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Composting is a waste stabilization process that requires optimum operating
conditions of C/N ratio, moisture, and aeration to achieve thermophilic-temperatures.
In this study, heat generation and temperature distribution during the in-vessel aerobic
composting of organic fractions of municipal solid waste were investigated. The
process evaluations were based on monitoring temperature rise in composting mass
with different aeration rates. Four insulated cylindrical composters with 0.5 m
diameter and 1 m length were used. Food waste and household yard waste were
mixed at a ratio of 1:0.03 by weight to obtain a C/N ratio of 20-30:1. Air was
supplied length-wise to the central axis of the composters through 2” PVC pipes.
Aeration rate provided for four experimental runs, RUN I, II, III and IV were 1.8, 3.6,
5.4 and 10 m’/d, respectively. Rapid temperature rise during composting runs was
found within the fist few days (1-3 days). The maximum temperatures detected at the
center of the composting mass, were 64 °C, 51.8 °C, 55.4 °C and 58.9°C on the 15",
20™ 10™, and 9™ day of RUN 1, II, IIl and IV, respectively. The temperatures were
stabilized (ambient temperature) after about 24-35 days. Thermal conductivity of the
composted material was experimentally determined on the samples from different
runs and the average was 0.53 W/m/°C. The thermal diffusitivity was calculated to be
2x107 m%s. A numerical scheme was developed by using explicit finite difference
method with one-dimensional Fourier’s heat equation along radial directions.
Maximum heat generated per unit volume during each run were estimated to be 133,
221.4, 242 and 483.7 W/m3, thus, the maximum energy content were 2,080.5, 2,556.4,
3,958.1 and 7,911.4 Btu/hr-kg TVS for RUN 1, II, III and IV, respectively. The
results indicated that temperature profiles and heat generation during the aerobic

composting process were influenced by aeration rates.
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