regularity
condition, then smooth, bandlimited admissible functions exist. This construction
is applied to p-parameter groups of diagonal matrices.

Generalized cross-sections also allow to extend the known construction of
discrete wavelet frames to groups H with arbitrary orbit structure. In addition,
if H contains a discrete, co-compact subgroup, then smooth, bandlimited tight
frames exist. It is shown by example that the presence of an expanding matrix is
not necessary for the existence of tight wavelet frames. Finally, the construction

of integrated wavelets is extended to groups with arbitrary orbit structure.
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CHAPTER 1

INTRODUCTION

In the classical continuous wavelet transform, as first introduced by Gross-
mann, Morlet, and Paul (1985, 1986), one begins with a square integrable function
1) defined on the real line, and considers the 2-parameter transforms of functions

f € L*(R) given by

maﬂ@aazgﬂﬁéf@we%y—mdy (L.1)

In the language of applications, if the function 1 is suitably well localized, then
(Wy f)(t, z) is understood to yield information of the signal f at location deter-
mined by z and at scale 2'. Grossmann, Morlet, and Paul (1985, 1986) realized
that this wavelet transform is connected to the term of group representations, and
using the Duflo-Moore theorem for square integrable representations, classified

those functions ¢ which allow for the reconstruction of f,

fly) = /R /R (W f)(t, 2)27 227 y — ) ddt

as a weak integral in L?(R). Mallat and Zhong (1992) considered such transforms

with discrete dilation parameter k,

<Wuth:2k”4f@weky—mdy

The natural extension of this concept to functions f in L*(R") is as follows.
Given an invertible n x n matrix A and a fixed vector ¥ € R", consider the

2-parameter transform

(W f)(t,T) = | det(A)|""/? . fFP(A~Y = T) dy (1.2)



(t € R,& € R"), called the continuous wavelet transform. Similarly we may

consider the 2-parameter transform

(Wyf)(k,T) = | det(A)| "/ - F (A g — 7) di (1.3)

(k € Z,7 € R"), called the semi-discrete wavelet transform. In the continuous
case, A' must be defined for all real ¢, which requires that A is an exponential,
that is, A® = e'? for all t.

More generally, let H be a closed subgroup of GL,(R), called a dilation

group. The continuous wavelet transform associated with H is defined by
(Wyf)(h @) = (f,nz) = [ det(W)|™* [ f(@)(h~1y = 7) dy
R’ﬂ

for h € H,# € R® and f € L?(R"), where 1, #(9) = | det(h)| /2% (h~1§ — ).

In order to be able to reconstruct the function f from its wavelet transform,
one wants the map W, to be a multiple of a partial isometry of L*(R™) into
L*(H x R™), in which case one calls the vector v admissible or the group H

admissible. In fact, if
Y %2(H><R”) =& %Q(R") :
Wy £l eyl £l (1.4)
¢y a positive constant) for all f € L?(R™), then by the polarization identity,
P
Wy f, Wyg) 2 xrny = ¢y (fs 9) L2(mm)

for all f, g € L*(R"), that is

o) = [ ] 0V 02000 du(iyaz
o)== [ [ OVen) b 20z 0) du(iyaz

so that

1 o o
1= [ ] enm o duwa (15)



as a weak integral in L?(R™). Here, u denotes the left Haar measure on H and dZ
integration with respect to the Lebesgue measure A on R”.

It is useful to formulate the wavelet transform in the language of group
representations. Let G = H x R" denote the semi direct product of H and R"
so that GG is a closed subgroup of the affine group. It turns out that the Haar
measure dv on G is simply the product measure, that is dv = d(p x \). Then
7 : (h,T) 1y, z constitutes a unitary representation of G on L*(R™). It follows
from Duflo-Moore’s theorem that if 7 is square integrable, then plenty of admissible
functions exist. This idea was first used by Grossmann, Morlet, and Paul (1985,
1986) and Heil and Walnut (1989) for the one-dimensional wavelet transform (1.1).

To investigate properties of the wavelet transform, one usually works in
Fourier space. The Fourier transform F : f +— f is a Hilbert space isomorphism
from L%(R") onto L2(R") (R™ denoting Euclidean space with elements written as

row vectors) taking the representation 7 to the representation p = Fomo F ! of

G on LZ(@), in fact
P(h,fﬂ@ﬁ) = | det h|"/2e= 2™ (h).

The wavelet transform becomes thus

(Wo )0 ) = [ et | FE)DER

Bernier and Taylor (1996) showed that if R" decomposes into essentially
a finite union of open, free H-orbits, then LQ(H/@) decomposes into a correspond-
ing direct sum of p-invariant subspaces on which p is square integrable, so that
admissible vectors exist by Duflo-Moore’s theorem. Fiihr (1996) and Fabec and
Olafasson (2003) generalized this observation to non-free open orbits, under the
condition that the stabilizers of the orbit points are compact.

In many choices for H, the representation p is not square integrable, and



one must use other means to find admissible functions, that is functions for which
(1.4) holds. By Fourier transform arguments (Fithr (1996), Weiss, and Wilson

(2001)), one can show that 1 is admissible if and only if

/ [ (Fh)|? dp(h) = ¢, = constant (1.6)
H

for almost all ¥ € R™. Laugesen et al.(2002) have given a nearly complete char-
acterization of groups H possessing admissible functions ¢. However, their con-
struction is abstract, and does not yield an easy to understand function ¢. Larson
et al.(2006) showed that in the particular cases (1.2) and (1.3), admissible func-
tions ¢ exist if and only if |det(A)| # 1. They constructed ¥ explicitly as the
characteristic function of some measurable cross-section, so that i) vanishes only
very slowly at infinity.

For practical applications, however, one often requires admissible functions
1 with good localization properties. That is, one wishes ¥ to be smooth and vanish
rapidly at infinity. In the case of open orbits as discussed in Bernier and Taylor
(1996) and Fabec and Olafasson (2003), it is easy to construct such a function by
choosing a @/AJ in class Ccoo(@) whose support is contained in the union of all open
orbits and then averaging the value of ¢ over each orbit. For the cases (1.2) and
(1.3), Schulz and Taylor have shown that there exists a v in the Schwartz space if
and only if all eigenvalues of the matrix A lie either inside or outside of the unit
circle, and they have presented a simple construction for 1& In the general case,
however, this question is not solved yet.

An important problem is the discretization of the wavelet transform. In-
stead of reconstructing the function f from its wavelet transform by means of the

weak integral (1.5) which is difficult to compute, one searches for discrete subsets



P of H and I" of R™ so that

F=3 (Wyf)(k, Bz (1.7)

keP zel

with convergence in L*(R™). Such a collection of functions {¢.z : k € P,¥ € R"}
is a particular case of a wavelet frame. The existence and construction of wavelet
frames has attracted considerable attention, mainly, when H is a l-parameter
matrix group, or a group in low dimensions (Dai, Larson, and Speegle (1997),
Wang (2002), Benedetto and Sumetkijakarn (2002), Laugensen (2002), Dai, Diao,
Gu, and Han (2003), and Speegle (2003)). 4 is usually of the form X, for some
measurable set €2, so that 1 vanishes only slowly at infinity.

Bernier and Taylor (1996) and Fabec and Olafasson (2003) have shown how
to choose the sets P, I and the function 1, in case of open orbits of H in R". On
the other hand, Heinlein (2003) has shown how to modify an admissible function
1, given a partition {H;} of H and I' = Z", in order to obtain wavelet frames,
using a construction called integrated wavelets.

In this thesis, we discuss the concrete construction of admissible functions,
in particular of admissible functions with good smoothness and vanishing prop-
erties, for dilation groups with arbitrary orbit structure. The starting point is
a generalized notion of cross-section, which we call an N-section. We show how
to obtain admissible functions from an N-section S. If S is compact, the orbit
map (S, H) — S - H is open, and orbits intersect S in some regular fashion, then
smooth, bandlimited admissible functions exist. In order to apply this construc-
tion to p-parameter groups of diagonal matrices, we show that for these groups,
there exist compact N-sections with open orbit map. We then present examples
of smooth, bandlimited functions for some of these groups.

In the second part of the thesis, we show how the techniques of discretiza-

tion discussed by Bernier and Taylor (1996), and also by Heinlein (2003) can also



be adapted to the case of dilation groups with arbitrary orbit structure. In partic-
ular, if S is an N-section having the properties stated above, then the topological
structure of H and that of the Euclidean space on which H acts are suitably com-
patible, and we can specify conditions on P, I and ¢ so that {¢,z : k€ P, Z € I'}
is a wavelet frame. In the special case where P is a co-compact, discrete subgroup
of H we obtain smooth and bandlimited Parseval frames, and reconstruction for-
mula (1.7) holds directly. In general, one has the reconstruction
F=>> Vr )Wz
keP Zel

where {ka} is obtained from {¢yz} by a positive operator, called the frame
operator. We also show that the techniques of integrated wavelets can be applied
to arbitrary dilation groups H; we even can allow that finitely many of the sets
{H;} overlap.

This thesis is organized as follows. In chapter II the basic notation is in-
troduced and the concepts from Fourier analysis, topological groups and their
representations used in this thesis are reviewed. In chapter III, the continuous
wavelet transform is reviewed from the group theoretic point of view, and those
aspects of wavelet frames which are required for our work are discussed. Chapter
IV is devoted to the discussion of N-sections, the construction of admissible func-
tions from N-sections, and the construction of N-sections for p-parameter groups
of diagonal matrices. In chapter V, the various methods for obtaining wavelet

frames are discussed.



CHAPTER 11

BASIC BACKGROUND

In this chapter, we review the mathematical concepts used in this thesis. We
begin by discussing the Fourier transform in L?(R") and its properties. We then
review the basics of locally compact groups, and their applications. Throughout,
it is assumed that the reader is familiar with the foundations of real analysis, such

as measure theory and function spaces. Details can be found in Folland (1999).

2.1 Fourier Analysis

We begin by introducing the basic notations and reviewing the basic prop-

erties of the Fourier transform.

2.1.1 Preliminaries

Throughout this thesis, we shall be working on R"™, and n will always refer
to the dimension. If £ is an n x n real matrix and ¥ € R", then k' is the column
vector obtained by the usual matrix multiplication of k by Z regarded as a column
vector; while 4k denotes the product of a row vector ¥ with the n X n matrix
k. We will consider the elements 7 in R” as column vectors and we will use R”
for n-dimensional Euclidean space with the elements written as row vectors. If

Z,y € R" we set
n
Foj=> wy, @ =VE-Z
j=1

If 7 is a row vector, then 7 - 7 is just matrix multiplication, 7 - ¥ = Y.



It will be convenient to have a compact notation for partial derivatives. We

shall write
0

8j:a—xj,

and for higher-order derivatives we use multi-index notation. A multi-index is an

ordered n-tuple of nonnegative integers. If @ = (ay, ..., @) is multi-index, we set

- = o 0
— . | — N o (o1, Qn
|l ;:1: Oy, Qo j|:|1 a;l, 0 (&El) (5$n) )

and if 7 = (zq,...,x,) € R™,

(The notation |a| = Y a; is inconsistent with the notation ||| = (3 2%)"/2, but
the meaning will always be clear from the context.) Thus, for example, Taylor’s

formula for a function f € CP(R") reads

f(@) = Z(aaf)(fo)% +Ry(7), lim H%p(fﬂ _o,

lal<p w0 T — TP

and the product rule for derivatives becomes
()= Y @D @)
Biy=a
One subspace of C*°(R") will be of particular importance for us. That is
the subspace C2°(R™) of C*°(R™) functions with compact support. The existence
of nonzero functions in C2°(R") is not quite obvious; the standard construction
is based on the fact that the function f(t) = e™*x(000)(t) is C*(R) even at the

origin. If we set

exp[(|z]? = 1)7Y if|z| < 1,
W) = £(1 |ty = | PV < (2.1)
0 if|z] > 1,

it follows that ¢» € C*°(R), and supp(¢) is the closed unit ball.



We next investigate the continuity of translations on various function
spaces. The following notation for translations will be used throughout this chap-

ter and the next one. If f is a function on R™ and y € R", let
Ty f (&) = f(@ = 7).

We observe that ||T;f|l, = || f]|, for 1 < p < co. A function f is called uniformly

continuous if || T;f — fllec — 0 as [|y]| — 0.
Lemma 2.1. If f € C.(R"), then [ is uniformly continuous.

Proof. Given ¢ > 0, for each Z € supp(f) there exists dz > 0 such that |f(¥—¢) —
f(@)] < 3eif ||| < dz. Since supp(f) is compact, there exist z1, ..., zy such that
the balls of radius %5%. about x; cover supp(f). If 6 = %min{éxj}, then one easily

sees that ||T;f — flleo < € whenever [|y]| < 4. O

Proposition 2.1. If 1 < p < oo, then translation is continuous in the LP(R™)

norm; that is, if f € LP(R™) and Z € R", then limg_o|| Ty zf — T=f||, = 0.

Proof. Since Ty, z = TyT%, by replacing f by T%f it suffices to assume that 2= 0.
First, if g € C.(R"™), for ||| < 1 the functions Tjg are all supported in a common

compact set K, so by Lemma 2.1,
[ 1T50@) = @i < 759 - llzAE) =0 as 5] — 0.
R

Now suppose f € LP(R"). Given ¢ > 0, there exists g € C.(R™) with ||g — f], <

/3, so

2
T3S = Fllp < 1T5(F = 9)llp + 1759 = gllp + llg = flls < 52 + 759 = glls,

and ||T59 — g|, < €/3 if ||y]| is sufficiently small. O
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Proposition 2.1 is false for p = oo, as one should expect since the L>°(R")
norm is closely related to the uniform norm.

In chapter V, we will deal with multiply periodic functions in R", and for
simplicity we shall take the fundamental period in each variable to be 1. That is,
we define a function f on R™ to be periodic if f(Z+m) = f(&) for all # € R™ and
m € Z". Every periodic function is thus completely determined by its values on

the unite cube

Periodic functions may be regarded as functions on the space R"/Z" = (R/Z)"
of cosets of Z™, which we call the n-dimensional torus and denote by T". (When
n = 1 we write T rather than T'.) T" is a compact Hausdorff space; it may be
identified with the set of all 2= (21, ...z,) € C" such that |z;| = 1 for all j, via the
map

($17$2m,$n) s (627ria71’ 627ri:t:27 . 627”'1%)'

On the other hand, for measure-theoretic purpose we identify T" with the unit cube
(@, and when we speak of Lebesgue measure on T"” we mean the measure induced
on T" by the Lebesgue measure on (). In particular, A\(T") = 1. Functions on T"
may be considered as periodic functions on R" or as functions on (); the point of

view will be clear from the context when it matters.
Proposition 2.2. C*(R") is dense in LP(R™) (1 < p < 00) and in Co(R™).

Proposition 2.3. (The C*°(R") Urysohn Lemma (Wade (1999)))
If F C R™ is compact and U is an open set containing F, then there exist f €

C®(R™) such that 0 < f <1, f =1 on F, and supp(f) C U.
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2.1.2 The Fourier Transform

One of the fundamental principles of harmonic analysis is the exploitation
of symmetry. To be more specific, if one is doing analysis on a space on which a
group acts, it is a good idea to study functions (or other analytic objects) that
transform in simple ways under the group action, and then try to decompose
arbitrary functions as sums or integrals of these basic functions.

The spaces R™ and T™ are Abelian groups (T™ is a group under componen-
twise additive mod 1) under addition on T" and act on themselves by translation.
The building blocks of harmonic analysis on these spaces are the functions that
transform under translation by multiplication by a factor of absolute value one,
that is, functions f such that for each Z there is a number ¢(z) with |¢(Z)| = 1 such
that f(7+ Z) = ¢(Z)f(7). If f and ¢ have this property, then f(Z) = ¢(Z)f(0),
so f is completely determined by ¢ once f(0) is given; moreover,

=

$(@D)o(i) f(0) = ¢(@D) (i) = (& +§) = ¢(Z + )/ (0),
so that (unless f = 0) ¢(T+7) = ¢(Z)d(y). In short, to find all f’s that transform
as described above, it suffices to find all ¢’s of absolute value one that satisfy the

functional equation ¢(Z+ ) = ¢(Z)¢(y). Upon imposing the natural requirement

that ¢ should be measurable, we have a complete solution to this problem.

Theorem 2.1. If ¢ is a measurable function on R"™ (resp. T™) such that ¢(Z+y) =

H(Z)() and |¢| = 1, there exists 7 € R™ (resp. 7 € T") such that ¢(F) = ™72,

The idea now is to decompose more or less arbitrary functions on T" or R"
in terms of the exponentials €>™7%. In the case of T" this works out very simply

for square integrable functions.

Theorem 2.2. Let e3(%) = ™™ Then {esz : m € Z"} is an orthonormal

basis of L*(T").
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Proof. By Fubini’s theorem it boils down to the fact that fol e?™midt equals 1 if

m = 0 and equals 0 otherwise. Next, since esme; = the set of finite linear

Crmtid
combinations of the e;’s is an algebra. It clearly separates points on T"; also,
eo = 1 and é; = e_y;. Since T is compact, the Stone-Weierstrass theorem implies
that this algebra is dense in C'(T") in the uniform norm and hence in the L*(T")

norm, and C(T") is itself dense in L?(T"). It follows that {es }mezn is a Hilbert

space basis of L?(T™). O

To restate this result: If f € L?(T"), we define its Fourier transform f , a
function on Z", by
fOi) = (frem) = | [(D)e>™™Tdz,
"]In

and we call the series

Z f(ﬁ’b)em,

mez™

the Fourier series of f. The term Fourier transform is also used to denote the
map [ +— f . Theorem 2.2 then implies that the Fourier transform maps L?(T")
onto 12(Z"), that ||f|ls = ||f|l2 (Parseval’s identity) and that the Fourier series of
f converges to f in the L?(T™) norm.

The definition of f(1m) makes sense if f is merely in L*(T"), and |f(m)| <
|f]l1, so the Fourier transform extends to a norm-decreasing map from L!(T") to
[>°(Z™). (The Fourier series of an L'(R™) function may be quite badly behaved, but
there are still methods for recovering f from f when f € L'(R™)). Interpolating

between L'(R") and L?(R"), one has the following result.

Theorem 2.3. (The Hausdorff-Young Inequality) Suppose that 1 < p < 2 and g

is the conjugate exponent to p. If f € LP(T™), then f € 19(Z") and || f|lq < IIf]l,-

The situation on R™ is more delicate. The formal analogue of Theorem 2.2
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should be

J@ = | f@emFdy, where f(7) = | f(@)e T dz,
R7 R™
These relations turn out to be valid when suitably interpreted, but some care
is needed. In the first place, the integral defining f (7) is likely to diverge if
f € L*(R™). However, it certainly converges if f € L*(R™). We therefore begin by

defining the Fourier transform of f € L'(R"™) by
FiG) = 15 = [ @i
Rn

(We use the notation F for the Fourier transform only where it is needed for

clarity.) Clearly || f|ls < |If]|1, and f is continuous, thus, from the theorem below,
F LY(R™) — Co(R7).
We summarize the elementary properties of F in a theorem.

Theorem 2.4. Suppose f,g € L*(R™).

—

(a) If Z°f € L\(R™) for |a| < k, then f € C*(R") and 9°f = [(—2miZ)o f].

(b) If f € C*(R™), 0°f € LY(R") for |a| < k, and 0*f € Co(R") for |a| <k —1,
then (9 f)(7) = (27i7)° ().
(c) The Riemann-Lebesque Lemma: F(L'(R™)) C CO(]@?L).

Parts (a) and (b) of Theorem 2.4 point to a fundamental property of the
Fourier transform: Smoothness properties of f are reflected in the rate of decay
of f at infinity, and vice versa. Parts (b) and (c) of this theorem are valid also on

T". We are now ready to invert the Fourier transform. If f € L'(R"), we define

f(@) =f(-2) = a F)em a7,
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Note that f need not be integrable. However, if f € Ll(f&?‘) then we can recon-

struct f from f as follows
(f)\/(x—,») _ //\ f(y—»)e—%rﬁyﬁe%rﬁfdgdi.
n Rn

Theorem 2.5. (The Fourier Inversion Theorem) If f € LY(R") and f € Ll(ﬂ/@),

then f agrees almost everywhere with a continuous function f, and (f)¥ = (f) =
Jo-

Corollary 2.6. If f € L'(R") and f =0, then f =0 a.e.. That is, the Fourier
transform F is a one-to-one mapping.

At last we are in a position to derive the analogue of theorem 2.2 on R".

Theorem 2.7. (The Plancherel Theorem) If f € L'(R™) N L2(R"), then f €
LQ(@); and F|(p1rmyurzrny) extends uniquely to a unitary isomorphism of L*(R™)

onto LQ(H/@).
Theorem 2.8. (The Hausdorff-Young Inequality) Suppose that 1 < p < 2 and q
is the conjugate exponent to p. If f € LP(R™), then f € Lq(@b) and || fllq < 1£]l,-
If f € LY(R") and f € L'(R"), the inversion formula
J@ = |_ @y
exhibits f as a superposition of the basic functions e?™%; it is often called the
Fourier integral representation of f. This formula remains valid in spirit for all

f € L*(R"), although the integral (as well as the integral defining f) may not

converge pointwise.

2.2 Topological Groups and Haar Measure

The spaces (R™, +) and (T", +) discussed above are typical representatives

of locally compact groups which we will introduce now.
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Definition 2.1. A topological group is a group G endowed with a topology such
that the group operations (h,k) — hk and h — h™' are continuous from G x G
and G to G. Examples include topological vector spaces (the group operation being
addition), groups of invertible nxn real matrices (with the relative topology induced
from R™™) ) and all groups equipped with the discrete topology. If G is a topological
group, we denote the identity element of G by e, and for A, B C G and h € G we
define

hA = {hk: k € A}, Ah = {kh: k € A},

At ={k ke A}, AB ={kh: ke A 'h € B}.
We say that A is symmetric if A = A~L.
Here are some of the basic properties of topological groups:
Proposition 2.4. Let G be a topological group.

(a) The topology of G is translation invariant: If U is open and h € G, then Uh

and hU are open.

(b) For every neighborhood U of e there exists a symmetric neighborhood V' of e
with V C U.

(c¢) For every neighborhood U of e there exists a neighborhood V' of e with V'V C
U.

(d) If H is a subgroup of G then so is H.
(e) Every open subgroup of G is also closed.

(f) If K1, K5 are compact subsets of G then so is K Ks.
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Proof. (a) is equivalent to the continuity in each variable of the map (h, k) — hk,
and (b) and (c) are equivalent to the continuity of h +— h~! and (h, k) — hk at
the identity. For (d), if h,k € H, there exist nets {ho}aca, {ks}pep in H that
converge to h and k. Then h' — h~' and h,ks — hk, so h™! and hk belong to
H. For (e), if H is an open subgroup, the cosets hH are open for all h, so that
G\ H = UpgphH is open and hence H is closed. Finally, (f) is true because KK

is the image of the compact set K7 x K5 under the continuous map (h, k) — hk. O

If f is a continuous function on the topological group G and k € G, we

define the left and the right translates of f through k by

Lpf(h) = f(k7'h),  Rypf(h) = f(hk).

(The point of using £~ on the left and & on the right is to make Ly = L;,L; and
Ry = RiR;.) f is called left (resp. right) uniformly continuous if for every € > 0
there is a neighborhood V' of e such that ||Lif — fl|lec < € (vesp. ||Rif — flloo < €)

for k € V. (Some authors reverse the roles of Ly and Ry in this definition.)
Proposition 2.5. If f € C.(G), then f is left and right uniformly continuous.

Proof. We shall consider right uniform continuity; the proof on the left is the same.
Let K = supp(f) and € > 0. For each h € K there is a neighborhood Uj, of e
such that | f(hk) — f(h)| < i for k € Uy, and by Proposition 2.4(b,c) there is a
symmetric neighborhood Vj, of e with V},V,, C Up,. Then {hV}}nex covers K, so
there exist hq,...,h, € K such that K C U;‘Zlthhj. Let V. =nN7_ Vj,; we claim
that |f(hk) — f(h)| < e if k € V. On the one hand, if h € K, then for some j we

have h;'h € V;,, and hence hk = h;(h;'h)k € h;Uy,; therefore,

[f(hk) = f(R)| < |f(hk) = f(hi)| + [ f(h;) = f(h)] <&
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On the other hand, if h ¢ K, then f(h) = 0, and either f(hk) =0 (if hk ¢ K) or
h;'hk € V;,, for some j (if hk € K); in the latter case h; 'h = h; 'hkk™" € Uy, so

that |f(h;)| < ie and hence | f(hk)| < e. O

A locally compact group is a topological group whose topology is locally
compact and Hausdorff.

Suppose that G is a locally compact group. A Borel measure p on G is called
left-invariant (resp. right-invariant) if p(hE) = u(E) (resp. u(Eh) = p(E)) for
all h € G and E a Borel subset of G. A left (resp. right) Haar measure on G is a
nonzero left-invariant (resp. right-invariant) Borel measure p on G. For example,
the Lebesgue measure is a (left and right) Haar measure on R". The following
proposition summarizes some elementary properties of Haar measures; in it, and

in the sequel, we employ the notation

Cr={feCG) : f>0 and ||f|le > 0}.
Proposition 2.6. Let G be a locally compact group.

(a) A Radon measure i on G is a left Haar measure if and only if the measure

i defined by i(E) = p(E™') is a right Haar measure.

(b) A nonzero Radon measure i on G is a left Haar measure if and only if
[ f(k~th)du(h ff h) for all f € CF k € G if and only if

[ f(ET h)du(h) = [ f(h)du(h) for dll f € LNG), k € G.

(c) If u is a left Haar measure on G, then w(U) > 0 for every nonempty open

UCG and [ f(h)du(h) >0 for all f € CF.
(d) If p is a left Haar measure on G, then u(K) < oo for every K C G compact.

Theorem 2.9. FEvery locally compact group G possesses a left Haar measure. The

left Haar measure is essentially unique, that is, if p and v are left Haar measures
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on G, there exists ¢ > 0 such that p = cv. By symmetry, similar statements hold

for a right Haar measure.

If v is a left Haar measure on G and h € G, the measure p,(E) = p(Eh) is
again a left Haar measure, because of the commutativity of left and right transla-
tions (i.e., the associative law). Hence, by theorem 2.9 there is a positive number
A(h) such that pp, = A(h)p. The function A : G — (0,00) thus defined is in-
dependent of the choice of p by theorem 2.9, it is called the modular function of

G.

Proposition 2.7. A is a continuous homomorphism from G into the multiplicative
group of positive real numbers. Moreover, if u is a left Haar measure on G, then

for any f € LNG) and k in G we have
[ i) = 5067 [ fiduio. 2.2)
Proof. For any h, k € G and a Borel subset E of G of positive measure,
A(WK)(E) = p(ERk) = A(k)u(ER) = AR)A(R)u(E),

so A is a homomorphism from G to (0, 00). Also, since x,(hk) = x h),

Ek—1 (

[ e )dh) = (B = A u(B) = A [ (Bl

This proves (2.2) when f = x,, and the general case follows by the definition of
the integral. Finally, it is an easy consequence of proposition 2.5 that the map
k— [ f(hk)du(h) is continuous for any f € C.(G), so the continuity of A follows

from (2.2). O

Evidently, the left Haar measures on GG are also right Haar measures pre-
cisely when A is identically 1, in which case G is called unimodular. Of course,

every Abelian group is unimodular.



19
Proposition 2.8. If G is compact, then G is unimodular.

Proof. For any h € G, obviously G = Gh. Hence if p is a right Haar measure,
we have u(G) = u(Gh) = A(h)u(G), and since 0 < p(G) < oo we conclude that
A(h) = 1. O

We observed above that if u is a left Haar measure, i(F) = u(E™!) is a

right Haar measure. We now show how to compute it in terms of z and A,
Proposition 2.9. dji(h) = A(h) tdu(h).
Proof. By (2.2), if f € C.(G),
[ rmamytaum) = A [ #0000 duh
= [ R m) i)

Thus the Radon measure A~'dy is right-invariant, so by theorem 2.9, A~tdu =
cdfi for some ¢ > 0. If ¢ # 1, we can pick a symmetric neighborhood U of e in G

such that [A(h)™' — 1] < i[c— 1| on U. But a(U) = p(U), so

¢ = 1u(U) = lea(U) — pU)| =

_ 1
@0 = Ddu(i| < 3le = 1n0),
U
a contradiction. Hence ¢ = 1 and dpp = A~'du. O
Corollary 2.10. Left and right Haar measures are mutually absolutely continuous.

Definition 2.2. Let G be a locally compact group, H a Hilbert space, and F' :

G — H continuous. If there exists a vector f € H such that

(i) = /G (F(g).d)dulg) Vi €M (2.3)

then we say that f = [, F(g)du(g) as a weak integral in 'H.
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2.3 Group Representations
Definition 2.3. Let G be a locally compact group and H be a Hilbert space. A
representation ™ of G on 'H is a mapping satisfying:
(a) m: G —U(H). (U(H) is the group of unitary operators on H.)
(b) m is a homomorphism: wp, = mpmy for all hk € G.

(c) T is continuous with respect to the strong operator topology of U(H), that is

h — ) 1s continuous for each 1 € H.

Definition 2.4. A representation 7 is called irreducible if {0} and H are the only

closed subspaces of H which are invariant under m, for each h € G.

Definition 2.5. A representation © of a locally compact group G on a Hilbert

space H is called square integrable if
(a)  is irreducible.
(b) There exists a vector ¢ € H\{0} such that [, |(¢, matp)|*dp(h) < oo where p

is the left Haar measure on G. That is, the function h — (1, T is square

integrable. Such a vector v is called admissible.

Theorem 2.11. (Duflo-Moore Theorem) If 7 is a square-integrable representation
of a locally compact group G on H, then there exists a unique densely defined

operator K on 'H, self adjoint and positive which satisfies the following :

(a) The set of admissible vectors in ‘H coincides with the domain of K, that is

dom K ={¢y € H : 9 is admissible}.
(b) If ¥ is an admissible vector and f is an arbitrary vector in H, then
Wy fllZ2e) = collflln

where cy = || K9|3; and Wy f(h) = (f, mnt)n.



(c) If the group G is unimodular, then K is a multiple of the identity.
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CHAPTER III

CONTINUOUS WAVELETS

In this chapter, we review the continuous wavelet transform from the group
theoretic point of view. We also review the concept of frames which is essential
for discretization of the continuous wavelet transform. Details can be found in

Laugesen et al. (2002) and Hernandez and Weiss (1996).

3.1 The Continuous Wavelet Transform

In the most general sense, wavelets are defined by group representations
as we explain now. Let G* be the group which consists of all pairs (h, ) €

GL,(R) x R™ together with the group operation

and the product topology. G* is called the affine group. Then R” is a closed
normal subgroup of G*, and G*/R™ is isomorphic to GL,(R). This kind of group
construction is called a semi-direct product, so G* is called the semi-direct product
of GL,(R) and R", written GL,(R) x R™. Given a closed subgroup H of GL,(R),

we consider the corresponding closed subgroup G of G¥,
G={(h,¥)eG* : he H,i € R"}.

We identify H with the subgroup {(h,Z) € G : h € H,Z = 0} and refer to it as the
dilation subgroup of G, and R™ with the subgroup {(h,7) € G : h=-e, ¥ € R"},

and call it the translation subgroup of G. Thus G is the semi-direct product H xR".
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One easily checks that if i is a left Haar measure for H and A the Lebesgue measure
on R™, then v = p x X is a left Haar measure for G.

Next given h € H and a vector ¥ € R", define dilation, translation and mod-
ulation operators on L*(R") by (Dyf)(#) = |det h|"Y2f(h=1%), (Tef) () = f(§ —
7) and Ezf(§) = € f(§) for f € L*>(R") and § € R"™. The corresponding opera-
tors on L2(R") are defined similarly. For example, (Dyf)(5) = |det A|"2/2f(§h)
for all f € L2(R"). As for the modulation operator on L*(Rn), if # € L*(R"), we
define Ezf(§) = e2™7% (7). Using techniques from group representations (see Fol-
land (1999), for example), it is easy to show that the mappings h — Dy, &+ T%
and T — Ez are strongly continuous homomorphisms of the respective groups into
the group of unitary operators on L2(R") (respectively L2(R") ), that is, they are

group representations (Continuity of Z — Tz was shown in proposition 2.1).
Proposition 3.1. For f € L*(R"),h € H and ¥ € R"

(a) Dpf = Dy f

(b) Tzf = E_f.
Proof. For f € LY(R™) N L*(R"),

Dt () = / [ det B2 f () e d
= [ 1detn 2 f(gpe i
— | det B2 (5h)

= Dy f(7)
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and also
T7) = [ G- 2)e > g
Rn
— [ s nag
RTL

— 27T f (y—») e 2™y, dij
Rn

The assertion follows from density of L'(R™) N L*(R") in L*(R"™) and continuity

of all operators involved. O
Since TzDy, = D}T},-1z, it follows that
Thz) = DpTs

defines a representation of G on L?(R").

Given ¢ € L?(R") and (h,T) € G, let us set

Unz(7) = (T ) (7) = | det h| 7 2p(h™ 1 — ).

Since the Fourier transform F : L?(R") — L%@) is unitary, it induces a repre-

sentation p of G on LQ(H/@) by p = F omo F~L. Computing, we obtain

Py = (F oz o FH)(¥)
= (Fomnz)(¥)
= F(mna(¥))
= F(DyTzy)
= D1 E_zF (1)

= Dy1E_z

Le. prs(7) = | det h|Y2(h)e2miTha,
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Definition 3.1. Given ¢ € L*(R"), the (continuous) wavelet transform W, in-

duced by ¢ and the group H s defined by

Wy f(h, Z) = {f, mna¥) = | det h|~1/? - fF@)p(h=1y — Z)dy
for f € L*R"™) and (h,7) € G.

The adjective continuous refers to the continuity of the translation group,
consisting of all ¥ € R™. The dilation group H, in contrast, is permitted to carry
the discrete topology.

A goal in wavelet theory is to find a condition for i) that guarantees that

the mapping W, is a multiple of a partial isometry,

Wt Iz = coll fllZzen (3.1)

for all f € L*(R™) and some constant ¢, > 0. That is, one wants that

/ (s ) P, ) = / (W) )Pl ) = ey | |7 (32)
G G Rn

for all f € L?(R™). If this identity holds, then 1) is called admissible, and one has

the Calderén reproducing formula

;= /G (W ) (h, ) (e, 7)
:/n /H(Wwf)(haf)%,fdu(h)df (33)

as a weak integral in L?(R"), as shown in (1.5)

Theorem 3.1. (The admissibility condition, Laugesen et al. (2002)).
Equality (5.1) is valid for all f € L*(R™) if and only if there exists ¢y, > 0 such
that

/H (TR Pduh) = e (3.4)

for a.e. ¥ € R~
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Observe that by scaling 1 we may assume that ¢, = 1. We want to identify

all those groups H that possess a wavelet satisfying (3.4):

Definition 3.2. We say that H is admissible if there exists a Borel measurable

g€ Ll(f&;) such that g > 0 and

/H g(Fh)du(h) = 1 (3.5)
for a.e. ¥ € Rn.

In terms of (3.4), if H is admissible, we pick ¢ such that |YL|2 = g¢g. Then v
is an admissible function. Conversely, given an admissible 1, we set g = $|zﬁ|2 to
see that H is admissible.

The fundamental result on admissibility given by Laugesen et al. (2002)

involves the notation of the e-stabilizer. Given 7 € R" and ¢ > 0, the set
HE={he H: |7h—7) <)

is called the e-stabilizer of 4. Similarly, the set Hy = Hg ={h € H :9h=7}is
referred to as the stabilizer of 7. It is clear that Hy and H: are closed subsets of

H, that Hy = EQOH% and that H? C H§2 when g1 < &,.
Theorem 3.2. (Laugesen et al. (2002))
(a) If H is admissible, then A # |det | and the stabilizer of 7 is compact for a.e.
7 e R,
(b) If A # |det| and for a.e. 7 € R there exists an & > 0 such that the

e-stabilizer of 7 is compact, then H is admissible.

This theorem is quite useful for determining the admissibility of particular
groups H. For example it is clear that no compact group H can be admissible

since in this case A = |det | = 1.
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The above discussion applies more generally to o-compact, locally compact
groups H possessing a representation ¢ : H — GL,(R). The wavelet transform of

f € L*(R") is then defined by

Wy f)(h, T) = (f, T(om).0)¥)

and the Calderon reproducing formula becomes

P= [ [ tnainsdutiara)

where wh,f = W(w(h),ﬁ)d]'
We will apply this generalization to the case where H = RP”. Recall that

M one defines A* = e*M for each real number s.

given an exponential matrix A = e
Then that the mapping s — A® is a continuous homomorphism of R into GL,(R).
Thus, if we fix commuting n x n matrices A; = e Ay = M2 . A, = eMr and
set ©(s1, Sa, ..., 5p) = AP A52 -+ A, then ¢ is a continuous homomorphism of R?
into GL,(R), called a p-parameter group of matrices or a p-parameter subgroup
of GL,(R).

We finish this section by reviewing some fundamental concepts of transfor-

mation groups. (For further details, see for example Kawakubo (1991)).

Definition 3.3. Let X be a set, H a group. By a (right) H-action we mean a
map

p: XxH—-X
satisfying
(a) p(x,e) =x Vx € X where e denotes the identity of H
(b) p((z,h1), he) = @(x,h1hy) YV € X, hy,hy € H.

The triple (X, H, @) is also called a transformation group, and X is called a H-set.
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It is often convenient to denote ¢(z, h) by x - h. Then (a) and (b) become
(@)z-e=2x VreH
(b/) (ZU . hl) ~hy =x- (hlhg) Vo € X, hl,hg € H.

If X is a topological space and H a topological group, then one also requires that

the map ¢ be continuous, and calls X a H-space. In this case,
(a) ¢ is an open map
(b) for fixed h € H, the map = — x - h is a homeomorphism of X onto X.

Given x € X, theset O(x) =x-H ={x-h : h € H} is called the orbit of . The
stabilizer of x € X is the set H, ={h € H : ©-h = z}. It is a closed subgroup
of H provided that X is a Tj-space. The orbit O(z) is called free if H, = {e}.

Example 3.1. Let X = @1, and H a closed subgroup of GL,(R). Then the map
QY R x H — Re
given by matrix multiplication,
(T, 1) =7 - h = Fh

turns R into an H-space. We have O®)={7h : he H}.
Example 3.2. Let X = ]1@2 and H = RP and M a fixed n X p matrix. Then the
map

Q' R" x R? — R»

given by

— —

e(7,8)=7-s=7+Ms

turns R” into an RP-space. The action is free if and only if rank M = p
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Example 3.3. Every topological group H is itself an H-space through the action
g0<h1, hg) = hl . hz = hlhg (hl, hz € H)

determined by group operation. Note that there exists only one orbit which is
free.

We will make use of the following observation :
Lemma 3.1. Let X be an H-space, and S C X be given.

(1) Let U C H be open, and hg € H. Then S -U is open if and only if S - Uhy is

open.

(2) Let {By}aca be a neighborhood base of e. Then S - U is open for all open

subsets U of H if and only if S - B, is open for all a € A.
Proof. (1) Note that
S(Uho):{l’hhol’es,helj}

={(x-h)-hy:2eS helU}

Since the map x +— x - hy is a homeomorphism, the assertion follows.
(2) Suppose, S - B, is open for all &« € A. Let U C H be open. Since for each

ho € H, the collection {Byho}aeca is a neighborhood base of hgy, we can write

where oy, € A. Then

Since each S - B,, is open, it follows that S - U is open. The reverse implication

is obvious. O
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3.2 Frames

In practical computations, it is much easier to work with series than with
integrals. Thus we would like to replace the integral (3.3) by

F=Y) f tea)tns (3.6)

keP zel

for some discrete subsets P and I' of H and R" respectively, with convergence in
L*(R™). As the functions {¢y z trepzer need not be orthogonal, one needs to use

the concept of frames, which is a generalization of Hilbert space bases.

Definition 3.4. Let H be a Hilbert space. A collection of elements {1; : j € J}

in H is called a frame if there exist constants a and b, 0 < a < b < 00, such that

all fIIP <Y K <blfI? forall f € H.
jeJ

The constants a and b are called frame bounds. If a = b then we say that the frame

1s tight. If a = b =1, then it is called a Parseval frame.

Note : Any orthonormal basis in a Hilbert space is a Parseval frame. On the
other hand, even a Parseval frame need not be a basis:

Example 3.4. Let H = C? and take

2 1 1 1
¢1 - (Oa g)a o = (_27 _6)’ s = (E7

Then, for f = (f1, fo) € C* we have

3
2 2 2 2
;Uw] = 3Ifl +r\f \/-le +yf \/_f2|
= |IfI%

Therefore, {1;}3_; is a Parseval frame, but obviously is not a basis for C*.
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Theorem 3.3. Let {¢; : j € J} be a frame for a Hilbert space H with frame
bounds a and b. Then there exists a frame {IZJ : j € J}, called the dual frame,
which allows reconstruction of f € H by
F=Y ()0
jeJ
In fact, Jj = S, for all j, where S is some positive bounded linear
operator on H, called the frame operator. In case where {¢; : j € J} is a tight

frame, S is a multiple of the identity, S = al.



CHAPTER 1V
EXISTENCE OF SMOOTH ADMISSIBLE

FUNCTIONS

Given an admissible group H, the problem of finding admissible wavelets
1 with desired properties, such as smoothness for example, remains. One way of
obtaining an admissible function is through the use of a cross-section for the action
of H on R". In this chapter, we introduce a generalized concept of cross-section,
which we call an almost cross-section or an N-section. We then discuss the ex-
istence of N-sections for p-parameter groups of diagonal matrices with various
properties, such as boundedness or compactness, for example. We show how to
obtain smooth, bandlimited admissible functions from N-sections which are suffi-
ciently well behaved with respect to the topology of Rn. Throughout this chapter,
we will work in @L, that is, vectors will be written as row vectors. For any set

J, tJ will denote the cardinality of J.

4.1 Generalized Cross-Sections

Definition 4.1. A Borel set S C I@?L 1s called an almost cross-section or an N -

section for the action of H on Rn if

(a) |J Sh= Rn \ E where E is a set of measure zero.
heH

(b) N :=sup(8{k € H : 7k € S}) < o0.

yes

If N =1 then S is called a cross-section.
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The first property says that almost every orbit intersects the set .S, while
the second property states that an orbit intersects the set S at most N times.

Notation : Let S be a subset of R™. For Yo € ]1/@, we set

S:(Yo) ={7€ 5 : 7=l <&} = B:(0) N S.

Furthermore, S.(¥;) will denote the closure of S.() in S. Recall that by theorem
3.2, a sufficient, although not necessary condition for admissibility of a group H
is that e-stabilizers be compact, for almost all 7 € R". The groups discussed in

this chapter have this property :

Proposition 4.1. Let H be a closed subgroup of GL,(R). Suppose there ezists
an N-section S such that the map © : S x H — Rn defined by © : (¥, h) — Fh is
open. Then for every ¥ € SH, there exists € > 0 such that the e-stabilizer HZ s

compact.
Proof. First let 4y € S. By assumption, S N O(7p) is a finite set, say
SNOFo) = {Yo, Y1y s Y }- (4.1)
Choose ¢’ > 0 such that
%i ¢ Ber (o) (42)
for all © = 1,2,...,m. Now as the map © is continuous, there exist 6 > 0 and a

compact neighborhood U of e in H, such that

S5(F0)U N O(Yo) = YU, (4.3)

for if 77y € Ss5(Yo),uo € U are such that fjoug € O(7y), then by (4.1) 7o = 7; for

some ¢, and hence by (4.2), ¢ = 0. Now as © is an open map, we can pick € > 0
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such that

B.(%) C Ss5(%)U.
Observe that by (4.3), if ¥ € B.(50) N O(7), then 7 is of the form Yyu, for some
up € U. Soif h € HZ , that is, Yoh € B: (%), then
Yoh = You
for some u € U or
%hu_l = ’70.

That is, hu™! € Hx,, or h € Hyyu. It follows that
S ={h e H : ||%oh -7l < e} C H;U.

Now as HZ is closed, and H%U is compact, it follows that HZ is compact in H.

Next let 4y € SH be arbitrary. Pick 77y € S, hy € H such that
o = Yoho-

By the above, there exists £ > 0 such that H, = {h € H : |foh — || < &} is

||h60||' Now if || oh — || < € then

compact. Set € =
[Fohohg t hho — Foholl < [[ohohg ' h — Foll [l < .

That is

[7ohg *hho — o] < €

so that hy'hhg € HZ , or equivalently, h € hoHy hy ! We have shown that HE C

hOH;;Oha ! which is a compact set. Thus, H. =, 1s itself compact. O

In particular case, if S is a cross-section, the next proposition says e-

stabilizers of close points lie in a common compact set, for € sufficiently small.
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Proposition 4.2. Let H be a closed subgroup of GL,(R). Suppose there exists an

N-section S such that
(a) the map © : S x H — R given by (7, h) — Fh is open

(b) for each 7 € S, there exist & > 0 and a compact neighborhood V' of the identity

e in H such that if iy, 7y € S5(Y) and 17, = 7jpv for some v € H, thenv € V.

Then for each ¥ € SH there exist an open neighborhood B.(¥),é > 0 and D C H

compact such that
H.CD
for all 7j € B.(7).

Proof. Suppose first that ¥ € S, and let ¢ and V' be as in the assumption. Since ©
is continuous and open, there exist d1,d5 > 0 and compact neighborhoods U and

W of ein H, and €, > 0 such that

551 (i) - S52 (7)

WcuU
B.(9) C S5, ()W C Bz (4) (4.4)
and
Bez (’7) C 562 (/V)U C B(S(’?) (45)

Note that ¢; < % and d; < 0.
Set & = 55 where M = sup [|[w™!|| < oco. Now let 77 € B.(7) be fixed but
weW

arbitrary, and h € Hg. Then

[77h — 7]l < €.
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Now by (4.4), 17 = rjow for some 7y € S, (7), w € W. Then

[Towhw™" — 7o|| = |[Gowhw ™" — foww ™|

< |owh — fow]| [|w ™|

< ||7h — 7| M
19
ciM ==
c 2

so that
- _ - £ . 5 € £ €9
hw !t =7 < = —Al< =40 < = + = < ey
[[7owhw 7H_2+H770 Al gth<gto <e

It follows from (4.5) that

1

nowhw™" = mu

where 77, € Ss,(7) N O(1), v € U. By assumption (b), whw™'u™' € V or
he W 'VUW =: D.
We have shown that
H-CD Vi € B.(7)
where D is compact in H.
Next let ¥ € SH be arbitrary, say ¥ = vpho for some 7y € S, hg € H. Let

g, &, D be as above, for 9. Pick €; > 0 such that B.,(Y)hy' C B.(%) and set

g = —1—Hh§ i Now let 77 € B.,(7) be arbitrary. If h € H is such that
0
|77h — 7| < &1,

then

[7hg * hohhg* — iihg || < |lifh — 7] ||ho || < &

Now since 7h, ' ¢ B.(%) it follows from the first part that hohhgy L'e D, or

equivalently, h € hy'Dhy =: D;. We have shown that

H2 C Dy Vi€ B.,(7)
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hence the proposition follows. O]

If H contains an expanding matrix, then every N-section may be modified

to be bounded, and bounded away from zero:

Proposition 4.3. Let H be a closed subgroup of GL,(R). Suppose
(a) there exists an N-section S for the action of H on If@,
(b) H contains an expanding matriz.

Then there exist an N-section S’ and M > 1 such that
1< |7l < M (4.6)
for ally € 5.

Proof. Let A € H be expanding. We partition ]1/@\{0} into annuli B, = {7 € R
om < ||9]| € 2™+, m € Z}. Then By, = {y€R™ : 2™ < ||F]| < 2™, m € Z} is
compact. Next we split each B,, into small pieces, and translate each piece into

the annulus {€ € Rr ;1< I1€]l < |A||}. In fact, for 7 € By, as A is expanding,
lim |7A*|| = oo (keZ).
Thus, there exists a smallest k = k2 such that [|[JA*|| > 1 for all k > £Z'. Then

|7AM 1| < 1, and hence

m

L< [FAS | < [1FAS - AL < (1A,
le.
1< [FAS < (1Al
Pick any M > ||A||. Since the annulus {€ € R 1< I€]] < M} is open, there

m

exists a neighborhood Vi of ¥A4* such that Vi C (€€ R 1< I1€]] < M}. Let
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Us = VA", Then Us is an open neighborhood of 4. Now {Uy} is an open

¥€Bm

cover of B,,, hence there exists a finite subcover {Us,(m }i; of B,,. Set

UP = B0 Usm

U3" = [Bm N Usym)] \ Usi(m)
U = [BnNUs, @) \ U2 Usym).

Then {U}\m, is a partition of B, into disjoint Borel sets, and UimAkaﬂm) C
Vaim) C (€ e R ¢ 1< I€] < M}. By this process, we obtain a countable
collection of disjoint Borel sets {U™ : m € Z, 1 = 1,2, ...,1,,}, and numbers k:g:(m)

such that
lim —~
L ez i) U =R A {0}

2. UmAMion c {£eRm 1< ||| < M} forall i =1,2,....1,, and m € Z.

Finally, we set

~

S'=u U (SnumAsion,

meZ =1
It is easy to check that S’ is an N-section, and by construction, S’ C {5 cR

1< ||€] < M} O

Remark: It is natural to think that in order for bounded N-sections to exist, the
group H must contain an expanding matrix. Example 5.2 shows that this is not
the case.

We want a compact N-section S which has the property that the orbit map
0:Sx H—Ris open. In the remainder of this section, we will construct such
a section for p-parameter groups of diagonal matrices.

Let H, be a p-parameter group of diagonal n X n matrices, i.e. H, =

{ATTAS2 - Ay + s, € R Vi) satisfying
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L.p<n
2. A; is diagonal, say A; = diagla;, asj, ..., a,;| where a;; > 0.

The condition a;; > 0 is equivalent to every matrix A; being exponential, while
the first condition is necessary for admissibility of H,, as will be made clear below.
Observe that since R? has no non-trivial compact subgroups, H, admissible will
imply that stabilizers are trivial for almost all v € I@?‘, in particular, the map
s € R? — A® is one-to-one. We thus may identify H, with RP. Furthermore,
det A > 0 for all A € H),.

Notation : For s = (s, Sg,...,5,) € RP, A® will mean A7 A3 --- AP, (Below, s;
may denote an element in R”, or a scalar in R. The correct meaning will be clear
from the context).

Let 7 € R". For 77 € O(7) there exists s = (s1, S2, ..., 5p) € RP such that
7T=FAP AR - A,
Preferring to write vectors in column form,

7= A AR AZ”’YT

ie. ~ _ ~ _
T s M
$1 52 P
0,11(112 R alp o .. 0

T2 V2

0 atta - ank

e nl*n2 np
M Tn

That is, for each 1 = 1,2, ...,n,

S1,,82

Ni = Qi Qg -~ aff;%' (4.7)

Thus, corresponding components of 4 and 77 have the same sign. Assume first that

7 lies in (I@TF)” Then 77 € (I@TF)” and we can linearize equation (4.7) by taking the
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natural logarithm,

p
Inny; = Zbijsj +In~v; where b;; = Ina,;.

j=1
In matrix notation,

In m bll ce blp In 71

S1
In 72 b21 e bgp ) In Y2

= o+

Sp

Inn, bpi ... by In~,

Or in short,

Inf= Ms+In7.

(So by convention, In¥ will always be a column vector). It is now clear that
stabilizers are trivial a.e. if and only if ker M = {0}, hence necessarily p < n.
Observe that the mapping ¥ : (]1@)” — R™ given by 7 — In 7 is a homeomorphism.
If 4 lies in any other octant, then we can linearize in a similar way. However, by
symmetry we may always assume in what follows that 7 lies in the first octant
(]1/%\*)” (Strictly speaking, the word octant is only correct if n = 3, we will however
use it for general n).

Notation : For 1 <1y <ip < -+ <y <, let i= (11,12, ..., ip). Mz will denote
the p x p matrix containing rows iy, is, ..., ¢, of M, 4; the p-vector containing the

entries 71, 7g, ..., 7, of an n-vector ¥ and A; = det M;. Set
J={i= (ir,ig,...,ip) : 1 <iy <ig < ... <i, <nand A;# 0}.

Also, given ¥ € R", ¥, will denote the vector consisting of the s-th to t-th
Components of /77 Le. if ’7 = (717727 "'7771)7 then i[s,t] = (78778-‘!‘17 "'7lyt) for 1 S
s <t < n. Similarly, Mj;y will denote the [(¢ — s) + 1] x p matrix containing rows

stotof M.
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After linearization, we obtain the following proposition.
Proposition 4.4. The following are equivalent:
(a) Hy is admissible.
(b) There exists j such that det A; # 1, and rank(M) = p.
(¢c) There exists j such that det A; # 1, and J # 0.
Proof. (b) < (c)

rank(M) = p < M has p linearly independent rows, say rows iy, is, ..., %,

& Airio,iy) 7 0.
(a) = (b) Suppose H, is admissible. Then by theorem 3.2,
1. there exists A € H,, such that det A #1
2. the stabilizer of 7, Hy, is trivial a.e. 7 € R~

Let s = (51,59, ...,5,) € R? be such that A = A® = ASLAS .- A7, Since det A # 1
then det A; # 1 for some j. Now choose a point ¥ € (]lijf)” with trivial stabilizer.

Then

FYA* =4  implies s=10
equivalently, Ms+Iny =In¥y implies s=0
hence Ms =20 implies s =0
which is equivalent to rank(M) = p.

(b) = (a) By theorem 3.2 it is enough to show that for every 7 € R" whose entries

are nonzero, there exists € > 0 such that the e-stabilizer HZ is compact. Since ¥
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is a homeomorphism, this is equivalent to compactness of

={seR’: |[Ms|]| <&}

for some £ > 0 and every ¥ € R".

Let € > 0 be arbitrary. Because M has rank p, M defines an invertible
linear transformation of R” onto a closed subspace V' of R", hence M defines a
homeomorphism of R? onto V. Since {y : ||y|| < €} is compact in V| so is its

pre-image {s: || Ms|| < e}. Hence H, is admissible. O
The next theorem shows the existence of unbounded cross-sections.
Theorem 4.1. Let H, be as above. Given ie J, set
T::={7= (7,7 M) € R" v, = £1 for j =1,2,...,p}.
Then
(a) T: is a cross-section for the action of H, (or equivalently, of R?) on Rr

(b) the map © : (V,s) — YA® is a homeomorphism of T: x RP onto {Ee Rn

éij 7& 07 j = 1727 7p}

Proof. After suitably exchanging basis vectors in I@;, we may assume that i, =

o —

1,49 =2, ...,i, = p. Since (R\ {0})? x R7 is the disjoint union of open sets of
the form S7 x Sy x ... XS}, x @*\P, where Sy = R¥ or Sy = I@, k=1,2, ..., p, and

orbits stay in each of these sets, by symmetry we only need consider the set
T2 = {11, ., L, Ypy1, o 7m) i € R} (4.8)

We need to show that
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1. T2 is a cross-section for the action of H, on W := (]1/%1)” x Rn-p,
2. © is a homeomorphism of 17 x R? onto Wy.
Define a mapping ¢ : Wy — R" by
(7)) = (Iny1, Y2, o, Y Yot 1s ooy V) -

Then
DY) = Y1y ® Vipt1,n]

where 7j,41,, consists of the last n—p entries of ¥, now written as a column vector.
Note that ® is a homeomorphism. Thus the action of H, on W, induces an action

51—>5~50pr on R" given by
£ 5= 0(7) s == D(TA?)
where £ = ®(5). Then

£s = OFA) 1Y B P(TA) pyrn

Iny Vp+1
In, Yp+2
= M[Lp}s + ) AS P
i ln’yp ] i Tn ]
that is,
€ 5= (Mups+ 1) ® Aprin (4.9)

where Af is the (n—p) x (n—p) matrix obtained from A® by cutting the first p rows
and columns. By assumption, M p) is invertible. Since ® is a homeomorphism, it

is enough to show :

1. CID(TZS) = {(0,0,...,0, %11, Vn)" : v € R} is a cross-section for the action

0:(7,s) — 7-sof RP on R".
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2. 0 is a homeomorphism of ®(77) x R” onto R".

First we show that @(Tf) is a cross-section. Let 77 € R" be given. Set
s = M[I;)]ﬁ[l,p], and let € be the vector given by ﬁl,p] = [0,0,...,0], and gfpﬂ,n} =

Aasﬁ[p+1’n]. Then by (4.9)

£ s = (Mpys+ &np) ® Agprin
= (M[l,p](M[I;]ﬁ[l,p])) b AS(A(;Sﬁ[erLn])
= 77[1,10] D ﬁ[p-ﬁ-l,n] = ﬁ

In particular, € is surjective.
On the other hand, suppose there exist E, 5 € @(TZE’) and s € RP such that

5-82’7. Then

M pis + &) = V1)
A p+1n] = Vp+1,n]-

Since ﬁl,p] = Vip = 0, and M p) is invertible, the first identity gives s = 0. Then
the second identity gives E[pﬂm] = Yp+1,n], hence E = 4, that is @ is one-to-one. It
follows that & (T 7 ) is a cross-section for the action of R” on R™.

Since # is continuous, one-to-one and surjective, we are left to show that
0 is an open map. Since basic neighborhoods in ®(77) x RP are of the form
Ss(70) X Be(so), it suffices to show that Ss(7o) - B:(so) is open in R", for each
basic open neighborhood S5(%) of 75 € ®(17) and open ball B.(so) in RP. Since
B.(s9) = B:(0) + sg, we may assume by lemma 3.1 that s = 0. So let 4y €

®(77), 6 > 0 and £ > 0 be given. Then

(5}0) [1,p] — 6

and

Ss(%o) = {7 € R™ : Fjuy = 0, Fps1m — (G0)perm || < 0}



45

Next let € € Ss5(7) - B-(0) be arbitrary. We need to find an open neighborhood
Bg({) in R™ which is contained in Ss(%p) - B:(0).
Now
§=7"s1
for some ¥, € S5(Y), s1 € B-(0). That is,
& = Mpgist and pria) = A3 (F)pira-

Now let 0; = 0 — ||(71)[p+1,n} - (70)[p+1,n]|| > 0. It follows that if 7 € R"? and

—

17— (V) p+1,m1ll < 01, then

17— (Yo)p+1aill < 17— (V)1 | + 1 (V) 1) — Go) il < 0. (4.10)
Similarly, we let £1 = ¢ — [|s1]|. It follows that if s € RP and ||s — s1]| < &1, then
sl < lls = sall + [lsall <e. (4.11)

Now as the map (77, s) — Ay °7 from R"? x R? into R"? is continuous, there exist

5 >0 and & > 0 such that
177 = Epramll <O and |[|s— s <&

imply

14577 = A" Epernl| < 61
that is

140 °T = (F)prrmlll < 01

so that by (4.10) with 7 replaced by A;*7,

| Ag 17 — (70)[p+1,n]|| <. (4.12)

Reducing € if necessary, we may assume that & < ;. Now as M[; ;) is an invertible

matrix, it defines a homeomorphism of R? onto R?, so reducing 4 if necessary,

|M(s—s)|| <6 implies |[|s — sy < é. (4.13)



46

—

Now let 77 € B;(§) be arbitrary. Then

170 — €l <0 and |10 — Epram || < 0. (4.14)

As My, is invertible, 71 ,) = M1 s for some s € RP. Then

1M p) (s = s0)l| = 1701 = Epmll <9,

so that by (4.13), ||s — s1]| < € < €1, hence by (4.11), ||s|]| < . Then by (4.12),

140 Tp+1.0) = (Fo)pram | < 0.

So if we set 17y := 6[14,] @ Ay *Tipt1,n), then 75 € S5(5). It now follows that

Mo+ 8= Mpps D Mpsin =1,

and hence 17 € Ss5(7) - B-(0). We have shown that

—

B;(£) C S5(7o) - B=(0).
This shows that # is an open mapping, and proves the proposition. O

The cross-section T3 in proposition 4.1 is unbounded. We would like to
obtain a bounded cross-section having the property (b). In what follows, we can
nearly achieve this, in fact we obtain a set S which is an almost cross-section
provided that H, contains an expanding matrix. The idea is to show that each
orbit intersects at least one of the cross-sections 7%, within some bounded set.

For each i € J, set

Si={7€R": 0< || <1Viand |y,|=1Vj=1,2,..,p}
Sr={JeR" : 0<y<1Viandv, =1V j=12 .p}
Si={7€R": 0< || <1Vi, % =034, and |y,| =1V j=1,2,...,p}

S:=USuUS.

icJ
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Note that S is compact, while U;_ ;S; is not. Thus, while the sets Sli have measure
zero, we need to include them in order to obtain a compact N-section.

We let © : § x RP — SH,, denote the continuous map given by
O(7,s) =A%

Theorem 4.2. Let H, be as in theorem 4.1. If in addition, H, contains an

expanding matrix, then S is a compact almost cross-section, and © is an open

mapping.

We split the proof into 2 parts. In the first part we show that S is an almost

cross-section. In the second part we show that © is an open mapping.
Proposition 4.5. S is an almost cross-section for the action of H, on Rn.

Proof. Observe that S C U;_,T%, hence each orbit intersects S at most f.J times.
We thus must show that the orbit of almost every 7 € R" intersects S. In fact, we
will show that the orbit of almost every v € R" intersects Uz ;S5

The major parts of the proof are lemmas 4.1 and 4.2 below. Let us first
linearize and introduce some new notations. Without loss of generality, that is
after change of basis in R? we may assume that A; is expanding. As noted earlier,
orbits remain within octants, so by symmetry, we only need to show that U, JS’;

is an almost cross-section for the action of H, on the subset (]lijf)" of R, Let

v € (I@TF)” Then for each 77 € O(7), there exists s = (s1, S2, ..., 5p) € R? such that
T=FAD AR - A,
Applying the map ¥ defined earlier,

Inf= Ms+In7.
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—

In what follows, we will drop the logarithm, that is replace a vector W(7j) = In 7
by 77, and simply write

7= Ms+7.

Thus, the action 7 — 7 - s of R? on R" is given by the family of transformations
T5 : RP — R"

defined by

where s € RP. Thus, O(y) = {T5(s) : s € R’} = Range(T3).
Since A; is expanding, the entries b;; in the first column of M are all

positive. Hence, if s, 7 = 2,3, ..., p remain fixed, then for each 7, 1 <17 <mn,

lim n, = lim (Ms+7);

S1—>—00 §1—>—00

p
= lim bilSl"‘ E biij—i-’}/i
§1——00
=2

= —00,

that is each component of 77 tends to —oo as s; goes to —oo. In particular, there
exists s € RP such that

n = (Tys); <0 (4.15)

forallte=1,2,...,n.

By an n — r coordinate plane, we will mean the set
Pli,iv) = {VeR" : vy =0V i€ {i1,ig,....0} },

for a fixed set of indices {iy, ..., i, }. By a non-positive n — r coordinate plane, we

will mean the set

P((;,...,ir) - {’V - P(il,---7i7-) L% S O \V/ 7 ¢ {il,ig, ...,iT} }
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By a negative n — r coordinate plane, we will mean the set
Py = Ve Puyipy + 1 <OV i ¢ {iy,ia,....0} }.
Observe that for i € J, \I/(Szf) is the non-positive n — p plane
PP={y€eR": % <0Vi, y,=0fori=1i5j=12,..p}

Recall that by an affine map T" we mean a map of some finite dimensional vector

space V' into R™ of the form

for some fixed vector ¥ € R™ and linear mapping M : V' — R”. It is convenient to

identify M with a matrix, then
T(s)=Ms+7.

We will write T's instead of T'(s). Note that Range(T") is a connected set. Also, T'

is trivial if and only if ker(M) = V.

Lemma 4.1. Let T : V — R" be a non-trivial affine map. Suppose there exists
s € R? such that

(T's); <0 (4.16)
forallt=1,2,...,n. Then there exists § € V such that
(a) (TS);, =0 for some iy € {1,2,....,n}
(b) (T'5); <0 foralli=1,2,....n.

Proof. We first show that there exists sy € V' so that (T'sg); > 0 for at least one

i. In fact, as ker(M) # V| there exists s; € V' such that Ms; # 0. In particular,



50

(Msy); # 0 for some i. Pick m € Z so that m(Ms;); > —~; and set sy = ms;.

Then
(T'so)i = (M(ms1)); +v = m(Msy); +7; > 0. (4.17)
Next set
U={EcR": & <0V il
Then
bdryU) ={€€R" : & <0Viand & =034}
and

U ={EcR": &>03i}.

Observe that R™ is the disjoint union of these three sets. Set

Oy = U N Range(T)
Oy = bdry(U) N Range(T)

O3 = U° N Range(T),

so Range(7T) is the disjoint union of O,0y, and Os. As Range(T') carries the
subspace topology of R™, O; and Oj are open sets in Range(7"). Now suppose to
the contrary, that there exists no § € V satisfying (a) and (b). This is equivalent
to Oy = (. Then by (4.16) and (4.17), Range(T) is the disjoint union of two
nonempty open sets, contradicting connectedness of Range(7T"). This prove the

lemma. O

Lemma 4.2. Let H, be as above, ¥ € R" and T' = T% the corresponding affine
map,

Ts=Ms—+7.

Then there exist k > p, a collection of indices 1 < i1 < iy < -+ < 4, < n and

s € R? such that
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(a) (T's); =0 for all i € {iy, iz, ..., 1%}
(b) (TS)l <0 fO?” all 1 ¢ {il,iQ, :Zk}

That is, 7 = T's lies in some negative n — k coordinate plane. Furthermore, there

exists a subset {ij,,%j,,...,4;,} of {41,142, ..., 1} such that Ay, gz 7 0

Proof. We proceed by induction on the co-dimension of the coordinate plane.
Throughout this proof, we will switch the standard basis vectors in R™ suitably,

so that (a) and (b) become
(@) (T's); =0fori=1,2,...,k
(b') (T's); <O0fori=k+1,k+2,..,n.

Initial step : As shown in (4.15), there exists s € R? such that (7's); < 0 for all 7.
Applying lemma 4.1, followed by a suitable switch of basis vectors in R, it follows

that there exists sy € RP such that
(a) (TS())l = O
(b) (TS())i S 0 for all 4.

Induction step : Assume we have found sg € RP and k& > 1 so that after switching

basis vectors,
(C) (TSO)i =0 fori= ]_, 2, ceey k
(d) (T'sp); <Ofori=k+1,k+2,..,n.

If (T'sg); = 0 for some i € {k+1,k+2,...,n}, then after exchanging the i-th basis

vector in R™ with the (k + 1)-st vector, it follows that

(C/) (TS())Z' =0 for i = 1, 2, cery k+1
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(d) (T'sp); <O0fori=k+2k+3,..,n.

Repeating this process, we may assume that (d) above is replaced by
(d") (T'sg)i<Ofori=k+1,k+2,..,n.
Now set
Vi={seRV: (Ms);=0fori=1,2,....k}.
Then Vj is a linear subspace of RP. If V,, = {0} we stop; this can only happen if
k > p, for if k£ < p, then the kernel V}, of the linear transformation defined by the

k x p matrix M ) is always nontrivial.

If Vi, # {0}, we consider the affine mapping
T :V, —» R**
given by
T's = M[k+1,n]3 + ’7’

where 7' = (T'S0) (k41,1

For convenience, we will consider R"™* as a subspace of R, so ¥’ is a vector
in R™ whose first k entries are zero; v; = 75 = --- = v, = 0. Observe that by
assumption (d”), v <O0fori=k+1,k+2,...,n.

Since T"(0) = 7', we can apply lemma 4.1 to obtain s; € Vj, satisfying, after

a switch of basis vectors,
(T's))ky1 =0 and (Ts1); <0
forall i € {k+ 1,k +2,...,n}. Now set 5o = so + 1. Then
T50="T(so+s1) =M(so+s1) +7 =Tso+ Ms;.

Consider the various components of 7T'5¢:
If 1 <i <k, then by assumption (c), (T'sg); = 0, while as s1 € V, (Ms;); =

0. ThUS, (Tg(])z =0.



53
Ifi=Fk+1, then

(M31>k+1 = (T/SI)kH - 71;+1 = _712+1 = _(T50>k+1
so that
(T50) k41 = (T'50)j41 — (T's0) 1 = 0.

If k+2<i<n,then
(T30)i = (T'so)i + (Ms1); = v + [(T"s1)i — i) = (T"s1)i < 0.
Thus, we have shown that

(T5); =0 for 1<i<k+1

(T50); <0 for k+2<i<n,

that is, (c) and (d), and hence (¢’) and (d’) hold for a large value of k.
By induction, the first assertion follows. Note that we stop when V;, = {0},
hence My is a rank p matrix. Thus, there exist p rows i;,,1;,, ...,7;, among the

rows of My such that A ..y 7 0. This proves the lemma. O

Ty sTjg e esliip
It follows from lemmas 4.1 and 4.2 that for every 7 € R” there exist ielJ
and s € R? such that n; = 0 for ¢ € {i1,149,...,7,}, and n; <0 Vi, where

7= Ms+7. (4.18)

That is, 77 € 2.
Exponentiating (4.18), that is applying the map ¥~!  we obtain that for

every y € (]1/%1)”, there exist i € J and s € R? such that
i=A7A" € ST
Thus, O(7) intersects Uy, JS; at least once, for all ¥ € (@)" By symmetry, it

follows that O(7) intersects Uy ;S; at least one, for each ¥ € R” whose components

are nonzero. This proves proposition 4.5. O
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Proposition 4.6. The mapping © : S x RP — R" 4s open.

Proof. Again, we need to show that given basic open neighborhoods Ss(%,) and
B.(0) in S and RP, respectively, the set Ss(7y)B:(0) is open in R7, provided that
0 and ¢ are sufficiently small. For convenience, we will use the maximum norms in
R™, respectively RP, and choose matrix norms as corresponding operator norms.

Now for each i € J , set
S2={7e€S;US: |yl <1 Vid{iriz,..,ip}}
and
S = Uz ;57
Thus, S° contains those elements of S which have exactly p coordinates of absolute

value one. Each set SZS is open in S, and the sets SZ‘B are mutually disjoint. To see

this, let ¥ € S2 be given, for some i€ J. Choose § > 0 so that

max |y +0 <1

1¢{i1,42,...,ip}

Then if 7 € S5(7), we have
[l < i =l + |l <0+ (1=0) =1

for all ¢ ¢ {iy,1s,...,4,}. Since at least p coordinates of 77 € S must have absolute
value one, it follows that
il =1

for i € {i1,12,...,4,} and since |n; — ;| < < 1, then

ni =%

for i € {i1,%9,...,9,}. This shows that 17 € S2 as well, hence S is open in S.
Disjointness of the sets {Szi’ }zo, follows again from the fact that if ¥ € S2, where
i = (iy, iy, ..., i,) then

‘%" =1
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for i € {iy, i, ...,1,} while
il <1
for i & {i1,i2,...,0p}.
Now let 45 € S be given. Suppose first that 5, € S°. By the above

discussion, there exist 6 > 0 and i € J such that
S5(F) C 55

Since SZS is an open subset of the cross-section T3 of proposition 4.1, then so is
Ss(Yo). It then follows from proposition 4.1 that Ss(75)B-(0) is open in R7, for
every € > (.

Now suppose, 7y ¢ S°. Then more than p of the components of 7, have

absolute value one, say after suitably exchanging the standard basis vectors in @1,
|(F0)il =1 fori=1,2,.. k
[(Y0)il <1 fori=k+1,k+2,...,n

for some k£ > p. Let us set
Jo = {i = (ir, 49, ....,05) € J : i, < k}.

Then 7y € S;U S2if and only if i € Jy. Observe that if § € Ss5(5,) and § < 1, then

|7 — (F0)i| <1

for i = 1,2, ...,k and hence
sgny; = sgn (o)s
for i = 1,2, ..., k. Choosing 6 < 1, we can thus linearize the first £ components.

As always, by symmetry and since (I@:)k x Rn—F is open in R" we may assume

that (¥); > 0 for i = 1,2, ..., k, and define a homeomorphism

@:(@)kxﬂ@‘—\’fﬁﬂ%n
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by ®(7) = (Inyy,In7, ..., In Yk, Yat1, -, Yn) T, similar to the proof of theorem 4.1.

Correspondingly, the action of R? on R® = R¥ x R"~* becomes

§-5=(Mpys+E&nn) © Akt

where Af is the matrix obtained from A® by cutting the first £ rows and columns.

Now for each i € Jy, set

SEI?:{’VES;USZL:O<%§1 for 1<i<k, |v|<lfork+1<i<n}

Se={7€R : yy=1for 1<i<k |y|<1lfork+1<i<n}.
Then vy € S C S%’? C S for all i € J,. Furthermore,

CI)(S?):{EGR” 06 <0 for 1<i<Ek,
fi =0 for i € {il,ig, ...,ip},

&) <1 for k+1<i<n}

and

O(S) ={€€R" : §uy =0, & <1fork+1<i<n}
In the following, we will identify vectors 77 € (f&;)k x Rn—F with their images ®(7),
and in particular, 7y with ®(%).

First we determine how small § and € need to be. Set

d = Golrrall = ma |Gl

Then d < 1. Since the map (&, s) — Aja@ from (R"* x R?) — R"~* is continuous,

there exist g > 0 and g9 > 0 such that

Bsy ((Y0)tk+1,n)) * Beo(0) € Br((0) et 1.n)) (4.19)

where r =1—d > 0, Bs,((70)k+1,n)) denoting an open ball in R"™*. In particular,

09 < 7. In what follows, we choose 0 < § < §y and 0 < € < gq arbitrarily. Let
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77 € Ss(Yo) - B:(0) be arbitrary. We need to find an open neighborhood V' of 77 in

R"™, with V' C S5(%) - B:(0). Now
7="79"50
for some ¥ € Ss5(7), ||sol| < e. Since
V1,00 = (o) e 10l | < 17— Foll < 6 < o,

it follows from (4.19) that

17+1,m) — (Vo) g1l | <7 (4.20)
and also,

T+t | < V1,0 — Go)prrmll + 11 (F0) o1, |
<0+d
(4.21)
<r4+(l-r)
= 1.
Thus, the p components of ¥ (to be precise, ®1(7)) which have absolute value

one must be among the first & components. That is, ®~'(7) € S¥ for some i€ Jo.

After exchanging some of the first k basis vectors in R", we may assume that
1. i=(1,2,....p)
2. vi=0for1 <i<qgwherep<qg<k

3. 7 <0forq+1<i<k.

Recall also that by (4.21),

4 |yl <lfork+1<i<n.
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Note that by 1., M[; p) is invertible.

As before, for each i€ Jo, let Mz denote the invertible p X p matrix obtained
by selecting rows i1, 49, ...,7, of M. Similarly, given a vector 5 , let C} denote the
vector obtained by selecting the entries 1,79, ..., %, of 5 We make the following

two observations : Suppose, p'= M y5 + 5for some p, 56 RF, s € RP.
1. If E; = 0 for some i € Jy, then py = Mzs, and hence
Isll = (M)~ 5l < ()7 < NA (4.22)

where N = max(]| (M), 1)

i€Jo
10— ¢l < [[M][ [|s]] < Ks]] (4.23)

where K = max(||M]],1).

Now using again continuity of the map (&, s) — Ajd, there exist r; > 0 and ; > 0

such that if ||&@ — Yjg41.0|| <71 and ||s]| < &1, then

1430 = Fprrmll <6 =17 = Foll (4.24)

—

Let us set € = min{3 (e — ||so]), 3(6 — [|[¥ — Yoll),e1} > 0.
We are now ready to specify the required neighborhood V' by setting
V= {56 R"™ 352 g § = (M[l,k]S + g[uc]) @ Ai&kﬂ,n}a
[s = soll <&, &up =0,
. (4.25)

1€p+10 = Tl < 777
1€ kt1,0) — Vet || < 71}

Then 77 € V' (simply choose s = s, E = ¥). Furthermore, V' is an open neighbor-

hood of 77 in R™. In fact, applying ®~! we have
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where I'(¥) is an open neighborhood around ®~'(7) in the cross-section T+ of

proposition 4.1. (To be precise, I'(Y) = {0 : Ony = Yy = T[ljp], Op+1,k] €

—

exp(B_s_ (Vpr14)))s Qirrin) € Bry (Ter1,n1)})-

Now let 5 € V be arbitrary, say
g = g 51 = (Mpysi + g[uf]) ) Ai1§k+1,n]

for some { and s; as in (4.25). First consider the part of B living in RY,

Brg = Mpgsi + &g

By assumption on M, and lemma 4.2, the orbit of 5[’17(1] intersects some non-positive
q — p plane in RY. That is, there exist s € RP and Cq[l,q] € R? with ¢; < 0 and

G=0for1<i; <y <...<1i, <gq,such that
5[141] = M[17q]§ + C[l,q} (4.26)

and Az # 0, where j= (41,142, ...,4p). Thus, j € Jo. Now as 5; = 0, then by (4.22)

and (4.25),

g 5

5| < N||& N - =<
18] < Nll§qll < AN K S

E<e (4.27)

where we have used the fact that 4j; 4 = 0. We define the remaining components

ofgby

—

C[q+1,k} = f[q+1,k] - M[Q+1,k]§

ﬁkﬂ,n} = Af§§k+1,n]
so that € = ¢ - 8. Then by (4.23) and (4.27),

— - . é, )
1€na = Guall < 1M 3] < K =&
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so that by (4.25) and choice of £,

1V — Sl < 1w — €l + 1€mm — Cumll

<—— 4z
N

<28 <017 =l

while also, by choice of £ and (4.24)
10 = S | = 1T — Apsrml] < 0 = 17 = Foll
so that
17 = ¢l <6 = [I7 = oll- (4.28)

Thus,

190 = ¢l < 7o = Al + 17 = <]l
< 1% = Al + (6 = {170 = 7I)

= 0.
Finally, set s = s; + §. Then by (4.27) and choice of &,

[sll < [ls1 = soll + [lsoll + [I5]
< E+4|sol| + €

< (e = llsoll) + llsoll = &
Then
F=€s51=(C-8)-s1=C(5+51)=C("5€ S5() - B(0).

As ﬁ € V was arbitrary, it follows that V' C Ss(o) - B:(0). This shows that

Ss(Yo) - B:(0) is open, and hence © is an open map. O
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251352 0 0
Example 4.1. Let Hy = {A® = AT A = 0 2513%2 D s =(s1,82) €

0 0 452
R?}.

Let 7 € R3. Then ij € O(7) if and only if 77 = §A* for some s € R?,
By symmetry we may assume that § € (IFK:L)3 , and we linearize the above
equation so
7€ 0F) < Inij=Ms+In¥y
In2 In3

for some s € R? where M = | 1n2 In3

0 In4
We see A9y = 0 and A3y = A 3) # 0. Using the notation of the theorem, we

have
Sag) = {(£1,72,£1) € RS : 0 < || <1}
Stigy = {(1,0,+1)}
Sey = {(n,+1,+1) €R® : 0 < || <1}
Stysy = {(0,£1,+1)}.

Thus

S =Suz U 521,3) US(,3 U 532,3)

= {(F1, 9, £1) €R3 : 0< |7o| < 1} U{(m, %1, 1) €R3 : 0< |y < 1}

which is the union of two squares, the square with vertices
(1,-1,1),(1,1,1),(=1,1,1),(=1,—1,1) in the horizontal plane 3 = 1 and
the square with vertices (1,—1,-1),(1,1,-1),(—-1,1,—1),(=1,—1,—1) in the
plane v3 = —1. By proposition 4.6, SsU is open in R3 for U open in R? and Ss

open in S.
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4.2 Admissible Functions from Generalized Cross-Sections

Let H be a closed subgroup of GL,(R). If H is admissible, then by theorem

3.2, the function % is not constant. Thus, in what follows we make the standing

assumption that there exists hg € H with |dAe(ch§| < 1.

Now suppose, there exists an N-section S for the action of H on R". Let
us show how to obtain admissible functions from S. Pick a set V' of finite, positive
measure in H and set Q = SV C R". We consider the function g = X, and

compute

o) = [ lo(ih)Pdu(h)
Let 4 € SH be given. Then S N O(7) is a finite set, say {¥1,%2, ..., ¥m}. Pick
elements [y, ls, ..., l,, € H such that ¥ =7,l; (i =1,2,...,m).

Since S is an N-section, the stabilizer Hs, of each ¥; is finite, say

Hy={heH : 5h=7)

= (h, 0. Y.

ng

Then

Observe that for h € H,

Yih € 4,V & F;h = ;v for some v € V
& 5, =~vh™!  for some v eV
o ohT = hg-i) for some v € V) j € {1,2,...,n;}
she URYV
J=1

she UV
j=1



Since the Haar measure p is left-invariant we have for each ¢t = 1,2, ...

[ e timdn(n) = [ Gihyautr)

= [ X))
ﬂ . 1du(n)

v
<3 uhv)
=~ KA

1
=> v
1

= niﬂ(v>

2
> ()

so that for each i,

Now as QN O(7) = ,iu”ﬁiv, it follows that

Xa (’?h) =X ’Cj ’Vzv(ih)

i=1

for all h € H, and hence

0 < u(V) < /H Yo (FH)dps(h) < Nu(V)

so that

63

(4.29)
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for all ¥ € SH. Observe that if S is a cross-section, then o(y) = u(V) a.e. 7.

Now, if we set

99
©(7) )

for all ¥ € SH then ¢ satisfies the admissibility condition,

/Isovhldu

for all ¥ € SH. Thus, if Q has finite Lebesgue measure, as happens when S is

bounded and V' precompact for example, then g and hence ¢ is square integrable
so that ¢ is an admissible function for H.

If S is unbounded and H contains an expanding matrix, one can always
modify S to a bounded N-section by proposition 4.3. On the other hand, if H
does not contain an expanding matrix, then this may not be possible, and one
needs to modify the above construction. Partition R” into a collection {T;}2, of
bounded, measurable sets. Set 2; = QN T; and pick a sequence {r;}3°, of integers

so that

Consider the function
() 1/2
)= [ At (7]
i=1
where Q; = Q;h. Then
= [ 1ot Paut
-/ ZA . (Fh)du(h)
- Z / A{ho) "x, (Th)dp(h).
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Now
X, (Fh) =1 & FheQ; = QhD
& Ahhy" €
S Xq,(Yhhe") =1
so that

/ Bo) ", (Thhy ™ )dp(h)
/ Xa, (Yh)dp(h

| Xa (Yh)dp(h)

e ||M8 ||M8

by disjointness of the collection {€;}, while by (4.29)

0<u(V)<o(¥) < Nu(V)

for all ¥ € SH and hence the function ¢(y) = \/% again satisfies the admissibility
o(y

condition. Furthermore, since

it follows that ¢ € LQ(I@?Z), and hence ¢ is an admissible function for H. Note that

» may be unbounded, and may have unbounded support. We thus have shown :
Proposition 4.7. Let H be a closed subgroup of GL,(R), and suppose
(a) there exists an N-section S for the action of H on Rr

(b) there exists hg € H such that | det ho| # A(hy).
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Then H is admissible.

The function ¢ above is obtained from the characteristic function of the
set 2, and thus does not have good smoothness properties. However, under some

additional assumptions on S, we can obtain ¢ € C°(R").

Theorem 4.3. Let H be a closed subgroup of GL,(R). Suppose there exist N -

sections Sy and S satisfying
(a) Sop C S
(b) So is compact
(c) the map © : S x H — R™ given by (7,h) — Fh is open
(d) there exists a compact neighborhood K of e in H such that

{heH:ShnS#0}CK.

Then there exists an admissible function 1 with ¢ € C’é’o(]l/@)

Proof. Let us first construct ¥. Pick open neighborhoods U and V of e in H such
that

ecVcCcvVcly,

and U is compact. Since Sy and V are compact, then so is SoV. Also, by assump-

tion (c), SU is open in R7. Thus, by theorem 2.3 there exists g € 030(11@) such

that
1.0<g<1

2. g(§) =1for all ¥ € SpV

3. g(7) =0 for all?eﬂ/@\SU.



As before, we set
o) = [ 1o Pdu(h)
H
Now as Xo,v < ¢? < X4y, We obtain from (4.29) that
0<pu(V)< /H X, (Th)dp(R)
< [ lg(F)1*du(h)
H
< [ X ()

< NpU) < oo

for all ¥ € SH. That is, there exist m > 0, M > 0 such that

m<o(y) <M

for all ¥ € SH. Next set

9 ez
ifye SH,
o ={ VO 7

0 else.

Obviously, supp(y) C SU, ¢ is bounded hence square integrable, and

/H o(Th)Pdu(h) = 1
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(4.30)

for all ¥ € SH, that is, ©» = ¢ is an admissible function for H. It is thus left to

show that ¢ is infinitely differentiable.

Lemma 4.3. For each ¥ € SH, there exist an open neighborhood W of ¥ in SH,

and a compact subset F' of H such that for allij € W, {h € H : fh € SU} C F.

Proof. Let 7 € SH be given, say 7 = 9phg with 4y € S, hg € H. Pick an open

neighborhood Z of e containing K, with Z compact. Then by assumption (d),

{heH :jheStcCZ

(4.31)



68

for all My € S. Set W = SZhy. Then W is an open neighborhood of 4 in SH.
Now let 77 € W be arbitrary, say 77 = 7jpzhg for some 7, € S and z € Z. Suppose,

h € H is such that 7h € SU. Then
Mozhoh = Tju (4.32)

for some 77; € SN O(7p), and u € U. Equivalently, 77; = fjozhohu™'. Then by

(4.31),
zhohu™ € Z. (4.33)
so that
hehy'Z'ZzU c hg'Z ' ZT.
Setting F' = hy 17_177, the lemma follows. O

Lemma 4.4. Let f € C’cl(fk;‘) be such that supp(f) C SU. Set

o) = [ FEmdu(h) (4.34)

Then each partial derivative g—; exists on SH, is continuous and

do(7) _ /H D f(Th)hijdp(h)

O

where h = (hyj).

Proof. Recall that for each h € GL,(R), the Jacobian matrix of the map 7 + Fh

is the matrix h itself. Thus by the chain value,

Of(Th) _ =0f(E)  9(Fh);

o oG 0

=h
n

=Y fi(Gh)hy;.
Jj=1

Now each partial derivative f; has the same property as f, namely f; € C2° (]1/@)

and supp(f,;) C SU. In particular, there exists M > 0 such that

[fiN <M
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for all v € I@\“,j =1,2,...,n. Given 9y € SH, let W be an open neighborhood of
Yo and F' C H be as in lemma 4.3. Then f,;(yh) =0for all ¥y € W, h ¢ F, j =

1,2,...,n and hence

of(h)

=0
i

for all ¥ € W, h ¢ F. Hence,

OLGM | < N (sup|h|)x, (k) for all 7 € W
n heF
It now follows from Leibnitz’s theorem that o(¥) is differentiable at ¥ = 4,

the partial derivatives are continuous at 7y, and

do(7) af(yh)
i - /H i du(h)

= [ 3 oG ()

=%

= th‘j/Hf,j(%h)du(h)-

As 7y € SH was arbitrary the lemma follows. Observe that f; is supported on

SU. []

Return to the proof of the theorem. Applying lemma 4.4 to f = g2, it fol-
lows that () and all its first partial order derivatives exist on SH, are continuous,

and

do(7)
0

=3y [ 1iGahdn(h)

Since the integrand satisfies the same assumptions as f, we can apply the lemma

=90

again and obtain that all second order partial derivatives of o exist on SH, in fact

c(y)  _ [ Pf(R)

Z 2\l — du(h
afyka’yi”?:’? H 8%8% "7:’? :u( )
=0 hoha [ Fauh)dur)
=1 j=1 H

Again each integrand satisfies the same assumptions as f. Continuing inductively,

it follows that partial derivatives of all orders exist on SH, and for any multi-index
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Do)y = [ DH duh).
Hence 0 € C*°(SH). Since m < o(¥) < M on SH, then ¢ € C*(SH), in fact,
supp(p) € SU. Now if 7, ¢ SH, and since SU is compact, we can pick an open
neighborhood W of 4 such that W N SU = (). Thus, g(¥) = 0 on W, and hence
©(7) = 0 for all ¥ € W. In particular, all partial derivatives D*p(%,) exist, and

are zero. It follows that ¢ € C° (]1/%’\”‘), and the theorem is proved. [

Example 4.2. Let H, be a 2-parameter group of expanding diagonal matrices in
R3, say

Hy = {diag[aBt, as65, a5BL] i, B > 1, (s,t) € R*}.
Setting a; = Ina;, b; = In 3;, then

ap b

as bs
with a;, b; > 0.
Let us suppose that all 2 x 2 subdeterminants are nonzero, that is A ) #
0, Augsy # 0, Awpgs) # 0. Since all entries of M are positive, one readily checks
that after suitably exchanging basis vectors in R?, these three subdeterminants all

become positive. Thus by theorem 4.1, the set
S = S1,2) U S,3) U Se3)

with Sq9) = {(£1, £1,73) : |v3] < 1}, Sz = {(£1, 72, £1) : || <1}, Ses) =
{(m1,£1,£1) : |y| < 1} is a compact N-section for Hy with open orbit map
0:5 xR - R,

However, S is not a cross-section. To see this, as usual we consider only

points 7 in the first octant, and linearize by applying the map ¥ as in the discussion
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following (4.7). Note that S is a cross-section if and only if none of the following

equations has a solution,

84! 0 Y1 0 0 0
Ms+| o0 |=|m | Ms+| o0 |=]|0 | Ms+|~n |=1]0 (4.35)
0 0 0 Y3 0 V3

with v1,72,73 < 0, §= (s,t) € R% The three equations have solutions

Aps) = Aps) = Ags) N
- 1, 3 — 1, 3 — 2
A a) Aq2) Ag )

(4.36)

respectively. Since all subdeterminants are positive the first and third equations

have no solutions satisfying +; < 0 for all 7. However, the second equation

vy = A(zs)7
3 — 1
Aq )

(71, 73 <0) (4.37)

has a solution for any choice of 73 < 0. Thus, Sis a 2-section, but not a cross-
section.
Note that S does not satisfy the regularity condition (d) of theorem 4.3. To see

this, we solve the second equations in (4.35) and (4.36) for §= (s,1).

a13+b1t+71:()

ass + byt =0
Aps)
bst = ’
ass + bs Ao M1
give us that
A
S = _A’Vl [bg + bl A(2,3)
(49 (42 (4.38)
t= —%s
by

Since by, by > 0, then s — 0o as 73 — —oo. Hence, {§= (s,t) € R? : SNS-5# (0}

is unbounded.
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To overcome this problem, observe that by (4.37), every orbit which inter-
sects S(1,2) also intersects S(z3). Thus we may remove parts of S, 3 (or equiva-

lently, S(1,2)) and still have an N-section. In fact, if we set
So = Sa,2) USau3)
then Sy is a compact cross-section. Also, set
S=8u2USuzU{(n,£1,£1) : 1 —e<|n| <1}

for some 0 < ¢ < 1. It follows from the computations in the proof of proposition
4.6 that the 2-section S has the property that the orbit map © : S x R? — R3 is
open. Furthermore, (4.38) shows that § remains in some bounded set as long as
71 remains bounded; it follows that {§€ R* : SN S -5+ 0} is bounded.

Hence by theorem 4.3, one can construct admissible functions 1 with g@ €
C(R™) from the pair of 2-sections Sy and S.

We conclude this chapter by presenting the classification of abelian 2-
parameter subgroups of GL3(R) and describe the existence of cross-sections. Note
that the matrices involved are not necessarily diagonal. The interested reader may
easily verify the details of the proof which we omit for brevity.

Example 4.3. For fixed commuting exponential matrices A, B € GL3(R), A =

eM, B = eV, we define a 2-parameter group
H, :R* — GL3(R)

by H,(t,s) = A'B*. Up to a change of basis in R?, that is up to conjugation by

an invertible matrix, there are 4 distinct possibilities.

)\1 0 0 aq 0 0
Casel: A= 0 N O and B = 0 as O Ai >0, a; >0.
0 0 )\3 0 0 as

This is the situation discussed in theorem 4.1. There exists a cross-section
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T if and only if In \;Ina; —In AjIna; # 0 for some 4, j € {1,2,3} with i # j.

A possible choice of cross-section is T' = {7 € R3 M,7 € {-1,1}}

Ar 10 a; as 0O
Case 2 : A= 0 N\ O and B = 0 a O Ai >0, a; > 0.
0 0 )\2 0 0 as

There exists a cross-section T' if and only if asA\lnA\; — a;lna; # 0.

A possible choice of cross-section is T' = {7 € RS - m € {=1,1}, v =0}

A1 0 a; az as
Case3: A=| 0 )\ 1 and B = 0 a as AL >0, a; > 0.
0 0 A 0 0 a

There exists a cross-section T if and only if asAIn\ — a;lna; # 0.
A possible choice of cross-section is T' = {7 € R3 7€ {11}, 7 =0}
Arcosf Aisind 0
Case4: A= | —)\ sinf Ncosf 0 and
0 0 Ao

ajcosfB  apsinf 0

B = —aq Sjnﬁ ai COSﬁ 0 /\z >0,a;, >0, 0L 9, ﬁ < 27 with either
0 0 a9
0#£0o0r 8#0. Set Ay =0lna; — Fln A, Ay =Indglna; —InayIn A\ and
Ina;  InXg

u=M\""a, °' . There exists a cross-section T if and only if A; # 0 for all
i = 1,2. A possible choice of cross-section is T = {7 € RS Y1 =1,7 =

0, 1 < |y3] < u*} provided that u > 1 (if u < 1 we replace u by u™1).

In all 4 cases, existence of a cross-section is equivalent to stabilizers being compact
a.e. which is equivalent to stabilizers being trivial a.e. which in turn is equivalent
to existence of compact e-stabilizer a.e. Thus applying theorem 3.2, the following

are equivalent:
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1. H, is admissible

2. there exists a cross-section 7', and at least one of A and B has determinant

different from 1.



CHAPTER V

WAVELET FRAMES

In this chapter, we discuss how to reconstruct a function from its wavelet
transform by a series instead of the weak integral (3.3). That is, we want to find
countable subsets P of H, and I' of R” such that {¢y z}repzer is a frame for
L*(R™), where ¢y z = D Tx). Such frames are called wavelet frames.

Discretization of the translation parameter is usually achieved by requiring
the wavelet ¥ to be bandlimited. Discretization of the dilation parameter can
be achieved by either choosing P to be a separated subset of H, (Bernier and
Taylor (1996)) and specifying conditions for the support of the Fourier transform
of an admissible ¢, or by using a subset F' of H and a discrete subset P so
that the collection {kF'}ep partitions H, and modifying an admissible 1); these
are the integrated wavelets in Heinlein (2003). Both of the above methods were
presented in the literature for the case that the orbits are open. We show how these
techniques can be applied to groups H with arbitrary orbit structure, provided that

there exist bounded almost cross-sections.

5.1 Discretization

In Bernier and Taylor (1996), discretization was achieved in the case of free
open orbits, using the fact that the Lebesgue measure on each orbit is equivalent to
the measure transferred onto it from the group. We now show that their approach
can also be used in the case of general orbits, provided that there exists a bounded

almost cross-section. The important ingredient is to find a subset F} of Rn having
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the property that a < p(F; N O(Y)) < b for almost all 7 € 1@7\1, where p denotes

the Haar measure of H transferred onto the orbit O(7).

Definition 5.1. A subset P of H is called separated if there exists a neighborhood
V' of the identity e in H such that VENVI =10 forl # k and I,k € P. We say

that P is separated by V.

The following lemma was used in Bernier and Taylor (1996) without proof;

we present its proof for completeness.

Lemma 5.1. Let P be a separated subset of H and D a compact subset of H.

Then there exists My € N such that
t{p € P: DpN Dk # 0} < M, (5.1)
forallk € P.

Proof. We first prove the following claim : Let K be a fixed compact subset of H.
For each k € P, define P, = {p € P : p € Kk}. Then there exists Mg € N such

that

1P, < Mg

for all k € H.
Proof of the claim : Let V be an open, relatively compact neighborhood of

e separating P. Then for each k € P,
P.c{peP:VpC VKEk}.

Let 1 denote the right Haar measure on H. As V and K are compact, then VK

is compact, and hence u(VK) < oo.



Now we have Upep, Vp C VKk. Since this is a disjoint union, then

> ulVp) < u(VEE)

or > (V) < u(VK)
or p(V)E(P) < p(VK).
Thus
p(VK)
1P, < vy M.

This proves the claim.

Next let £ € P be arbitrary. Then for each p € P,
DpNDk+#0< 3qleD suchthat ¢gp=Ik
s 3qleD suchthat p=q 'k

s peDIDE

SO

{peP:DpNDk#0}={peP:pe D 'Dk}

and thus by the claim,

t{peP:DpNDk+#0}=t{peP:pe D 'Dk} < Mp-1p < .

This proves the lemma.

7

]

Definition 5.2. A frame generator is a pair (P, F') where P is a separated subset

of H and F is a pre-compact subset of H such that UgepF'k = H.

We now describe how to obtain a frame {¢ 7 }repmer in L*(R") from a

frame generator (P, F') under the presence of a bounded N-section S which satisfies

property (d) of theorem 4.3.

Let D be a pre-compact subset of H such that F' C D. Set F; = SF and

D1 = SD. Since S is bounded, then so is SD, hence we can pick an n-dimensional
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parallelepiped R with D; C R. By an n-dimensional parallelepiped we mean an

affine image of the unit cube,
11
R =7 —,=|"B
Yo + [ 27 2]

for some J € R" and B € GL,(R). Set I' = B7'Z" and §(B) = |det B|. Since

{e ™M} sczn is an orthonormal basis for L2[—3, 3], it follows that {es(7)}mer

where e (7) = ———€2™™ is an orthonormal basis for L*(R).

\/4(B)

Lemma 5.2. There exists M € N such that
t{peP:DipNnDik#0} <M
for all k € P.

Proof. Suppose ¥ € Dyp N D1k for some p,k € P. Then ¥ = vydop = Y1d1k for
some dg,d; € D, 7,71 € S, or equivalently, ¥, = Yodopk~*d;'. By assumption on
S, there exists a compact neighborhood K of e in H, independent of ¥y, 7;, such
that

dopk™'d;* € K

so that dop € Kdk that is,

Dpn KDk # 0.

Applying lemma 5.1 to the set D=K D, the assertion follows. O
In the following, let v € L?(R") satisfy the following conditions:
1. support of 1/3 C Dy.
2. a =inf{|(7)| : ¥ € Fy} > 0.
3. b=sup{|[¢}(7)| : ¥ € D1} < 0.

Such a v certainly exists, for example, let zﬁ be the characteristic function of F7.
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Theorem 5.1. With the notation which has been established above, {Dy-1Tz1) :

k € P,m €T} is a frame for L*(R™) with frame bounds §(B)a* and §(B)Mb>.

Proof. For each f € L*(R"),k € P and m €T,

<f7 DkflTr?z'(ﬁ)LQ(R") <f m¢>L2(fR7L)

— | FOR)S (k) () ay.

R

As Supp(@@) C D; C R, we have by Parseval’s identity

Z Z (f, Dk—leWL?(Rn)!z

keP mel

keP mel R*
=oB) Y0k Y | | FERDen (D7
keP mer | 7 1t
B)S"0(0) Y e (D), FERID) e
keP mel’
B) > (k) I (RO
keP
B)Y 0k /|ka\|¢ )7
keP
B) S5k | 1FGRPIOE) P
keP
/|f IZI%D%‘ )27, (5.2)
keP

Since S is an N-section, Rr \ SH is a set of measure zero. Now if ¥ € SH =

UgepSFk, then ¥ € SFky for some ky € P, so ’yko € SF = I} and hence
>

D ke VTR
~v € Di1k. By lemma 5.2 this is only possible for at most M values of k € P. Since

a’. On the other hand, if for some k& € P, ¥k~ € Dy, then

[ (Fk~1)| < b for any of those values, then >, p [(Fk~)[> < Mb?. Tt follows
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that

3(B)a|| fll7any < Y Y W De Tt) P < 8(B)YMO | f |72 ey

keP mel
which means that {D,-1Tjz¢) : k € P,m € T} is a frame for L*(R") with frame

bounds 6(B)a? and §(B)Mb>. O
Remark:

1. In general, the frames obtained this way are not tight. However, if S is a
cross-section and the collection {Fk}icp is disjoint, we can choose D = F

and ) = Then M =1 and a = b = —A—, so that {Dy-1 Tt :

k€ P, m € I'} is a Parseval frame.

2. If S is a cross-section and H contains an expanding matrix, then by the
proof of proposition 4.3, given B € GL,(R), we can modify S so that SD C
[—3, 3]"B. Thus, for each frame generator (P, F') and each lattice I' in R,
there exists 1 € L?(R") such that {Dy-1Tizy : k € P, m € T'} is a frame for

L2(R).

Corollary 5.2. Let H be a closed subgroup of GL,(R), and suppose there exists
a pair of N-sections Sy and S satisfying the assumptions of theorem 4.3. Let P
be a separated subset of H. Then there exist ¢ € L2(R™) with i) € C*° (@), and a

lattice T in R™, such that {Dy-1Tw) : k € P, m € T'} is a frame for L*(R™).

Proof. Pick F and D with F compact, ' C D and D open. Then by assumption,
Fy, = SyF is compact and D; = SD is open in ]1/%;, so applying Urysohn’s lemma

(theorem 2.3), there exists ¢ € L2(R") with ¢ € Cfo(]l/@), and
() 0<d <1

(b) (7)) =1 for all ¥ € F,
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(c) (7) = 0 for all 7 ¢ D;.

~

Choosing the matrix B so that supp(¢)) C [—%, %]”B and I" as in the proof of the

theorem, the assertion follows. O

Let H be a separable locally compact group and P a discrete subgroup such that
H/P is compact. Using basic topological arguments, one easily shows that there

exists a Borel set F' C H with the following properties:
1. FNFk=0forall ke P, k+#e
2. F is compact

3. UFk=H.
keP

We call F' a fundamental domain for the set P.

In this particular case we can obtain Parseval frames :
Corollary 5.3. Let H be a closed subgroup of GL,(R). Suppose there exist
(a) a co-compact discrete subgroup P of H

(b) a bounded N -section S for the action of H on Rn satisfying condition (d) of

theorem 4.35.
Then there ezists a Parseval frame {DyTzp : k € P, m € I'}.

Proof. Let F be a fundamental domain for P. Then (P, F') is a frame generator.
Choose D, zﬂ, B, and I' as in the theorem. Now as P is a group, we can average
the values of 1& over P-orbits, similar to section 4.2. Set

o) =) [WWEFEHP

keP

for all ¥ € SH. Then



for all ¥ € SH. Now let

1 D(F) e o
(7) = |6aﬂ\(\/o(v) ity € SH,

0 if ¥ ¢ SH.

Since o(7k™1) = o(7) for all k € P, we have for all ¥ € SH,

1 1 (k™
> ek 1323 i

keP k‘EP

Yo (¥ Z A

keP

\w

J

E

Since supp(@) = supp(¥), it follows from (5.2) with ¢ replaced by ¢ that

> W Do Ta) [ = 8(B) [_1FHIP Y 6k

keP mel R" kcP

= |I£13-
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Replacing k=1 by k, it follows that {DyTze : k € P,m € T'} is a Parseval

frame.

O

If in addition, all assumptions of theorem 4.3 are satisfied, then we obtain

smooth, bandlimited Parseval frames.

Corollary 5.4. Let H be a closed subgroup of GL,(R). Suppose there exist

(a) a co-compact discrete subgroup P of H,

(b) N-sections Sy and S satisfying the assumptions of theorem 4.3.

Then there exist ¢ € L*(R") with 1 € C’é’o(@), and a lattice I' in R™ so that

{DyTizp : k€ P, m €T} is a Parseval frame for L*(R").

Proof. Let F be a fundamental domain for P. Pick D C H open with F C D and

D compact. Then F} := SyF is compact in H/%?L, and Dy := SD is open.
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Now by using Urysohn’s lemma (theorem 2.3), there exists g € C’é’o(]l/@)

such that
L.0<g<1
2. g(7)=1forall ¥ € [y
3. g() =0 for all ¥ ¢ D;.

Set as before

o(3) = lg(k)* (5.3)

keP

for all ¥ € SH. We now claim that locally, this is a finite sum.
For first let ¥ € D; be arbitrary. Let k € P be such that g(¥k) # 0. Then

vk € Dy. Since 7Y € Dy and 4k € D; and both lie in the same H-orbit, then
Y =%do and Yk =7id;

for some vy, 71 € S, dy, dy € D. It follows that ¥, = f?kdfl = %dokdfl. Then by

assumption (d) of theorem 4.3,
dokd:" = h

for some h € K so that k = dalhdl S EflKﬁ. Now as K; .= P HEAKE is a
compact subset of discrete group, it is finite, say §/K;=M. Thus for all ¥ € Dy,

S lgFR)IP =D lg(k), (5.4)

keP keK,

a finite sum.

Next let v € SH be arbitrary. Since

SH=S(UFk)= U (SF)k= U Fik,
keP keP keP
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there exists kg € P such that 7 € Fiky. Then D;kq is an open neighborhood of 4
in SH. So if 77 € Dk, then ijk; " € D; and hence by (5.4),

D lgR)IP = lgliiky k)P

keP keP

= > loiky k)P

keK;

= > ly(ik)P,

keky 'Ky
a sum of at most M terms. This proves the claim.

Now pick B € GL,(R) such that supp(g) C [~

N

, %]”B, and set I' = B~17Z".

Since the sum (5.3) is locally finite, it follows that o(¥) € C"O(H/@). If we thus set

1 9(%) if~ve SH
0(7) = 5B) (\/om) il ’

0 if ¥¢ SH

then since () > 1 for all ¥ € SH, it follows that ¢ € 030(11@), and also for

vy e SH,

e L (R
kepwwkﬂ = 5(3); )
_ 1 lg(Fk)?
W(B),é a(7)

1 1

~iw) o 7

(=)

1

(B)

(=)

By (5.2) in the proof of the theorem, we conclude that {DyTz1 : k€ P, m e T'}

is a Parseval frame for L*(R"). O
a1l 0 0
Example 5.1. Consider the group Hy = {A% = 0 a3Bt 0 Doy, B >
0 0 o3

1, 5 = (s,t) € R?} of example 4.2, with 2-sections Sy and S contained in {7 €
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R3 : || < 1Vi}. Let P = Z? then P is a co-compact discrete subgroup of R?,
with fundamental domain [k — 1,k) x [k — 1, k) for any real number k.

Pick k such that of ™' 8F" < 1 for i = 1,2. It follows that if we set

F=[k—1k) x[k—1k) and

D=(k—-2k+1)x(k—2,k+1),

then D; = SD C R = [—%, %]3 We can thus apply corollary 5.4 to obtain
with ¢ € C°(R?), such that {D ; Ty : k € Z2, m € Z%} is a Parseval frame for
L?(R3).

The next example shows that without an expanding matrix, we also obtain
a bounded cross-section and a Parseval frame.

Example 5.2. Fix g > 1. Let

)
S

)

o

Hs={| 0 a 0 | : a>0,beR}.

One easily checks that Hg is a closed subgroup of GL3(R). In fact
Hg ~ {(a,b) : «>0,beR}

with group operation (a,b) - (o/,0') = (ac/, 0’V + L). A straightforward compu-
tation shows that S = {(+z,+(1 —z),0) € R3:0<a< 1} is a cross section for

the continuous action of Hz on R?. Next set

otB 0 2tPp
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~{(2",27"m) : m,n € Z}.

Since D contains an open neighborhood of e, the next claim shows that P is a
separated subset of H.

Claim : Dk N DIl = () whenever k # [ and k,l € P.

Proof of Claim : Let k,l € P and k # [ where k = (2",27"m) and [ = (27,2 "m)

and suppose there exist d = (2¢,2°b) and d = (2, 2°b) in D such that

dic = dl. (5.5)

Then (5.5) gives

28ty 2Bt 9Bty 268t

@, S+ 5 = (@,

Comparing the first components, 20" = 2% that is t — ¢ = 7 — n € Z. Since
—1 <t—t<1,then t — f must be zero, this implies n = 7 and t = .

28t | 28ty 28Ly | 281}
o T = Tm T

Thus, comparing the second components, we obtain
Multiplying the equation by %, we get m—+b=1m+b, thatisb—b=1m—m € Z.
Since —1 < b—b < 1 so b— b must be zero. This implies m = m and b = b which
is a contradiction to k # [.

Hence the claim is proved.

Set

—_

1
Dy = SD = {(£2°'2, £2'(1 —2), £2%"bz) : 0 < 2 < 1, —5Sb<g-
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Since

1 1 1
DP = {(2t72tﬁb>(2n72—nm) . —5 S b < 5, —2 S t < 5, and m,n Z}
1 1 1 1
= {(21T" 2152 4 21p2 7™ —5 < b< 33 St<3 and m,n € Z}
_ [(gt+n_otB—n . 1.1 1
={@2"" 27" (m + ) : <b< -, <t< -, and m,n € Z}
2 2 2 2
- 1 1 -
= {(2"", 210" . 5 St<5, beR andne 7}

={(2°,b) : s,be R}
={(a,b) : >0, beR}

=H

Y

it follows from the fact that S is a cross section that
1. DyP=SDP =SH = R3 \ E for some set E of measure zero.

2. Dik N Dyl # O implies Dk N DI # () which by the claim implies k& = [ for

k,leP.

Thus D; is a bounded cross-section for the action of P on ]T@
Set B = 2071, R = [—4,3°B = [-2°,2°]® and T' = B~'Z. Then

1 2inyim

{es }er is an orthonormal basis for L?(R), where e (7) = NCEEELS

Let ¢ € L%(R3) be such that ¢) = V23+y . By the remark following

theorem 5.1, {Dy-1Tz1) : k € P, m € T'} is a Parseval frame for L?(R3).

5.2 Integrated Wavelets

A different approach to discretizing the dilation group H by local averaging
of wavelet coefficients yielding so called integrated wavelets was introduced by
Heinlein (2003). For this one looks at the continuous wavelet transform as a

continuous partition of unity in Fourier space generated by the wavelet. Loosely
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speaking, by the admissibility condition,

~

i) = iw( [ empan ) - ) (56)

for a.e. 7 € R". The idea of integrated wavelets is to partition H into a family

{H;} of mutually disjoint sets. Setting

. 1 ) 1/2

B = |2 [ iemkal

Cy J H;
then (5.6) becomes
F&) =2 W@,
J

In Heinlein (2003), it was assumed that orbits are free and open. We show that

this idea may be applied to arbitrary orbit structure, and that finitely many of

the sets {H;} may overlap.

Definition 5.3. Let J be a discrete countable index set. We call a family {H;}jes
of subsets of H a detail decomposition, if it is a partition with respect to measur-
ability, i.e. p(H \ U;c; Hy) = 0 and p(H; N H;) =0 for alli # j in J.

The integrated wavelet with respect to an admissible wavelet 1 and a detail

decomposition {H;}jc; is the family {V7},c; defined in Fourier space by

_ 1 N
BEP = [ 196 Pduh), 1)
Cd, H;
forj € J and a.e. € Rn.

Observe that ) \@(7)\2 =1ae4 € R In particular, Ui € L”(@). Further-

jeJ
more, the integrated wavelet U7 is not yet completely defined because no phase is
given.

If each H; is compact and 1 is band-limited, its integrated wavelet is also

band-limited.
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In the following we call both, the function ¥/ and the family {W7},c;,

integrated wavelet. We call the mapping Wli Cf e Wé f given by
Wif(5, ) = (f.Tz¥) (jeJ, TR

the integrated wavelet transform.

5.2.1 Admissibility of Integrated Wavelets

Integrated wavelets generate a partition of unity in Fourier space,
STEFP =1 ae 7R, (5.8)
=Y

which can be seen from the admissibility condition (5.7). This is the key to recon-

struction.

Theorem 5.5. Let {H,}jcs be a detail decomposition of H, v € L*(R") admissi-
ble, and {V’},c; the corresponding integrated wavelet. Then the integrated wavelet

transform W is an isometry of L*(R"™) into L*(J x R™). In fact,

3 / T 27 = [[f g

jeJ

for all f € L*>(R™). Reconstruction in L*(R") is given by

f= Z/ Wi (j, )Tz dii

jeJ

as a week integral.
Proof. For f € L*(R"),

(f, Ts%) pomny = >

(f.E
foromin
oo

217r'ymd

I
re«

j iL‘
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where ®; = f@ € Ll(@) N LZ(@). Thus, by Plancherel’s theorem and (5.8),

Z/ (. T-09) [Pdz Z/\@ )[2di

JjeJ jeJ

= Z H(i)jH%?(R")

jeJ

= > 113,

jeJ

—Z/ |®;(7) [Py

jeJ

—Z 7)1 (7) Pd7

JjeJ

/|f S [ ()25

JjeJ

2
= HfHLQ(R")'

That is, the integrated wavelet transform is an isometry of L*(R"™) into L*(J x R™).

Now the usual weak reconstruction function gives us

(f.9) = Z/ (Wi, DTV, g)dit

jeJ

for all g € L*(R™). That is,

f= Z/ Wi(j, 2) TV dz.

jeJ

weakly in L?(R"). O

5.2.2 Frames from Integrated Wavelets

In the previous section we have only discretized the dilation parameter
given by the group H. In this section we discretize the translation group R™.
This is done using the standard techniques discussed in Heil and Walnut (1989)
and Bernier and Taylor (1996). In generality, it can only be done for bandlimited

functions.
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Theorem 5.6. Let {H;};e; be a detail decomposition of H and ¢ € L*(R™)
admissible. Let R = 7y + [—%, "B be a parallelepiped, where B € GL,(R). Set

1
2
L2(R)Y = {f € L*(R") : supp(f) C R} and T = B~'Z". Then

SO L TaY) P = 6(B) || £ (5.9)
jeJ el
Proof. For f € L*(R)Y,
1 ; - 1 =
(f, WTM‘W)L?(RH) =(f, WE—ﬁWJ>L2(H@L)
_ NI~ 1 24mAM 12
- [ i0%a) s

where ®; = f@ € L'(R)N L?(R). Thus by Parseval’s identity

2D s Tl = 30 3l el

jeJ mel jeJ mel

= 1125lZ2n

jedJ

—Z )W (7)[2d7

jeJ

/lf S W (5) P

Jj€J

= ||f||%2(]R")'
O

Remark: Since ¢ ¢ L?(R)" we have not yet obtained frames for L?(R)". How-
ever, if we set U/ = P(U3) where P is the projection of L2(R") onto L2(R) given
by P(f) = fx,, then (5.9) holds for {¥7}, so that {U7} generates a tight frame

for the shift-invariant subspace L*(R)Y of L*(R™).
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To obtain frames for non-bandlimited functions, the detail decomposition
must be compatible with the group structure, and ¢ must be bandlimited. One
can allow some of the sets of the detail decomposition to overlap, however, in this
case one does not obtain a Parseval frame. Again, we may start with a frame
generator (P, F'). To keep with the notation used by Heinlein (2003), we consider
sets of the form {kF}irep instead of {Fk}iep, that is, we replace P used in the

previous section by P!, and F by F~1.
Theorem 5.7. Let P C H be countable and F' C H be pre-compact such that
(a) kngF = H \ E where E is a set of measure zero,
(b) M:ziugﬁ{l €P : kFNIF # 0} < 0.
€

Let ¢ € L*(R™) be admissible and bandlimited, and let W° be the integrated wavelet

defined by
005 / [&(7h) Pdp(h

Then there exists a lattice T = B™'Z" (B € GL,(R)) Dy T W0

so that
(s
k€ P,m €T} is a frame for L*(R") with frame bounds 1 and M.

Proof. By assumption, (supp(¢)))F~" is bounded. Let R = 7y + [~1, 1]" B where

1
29
Yo € Rn and B € GL,(R), be any parallelepiped containing (supp(g@))Fﬁl, and

set I' = B7'Z". Then for f € L*(R"),

53 gy DT
- S D B

keP mel

_ZZ} kf’\/—> - /\0>‘2

keP mel

1 2imym 1|2
= Z Z } Dkf ( )\/ﬁe 47|

keP mel




keP

keP mer
=37 50k) T F EYEO) 2
keP
=S a [ 17k RIT P
keP "
/ FiGi ’Z!‘Pofyk\dfy
keP

We now show that

1< [OTR)2 < M
keP

for almost all 7.

To show the left inequality, observe that

S [EERP =3 - /vah!du)

kepP /i‘EP
> [ ot duth
Cy JH

=1.

To show the right inequality, we index the elements of P, say P = {k;}2

Z!@(%)F

keP

=3 [t Paue

“ keP

- Z / WG Paui)

1 f 1~V L e
> | iGEwe —
=350 [ealD), FERDPE) o |
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(5.10)

(5.11)

1- Then

1
R O AT S
61/1 k1 F kzF\k’lF ko FNk1 F ng\(leUk‘QF) ]{33Fﬂ(k‘1FUkJ2F)

7, —'h 2d h
! [/F\U’ L k; F+/FO(U’ 1kF)1 Tt 1|¢(’Y )|"du(h)



Cw k}lF ]{JQF\]{}]F k]F kQF
k3 \ k] kz k] k3 [kg \k] } k3

TRy e SR S
ki F\UI_1k; F k1 Fk; F (ke F\k1 F)Nk; F (ks F\ (k1 FUko F))Nk; F

v bt [ e |bm P
(ko FAUT ey F0k F (ki1 F\US_ k; F]Nk; F
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+ / + / + / + / } T
k‘4F\ ]{:1FU’€2FUI€5F) ki FNkyF (kzF\le)ﬁk’4F [ng\(leUkQF)]ﬂk4F

1
= —|:/ —|—/ +/ —|—/ —|—...+/ _|_...
Cy LI F koF\ki F k3 F\ (k1 FUko F) kaF\US_, k; F ki F\U/_k; F

k1Fﬂk’2F k1 FNksF k1FNkyF k1FNk; F
/ / - / L.
(ng\le ﬂng (kzF\le')ﬁkz;F (ng\le)ﬂkiF

+ / ot /
[k‘3F\(k1FUk’2FHﬂk’4F [k’gF\(lengF)]ﬂk5F [ng\(k’lFUkQF)]ﬂkiF

+

_|_ +...

+ : ] [ (Fh)[du(h)

+ + /
[k F\UT ke FlNkm 1 F [k FAUT e FNK; F

1
il M—1 M—-1 M—-1
S C1l1 |:/];I +( )AlF +( )/lch\k1F+< )AgF\(lengF)
-1 [ st |

Lol [ [
= —1)
Cyp { kP JkoF\knF  JksF\(ki FUkoF)

- /m\u . e | emPduce

:H [+or-n [ memu(h)

1 ETAE
S ALCORTO

=M (since [ AU = <o)
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This proves (5.11). It follows from (5.10) that

Iz <> > I(f, DkT w0)|* < MI|fI3

keP mezZn

for all f € L*(R™). O

Remark : Observe that if P is a co-compact discrete subgroup of H, and F' a
fundamental domain, then this theorem applies with M = 1. One thus has a
method for obtaining Parseval frames different from corollary 5.4.

If 4 is not bandlimited, we have the following generalization of theorem

5.1.6 from Heil and Walnut (1989).

Theorem 5.8. Let P C H be countable and F' C H be such that
(a) kngF = H \ E where E is a set of measure zero,
(b) M:ziggﬁ{l eP:kFNIF #0} < cc.

Let [¥°(9)|? fF | (Fh)[2du(h) be the integrated wavelet with respect to an

admissible 1 € L*(R™). Set

B(E) = sup Y [WO(Tk)|[WO(Fk + &)

FER™ kep

for EE 7" and suppose that
K= [BE)B-E)]" <

Then {DyTz¥° : m € Z", k € P} is a frame for L*>(R™) with frame bounds 1 — K

and M + K.
Proof. For f € L*(R")

(f. DiT0°) = (f, Djr E_y 10)

= (D f, E—m®>
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- [ Dp@T @

Thus, by Parseval’s identity

oS DT

keP meZ™

kEP  gezn
—Z/ | S (D + OV + &) a
keP g cZn

=S (DG B+ D)+ ST D)

keP nEZ" cZn

=> Z/ (DLf)F)TO(F)(Def) (7 + T + E)d7

keP gezn

- [ L oh@@ @) ar

+ D / (DLf)F)TOF)(Def) (7 + OWOF +dv | (5.12)

oy )
Rest
Since
Z/ |(Def)(7)W0(F) |*dy = | det k|- /\f'yk )TO(7)[2d
keP kepP
=5 [ @RGP
keP
= [ EE Y @G e
keP

we have, proceeding as in the proof of theorem 5.6 that

1< / (DB H) a7 < MFIE. (5.13)

keP



Now we estimate the remainder in (5.12)

Rest| <30 30 [ |DNOPEDG + 9+ a7

keP g fGZ" \{0}

<> X NOHE! TG + 2] 2

kEP éezm\{0}

X 1Dk + IO 20F + )| 2 e

B 1/2
= % (L raeen ) @6+ ier)

ReP gezn\{o}

. . . 1/2
([ 1tk 177 + PP [F67+ €l
-5 5 (L V@rE 0] EG e

ReP gezn\{0}

([ iemeea- 9l @ m)m
<Y (Z [ 1F @G B+ Fa7)

gezm\fop " heP

(X[

1/2

1/2
DT — §)|I‘P0(7k)\dv>

keP A B B ) y
- ¥ /A|f<v>|22|w<%>||w<vk+f>|dv)
gezmfoy O keP
1/2
(L1508 S @601 - 1e7)
1/2 1/2

< > [ 1F@PsEey 1 F@PB(=E)dT
Eeﬁ\{t)}(/R" ) (R" )
= >0 @@ E-€)

gezm\{o}
=f13 > (BEB=ENY?

gezn\{0}

< K||f|I3

From here and (5.13), the assertion follows.
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CHAPTER VI

CONCLUSION

In this thesis, we have discussed two main topics : how to construct ad-
missible functions from almost cross-sections, and how to obtain wavelet frames,
both in the case of an arbitrary dilation subgroup H of GL,(R).

In chapter 4, we introduced the notion of an N-section for the action of H
on @, generalizing the concept of cross-section. Starting from an N-section S,
we showed how to construct an admissible function ¥ from S, provided that H
satisfies the condition that |det | # A. If H contains an expanding matrix, then
one can modify S to be a bounded set, and the construction yields a bandlimited
admissible 1. In theorem 4.3 we showed how to obtain smooth, bandlimited
admissible functions, provided that there exists a compact N-section having the
property that the orbit map (S, H) — S - H is open, and that orbits intersect S
in some regular fashion, as expressed by property (d) of theorem 4.3.

We then showed that if H is a p-parameter group of diagonal matrices,
then there exists a compact N-section with open orbit map, and we presented an
example where theorem 4.3 applies.

Wavelet frames are of interest as they allow reconstruction of a function
f in L*(R") from its wavelet transform by a series. Two approaches have been
described in the literature, identifying the support of the Fourier transform of a
frame generator (Bernier and Taylor, 1996) or integrating an admissible 1 over
tiles in the orbits (Heinlein, 2003) leading to integrated wavelets {¥’/}. Both

approaches are valid in the case of free, open H-orbits in R". We have generalized
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both approaches to groups with arbitrary orbit structure. The starting point here
is a separated subset P of H. Given a bounded N-section S whose orbits satisfy the
regularity condition (d) of theorem 4.3, we can find a lattice I" in R", and specify
conditions on a function ¢ € L*(R") so that the collection {ty, 7 }xepzer is a frame
for L?(R™). If S is a cross-section, and there exists ' C H pre-compact, such
that the collection { Fk}iecp tiles H, then Parseval frames exist. If P is a discrete
co-compact subgroup of H, then smooth, bandlimited Parseval frames exist. We
showed by example that H containing an expanding matrix is not necessary for
the existence of bounded N-sections and Parseval frames. Similarly, we showed
that given a bandlimited admissible function ¢, the integrated wavelet ¥ has
the property that {\Ilgj}ke pzer forms a wavelet frame. Again, if the collection
{kF}rep tiles H, we can obtain a Parseval frame. For ¢ not bandlimited, we have

specified a condition on ¢ which guarantees that {W} 5} is a wavelet frame.
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