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3.5 Data obtained by H. Späth (1990). The shape preserving spline is

not sensitive to these outliers and automatically satisfies the bound-
ary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 The form of the matrix of the system (4.11) for N = 2, ni = 18. . 50
4.2 The matrix K obtained from the matrix of Figure 4.1 by substitu-

tion of the rows as indicated in the text. . . . . . . . . . . . . . . . 50
4.3 The block matrix E. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 The block matrix F . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 The radio chemical data with natural end conditions

M0 = MN+1 = 0. Interpolation by discrete cubic spline (pi = 0). . . 56
4.6 A magnification of the lower left corner of Figure 4.5 showing a

decreasing part of the curve which contradicts the data. . . . . . . 56
4.7 The same as Figure 4.5 with p0 = p1 = 300, pi = 15, i = 2, . . . , 7. . 57
4.8 A magnification of the lower left corner of Figure 4.7. . . . . . . . 57
4.9 Akima’s data. Interpolation by discrete tension hyperbolic spline

with choice of tension parameters ωi = 0 for all i and values of M0

and MN+1 equal to the second divided differences of the data. . . . 58
4.10 Same as Figure 4.9 but with ω5 = ω6 = ω8 = 0.1. . . . . . . . . . . 58



VIII

List of Figures (Continued)

Figure Page

5.1 The discrete GB-splines Bj,2, BL
j,3, and Bj (from left to right) on a

uniform mesh with step size h = 1, no tension and discretization
parameter τ = 0.1 (left) and τ = 0.33 (right). . . . . . . . . . . . . 69

5.2 Same as Figure 5.1, but with discretization parameter τ = 0.5 (left)
and with tension parameters pi = 50 for all i (right). . . . . . . . . 69

6.1 Interpolation domain with main mesh and a refinement. . . . . . . . 88
6.2 Subdomain Ωij with a refinement. . . . . . . . . . . . . . . . . . . . 88
6.3 Grid stencil in subdomain Ωij. . . . . . . . . . . . . . . . . . . . . . 88
6.4 The data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 3-D view of the initial data. . . . . . . . . . . . . . . . . . . . . . . 97
6.6 Thin plate surface with zero tension parameters. . . . . . . . . . . . 97
6.7 Thin plate surface with optimal tension parameters. . . . . . . . . . 97
6.8 The initial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.9 The surface with zero tension parameters. . . . . . . . . . . . . . . 99
6.10 The surface with optimal tension parameters. . . . . . . . . . . . . 99
6.11 The initial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.12 The surface with zero tension parameters. . . . . . . . . . . . . . . 101
6.13 The surface with optimal tension parameters. . . . . . . . . . . . . 101
6.14 The initial data. First projection. . . . . . . . . . . . . . . . . . . . 103
6.15 The surface with zero tension parameters. First projection. . . . . . 103
6.16 The surface with optimal tension parameters. First projection. . . . 103
6.17 The initial data. Second projection. . . . . . . . . . . . . . . . . . . 104
6.18 The surface with zero tension parameters. Second projection. . . . . 104
6.19 The surface with optimal tension parameters. Second projection. . . 104
6.20 The initial data. Third projection. . . . . . . . . . . . . . . . . . . 105
6.21 The surface with zero tension parameters. Third projection. . . . . 105
6.22 The surface with optimal tension parameters. Third projection. . . 105
6.23 The initial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.24 The surface with very large tension parameters. . . . . . . . . . . . 107
6.25 The surface with zero tension parameters. . . . . . . . . . . . . . . 108
6.26 The surface with optimal tension parameters. . . . . . . . . . . . . 108
6.27 3-D view of the test function. . . . . . . . . . . . . . . . . . . . . . 110
6.28 The data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.29 The initial data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.30 The surface with zero tension parameters. . . . . . . . . . . . . . . 110
6.31 The surface with optimal tension parameters. . . . . . . . . . . . . 110



Chapter I

Introduction

Spline functions constitute the main tool in computer aided geometric de-
sign (CAGD for short) which is used for the approximation and representation
of curves and surfaces that arises when these objects have to be processed by a
computer. Applications of CAGD include not only geometric design of different
products like car bodies, ship hulls, airplane fuselages, etc., but also computer
vision and inspection of manufactured parts, medical research (software for digital
diagnostic equipment), image analysis, high resolution TV systems, cartography,
etc. In the majority of these applications, it is important to construct curves and
surfaces which preserve certain properties of the data. For example, we may want
the surface to be positive, monotone, or convex in some sense. Standard methods
of spline functions do not retain these properties of the data. This problem is
known as the problem of shape preserving interpolation. The purpose of this thesis
is to develop new efficient methods for solving this problem.

In the theory of splines mainly two approaches are used: algebraic and
variational. In the first approach (L. L. Schumaker (1981), Yu. S. Zavyalov et
al. (1980)), splines are understood as smooth piecewise defined functions. In the
second approach (P. J. Laurent (1972)), splines are solutions of some minimization
problems for quadratic functionals with restrictions of equality and/or inequality
type. But the third approach is also known (N. N. Janenko and B. I. Kvasov
(1970)), where splines are defined as solutions of differential multipoint boundary
value problems. In some important cases all three approaches give the same so-
lutions. However, the third approach has substantial computational advantages.
We develop this approach on the examples of hyperbolic and thin plate tension
splines. It can be generalized to smoothing splines and even to scattered data in
a straightforward manner.

Research on constructing shape-preserving interpolatory functions started
with the spline in tension of D. G. Schweikert (1966) where exponential splines
were used as approximants. This was followed by the work of H. Späth (1974,
1990), G. M. Nielson (1974), S. Pruess (1976, 1979), and C. De Boor (1978) with
various exponential and cubic spline interpolants containing “tension parameter”
to control shape. All of these approximations were interpolatory and globally C2,
but strictly speaking were not local in the sense that changing data at one point
meant the entire approximation had to be regenerated. This made automatic algo-
rithm for choosing free parameters to control shape (especially monotonicity) fairly
complicated. D. McAllister et al. (1977) derived a method for generating shape
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preserving curves of arbitrary smoothness based on the properties of Bernstein
polynomials, but to achieve C2 smoothness they had to use piecewise polynomials
of degree at least four. There is also the possibility of using piecewise rational
interpolants (e.g., see R. Delbourgo and J. A. Gregory (1985) and J. A. Gregory
and R. Delbourgo (1982)) although these are usually only C1 or they are intended
for strictly monotone or strictly convex data.

In 1980 F. N. Fritsch and R. E. Carlson (1980) proposed a shape-preserving
interpolatory cubic spline which was only C1 globally, but consequently was local,
and admitted much simpler algorithms for the choice of free parameters to control
shape (F. N. Fritsch and J. Butland (1984)). R. J. Renka (1987) working on the
exponential spline has produced an algorithm for automatically choosing tension
parameters in the C1 case together with an iterative approach to extend this in a
special manner to C2. P. Costantini (1987) also has families of shape-preserving
interpolants based on Bernstein polynomials; these are very simple to use but are
comonotone, i.e. the spline on the ith data interval is increasing or decreasing as
the data on that interval. Such splines have the disadvantage that they must have
slope zero at a point where the neighboring secant lines have a sign change in their
slope; hence, any local extrema of the underlying approximation are assumed to
be in the data sample. Also, to get globally C2 interpolants one must use quintic
splines. Other examples of C1 shape preserving spline interpolants are found in
W. Burmeister et al. (1985), and W. J. Schmidt and W. Hess (1987). There is
the work of R. Dougherty et al. (1989) where C2 quintic splines are used; a fairly
complete algorithm is given there for preserving monotonicity and there is also a
considerable discussion concerning convexity for the piecewise cubic case.

Generalized tension splines and GB-splines are widely used in solving prob-
lems of shape preserving interpolation (e.g., see J. C. Clement (1990), B. I. Kvasov
(1996a, 2000), B. J. McCartin (1990), R. J. Renka (1987), N. S. Sapidis and
P. D. Kaklis (1988) and N. S. Sapidis et al. (1988)). By introducing various
parameters into the spline structure, one can preserve various characteristics of
the initial data, including positivity, monotonicity, convexity, as well as linear and
planar sections. The major idea is to find a reasonable compromise between a con-
ventional cubic spline and piecewise linear interpolation of the data. The graph of
a shape preserving spline should lie closest to the graph of a cubic interpolating
spline, thus providing smooth curve with the best possible order of approximation
specific to a cubic spline, while still retaining selected geometric properties of the
data. Here, the main challenge is to develop algorithms that choose parameters
automatically.

Introduced by D. G. Schweikert (1966), for solving shape preserving inter-
polation problem hyperbolic tension splines are still very popular (P. E. Koch and
T. Lyche (1989, 1993), G. M. Nielson (1984), S. Pruess (1976), R. J. Renka (1987),
P. Rentrop (1980), N. S. Sapidis and G. Farin (1990)). Unfortunately, it is difficult
to work with hyperbolic tension splines for very small or very large values of the
tension parameters. For this reason, in spite of the presence of refined algorithms
for their calculation (P. Rentrop (1980)), hyperbolic tension splines were forced
out by rational splines (R. Delbourgo and J. A. Gregory (1985), J. C. Fiorot and
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P. Jeannin (1992), B. I. Kvasov (1996b) and H. Späth (1990)) in practical calcula-
tions. Recently, in P. Costantini et al. (1999) a difference method for constructing
shape preserving hyperbolic tension splines as solutions of 1-D DMBVP was devel-
oped. Such an approach permits to avoid the computation of hyperbolic functions
and has substantial other advantages. However, the extension of a mesh solution
will be a discrete hyperbolic tension spline.

Discrete polynomial splines have been studied extensively. They were in-
troduced by O. L. Mangasarian and L. L. Schumaker (1971) as solutions to certain
minimization problems involving differences instead of derivatives. They are con-
nected to best summation formulas (O. L. Mangasarian and L. L. Schumaker
(1973)) and have been used by M. A. Malcolm (1977) for the computation of
nonlinear splines by iteration. Approximation properties of discrete splines have
been studied by T. Lyche (1976). While discrete polynomial splines are currently
attracting widespread research interest (A. A. Melkman (1996), K. M. Mørken
(1996), S. S. Rana and Y. P. Dubey (1996)), discrete tension splines have been
less studied. The only results we know of regarding this topic are discrete expo-
nential Box-splines ( W. Dahmen and C. A. Micchelli (1989), A. Ron (1988)) and
are therefore related to uniform partitions.

The content of the thesis is as follows. Chapters 2 and 3 present the basic
tools of classical and shape preserving spline interpolation. This material together
with Chapter 5 is important for understanding the two main chapters, 4 and 6.

Chapter 2 describes standard methods of cubic spline interpolation. Such
splines remain very important tools in a multitude of applications involving curve
fitting and design. The main reason for this is their excellent approximation prop-
erties. Cubic splines are easy to store, manipulate, and evaluate on computer.
However, cubic interpolation splines do not ever retain the shape preserving prop-
erties of the data.

In Chapter 3 we consider problem of shape preserving spline interpolation
and describe local and global algorithms of its solution. This chapter begins with
the necessary and sufficient conditions which guarantee that a C1 local cubic spline
preserves the monotonicity of the data. We show that error of approximation re-
mains small under the proposed algorithms. This follows by sufficient conditions of
monotonicity and convexity for conventional C2 global cubic interpolating splines
which are formulated in terms of restrictions on the strictly monotone or strictly
convex initial data. If these conditions are not satisfied then we provide algorithms
of shape preserving interpolation of the same data by C2 generalized tension splines
with automatic choice of shape control parameters.

In Chapter 4 we formulate the 1-D problem of shape preserving spline inter-
polation as 1-D DMBVP. For the numerical treatment of this DMBVP we replace
the differential operator by its difference approximation. This gives us a sys-
tem of linear equations with a positive pentadiagonal matrix which can be solved
efficiently by classical Cholesky factorization. It is substantially cheaper than per-
forming calculations by the standard algorithm (P. Rentrop (1980)), which involves
the solution of only a 3-diagonal system, but with hyperbolic coefficients, and
then requires for interpolation the evaluation of hyperbolic functions with a much
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greater number of computations than the solution of our pentadiagonal system.
We estimate the condition number of the matrix of the system of linear equations
and show that it does not depend on the number of the data points but substan-
tially depends on the refinement. We construct an extension of a mesh solution
as a discrete hyperbolic tension spline and show how to split a large 5-diagonal
system into a sequence of 3-diagonal systems which can be solved numerically by
parallel computer. We find an upper bound for the distance between a discrete
hyperbolic tension spline and the corresponding continuous spline interpolating
the same set of data and having the same end conditions. Some practical aspects
related to our discrete hyperbolic spline interpolants are discussed. We propose a
possible generalization for a particular nonuniform subdivision of the main mesh
and give some graphical examples to illustrate the main features of our difference
method.

Chapter 5 investigates the tool of discrete generalized tension splines at
which we naturally arrived at in Chapter 4. We prove sufficient conditions for
their existence and uniqueness and construct a minimum length local support basis
(whose elements are denoted as discrete GB-splines). Properties of GB-splines are
discussed and the local approximation by discrete GB-splines of a given function
from its samples is considered. We derive recurrence formulae for calculation with
discrete GB-splines and study the properties of discrete GB-spline series. Given
examples of defining functions conform to the sufficiency conditions derived earlier
in this chapter.

In Chapter 6 we formulate the 2-D problem of shape preserving spline inter-
polation as 2-D DMBVP. For the numerical treatment of this DMBVP we replace
the differential operator by its difference approximation. This gives us a system of
linear equations with the matrix of a special structure. We show that this matrix
is positive definite. So, we can solve efficiently this system of linear equations by
direct or iterative methods. As a direct method, we suggest to consider a block
Gaussian elimination. For iterative solution of the obtained linear system, we
apply successive over-relaxation (SOR) method. Finite-difference schemes in frac-
tional steps also prove their efficiency in the numerical treatment of our DMBVP.
We give some graphical examples and discuss competing numerical algorithms.

In Chapter 7 we summarize the main results of the thesis emphasizing on
the advantages of our finite difference approach. The programming codes for all
algorithms were designed in FORTRAN 90 and their description is given in the
appendix. For parallel version the Massage-Passing Interface (MPI for short),
which is a library of functions and macros that can be used in C, FORTRAN,
and C++ programs, was applied. This programming codes have been tested on
different versions of Windows for PC and some Unix servers, e.g., the SUT’s
mathematical server and the ANU’s supercomputer at the national facility of the
Australian Partnership for Advanced Computing (APAC).



Chapter II

Cubic Spline Interpolation

In this chapter, we describe some of the algorithms for computing cubic
interpolating splines which are most often used in practical spline approximation.
Cubic splines combine the smoothness properties required in many applications
with the simplicity of their computer calculation and high accuracy of approxi-
mation. However, in a number of cases the behaviour of cubic splines does not
conform to the properties of the initial data. Visually, this is evidenced by the
presence of jumps, oscillations, and various deviations not characteristic of a given
set of points. These features may be expressed mathematically as nonmonotonic-
ity and the presence of inflection points of the spline on intervals where the data
is monotone and convex. One can obtain “correct” behaviour of the spline by in-
creasing the number of interpolation nodes. If this is impossible, then one should
use the methods of shape preserving approximation described further in this thesis.

2.1 Cubic Interpolating Splines

Suppose that we want to interpolate a function f given by the data
(xi, fi), i = 0, . . . , N, where fi = f(xi) and the points xi form an ordered se-
quence a = x0 < x1 < · · · < xN = b. This interpolation problem can be solved
very efficiently by using cubic splines.

Definition 2.1. A cubic interpolating spline is a function S ∈ C2[a, b] such that

(i) on every interval [xi, xi+1] the function S is a cubic polynomial (of order
four)

S(x) ≡ Si(x) = ai,0 + ai,1(x− xi) + ai,2(x− xi)
2 + ai,3(x− xi)

3

for x ∈ [xi, xi+1], i = 0, . . . , N − 1;

(ii) consecutive polynomials are smoothly adjusted

S
(r)
i−1(xi − 0) = S

(r)
i (xi + 0), i = 1, . . . , N − 1, r = 0, 1, 2;

(iii) the interpolation conditions are satisfied

S(xi) = fi, i = 0, . . . , N.
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According to this definition, a cubic interpolating spline S is an ordered
set of cubic polynomials which match up smoothly and form a twice continuously
differentiable function. The points xi, i = 1, . . . , N − 1, where the polynomials
are matched, are called the knots of the spline, and can be coincided with the
interpolation nodes. The knots of the spline can also have different multiplicities
depending on the number of the adjusted derivations. In particular, a knot xi has
multiplicity ki (0 ≤ ki ≤ 3) if the derivatives of two consecutive polynomials are
matched in this knot up to order 3 − ki. However, in this chapter we consider
cubic splines with only simple knots (of multiplicity 1).

Each of the N polynomials forming a spline has 4 coefficients, that gives
us a total of 4N parameters. From this number, one needs to subtract 3(N − 1)
conditions of smoothness and N + 1 conditions of interpolation. The remaining
two free parameters (4N −3(N −1)−N −1 = 2) are usually determined from the
restrictions on the values of the spline and its derivatives at the endpoints of the
interval [a, b] (or near its ends). These restrictions are called endpoint constraints.
There exist several different types of endpoint constraints, among which the most
common are the following four boundary conditions:

1. First derivative endpoint conditions:
S ′(x0) = f ′0 and S ′(xN) = f ′N ;

2. Second derivative endpoint conditions:
S ′′(x0) = f ′′0 and S ′′(xN) = f ′′N ;

3. Periodic endpoint conditions:
S(r)(x0) = S(r)(xN), r = 0, 1, 2;

4. “Not-a-knot” endpoint conditions where adjacent polynomials nearest to the
endpoints of the interval [a, b] coincide: S0(x) ≡ S1(x) and SN−1(x) ≡ SN(x),
that is, S ′′′(xi − 0) = S ′′′(xi + 0), i = 1, N − 1.

It is natural to consider periodic endpoint conditions by assuming that the inter-
polated function f is periodic with the period b− a.

2.2 Defining Relations for Cubic Interpolating

Spline

The second derivative S ′′ of a cubic spline is a continuous piecewise linear
function. Thus, using the notation Mi = S ′′(xi), i = 0, . . . , N , one can write

S ′′(x) ≡ S ′′i (x) = Mi
xi+1 − x

hi

+ Mi+1
x− xi

hi

, x ∈ [xi, xi+1], (2.1)

where hi = xi+1 − xi, i = 0, . . . , N − 1.
Integrating (2.1) twice will introduce two constants of integration, and the

result can be expressed in the form

Si(x) = Mi
(xi+1 − x)3

6hi

+ Mi+1
(x− xi)

3

6hi

+ C1,i(xi+1 − x) + C2,i(x− xi). (2.2)
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Substituting xi and xi+1 into equation (2.2) and using the values fi =
Si(xi) and fi+1 = Si(xi+1) yields the following equations involving C1,i and C2,i,
respectively:

fi = Mi
h2

i

6
+ C1,ihi, fi+1 = Mi+1

h2
i

6
+ C2,ihi.

These two equations are easily solved for C1,i and C2,i, and when these values are
substituted into equation (2.2), the result is the following expression for the cubic
function S on [xi, xi+1]:

Si(x) = Mi
(xi+1 − x)3

6hi

+ Mi+1
(x− xi)

3

6hi

+

(
fi −Mi

h2
i

6

)
xi+1 − x

hi

+

(
fi+1 −Mi+1

h2
i

6

)
x− xi

hi

. (2.3)

To find the unknown coefficients Mi, i = 0, . . . , N , one must use the deriva-
tive of (2.3), which is

S ′i(x) = −Mi
(xi+1 − x)2

2hi

+ Mi+1
(x− xi)

2

2hi

−
(

fi

hi

−Mi
hi

6

)

+

(
fi+1

hi

−Mi+1
hi

6

)
. (2.4)

Evaluating (2.4) at xi and simplifying the result yields

S ′i(xi + 0) = −Mi
hi

3
−Mi+1

hi

6
+ f [xi, xi+1],

where f [xi, xi+1] = (fi+1 − fi)/hi.
Similarly, we can replace i by i − 1 in (2.4) to get an expression for S ′i−1

and evaluate it at xi to obtain

S ′i−1(xi − 0) = Mi−1
hi−1

6
+ Mi

hi−1

3
+ f [xi−1, xi].

As S ′i−1(xi − 0) = S ′i(xi + 0), i = 1, . . . , N − 1, we obtain

hi−1Mi−1 + 2(hi−1 + hi)Mi + hiMi+1 = 6δif, i = 1, . . . , N − 1, (2.5)

where δif = f [xi, xi+1]− f [xi−1, xi].
The system (2.5) is underdetermined as it contains only N − 1 equations

for finding N + 1 unknowns coefficients Mi. In order to complete this system one
needs two additional equations. The standard strategy is to make use of one of
the above stated four endpoint conditions.

2.3 Endpoint Constraints and the Resulting Sys-

tems of Linear Equations

Using formulae (2.1) and (2.4) one can rewrite the endpoint conditions given
in Section 2.1 in the following form:
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1. 2M0 + M1 =
6

h0

(f [x0, x1]− f ′0),

MN−1 + 2MN =
6

hN−1

(f ′N − f [xN−1, xN ]);

2. M0 = f ′′0 and MN = f ′′N ;

3. fN+i = fi, MN+i = Mi, hN+1 = hi for all i;

4.
Mi+1 −Mi

hi

=
Mi −Mi−1

hi−1

, i = 1, N − 1.

Let us consider the resulting systems of linear equations for calculating the
unknowns Mi, i = 0, . . . , N, in more detail.

1. For first derivative endpoint conditions one obtains the following system



2h0 h0 0 · · · 0
h0 2(h0 + h1) h1 · · · 0
0 h1 2(h1 + h2) · · · 0
...

...
...

. . .
...

0 · · · 0 hN−1 2hN−1







M0

M1

M2
...

MN




= b, (2.6)

where

b = [6(f [x0, x1]− f ′0), 6δ1, 6δ2f, . . . , 6(f ′N − f [xN−1, xN ])]T

and T is the transposition operator.

2. For second derivative endpoint conditions the system differs only by its first
and last equations




1 0 0 · · · 0
h0 2(h0 + h1) h1 · · · 0
0 h1 2(h1 + h2) · · · 0
...

...
...

. . .
...

0 · · · 0 0 1







M0

M1

M2
...

MN




=




f ′′0
6δ1f
6δ2f

...
f ′′N




. (2.7)

3. For the periodic endpoint conditions, equation (2.5) is also valid for i = N
(or i = 0), that is, one has

uN−1MN−1 + 2(hN−1 + hN)MN + hNMN+1 = 6δNf . (2.8)

Because fN+i = fi, MN+i = Mi, i = 0, 1, and hN = h0 then one obtains

f [xN , xN+1] =
fN+1 − fN

hN

=
f1 − f0

h0

= f [x0, x1]

and equation (2.8) takes the form

h0M1 + hN−1MN−1 + 2(hN−1 + h0)MN = 6(f [x0, x1]− f [xN−1, xN ]).



9

We arrive at the following system of linear equations



2(h0 + h1) h1 0 · · · h0

h1 2(h1 + h2) h2 · · · 0
...

...
...

. . .
...

h0 · · · 0 hN−1 2(hN−1 + h0)







M1

M2
...

MN


 = b, (2.9)

where
b = [6δ1f, 6δ2f, . . . , 6(f [x0, x1]− f [xN−1, xN ])]T .

4. For “not-a-knot” endpoint conditions one obtains the following system



h1 −(h0 + h1) h0 · · · 0
h0 2(h0 + h1) h1 · · · 0
...

...
...

. . .
...

0 · · · hN−2 2(hN−2 + hN−1) hN−1

0 · · · hN−1 −(hN−2 + hN−1) hN−2







M1

M2
...

MN−1

MN




= b,

(2.10)
where

b = [0, 6δ1f, . . . , 6δN−1f, 0]T .

Systems (2.6), (2.7), and (2.9) have tridiagonal or “almost” tridiagonal
matrices. This permits us to apply particularly efficient algorithms (Gaussian
elimination without pivoting) for their solution. In order to obtain a system with
tridiagonal matrix in case of “not-a-knot” endpoint conditions one needs first to
eliminate the unknown M0 and MN from system (2.10). If one subtracts from the
second equation of system (2.10), multiplied by h1, the first equation multiplied
by h0, then the resulting equation takes the form

(h0 + 2h1)(h0 + h1)M1 + (h2
1 − h2

0)M2 = 6h1δ1f.

Analogously, if one subtracts from next to last equation of system (2.10),
multiplied by hN−2 the last equation multiplied by hN−1, then the resulting equa-
tion will be

(h2
N−2 − h2

N−1)MN−2 + (2hN−2 + hN−1)(hN−2 + hN−1)MN−1 = 6hN−2δN−1f.

We arrive at the following system of linear equations with tridiagonal matrix



(h0 + 2h1) (h1 − h0) · · · 0
h1 2(h1 + h2) · · · 0
...

...
. . .

...
0 · · · hN−2 − hN−1 2hN−2 + hN−1







M1

M2
...

MN−1


 = b,

(2.11)
where

b = [6λ0δ1f, 6δ2f, . . . , 6µN−1δN−1f ]T ,

λ0 = h1/(h0 + h1), µN−1 = hN−2/(hN−2 + hN−1).
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2.4 Diagonally Dominant Matrices. Existence

and Uniqueness of the Solution

Let us investigate whether systems (2.6), (2.7), (2.9), and (2.11) have unique
solutions. Obviously, this is the case if and only if the matrices in those systems
are nonsingular.

Definition 2.2. A square matrix A = {aij}n
i,j=1 is called a matrix with diagonal

dominance if the following conditions are fulfilled

ri = |aii| −
n∑

j=1
j 6=i

|aij| ≥ 0, i = 1, . . . , n. (2.12)

A matrix A is called a matrix with strict diagonal dominance if the inequalities
(2.12) are strict.

Theorem 2.1. (Hadamard criterion). Every matrix with strict diagonal domi-
nance is nonsingular.

Proof: Suppose to the contrary that the matrix A has strict diagonal dominance
and is singular, that is, det(A) = 0 and the homogeneous system of equations
Ax = 0 or

n∑
j=1

aijxj = 0, i = 1, . . . , n

has a nontrivial solution x = (x1, . . . , xn)T .
One can find k such that |xk| ≥ |xi|, i = 1, . . . , n. Then it follows from kth

equation that

|akk||xk| ≤
n∑

j=1
j 6=k

|akj||xj| ≤ |xk|
n∑

j=1
j 6=k

|akj|.

From here

|akk| ≤
n∑

j=1
j 6=k

|akj|,

which contradicts the assumption of strict diagonal dominance of A. This
completes the proof. ¤

It is easy to verify that the systems (2.6), (2.7), (2.9), and (2.11) have
matrices with strict diagonal dominance. In the case of first derivative endpoint
conditions one has from system (2.6)

r0 = 2h0 − h0 = h0 > 0,

ri = 2(hi−1 + hi)− hi−1 − hi = hi−1 + hi > 0, i = 1, . . . , N − 1,

rN = 2hN−1 − hN−1 = hN−1 > 0.



11

Therefore, the matrix of this system has strict diagonal dominance.
By looking at equations (2.7) and (2.9), one can easily see that for second

derivative and periodic endpoint conditions, strict diagonal dominance also oc-
curs. For “not-a-knot” endpoint conditions, one obtains from system (2.11) strict
diagonal dominance of the matrix of this system as well,

r1 = h0 + 2h1 − |h1 − h0| > 0,

ri = 2(hi−1 + hi)− hi−1 − hi = hi−1 + hi > 0, i = 2, . . . , N − 2,

rN−1 = 2hN−2 + hN−1 − |hN−2 − hN−1| > 0.

Now using Theorem 2.1 one concludes that systems (2.6), (2.7), (2.9), and
(2.11) have unique solutions. As a consequence, there exists a unique cubic in-
terpolating spline S satisfying any of the considered above four types of endpoint
constraints.

2.5 Gaussian Elimination for Tridiagonal

Systems

Let us consider a particularly efficient algorithm for solving linear systems
with tridiagonal matrices. The algorithm given below is a special variant of Gaus-
sian elimination. Keeping in mind the systems for a cubic interpolating spline
with endpoint conditions of types 1, 2, and 4, we consider the following system.




b1 c1 0 0 · · · 0
a2 b2 c2 0 · · · 0
0 a3 b3 c3 · · · 0
...

. . . . . . . . .
...

0 · · · 0 an−1 bn−1 cn−1

0 · · · 0 0 an bn







x1

x2

x3
...

xn−1

xn




=




d1

d2

d3
...

dn−1

dn




(2.13)

To start the elimination, one divides the first equation of this system by the
diagonal element b1 and uses notations p1 = c1/b1 and q1 = d1/b1. Now suppose
that we have eliminated all nonzero subdiagonal elements in the first i − 1 rows.
In this case, system (2.13) is transformed to the form




1 p1 0 0 0 0 · · · 0
0 1 p2 0 0 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 pi−1 0 · · · 0
0 · · · 0 ai bi ci · · · 0
...

. . . . . . . . .
...

0 · · · 0 0 0 an−1 bn−1 cn−1

0 · · · 0 0 0 0 an bn







x1

x2
...

xi−1

xi
...

xn−1

xn




=




q1

q2
...

qi−1

di
...

dn−1

dn



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Now in order to eliminate the subdiagonal element ai in the ith row, we
have to multiply the (i − 1)st row by ai and subtract it from the ith row. As a
result, the ith row of our system takes the following form

(bi − aipi−1)xi + cixi+1 = di − aiqi−1.

To obtain the unit on the main diagonal one must divide the ith row by the
coefficient bi− aipi−1. As a result, in the final form of the ith row one obtains the
following formulae for the elements pi and qi:

pi =
ci

bi − aipi−1

, i = 2, . . . , n− 1, p1 =
c1

b1

,

qi =
di − aiqi−1

bi − aipi−1

, i = 2, . . . , n, q1 =
d1

b1

.
(2.14)

Proceeding in this way one arrives at the system



1 p1 0 0 · · · 0
0 1 p2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 pn−2 0
0 · · · 0 0 1 pn−1

0 · · · 0 0 0 1







x1

x2
...

xn−2

xn−1

xn




=




q1

q2
...

qn−2

qn−1

qn




Now using the back substitution one can compute the unknowns xi:

xn = qn,

xi = −pixi+1 + qi, i = n− 1, . . . , 1. (2.15)

2.6 Correctness and Stability of Gaussian

Elimination

Let us consider the correctness and stability of the calculations in the above
discribed special variant of Gaussian elimination. By correctness we mean the pos-
sibility to perform all necessary calculations in the algorithm, that is, in our case,
that the denominators in formulae (2.14) do not vanish. The algorithm of Gaus-
sian elimination will be also stable if we do not have any progressive accumulation
of round-off errors by performing arithmetic operations (in our case by multipli-
cations in formulae (2.15)).

For system (2.13) with tridiagonal matrix, the conditions of strict diagonal
dominance (2.12) take the form

|bi| > |ai|+ |ci|, i = 1, . . . , n, (2.16)

with a1 = cn = 0.
Let us show that if the conditions of strict diagonal dominance (2.16) are

fulfilled, then the algorithm of Gaussian elimination (2.14) and (2.15) is correct
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and stable. According to (2.14) and (2.16) one has |p1| = |c1|/|b1| < 1. Let us
suppose by induction that |pj| < 1, j = 1, . . . , i − 1. Then using formula (2.14)
one obtains

|pi| = |ci|
|ci − aipi−1| ≤

|ci|
|bi| − |ai| |pi−1| <

|ci|
|bi| − |ai| <

|ci|
|ci| = 1,

that is, |pi| < 1 for all i.
As

|bi − aipi−1| ≥ |bi| − |ai||pi−1| > |bi| − |ai| > 0, i = 2, . . . , n− 1,

then the denominators in formulae (2.14) are nonzero. This means the correctness
of Gaussian elimination.

Suppose that while practically solving system (2.13) by applying formulae
(2.14) and (2.15), one obtains x̄i = xi + εi, i = 1, . . . , n, where εi is the round-off
error at the ith step. Then according to (2.15) one obtains

x̄i = −pix̄i+1 + qi, i = n− 1, . . . , 1.

By subtracting formula (2.15) from this equation one gets

εi = −piεi+1, i = n− 1, . . . , 1,

or
|εi| = |pi| |εi+1| < |εi+1|, i = n− 1, . . . , 1,

that is, the calculations by formula (2.15) are stable.
It was shown above that for a cubic interpolating spline, the matrices of

the systems (2.6), (2.7), (2.9), and (2.11) for all considered four types of end-
point conditions have strict diagonal dominance. Therefore, the systems (2.6),
(2.7), and (2.11) can be stably solved by the algorithm of Gaussian elimination
without pivoting (2.14) and (2.15). To solve system (2.9) one must use a slightly
more complicated algorithm which is, however, another modification of Gaussian
elimination.

2.7 First Derivative Algorithm

In some cases it is more convenient to use a different algorithm for construct-
ing cubic interpolating spline. Such an algorithm is based on the representation
of the spline through endpoint values of its first derivative.

Let us denote mi = S ′(xi), i = 0, . . . , N . On the interval [xi, xi+1] one can
write down the following formula for the cubic interpolating spline

S(x) ≡ Si(x) = fi(1− t) + fi+1t + t(1− t)hi[(mi − f [xi, xi+1])(1− t)

+(f [xi, xi+1]−mi+1)t], (2.17)
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where t = (x− xi)/hi and hi = xi+1 − xi.
It is easy to verify that Si(xj) = fj, S ′i(xj) = mj, j = i, i + 1. By differen-

tiating the formula (2.17) two times with respect to x one obtains

S ′′i (x) =
2

hi

[3(1− 2t)f [xi, xi+1]− (2− 3t)mi − (1− 3t)mi+1]. (2.18)

Using this expression for adjacent polynomials on the intervals [xi−1, xi] and
[xi, xi+1] in the joint point x = xi one finds

S ′′i−1(xi − 0) =
2

hi−1

(−3f [xi−1, xi] + mi−1 + 2mi),

S ′′i (xi + 0) =
2

hi

(3f [xi, xi+1]− 2mi −mi+1).

From the condition of continuity S ′′i−1(xi− 0) = S ′′i (xi +0), i = 1, . . . , N − 1
one obtains the system of linear equations

1

hi−1

mi−1 + 2
( 1

hi−1

+
1

hi

)
mi +

1

hi

mi+1 = 3
(f [xi−1, xi]

hi−1

+
f [xi, xi+1]

hi

)
,

i = 1, . . . , N − 1. (2.19)

In order to complete this system of equations one needs two additional
restrictions which are usually given as endpoint conditions of the types considered
in Section 2.1. Using formulae (2.17) and (2.18) one can rewrite these endpoint
conditions in the form:

1. First derivative endpoint conditions:

m0 = f ′0 and mN = f ′N ; (2.20)

2. Second derivative endpoint conditions:

2m0 + m1 = 3f [x0, x1]− f ′′0 h0/2,

mN−1 + 2mN = f ′′NhN−1/2 + 3f [xN−1, xN ]; (2.21)

3. Periodic endpoint conditions:

fN+i = fi, mN+i = mi, hN+i = hi for all i; (2.22)

4. “Not-a-knot” endpoint conditions where adjacent polynomials nearest to the
endpoints of the interval [a, b] coincide:

S0(x) ≡ S1(x) and SN−1(x) ≡ SN(x),

that is,
S ′′′(xi − 0) = S ′′′(xi + 0), i = 1, N − 1,

or

mi + mi+1

h2
i

− mi−1 + mi

h2
i−1

=
f [xi, xi+1]

h2
i

− f [xi−1, xi]

h2
i−1

, i = 1, N − 1. (2.23)
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In the case of endpoint conditions of types 1 and 2, equations (2.20) and
(2.21) permit one to directly complete the system (2.19). In the case of periodic
endpoint conditions one assumes that equation (2.19) is also valid for i = N . As
according to the conditions (2.22) yN+i = yi, mN+i = mi, i = 0, 1, and hN = h0

the system (2.19) is completed by the equation

1

h0

m1 +
1

hN−1

mN−1 + 2
( 1

h0

+
1

hN−1

)
mN = 3

(f [x0, x1]

h0

+
f [xN−1, xN ]

hN−1

)
.

One can easily verify that for the first three types of endpoint conditions
the corresponding systems of linear equations have matrices with strict diagonal
dominance and therefore there exists a unique related cubic interpolating spline.
In the case of “not-a-knot” endpoint conditions, in order to obtain a system whose
matrix has strict diagonal dominance one needs first to eliminate the unknowns
m0 and mN from the system (2.19). As a result, taking into account the relations
(2.23), the first and last equations of this system reduce to the form

( 1

h0

+
1

h1

)
m1 +

1

h1

m2 = 2λ1
f [x0, x1]

h0

+ (1 + 2λ1)
f [x1, x2]

h1

,

mN−2

hN−2

+
( 1

hN−2

+
1

hN−1

)
mN−1 = (1 + 2µN−1)

f [xN−2, xN−1]

hN−2

+2µN−1
f [xN−1, xN ]

hN−1

,

where λ1 = h1/(h0 + h1) and µN−1 = hN−2/(hN−2 + hN−1).
Thus, for all four types of endpoint conditions, the matrices of the corre-

sponding linear systems in the unknowns mi, i = 0, . . . , N have strict diagonal
dominance. This permits us to solve these systems efficiently by means of the
above described algorithms of Gaussian elimination without pivoting.

In order to reduce the number of arithmetic operations performed in a
practical evaluation of the spline and its derivatives on the interval [xi, xi+1], one
can rewrite formula (2.17) in the form

Si(x) = fi + (x− xi)(f [xi, xi+1] + (x− xi+1)(ai + (x− xi)bi)),

where

ai =
f [xi, xi+1]−mi

hi

and bi =
mi − 2f [xi, xi+1] + mi+1

h2
i

.

2.8 Graphical Examples

As the first example we consider interpolating the function

f(x) = 1− exp(100x)− 1

exp(100)− 1
, x ∈ [0, 1]

on the uniform mesh: xi = i/N, i = 0, . . . , N , where N = 10, 40. In Figures 2.1–
2.5 the dashed and solid lines show the graphs of the cubic spline S of the C2 class
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and the graph of function f , respectively. In both cases the boundary conditions
S ′(0) = f ′(0) = 0, S ′(1) = f ′(1) = −100 are used. The graph of the cubic spline S
approaches the graph of the function f when the number of interpolation points,
N + 1, is increased.

In second example we consider interpolating the function

f(x) = e−x4

, x ∈ [−4, 4]

on the uniform mesh xi = −4 + 8i/N, i = 0, . . . , N , where N = 10, 16, 20. In all
Figures 2.3–2.5 we used the boundary conditions S ′(−4) = f ′(−4) = 0, S ′(4) =
f ′(4) = 0. The behaviour of the cubic spline S is similar to that of the first
example. The graph of the cubic spline S approaches the graph of the function f
and preserves the monotonicity and convexity of the interpolation points, N + 1,
is increased.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.1: The graphs of the cubic spline S on the uniform mesh for N = 10 and
of the function f(x) = 1− exp(100x)−1

exp(100)−1
, x ∈ [0, 1].
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Figure 2.2: The same as Figure 2.1 but for N = 40.
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Figure 2.3: The graphs of the cubic spline S on the uniform mesh for N = 10 and
of the function f(x) = e−x4

, x ∈ [−4, 4].
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Figure 2.4: The same as Figure 2.3 but for N = 16.
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Figure 2.5: The same as Figure 2.3 but for N = 20.



Chapter III

Shape Preserving Spline
Interpolation

In this chapter, we discuss the convex and monotone interpolation by splines
S ∈ C2. In practice, the C2 cubic splines are very often used. We give sufficient
conditions of monotonicity (convexity) for these splines, provided the interpolated
data is monotone (convex). The conditions are formulated in terms of data divided
differences and they are very easy for testing. The method that was used to deduce
these conditions is based on the simple lemma about the tridiagonal system. It
may be applied to any spline if the construction of the spline is reduced to solution
of tridiagonal system with diagonal dominance.

3.1 The Problem of Shape Preserving Spline In-

terpolation

Let us consider the Lagrange interpolation for points a = x0 < x1 < · · · <
xN = b,

S(xi) = fi

(
= f(xi)

)
(3.1)

by spline functions S which preserve the shape of the data (xi, fi), i = 0, . . . , N .
For example, if the function f is monotone or convex on some interval [xj, xk], we
would like to have a spline S which also has these properties. To achieve this, we
take splines S with knots at the points xi, which have more parameters than is
necessary to satisfy (3.1). The additional parameters are then selected to ensure
the desired properties of S. The main point, however, is to determine whether
the error of approximation ||f − S|| remains small under the proposed algorithms
which describe S.

We introduce the notation for the first two divided differences

f [xi, xi+1] = (fi+1 − fi)/hi, hi = xi+1 − xi, i = 0, . . . , N − 1,

δif = f [xi, xi+1]− f [xi−1, xi], i = 1, . . . , N − 1.

The data fi is said to be monotone if

f [xi, xi+1] ≥ 0, i = 0, . . . , N − 1, (3.2)
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and convex if
δif ≥ 0, i = 1, . . . , N − 1. (3.3)

The problem of monotone (convex) spline interpolation consists in con-
structing a monotone (convex) spline interpolant to monotone (convex) data.

A cubic spline S ∈ C1[a, b] interpolant to {fi} can be written, for x ∈
[xi, xi+1], in the form (see (2.17) in Chapter 2)

S(x) ≡ Si(x) = (1− t)2(1 + 2t)fi + t2(3− 2t)fi+1

+hit(1− t)2mi − hit
2(1− t)mi+1, (3.4)

where t = (x− xi)/hi, mj = S ′(xj), j = i, i + 1.
F. N. Fritsch and R. E. Carlson (1980) have proved necessary and sufficient

monotonicity conditions for cubic splines of class C1. They yield the following

Lemma 3.1. If f [xi, xi+1] ≥ 0 and

0 ≤ mj ≤ 3f [xi, xi+1], j = i, i + 1, (3.5)

then S ′i(x) ≥ 0 for x ∈ [xi, xi+1].

Proof: This result can easily be obtained without appealing to F. N. Fritsch and
R. E. Carlson (1980). In fact, from (3.4) we have

S ′i(x) = s(t,mi,mi+1) = 6t(1− t)f [xi, xi+1]

+(1− 4t + 3t2)mi + (−2t + 3t2)mi+1. (3.6)

The function s(t,mi,mi+1) is linear in the variables mi and mi+1. Therefore,
for proving the inequality S ′i(x) ≥ 0, x ∈ [xi, xi+1], under restrictions (3.5), it
is sufficient to verify the inequalities: s(t, 0, 0) ≥ 0, s(t, αi, 0) ≥ 0, s(t, 0, αi) ≥
0, s(t, αi, αi) ≥ 0 for t ∈ [0, 1] and αi = 3f [xi, xi+1]. It is easy to verify oneself that
these inequalities hold; hence, the desired result follows. This proves the lemma.
¤

3.2 Monotone Matrix. Lemma on Tridiagonal

System

Definition 3.1. A real square matrix A is called monotone if Ay ≥ 0 implies
y ≥ 0 and Ay ≤ 0 implies y ≤ 0. By y ≥ 0 (y ≤ 0) we mean that all components
of a vector y are nonnegative (nonpositive).

Let A be an invertible square matrix. Then A is monotone if and only if all
elements of A−1 are nonnegative (L. Collatz (1964)).

Lemma 3.2. If a real square matrix A = {aij}n
i,j=1 has a diagonal dominance and

aii > 0, aij ≤ 0 (j 6= i), i, j = 1, . . . , n,

then it is monotone, and the condition Ay > 0 (< 0) implies y > 0 (< 0).



21

Proof: Show that Ay ≥ 0 implies y ≥ 0. Suppose to the contrary that a vector
y has negative components and let yk denotes the negative component of largest
absolute value. We take a vector z whose components all equal to |yk|. As

∑
aijzj = |yk|

∑
j

aij > 0, i = 1, . . . , n,

then Az > 0 and thus A(z + y) = Az + Ay > 0. However,

∑
j

ajk(yj + zj) =
∑

j 6=k

akj(yj + |yk|) ≤ 0.

This contradiction shows that A is monotone.
Suppose now Ay > 0. Assuming yk = 0 we have

∑
j

akjyj =
∑

j 6=k

akjyj ≤ 0

which contradicts the assumption. This proves the lemma.. ¤

Consider the system

b0z0 + c0z1 = d0,

aizi−1 + bizi + cizi+1 = di, i = 1, . . . , N − 1, (3.7)

aNzN−1 + bNzN = dN .

Let the system be solvable and its righthand members be positive. By Lemma
3.2 if the matrix of system (3.7) is monotone then zi ≥ 0, i = 0, . . . , N. But the
matrices that occur by the construction of splines are usually not monotone. In
this case we can apply the following

Lemma 3.3. Let the coefficients of system (3.7), where N > 1, be such that

bi > 0, i = 0, . . . , N ;

ai ≥ 0, ci ≥ 0, bi > ai + ci, i = 1, . . . , N − 1, (3.8)

c0 <
b0b1

a1 + c1

, aN <
bN−1bN

aN−1 + cN−1

, (3.9)

then this system is nondegenerate. If the inequalities

di ≥ 0, di − aidi−1

bi−1

− cidi+1

bi+1

≥ 0, i = 0, . . . , N (3.10)

where a0 = cN = d−1 = dN+1 = 0, b−1 = bN+1 = 1), hold, the solution of (3.7) is
nonnegative:

zi ≥ 0, i = 0, . . . , N. (3.11)
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Proof: First we consider the case c0 ≥ 0 and aN ≥ 0. We add to (3.7) the
equations bizi = di, with bi = di = 1, i = −1, N + 1, and suppose that a0 =
aN+1 = c−1 = cN+1 = 0. For each i = 0, . . . , N we take the linear combination
of the (i − 1)th, ith and (i + 1)th equations of this system with corresponding
coefficients −ai/bi−1, 1, −ci/bi+1. Then we have

B0z0 − C0z2 = D0,

−Aizi−2 + Bizi − Cizi+2 = Di, i = 1, . . . , N − 1, (3.12)

−ANzN−2 + BNzN = DN ,

where

Ai =
ai−1ai

bi−1

, Bi = bi − aici−1

bi−1

− ai+1ci

bi+1

,

Ci =
cici+1

bi+1

, Di = di − aidi−1

bi−1

− cidi+1

bi+1

,

and evidently A1 = CN−1 = 0. Thus (3.12) is the system with unknowns z0, . . . , zN .
By using (3.8) we have Ai ≥ 0, Ci ≥ 0, i = 0, . . . , N, and Bi ≥ bi − ai − ci >
0, i = 2, . . . , N − 2. Next, by using (3.9), we obtain

B1 > b1 − b1a1

a1 + c1

− c1a2

b2

= c1

[
b1

a1 + c1

− a2

b2

]
> 0,

B0 = b0 − a1c0

b1

> b0 − a1b0

a1 + c1

> 0,

and BN−1 > 0, BN > 0. Thus, all Bi in (3.12) are positive. Further, it is easy to
show that system (3.12) has a matrix with diagonal dominance. As a result, this
matrix is monotone and nonsingular. Therefore, (3.11) holds.

Now, let c0 < 0, aN < 0 (the proof in the cases when c0 ≥ 0, aN < 0 or
c0 < 0, aN ≥ 0 is similar). Eliminating z0 and zN from (3.7), we obtain the system

b̂1z1 + c1z2 = d̂1,

aizi−1 + bizi + cizi+1 = di, i = 2, . . . , N − 2, (3.13)

aN−1zN−2 + b̂N−1zN−1 = d̂N−1,

where

b̂1 = b1 − a1c0

b0

, d̂1 = d1 − a1d0

b0

,

b̂N−1 = bN−1 − cN−1aN

bN

, d̂N−1 = dN−1 − cN−1dN

bN

.

It is easy to see that system (3.13) satisfies all of the hypotheses which we have
used above in the study of the case c0 ≥ 0, aN ≥ 0. Thus, zi ≥ 0, i = 1, . . . , N−1.
But z0 = (d0 − c0z1)/b1 > 0 and, similarly, zN ≥ 0. This proves the lemma. ¤
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3.3 Convex Cubic Spline

Let S be a C2 cubic interpolating spline with endpoint conditions

S ′(xi) = f ′i , i = 0, N. (3.14)

It was shown in Chapter 2 that values of the second derivative of the spline Mi =
S ′′(xi), i = 0, . . . , N satisfy the system of linear equations (3.6) which can be
rewritten in the form

2M0 + M1 = d0,

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, . . . , N − 1, (3.15)

MN−1 + 2MN = dN ,

where

µi = hi−1/(hi−1 + hi), λi = 1− µi, di = 6f [xi−1, xi, xi+1],

d0 =
6

h0

(f [x0, x1]− f ′0), dN =
6

hN−1

(f ′N − f [xN−1, xN ]).

Theorem 3.1. Let a C2 cubic spline S with endpoint conditions (3.14) interpolate
the convex data {fi}, i = 0, . . . , N. If the righthand elements of system (3.15)
satisfy the following inequalities

d0 ≥ 0, dN ≥ 0, 2di − µidi−1 − λidi+1 ≥ 0, i = 0, . . . , N, (3.16)

where d−1 = dN+1 = 0 and λ0 = µN = 1, then S ′′(x) ≥ 0 for all x ∈ [a, b], that is,
S is convex on [a, b].

Proof: It is easy to verify directly that system (3.15) satisfies the conditions
of Lemma 3.3. Therefore, by the constraints (3.16) its solution is nonnegative:
Mi ≥ 0, i = 0, . . . , N. On each interval [xi, xi+1], i = 0, . . . , N − 1, we have

S ′′(x) = (1− t)Mi + tMi+1, t = (x− xi)/hi

and thus S ′′(x) ≥ 0 for all x ∈ [a, b]. This proves the theorem. ¤

Remark: Define h = maxi hi. If a C2 cubic spline S interpolates a function
f ∈ C2[a, b] and f ′′(x) > 0 for all x ∈ [a, b], then conditions (3.16) will be fulfilled
provided that h is sufficiently small.

3.4 Monotone Cubic Spline

Let a C2 cubic spline S interpolate the monotone data {fi}, i = 0, . . . , N ,
and satisfy the endpoint conditions

S ′′(xi) = f ′′i , i = 0, N. (3.17)
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For the values of the first derivative of the spline mi = S ′(xi), i = 0, . . . , N , one
has the following system of linear equations (see (2.19) and (2.21))

2m0 + m1 = c0,

λimi−1 + 2mi + µimi+1 = ci, i = 1, . . . , N − 1, (3.18)

mN−1 + 2mN = cN ,

where

c0 = 3f [x0, x1]− f ′′0 h0/2, ci = 3λif [xi−1, xi] + 3µif [xi, xi+1],

cN = 3f [xN−1, N ] + f ′′NhN−1/2.

Lemma 3.4. If the righthand elements of system (3.18) satisfy the following in-
equalities

c0 ≥ 0, cN ≥ 0, 2ci − λici−1 − µici+1 ≥ 0, i = 0, . . . , N, (3.19)

where c−1 = cN+1 = 0 and µ0 = λN = 1, then mi ≥ 0, i = 0, . . . , N .

Proof: It is easy to verify that system (3.18) satisfies the conditions of
Lemma 3.3. Therefore, by the restrictions (3.19) its solution is nonnegative:
mi ≥ 0, i = 0, . . . , N . This proves the lemma. ¤

From the fact that mi ≥ 0, i = 0, . . . , N , it does not necessarily follow
that S ′(x) ≥ 0 for all x ∈ [a, b]. To obtain this assertion, one needs a stronger
assumption than in Lemma 3.4.

Theorem 3.2. Let a C2 cubic spline S with endpoint conditions (3.17) interpolate
the monotone data {fi}, i = 0, . . . , N . If the following inequalities are valid

µ0c1 ≤ 2c0 ≤ 12f [x0, x1], (3.20)

λNcN−1 ≤ 2cN ≤ 12f [xN−1, xN ], (3.21)

λif [xi−1, xi] ≤ (1 + λi)f [xi, xi+1], i = 1, . . . , N − 1, (3.22)

µif [xi, xi+1] ≤ (1 + µi)f [xi−1, xi], i = 1, . . . , N − 1, (3.23)

then S ′(x) ≥ 0 for all x ∈ [a, b], that is, S is monotone on [a, b].

Proof: It is easy to check that the hypotheses of Lemma 3.4 follow from conditions
(3.20)–(3.23). Thus, mi ≥ 0, i = 0, . . . , N . From (3.8) we conclude that

m0 ≤ c0/2,

mi ≤ ci/2 = 3(λif [xi−1, xi] + µif [xi, xi+1])/2, i = 1, . . . , N − 1,

mN ≤ cN/2.

Taking into account (3.20)–(3.23) we obtain

0 ≤ m0 ≤ 3f [x0, x1],

0 ≤ mi ≤ 3f [xj, xj+1], j = i− 1, i; i = 1, . . . , N − 1,

0 ≤ mN ≤ 3f [xN−1, xN ].

Now it follows from Lemma 3.1 that S ′(x) ≥ 0 for all x ∈ [a, b], that is, the
spline S is monotone on [a, b]. This proves the theorem. ¤
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3.5 Tension Generalized Splines. Conditions of

Existence and Uniqueness

If the cubic spline does not preserve monotonicity or convexity of the data,
we suppose to use generalized tension splines (see H. Späth (1990), Yu. S. Zavyalov
et al. (1980)). These splines include, as special cases, the C2 cubic spline, various
types of rational splines, the exponential spline, the cubic spline with additional
knots, etc. We give explicit formulae for the parameters of generalized splines in
order to secure the preserving of monotonicity and convexity of the data.

Let us associate with a partition ∆ : a = x0 < x1 < · · · < xN = b of the
interval [a, b] a space of continuous functions SG

4 whose restriction to a subinterval
[xi, xi+1], i = 0, . . . , N − 1 is spanned by the system of four linearly indepen-
dent functions {1, x, Φi, Ψi} and where every function in SG

4 has two continuous
derivatives.

Definition 3.2. An interpolating tension generalized spline is a function S ∈ SG
4

such that

(i) for any x ∈ [xi, xi+1], i = 0, . . . , N − 1

S(x) = [fi − Φi(xi)Mi](1− t) + [fi+1 −Ψi(xi+1)Mi+1]t

+Φi(x)Mi + Ψi(x)Mi+1, (3.24)

where t = (x − xi)/hi, Mj = S ′′(xj), j = i, i + 1, and the functions Φi and
Ψi are subject to the constraints

Φ
(r)
i (xi+1) = Ψ

(r)
i (xi) = 0, r = 0, 1, 2; Φ′′

i (xi) = Ψ′′
i (xi+1) = 1.

(ii) S ∈ C2[a, b].

The functions Φi and Ψi depend on the tension parameters which influence
the behaviour of S fundamentally. We call them the defining functions. In practice,
one takes

Φi(x) = ϕi(t)h
2
i = ψ(pi, 1− t)h2

i ,
Ψi(x) = ψi(t)h

2
i = ψ(qi, t)h

2
i , 0 ≤ pi, qi < ∞.

(3.25)

In the limiting case when pi, qi → ∞ we require that limpi→∞ Φi(pi, x) =
0, x ∈ (xi, xi+1], and limqi→∞ Ψi(qi, x) = 0, x ∈ [xi, xi+1) so that the function
S in formula (3.24) turns into a linear function. Additionally, we require that if
pi = qi = 0 for all i we get a conventional cubic spline with ϕi(t) = (1− t)3/6 and
ψi(t) = t3/6.

According to (3.24), we have

S ′(xi) = mi = f [xi, xi+1]− ai
Mi

hi

−Ψi(xi+1)
Mi+1

hi

,

S ′(xi+1) = mi+1 = f [xi, xi+1] + Φi(xi)
Mi

hi

+ bi
Mi+1

hi

,
(3.26)
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where
ai = −Φi(xi)− hiΦ

′
i(xi),

bi = −Ψi(xi+1) + hiΨ
′
i(xi+1).

(3.27)

The continuity condition for S ′ on ∆ and the endpoint relations S ′(a) = f ′0
and S ′(b) = f ′N result in the following system of linear algebraic equations

a0
M0

h0

+ Ψ0(x1)
M1

h0

= f [x0, x1]− f ′0,

Φi−1(xi−1)
Mi−1

hi−1

+

(
bi−1

hi−1

+
ai

hi

)
Mi + Ψi(xi+1)

Mi+1

hi

= δif,

i = 1, . . . , N − 1,

ΦN−1(xN−1)
MN−1

hN−1

+ bN−1
MN

hN−1

= f ′N − f [xN−1, xN ].

(3.28)

Let us find constraints on the defining functions Φi and Ψi which ensure
that the interpolating tension generalized spline S exists and is unique.

Lemma 3.5. If the conditions

0 < Φi(xi) < bi, 0 < Ψi(xi+1) < ai, i = 0, . . . , N − 1, (3.29)

are satisfied, where ai and bi are as defined in (3.27), then the interpolating tension
generalized spline S exists and is unique.

Proof: By virtue of conditions (3.29), the matrix of the system (3.28) is diagonally
dominant:

r0 =
1

h0

[a0 −Ψ0(x1)] > 0,

ri =
1

hi−1

[bi−1 − Φi−1(xi−1)] +
1

hi

[ai −Ψi(xi+1)] > 0, i = 1, . . . , N − 1,

rN =
1

hN−1

[bN−1 − ΦN−1(xN−1)] > 0.

Thus the Hadamard criterion (see Theorem 2.1) implies that the matrix of system
(3.28) is nonsingular and that the interpolating tension generalized spline S exists
and is unique. This proves the lemma. ¤

The conditions of Lemma 3.5 can be weaken. From (3.26) we have

Mi =
hi

Ti

{
[bi + Ψi(xi+1)]f [xi, xi+1]− bimi −Ψi(xi+1)mi+1

}
,

Mi+1 =
hi

Ti

{−[ai + Φi(xi)]f [xi, xi+1] + Φi(xi)mi + aimi+1} ,

Ti = aibi − Φi(xi)Ψi(xi+1).

(3.30)
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The continuity condition for S ′′ on ∆ and the endpoint relations S ′′(a) = f ′′0
and S ′′(b) = f ′′N result in the following system of equations

b0m0 + Ψ0(x1)m1 = [b0 + Ψ0(x1)]f [x0, x1]− T0

h0

f ′′0 ,

Φi−1(xi−1)
hi−1

Ti−1

mi−1 +

(
ai−1

hi−1

Ti−1

+ bi
hi

Ti

)
mi + Ψi(xi+1)

hi

Ti

mi+1

= [ai−1 + Φi−1(xi−1)]
hi−1

Ti−1

f [xi−1, xi] + [bi + Ψi(xi+1)]
hi

Ti

f [xi, xi+1],

i = 1, . . . , N − 1,

ΦN−1(xN−1)mN−1 + aN−1mN =
TN−1

hN−1

f ′′N

+[aN−1 + ΦN−1(xN−1)]f [xN−1, xN ].

(3.31)

Lemma 3.6. If the conditions

0 < Φi(xi) < ai, 0 < Ψi(xi+1) < bi, i = 0, . . . , N − 1, (3.32)

are satisfied, where ai and bi are as defined in (3.27), then the interpolating tension
generalized spline S exists and is unique.

Proof: It follows from the conditions of the lemma that if

0 < Φi(xi)Ψi(xi+1) < aibi, i = 0, . . . , N − 1,

then
Ti = aibi − Φi(xi)Ψi(xi+1) > 0, i = 0, . . . , N − 1.

Therefore, by virtue of the conditions of the lemma, the matrix of system (3.31)
is diagonally dominant:

r0 = b0 −Ψ0(x1) > 0,

ri = [ai−1 − Φi−1(xi−1)]
hi−1

Ti−1

+ [bi −Ψi(xi+1)]
hi

Ti

> 0, i = 1, . . . , N − 1,

rN = aN−1 − ΦN−1(xN−1) > 0.

This ensure (see Theorem 3.1) that the spline S exists and is unique, and proves
the lemma. ¤

In practical examples the conditions of Lemma 3.6 are less restrictive than
those formulated in Lemma 3.5. They are satisfied for the majority of tension
generalized splines used in practice. One can readily verify that these conditions
are fulfilled by all of the defining functions presented below in Section 3.8. This
allows one to construct the splines, that is, to solve the tridiagonal linear system
(3.31), efficiently by a special version of Gaussian elimination that avoids pivoting
(see Chapter 2).
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3.6 Convex Interpolation by Tension

Generalized Splines

Let a tension generalized spline S given by (3.24) interpolate the convex
data {fi}, i = 0, N, and satisfy the endpoint conditions S ′′(xi) = f ′′i , i = 0, . . . , N ,
where f ′′0 ≥ 0 and f ′′N ≥ 0. The system (3.28) for values of the second derivative
of the spline Mi = S ′′(xi), i = 0, . . . , N , can be rewritten in the form

M0 = f ′′0 ,

aiMi−1 + biMi + ciMi+1 = di, i = 1, . . . , N − 1, (3.33)

MN = f ′′N ,

where

ai =
Φi−1(xi−1)

hi−1

, bi =
bi−1

hi−1

+
ai

hi

, ci =
Ψi(xi+1)

hi

, di = δif.

Theorem 3.3. Let a tension generalized spline S interpolate the convex data
{fi}, i = 0, . . . , N , and satisfy the endpoint conditions S ′′(xi) = f ′′i , i = 0, N .
Suppose that the defining functions Φi and Ψi in (3.24) given by (3.25) are con-
vex on [xi, xi+1], i = 0, . . . , N − 1, that is, Φ′′

i (x) ≥ 0 and Ψ′′
i (x) ≥ 0 for all

x ∈ [xi, xi+1], and comply with constraints (3.29). If the righthand elements of
system (3.33) satisfy the following inequalities

f ′′0 ≥ 0, f ′′N ≥ 0, di − aidi−1/bi−1 − cidi+1/bi+1 ≥ 0, i = 1, . . . , N − 1, (3.34)

where b0 = bN = 1, d0 = f ′′0 , dN = f ′′N , then S ′′(x) ≥ 0 for all x ∈ [a, b], that is, S
is convex on [a, b].

Proof: It is easy to verify that under constraints (3.29) system (3.33) satisfies
the conditions of Lemma 3.3. Therefore, by the restrictions (3.34) its solution
is nonnegative: Mi ≥ 0, i = 0, . . . , N . Using formula (3.24) on each interval
[xi, xi+1], i = 0, . . . , N − 1, we have

S ′′(x) = Φ′′
i (x)Mi + Ψ′′

i (x)Mi+1,

where by assumption Φ′′
i (x) ≥ 0 and Ψ′′

i (x) ≥ 0. Thus S ′′(x) ≥ 0 for all x ∈ [a, b].
This proves the theorem. ¤

3.7 Monotone Interpolation by Tension

Generalized Splines

Let a tension generalized spline S interpolate the monotone data {fi}, i =
0, . . . , N , and satisfy the endpoint conditions S ′(xi) = f ′i , i = 0, N , with f ′0 ≥ 0
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and f ′N ≥ 0. The system (3.31) for values of the first derivative of the spline
mi = S ′(xi), i = 0, . . . , N , can be rewritten in the form

m0 = f ′0,

ãimi−1 + b̃imi + c̃imi+1 = d̃i, i = 1, . . . , N − 1, (3.35)

mN = f ′N ,

where

ãi = Φi−1(xi−1)
hi−1

Ti−1

, b̃i = ai−1
hi−1

Ti−1

+ bi
hi

Ti

, c̃i = Ψi(xi+1)
hi

Ti

,

d̃i = −h2
i−1

Ti−1

Φ′
i−1(xi−1)f [xi−1, xi] +

h2
i

Ti

Ψ′
i(xi+1)f [xi, xi+1].

Lemma 3.7. Let the constraints (3.32) be fulfilled. If the righthand elements of
system (3.35) satisfy the following inequalities

f ′0 ≥ 0, f ′N ≥ 0, d̃i − ãid̃i−1/b̃i−1 − c̃id̃i+1/b̃i+1 ≥ 0, i = 1, . . . , N − 1, (3.36)

where b̃0 = b̃N = 1, d̃0 = f ′0, d̃N = f ′N , then mi ≥ 0, i = 0, . . . , N .

Proof: It is easy to verify that under constraints (3.32) system (3.35) satisfies
the conditions of Lemma 3.3. Therefore, by the restrictions (3.36) its solution is
nonnegative: mi ≥ 0, i = 0, . . . , N . This proves the lemma. ¤

Theorem 3.4. Let a tension generalized spline S interpolate the monotone data
{fi}, i = 0, . . . , N , and satisfy the endpoint conditions S ′(xi) = f ′i , i = 0, N ,
where f ′0 ≥ 0 and f ′N ≥ 0. Suppose the restrictions (3.32) and (3.36) are fulfilled.
If the defining functions Φi and Ψi in (3.24) given by (3.25) are convex on [xi, xi+1]
and

mi ≤ −hiΦ
′
i(xi)

Φi(xi)
f [xi, xi+1]τ, mi+1 ≤ hiΨ

′
i(xi+1)

Ψi(xi+1)
f [xi, xi+1](1− τ), 0 ≤ τ ≤ 1,

i = 0, . . . , N − 1, (3.37)

then S ′(x) ≥ 0 for all x ∈ [a, b], that is, S is monotone on [a, b].

Proof: By Lemma 3.7 one has mi ≥ 0, i = 0, . . . , N . Differentiating (3.24) and
using (3.26) gives us

S ′(x) = s(x,mi,mi+1) =
hi

Ti

[hiEi(x)f [xi, xi+1] + Fi(x)mi + Gi(x)mi+1],

where

Ei(x) = Ψ′
i(xi+1)Φ

′
i(x) + Φ′

i(xi)Ψ
′(x)− Φ′

i(xi)Ψ
′
i(xi+1),

Fi(x) = −biΦ
′
i(x) + Φi(xi)Ψ

′
i(x)− Φi(xi)Ψ

′
i(xi+1),

Gi(x) = −Ψi(xi+1)Φ
′
i(x) + aiΨ

′
i(x) + Φ′

i(xi)Ψi(xi+1).
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The function s(x,mi,mi+1) is linear in variables mi and mi+1. Therefore,
for proving the inequality S ′(x) ≥ 0 for all x ∈ [xi, xi+1] under restrictions
(3.38) it is sufficient to verify the inequalities s(x, 0, 0) ≥ 0, s(x, αi, 0) ≥
0, s(x, 0, βi) ≥ 0 for all x ∈ [xi, xi+1], where αi = −hiΦ

′
i(xi)/Φi(xi)f [xi, xi+1]

and βi = hiΨ
′
i(xi+1)/Ψi(xi+1)f [xi, xi+1]. This can be done immediately by using

properties of functions Φi and Ψi; hence, the desired result follows. This proves
the theorem. ¤

3.8 Examples of Defining Functions

As was shown above the analysis of the conditions which provide monotone
and convex interpolation is substantially based on the diagonal dominance of the
system (3.28) and (3.31) for unknowns Mi and mi respectively. The presence
of diagonal dominance in these systems depends on the choice of the defining
functions. Let us list the defining functions Φi and Ψi in (3.25) which are in most
common use. In the examples given below they depend on the tension parameters:

Φi(x) = ϕi(t)h
2
i = ψ(pi, 1− t)h2

i ,

Ψi(x) = ψi(t)h
2
i = ϕ(qi, t),

where t = (x− xi)/hi and 0 ≤ pi, qi < ∞.

(1) Rational splines with

ψi(t) =
t3Qi

1 + qi(1− t) + Ai(1− t)2
, Q−1

i = 2(3 + 3qi + q2
i − Ai),

where
(a) Ai = 0.
(b) Ai = q2

i .
(c) Ai = qi(3 + qi).

In the case Ai = 0 one has standard rational splines with linear denominator
(H. Späth (1990)). The conditions of Lemma 3.6 are satisfied for −1 < pi, qi <
∞, i = 0, . . . , N−1, and thus the interpolation rational spline exists and is unique.
System (3.28) does not have a diagonal dominance. However Lemma 3.5 holds, if,
for example, we demand additionally that pi = qi, i = 0, . . . , N − 1.

If Ai = q2
i or Ai = qi(3 + qi) then both systems (3.28) and (3.31) have

diagonal dominance. This choice of defining functions was given in V. L. Mirosh-
nichenko (1997).

One can easily show that in all three cases (a)–(c)

−hiΦ
′
i(xi)

Φi(xi)
= 3 + pi,

hiΨ
′
i(xi+1)

Ψi(xi+1)
= 3 + qi (3.38)

and in order to provide convexity and/or monotonicity of the interpolation spline
one can choose the tension parameters pi, qi as in B. I. Kvasov (2000).
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(2) Rational splines with

ψi(t) =
t3Qi

1 + qit(1− t) + Ait2(1− t)2
, Q−1

i = 2[(1 + qi)(3 + qi)− Ai],

where
(a) Ai = 0.
(b) Ai = qi(1 + qi).
(c) Ai = qi(4 + qi).

The case Ai = 0 corresponds to rational splines with quadratic denominator
(H. Späth (1990)). Here the conditions for Lemmas 3.5 and 3.6 to hold are the
same as in (1) for Ai = 0.

If Ai = qi(1 + qi) or Ai = qi(4 + qi) then both systems (3.28) and (3.31)
have diagonal dominance and coincide with the corresponding system in (1) for (b)
and (c). This choice of defining functions was considered in V. L. Miroshnichenko
(1997).

In all three cases (a)–(c) the equalities (3.38) are valid as well.

(3) Exponential splines

ψi(t) =
t3exp(−qi(1− t)− Ai(1− t)2)

6 + 6qi + q2
i − 2Ai

,

where
(a) Ai = 0.
(b) Ai = q2

i /2.
(c) Ai = qi(3 + qi/2).

The case Ai = 0 was considered in H. Späth (1974, 1990). As above, only
system (3.31) has diagonal dominance. Setting pi = qi for all i one can provide
diagonal dominance for system (3.28) also.

If Ai = q2
i /2 or Ai = qi(3 + qi/2) then both systems (3.28) and (3.31) have

diagonal dominance. In order to choose tension parameters pi, qi one can again
apply formulae (3.28).

(4) Hyperbolic splines (see P. E. Koch and T. Lyche (1991) and numerous
references therein):

ψi(t) =
sinh qit− qit

q2
i sinh(qi)

.

(5) Splines with additional knots (S. Pruess (1979)):

ψi(t) =
1 + qi

6

(
t− qi

1 + qi

)3

+

.

If we take αi = (1 + pi)
−1 and βi = 1 − (1 + qi)

−1, then the points xi1 =
xi+αihi and xi2 = xi+βihi fix the positions of two additional knots of the spline on
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the interval [xi, xi+1]. By moving them, we can go from a cubic spline to piecewise
linear interpolations (S. Pruess (1979)).

One has here

−hiΦ
′
i(xi)

Φi(xi)
= 3(1 + pi),

hiΨ
′
i(xi+1)

Ψi(xi+1)
= 3(1 + qi).

(6) Splines of variable order (R. W. Soanes Jr. (1976)):

ψi(t) =
tki

ki(ki − 1)
, ki = qi + 3.

The computational burden involved in using splines of variable order can be
avoided by considering only integer values for the parameters ki (and li = pi + 3).

In cases (4)–(6) the condition for Lemmas 3.5 and 3.6 to hold are the same
as in (1)–(3) for Ai = 0. In particular, Lemma 3.5 holds, it, for example, we
demand additionally that pi = qi, i = 0, . . . , N − 1.

3.9 Graphical Examples

We tested the shape preserving interpolation algorithms described above
on several examples. In order to construct the shape preserving function the
hyperbolic splines due to D. G. Schweikert (1966) were used, which correspond to
the choice in (3.25)

ψi(t) =
sinh qit− qit

q2
i sinh(qi)

The data for the first example was taken from Yu. S. Zavyalov et al. (1980).
We consider interpolating the function

f(x) = 1− exp(100x)− 1

exp(100)− 1
, x ∈ [0, 1]

on the uniform mesh: xi = i/10, i = 0, . . . , 10. In Figure. 3.1 (and in Figures 3.2
– 3.5) the dashed and solid lines show the graphs of the ordinary cubic spline S3

of the C2 class and the shape preserving hyperbolic spline S, respectively. In both
cases the boundary conditions S ′(x0) = 0, S ′(x10) = −100 are used. The spline S3

gives unacceptable oscillations. It is possible to decrease their amplitude by either
introducing a nonuniform mesh that concentrates the knots in the domain having
large gradient, or by the choosing an appropriate parameterization. Moreover, in
this example the maximal deviation of the tension hyperbolic spline S from the
interpolated function does not exceed 0.078 and S exhibits the same monotonicity
and convexity as f .

In a number of papers devoted to shape preserving interpolation (see, for
example, R. Delbourgo and J. A. Gregory (1985), S. E. Eisenstat et al. (1985)) the
algorithms are tested by data taken from H. Akima (1970) and given in Table 3.1.
Figure 3.2 shows the graphs of the splines S3 and S for this data. The latter has the
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inflection point on [x8, x9]. In comparison with the profiles given in R. Delbourgo
and J. A. Gregory (1985), J. A. Gregory (1984), in addition to retaining the
monotonicity and convexity properties of the initial data the spline S approximates
S3 better.

Table 3.1: Data for Figure 3.2.

i 0 1 2 3 4 5 6 7 8 9 10
xi 0 2 3 5 6 8 9 11 12 14 15
fi 10 10 10 10 10 10 10.5 15 56 60 85

In J. A. Gregory (1984) the function f(x) = 2 −
√

x(2− x), 0 ≤ x ≤ 2,
that defines the semicircle is considered. This function is interpolated on the
mesh uniform in x (Fig. 3.3) and along the arc length (Fig. 3.4). In both cases
13 interpolation points and the boundary conditions S ′(x0) = −50, S ′(x12) =
50 were used. We see that the transition to the mesh with constant step along
the arc length enables us to reduce the oscillations of the spline S3 but it does
not remove them. The hyperbolic spline S again retains the monotonicity and
convexity properties of the initial data.

Figure 3.5 illustrates the interpolation of the data taken from H. Späth
(1990) (Table 3.2). In version of the algorithm we used, the conditions δN−1f = 0,
δN−2f 6= 0 and f [xN−3, xN−2]f [xN−2, xN−1] > 0 imply the linearity of the spline
on the interval [xN−2, xN ].

Table 3.2: Data for Figure 3.5.

i 0 1 2 3 4 5 6 7 8
xi 0 2.0 2.5 3.5 5.5 6.0 7 8.5 10
fi 2 2.5 4.5 5.0 4.5 1.5 1 0.5 0
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Figure 3.1: Exponential boundary layer type data (Yu. S. Zavyalov et al. (1980)).
Profiles of interpolation and shape preserving splines.
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Figure 3.2: Data obtained by H. Akima (1970). Typical behaviour of interpolation
and shape preserving splines on given fast- and slow-change sections
of data.
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Figure 3.3: Interpolation of a semicircle by the data uniform in the x-coordinate.

Figure 3.4: Interpolation of a semicircle by the data uniform in the arc length.
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Figure 3.5: Data obtained by H. Späth (1990). The shape preserving spline is not
sensitive to these outliers and automatically satisfies the boundary
conditions.



Chapter IV

Finite-Difference Method for 1-D
Shape Preserving Interpolation

In this chapter, tension hyperbolic splines are defined as solutions of dif-
ferential multipoint boundary value problems by considering the 1-D case. For
computations, we use difference approximations of such problems. This permits
us to avoid calculations of hyperbolic functions, however, the extension of a mesh
solution will be a discrete tension hyperbolic spline. We consider the basic com-
putational aspects of this approach and illustrate its main advantages.

4.1 Problem Formulation. Finite Difference

Approximation

Let the data
(xi, fi), i = 0, . . . , N + 1, (4.1)

be given, where: a = x0 < x1 < · · · < xN+1 = b. Let us put

hi = xi+1 − xi, i = 0, . . . , N.

An interpolating tension hyperbolic spline S with a set of tension parameters
{pi ≥ 0 | i = 0, . . . , N} is a solution of the differential multipoint boundary value
problem (DMBVP for short)

d4S

dx4
−

(
pi

hi

)2
d2S

dx2
= 0, x ∈ (xi, xi+1), i = 0, . . . , N, (4.2)

S ∈ C2[a, b], (4.3)

with the interpolation conditions

S(xi) = fi, i = 0, . . . , N + 1 (4.4)

and the end constraints

S ′′(a) = f ′′0 and S ′′(b) = f ′′N+1. (4.5)

For practical purposes it is often more interesting to know the values of the
solution over a given tabulation of [a, b] than its global analytic expression. In
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this paper we do not consider the tabulation of S directly but we study a natural
discretization of the previous problem. We prove that the discretized problem has
a unique solution, called mesh solution, and we study its properties. Of course,
it turns out that the mesh solution is not a tabulation of S but can be extended
on [a, b] to a function u with properties very similar to those of S and which
approaches S as the discretization step goes to zero. Due to these properties we
will refer to u as a discrete hyperbolic tension spline interpolation of the data (4.1).

Let us assume (as a first step) that each hi is an integer multiple of the same
tabulation step, τ . Putting ni = hi/τ , we look for a mesh solution ū = {ui,j | j =
−1, . . . , ni + 1, i = 0, . . . , N}, satisfying the difference equations:

[
Λ2 −

(pi

hi

)2

Λ
]
ui,j = 0, j = 1, . . . , ni − 1, i = 0, . . . , N, (4.6)

where

Λui,j =
ui,j−1 − 2ui,j + ui,j+1

τ 2
.

The smoothness condition (4.3) changes to the equations

ui−1,ni−1
= ui,0,

ui−1,ni−1−1 − ui−1,ni−1+1

2τ
=

ui,1 − ui,−1

2τ
, i = 1, . . . , N, (4.7)

Λui−1,ni−1
= Λui,0,

which are equivalent to

ui−1,ni−1+j = ui,j, j = −1, 0, 1. (4.8)

The interpolation conditions (4.4) take the form

ui,0 = fi, ui,ni
= fi+1, i = 0, . . . , N, (4.9)

and for the end conditions (4.5) we have

Λu0,0 = f ′′0 and ΛuN,nN
= f ′′N+1. (4.10)

4.2 An Algorithm for Solving the System

of Difference Equations

The equalities (4.8) and (4.10) permit to eliminate the redundant unknowns
in the difference equations (4.6). The values u0,−1 and uN,nN+1 are not explicitly
computed but are introduced into the formulation to accommodate the two nec-
essary end conditions. Putting m =

∑N
i=0 ni + 3, the previous equations can be

collected in the m×m linear system

Aû = b, (4.11)
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where

A =




1 −2 1 0
0 1 0 0
1 a0 b0 a0 1

1 a0 b0 a0 1
. . .

1 a0 b0 a0 1
0 0 1 0 0

1 a1 b1 a1 1
1 a1 b1 a1 1

. . .
. . .

. . .
1 aN bN aN 1

1 aN bN aN 1
0 0 1 0
0 1 −2 1




,

ai = −(4 + ωi), bi = 6 + 2ωi, ωi =
(piτ

hi

)2

, i = 0, . . . , N,

and

û = (u0,−1, u00, u01, . . . , u0n0−1, u10, . . . , u20, . . . , uN0, . . . , uNnN
, uNnN+1)

T ,

b = (τ 2f ′′0 , f0, 0, . . . , 0, f1, . . . , f2, . . . , fN , . . . , fN+1, τ
2f ′′N+1)

T .

In the previous system the unknowns ui,0, i = 0, . . . , N + 1, can be immedi-
ately determined from the interpolation conditions while the expression of u0,−1

(uN,nN+1) can be obtained from the first (last) equation and substituted in the
third (third to last) equation. Then in practice we deal with the m∗ ×m∗ linear
system (m∗ = m−N − 4)

A∗u∗ = b∗, (4.12)

where

A∗ =




b0 − 1 a0 1
a0 b0 a0 1
1 a0 b0 a0 1

. . .
1 a0 b0 a0

1 a0 b0 1
1 b1 a1 1

a1 b1 a1 1
. . .

1 aN bN aN 1
1 aN bN aN

1 aN bN − 1




,
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and u∗, b∗ are correspondingly deduced from û and b.
Following M. A. Malcolm (1977) we observe that

A∗ = C∗ + D∗,

where both C∗ and D∗ are symmetric block diagonal matrices; to be more specific,

C∗ =




C0

C1

C2

.
.

.
CN




,

Ci =




bi − 1 ai 1
ai bi ai 1
1 ai bi ai 1

. . .
. . .

1 ai bi ai 1
1 ai bi ai

1 ai bi − 1




, (4.13)

D∗ =




0 0
0 0

. . .

0
1 1
1 1

0
. . .

0
1 1
1 1

0
. . .

0
0 0
0 0




Since the eigenvalues of D∗ are 0 and 2, from a corollary of the Courant-Fisher
theorem (see G. H. Golub and C. F. Van Loan (1996)) we have that the eigenvalues
of A∗, λk(A

∗), satisfy the following inequalities

λk(A
∗) ≥ λk(C

∗), k = 1, . . . , m∗.
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The eigenvalues of C∗ are the collection of the eigenvalues of Ci and we have

Ci = B2
i − ωiBi,

where Bi is the (ni − 1)× (ni − 1) tridiagonal matrix

Bi =




−2 1
1 −2 1

1 −2 1
. . .
1 −2 1

1 −2




.

Because the eigenvalues of Bi are well known (see also M. A. Malcolm (1977)),

λj(Bi) = −2
(
1− cos

jπ

ni

)
, j = 1, . . . , ni − 1,

the eigenvalues of Ci are

λj(Ci) = 4
(
1− cos

jπ

ni

)2

+ 2ωi

(
1− cos

jπ

ni

)
.

It follows that

λk(A
∗) ≥ min

i,j
λj(Ci) = min

i

[
4
(
1− cos

τπ

hi

)2

+ 2ωi

(
1− cos

τπ

hi

)]
.

Hence, A∗ is a positive matrix and the linear system (4.12) (and (4.11) as well)
has unique solution.

In addition, from Gershgorin’s theorem, λk(A
∗) ≤ maxi[16 + 4ωi], so that

for the condition number, µ2(A
∗), with respect to the 2-norm of A∗, we have the

following upper bound not depending on the number of data points, N + 2:

µ2(A
∗) ≤ maxi

[
16 + 4( τpi

hi
)2

]

mini

[
4(1− cos τπ

hi
)2 + 2( τpi

hi
)2(1− cos τπ

hi
)
]

≤ maxi

[
16 + 4( τpi

hi
)2

]

mini(
τ
hi

)4[π4 + (πpi)2]
.

(4.14)

We remark that, for pi = 0, i = 0, . . . , N, we recover the results presented
in M. A. Malcolm (1977).

From the structure of A∗, the linear system (4.12) can be solved efficiently
using a direct method for band matrices. Since A∗ is positive band matrix of
band width 2, the classical Cholesky factorization , A∗ = LLT , provides a lower
triangular band matrix L of band 2 and it can be performed in O(m) operations,
G. H. Golub and C. F. Van Loan (1996).

Here we have presented the analysis for the linear system obtained consid-
ering, as end conditions, given values for the second divided differences at the end
knots. A similar analysis can be performed for different types of end conditions.
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For example, in practical applications, it seems sometimes more convenient to con-
sider given values of the first divided differences at x0, xN+1. Even in this case,
following the previous strategy, it is possible to prove the existence and uniqueness
of the solution and to find a bound for the condition number of the matrix of the
linear system exactly as in (4.14).

4.3 System Splitting and Mesh Solution

Extension

In order to solve the DMBVP (4.2)–(4.5) numerically, we consider the sys-
tem of difference equations (4.6) completed with the smoothness conditions (4.7)
(or (4.8)), interpolation conditions (4.9) and end conditions (4.10).

With the notation

Mij = Λuij, j = 0, . . . , ni, i = 0, . . . , N, (4.15)

on the interval [xi, xi+1] the system (4.6) takes the form

Mi0 = Mi,
Mij−1 − 2Mij + Mij+1

τ 2
−

(pi

hi

)2

Mij = 0, j = 1, . . . , ni − 1, (4.16)

Mi,ni
= Mi+1,

where Mi and Mi+1 are prescribed numbers. The system (4.16) has a unique
solution, which can be represented as follows

Mij = mi(xij), xij = xi + jτ, j = 0, . . . , ni

with

mi(x) = Mi
sinh ki(1− t)

sinh(ki)
+ Mi+1

sinh kit

sinh(ki)
, t =

x− xi

hi

,

and where the parameters ki are the solutions of the transcendental equations

2

τ̂i

sinh
kiτ̂i

2
= pi (pi ≥ 0, τ̂i =

τ

hi

).

From the equation (4.15) and the interpolation conditions (4.9) we have

ui0 = fi,
uij−1 − 2uij + uij+1

τ 2
= Mij, j = 1, . . . , ni − 1, (4.17)

ui,ni
= fi+1.

Let us consider the function

ui(x) = fi(1− t) + fi+1t + ϕ̂i(1− t)h2
i Mi + ϕ̂i(t)h

2
i Mi+1, (4.18)
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where

ϕ̂i(t) =
sinh(kit)− t sinh(ki)

p2
i sinh(ki)

.

The function ui satisfies to the conditions

ui(xj) = fj, Λui(xj) = Mj, j = i, i + 1,

where

Λui(x) =
ui(x− τ)− 2ui(x) + ui(x + τ)

τ 2
.

The mesh restriction of the function ui gives us the solution of the system (4.17)
with uij = ui(xij), j = 0, . . . , ni. The smoothness conditions (4.7) can be rewritten
as

ui−1(xi) = ui(xi),

ui−1(xi + τ)− ui−1(xi − τ)

2τ
=

ui(xi + τ)− ui(xi − τ)

2τ
, (4.19)

Λui−1(xi) = Λui(xi),

which are equivalent to

ui−1(xi + jτ) = ui(xi + jτ), j = −1, 0, 1.

Using (4.18) and the second condition (4.19) we obtain a linear system with 3-
diagonal matrix

M0 = f ′′0 ,

αi−1hi−1Mi−1 + (βi−1hi−1 + βihi)Mi + αihiMi+1 = di, i = 1, . . . , N, (4.20)

MN+1 = f ′′N+1,

where

di =
fi+1 − fi

hi

− fi − fi−1

hi−1

,

αi = − ϕ̂i(τ̂i)− ϕ̂i(−τ̂i)

2τ̂i

= −sinh(kiτ̂i)− τ̂i sinh(ki)

p2
i τ̂i sinh(ki)

,

βi =
ϕ̂i(1 + τ̂i)− ϕ̂i(1− τ̂i)

2τ̂i

=
cosh(ki) sinh(kiτ̂i)− τ̂i sinh(ki)

p2
i τ̂i sinh(ki)

.

Using an expansion of the hyperbolic functions in the above expressions as power
series we obtain

βi > 2αi > 0, i = 0, . . . , N, for all τ > 0, pi > 0.

Therefore the system (4.20) is diagonal dominant and has a unique solution.
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We can now conclude that the function u which coincides with ui for
x ∈ [xi, xi+1], i = 0, 1, . . . , N, is a discrete tension interpolation spline. A mesh
restriction of the spline u gives us a solution of the system (4.6). The spline u can
also be easy recovered from the solution of the system (4.6).

In addition we observe that

lim
pi→0

αi =
1

6

[
1−

( τ

hi

)2]
, lim

pi→0
βi =

1

6

[
2 +

( τ

hi

)2]
, (4.21)

lim
pi→0

ϕ̂i(t) =
t(t2 − 1)

6
,

hence we recover the result of M. A. Malcolm’s paper (1977) for discrete cubics.
Instead of looks for a direct solution of the system (4.6) we recommend the

following algorithm.

Step 1. Solve 3-diagonal system (4.20) for Mi, i = 1, . . . , N .

Step 2. Solve N +1 3-diagonal systems (4.16) for Mij, j = 1, . . . , ni−1, i = 0, . . . , N ,

Step 3. Solve N +1 3-diagonal systems (4.17) for uij, j = 1, . . . , ni−1, i = 0, . . . , N.

In this algorithm, hyperbolic functions need to be computed in step 1 only,
but not in steps 2 and 3. Furthermore, the solution of any system (4.16) or (4.17)
requires 8m arithmetic operations, namely, 3m additions, 3m multiplications, and
2m divisions, Yu. S. Zavyalov et al. (1980), and is thus substantially cheaper than
direct computation by formula (4.18).

Steps 2 and 3 can be replaced by a direct splitting of the system (4.11) into
N + 1 systems with 5-diagonal matrices

Ciui = ci, i = 0, . . . , N, (4.22)

where the (ni − 1)× (ni − 1) matrix Ci = B2
i − ωiBi and Bi has the form (4.13),

ui = (ui1, ui2, . . . , ui,ni−1)
T ,

ci =
(
(2 + ωi)fi −Mi,−fi, 0, . . . , 0,−fi+1, (2 + ωi)fi+1 −Mi+1

)T
.

The calculations for solving the systems (4.16) and (4.17) or (4.22) can be
performed by using a multi-processing parallel computer system. If ni = n for all
i, we can first store a triangular factorization of the matrices of the systems and
then use parallel computations.

4.4 Error Estimates

In this section we bound the distance between a discrete tension hyperbolic
spline and the corresponding continuous one interpolating the same set of data
and having the same end conditions. For the sake of simplicity we only detail the
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case where second divided differences (derivatives) are prescribed at x0 and xN+1.
Similar results hold for other standard end conditions.

It has been shown in the previous section how the mesh solution obtained
from system (4.11) can be extended to a continuous function u in the interval [a, b]
considering the expression (4.18) in each subinterval [xi, xi+1] where the constants
Mi are solution of the system (4.6).

On the other hand, as mentioned in section 4.2, the classical smooth tension
hyperbolic spline interpolating the data (4.1) is a function S, satisfying (4.2)–(4.5).
It is well known that, setting

M̃i :=
d2S

dx2
(xi), i = 0, . . . , N + 1,

we can express Si(x) := S(x)|[xi,xi+1] as follows

Si(x) = fi(1− t) + fi+1t + ϕ̃i(1− t)h2
i M̃i + ϕ̃i(t)h

2
i M̃i+1, (4.23)

where

ϕ̃i(t) =
sinh(pit)− t sinh(pi)

p2
i sinh(pi)

,

and the constants M̃i are solutions of the linear system

M̃0 = f ′′0 ,

α̃i−1hi−1M̃i−1 + (β̃i−1hi−1 + β̃ihi)M̃i + α̃ihiM̃i+1 = di, i = 1, . . . , N, (4.24)

M̃N+1 = f ′′N+1,

where

α̃i = −ϕ̃′i(0) =
sinh(pi)− pi

p2
i sinh(pi)

,

β̃i = ϕ̃′i(1) =
pi cosh(pi)− sinh(pi)

p2
i sinh(pi)

.

It is easy to verify that the 3-diagonal linear system (4.24) is diagonal dominant,
more precisely

β̃i ≥ 2α̃i > 0, ∀pi ≥ 0

and that, in the limit case τ → 0, systems (4.20) and (4.24) coincide since

lim
τ→0

αi = α̃i, lim
τ→0

βi = β̃i.

Eliminating in (4.20) and (4.24) the unknowns M0, MN+1, and M̃0, M̃N+1 respec-
tively we obtain two systems of N equations: their matrices will be denoted by T
and T̃ respectively. Then (4.20) reduces to

TM = d, d = (d1 − α0h0f
′′
0 , d2, . . . , dN − αNhNf ′′N+1)

T ,
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while (4.24) reduces to

T̃ M̃ = d̃, d̃ = (d1 − α̃0h0f
′′
0 , d2, . . . , dN − α̃NhNf ′′N+1)

T .

We have
T̃ = T + δT,

where

δT = τ 2




b0
h0

+ b1
h1

a1

h1
a1

h1

b1
h1

+ b2
h2

a2

h2

. . .
ai−1

hi−1

bi−1

hi−1
+ bi

hi

ai

hi

. . .
aN−1

hN−1

bN−1

hN−1
+ bN

hN




,

ai =
1

τ̂ 2
i pi

[cosh kiτ̂i

2

sinh(ki)
− 1

sinh(pi)

]
,

bi = − 1

τ̂ 2
i pi

[cosh(ki) cosh kiτ̂i

2

sinh(ki)
− cosh(pi)

sinh(pi)

]
.

After some computations we obtain that ai, bi are continuous bounded functions
of τ , τ ≥ 0, more precisely

|ai|, |bi| ≤ Ai(pi) := lim
τ̂i→0

|bi| = 3pi cosh(pi) sinh(pi) + p2
i

24 sinh2(pi)
. (4.25)

Then, putting M̃ = M + δM , we can rewrite the linear system obtained reducing
(4.24) as

(T + δT )(M + δM) = d̃,

that is, following M. A. Malcolm (1977) and T. Lyche (1976)

−δM = (T−1 − T̃−1)d + T̃−1(d− d̃)

= T̃−1(T̃ − T )T−1d + T̃−1(d− d̃)

= −T̃−1δTM + T̃−1(d− d̃)

so that
‖δM‖∞ ≤ ‖δM‖2 ≤ ‖T̃−1‖2‖δT‖2‖M‖2 + ‖T̃−1(d− d̃)‖2.

Since, from Gershgorin’s theorem,

‖δT‖2 ≤ τ 24 max
i=0,...,N

Ai

hi

,

‖T−1‖2 ≤ max
i=1,...,N

1

(βi − αi)hi + (βi−1 − αi−1)hi−1

,

‖T̃−1‖2 ≤ max
i=1,...,N

1

(β̃i − α̃i)hi + (β̃i−1 − α̃i−1)hi−1

,
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we have

‖M‖2 ≤ ‖d‖2 max
i=1,...,N

1

(βi − αi)hi + (βi−1 − αi−1)hi−1

.

In addition, since from (4.25)

‖d− d̃‖2 ≤ τ 2 max
i=0,N

Ai

hi

‖g‖2, g = (f ′′0 , f ′′N+1)
T

we obtain

‖T̃−1(d− d̃)‖2 ≤ τ 2‖T̃−1‖2 max
i=0,N

Ai

hi

‖g‖2.

Therefore

‖M̃ −M‖2 ≤ τ 2 max
i

1

(β̃i − α̃i)hi + (β̃i−1 − α̃i−1)hi−1

×
[
4 max

i=0,...,N

Ai

hi

‖M‖2 + max
i=0,N

Ai

hi

‖g‖2

]
.

(4.26)

Then from the expressions of Si and ui, see (4.23) and (4.18), we have

‖Si − ui‖ := max
x∈[xi,xi+1]

|S̃i(x)− ui(x)|

≤ h2
i max

t∈[0,1]

∣∣∣M̃iϕ̃i(1− t)−Miϕ̂i(1− t) + M̃i+1ϕ̃i(t)−Mi+1ϕ̂i(t)
∣∣∣.

Then putting

Bi := 2 max
t∈[0,1]

|ϕ̃i(t)|, Ci := 2 max
t∈[0,1]

∣∣∣∣
ϕ̃i(t)− ϕ̂i(t)

τ̂ 2
i

∣∣∣∣ ,

we have that Ci is a continuous bounded function of τ , τ ≥ 0 and

‖Si − ui‖ ≤ h2
i

[
‖δM‖2Bi + ‖M‖2Ci

τ 2

h2
i

]
,

that is from (4.26)

‖S̃i − ui‖ ≤ h2
i τ

2
{

max
i=1,...,N

Bi

(β̃i − α̃i)hi + (β̃i−1 − α̃i−1)hi−1

×
[

max
i=0,...,N

Ai

hi

4‖M‖2 + max
i=0,N

Ai

hi

‖g‖2

]
+
Ci

h2
i

‖M‖2

}
.

(4.27)

From (4.27), for each fixed sequences of the values p0, . . . , pN , we have a
second order convergence of the discrete tension hyperbolic splines to the corre-
sponding continuous one. The results agree with the order of approximation of
the discretization which we have used for the first, second and fourth derivatives.
For a better understanding of the upper bound (4.27) let us detail the behaviour
of Bi, Ci for different values of the tension parameter pi. We have

Bi =
2

p2
i

max
t∈[0,1]

∣∣∣sinh(pit)− t sinh(pi)

sinh(pi)

∣∣∣ ≤ 1

p2
i

,
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and using an expansion of the hyperbolic functions in the previous expression as
power series, as pi approaches 0

Bi ≤ 2

9
√

3
. (4.28)

Concerning Ci, we have:

lim
τ→0

Ci =
pi

12 sinh2(pi)
max
t∈[0,1]

| cosh(pi) sinh(tpi)− t sinh(pi) cosh(tpi)|
=: Di ≤ pi,

lim
pi→∞

Dip
q
i = 0, ∀ q ≥ 0,

and from the series expansion of the hyperbolic functions, as pi approaches 0

Ci ≤ p2
i

54
√

3
. (4.29)

Finally let us consider in detail the limit case pi = 0, i = 0, . . . , N . From (4.21),
(4.25), (4.28), (4.29) we obtain

lim
pi→0

Ai =
1

6
, lim

pi→0
(β̃i − α̃i) =

1

6
, lim

pi→0
Bi ≤ 1, lim

pi→0
Ci = 0,

so that from (4.27)

‖Si − ui‖ ≤ h2
i τ

2 max
i=1,...,N

1

hi + hi−1

[
4 max

i=0,...,N

1

hi

‖M‖2 + max
i=0,N

1

hi

‖g‖2

]
,

and we recover, with some improvements, the corresponding result of M. A. Mal-
colm (1977).

Finally, we observe that (4.27) can be used to estimate the rate of conver-
gence of a discrete tension hyperbolic splines towards a function generating the
interpolation points as maxi hi → 0. To do that it suffices to combine, via triangle
inequality, (4.27) with the results of M. Marušić and M. Rogina (1995) where the
convergence of a continuous tension hyperbolic spline to a function generating the
interpolation points is studied.

4.5 Practical Aspects and Generalizations

The aim of this section is to investigate the practical aspects related to our
discrete spline interpolants and to propose a possible generalization for nonuniform
subdivisions of the main mesh.

The first problem we want to address is the numerical evaluation of the mesh
function ū defined in section 4.2. The simplest approach is obviously given by a
direct computation, using the linear system (4.11). With this choice, we have a
symmetric, pentadiagonal, positive definite system and therefore, can use special-
ized algorithms, with a computational cost of 17m arithmetic operations, namely,
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7m additions, 7m multiplications, and 3m divisions H. Späth (1990), where m is
the number of unknowns. This is substantially cheaper than performing calcula-
tions by the standard algorithm P. Rentrop (1980), which involves the solution
of only a 3-diagonal system, but with hyperbolic coefficients, and which requires
the evaluaation of hyperbolic functions in formula (4.23). The evaluation of these
hyperbolic functions demands a much greater number of computations than the
solution of our pentadiagonal system. We also recall that the upper bound for the
condition number of the matrix A, given in (4.14), does not depend on the number
of interpolation points and thus such methods can be used with some confidence.

We can observe, however, that m can sometimes be very large when the
points are irregularly distributed and the tabulation step τ is small (for instance,
for the radio chemical data of table 4.1, having chosen τ as the largest step such
that hi/τ is integer, we get m = 1193). In some cases, for example for generating
a grid in bivariate interpolation, even the linear computational cost may prove
to be too expensive, but if we have a parallel machine, we can easily share the
computation among the processors as outlined below.

The basic idea is to transform the matrix A of (4.11), which, for N = 2,
ni = 18 has the form shown in Figure 4.1, into the form K of Figure 4.2. Note that
the ith interpolation condition is settled in the rith row, where ri = 2 +

∑i−1
ν=0 nν .

If we extract he first and the last rows from K (which correspond to boundary
conditions), then the second and the second last, and, for i = 0, 1, . . . , N the rows
ri, . . . , ri + 4, we get a block matrix E of the form shown in Figure 4.3. The
corresponding linear system has few equations, and having solved it, it is possible
to solve in parallel the N +1 linear systems obtained from the “remaining” matrix
F of Figure 4.4 by extracting its independent blocks.

The problem now is how to move from A to K. From Sections 4.2, 4.3 and
4.4 we have the following two facts. Having in mind (4.11) and the corresponding
Figure 4.1, let us consider the section given by rows ri, . . . , ri+1− 1. We note that
the entries of the columns with index ri +3, . . . , ri+1−3 are 1, ai, bi, ai, 1 which are
the coefficients of the difference equation (4.6). On the other hand, it is shown in
Section 4.4 that any function of the form

Υi(x) = c1(1− t) + c2t + c3ϕ̂i(1− t) + c4ϕ̂i(t), (4.30)

is a solution for (4.6); therefore if we multiply the row of index ri + ν, ν =
1, . . . , ni − 1, by Υi(xi,ν) = Υi(xi + ντ) and then add all these rows, then the
contribution of all the columns from ri + 3 to ri+1 − 3 sums up to zero. The idea
for obtaining the matrix K from A is the following: we replace the four rows of
index ri + 1, ri + 2, ri + 3, ri + 4 with the sum of the rows from ri + 1 to ri+1 − 1
multiplied by the values assumed in xi,ν by four linearly independent functions
of the form (4.30). The remaining question is how to choose these functions.
Several numerical experiments have shown that the lowest condition number of
the matrix K (which is in general larger than that of A) is achieved when we
use the cardinal functions for Lagrange interpolation at the points xi,ν closest to
xi, xi + hi/3, xi+1 − hi/3, xi+1.
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Figure 4.1: The form of the matrix of the system (4.11) for N = 2, ni = 18.
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Figure 4.2: The matrix K obtained from the matrix of Figure 4.1 by substitution
of the rows as indicated in the text.
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Figure 4.3: The block matrix E.
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Figure 4.4: The block matrix F .
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Another possibility is to directly use the results of section 4.4, that is: first
we solve the tridiagonal system (4.20) obtaining the divided differences at the knots
M0, . . . , MN+1 and then we compute the refined solution within each interval of
the main mesh either solving the N +1 tridiagonal systems (4.16), (4.17) or simply
evaluating the function of (4.18). We note that this latter approach is the only one
possible if we want a continuous extension of the discrete solution beyond the mesh
point. At first sight, this approach based on the solution of a tridiagonal system
seems preferable because of the limited waste of computational time and the good
estimates for the condition number of the matrix in (4.20). However, it should be
observed that we have to face the numerical computation of hyperbolic functions of
the form sinh(kit) and cosh(kit) - a very difficult task, both for cancellation errors
(when ki → 0) and for overflow problems (when ki → ∞). A stable computation
of the hyperbolic functions was proposed by P. Rentrop (1980), where different
formulas for the cases ki ≤ 0.5 and ki > 0.5 were considered and a specialized
polynomial approximation for sinh(·) was used. This approach is effective but
somewhat complicated, and it is the author’s opinion that all these difficulties could
be more easily overcome using the features of some new programming languages
which allow numerical data type with arbitrary (and user selected) lengths for the
fractional and the exponent parts of the floating point representation.

So far, we have considered only uniform subdivisions of the main mesh,
given by suitable step sizes τ such that for any i, hi = niτ . However, it is clear
that nonuniform subdivisions are necessary in many applications, for example
when we have big changes in the main mesh size or when we want to zoom the
solution into a neighborhood of some particular points.

For these reasons, we want to restate – as far as possible – the above theory
for a particular nonuniform mesh, that is for the grid

{xi,ν = xi + ντi; i = 0, . . . , N ; ν = 0, 1, . . . , ni where ni = hi/τi},

in such a way that:

(a) the solution coincides with the uniform one when τi = τ and

(b) within any interval [xi, xi+1], the solution can be seen as the mesh restriction
of a function ui of the form (4.18) (having substituted τ̂i = τi/hi).

In the uniform case the solution ui given in (4.18) satisfies the difference
equation (4.6) centered at the points xi,ν , ν = 1, . . . , ni − 1 and thus the points
involved range from xi,−1 = xi− τ to xi,ni+1 = xi+1, τ . The smoothness conditions
(4.5) involve central divided differences and therefore use evaluations of ui at
xi − τ, xi, xi + τ . We want to do exactly the same for nonuniform meshes. We
start by defining a redundant mesh

x̌i,ν = xi + ντi; i = 0, . . . , N ; ν = −1, . . . , ni + 1

and we seek a mesh solution ǔi,ν ; i = 0, . . . , N ; ν = −1, . . . , ni + 1 such that
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[
Λ2

i −
(pi

hi

)2

Λi

]
ǔi,ν = 0, ν = 1, . . . , ni − 1, i = 0, . . . , N, (4.31)

where

Λiǔi,j =
ǔi,ν−1 − 2ǔi,ν + ǔi,ν+1

τ 2
i

.

which satisfy the following smoothness conditions

ǔi−1,ni−1
= ǔi,0,

ǔi−1,ni−1+1 − ǔi−1,ni−1−1

2τi−1

=
ǔi,1 − ǔi,−1

2τi

, i = 1, . . . , N, (4.32)

Λi−1ǔi−1,ni−1
= Λiǔi,0,

and are interpolant, that is

ǔi,0 = fi, i = 0, . . . , N ; ǔN,nN
= fN+1,

Λ0ǔ0,0 = f ′′0 ; ΛN ǔN,nN
= f ′′N=1.

(4.33)

Our discrete solution will then be defined as

ui,ν := ǔi,ν , i = 0, . . . , N ; ν = 0, . . . , ni, (4.34)

and one seems immediately that since ǔi,ni−1 = ǔi+1,−1 and ǔi,ni+1 = ǔi+1,1 for
τi = τ the discrete solution given by (4.31)–(4.34) does coincide with that defined
by (4.6)–(4.10) for the uniform subdivision.

It is possible to repeat all the arguments developed so far for this nonuniform
mesh. Having added to (4.34) the values u0,−1 and uN,nN+1 to satisfy the boundary
conditions, we can collect (4.31)–(4.33) in a linear system Aû = b, identical to
(4.11) with the exception of the matrix A which has now the form:




1 −2 1 0
0 1 0 0
1 a0 b0 a0 1

1 a0 b0 a0 1
. . .

1 α0,n0−1 β0,n0−1 γ0,n0−1 δ0,n0−1

0 0 1 0 0
δ1,1 γ1,1 β1,1 α1,1 1

1 a1 b1 a1 1
. . .

. . .
. . .

1 aN bN aN 1
1 aN bN aN 1

0 0 1 0
0 1 −2 1




,
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ai = −(4 + ωi), bi = 6 + 2ωi, ωi =
(piτi

hi

)2

, i = 0, . . . , N,

and

αi−1,ni−1−1 = −(4 + ωi−1), βi−1,ni−1−1 = 6 + 2ωi−1 +
1− ρi

1 + ρi

,

γi−1,ni−1−1 = −(4 + ωi−1 + 2
1− ρi

ρi

), δi−1,ni−1−1 =
2

ρi(ρi + 1)
,

δi,1 = 2
ρ2

i

ρi + 1
, γi,1 = −(4 + ωi + 2(ρi − 1)),

βi,1 = 6 + 2ωi +
ρi − 1

ρi + 1
, αi,1 = −(4 + ωi); i = 1, . . . , N,

with ρi = hi/hi−1.
We emphasize that the results of sections four and five can be restated for

this nonuniform case without any change; in particular there exist functions ui of
the form (4.18) which are continuous extensions of the discrete solution, that is

ui(x̌i,ν) = ǔi,ν , i = 0, . . . , N ; ν = −1, 0, . . . , ni + 1.

We can also repeat the algorithmic considerations developed in the first part of
this section; the only substantional difference lies in the fact that now the ma-
trix A is no longer symmetric, and an analysis of its condition number cannot, is
contrast with section 4.3, be carried out analytically. However, several numerical
experiments have shown that the condition number is not influenced by the non-
symmetric structure, but does depend on the minimum step-size hi, exactly as in
the symmetric case. In other words, symmetric and nonsymmetric matrices, with
the same dimension and produced by difference equations with the same smallest
step-size, produce very close condition numbers. The nonuniform discrete tension
hyperbolic splines have in fact been used for the graphical test of the following
section.

4.6 Graphical Examples

The aim of this final section is to illustrate the tension features of discrete
tension hyperbolic splines with some (famous) examples. Before, we want to notice
that the continuous form ui of our solution given in (4.18) has the good shape-
preserving properties of cubics (see, e.g., P. Rentrop (1980)) in the sense that ui

is convex (concave) in [xi, xi+1] if and only if Mi+j ≥ 0 (≤ 0), j = 0, 1, and has at
most one inflection point in [xi, xi+1]. In order to preserve the shape of the data,
we therefore simply have to analyze the values Λiui,0 and Λiui,ni

and increase the
tension parameters if necessary. All the strategies proposed for the automatic
choice of tension parameters in continuous tension hyperbolic spline interpolation
can be used in our discrete context, see, e.g., R. J. Renka (1987), P. Rentrop
(1980).
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In our first example we have interpolated the radio chemical data reported in
Table 4.1. The effects of changing the tension values ωi = (piτi/hi)

2 are depicted
in Figures 4.5–4.7. We have adopted a nonuniform mesh, assigning the same
number of points (30) to each interval of the main mesh, and imposed natural end
conditions, that is, following formulae (4.6), M0 = MN+1 = 0.

Table 4.1: Radio chemical data:

xi 7.99 8.09 8.19 8.7 9.2
fi 0 2.76429E-5 4.37498E-2 0.169183 0.469428
xi 10 12 15 20
fi 0.943740 0.998636 0.999916 0.999994

Figure 4.5 is obtained setting pi = 0, and the zoom displayed at Figure
4.6 clearly shows the deep decrease – extraneous to data – in the first part of
the discrete solution. In Figure 4.7 a new discrete interpolant with p0 = p1 =
300, pi = 15, i = 2, . . . , 7, is displayed for the same data, and the zoom displayed
at Figure 4.8, and the stretching effect of the increase in tension parameters is
evident.

Table 4.2: Akima’s data:

xi 0 2 3 5 6 8 9 11 12 14 15
fi 10 10 10 10 10 10 10.5 15 56 60 85

In second example we have taken Akima’s data of Table 4.2 and constructed
discrete interpolants with 20 points for each interval, with the values of M0 and
MN+1 equal to the second divided differences of data. Figure 4.9 shows the plot
produced by an uniform choice of tension factors, namely ωi = 0 and Figure
4.10 a second one, which perfectly reproduces the data shape, where we have set
ω5 = ω6 = ω8 = 0.1.
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Figure 4.5: The radio chemical data with natural end conditions M0 = MN+1 = 0.
Interpolation by discrete cubic spline (pi = 0).
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Figure 4.6: A magnification of the lower left corner of Figure 4.5 showing a de-
creasing part of the curve which contradicts the data.



57

8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Figure 4.7: The same as Figure 4.5 with p0 = p1 = 300, pi = 15, i = 2, . . . , 7.
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Figure 4.8: A magnification of the lower left corner of Figure 4.7.
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Figure 4.9: Akima’s data. Interpolation by discrete tension hyperbolic spline with
choice of tension parameters ωi = 0 for all i and values of M0 and
MN+1 equal to the second divided differences of the data.
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Figure 4.10: Same as Figure 4.9 but with ω5 = ω6 = ω8 = 0.1.



Chapter V

Discrete Tension Generalized
Splines

This chapter addresses the definition and the study of discrete generalized
splines. Discrete generalized splines are continuous piecewise defined functions
which meet some smoothness conditions for the first and second divided differ-
ences at knots. They provide a generalization both of smooth tension generalized
splines and the classical discrete cubic splines. Completely general configurations
for steps in divided differences are considered. Direct algorithms are proposed for
constructing discrete tension generalized splines and discrete tension generalized
B-splines (discrete GB-splines for short). Explicit formulae and recurrence rela-
tions are obtained for discrete GB-splines. Properties of discrete GB-splines and
their series are studied. It is shown that discrete GB-splines form weak Cheby-
shev systems and that series of discrete GB-splines have a variation diminishing
property.

5.1 Discrete Tension Generalized Splines.

Conditions of Existence and Uniqueness

Let a partition ∆ : a = x0 < x1 < · · · < xN = b of the interval [a, b]
be given, to which we associate a space of functions SDG

4 whose restriction to
a subinterval [xi, xi+1], i = 0, . . . , N − 1 is spanned by the system of linearly
independent functions {1, x, Φi, Ψi} and where every function in SDG

4 is continuous

and for given τ
Lj

i > 0 and τ
Rj

i > 0, j = i − 1, i, the values of its first and second

divided differences with respect to the points xi−τ
Li−1

i , xi, xi +τ
Ri−1

i and xi−τLi
i ,

xi, xi + τRi
i coincide.

Given a continuous function S we introduce the linear difference operators

D1S(x) ≡ Di,1S(x) = (λRi
i S[x− τLi

i , x] + λLi
i S[x, x + τRi

i ])(1− t)

+(λRi
i+1S[x− τLi

i+1, x] + λLi
i+1S[x, x + τRi

i+1])t,

D2S(x) ≡ Di,2S(x) = 2S[x− τLi
i , x, x + τRi

i ](1− t) + 2S[x− τLi
i+1, x, x + τRi

i+1]t

x ∈ [xi, xi+1) i = 0, . . . , N − 1,

where λRi
j = 1−λLi

j = τRi
j /(τLi

j +τRi
j ), j = i, i+1 and t = (x−xi)/hi, hi = xi+1−xi.
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The square parentheses denote the usual first and second divided differences of the
function S by the argument values xj − τLi

j , xj, xj + τRi
j , j = i, i + 1.

Definition 5.1. A discrete generalized spline is a function S ∈ SDG
4 such that

(i) for any x ∈ [xi, xi+1], i = 0, . . . , N − 1

S(x) ≡ Si(x) = [S(xi)− Φi(xi)Mi](1− t) + [S(xi+1)−Ψi(xi+1)Mi+1]t
+Φi(x)Mi + Ψi(x)Mi+1,

(5.1)
where Mj = Di,2Si(xj), j = i, i + 1, and the functions Φi and Ψi are subject
to the constraints

Φi(xi+1 − τLi
i+1) = Φi(xi+1) = Φi(xi+1 + τRi

i+1) = 0, Di,2Φi(xi) = 1,

Ψi(xi − τLi
i ) = Ψi(xi) = Ψi(xi + τRi

i ) = 0, Di,2Ψi(xi+1) = 1;
(5.2)

(ii) S satisfies the continuity conditions

Si−1(xi) = Si(xi),

Di−1,1Si−1(xi) = Di,1Si(xi), i = 1, . . . , N − 1. (5.3)

Di−1,2Si−1(xi) = Di,2Si(xi),

This definition generalizes the notion of a discrete polynomial spline in
L. L. Schumaker (1981) and of a tension generalized spline in B. I. Kvasov (1995,
1996b). The latter type can be obtained by setting τLi

j = τRi
j = 0, j = i, i + 1

for all i. If τ
Lj

i = τL
i and τ

Rj

i = τR
i , j = i − 1, i then according to smoothness

conditions (5.3) the values of the functions Si−1 and Si at the three consecutive
points xi − τL

i , xi, xi + τR
i coincide. Setting τLi

j = τRi
j = τi, j = i, i + 1 we obtain

D1,iS(x) = S[x − τi, x + τi] and D2,iS(x) = S[x − τi, x, x + τi] which is the case
discussed in P. Costantini et al. (1999).

The functions Φi and Ψi depend on the tension parameters which influence
the behaviour of S fundamentally. We call them the defining functions. In practice
one takes Φi(x) = Φi(pi, x), Ψi(x) = Ψi(qi, x), 0 ≤ pi, qi < ∞. In the limiting
case when pi, qi → ∞ we require that limpi→∞ Φi(pi, x) = 0, x ∈ (xi, xi+1] and
limqi→∞ Ψi(qi, x) = 0, x ∈ [xi, xi+1) so that the function S in formula (5.1) turns
into a linear function. Additionally, we require that if pi = qi = 0 for all i we get
a discrete cubic spline with

Φi(x) =
1

2

(xi+1 − x− τLi
i+1)(xi+1 − x)(xi+1 − x + τRi

i+1)

3hi + εi+1 − εi

,

Ψi(x) =
1

2

(x− xi + τLi
i )(x− xi)(x− xi − τRi

i )

3hi + εi+1 − εi

, (5.4)

εj = τRi
j − τLi

j , j = i, i + 1.

If τ
Lj

i = τ
Rj

i = τi, j = i−1, i for all i then this spline coincides with a discrete cubic
spline of Yu. S. Zavyalov et al. (1980). The case τi = τ for all i was considered in
T. Lyche (1976).



61

Introducing the notation mj ≡ Di,1Si(xj), j = i, i + 1, i = 0, . . . , N − 1,
we can obtain less restrictive conditions on the functions Φi and Ψi to guarantee
existence and uniqueness of the discrete hyperbolic spline S than could be achieved
by using the unknowns Mi.

From the equations Di,1Si(xj) = mj, j = i, i + 1, we find using (5.1)

Mi =
hi

Ti

{[b̄i + Ψi(xi+1)]S[xi, xi+1]− b̄imi −Ψi(xi+1)mi+1},

Mi+1 =
hi

Ti

{−[āi + Φi(xi)]S[xi, xi+1] + Φi(xi)mi − āimi+1}, (5.5)

Ti = āib̄i − Φi(xi)Ψi(xi+1),

where
āi = −Φi(xi)− hiDi,1Φi(xi),
b̄i = −Ψi(xi+1) + hiDi,1Ψi(xi+1).

(5.6)

The third equation in the smoothness conditions (5.3) and the boundary
relations M0 = D0,2S(a) and MN = D0,2S(b) result in the following system of
linear algebraic equations

b̄0m0 + Ψ0(x1)m1 = [b̄0 + Ψ0(x1)]S[x0, x1]−D0,2S(a)
T0

h0

,

Φi−1(xi−1)
hi−1

Ti−1

mi−1 +

(
āi−1

hi−1

Ti−1

+ b̄i
hi

Ti

)
mi + Ψi(xi+1)

hi

Ti

mi+1

= [āi−1 + Φi−1(xi−1)]
hi−1

Ti−1

S[xi−1, xi] + [b̄i + Φi(xi+1)]
hi

Ti

S[xi, xi+1],

i = 1, . . . , N − 1,

ΦN−1(xN−1)mN−1 + āN−1mN = DN,2S(b)
hN−1

TN−1

+[āN−1 + ΦN−1(xN−1)]S[xN−1, xN ].

(5.7)

Let us find constraints on the defining functions Φi and Ψi which ensure
that the discrete tension generalized spline S exists and is unique.

Lemma 5.1. If the conditions

0 < Φi(xi) < āi, 0 < Ψi(xi+1) < b̄i, i = 0, . . . , N − 1,

are satisfied, where āi and b̄i are as defined in (5.6), then the discrete tension
generalized spline S exists and is unique.

Proof: It follows from the conditions of the lemma that

0 < Φi(xi)Ψi(xi+1) < āib̄i, i = 0, . . . , N − 1.

Then
Ti = āib̄i − Φi(xi)Ψi(xi+1) > 0, i = 0, . . . , N − 1.
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Therefore, by virtue of the conditions of the lemma, the matrix of system (5.7) is
diagonally dominant:

r̄0 = b̄0 −Ψ0(x1) > 0,

r̄i = [āi−1 − Φi−1(xi−1)]
hi−1

Ti−1

+ [b̄i −Ψi(xi+1)]
hi

Ti

> 0, i = 1, . . . , N − 1,

r̄N = āN−1 − ΦN−1(xN−1) > 0.

This ensures (e.g., see Yu. S. Zavyalov et al. (1980)) that the spline S exists and
is unique, and proves the lemma. ¤

In practical examples, the conditions of Lemma 5.1 are satisfied for the
majority of discrete tension generalized splines. This allows one to construct the
splines, that is, to solve the tridiagonal linear system (5.7), efficiently by a special
version of Gaussian elimination that avoids pivoting.

5.2 Construction of Discrete GB-Splines

Let us construct a basis for the space of discrete tension generalized splines
SDG

4 by using functions which have local supports of minimum length. Since
dim(SDG

4 ) = 4N − 3(N − 1) = N + 3 we extend the grid ∆ by adding the points
xj, j = −3,−2,−1, N + 1, N + 2, N + 3, such that x−3 < x−2 < x−1 < a,
b < xN+1 < xN+2 < xN+3.

We demand that the discrete GB-splines Bi, i = −3, . . . , N − 1 have the
properties

Bi(x) > 0, x ∈ (xi + τRi
i , xi+4 − τ

Li+3

i+4 ), (5.8)

Bi(x) ≡ 0, x /∈ (xi, xi+4),
N−1∑
j=−3

Bj(x) ≡ 1, x ∈ [a, b]. (5.9)

According to (5.1), on the interval [xj, xj+1], j = i, . . . , i + 3, the discrete
GB-spline Bi has the form

Bi(x) ≡ Bj,i(x) = Pi,j(x) + Φj(x)Mj,Bi
+ Ψj(x)Mj+1,Bi

, (5.10)

where Pi,j is a polynomial of the first degree and Ml,Bi
= Dj,2Bi(xl), l = j, j + 1

are constants to be determined. The smoothness conditions (5.3) and constraints
(5.2) give the following relations

Pi,j(xj) = Pi,j−1(xj) + zjMj,Bi
,

Dj,1Pi,j(xj) = Dj−1,1Pi,j−1(xj) + cj−1,2Mj,Bi
,

where

zj ≡ zj(xj) = Ψj−1(xj)− Φj(xj),

cj−1,2 = Dj−1,1Ψj−1(xj)−Dj,1Φj(xj).
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Thus
Pi,j(x) = Pi,j−1(x) + [zj + cj−1,2(x− xj)]Mj,Bi

(5.11)

By repeated use of this formula we get

Pi,j(x) =

j∑

l=i+1

[zl + cl−1,2(x− xl)]Ml,Bi
= −

i+3∑

l=j+1

[zl + cl−1,2(x− xl)]Ml,Bi
.

As Bi vanishes outside the interval (xi, xi+4), we have from (5.11) that Pi,j ≡ 0 for
j = i, i + 3. In particular, the following identity is valid

i+3∑
j=i+1

[zj + cj−1,2(x− xj)]Mj,Bi
≡ 0,

from which one obtains the equalities

i+3∑
j=i+1

cj−1,2y
r
jMj,Bi

= 0, r = 0, 1, yj = xj − zj

cj−1,2

. (5.12)

Thus the formula for the discrete GB-spline Bi takes the form

Bi(x) =





Ψi(x)Mi+1,Bi
, x ∈ [xi, xi+1),

(x− yi+1)ci,2Mi+1,Bi
+ Φi+1(x)Mi+1,Bi

+ Ψi+1(x)Mi+2,Bi
,

x ∈ [xi+1, xi+2),
(yi+3 − x)ci+2,2Mi+3,Bi

+ Φi+2(x)Mi+2,Bi
+ Ψi+2(x)Mi+3,Bi

,
x ∈ [xi+2, xi+3),

Φi+3(x)Mi+3,Bi
, x ∈ [xi+3, xi+4),

0, otherwise.

(5.13)

Substituting formula (5.13) into the normalization condition (5.9) written
for x ∈ [xi, xi+1], we obtain

i∑
j=i−3

Bj(x) = Φi(x)
i−1∑

j=i−3

Mi,Bj
+ Ψi(x)

i∑
j=i−2

Mi+1,Bj

+(yi+1 − x)ci,2Mi+1,Bi−2
+ (x− yi)ci−1,2Mi,Bi−1

≡ 1.

As according to (5.9)

i−1∑
j=i−3

Mi,Bj
=

i∑
j=i−2

Mi+1,Bj
= 0 (5.14)

the following identity is valid

(yi+1 − x)ci,2Mi+1,Bi−2
+ (x− yi)ci−1,2Mi,Bi−1

≡ 1.

From here one gets the equalities

yr
i+1ci,2Mi+1,Bi−2

− yr
i ci−1,2Mi,Bi−1

≡ δ1,r, r = 0, 1,
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where δ1,r is the Kronecker symbol. Solving this system of equations and using
(5.12) or (5.14), we obtain

Mj,Bi
=

yi+3 − yi+1

cj−1,2ω′i+1(yj)
, j = i + 1, i + 2, i + 3,

ωi+1(x) = (x− yi+1)(x− yi+2)(x− yi+3)

or with the notation cj,3 = yj+2 − yj+1, j = i, i + 1,

Mi+1,Bi
=

1

ci,2ci,3

,

Mi+2,Bi
= − 1

ci+1,2

( 1

ci,3

+
1

ci+1,3

)
, (5.15)

Mi+3,Bi
=

1

ci+2,2ci+1,3

.

5.3 Properties of Discrete GB-Splines

If the inequalities of Lemma 5.1 are satisfied at only the interior nodes of
the support interval of the discrete GB-spline Bi, then we obtain the following
result.

Lemma 5.2. If the conditions

0 < Ψj−1(xj) < b̄j−1, 0 < Φj(xj) < āj, j = i + 1, i + 2, i + 3

are satisfied, where b̄j−1 and āj are as defined in (5.6), then in (5.15) cj,k > 0,
j = i, . . . , i + 3− k; k = 1, 2, and

(−1)j−i−1Mj,Bi
> 0, j = i + 1, i + 2, i + 3. (5.16)

Proof: The conditions of the lemma can be rewritten in the form

0 <
2

hj−1

Ψj−1(xj) < Dj−1,1Ψj−1(xj),

0 <
2

hj

Φj(xj) < −Dj,1Φj(xj), j = i + 1, i + 2, i + 3.
(5.17)

Taking the sum of these equations we obtain

cj−1,2 = Dj−1,1Ψj−1(xj)−Dj,1Φj(xj) > 0, j = i + 1, i + 2, i + 3.

The inequalities

xj − hj−1/2 < yj < xj + hj/2, j = i + 1, i + 2, i + 3 (5.18)

are equivalent to the relations

0 < [−Ψj−1(xj) +
hj−1

2
Dj−1,1Ψj−1(xj)] + [Φj(xj)− hj−1

2
Dj,1Φj(xj)],

0 < [Ψj−1(xj) +
hj

2
Dj−1,1Ψj−1(xj)]− [Φj(xj) +

hj

2
Dj,1Φj(xj)],

j = i + 1, i + 2, i + 3,
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which are obviously satisfied by the conditions (5.17). From (5.18) we obtain
cj,3 = yj+2−yj+1 > 0, j = i, i+1. Now it follows from (5.15) that if the conditions
of the lemma are satisfied, then the inequalities (5.16) hold. This proves the
lemma. ¤

The functions Bj, j = −3, . . . , N−1 possess many of the properties inherent
in the usual discrete polynomial B-splines. To provide inequality (5.8) in what
follows we will assume in addition that Dj,2Φj and Dj,2Ψj are strictly monotone
functions on the interval [xj, xj+1].

Theorem 5.1. Let the conditions of Lemma 5.1 be satisfied, the functions Φj and
Ψj be convex and Dj,2Φj and Dj,2Ψj be strictly monotone on the interval [xj, xj+1].
Then the functions Bj, j = −3, . . . , N − 1 have the following properties:

1. Bj(x) > 0 for x ∈ (xj + τ
Rj

j , xj+4 − τ
Lj+3

j+4 ), and Bj(x) ≡ 0 if x /∈ (xj, xj+4);

2. Bj satisfies the smoothness conditions (5.3);

3.
∑N−1

j=−3 yr
j+2Bj(x) ≡ xr, r = 0, 1 for x ∈ [a, b], Φj(x) = cj−1,2cj−2,3Bj−3(x),

Ψj(x) = cj,2cj,3Bj(x) for x ∈ [xj, xj+1], j = 0, . . . , N − 1.

Proof: By assumption, the functions Dj,2Φj and Dj,2Ψj are strictly monotone.
Since Φj and Ψj satisfy the constraints (5.2) we conclude that the functions Φj

and Ψj are convex. Furthermore, in virtue of the restriction (5.17) we obtain that

Φj is positive and monotonically decreasing on the interval [xj, xj+1 − τ
Lj

j+1) and

Ψj is positive and monotonically increasing on the interval (xj + τ
Rj

j , xj+1].
Using formula (5.13) and inequalities (5.16) we see that the function Bj is

positive and increases (decreases) monotonically on the interval (xj + τ
Rj

j , xj+1]

(on the interval [xj+3, xj+4 − τ
Lj+3

j+4 )).
For x ∈ [xl, xl+1], l = j + 1, j + 2, we have

D2Bj(x) = Dl,2Φl(x)Ml,Bj
+ Dl,2Ψl(x)Ml+1,Bj

.

As the sum of two strictly monotonically decreasing (increasing) functions the
function D2Bj decreases monotonically on [xj+1, xj+2] and increases monotonically
on [xj+2, xj+3]. Then there exist points ζl ∈ [xl, xl+1], l = j + 1, j + 2, such
that D2Bj(ζl) = 0. Since by (5.13), (5.16), and (5.17) Dj+1,1Bj(xj+1) > 0 and
Dj+3,1Bj(xj+3) < 0 we find that the discrete GB-spline Bj is positive, increases
monotonically on [xj+1, ζj+1], and decreases monotonically on [ζj+2, xj+3]. The
function Bj is concave and also positive on the interval [ζj+1, ζj+2].

All the remaining properties of the discrete GB-splines Bj, j = −3, . . . , N−1
which are formulated in (2)–(3) of Theorem 5.1, follow directly from formula (5.13).
This proves the theorem. ¤

Lemma 5.3. The function Bi has support of minimum length.
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Proof: It is clear that the function Bi cannot be different from zero on only a
part of the interval [xj, xj+1], j = i, i + 3. If we suppose that Bi vanishes outside
the interval (xi+1, xi+4), then due to the continuity of D2Bi, we have Mi+1,Bi

= 0.
But then it follows from the equalities (5.12) that Mj,Bi

= 0, j = i + 2, i + 3, and
according to (5.13) we obtain Bi ≡ 0. If we suppose that Bi vanishes outside the
interval (xi, xi+3), we arrive at the same result. This proves the lemma. ¤

Theorem 5.2. The functions Bi, i = −3, . . . , N −1, are linearly independent and
form a basis of the space SDG

4 of discrete generalized splines.

Proof: Let us assume to the contrary that there exist constants c̄i, i =
−3, . . . , N − 1, which are not all equal to zero and such that

c̄−3B−3(x) + · · ·+ c̄N−1BN−1(x) = 0, x ∈ [a, b]. (5.19)

Because the functions Bi, i = −3, . . . , N − 1 have finite supports, in the
sum (5.19) only the four terms with subscripts i − 3, . . . , i do not vanish on the
interval [xi, xi+1]. Hence taking into account formulae (5.13) and (5.15), we have

i∑
j=i−3

c̄jBj(x) = Φi(x)
i−1∑

j=i−3

c̄jMi,Bj
+ Ψi(x)

i∑
j=i−2

c̄jMi+1,Bj

+c̄i−2
yi+1 − x

yi+1 − yi

+ c̄i−1
x− yi

yi+1 − yi

= 0, x ∈ [xi, xi+1].

Since the functions {t, x, Φi, Ψi} are linearly independent on the interval [xi, xi+1]
and Mk,Bj

6= 0, k = i, i + 1, it follows that c̄i−3 = · · · = c̄i = 0. Continuing this
process, we find that c̄i = 0 for all i.

Since dim(SDG
4 ) = N + 3, we see that the discrete GB-splines Bi, i =

−3, . . . , N − 1, all of which are elements of the space SDG
4 , form a basis of this

space. This proves the theorem. ¤

5.4 Local Approximation by Discrete

GB-Splines

According to Theorem 5.2, any discrete generalized spline S ∈ SDG
4 can be

uniquely written in the form

S(x) =
N−1∑
j=−3

bjBj(x) (5.20)

for some constant coefficients bj.
If the coefficients bj in (5.20) are known, then by virtue of formula (5.13)

we can write out an expression for the discrete generalized spline S on the interval
[xi, xi+1], which is convenient for calculations,

S(x) = bi−2 + b
(1)
i−1(x− yi) + b

(2)
i−1Φi(x) + b

(2)
i Ψi(x), (5.21)
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where

b
(k)
j =

b
(k−1)
j − b

(k−1)
j−1

cj,4−k

, k = 1, 2; b
(0)
j = bj. (5.22)

The representations (5.20) and (5.21) allow us to find a simple and effective
way to approximate a given function f from its samples.

Theorem 5.3. Let a function f ∈ C[a, b] be given by its samples f(yj), j =
−1, . . . , N + 1. Then for bj = f(yj+2), j = −3, . . . , N − 1, formula (5.20) is exact
for polynomials of the first degree and provides a formula for local approximation.

Proof: It suffices to prove that the identities

N−1∑
j=−3

yr
j+2Bj(x) ≡ xr, r = 0, 1 (5.23)

hold for x ∈ [a, b]. Using formula (5.21) with the coefficients bj−2 = 1 and bj−2 =
yj, j = i−1, i, i+1, i+2, for an arbitrary interval [xi, xi+1], we find that identities
(5.23) hold.

For bj−2 = f(yj), formula (5.21) can be rewritten as

S(x) = f(yi) + f [yi, yi+1](x− yi) + (yi+1 − yi−1)f [yi−1, yi, yi+1]c
−1
i−1,2Φi(x)

+(yi+2 − yi)f [yi, yi+1, yi+2]c
−1
i,2 Ψi(x), x ∈ [xi, xi+1].

This is the formula of local approximation. The theorem is proved. ¤

Corollary 5.1. Let a function f ∈ C[a, b] be given by its samples fj = f(xj), j =
−2, . . . , N + 2. Then by setting

bj−2 = fj − 1

cj−1,2

[
Ψj−1(xj)f [xj, xj+1]− Φj(xj)f [xj−1, xj]

]
(5.24)

in (5.20), we obtain a formula of three-point local approximation, which is exact
for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and x
as f . Then according to (5.24), we obtain bj−2 = 1 and bj−2 = yj and it only
remains to make use of identities (5.24). This proves the corollary. ¤

Equation (5.21) permits us to write the coefficients of the spline S in its
representation (5.20) of the form

bj−2 =

{
S(yj)−Dj−1,2S(xj−1)Φj−1(yj)−Dj,2S(xj)Ψj−1(yj), yj < xj

S(yj)−Dj,2S(xj)Φj(yj)−Dj+1,2S(xj+1)Ψj(yj), yj ≥ xj

According to this formula we have bj−2 = S(yj) + O(h̄2
j), h̄j = max(hj−1, hi).

Hence it follows that the control polygon (e.g., see P. E. Koch and T. Lyche (1989))
converges quadratically to the function f for bj−2 = f(yj), or if the formula (5.24)
is used.
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5.5 Recurrence Formulae for Discrete

GB-Splines

Let us define functions

Bj,2(x) =





Dj,2Ψj(x), x ∈ [xj, xj+1),
Dj+1,2Φj+1(x), x ∈ [xj+1, xj+2], j = i, i + 1, i + 2.
0, otherwise,

(5.25)

We assume that the functions Dj,2Ψj and Dj+1,2Φj+1 are strictly monotone on
[xj, xj+1) and [xj+1, xj+2] respectively. The splines Bj,2 are a generalization of the
“hat-functions” for polynomial B-splines. They are nonnegative and, furthermore,
Bj,2(xj+l) = δ1,l, l = 0, 1, 2.

According to (5.13), (5.15) and (5.25) the function D2Bi can be written in
the form

D2Bi(x) =
i+3∑

j=i+1

Mj,Bi
Bj−1,2(x)

=
1

ci,3

(Bi,2(x)

ci,2

− Bi+1,2(x)

ci+1,2

)
− 1

ci+1,3

(Bi+1,2(x)

ci+1,2

− Bi+2,2(x)

ci+2,2

)
. (5.26)

The function D1Bi satisfies to the relation

D1Bi(x) =
Bi,3(x)

ci,3

− Bi+1,3(x)

ci+1,3

, (5.27)

where

Bj,3(x) =





Dj,1Ψj(x)
cj,2, x ∈ [xj, xj+1),

1 +
Dj+1,1Φj+1(x)

cj,2
− Dj+1,1Ψj+1(x)

cj+1,2
, x ∈ [xj+1, xj+2),

−Dj+2,1Φj+2(x)
cj+1,2

, x ∈ [xj+2, xj+3),

0, otherwise.

(5.28)

Using formula (5.28) it is easy to show that functions Bj,3, j = −2, . . . , N −
1 satisfy the first and second smoothness conditions in (5.3), have supports of
minimum length, are linearly independent and form a partition of unity,

N−1∑
j=1

Bj,3(x) ≡ 1, x ∈ [a, b].

Figures 5.1 and 5.2 show the graphs of discrete GB-splines Bj,2, BL
j,3, and

Bj (from left to right) on a uniform mesh with step size h = 1 and discretization
parameter τ = 0.1 (Figure 5.1, left and Figure 5.2, right), τ = 0.33 (Figure 5.1,
right) and τ = 0.5 (Figure 5.2, left) for

Ψi(x) = ψ(pi, τ̂i, t)h
2
i =

τ̂i sinh pit− t sinh(piτ̂i)
4
τ̂i

sinh2 piτ̂i

2
sinh pi

h2
i , τ̂i =

τ

hi

,

Φi(x) = ψ(pi, τ̂i, 1− t)h2
i .
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Figure 5.1: The discrete GB-splines Bj,2, BL
j,3, and Bj (from left to right) on a

uniform mesh with step size h = 1, no tension and discretization pa-
rameter τ = 0.1 (left) and τ = 0.33 (right).
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Figure 5.2: Same as Figure 5.1, but with discretization parameter τ = 0.5 (left)
and with tension parameters pi = 50 for all i (right).

In figures 5.1 and 5.2 (left) we have parameters pi = 0, that is, we have conven-
tional discrete cubic B-splines (e.g., see T. Lyche (1976)). Visually, the presence
of intervals where the B-splines Bj are negative is more visible with growing dis-
cretization parameter τ . In figure 5.2 (right) the tension parameters are pi = 50
for all i, whence the shape of the graphs is practically unchanged when τ increases
from 0.1 to 0.5. As the limit for pi →∞ we obtain the pulse function for Bj,2, the
“step-function” for BL

j,3 and the “hat-function” for Bj (all of height 1).
Applying formulae (5.26) and (5.27) to the representation (5.20) we obtain

DL
1 S(x) =

N−1∑
j=−2

bj,3B
L
j,3(x), D2S(x) =

N−1∑
j=−1

bj,2Bj,2(x), (5.29)

where coefficients bj,k, k = 3, 2 are calculated by formula (5.22).
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5.6 Series of Discrete GB-Splines

(uniform case)

Let us suppose that each step size hi = xi+1 − xi of the mesh ∆ : a = x0 <
x1 < · · · < xN = b is an integer multiple of the same tabulation step, τ , of some
detailed uniform refinement on [a, b].

For θ ∈ R, τ > 0 define

Rθτ = {θ + iτ : i is an integer}
and let Rθ0 = R. For any a, b ∈ R and τ > 0 let

[a, b]τ = [a, b] ∩ Raτ .

The functions Bj,2, BL
j,3, and Bj are nonnegative on the discrete interval

[a, b]τ . This permits us to reprove the main results of discrete polynomial splines
of L. L. Schumaker (1981) for series of discrete generalized splines. Even more, one
can obtain the results for tension generalized splines of B. I. Kvasov (1995) from
the corresponding statements for discrete tension generalized splines as a limiting
case when τ → 0.

In particular, if in (5.20) and (5.29) we have the coefficients bj,4−k > 0,
k = 0, 1, 2, j = −3+k, . . . , N−1, then the spline S will be a positive, monotonically
increasing and convex function on [a, b]τ .

Let f be a function defined on the discrete set [a, b]τ . We say that f has a
zero at the point x ∈ [a, b]τ provided

f(x) = 0 or f(x− τ) · f(x) < 0.

When f vanishes at a set of consecutive points of [a, b]τ , say f is 0 at
x, . . . , x + (r − 1)τ , but f(x − τ) · f(x + rτ) 6= 0, then we call the set X =
{x, x + τ, . . . , x + (r − 1)τ} a multiple zero of f , and we define its multiplicity by

ZX(f) =





r, if f(x− τ) · f(x + rτ) < 0 and r is odd,
r, if f(x− τ) · f(x + rτ) > 0 and r is even,
r + 1, otherwise.

This definition assures that f changes sign at a zero if and only if the zero is of
odd multiplicity.

Let Z[a,b]τ (f) be the number of zeros of a function f on the discrete set
[a, b]τ , counted according to their multiplicity.

Theorem 5.4. (Rolle’s Theorem For Discrete Generalized Splines.) For any S ∈
SDG

4 ,
Z[a,b]τ (D

L
1 S) ≥ Z[a,b]τ (S)− 1. (5.30)

Proof: First, if S has a z-tuple zero on the set X = {x, . . . , x + (r − 1)τ}, it
follows that DL

1 S has a (z−1)-tuple zero on the set X ′ = {x+τ, . . . , x+(r−1)τ}.
Now if X1 and X2 are two consecutive zero sets of S, then it is trivially true that
DL

1 S must have a sign change at some point between X1 and X2. Counting all of
these zeros, we arrive at the assertion (5.30). This completes the proof. ¤
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Lemma 5.4. For every S ∈ SDG
4 which is not identically zero on any subinterval

[xi, xi+1]τ , i = 0, . . . , N − 1,

Z[a,b]τ (S) ≤ N + 2.

Proof: According to (5.25) and (5.29), the function D2S has no more than one
zero on [xi, xi+1], because the functions D2Φi and D2Ψi are strictly monotone and
nonnegative on this subinterval. Hence Z[a,b]τ (D2S) ≤ N . Then according to the
Rolle’s Theorem 5.4, we find Z[a,b]τ (S) ≤ N + 2. This completes the proof.

¤
Denote by suppτBi = {x ∈ Ra,τ |Bi(x) > 0} the discrete support of the

spline Bi, that is, the discrete set (xi + τ, xi+4 − τ)τ .

Theorem 5.5. Assume that ζ−3 < ζ−2 < · · · < ζN−1 are prescribed points on the
discrete line Ra,τ . Then

D = det(Bi(ζj)) ≥ 0, i, j = −3, . . . , N − 1

and strict positivity holds if and only if

ζi ∈ suppτBi, i = −3, . . . , N − 1. (5.31)

Proof: Let us prove the theorem by induction. It is clear that the theorem holds
for one basis function. Assume that it also holds for l − 1 basis functions. Let us
show that if (5.31) is satisfied, then D 6= 0 for l basis functions.

Let ζl /∈ suppτBl. If ζl lies to the left (right) with respect to the discrete
support of Bl then the last column (row) of the determinant D consists of zeros,
that is, D = 0. If ζl ∈ suppτBl and D = 0, then there exists a nonzero vector
c = (c−3, . . . , cl−4) such that

S(ζk) =
l−4∑

j=−3

cjBj(ζk), k = −3, . . . , l − 4,

that is, the spline S has l zeros. But this contradicts Lemma 5.4, which states
that S can have no more than l − 1 zeros. Hence c = 0 and D 6= 0.

Now it only remains to prove that D > 0 if (5.31) is satisfied. Let us
choose xk + τ < ζk < xk+1 − τ for all k. Then the diagonal elements of D are
positive and all the elements above the main diagonal are zero, that is, D > 0.
It is clear that D depends continuously on ζk, k = −3, . . . , l − 4, and D 6= 0 for
ζk ∈ suppτBk. Hence the determinant D is positive, if condition (5.31) is satisfied.
This completes the proof. ¤

The following three statements follow immediately from Theorem 5.5.

Corollary 5.2. The system of discrete GB-splines {Bj}, j = −3, . . . , N − 1,
associated with knots on Ra,τ is a weak Chebyshev system according to the definition
given in L. L. Schumaker (1981), that is, for any ζ−3 < ζ−2 < · · · < ζN−1 in Ra,τ

we have D ≥ 0 and D > 0 if and only if condition (5.31) is satisfied. In the latter
case the discrete generalized spline S(x) =

∑N−1
j=−3 bjBj(x) has no more than N +2

zeros.
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Corollary 5.3. If the conditions of Theorem 5.5 are satisfied, then the solution
of the interpolation problem

S(ζi) = fi, i = −3, . . . , N − 1, fi ∈ R (5.32)

exists and is unique.

Let A = {aij}, i = 1, . . . , m, j = 1, . . . , n, be a rectangular m × n matrix
with m ≤ n. The matrix A is said to be totally nonnegative (totally positive)
(see, e.g., S. Karlin (1968)) if the minors of all order of the matrix are nonnegative
(positive), that is, for all 1 ≤ p ≤ m we have

det(aikjl
) ≥ 0 (> 0) for all 1 ≤ i1 < · · · < ip ≤ m, 1 ≤ j1 < · · · < jp ≤ n.

Corollary 5.4. For arbitrary integers −3 ≤ ν−3 < · · · < νp−4 ≤ N − 1 and
ζ−3 < ζ−2 < · · · < ζp−4 in Ra,τ we have

Dp = det{Bνi
(ζj)} ≥ 0, i, j = −3, . . . , p− 4

and strict positivity holds if and only if

ζi ∈ suppτ Bνi
, i = −3, . . . , p− 4

that is, the matrix {Bj(ζi)}, i, j = −3, . . . , N − 1 is totally nonnegative.

The last statement is proved by induction based on Theorem 5.5 and the
recurrence relations for the minors of the matrix {Bj(ζi)}. The proof does not
differ from that of Theorem 8.67 described by L. L. Schumaker (1981) p. 356.

Since the supports of discrete GB-splines are finite, the matrix of system
(5.32) is banded and has seven nonzero diagonals in general. The matrix is tridi-
agonal if ζi = xi+2, i = −3, . . . , N − 1.

An important particular case of the problem, in which S ′(xi) = f ′i , i = 0, N ,
can be obtained by passing to the limit as ζ−3 → ζ−2, ζN−1 → ζN−2.

C. De Boor and A. Pinkus (1977) proved that linear systems with totally
nonnegative matrices can be solved by Gaussian elimination without choosing a
pivot element. Thus, the system (5.32) can be solved effectively by the conven-
tional Gauss method.

Denote by S−(v) the number of sign changes (variations) in the sequence of
components of the vector v = (v1, · · · , vn), with zeros being neglected. S. Karlin
(1968) showed that if a matrix A is totally nonnegative then it decreases the
variation, that is,

S−(Av) ≤ S−(v).

By virtue of Corollary 5.4, the totally nonnegative matrix {Bj(ζi)}, i, j =
−3, . . . , N − 1, formed by discrete GB-splines decreases the variation.

For a bounded real function f , let S−(f) be the number of sign changes of
the function f on the real axis R, without taking into account the zeros

S−(f) = sup
n

S−[f(ζ1), . . . , f(ζn)], ζ1 < ζ2 < · · · < ζn.
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Theorem 5.6. The discrete generalized spline S(x) =
∑N−1

j=−3 bjBj(x) is a varia-
tion diminishing function, that is, the number of sign changes of S does not exceed
that in the sequence of its coefficients:

S−IR

( N−1∑
j=−3

bjBj

)
≤ S−(b), b = (b−3, . . . , bN−1).

The proof of this statement does not differ from that of Theorem 8.68 for
discrete polynomial B-splines in L. L. Schumaker (1981).

By Theorem 5.6, the spline

Sf (x) =
N−1∑
j=−3

f(yj+2)Bj(x)

is a variation diminishing function. It enables us to write the inequalities

S−(Sf ) ≤ S−(f) ≤ S−(f),

where f = (f(y−1), . . . , f(yN+1)).
Since in addition by Theorem 5.3, the locally approximating discrete gen-

eralized spline Sf is also exact for polynomials l of first order, we arrive at the
inequality

S−(Sf − l) = S−(Sf−l) ≤ S−(f − l).

Thus, the following statement is true.

Theorem 5.7. If bj = f(yj+2), j = −3, . . . , N − 1, then the locally approximating
discrete generalized spline Sf intersects an arbitrary straight line at most as often
as the function f .

5.7 Examples of Defining Functions

Let us give some choices of the defining functions Φi and Ψi for discrete
generalized splines that conform to the sufficiency conditions derived earlier in the
chapter.

Putting

Ψi(x) = ψi(t)h
2
i = ψ(pi, τ̂

Li
i , τ̂Ri

i , t)h2
i , Φi(x) = ψ(qi, τ̂

Ri
i+1, τ̂

Li
i+1, 1− t)h2

i ,

τ̂Li
j = τLi

j /hi, τ̂Ri
j = τRi

j /hi; j = i, i + 1; 0 ≤ pi, qi < ∞,

we consider some possibilities for choosing the function ψi which, by the defini-
tion 5.1, satisfies the conditions

ψi(−τ̂Li
i ) = ψi(0) = ψi(τ̂

Ri
i ) = 0, D2,i+1ψi(1) = h−2

i . (5.33)

1. Discrete rational spline with linear denominator:

ψi(t) = Ci
(t + τ̂Li

i )t(t− τ̂Ri
i )

1 + pi(1− t)
.



74

2. Discrete rational spline with quadratic denominator:

ψi(t) = Ci
(t + τ̂Li

i )t(t− τ̂Ri
i )

1 + pit(1− t)
.

3. Discrete exponential spline:

ψi(t) = Ci(t + τ̂Li
i )t(t− τ̂Ri

i )e−pi(1−t).

4. Discrete hyperbolic spline:

ψi(t) = Ci,1

[
sinh pit− t

sinh piτ̂
Ri
i

τ̂Ri
i

]
+ Ci,2

[
cosh pit− 1− t

cosh piτ̂
Ri
i − 1

τ̂Ri
i

]
.

5. Discrete cubic spline with variable additional knots:

ψi(t) =
1

2

(t− αi + τ̂Li
i )(t− αi)+(t− αi − τ̂Ri

i )

3(1− αi) + ε̂i+1 − ε̂i

,

ε̂j = τ̂Ri
j − τ̂Li

j , j = i, i + 1; αi = (1 + pi)
−1.

The points xi + αihi and xi + βihi (βi = 1 − (1 + qi)
−1) fix the position of two

additional knots of the spline on the interval [xi, xi+1]. By moving these knots one
can perform a transfer from a discrete cubic spline to piecewise linear interpolation.

6. Discrete spline of variable order:

ψi(t) = Ci(t + τ̂Li
i )tki(t− τ̂Ri), ki = 1 + qi.

The constants Ci in the expressions for the function ψi above are calculated from
the condition (5.33) for the second divided difference of ψi. To find Ci,k, k = 1, 2,
one needs additionally use the condition ψi(−τ̂Li

i ) = 0. It is easy to check that in
all cases 1.–6. we get the corresponding defining functions of B. I. Kvasov (1996a)
by setting τ̂Li

j = τ̂Ri
j = 0, j = i, i + 1.



Chapter VI

Finite-Difference Method for 2-D
Shape Preserving Interpolation

In this chapter 2-D problem of shape-preserving interpolation is formulated
as Differential Multipoint Boundary Value Problem (DMBVP for short) for thin
plate tension splines. For a numerical treatment of this problem, we consider its
finite-difference approximation. This gives a system of linear algebraic equations
which can be solved either by direct and iterative methods. As a direct method,
we suggest to consider a block Gaussian elimination. For iterative solution of
the obtained linear system, we apply Successive Over-Relaxation (SOR) method.
Finite-difference schemes in fractional steps also prove their efficiency in the nu-
merical treatment of our DMBVP.

6.1 Problem Formulation

In this section, we introduce necessary notations and define 2-D problem of
shape-preserving interpolation as DMBVP which consists of differential equation,
smoothness, interpolation, and boundary conditions.

Let us consider a rectangular domain Ω = Ω ∪ Γ where

Ω = {(x, y) | a < x < b, c < y < d}
and Γ is the boundary of Ω. We consider on Ω a rectangular mesh ∆ = ∆x ×∆y

with

∆x : a = x0 < x1 < · · · < xN+1 = b,

∆y : c = y0 < y1 < · · · < yM+1 = d,

which divides the domain Ω into the rectangles Ωij = Ωij ∪ Γij where

Ωij = {(x, y) | x ∈ (xi, xi+1), y ∈ (yj, yj+1)} ,

and Γij is the boundary of Ωij, i = 0, . . . , N, j = 0, . . . , M .
Let us associate to the mesh ∆ the data

(xi, yj, fij) , i = 0, . . . , N + 1, j = 0, . . . , M + 1,

f
(2,0)
ij , i = 0, N + 1, j = 0, . . . , M + 1,

f
(0,2)
ij , i = 0, . . . , N + 1, j = 0,M + 1,

f
(2,2)
ij , i = 0, N + 1, j = 0,M + 1,





(6.1)
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where

f
(r,s)
ij =

∂r+sf(xi, yj)

∂xr∂ys
; r, s = 0, 2.

It is convenient for us to collect this data in the following table.

f
(2,2)
0,M+1 f

(0,2)
0,M+1 f

(0,2)
1,M+1 · · · f

(0,2)
N,M+1 f

(0,2)
N+1,M+1 f

(2,2)
N+1,M+1

f
(2,0)
0,M+1 f0,M+1 f1,M+1 · · · fN,M+1 fN+1,M+1 f

(2,0)
N+1,M+1

f
(2,0)
0,M f0,M f1,M · · · fN,M fN+1,M f

(2,0)
N+1,M

... · · · · · · · · · · · · · · · ...

f
(2,0)
0,1 f0,1 f1,1 · · · fN,1 fN+1,1 f

(2,0)
N+1,1

f
(2,0)
0,0 f0,0 f1,0 · · · fN,0 fN+1,0 f

(2,0)
N+1,0

f
(2,2)
0,0 f

(0,2)
0,0 f

(0,2)
1,0 · · · f

(0,2)
N,0 f

(0,2)
N+1,0 f

(2,2)
N+1,0

We introduce the following notations for divided differences:

f [xi; yj] = f(xi, yj) = fij,

f [xi, . . . , xi+k; yj] =
f [xi+1, . . . , xi+k; yj]− f [xi, . . . , xi+k−1; yj]

xi+k − xi

,

k = 1, . . . , N + 1,

i = 0, . . . , N + 1− k, j = 0, . . . , M + 1,

f [xi; yj, . . . , yj+l] =
f [xi; yj+1, . . . , yj+l]− f [xi; yj, . . . , yj+l−1]

yj+l − yj

,

l = 1, . . . , M + 1,

i = 0, . . . , N + 1, j = 0, . . . ,M + 1− l.

In particular, one has for the first order divided differences:

f [xi, xi+1; yj] = (fi+1,j − fij)/hi; hi = xi+1 − xi,
i = 0, . . . , N, j = 0, . . . , M + 1,

f [xi; yj, yj+1] = (fi,j+1 − fij)/lj, lj = yj+1 − yj,
i = 0, . . . , N + 1, j = 0, . . . , M.

Definition 6.1. The data fij is said to be
positive (negative) if

fij > 0 (< 0), for all i and j,

monotonically increasing (decreasing) by x if

f [xi, xi+1; yj] > 0 (< 0), i = 0, . . . , N, j = 0, . . . , M + 1,

monotonically increasing (decreasing) by y if

f [xi; yj, yj+1] > 0 (< 0), i = 0, . . . , N + 1, j = 0, . . . , M,

convex (concave) by x if

f [xi, xi+1; yj]− f [xi−1, xi; yj] > 0 (< 0), i = 1, . . . , N, j = 0, . . . , M + 1,
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convex (concave) by y if

f [xi; yj, yj+1]− f [xi; yj−1, yj] > 0 (< 0), i = 0, . . . , N + 1, j = 1, . . . , M.

We denote by C2,2[Ω] the set of all continuous on Ω functions f having
continuous partial and mixed derivatives up to the order 2. We say that the
problem of searching for a function S ∈ C2,2[Ω] such that S(xi, yj) = fij; i =
0, . . . , N + 1; j = 0, . . . ,M + 1, and that S preserves the form of the initial data
is the shape-preserving interpolation problem. This means that where the data
increases (decreases) monotonically, S has the same behavior, and S is convex
(concave) over intervals where the data is convex (concave).

Evidently, the solution of the shape-preserving interpolation problem is not
unique. We are looking for a solution of this problem as a thin plate tension spline.

Definition 6.2. An interpolating thin plate tension spline S with two sets of ten-
sion parameters {pij ≥ 0 | i = 0, . . . , N ; j = 0, . . . , M + 1} and
{qij ≥ 0 | i = 0, . . . , N + 1; j = 0, . . . , M} is a solution of the DMBVP

LS ≡ ∂4S

∂x4
+ 2

∂4S

∂x2∂y2
+

∂4S

∂y4
−

(
pij

hi

)2
∂2S

∂x2
−

(
qij

lj

)2
∂2S

∂y2
= 0 (6.2)

in each Ωij, i = 0, . . . , N ; j = 0, . . . , M,

∂4S

∂x4
−

(
pij

hi

)2
∂2S

∂x2
= 0, x ∈ (xi, xi+1), y = yj, (6.3)

i = 0, . . . , N ; j = 0, . . . , M + 1,

∂4S

∂y4
−

(
qij

lj

)2
∂2S

∂y2
= 0, x = xi, y ∈ (yj, yj+1), (6.4)

i = 0, . . . , N + 1; j = 0, . . . , M,

S ∈ C 2,2 [Ω] , (6.5)

with the interpolation conditions

S (xi, yj) = fij, i = 0, . . . , N + 1, j = 0, . . . , M + 1, (6.6)

and the boundary conditions

D(2,0)S (xi, yj) = D(2,0)f (xi, yj) , i = 0, N + 1, j = 0, . . . , M + 1,
D(0,2)S (xi, yj) = D(0,2)f (xi, yj) , i = 0, . . . , N + 1, j = 0,M + 1,
D(2,2)S (xi, yj) = D(2,2)f (xi, yj) , i = 0, N + 1, j = 0,M + 1,

(6.7)
where

D(r,s)f (xi, yj) =
∂r+sf (xi, yj)

∂xr∂ys
; r, s = 0, 2.
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If all tension parameters of the thin plate tension spline S are zero then one
obtains a smooth thin plate spline, see J. Hoschek and D. Lasser (1993), interpolat-
ing the data (xi, yj, fij); i = 0, . . . , N ; j = 0, . . . ,M. If tension parameters pij and
qij approach to the infinity then in the rectangle Ωij; i = 0, . . . , N ; j = 0, . . . , M ;
thin plate spline S turns into a linear function separately by x and y, and obvi-
ously preserves on Ωij shape properties of the data. So, by changing values of the
shape control parameters pij and qij one can preserve various characteristics of
the data including positivity, monotonicity, convexity, as well as linear and planar
sections. By increasing one or more of these parameters the surface is pulled to-
wards an inherent shape at the same time keeping its smoothness. Thus, DMBVP
gives a reasonable mathematical formulation of the shape-preserving interpolation
problem.

6.2 Finite-Difference Approximation of

DMBVP

For practical purposes, it is often necessary to know the values of solution S
of a DMBVP only over a prescribed grid instead of its global analytic expression.
In this section, we consider a finite-difference approximation of the DMBVP. This
provides a linear system which solution is called a mesh solution. It turns out
that the mesh solution is not a tabulation of S but it can be extended on Ω to
a smooth function U which has shape properties very similar to those of S and
which provides a second order approximation of S as the discretization step goes
to zero. Due to these properties, we will refer to U as a discrete thin plate tension
spline.

Let ni,mj ∈ N, i = 0, . . . , N ; j = 0, . . . , M, be given such that hi/ni =
lj/mj = h. We are looking for a mesh function

{
uik;jl | k = −1, . . . , ni + 1; i = 0, . . . , N ; l = −1, . . . , mj + 1; j = 0, . . . , M

}

satisfying the difference equations

Λuik;jl ≡
[
Λ2

1 + 2Λ1Λ2 + Λ2
2 −

(
pij

hi

)2

Λ1 −
(

qij

lj

)2

Λ2

]
uik;jl = 0, (6.8)

k = 1, . . . , ni − 1; i = 0, . . . , N ; l = 1, . . . , mj − 1; j = 0, . . . , M,
[
Λ2

1 −
(

pij

hi

)2

Λ1

]
uik;jl = 0, (6.9)

k = 1, . . . , ni − 1; i = 0, . . . , N ; l =

{
0 if j = 0, . . . , M − 1,
0,mM if j = M,

[
Λ2

2 −
(

qij

lj

)2

Λ2

]
uik;jl = 0, (6.10)
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k =

{
0 if i = 0, . . . , N − 1,
0, nN if i = N,

; l = 1, . . . ,mj − 1; j = 0, . . . ,M,

where

Λ1uik;jl =
ui,k−1;jl − 2uik;jl + ui,k+1;jl

h2
, (6.11)

Λ2uik;jl =
uik;j,l−1 − 2uik;jl + uik;j,l+1

h2
, (6.12)

Λ2
1uik;jl =

1

h4

[
ui,k−2;jl − 4ui,k−1;jl + 6uik;jl − 4ui,k+1;jl + ui,k+2;jl

]
, (6.13)

Λ2
2uik;jl =

1

h4

[
uik;j,l−2 − 4uik;j,l−1 + 6uik;jl − 4uik;j,l+1 + uik;j,l+2

]
, (6.14)

Λ1Λ2uik;jl =
1

h4

[
ui,k−1;j,l−1 + ui,k−1;j,l+1 + ui,k+1;j,l−1 + ui,k+1;j,l+1

−2ui,k−1;jl − 2ui,k+1;jl − 2uik;j,l−1 − 2uik;j,l+1 + 4uik;jl

]
.(6.15)

The smoothness condition (6.5) is changed into

ui−1,ni−1;jl = ui0;jl,
ui−1,ni−1+1;jl − ui−1,ni−1−1;jl

2h
=

ui1;jl − ui,−1;jl

2h
, (6.16)

Λ1ui−1,ni−1;jl = Λ1ui0;jl,

i = 1, . . . , N ; l = 0, . . . , mj, j = 0, . . . , M,

uik;j−1,mj−1
= uik;j0,

uik;j−1,mj−1+1 − uik;j−1,mj−1−1

2h
=

uik;j1 − uik;j,−1

2h
, (6.17)

Λ2uik;j−1,mj−1
= Λ2uik;j0,

k = 0, . . . , ni, i = 0, . . . , N ; j = 1, . . . , M.
Conditions (6.6) and (6.7) take the form

ui0;j0 = fij, uN,nN ;j0 = fN+1,j,
ui0;M,mM

= fi,M+1, uN,nN ;M,mM
= fN+1,M+1,

(6.18)

i = 0, . . . , N, j = 0, . . . , M
and

Λ1u00;j0 = f
(2,0)
0j , j = 0, . . . , M ; Λ1u00;M,mM

= f
(2,0)
0,M+1;

Λ1uN,nN ;j0 = f
(2,0)
N+1,j, j = 0, . . . , M ; Λ1uN,nN ;M,mM

= f
(2,0)
N+1,M+1;

(6.19)

Λ2ui0;00 = f
(0,2)
i0 , i = 0, . . . , N ; Λ2uN,nN ;00 = f

(0,2)
N+1,0;

Λ2ui0;M,mM
= f

(0,2)
i,M+1, i = 0, . . . , N ; Λ2uN,nN ;M,mM

= f
(0,2)
N+1,M+1;

(6.20)

Λ1Λ2u00;00 = f
(2,2)
00 ; Λ1Λ2uN,nN ;00 = f

(2,2)
N+1,0;

Λ1Λ2u00;M,mM
= f

(2,2)
0,M+1; Λ1Λ2uN,nN ;M,mM

= f
(2,2)
N+1,M+1.

(6.21)
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The conditions (6.16) and (6.17) are equivalent to the relations

ui−1,ni−1+k;jl = uik;jl, (6.22)

k = −1, 0, 1; i = 1, . . . , N ; l = 0, . . . , mj; j = 0, . . . , M ;

uik;j−1,mj−1+l = uik;jl, (6.23)

k = 0, . . . , ni; i = 0, . . . , N ; l = −1, 0, 1; j = 1, . . . , M.
Difference equations (6.9) and (6.10) can be solved separately as 1-D problems.
Then, we obtain

Λ1u00;M,mM
=

u0,−1;M,mM
− 2u00;M,mj

+ u01;M,mM

h2
= f

(2,0)
00;M,mM

,

Λ1uN,nN ;M,mM
=

uN,nN−1;M,mM
− 2uN,nN ;M,mM

+ uN,nN+1;M,mM

h2
= f

(2,0)
N,nN ;M,mM

,

Λ1u00;jl =
u0,−1;jl − 2u00;jl + u01;jl

h2
= f

(2,0)
00;jl ,

Λ1uN,nN ;jl =
uN,nN−1;jl − 2uN,nN ;jl + uN,nN+1;jl

h2
= f

(2,0)
N,nN ;jl,

l = 0, . . . , mj − 1, j = 0, . . . , M,

Λ2uN,nN ;00 =
uN,nN ;0,−1 − 2uN,nN ;00 + uN,nN ;01

h2
= f

(0,2)
N,nN ;00;

Λ2uN,nN ;M,mM
=

uN,nN ;M,mM−1 − 2uN,nN ;M,mM
+ uN,nN ;M,mM+1

h2
= f

(0,2)
N,nN ;M,mM

;

Λ2uik;00 =
uik;0,−1 − 2uik;00 + uik;01

h2
= f

(0,2)
ik;00;

Λ2uik;M,mM
=

uik;M,mM−1 − 2uik;M,mM
+ uik;M,mM+1

h2
= f

(0,2)
ik;M,mM

;

k = 0, . . . , ni − 1; i = 0, . . . , N.

Therefore, the above equations can be rewritten in the simple form

u0,−1;M,mM
= h2f

(2,0)
00;M,mM

+ 2u00;M,mM
− u01;M,mM

,

uN,nN+1;M,mM
= h2f

(2,0)
N,nN ;M,mM

+ 2uN,nN ;M,mM
− uN,nN−1;M,mM

,

u0,−1;jl = h2f
(2,0)
00;jl + 2u00;jl − u01;jl,

uN,nN+1;jl = h2f
(2,0)
N,nN ;jl + 2uN,nN ;jl − uN,nN−1;jl,

l = 0, . . . ,mj − 1, j = 0, . . . , M,

uN,nN ;0,−1 = h2f
(0,2)
N,nN ;00 + 2uN,nN ;00 − uN,nN ;01,

uN,nN ;M,mM+1 = h2f
(0,2)
N,nN ;M,mM

+ 2uN,nN ;M,mM
− uN,nN ;M,mM−1,

uik;0,−1 = h2f
(0,2)
ik;00 + 2uik;00 − uik;01,

uik;M,mM+1 = h2f
(0,2)
ik;M,mM

+ 2uik;M,mM
− uik;M,mM−1,

k = 0, . . . , ni − 1, i = 0, . . . , N.





(6.24)

If we substitute relations (6.24) into equations (6.8) then the unknowns outside Ω
are eliminated. Relations (6.22) and (6.23) permit us to eliminate the following
unknowns

uik;jl, k = −1, ni + 1, i = 0, . . . , N, l = 0, . . . ,mj, j = 0, . . . , M,



81

and

uik;jl, k = 0, . . . , ni, i = 0, . . . , N, l = −1,mj + 1, j = 0, . . . , M.

Eliminating interpolation conditions (6.18), we obtain the following number of
unknowns

ν = νxνy − νI , (6.25)

where νx = 1 +
∑N

i=0 ni, νy = 1 +
∑M

j=0 mj and νI = (N + 2)(M + 2).

Now, we are going to show that the number of unknowns and the number of
equations in the above difference equations is the same. The number of conditions
from (6.8), (6.9) and (6.10) are µT =

∑M
j=0

∑N
i=0(ni − 1)(mj − 1), µTx = (M +

2)
[ ∑N

i=0 ni− (N + 1)
]

and µTy = (N + 2)
[ ∑M

j=0 mj − (M + 1)
]

with respectively.
Therefore, the total number of conditions for solving this problem is

µ = µT + µTx + µTy. (6.26)

Now, we want to show ν = µ. Let us consider

νxνy = (1 +
N∑

i=0

ni)(1 +
M∑

j=0

mj)

= 1 +
N∑

i=0

ni +
M∑

j=0

mj +
N∑

i=0

ni

M∑
j=0

mj

N∑
i=0

ni

M∑
j=0

mj =
[ N∑

i=0

(ni − 1) + (N + 1)
][ M∑

j=0

(mj − 1) + (M + 1)
]

=
N∑

i=0

(ni − 1)
M∑

j=0

(mj − 1) + (M + 1)
N∑

i=0

(ni − 1)

+(N + 1)
M∑

j=0

(mj − 1) + (M + 1)(N + 1)

= µT + (M + 1)
[ N∑

i=0

ni − (N + 1)
]

+(N + 1)
[ M∑

j=0

mj − (M + 1)
]

+ (M + 1)(N + 1)

= µT + (M + 2)
[ N∑

i=0

ni − (N + 1)
]
−

[ N∑
i=0

ni − (N + 1)
]

+(N + 2)
[ M∑

j=0

mj − (M + 1)
]
−

[ M∑
j=0

mj − (M + 1)
]

+(M + 1)(N + 1)
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= µT + µTx + µTy −
N∑

i=0

ni + (N + 1)−
M∑

j=0

mj + (M + 1)

+(M + 1)(N + 1)

νxνy = µT + µTx + µTy + (M + 1) + (N + 1) + (M + 1)(N + 1) + 1

= µ + (M + 1)(N + 2) + (N + 1) + 1

= µ + (M + 1)(N + 2) + (N + 2) = µ + (M + 2)(N + 2)

= µ + νI

ν = νxνy − νI = µ.

6.3 Matrix Formulation

Finite-difference equations (6.9) and (6.10) can be solved separately as 1-D
problems. Therefore, there are (ni − 1)(mj − 1) unknowns and same number of
difference equations (6.8) in each Ωij, i = 0, . . . , N, j = 0, . . . , M . Then the above
system of difference equations can be written in matrix form as follows

Au = b, (6.27)

where

u = {uik;jl}, b = {bik;jl},

k = 1, . . . , ni − 1; i = 0, . . . , N ; l = 1, . . . , mj − 1; j = 0, . . . , M,

A =




A0 − I B0 I

B0 A0 B0 I

I B0 A0 B0 I
. . . . . . . . .

I B0 A0 B0

I B0 A0 I

I A1 B1 I

B1 A1 B1 I
. . . . . . . . .
I BM AM BM I

I BM AM BM

I BM AM − I




,
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Aj =




α0j − 1 β0j 1
β0j α0j β0j 1
1 β0j α0j β0j 1

. . . . . . . . .

1 β0j α0j β0j

1 β0j α0j 1
1 α1j β1j 1

β1j α1j β1j 1
. . . . . . . . .

1 βNj αNj βNj 1
1 βNj αNj βNj

1 βNj αNj − 1




,

Bj = 2I +




−γ0j 1
1 −γ0j 1

. . . . . . . . .
1 −γ0j 1

1 −γ0j

−γ1j 1
1 −γ1j 1

. . . . . . . . .
1 −γNj 1

1 −γNj




,

where αij = 20 + 2

(
pij

ni

)2

+ 2

(
qij

mj

)2

, βij = 8 +

(
pij

ni

)2

and γij = 8 +

(
qij

mj

)2

,

i = 0, . . . , N ; j = 0, . . . , M , and the description of the right side b is given in
Appendix A.

For solving equation (6.27), A must be well defined. So, we are going to
investigate the properties of A. Positive definiteness of A is one property that we
are interested to have. If A is positive definite matrix then equation (6.27) can be
efficiently solved by direct or iterative methods.

Any linear operator in a finite dimensional space can be represented in
a matrix form. Let the matrices, A(1), A(2), and A(3) represent the difference

operators Λ2
1 −

(
pij

hi

)2

Λ1, Λ2
2 −

(
qij

lj

)2

Λ2, and 2Λ1Λ2, respectively.

To show that the matrix A in (6.27) is positive definite, let us represent this
matrix in the following form

A = A(1) + A(2) + A(3),

where

A(1) =




Û
(1)
0

. . .

Û
(1)
M


 , Û

(1)
j =




U
(1)
j

. . .

U
(1)
j




(mj−1)

,
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U
(1)
j =




α
(1)
0j − 1 β

(1)
0j 1

β
(1)
0j α

(1)
0j β

(1)
0j 1

1 β
(1)
0j α

(1)
0j β

(1)
0j 1

. . . . . . . . .

1 β
(1)
0j α

(1)
0j β

(1)
0j

1 β
(1)
0j α

(1)
0j 1

1 α
(1)
1j β

(1)
1j 1

β
(1)
1j α

(1)
1j β

(1)
1j 1

. . . . . . . . .

1 β
(1)
Nj α

(1)
Nj β

(1)
Nj 1

1 β
(1)
Nj α

(1)
Nj β

(1)
Nj

1 β
(1)
Nj α

(1)
Nj − 1




,

α
(1)
ij = 6 + 2

(
pij

ni

)2

; β
(1)
ij = −

(
4 +

(
pij

ni

)2
)

, i = 0, . . . , N ; j = 0, . . . , M,

A(2) =




Û
(2)
0 − I V̂

(2)
0 I

V̂
(2)
0 Û

(2)
0 V̂

(2)
0 I

I V̂
(2)
0 Û

(2)
0 V̂

(2)
0 I

. . . . . . . . .

I V̂
(2)
0 Û

(2)
0 V̂

(2)
0

I V̂
(2)
0 Û

(2)
0 I

I Û
(2)
1 V̂

(2)
1 I

V̂
(2)
1 Û

(2)
1 V̂

(2)
1 I

. . . . . . . . .

I V̂
(2)
M Û

(2)
M V̂

(2)
M I

I V̂
(2)
M Û

(2)
M V̂

(2)
M

I V̂
(2)
M Û

(2)
M − I




,

Û
(2)
j =




U
(2)
0j

. . .

U
(2)
Nj


 , U

(2)
ij =




α
(2)
ij

. . .

α
(2)
ij




(ni−1)

,

V̂
(2)
j =




V
(2)
0j

. . .

V
(2)
Nj


 , V

(2)
ij =




β
(2)
ij

. . .

β
(2)
ij




(ni−1)

,

α
(2)
ij = 6 + 2

(
qij

mj

)2

; β
(2)
ij = −4−

(
qij

mj

)2

, i = 0, . . . , N ; j = 0, . . . , M,
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A(3) =




Û (3)

. . .

Û (3)




M+1

,

Û (3) =




U
(3)

V
(3)

V
(3)

U
(3)

V
(3)

. . . . . . . . .

V
(3)

U
(3)

V
(3)

V
(3)

U
(3)




(mj−1)

,

V
(3)

=




V (3)

. . .

V (3)




N+1

; V (3) =




−2 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −2




(ni−1)

,

U
(3)

= −2V
(3)

.

Since U
(1)
j has the same pattern as the coefficient matrix of 1-D DMBVP

which is positive definite matrix then for all eigenvalues of this matrix we have

λ(U
(1)
j ) > 0, j = 0, . . . , M.

Therefore,
λ(A(1)) > 0 (6.28)

because λ(U
(1)
j ) > 0, j = 0, . . . , M is a collection of eigenvalues

λ(Û
(1)
j ) > 0, j = 0, . . . , M . And λ(Û

(1)
j ) > 0, j = 0, . . . , M is a collection

of eigenvalues λ(A(1)) > 0.

For any u ∈ Rn, there exists an unique permutation matrix P ∈ Rn×n and
a vector v ∈ Rn such that

u = Pv,

where n = (ni − 1)(mj − 1)(N + 1)(M + 1), PP T = P T P = I,

vjl;ik = uik;jl,

k = 1, . . . , ni − 1; i = 0, . . . , N ; l = 1, . . . , mj − 1; j = 0, . . . , M.
Let us consider

A(2)u = A(2)Pv

λ(A(2))u = λ(A(2))Pv = Pλ(A(2))v.

Then
P T A(2)Pv = λ(A(2))v.
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Therefore, B(2) = P T A(2)P and A(2) have the same eigenvalues λ(A(2)) and B(2)

has the same structure as A(1). In the same way as for A(1), we obtain that

λ(B(2)) > 0.

Therefore,
λ(A(2)) > 0. (6.29)

Since λ(V (3)) < 0 (see M. A. Malcolm (1977)) and λ(V
(3)

) is a collection of
eigenvalues λ(V (3)) then

λ(V (3)) < 0.

For any u ∈ Rn where n = (ni − 1)(mj − 1)(N + 1)(M + 1), we obtain

λ(Û (3))u = Û (3)u

=




V
(3)

V
(3)

. . .

V
(3)

V
(3)







−2I I
I −2I I

. . . . . . . . .

I −2I I
I −2I




u

= W (3)W
(3)

u

= W (3)λ(W
(3)

)u

= λ(W
(3)

)W (3)u

= λ(W
(3)

)λ(W (3))u.

Therefore,

λ(Û (3)) = λ(W
(3)

)λ(W (3)).

As λ(W (3)) is a collection of eigenvalues λ(V
(3)

) then applying the idea of

M. A. Malcolm (1977), we obtain λ(W (3)) < 0 and λ(W
(3)

) < 0. Therefore,

λ(Û (3)) > 0. Since λ(A(3)) is a collection of eigenvalues λ(Û (3)) > 0 then

λ(A(3)) > 0. (6.30)

Since A = A(1) + A(2) + A(3), matrices A(1), A(2), and A(3) are symmetric
matrices, and λ(A(1)) > 0, λ(A(2)) > 0, λ(A(3)) > 0 then

λ(A) ≥ λ(A(1)) + λ(A(2)) + λ(A(3)) > 0.

Therefore, A is a positive definite matrix.
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6.4 Successive Over-Relaxation (SOR)

Algorithm

From previous section, we know already that the coefficient matrix A of our
linear system is symmetric positive definite matrix. Therefore, iterative methods
such as Jacobi, Gauss-Seidel, etc. should ever converge to the solution of this
system. In general, the convergence of Gauss-Seidel method can be accelerated by
using a relaxation parameter ω. This give us successive over-relaxation (SOR for
short) method which is chosen for solving the system of difference equations.

For the numerical treatment of the finite difference problem (6.8)–(6.21)
first we solve 1-D difference equations (6.9) and (6.10) on the main mesh ∆ by
algorithm of Chapter 4.

Then on the refinement we define a mesh function

{u(0)
ik;jl | k = 1, . . . , ni, i = 0, . . . , N, l = 1, . . . , mj, j = 0, . . . , M}

by a piecewise linear interpolation of the initial data either in x or y directions.
In each subdomain Ωij, i = 0, . . . , N, j = 0, . . . , M , difference equations

(6.8) can be rewritten in the componentwise form

uik;j,l−2 + 2ui,k−1;j,l−1 − γijuik;j,l−1 + 2ui,k+1;j,l−1 + ui,k−2;jl

−βijui,k−1;jl + αijuik;jl − βijui,k+1;jl + ui,k+2;jl + 2ui,k−1;j,l+1

−γijuik;j,l+1 + 2ui,k+1;j,l+1 + uik;j,l+2 = 0,

or

uik;jl =
1

αij

{
βij

[
ui,k−1;jl + ui,k+1;jl

]
+ γij

[
uik;j,l−1 + uik;j,l+1

]

−2

[
ui,k−1;j,l−1 + ui,k−1;j,l+1 + ui,k+1;j,l−1 + ui,k+1;j,l+1

]

−uik;j,l−2 − uik;j,l+2 − ui,k−2;jl − ui,k+2;jl

}
, (6.31)

where αij = 20 + 2

(
pij

ni

)2

+ 2

(
qij

mj

)2

, βij = 8 +

(
pij

ni

)2

and γij = 8 +

(
qij

mj

)2

.
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Figure 6.1: Interpolation domain with main mesh and a refinement.

Figure 6.2: Subdomain Ωij with
a refinement.

Figure 6.3: Grid stencil in
subdomain Ωij.
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Now to obtain a numerical solution on the refinement we apply in each
subdomain Ωij, i = 0, . . . , N, j = 0, . . . , M , SOR method:

uik;jl =
1

αij

{
βij

[
u

(ν+1)
i,k−1;jl + u

(ν)
i,k+1;jl

]
+ γij

[
u

(ν+1)
ik;j,l−1 + u

(ν)
ik;j,l+1

]

−2

[
u

(ν+1)
i,k−1;j,l−1 + u

(ν)
i,k−1;j,l+1 + u

(ν+1)
i,k+1;j,l−1 + u

(ν)
i,k+1;j,l+1

]

−u
(ν+1)
ik;j,l−2 − u

(ν)
ik;j,l+2 − u

(ν+1)
i,k−2;jl − u

(ν)
i,k+2;jl

}
, (6.32)

u
(ν+1)
ik;jl = u

(ν)
ik;jl + ω(uik;jl − u

(ν)
ik;jl), (6.33)

where 1 < ω < 2, k = 1, . . . , ni − 1, i = 0, . . . , N,
l = 1, . . . , mj − 1, j = 0, . . . , M.

The formula (6.32) gives an approximation by Gauss-Seidel method while
the next step (6.33) is used for the acceleration of the convergence.

Note that near the border of the domain Ω the extra unknowns u0,−1;jl,
uN+1,1;jl, j = 0, . . . , M , l = 1, . . . , mj, and uik;0,−1, uik;M+1,1, i = 0, . . . , N ,
k = 1, . . . , ni are eliminated using the equations (6.19) and (6.20) and do not
participate in the iterations.

The described above approach can be formalized as the following algorithm.

Algorithm 6.1. SOR method for solving the system of difference equations.
Let u be the approximate solution of the system (6.8)–(6.21), ε be an error bound
of exact solution of this system and ν be an iteration number.

1. Input the data
N, M, h, ω, ε,
(xi, yj, fij), i = 0, . . . , N + 1, j = 0, . . . , M + 1,

f
(2,0)
ij , i = 0, . . . , N + 1, j = 0,M + 1,

f
(0,2)
ij , i = 0, N + 1, j = 0, . . . , M + 1,

f
(2,2)
ij , i = 0, N + 1, j = 0,M + 1.

2. Calculate the following quantities:
hi, ni, i = 0, . . . , N,
lj, mj, j = 0, . . . , M,
αij, βij, and γij for each i = 0, . . . , N, j = 0, . . . , M .

3. Define tension parameters pij, qij, i = 0, . . . , N, j = 0, . . . ,M by one of
1-D algorithms of shape preserving interpolation.

4. Solve the difference equations (6.9) and (6.10) as 1-D problems to find:

uik;jl, k =

{
0 if i = 0, . . . , N − 1,
0, nN if i = N,

l = 1, . . . , mj − 1, j = 0, . . . , M,
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uik;jl, k = 1, . . . , ni − 1, i = 0, . . . , N, l =

{
0 if j = 0, . . . ,M − 1,
0,mM if j = M,

u
(2,0)
ik;jl , k =

{
0 if i = 0,
nN if i = N,

l = 1, . . . , mj − 1, j = 0, . . . , M,

u
(0,2)
ik;jl , k = 1, . . . , ni − 1, i = 0, . . . , N, l =

{
0 if j = 0,
mM if j = M.

5. Apply the equations (6.24) to find
u0,−1;jl, uN,nN+1;jl, l = 1, . . . , mj, j = 0, . . . , M ;
uik;0,−1, uik;M,mM+1, k = 1, . . . , ni, i = 0, . . . , N .

6. Find the initial values
u

(0)
ik,jl, k = 1, . . . , ni − 1, i = 0, . . . , N, l = 1, . . . , mj − 1, j = 0, . . . , M

by using a piecewise linear interpolation.

7. Make the iterations:

ν = 0
DO WHILE max

i,k;j,l
|u(ν+1)

ik;jl − u
(ν)
ik;jl| ≥ ε

DO j = 0, . . . , M
DO i = 0, . . . , N

DO l = 1, . . . , mj − 1
DO k = 1, . . . , ni − 1

Find u by the equation (6.32).
Find u(ν+1) by the equation (6.33).

END DO
END DO

END DO
END DO
ν = ν + 1

END DO

8. Print the output
u

(ν)
00;00, u

(ν)
00;jl, u

(ν)
ik;00, and u

(ν)
ik;jl,

k = 1, . . . , ni, i = 0, . . . , N, l = 1, . . . , mj, j = 0, . . . , M .

In this algorithm the computer time, especially the operation count, is
around 18n, i.e. O(n), for each iteration where n is the number of unknowns
in the interpolation problem. The required memory is about n. The algorithm
can be easily converted into a programming code.

6.5 Method of Fractional Steps

In recent years computers’ evolution is going dramatically fast. Computers
have been improved a lot and became much more powerful. One of the new types
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of computers is a multi-processing computer. So, we should develop algorithms
that support and could be suitable for this evolution. In this section we introduce
the method of fractional steps (see N. N. Yanenko (1971)) for solving 2-D shape
preserving interpolation problem. This method splits the original 2-D problem into
a set of 1-D problems. At each step one has to solve m linearly independent 1-D
systems of linear equations where m is the number of 1-D problems in appropriate
direction. Therefore, we can solve each of these systems of linear equations at
every step by m independent parallel processors. This method is preferable for
multi-processing computers.

Let us consider along with the 2-D DMBVP (6.2)–(6.7) the unsteady prob-
lem

∂s

∂t
+ Ls = 0 in each Ωij, i = 0, . . . , N, j = 0, . . . , M, (6.34)

s(x, y, 0) = s0(x, y) (6.35)

with the same smoothness, interpolation and boundary conditions (6.3)–(6.7). De-
note by S(x, y) the solution of the problem (6.2)–(6.7) and by s(x, y, t) the solution
of problem (6.34), (6.35), (6.3)–(6.7). Then

v(x, y, t) = s(x, y, t)− S(x, y)

satisfies the equation (6.34) with the initial conditions

v(x, y, 0) = v0(x, y) = s0(x, y)− S(x, y),

the smoothness conditions (6.5), and zero boundary conditions

v0(x, y) = 0 for (x, y) ∈ ∆,

∂2v0

∂n2

∣∣∣∣
Γ

= 0,

where
∂2v0

∂n2
is the second normal derivative of v0 across the boundary Γ.

The function v(x, y, t) is represented in the form

v(x, y, t) =
∞∑

k1=1

∞∑

k2=1

Aijk1k2(t) sin

(
k1

x− xi

hi

π

)
sin

(
k2

y − yj

lj
π

)
, (6.36)

(x, y) ∈ Ωij, i = 0, . . . , N, j = 0, . . . , M ,
where

Aijk1k2(t) = aijk1k2e
−π2bijt, (6.37)

bij = π2

[(
k1

hi

)2

+

(
k2

lj

)2
]2

+

(
pij

hi

)2 (
k1

hi

)2

+

(
qij

lj

)2 (
k2

lj

)2

is the Fourier coefficient of the function v(x, y, t); aijk1k2 is the Fourier coefficient
of the function v0(x, y) on Ωij.
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Formulae (6.36) and (6.37) can be represented in operator form

v = B(t)v0.

The operator B(t) in space L2(Ω) has the norm

‖B(t)‖ = e−π2bt, b = max
i,j

bij.

It follows from this that

‖B(t)‖ → 0, t →∞.

This means that

‖v(x, y, t)‖ = ‖s(x, y, t)− S(x, y)‖ → 0 as t →∞,

i.e., the solution of the unsteady problem approaches the solution of the steady
problem with the same smoothness, interpolation, and boundary conditions, re-
gardless of the choice of the initial data.

For the numerical solution of the generalized thin plate equation (6.2)
we consider in each rectangular Ωij, i = 0, . . . , N, j = 0, . . . , M, the following
splitting scheme (see N. N. Yanenko (1971))

un+1/2 − un

τ
+ Ψ1u

n+1/2 + Ψ3u
n = 0, (6.38a)

un+1 − un+1/2

τ
+ Ψ2u

n+1 + Ψ3u
n+1/2 = 0, (6.38b)

where

u =
{

uik;jl | k = 1, . . . , ni − 1; i = 0, . . . , N ; l = 1, . . . , mj − 1; j = 0, . . . , M
}

,

Ψ1 = Λ2
1 − pΛ1, Ψ2 = Λ2

2 − qΛ2, Ψ3 = Λ1Λ2, p = (pij/hi)
2, q = (qij/lj)

2.

Equation (6.38) can be rewritten in the following form

(I + τΨ1)u
n+1/2 = (I − τΨ3)u

n,
(I + τΨ2)u

n+1 = (I − τΨ3)u
n+1/2,

}
(6.39)

where I is an identity operator.
Eliminating from the equations (6.39) the fractional step un+1/2 yields

(I + τΨ1)(I + τΨ2)u
n+1 = (I − τΨ3)

2un

or [
I + τ (Ψ1 + Ψ2) + τ 2Ψ1Ψ3

]
un+1 =

[
I − 2τΨ3 + τ 2Ψ2

3

]
un.

After some simple transformations we obtain the following scheme, equiva-
lent to the scheme (6.38),

un+1 − un

τ
+ (Ψ1 + Ψ2)u

n+1 + 2Ψ3u
n + τ(Ψ1Ψ2u

n+1 −Ψ2
3u

n) = 0. (6.40)
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It follows from this that the scheme (6.40) and the equivalent scheme (6.38) approx-
imate the unsteady generalized thin plate equation (6.34) with the same accuracy
O(τ + h2) as the scheme

un+1 − un

τ
+ (Ψ1 + Ψ2)u

n+1 + 2Ψ3u
n = 0.

Let us prove the unconditional stability of the scheme (6.38) or, what is
equivalent, the scheme (6.40). Using usual harmonic analysis (see N. N. Yanenko
(1971)), assume that

un = ηneiπz, un+1/2 = ηn+1/2e
iπz, z = k1

x− xi

hi

+ k2
y − yj

lj
. (6.41)

Substituting equations (6.41) into equations (6.38) we obtain for amplification
factors

%1 =
ηn+1/2

ηn

=
1− a1a2

1− p
√

τa1 + a2
1

, %2 =
ηn+1

ηn+1/2

=
1− a1a2

1− q
√

τa2 + a2
2

,

% = %1%2 =
(1− a1a2)

2

(1− p
√

τa1 + a2
1)(1− q

√
τa2 + a2

2)
,

where

a1 = −4
√

τ

h2
sin2

(
k1h

2

π

hi

)
, k1 = 1, . . . , ni − 1, nih = hi,

a2 = −4
√

τ

h2
sin2

(
k2h

2

π

lj

)
, k2 = 1, . . . , mj − 1, mjh = lj.

It follows from this that

0 ≤ % =
(1− a1a2)

2

(1− p
√

τa1 + a2
1)(1− q

√
τa2 + a2

2)

≤ (1− a1a2)
2

(1 + a2
1)(1 + a2

2)
=

(1− a1a2)
2

1 + a2
1 + a2

2 + a2
1a

2
2

≤
(

1− a1a2

1 + a1a2

)2

< 1

for any τ . The absolute stability of the scheme (6.38) is proved.
Thus, with the above proven approximation property and strong stability

of the scheme (6.38) the solutions un of the problem (6.34), (6.35), (6.3)–(6.7)
approaches the solution u of the problem (6.2)–(6.7) if n → ∞. However the
scheme (6.38) has the property of incomplete approximation (see N. N. Yanenko
(1971)). By this reason in iterations we have to use small values of the iteration
parameter τ , e.g.,

√
τ/h2 = constant.

Algorithm 6.2. Method of fractional steps for solving difference equations.
Let u be the approximate solution of the finite-difference problem (6.8)–

(6.21), ε be an error bound of exact solution of this system and ν be an iteration
number.
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1. Input the data
N, M, τ, h, ε,
(xi, yj, fij), i = 0, . . . , N + 1, j = 0, . . . , M + 1,

f
(2,0)
ij , i = 0, . . . , N + 1, j = 0,M + 1,

f
(0,2)
ij , i = 0, N + 1, j = 0, . . . , M + 1,

f
(2,2)
ij , i = 0, N + 1, j = 0,M + 1.

2. Calculate the following quantities:
hi, ni, i = 0, . . . , N,
lj, mj, j = 0, . . . , M .

3. Define tension parameters pij, qij, i = 0, . . . , N, j = 0, . . . , M , by one of
1-D algorithms of shape preserving interpolation.

4. Solve the difference equations (6.9) and (6.10) as 1-D problems to find:

uik;jl, k =

{
0 if i = 0, . . . , N − 1,
0, nN if i = N,

l = 1, . . . , mj − 1, j = 0, . . . , M,

uik;jl, k = 1, . . . , ni − 1, i = 0, . . . , N, l =

{
0 if j = 0, . . . ,M − 1,
0,mM if j = M,

u
(2,0)
ik;jl , k =

{
0 if i = 0,
nN if i = N,

l = 1, . . . , mj − 1, j = 0, . . . , M,

u
(0,2)
ik;jl , k = 1, . . . , ni − 1, i = 0, . . . , N, l =

{
0 if j = 0,
mM if j = M.

5. Apply the equations (6.24) to find
u0,−1;jl, uN,nN+1;jl, l = 1, . . . , mj, j = 0, . . . , M ;
uik;0,−1, uik;M,mM+1, k = 1, . . . , ni, i = 0, . . . , N .

6. Find the initial values
u

(0)
ik,jl, k = 1, . . . , ni − 1, i = 0, . . . , N, l = 1, . . . , mj − 1, j = 0, . . . , M

by using a piecewise linear interpolation.
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7. Make the iterations:

ν = 0
DO WHILE max

i,k;j,l
|u(ν+1)

ik;jl − u
(ν)
ik;jl| ≥ ε

DO j = 0, . . . , M
DO i = 0, . . . , N

DO l = 1, . . . ,mj − 1

Find u
(ν+1/2)
ik,jl , k = 1, . . . , ni − 1, i = 0, . . . , N ,

by the equation (6.38a).
END DO
DO k = 1, . . . , ni − 1

Find u
(ν+1)
ik,jl , l = 1, . . . , mj − 1, j = 0, . . . , M ,

by the equation (6.38b).
END DO

END DO
END DO
ν = ν + 1

END DO

8. Print the output
u

(ν)
00;00, u

(ν)
00;jl, u

(ν)
ik;00, and u

(ν)
ik;jl,

k = 1, . . . , ni, i = 0, . . . , N, l = 1, . . . , mj, j = 0, . . . , M .

The computer time, especially the operation count, in this algorithm is
around 52n, i.e., O(n), for each iteration where n is the number of unknowns
in the interpolation problem. However, since the numerical solution is updated
at each fractional step, the number of iterations is usually smaller than that in
SOR iterative method. The required memory is again about n. In general, the
method of fractional steps seems to be more preferable and more flexible than SOR
iterative method. It can work on both single and multi-processing computers.

6.6 Numerical Experiments and Examples

The algorithms introduced in the previous sections works well on more
general data than used in examples given below. If the algorithm fails in the
data monotonicity and/or convexity on some intervals then we have to increase
the values of the corresponding tension parameters using algorithm of automatic
selection of shape control parameters. This provides the properties of monotonicity
and convexity for any data.



96

Example 6.1. We tried to reconstruct the surface which interpolates the data
(xi, yj, f̃ij) obtained by taking of Akima’s data in Table 4.1 both in x and y direc-

tions and using the formula f̃ij = fi + fj. Figures 6.4 and 6.5 show data points
and the three-dimensional view of the initial data. As shown in Figure 6.6, the
usual thin plate spline with zero tension parameters does not preserve the mono-
tonicity and convexity properties of the initial data. On the other hand, the shape
preserving thin plate spline in Figure 6.7 perfectly reproduces the data shape and
simultaneously keeps a smooth surface.

Table 6.1 shows the numerical results obtained by applying SOR iterative
method with optimal value of the relaxation parameter ω and by the method of
fractional steps with ε = 0.0005 on a single processor computer. The method of
fractional steps converges about three times faster than the SOR iterative method.
But as was observed in the previous sections, the operation count at each step of
the SOR iterative method is about three times less than that of the method of
fractional steps. Therefore, the performance of both methods on a single processor
computer is about the same. However, on a multi-processing computer the method
of fractional steps should be faster than the SOR iterative method. Therefore, the
method of fractional steps seems to be more preferable and flexible because it
supports and works on both platforms.

Table 6.1: The numerical results in Example 6.1.

Method
Tension Iteration Count

Parameters n = 5 n = 10
SOR 0 37 342

Splitting 0 13 119
SOR Optimal 28 319

Splitting Optimal 12 109

Remark: We call optimal tension parameters the smallest possible values of ten-
sion parameters which permit to preserve the data shape. In Table 6.1 (and in
Tables 6.2–6.6 below) we denote by n (= ni = mj) the number of nodes of the
refinement in each rectangular Ωij in x and y direction.
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Figure 6.4: The data points. Figure 6.5: 3-D view of the initial data.
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Figure 6.6: Thin plate surface with zero tension parameters.
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Figure 6.7: Thin plate surface with optimal tension parameters.
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Example 6.2. We tried to reconstruct the surface with the initial data shown
in Figure 6.8. Figure 6.9 was obtained by setting all tension parameters to zero.
This surface does not preserve the shape properties of the data. The new surface
shown in Figure 6.10 was obtained by adjusting the tension parameters.

Table 6.2 shows the numerical results obtained by using SOR iterative
method with optimal value of the relaxation parameter ω and by the method
of fractional steps with ε = 0.0005. The rate of convergence and the results for
both methods are similar as in the previous example.

Table 6.2: The numerical results in Example 6.2.

Method
Tension Iteration Count

Parameters n = 5 n = 10
SOR 0 18 78

Splitting 0 7 36
SOR Optimal 8 17

Splitting Optimal 3 9
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Figure 6.8: The initial data.
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Figure 6.9: The surface with zero tension parameters.
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Figure 6.10: The surface with optimal tension parameters.
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Example 6.3. We tried to reconstruct the surface by the data of Thailand’s to-
pography. The initial data was obtained from Mr. Boonleart A. of King Mongkut’s
University of Technology Thonburi, Bangkok. Three-dimensional view of the ini-
tial data is shown in Figure 6.11. Figure 6.12 was obtained by setting all tension
parameters to zero. The surface in Figure 6.12 does not preserve the shape of
the data. The new surface which preserves the shape of data was obtained by
adjusting the tension parameters and shown in Figure 6.13.

Table 6.3 shows the numerical results obtained by SOR iterative method
with optimal value of the relaxation parameter ω and by the method of fractional
steps with ε = 0.0005. The rate of convergence and the other characteristics of
both methods are again very similar.

Table 6.3: The numerical results in Example 6.3.

Method
Tension Iteration Count

Parameters n = 5 n = 10
SOR 0 42 384

Splitting 0 15 149
SOR Optimal 44 381

Splitting Optimal 15 134
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Figure 6.11: The initial data.
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Figure 6.12: The surface with zero tension parameters.
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Figure 6.13: The surface with optimal tension parameters.



102

Example 6.4. We tried to reconstruct the surface of the aircraft data. The ini-
tial data was given by Dr. Boris I. Kvasov of Suranaree University of Technology.
Three-dimensional views of the initial data are shown in Figures 6.14 (first pro-
jection), 6.17 (second projection), and 6.20 (third projection). Figures 6.15, 6.18,
and 6.21 were obtained by setting all tension parameters to zero. The surfaces
in Figures 6.15, 6.18, and 6.21 do not preserve the shape of the data. The new
surfaces which preserve the shape of data were obtained by adjusting the tension
parameters and shown in Figures 6.16, 6.19 and 6.22.

Table 6.4 shows the numerical results obtained by SOR iterative method
with optimal value of the relaxation parameter ω and by the method of fractional
steps with ε = 0.0005. The rate of convergence and the other features of both
methods are again very similar.

Table 6.4: The numerical results in Example 6.4.

Method
Tension Iteration Count

Parameters n = 5 n = 10
SOR 0 28 161

Splitting 0 9 67
SOR Optimal 28 184

Splitting Optimal 9 68
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Figure 6.14: The initial data. First projection.
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Figure 6.15: The surface with zero tension parameters. First projection.
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Figure 6.16: The surface with optimal tension parameters. First projection.
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Figure 6.17: The initial data. Second projection.
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Figure 6.18: The surface with zero tension parameters. Second projection.
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Figure 6.19: The surface with optimal tension parameters. Second projection.
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Figure 6.20: The initial data. Third projection.
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Figure 6.21: The surface with zero tension parameters. Third projection.

0 50 100 150 200 250 300 350 400
−20

0

20

40

60

80

100

120

Figure 6.22: The surface with optimal tension parameters. Third projection.
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Example 6.5. We tried to reconstruct the surface by the data of the Viking
boat. The initial data was given by Dr. Boris I. Kvasov of Suranaree University
of Technology. Three-dimensional views of the initial data is shown in Figure
6.23. Figure 6.24 shows the piecewise linear interpolation of the initial data which
is not smooth. Figure 6.25 was obtained by setting all tension parameters to
zero. The surface in Figure 6.25 does not preserve the shape of the data. The
new surface which preserves the shape of the data was obtained by adjusting the
tension parameters and shown in Figure 6.26.

Table 6.5 shows the numerical results obtained by SOR iterative method
with optimal value of the relaxation parameter ω and by the method of fractional
steps with ε = 0.0005. The rate of convergence and the other characteristics of
both methods are again very similar.

Table 6.5: The numerical results in Example 6.5.

Method
Tension Iteration Count

Parameters n = 5 n = 10
SOR 0 38 349

Splitting 0 14 128
SOR Optimal 38 349

Splitting Optimal 14 129
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Figure 6.23: The initial data.
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Figure 6.24: The surface with very large tension parameters.
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Figure 6.25: The surface with zero tension parameters.
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Figure 6.26: The surface with optimal tension parameters.
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Example 6.6. We tried to reconstruct the surface of test function with the scat-
tered data,

f(x, y) =
3

4
e−

1
4
[(9x−2)2+(9y−2)2] +

3

4
e−[ 1

49
(9x+1)2+ 1

10
(9y+1)]

−1

5
e−[(9x−4)2+(9y−7)2] +

1

2
e−

1
4
[(9x−7)2+(9y−3)2].

This function is well known and usually used for testing each algorithm. Three-
dimensional views of the test function was shown in Figure 6.27. Figures 6.28 and
6.29 were the initial grid and data points. Figure 6.30 was obtained by setting all
tension parameters to zero. That is considering an approximation of the usual thin
plate splines interpolating the data. Figure 6.31 was obtained by setting optimal
values of all tension parameters. These two figures are quite similar.

Table 6.6 shows the numerical results obtained by SOR iterative method
with optimal value of the relaxation parameter ω and by the method of fractional
steps with ε = 0.0005. The rate of convergence and the other characteristics of
both methods are again very similar.

Table 6.6: The numerical results of Example 6.6.

Method
Tension Iteration Count

Parameters n = 5 n = 10
SOR 0 20 81

Splitting 0 7 37
SOR Optimal 20 81

Splitting Optimal 7 38

.
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Figure 6.27: 3-D view of the test function.
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Figure 6.28: The data points. Figure 6.29: The initial data.
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Figure 6.30: The surface with zero ten-
sion parameters.

Figure 6.31: The surface with optimal
tension parameters.



Chapter VII

Conclusions

This thesis aims to develop new efficient algorithms for solving the problem
of shape preserving spline interpolation. Based on formulation of this problem as
1-D and 2-D DMBVP we developed finite-difference methods for approximation
and representation of curves and surfaces that arise when these objects have to
be processed by a computer. The obtained algorithms have substantial compu-
tational advantages, and can work both on single- and multi-processing computers.

The main results of the thesis can be summarized as follows:

1. The problem of shape preserving spline interpolation is formulated as 1-D
and 2-D DMBVP for hyperbolic and thin plate tension splines.

2. Difference approximations for the numerical treatment of both 1-D and 2-D
DMBVP are constructed.

3. The difference equations are transformed into a matrix form with positive
definite matrix of a special structure.

4. Condition number of the matrix is estimated which is independent of the
number of data points but substantially depends of the refinement.

5. The existence of the mesh solution is proved by constructing its extension
as a discrete hyperbolic spline.

6. An upper bound for the distance between a discrete hyperbolic spline and
the corresponding continuous one is established.

7. Explicit formulae and recurrence relations are obtained for discrete GB-
splines. Properties of discrete GB-splines and their series are studied. It
is shown that the series of discrete GB-splines is a variation diminishing
function and the systems of discrete GB-splines are weak Chebyshev sys-
tems.

8. Direct algorithms for solving the system of difference equations are devel-
oped.

9. SOR iterative method for the numerical solution of 2-D finite-difference sys-
tem is considered.
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10. Finite-difference scheme in fractional steps for the numerical solution of 2-D
DMBVP is suggested and investigated. It is shown that this scheme has
properties of approximation and absolute stability.

11. Computer codes in FORTRAN 90 and MATLAB are developed to test our
algorithms of shape preserving spline interpolation.

12. The features and advantages of the new approach in constructing shape
preserving hyperbolic and thin plate tension splines are illustrated by some
(famous) examples.

The results of the thesis can be used in many applied problems and first of
all in CAGD (design of curves and surfaces in the construction of different product
such as car bodies, ship hulls, airplane fuselages, etc.). Other applications include
the description of geological, physical and medical phenomena, image analysis,
high resolution TV system, cartography, etc.
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Appendix A

A Description of the Right Side
in the Matrix Equation (6.27)

For writing a computer code it is important to have a detailed description
of the right side in the matrix formulation (6.27) of the finite-difference system
(6.8)–(6.21),

Au = b

where

b = {bik;jl | k = 1, . . . , ni − 1; i = 0, . . . , N ; l = 1, . . . ,mj − 1; j = 0, . . . ,M}.

Given below expressions for components bik;jl were obtained by using equation
(6.24) and equation for 1-D DMBVP.

for k = 3, . . . , ni − 3; i = 0, . . . , N ; l = 3, . . . ,mj − 3; j = 0, . . . ,M ,
bik;jl = 0,

for k = 3, . . . , ni − 3; i = 0, . . . , N ; l = 2; j = 0, . . . ,M ,
bik;jl = −uik;j,l−2,

for k = 3, . . . , ni − 3; i = 0, . . . , N ; l = mj − 2; j = 0, . . . , M ,
bik;jl = −uik;j,l+2,

for k = 3, . . . , ni − 3; i = 0, . . . , N ; l = 1; j = 1, . . . ,M ,
bik;jl = γijuik;j,l−1 − 2(ui,k−1;j,l−1 + ui,k+1;j,l−1),

for k = 3, . . . , ni − 3; i = 0, . . . , N ; l = 1; j = 0,
bik;jl = γijuik;j,l−1− h2f

(0,2)
ik;j,l−1− 2(ui,k;j,l−1 + ui,k−1;j,l−1 + ui,k+1;j,l−1),

for k = 3, . . . , ni − 3; i = 0, . . . , N ; l = mj − 1; j = 0, . . . , M − 1,
bik;jl = γijuik;j,l+1 − 2(ui,k−1;j,l+1 + ui,k+1;j,l+1),

for k = 3, . . . , ni − 3; i = 0, . . . , N ; l = mj − 1; j = M ,

bik;jl = γijuik;j,l+1− h2f
(0,2)
ik;j,l+1− 2(ui,k;j,l+1 + ui,k−1;j,l+1 + ui,k+1;j,l+1),
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for k = 2; i = 0, . . . , N ; l = 3, . . . , mj − 3; j = 0, . . . , M ,
bik;jl = −uik−2;jl,

for k = ni − 2; i = 0, . . . , N ; l = 3, . . . , mj − 3; j = 0, . . . , M ,
bik;jl = −ui,k+2;jl,

for k = 1; i = 1, . . . , N ; l = 3, . . . , mj − 3; j = 0, . . . , M ,
bik;jl = βijui,k−1;jl − 2(ui,k−1;j,l−1 + ui,k−1;j,l+1),

for k = 1; i = 0; l = 3, . . . , mj − 3; j = 0, . . . , M ,

bik;jl = βijui,k−1;jl − h2f
(2,0)
i,k−1;jl − 2(ui,k−1;jl + ui,k−1;j,l−1 + ui,k−1;j,l+1),

for k = ni − 1; i = 0, . . . , N − 1; l = 3, . . . , mj − 3; j = 0, . . . , M ,
bik;jl = βijui,k+1;jl − 2(ui,k+1;j,l−1 + ui,k+1;j,l+1),

for k = ni − 1; i = N ; l = 3, . . . ,mj − 3; j = 0, . . . ,M ,

bik;jl = βijui,k+1;jl − h2f
(2,0)
i,k+1;jl − 2(ui,k+1;jl + ui,k+1;j,l−1 + ui,k+1;j,l+1),

for k = 2; i = 0, . . . , N ; l = 2; j = 0, . . . , M ,
bik;jl = −ui,k−2;jl − uik;j,l−2,

for k = 2; i = 0, . . . , N ; l = mj − 2; j = 0, . . . , M ,
bik;jl = −ui,k−2;jl − uik;j,l+2,

for k = ni − 2; i = 0, . . . , N ; l = 2; j = 0, . . . , M ,
bik;jl = −ui,k+2;jl − uik;j,l−2,

for k = ni − 2; i = 0, . . . , N ; l = mj − 2; j = 0, . . . ,M ,
bik;jl = −ui,k+2;jl − uik;j,l+2,

for k = 1; i = 0; l = 2; j = 0, . . . , M ,
bik;jl = βijui,k−1;jl − h2f

(2,0)
i,k−1;jl − 2(ui,k−1;j,l−1 + ui,k−1;jl + ui,k−1;j,l+1),

for k = 1; i = 1, . . . , N ; l = 2; j = 0, . . . , M ,
bik;jl = βijui,k−1;jl − uik;j,l−2 − 2(ui,k−1;j,l−1 + ui,k−1;j,l+1),

for k = ni − 1; i = 0, . . . , N − 1; l = 2; j = 0, . . . , M ,
bik;jl = βijui,k+1;jl − uik;j,l−2 − 2(ui,k+1;j,l−1 + ui,k+1;j,l+1),

for k = ni − 1; i = N ; l = 2; j = 0, . . . ,M ,
bik;jl = βijui,k+1;jl − h2f

(2,0)
i,k+1;jl − 2(ui,k+1;j,l−1 + ui,k+1;jl + ui,k+1;j,l+1),

for k = 2; i = 0, . . . , N ; l = 1; j = 0,
bik;jl = γijuik;j,l−1−ui,k−2;jl−h2f

(0,2)
ik;j,l−1−2(ui,k−1;j,l−1+uik;j,l−1+ui,k+1;j,l−1),



123

for k = 2; i = 0, . . . , N ; l = 1; j = 1, . . . , M ,
bik;jl = γijuik;j,l−1 − ui,k−2;jl − 2(ui,k−1;j,l−1 + ui,k+1;j,l−1),

for k = 2; i = 0, . . . , N ; l = mj − 1; j = 0, . . . , M − 1,
bik;jl = γijuik;j,l−1 − ui,k+2;jl − 2(ui,k−1;j,l−1 + ui,k+1;j,l−1),

for k = 2; i = 0, . . . , N ; l = mj − 1; j = M ,

bik;jl = γijuik;j,l−1−ui,k+2;jl−h2f
(0,2)
ik;j,l−1−2(ui,k−1;j,l−1+uik;j,l−1+ui,k+1;j,l−1),

for k = 1; i = 1, . . . , N ; l = 1; j = 1, . . . , M ,
bik;jl = βijui,k−1;jl + γijuik;j,l−1 − 2(ui,k−1;j,l+1 + ui,k+1;j,l−1 + ui,k−1;j,l−1),

for k = 1; i = 1, . . . , N ; l = mj − 1; j = 0, . . . , M − 1,
bik;jl = βijui,k−1;jl + γijuik;j,l+1 − 2(ui,k−1;j,l+1 + ui,k+1;j,l+1 + ui,k−1;j,l−1),

for k = 1; i = 1, . . . , N ; l = mj − 1; j = M ,
bik;jl = βijui,k−1;jl − 2(ui,k−1;j,l+1 + ui,k+1;j,l+1 + ui,k−1;j,l−1 + uik;j,l+1)

+γijuik;j,l+1 − h2f
(0,2)
ik;j,l+1,

for k = 1; i = 0; l = 1; j = 1, . . . , M ,
bik;jl = βijui,k−1;jl − 2(ui,k−1;j,l+1 + ui,k+1;j,l−1 + ui,k−1;j,l−1 + ui,k−1;jl)

+γijuik;j,l−1 − h2f
(2,0)
i,k−1;jl,

for k = 1; i = 0; l = mj − 1; j = 0, . . . , M − 1,
bik;jl = βijui,k−1;jl − 2(ui,k−1;j,l+1 + ui,k+1;j,l+1 + ui,k−1;j,l−1 + ui,k−1;jl)

+γijuik;j,l+1 − h2f
(2,0)
i,k−1;jl,

for k = 1; i = 0; l = mj − 1; j = M ,
bik;jl = βijui,k−1;jl−2(ui,k−1;j,l+1+ui,k+1;j,l+1+ui,k−1;j,l−1+uik;j,l+1+ui,k−1;jl)

+γijuik;j,l+1 − h2(f
(0,2)
ik;j,l+1 + f

(2,0)
i,k−1;jl),

for k = ni − 1; i = 0, . . . , N − 1; l = 1; j = 1, . . . , M ,
bik;jl = βijui,k+1;jl + γijuik;j,l−1 − 2(ui,k+1;j,l+1 + ui,k+1;j,l−1 + ui,k−1;j,l−1),

for k = ni − 1; i = 0, . . . , N − 1; l = mj − 1; j = 0, . . . ,M − 1,
bik;jl = βijui,k+1;jl + γijuik;j,l+1 − 2(ui,k+1;j,l+1 + ui,k+1;j,l−1 + ui,k−1;j,l+1),

for k = ni − 1; i = 0, . . . , N − 1; l = mj − 1; j = M ,
bik;jl = βijui,k+1;jl − 2(ui,k−1;j,l+1 + ui,k+1;j,l−1 + ui,k+1;j,l+1 + uik;j,l+1)

+γijuik;j,l+1 − h2f
(0,2)
ik;j,l+1,

for k = ni − 1; i = N ; l = 1; j = 1, . . . ,M ,
bik;jl = βijui,k+1;jl − 2(ui,k−1;j,l−1 + ui,k+1;j,l+1 + ui,k+1;j,l−1 + ui,k+1;jl)

+γijuik;j,l−1 − h2f
(2,0)
i,k+1;jl,



124

for k = ni − 1; i = N ; l = mj − 1; j = 0, . . . , M − 1,
bik;jl = βijui,k+1;jl − 2(ui,k−1;j,l+1 + ui,k+1;j,l−1 + ui,k+1;j,l+1 + ui,k+1;jl)

+γijuik;j,l+1 − h2f
(2,0)
i,k+1;jl,

for k = ni − 1; i = N ; l = mj − 1; j = M ,
bik;jl = βijui,k+1;jl−2(ui,k−1;j,l+1+ui,k+1;j,l−1+ui,k−1;j,l+1+uik;j,l+1+ui,k+1;jl)

+γijuik;j,l+1 − h2(f
(0,2)
ik;j,l+1 + f

(2,0)
i,k+1;jl),

βij = 8 +

(
pij

ni

)2

; γij = 8 +

(
qij

mj

)2

, i = 0, . . . , N ; j = 0, . . . , M.



Appendix B

Fortran 90 Programming Code
for Solving 1-D DMBVP

PROGRAM DMBVP1D ! ! BY MR.ANIRUT LUADSONG ! OCT 2001 ! SOLVING 1-D

DMBVP !

IMPLICIT NONE

INTEGER :: i,j,ii,BN,M,MM

REAL :: TAU,F2P_0,F2P_END,DET_A,TMP1

INTEGER,DIMENSION (:), ALLOCATABLE :: N_I

REAL,DIMENSION (:), ALLOCATABLE :: X,F,H,P

REAL,DIMENSION (:), ALLOCATABLE :: U,B,BA1,BA2,BA3

REAL,DIMENSION (:), ALLOCATABLE :: A_I,B_I,OMEGA_I

OPEN (21, FILE = ’B.TXT’)

OPEN (22, FILE = ’BA1.TXT’)

OPEN (23, FILE = ’BA2.TXT’)

OPEN (24, FILE = ’BA3.TXT’)

OPEN (25, FILE = ’U.TXT’)

OPEN (26, FILE = ’INPUT.TXT’)

OPEN (27, FILE = ’X.TXT’)

READ(26,*) BN,TAU,F2P_0,F2P_END

ALLOCATE (X(BN+2),F(BN+2),H(BN+1),P(BN+1),N_I(BN+1))

ALLOCATE (A_I(BN+1),B_I(BN+1),OMEGA_I(BN+1))

DO i=1,BN+1

READ(26,*) X(i),F(i),P(i)

END DO

READ(26,*) X(BN+2),F(BN+2)

DO i=1,BN+1

H(i) = X(i+1)-X(i)

END DO

MM = 0

DO i=1,BN+1

N_I(i) = INT(H(i)/TAU+0.5)

MM = MM+N_I(i)

END DO

M = MM-BN-1

ALLOCATE (U(M),B(M),BA1(M),BA2(M-1),BA3(M-2))

DO i=1,BN+1

OMEGA_I(i) = (P(i)/N_I(i))*(P(i)/N_I(i))

A_I(i) = -OMEGA_I(i)-4

B_I(i) = 6+2*OMEGA_I(i)

END DO

ii = 0

DO i=1,BN+1

ii = ii+1

IF (i.EQ.1) THEN

B(ii) = -TAU*TAU*F2P_0-(2+A_I(i))*F(i)

BA1(ii) = B_I(i)-1

ELSE

B(ii) = -A_I(i)*F(i)

BA1(ii) = B_I(i)

BA2(ii-1) = 1.0

BA3(ii-2) = 0.0

END IF

ii = ii+1

B(ii) = -F(i)

BA1(ii) = B_I(i)

BA2(ii-1) = A_I(i)

IF (i.GT.1) THEN
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BA3(ii-2) = 0.0

END IF

DO j=3,N_I(i)-3

ii = ii+1

B(ii) = 0.0

BA1(ii) = B_I(i)

BA2(ii-1) = A_I(i)

BA3(ii-2) = 1.0

END DO

ii = ii+1

B(ii) = -F(i+1)

BA1(ii) = B_I(i)

BA2(ii-1) = A_I(i)

BA3(ii-2) = 1.0

ii = ii+1

IF (i.EQ.BN+1) THEN

B(ii) = -TAU*TAU*F2P_END-(2+A_I(i))*F(i+1)

BA1(ii) = B_I(i)-1

ELSE

B(ii) = -A_I(i)*F(i+1)

BA1(ii) = B_I(i)

END IF

BA2(ii-1) = A_I(i)

BA3(ii-2) = 1.0

END DO

CALL SUB5DIAG(M,B,BA1,BA2,BA3,U,DET_A)

ii = 0

DO i=1,BN+1

WRITE(25,*) F(i)

WRITE(27,*) X(i)

TMP1 = X(i)

DO j=1,N_I(i)-1

ii = ii+1

WRITE(25,*) U(ii)

TMP1 = TMP1+TAU

WRITE(27,*) TMP1

END DO

END DO

WRITE(25,*) F(BN+2)

WRITE(27,*) X(BN+2)

DO i=1,M

WRITE(21,*) B(i)

WRITE(22,*) BA1(i)

END DO

DO i=1,M-1

WRITE(23,*) BA2(i)

END DO

DO i=1,M-2

WRITE(24,*) BA3(i)

END DO

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

CLOSE(26)

CLOSE(27)

PRINT*,’ det(A) = ’, DET_A

END PROGRAM DMBVP1D

SUBROUTINE SUB5DIAG(N,B,D,F,E,X,DET_A)

!

! BY MR.ANIRUT LUADSONG

!

! GIVEN: Ax=b WITH A FIVE-DIAGONAL SYMMETRIC STRONGLY NONSINGULAR MATRIX A

! FIND : SOLUTION x.

!

IMPLICIT NONE

INTEGER :: N,i

REAL,DIMENSION (N) :: B,D,X

REAL,DIMENSION (N-2) :: E

REAL,DIMENSION (N-1) :: F

REAL,DIMENSION (:), ALLOCATABLE :: C,Z

REAL,DIMENSION (:), ALLOCATABLE :: ALPHA,GAMMA,DELTA

REAL :: DET_A

ALLOCATE (C(N),Z(N))

ALLOCATE (ALPHA(N),GAMMA(N-1),DELTA(N-2))

!

! 1st STEP: FACTOR A=LDL^T

!
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ALPHA(1) = D(1)

GAMMA(1) = F(1)/ALPHA(1)

DELTA(1) = E(1)/ALPHA(1)

ALPHA(2) = D(2)-F(1)*GAMMA(1)

GAMMA(2) = (F(2)-E(1)*GAMMA(1))/ALPHA(2)

DELTA(2) = E(2)/ALPHA(2)

DO i=3,N-2

ALPHA(i) = D(i)-E(i-2)*DELTA(i-2)-ALPHA(i-1)*GAMMA(i-1)*GAMMA(i-1)

GAMMA(i) = (F(i)-E(i-1)*GAMMA(i-1))/ALPHA(i)

DELTA(i) = E(i)/ALPHA(i)

END DO

ALPHA(N-1) = D(N-1)-E(N-3)*DELTA(N-3)-ALPHA(N-2)*GAMMA(N-2)*GAMMA(N-2)

GAMMA(N-1) = (F(N-1)-E(N-2)*GAMMA(N-2))/ALPHA(N-1)

ALPHA(N) = D(N)-E(N-2)*DELTA(N-2)-ALPHA(N-1)*GAMMA(N-1)*GAMMA(N-1)

!

! 2nd STEP: UPDATE Lz=b, Dc=z

!

Z(1) = B(1)

Z(2) = B(2)-GAMMA(1)*Z(1)

DO i=3,N

Z(i) = B(i)-GAMMA(i-1)*Z(i-1)-DELTA(i-2)*Z(i-2)

END DO

DO i=1,N

C(i) = Z(i)/ALPHA(i)

END DO

!

! 3rd STEP: BACKSUBSTITUTION L^Tx=c

!

X(N) = C(N)

X(N-1) = C(N-1)-GAMMA(N-1)*X(N)

DO i=N-2,1,-1

X(i) = C(i)-GAMMA(i)*X(i+1)-DELTA(i)*X(i+2)

END DO

!

! FIND DET(A)

!

DET_A = ALPHA(1)

DO i=2,N

DET_A = DET_A*ALPHA(i)

IF (ABS(DET_A) .GT. 1.0E30) THEN

DET_A=999

GOTO 999

END IF

END DO

999 CONTINUE END SUBROUTINE SUB5DIAG



Appendix C

Fortran 90 Programming Code
for Solving 2-D DMBVP

PROGRAM SP2DPM

!

! BY MR.ANIRUT LUADSONG

! Feb 2002

! SOLVING 2-D DMBVP WITH PARAMETRIC VARIABLES BY SPLITTING METHOD

! AND USING MPI LIBRARY FOR PARALLEL COMPUTER

!

IMPLICIT NONE

INCLUDE ’mpif.h’

INTEGER :: my_id,root_process,ierr,num_procs,status(MPI_STATUS_SIZE)

INTEGER :: i,j,MX,MY,AUTO_TENSION_X,AUTO_TENSION_Y,AUTO_TENSION_F

INTEGER :: N,NUM_PT_X,NUM_PT_Y

REAL :: EPS,LOWER_QX,LOWER_QY,LOWER_QF,TMP1

REAL,DIMENSION (:), ALLOCATABLE :: X,Y

REAL,DIMENSION (:,:), ALLOCATABLE :: F,OUT_U,XXX,YYY,XX,YY

REAL,DIMENSION (:,:), ALLOCATABLE :: P,Q,PX,PY,QX,QY

REAL,DIMENSION (:,:), ALLOCATABLE :: P1,Q1,P1X,P1Y,Q1X,Q1Y

root_process = 0

CALL MPI_INIT(ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_id, ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, num_procs, ierr)

IF (my_id .EQ. root_process) THEN

OPEN (21, FILE = ’2D_U.TXT’)

OPEN (22, FILE = ’SPLIT_IN.TXT’)

OPEN (23, FILE = ’2D_X.TXT’)

OPEN (24, FILE = ’2D_Y.TXT’)

OPEN (25, FILE = ’SIZE.TXT’)

OPEN (26, FILE = ’2D_PQX.TXT’)

OPEN (27, FILE = ’2D_PQY.TXT’)

OPEN (28, FILE = ’2D_PQF.TXT’)

OPEN (29, FILE = ’2D_PQX.OUT’)

OPEN (30, FILE = ’2D_PQY.OUT’)

OPEN (31, FILE = ’2D_PQF.OUT’)

!

! READ DATA FROM THE HEADER OF FILE SPLIT_IN.TXT

!

READ(22,*) NUM_PT_X,NUM_PT_Y,N,EPS

READ(22,*) AUTO_TENSION_X,AUTO_TENSION_Y,AUTO_TENSION_F, &

LOWER_QX,LOWER_QY,LOWER_QF

MX = (N-1)*(NUM_PT_X-1)

MY = (N-1)*(NUM_PT_Y-1)

!

! ASSIGNING THE SIZE OF EACH ARRAY

!

ALLOCATE(X(NUM_PT_X),Y(NUM_PT_Y))

ALLOCATE(XX(NUM_PT_X,NUM_PT_Y),YY(NUM_PT_X,NUM_PT_Y))

ALLOCATE(F(NUM_PT_X,NUM_PT_Y))

ALLOCATE(P(NUM_PT_X-1,NUM_PT_Y-1),Q(NUM_PT_X-1,NUM_PT_Y-1))

ALLOCATE(PX(NUM_PT_X-1,NUM_PT_Y-1),QX(NUM_PT_X-1,NUM_PT_Y-1))

ALLOCATE(PY(NUM_PT_X-1,NUM_PT_Y-1),QY(NUM_PT_X-1,NUM_PT_Y-1))

ALLOCATE(P1(NUM_PT_X-1,NUM_PT_Y),Q1(NUM_PT_X,NUM_PT_Y-1))

ALLOCATE(P1X(NUM_PT_X-1,NUM_PT_Y),Q1X(NUM_PT_X,NUM_PT_Y-1))

ALLOCATE(P1Y(NUM_PT_X-1,NUM_PT_Y),Q1Y(NUM_PT_X,NUM_PT_Y-1))

ALLOCATE(XXX(MX+NUM_PT_X,MY+NUM_PT_Y),YYY(MX+NUM_PT_X,MY+NUM_PT_Y))

ALLOCATE(OUT_U(MX+NUM_PT_X,MY+NUM_PT_Y))

DO i=1,NUM_PT_X

X(i) = i*1.

END DO

DO j=1,NUM_PT_Y

Y(j) = j*1.

END DO
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!

! READ DATA FROM FILE SPLIT_IN.TXT

!

DO i=1,NUM_PT_X

DO j=1,NUM_PT_Y

READ(22,*) XX(i,j),YY(i,j),F(i,j)

END DO

END DO

IF (N.LT.5) THEN

PRINT *, ’N MUST GREATER THAN 4, !!! PRESS ANY KEY TO CONTINUE !!!’

READ(*,*)

DO i=1,NUM_PT_X

DO j=1,NUM_PT_Y

WRITE(21,*) F(i,j)

WRITE(23,*) XX(i,j)

WRITE(24,*) YY(i,j)

END DO

END DO

WRITE(25,*) NUM_PT_X

WRITE(25,*) NUM_PT_Y

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

CLOSE(26)

CLOSE(27)

CLOSE(28)

CLOSE(29)

CLOSE(30)

CLOSE(31)

GOTO 8888

END IF

!

! GENERATE TENSION PARAMETERS FOR XX,YY AND F

!

PX = 0.

QX = 0.

P1X = 0.

Q1X = 0.

PY = 0.

QY = 0.

P1Y = 0.

Q1Y = 0.

P = 0.

Q = 0.

P1 = 0.

Q1 = 0.

IF (AUTO_TENSION_X .EQ. 0) THEN

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y-1

READ(26,*) PX(i,j),QX(i,j)

END DO

END DO

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y

READ(26,*) P1X(i,j)

END DO

END DO

DO i=1,NUM_PT_X

DO j=1,NUM_PT_Y-1

READ(26,*) Q1X(i,j)

END DO

END DO

END IF

IF (AUTO_TENSION_Y .EQ. 0) THEN

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y-1

READ(27,*) PY(i,j),QY(i,j)

END DO

END DO

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y

READ(27,*) P1Y(i,j)

END DO

END DO

DO i=1,NUM_PT_X

DO j=1,NUM_PT_Y-1

READ(27,*) Q1Y(i,j)

END DO

END DO

END IF

IF (AUTO_TENSION_F .EQ. 0) THEN

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y-1

READ(28,*) P(i,j),Q(i,j)

END DO

END DO

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y

READ(28,*) P1(i,j)

END DO

END DO
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DO i=1,NUM_PT_X

DO j=1,NUM_PT_Y-1

READ(28,*) Q1(i,j)

END DO

END DO

END IF

IF (AUTO_TENSION_X .EQ. 1) THEN

CALL TENSION2D(NUM_PT_X,NUM_PT_Y,X,Y,XX,PX,QX,P1X,Q1X,LOWER_QX)

END IF

IF (AUTO_TENSION_Y .EQ. 1) THEN

CALL TENSION2D(NUM_PT_X,NUM_PT_Y,X,Y,YY,PY,QY,P1Y,Q1Y,LOWER_QY)

END IF

IF (AUTO_TENSION_F .EQ. 1) THEN

CALL TENSION2D(NUM_PT_X,NUM_PT_Y,X,Y,F,P,Q,P1,Q1,LOWER_QF)

END IF

IF (AUTO_TENSION_X .EQ. 2) THEN

PX = 400.

QX = 400.

P1X = 400.

Q1X = 400.

END IF

IF (AUTO_TENSION_Y .EQ. 2) THEN

PY = 400.

QY = 400.

P1Y = 400.

Q1Y = 400.

END IF

IF (AUTO_TENSION_F .EQ. 2) THEN

P = 400.

Q = 400.

P1 = 400.

Q1 = 400.

END IF

END IF

8888 CONTINUE

CALL MPI_BCAST(N,1,MPI_INTEGER,root_process,MPI_COMM_WORLD,ierr)

IF (N .LT. 5) GOTO 9999

CALL MPI_BCAST(NUM_PT_X,1,MPI_INTEGER,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(NUM_PT_Y,1,MPI_INTEGER,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(EPS,1,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(LOWER_QX,1,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(LOWER_QY,1,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(LOWER_QF,1,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(MX,1,MPI_INTEGER,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(MY,1,MPI_INTEGER,root_process,MPI_COMM_WORLD,ierr)

IF (my_id .GT. root_process) THEN

ALLOCATE(X(NUM_PT_X),Y(NUM_PT_Y))

ALLOCATE(XX(NUM_PT_X,NUM_PT_Y),YY(NUM_PT_X,NUM_PT_Y))

ALLOCATE(F(NUM_PT_X,NUM_PT_Y))

ALLOCATE(P(NUM_PT_X-1,NUM_PT_Y-1),Q(NUM_PT_X-1,NUM_PT_Y-1))

ALLOCATE(PX(NUM_PT_X-1,NUM_PT_Y-1),QX(NUM_PT_X-1,NUM_PT_Y-1))

ALLOCATE(PY(NUM_PT_X-1,NUM_PT_Y-1),QY(NUM_PT_X-1,NUM_PT_Y-1))

ALLOCATE(P1(NUM_PT_X-1,NUM_PT_Y),Q1(NUM_PT_X,NUM_PT_Y-1))

ALLOCATE(P1X(NUM_PT_X-1,NUM_PT_Y),Q1X(NUM_PT_X,NUM_PT_Y-1))

ALLOCATE(P1Y(NUM_PT_X-1,NUM_PT_Y),Q1Y(NUM_PT_X,NUM_PT_Y-1))

END IF

CALL MPI_BCAST(X(:),NUM_PT_X,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(Y(:),NUM_PT_Y,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

DO i=1,NUM_PT_X

CALL MPI_BCAST(XX(i,:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(YY(i,:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(F(i,:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

END DO

DO i=1,NUM_PT_X-1

CALL MPI_BCAST(P(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(Q(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(PX(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(QX(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(PY(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(QY(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

END DO

DO i=1,NUM_PT_X-1

CALL MPI_BCAST(P1(i,:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(P1X(i,:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(P1Y(i,:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)
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END DO

DO i=1,NUM_PT_X

CALL MPI_BCAST(Q1(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(Q1X(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(Q1Y(i,:),NUM_PT_Y-1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

END DO

!

! FIND THE REFINEMENT OF XX,YY,UU NAMELY XXX,YYY,OUT_U

!

CALL SPLIT2D(NUM_PT_X,NUM_PT_Y,N,EPS,MX,MY,X,PX,P1X,Y,QX,Q1X, &

XX,XXX,LOWER_QX,my_id,num_procs)

IF (my_id .EQ. root_process) THEN

PRINT*, ’PASS X’

END IF

CALL SPLIT2D(NUM_PT_X,NUM_PT_Y,N,EPS,MX,MY,X,PY,P1Y,Y,QY,Q1Y, &

YY,YYY,LOWER_QY,my_id,num_procs)

IF (my_id .EQ. root_process) THEN

PRINT*, ’PASS Y’

END IF

CALL SPLIT2D(NUM_PT_X,NUM_PT_Y,N,EPS,MX,MY,X,P,P1,Y,Q,Q1,F, &

OUT_U,LOWER_QF,my_id,num_procs)

IF (my_id .EQ. root_process) THEN

PRINT*, ’PASS U’

!

! PRINT OUT THE OUTPUTS

!

PRINT*, ’PRINTING THE OUTPUTS ... ’

DO i=1,MX+NUM_PT_X

DO j=1,MY+NUM_PT_Y

WRITE(21,*) OUT_U(i,j)

WRITE(23,*) XXX(i,j)

WRITE(24,*) YYY(i,j)

END DO

END DO

WRITE(25,*) MX+NUM_PT_X

WRITE(25,*) MY+NUM_PT_Y

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y-1

WRITE(29,*) PX(i,j),QX(i,j)

WRITE(30,*) PY(i,j),QY(i,j)

WRITE(31,*) P(i,j),Q(i,j)

END DO

END DO

DO i=1,NUM_PT_X-1

DO j=1,NUM_PT_Y

WRITE(29,*) P1X(i,j)

WRITE(30,*) P1Y(i,j)

WRITE(31,*) P1(i,j)

END DO

END DO

DO i=1,NUM_PT_X

DO j=1,NUM_PT_Y-1

WRITE(29,*) Q1X(i,j)

WRITE(30,*) Q1Y(i,j)

WRITE(31,*) Q1(i,j)

END DO

END DO

CLOSE(21)

CLOSE(22)

CLOSE(23)

CLOSE(24)

CLOSE(25)

CLOSE(26)

CLOSE(27)

CLOSE(28)

CLOSE(29)

CLOSE(30)

CLOSE(31)

END IF

9999 CONTINUE

CALL MPI_FINALIZE(ierr)

END PROGRAM SPLIT2DP

SUBROUTINE SPLIT2D(NUM_PT_X,NUM_PT_Y,N,EPS,MX,MY,X,P,P1,Y,Q,Q1, &

F,OUT_U,LOWER_QF,my_id,num_procs)

!

! BY MR.ANIRUT LUADSONG

! NOV 2001

! SOLVING 2-D DMBVP BY SPLITTING METHOD
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!

IMPLICIT NONE

INCLUDE ’mpif.h’

INTENT(IN) :: NUM_PT_X,NUM_PT_Y,N,EPS,MX,MY,X,Y,F,P,Q,P1,Q1,LOWER_QF

INTENT(IN) :: my_id,num_procs

INTENT(OUT) :: OUT_U

INTEGER :: i,j,k,l,ii,jj,kk,ll,NUM_PT_X,NUM_PT_Y,MX,MY,ITER_NO,N

INTEGER :: my_id,num_procs,root_process,ierr

INTEGER :: status(MPI_STATUS_SIZE)

REAL :: TAU,NORM_U,EPS,LOWER_QF,TMP1

REAL :: FXXYY_BL,FXXYY_BR,FXXYY_TL,FXXYY_TR

REAL,DIMENSION (NUM_PT_Y) :: Y,FXX_L,FXX_R

REAL,DIMENSION (NUM_PT_X) :: X,FYY_B,FYY_T

REAL,DIMENSION (NUM_PT_Y-1) :: TMP_Q

REAL,DIMENSION (NUM_PT_X-1) :: TMP_P

REAL,DIMENSION (MY) :: UXX_L,UXX_R

REAL,DIMENSION (MX) :: UYY_B,UYY_T

REAL,DIMENSION (NUM_PT_X,NUM_PT_Y) :: F

REAL,DIMENSION (MX,NUM_PT_Y) :: U_H

REAL,DIMENSION (NUM_PT_X,MY) :: U_V

REAL,DIMENSION (MX,MY) :: U0,U1,U2

REAL,DIMENSION (NUM_PT_X-1,NUM_PT_Y-1) :: P,Q

REAL,DIMENSION (NUM_PT_X-1,NUM_PT_Y) :: P1

REAL,DIMENSION (NUM_PT_X,NUM_PT_Y-1) :: Q1

REAL,DIMENSION (MX+NUM_PT_X,MY+NUM_PT_Y) :: OUT_U

!

! CALCULATE THE NECESSARY NOTATIONS

!

root_process = 0

! IF (my_id .EQ. root_process) THEN

TAU = 1./(N*1.)

!

! FIND BOUNDARY VALUES

!

DO i=my_id+1,NUM_PT_X,num_procs

FYY_B(i) = -F(i,4)+4.*F(i,3)-5.*F(i,2)+2.*F(i,1)

FYY_T(i) = -F(i,NUM_PT_Y-3)+4.*F(i,NUM_PT_Y-2) &

-5.*F(i,NUM_PT_Y-1)+2.*F(i,NUM_PT_Y)

IF (my_id .EQ. root_process) THEN

DO j=1,num_procs-1

IF (i+j .LE. NUM_PT_X) THEN

CALL MPI_RECV(FYY_B(i+j),1,MPI_REAL,j, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

CALL MPI_RECV(FYY_T(i+j),1,MPI_REAL,j, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

END IF

END DO

ELSE

CALL MPI_SEND(FYY_B(i),1,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

CALL MPI_SEND(FYY_T(i),1,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

END IF

END DO

DO j=my_id+1,NUM_PT_Y,num_procs

FXX_L(j) = -F(4,j)+4.*F(3,j)-5.*F(2,j)+2.*F(1,j)

FXX_R(j) = -F(NUM_PT_X-3,j)+4.*F(NUM_PT_X-2,j) &

-5.*F(NUM_PT_X-1,j)+2.*F(NUM_PT_X,j)

IF (my_id .EQ. root_process) THEN

DO i=1,num_procs-1

IF (i+j .LE. NUM_PT_Y) THEN

CALL MPI_RECV(FXX_L(i+j),1,MPI_REAL,i, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

CALL MPI_RECV(FXX_R(i+j),1,MPI_REAL,i, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

END IF

END DO

ELSE

CALL MPI_SEND(FXX_L(j),1,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

CALL MPI_SEND(FXX_R(j),1,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

END IF

END DO

IF (my_id .EQ. root_process) THEN

FXXYY_BL = -FXX_L(4)+4.*FXX_L(3)-5.*FXX_L(2)+2.*FXX_L(1)

FXXYY_BR = -FXX_R(4)+4.*FXX_R(3)-5.*FXX_R(2)+2.*FXX_R(1)

FXXYY_TL = -FXX_L(NUM_PT_Y-3)+4.*FXX_L(NUM_PT_Y-2) &

-5.*FXX_L(NUM_PT_Y-1)+2.*FXX_L(NUM_PT_Y)

FXXYY_TR = -FXX_R(NUM_PT_Y-3)+4.*FXX_R(NUM_PT_Y-2) &

-5.*FXX_R(NUM_PT_Y-1)+2.*FXX_R(NUM_PT_Y)

END IF

CALL MPI_BCAST(FYY_B(:),NUM_PT_X,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(FYY_T(:),NUM_PT_X,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(FXX_L(:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(FXX_R(:),NUM_PT_Y,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(FXXYY_BL,1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(FXXYY_BR,1,MPI_REAL,root_process, &
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MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(FXXYY_TL,1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(FXXYY_TR,1,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

!

! FIND U_ik;jl ALONG TH MAIN MESH

!

DO j=my_id+1,NUM_PT_Y,num_procs

CALL DMBVP1D(NUM_PT_X,TAU,FXX_L(j),FXX_R(j),F(:,j), &

U_H(:,j),P1(:,j),N)

IF (my_id .EQ. root_process) THEN

DO i=1,num_procs-1

IF (i+j .LE. NUM_PT_Y) THEN

CALL MPI_RECV(U_H(:,j+i),MX,MPI_REAL,i, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

END IF

END DO

ELSE

CALL MPI_SEND(U_H(:,j),MX,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

END IF

END DO

DO i=my_id+1,NUM_PT_X,num_procs

CALL DMBVP1D(NUM_PT_Y,TAU,FYY_B(i),FYY_T(i),F(i,:), &

U_V(i,:),Q1(i,:),N)

IF (my_id .EQ. root_process) THEN

DO j=1,num_procs-1

IF (i+j .LE. NUM_PT_X) THEN

CALL MPI_RECV(U_V(i+j,:),MY,MPI_REAL,j, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

END IF

END DO

ELSE

CALL MPI_SEND(U_V(i,:),MY,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

END IF

END DO

!

! FIND Uxx AND Uyy ON THE BORDER OF THE MAIN DOMAIN

!

IF (my_id .EQ. root_process) THEN

CALL TENSION(NUM_PT_X,X,FYY_B,TMP_P,LOWER_QF)

CALL DMBVP1D (NUM_PT_X,TAU,FXXYY_BL,FXXYY_BR,FYY_B,UYY_B,TMP_P,N)

CALL TENSION(NUM_PT_X,X,FYY_T,TMP_P,LOWER_QF)

CALL DMBVP1D (NUM_PT_X,TAU,FXXYY_TL,FXXYY_TR,FYY_T,UYY_T,TMP_P,N)

CALL TENSION(NUM_PT_Y,Y,FXX_L,TMP_Q,LOWER_QF)

CALL DMBVP1D (NUM_PT_Y,TAU,FXXYY_BL,FXXYY_TL,FXX_L,UXX_L,TMP_Q,N)

CALL TENSION(NUM_PT_Y,Y,FXX_R,TMP_Q,LOWER_QF)

CALL DMBVP1D (NUM_PT_Y,TAU,FXXYY_BR,FXXYY_TR,FXX_R,UXX_R,TMP_Q,N)

!

! TO FIND THE INITIAL VALUES BY LINEAR INTERPOLATION

!

DO ll=1,MY

kk = 0

DO i=1,NUM_PT_X-1

TMP1 = X(i)

DO k=1,N-1

kk = kk+1

TMP1 = TMP1+TAU

U0(kk,ll) = U_V(i,ll)*(X(i+1)-TMP1)+U_V(i+1,ll)*(TMP1-X(i))

END DO

END DO

END DO

DO kk=1,MX

ll = 0

DO j=1,NUM_PT_Y-1

TMP1 = Y(j)

DO l=1,N-1

ll = ll+1

TMP1 = TMP1+TAU

U1(kk,ll) = U_H(kk,j)*(Y(j+1)-TMP1)+U_H(kk,j+1)*(TMP1-Y(j))

END DO

END DO

END DO

U0 = (U0+U1)/2.

!

! STARTING THE ITERATION

!

ITER_NO = 0

END IF

CALL MPI_BCAST(UXX_L(:),MY,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(UXX_R(:),MY,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(UYY_B(:),MX,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

CALL MPI_BCAST(UYY_T(:),MX,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

DO i=1,NUM_PT_X

CALL MPI_BCAST(U_V(i,:),MY,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

END DO

DO j=1,NUM_PT_Y

CALL MPI_BCAST(U_H(:,j),MX,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)
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END DO

5555 CONTINUE

DO j=1,MY

CALL MPI_BCAST(U0(:,j),MX,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

END DO

!

! THE FIRST HALF STEP, ALONG X DIRECTION

!

DO ll=my_id+1, MY, num_procs

j = ((ll-0.1)/(N-1))+1

l = ((ll*1.0)/(N-1))

IF (ll .EQ. (j-1)*(N-1)+1) THEN

CALL SPLIT1(NUM_PT_X,N,UXX_L(ll),UXX_R(ll),P(:,j) &

,U_V(:,ll),F(:,j),U_V(:,ll+1) &

,U0(:,ll),U_H(:,j),U0(:,ll+1),U1(:,ll))

ELSE IF (l .EQ. j) THEN

CALL SPLIT1(NUM_PT_X,N,UXX_L(ll),UXX_R(ll),P(:,j) &

,U_V(:,ll),U_V(:,ll-1),F(:,j+1) &

,U0(:,ll),U0(:,ll-1),U_H(:,j+1),U1(:,ll))

ELSE

CALL SPLIT1(NUM_PT_X,N,UXX_L(ll),UXX_R(ll),P(:,j) &

,U_V(:,ll),U_V(:,ll-1),U_V(:,ll+1) &

,U0(:,ll),U0(:,ll-1),U0(:,ll+1),U1(:,ll))

END IF

IF (my_id .EQ. root_process) THEN

DO i=1,num_procs-1

IF (ll+i .LE. MY) THEN

CALL MPI_RECV(U1(:,ll+i),MX,MPI_REAL,i, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

END IF

END DO

ELSE

CALL MPI_SEND(U1(:,ll),MX,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

END IF

END DO

DO j=1,MY

CALL MPI_BCAST(U1(:,j),MX,MPI_REAL,root_process, &

MPI_COMM_WORLD,ierr)

END DO

!

! THE SECOND HALF STEP, ALONG Y DIRECTION

!

DO kk=my_id+1, MX, num_procs

i = ((kk-0.1)/(N-1))+1

k = ((kk*1.0)/(N-1))

IF (kk .EQ. (i-1)*(N-1)+1) THEN

CALL SPLIT1(NUM_PT_Y,N,UYY_B(kk),UYY_T(kk),Q(i,:) &

,U_H(kk,:),F(i,:),U_H(kk+1,:) &

,U1(kk,:),U_V(i,:),U1(kk+1,:),U2(kk,:))

ELSE IF (k .EQ. i) THEN

CALL SPLIT1(NUM_PT_Y,N,UYY_B(kk),UYY_T(kk),Q(i,:) &

,U_H(kk,:),U_H(kk-1,:),F(i+1,:) &

,U1(kk,:),U1(kk-1,:),U_V(i+1,:),U2(kk,:))

ELSE

CALL SPLIT1(NUM_PT_Y,N,UYY_B(kk),UYY_T(kk),Q(i,:) &

,U_H(kk,:),U_H(kk-1,:),U_H(kk+1,:) &

,U1(kk,:),U1(kk-1,:),U1(kk+1,:),U2(kk,:))

END IF

IF (my_id .EQ. root_process) THEN

DO j=1,num_procs-1

IF (kk+j .LE. MX) THEN

CALL MPI_RECV(U2(kk+j,:),MY,MPI_REAL,j, &

MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)

END IF

END DO

ELSE

CALL MPI_SEND(U2(kk,:),MY,MPI_REAL,root_process,99, &

MPI_COMM_WORLD,ierr)

END IF

END DO

!

! FIND NORM U AND UPDATE THE INITIAL DATA

!

IF (my_id .EQ. root_process) THEN

NORM_U = MAXVAL(ABS(U2-U0))

U0 = U2

ITER_NO = ITER_NO+1

PRINT *, ’ITERATION NUMBER = ’,ITER_NO, ’ NORM U = ’,NORM_U

END IF

CALL MPI_BCAST(NORM_U,1,MPI_REAL,root_process,MPI_COMM_WORLD,ierr)

IF (NORM_U .GE. EPS) GOTO 5555

IF (my_id .EQ. root_process) THEN

!

! REARRANGE THE OUTPUT OUT_U

!

ll = 0

jj = 0
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DO j=1,NUM_PT_Y-1

ll = ll+1

kk = 1

ii = 0

DO i=1,NUM_PT_X-1

OUT_U(kk,ll) = F(i,j)

kk = kk+1

DO k=1,N-1

ii = ii+1

OUT_U(kk,ll) = U_H(ii,j)

kk = kk+1

END DO

END DO

OUT_U(kk,ll) = F(NUM_PT_X,j)

DO l=1,N-1

ll = ll+1

jj = jj+1

kk = 1

ii = 0

DO i=1,NUM_PT_X-1

OUT_U(kk,ll) = U_V(i,jj)

kk = kk+1

DO k=1,N-1

ii = ii+1

OUT_U(kk,ll) = U2(ii,jj)

kk = kk+1

END DO

END DO

OUT_U(kk,ll) = U_V(NUM_PT_X,jj)

END DO

END DO

kk = 1

ii = 0

ll = ll+1

DO i=1,NUM_PT_X-1

OUT_U(kk,ll) = F(i,NUM_PT_Y)

kk = kk+1

DO k=1,N-1

ii = ii+1

OUT_U(kk,ll) = U_H(ii,NUM_PT_Y)

kk = kk+1

END DO

END DO

OUT_U(kk,ll) = F(NUM_PT_X,NUM_PT_Y)

END IF

END SUBROUTINE SPLIT2D

SUBROUTINE SPLIT1(NUM_PT,N,F2P_0,F2P_N,P,F,F_B,F_T,U0,U0_B,U0_T,U1)

!

! BY MR.ANIRUT LUADSONG

! NOV 2001

! SOLVING EACH HALF STEP OF 2D-DMBVP

!

IMPLICIT NONE

INTENT(IN) :: NUM_PT,N,F2P_0,F2P_N,P,F,F_B,F_T,U0,U0_B,U0_T

INTENT(OUT) :: U1

INTEGER :: i,k,kk,NUM_PT,N

REAL :: T,T1,TAU,TAU2,F2P_0,F2P_N,TMP1

REAL,DIMENSION (NUM_PT) :: F,F_B,F_T

REAL,DIMENSION (NUM_PT-1) :: P,A_I,B_I,OMEGA_I

REAL,DIMENSION ((NUM_PT-1)*(N-1)) :: U0,U0_B,U0_T,U1,B,BA1

REAL,DIMENSION ((NUM_PT-1)*(N-1)-1) :: BA2

REAL,DIMENSION ((NUM_PT-1)*(N-1)-2) :: BA3

TAU = 1./(N*1.)

TAU2 = TAU*TAU

T = TAU2*TAU2

T1 = TAU2*TAU2/T-4

DO i=1,NUM_PT-1

TMP1 = P(i)/(1.*N)

OMEGA_I(i) = TMP1*TMP1

A_I(i) = -OMEGA_I(i)-4

B_I(i) = 6+2.*OMEGA_I(i)+TAU2*TAU2/T

END DO

kk = 0

DO i=1,NUM_PT-1

kk = kk+1

IF (i.EQ.1) THEN

B(kk) = -TAU2*F2P_0-(2+A_I(i))*F(i) &

-(F_B(i)+F_T(i)+U0_B(kk+1)+U0_T(kk+1)) &

+2.*(U0_B(kk)+U0_T(kk)+F(i)+U0(kk+1))+T1*U0(kk)

BA1(kk) = B_I(i)-1

ELSE

B(kk) = -A_I(i)*F(i) &

-(F_B(i)+F_T(i)+U0_B(kk+1)+U0_T(kk+1)) &

+2.*(U0_B(kk)+U0_T(kk)+F(i)+U0(kk+1))+T1*U0(kk)

BA1(kk) = B_I(i)

BA2(kk-1) = 1.0

BA3(kk-2) = 0.0

END IF

kk = kk+1



136

B(kk) = -F(i) &

-(U0_B(kk-1)+U0_T(kk-1)+U0_B(kk+1)+U0_T(kk+1)) &

+2.*(U0_B(kk)+U0_T(kk)+U0(kk-1)+U0(kk+1))+T1*U0(kk)

BA1(kk) = B_I(i)

BA2(kk-1) = A_I(i)

IF (i.GT.1) THEN

BA3(kk-2) = 0.0

END IF

DO k=3,N-3

kk = kk+1

B(kk) = -(U0_B(kk-1)+U0_T(kk-1)+U0_B(kk+1)+U0_T(kk+1)) &

+2.*(U0_B(kk)+U0_T(kk)+U0(kk-1)+U0(kk+1))+T1*U0(kk)

BA1(kk) = B_I(i)

BA2(kk-1) = A_I(i)

BA3(kk-2) = 1.0

END DO

kk = kk+1

B(kk) = -F(i+1) &

-(U0_B(kk-1)+U0_T(kk-1)+U0_B(kk+1)+U0_T(kk+1)) &

+2.*(U0_B(kk)+U0_T(kk)+U0(kk-1)+U0(kk+1))+T1*U0(kk)

BA1(kk) = B_I(i)

BA2(kk-1) = A_I(i)

BA3(kk-2) = 1.0

kk = kk+1

IF (i.EQ.NUM_PT-1) THEN

B(kk) = -TAU2*F2P_N-(2+A_I(i))*F(i+1) &

-(U0_B(kk-1)+U0_T(kk-1)+F_B(i+1)+F_T(i+1)) &

+2.*(U0_B(kk)+U0_T(kk)+U0(kk-1)+F(i+1))+T1*U0(kk)

BA1(kk) = B_I(i)-1

ELSE

B(kk) = -A_I(i)*F(i+1) &

-(U0_B(kk-1)+U0_T(kk-1)+F_B(i+1)+F_T(i+1)) &

+2.*(U0_B(kk)+U0_T(kk)+U0(kk-1)+F(i+1))+T1*U0(kk)

BA1(kk) = B_I(i)

END IF

BA2(kk-1) = A_I(i)

BA3(kk-2) = 1.0

END DO

CALL SUB5DIAG((N-1)*(NUM_PT-1),B,BA1,BA2,BA3,U1)

END SUBROUTINE SPLIT1

SUBROUTINE DMBVP1D(NUM_PT,TAU,F2P_0,F2P_END,F,U,P,N)

!

! BY MR.ANIRUT LUADSONG

! OCT 2001

! SOLVING 1D-DMBVP

!

IMPLICIT NONE

INTENT(IN) :: NUM_PT,TAU,F2P_0,F2P_END,F,P,N

INTENT(OUT) :: U

INTEGER :: i,j,ii,NUM_PT,N

REAL :: TAU,TAU2,F2P_0,F2P_END,TMP1

REAL,DIMENSION (NUM_PT) :: F

REAL,DIMENSION (NUM_PT-1) :: P,A_I,B_I,OMEGA_I

REAL,DIMENSION ((N-1)*(NUM_PT-1)) :: U,B,BA1

REAL,DIMENSION ((N-1)*(NUM_PT-1)-1):: BA2

REAL,DIMENSION ((N-1)*(NUM_PT-1)-2):: BA3

TAU2 = TAU*TAU

DO i=1,NUM_PT-1

TMP1 = P(i)/N

OMEGA_I(i) = TMP1*TMP1

A_I(i) = -OMEGA_I(i)-4

B_I(i) = 6+2*OMEGA_I(i)

END DO

ii = 0

DO i=1,NUM_PT-1

ii = ii+1

IF (i.EQ.1) THEN

B(ii) = -TAU2*F2P_0-(2+A_I(i))*F(i)

BA1(ii) = B_I(i)-1

ELSE

B(ii) = -A_I(i)*F(i)

BA1(ii) = B_I(i)

BA2(ii-1) = 1.0

BA3(ii-2) = 0.0

END IF

ii = ii+1

B(ii) = -F(i)

BA1(ii) = B_I(i)

BA2(ii-1) = A_I(i)

IF (i.GT.1) THEN

BA3(ii-2) = 0.0

END IF

DO j=3,N-3

ii = ii+1

B(ii) = 0.0

BA1(ii) = B_I(i)

BA2(ii-1) = A_I(i)

BA3(ii-2) = 1.0

END DO

ii = ii+1
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B(ii) = -F(i+1)

BA1(ii) = B_I(i)

BA2(ii-1) = A_I(i)

BA3(ii-2) = 1.0

ii = ii+1

IF (i.EQ.NUM_PT-1) THEN

B(ii) = -TAU2*F2P_END-(2+A_I(i))*F(i+1)

BA1(ii) = B_I(i)-1

ELSE

B(ii) = -A_I(i)*F(i+1)

BA1(ii) = B_I(i)

END IF

BA2(ii-1) = A_I(i)

BA3(ii-2) = 1.0

END DO

CALL SUB5DIAG((N-1)*(NUM_PT-1),B,BA1,BA2,BA3,U)

END SUBROUTINE DMBVP1D

SUBROUTINE SUB5DIAG(N,B,D,F,E,X)

!

! BY MR.ANIRUT LUADSONG

! GIVEN: Ax=b WITH A FIVE-DIAGONAL SYMMETRIC STRONGLY

! NONSINGULAR MATRIX A

! FIND : SOLUTION x.

!

IMPLICIT NONE

INTENT(IN) :: N,B,D,F,E

INTENT(OUT) :: X

INTEGER :: N,i

REAL,DIMENSION (N) :: B,D,X,C,Z,ALPHA

REAL,DIMENSION (N-2) :: E,DELTA

REAL,DIMENSION (N-1) :: F,GAMMA

!

! 1st STEP: FACTOR A=LDL^T

!

ALPHA(1) = D(1)

GAMMA(1) = F(1)/ALPHA(1)

DELTA(1) = E(1)/ALPHA(1)

ALPHA(2) = D(2)-F(1)*GAMMA(1)

GAMMA(2) = (F(2)-E(1)*GAMMA(1))/ALPHA(2)

DELTA(2) = E(2)/ALPHA(2)

DO i=3,N-2

ALPHA(i) = D(i)-E(i-2)*DELTA(i-2)-ALPHA(i-1) &

*GAMMA(i-1)*GAMMA(i-1)

GAMMA(i) = (F(i)-E(i-1)*GAMMA(i-1))/ALPHA(i)

DELTA(i) = E(i)/ALPHA(i)

END DO

ALPHA(N-1) = D(N-1)-E(N-3)*DELTA(N-3)-ALPHA(N-2) &

*GAMMA(N-2)*GAMMA(N-2)

GAMMA(N-1) = (F(N-1)-E(N-2)*GAMMA(N-2))/ALPHA(N-1)

ALPHA(N) = D(N)-E(N-2)*DELTA(N-2)-ALPHA(N-1) &

*GAMMA(N-1)*GAMMA(N-1)

!

! 2nd STEP: UPDATE Lz=b, Dc=z

!

Z(1) = B(1)

Z(2) = B(2)-GAMMA(1)*Z(1)

DO i=3,N

Z(i) = B(i)-GAMMA(i-1)*Z(i-1)-DELTA(i-2)*Z(i-2)

END DO

DO i=1,N

C(i) = Z(i)/ALPHA(i)

END DO

!

! 3rd STEP: BACKSUBSTITUTION L^Tx=c

!

X(N) = C(N)

X(N-1) = C(N-1)-GAMMA(N-1)*X(N)

DO i=N-2,1,-1

X(i) = C(i)-GAMMA(i)*X(i+1)-DELTA(i)*X(i+2)

END DO

END SUBROUTINE SUB5DIAG

SUBROUTINE TENSION2D(NUM_PT_X,NUM_PT_Y,X,Y,F,P,Q,P1,Q1,LOWER_Q)

!

! BY MR.ANIRUT LUADSONG

! NOV 2001

! GENERATE 2D TENSION PARAMETERS

!

IMPLICIT NONE

INTENT(IN) :: NUM_PT_X,NUM_PT_Y,X,Y,F,LOWER_Q

INTENT(OUT) :: P,Q,P1,Q1

INTEGER :: i,j,NUM_PT_X,NUM_PT_Y

REAL :: LOWER_Q

REAL,DIMENSION (NUM_PT_X-1,NUM_PT_Y-1) :: P,Q

REAL,DIMENSION (NUM_PT_X-1,NUM_PT_Y) :: P1

REAL,DIMENSION (NUM_PT_X,NUM_PT_Y-1) :: Q1

REAL,DIMENSION (NUM_PT_X,NUM_PT_Y) :: F

REAL,DIMENSION (NUM_PT_X) :: X,TMP_FX

REAL,DIMENSION (NUM_PT_Y) :: Y,TMP_FY

!

! FIND TENSION PARAMETERS ALONG THE MAIN MESH
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!

DO j=1,NUM_PT_Y

CALL TENSION(NUM_PT_X,X,F(:,j),P1(:,j),LOWER_Q)

END DO

DO i=1,NUM_PT_X

CALL TENSION(NUM_PT_Y,Y,F(i,:),Q1(i,:),LOWER_Q)

END DO

!

! FIND TENSION PARAMETERS INSIDE SUBDOMAIN

!

DO j=1,NUM_PT_Y-1

TMP_FX(:) = (F(:,j)+F(:,j+1))/2.

CALL TENSION(NUM_PT_X,X,TMP_FX,P(:,j),LOWER_Q)

END DO

DO i=1,NUM_PT_X-1

TMP_FY(:) = (F(i,:)+F(i+1,:))/2.

CALL TENSION(NUM_PT_Y,Y,TMP_FY,Q(i,:),LOWER_Q)

END DO

END SUBROUTINE TENSION2D

SUBROUTINE TENSION(END_PT,X,F,Q,LOWER_Q)

!

! BY MR.ANIRUT LUADSONG

! NOV 2001

! GENERATE 1D TENSION PARAMETERS

!

IMPLICIT NONE

INTENT(IN) :: END_PT,X,F,LOWER_Q

INTENT(OUT) :: Q

INTEGER :: i,END_PT

REAL :: SLOPE_F_STPT,SLOPE_F_EDPT,TMP_L,TMP_R,LOWER_Q

REAL,DIMENSION (END_PT) :: X,F

REAL,DIMENSION (END_PT-1) :: Q,H,DIVID

REAL,DIMENSION (2*(END_PT)) :: L_EQ_Q,R_EQ_Q

DO i=1,END_PT-1

H(i) = X(i+1)-X(i)

DIVID(i) = (F(i+1)-F(i))/(1.*H(i))

END DO

SLOPE_F_STPT = (-F(3)+4.*F(2)-3.*F(1))/(1.*H(1)+1.*H(2))

SLOPE_F_EDPT = (F(END_PT-2)-4*F(END_PT-1)+3*F(END_PT))/ &

(1.*H(END_PT-1)+1.*H(END_PT-2))

IF (LOWER_Q .EQ. 0) THEN

Q = 0.00000001

ELSE

DO i=1,END_PT-1

Q = LOWER_Q

END DO

END IF

i = 1

R_EQ_Q(i) = 1.

L_EQ_Q(i) = 0.

DO WHILE ((L_EQ_Q(i).LT.R_EQ_Q(i)).AND.(Q(i).LE.85))

IF ((SLOPE_F_STPT .EQ. 0) .AND. (DIVID(i) .EQ. 0)) THEN

R_EQ_Q(i) = 200

ELSE IF (SLOPE_F_STPT .EQ. 0) THEN

R_EQ_Q(i) = 0.005

ELSE IF (DIVID(i) .EQ. 0) THEN

R_EQ_Q(i) = 200

ELSE

R_EQ_Q(i) = SLOPE_F_STPT/DIVID(i)

END IF

!

! Added in 28/01/02 at ANU, Canberra,

! for supporting UNIX(SUN) system

!

DO WHILE (ABS(SINH(Q(i))-Q(i)).EQ.0.)

Q(i) = Q(i)+0.0001

END DO

! End of added

L_EQ_Q(i) = -Q(i)*(1-COSH(Q(i)))/(SINH(Q(i))-Q(i))

Q(i) = Q(i)+1

END DO

Q(i) = Q(i)-1

DO i=2,END_PT-2

TMP_R = 1

TMP_L = 0

DO WHILE ((TMP_L .LT. TMP_R).AND.(Q(i).LE.85))

IF ((DIVID(i) .EQ. 0) .AND. (DIVID(i-1) .EQ. 0)) THEN

R_EQ_Q(i) = 200

ELSE IF (DIVID(i-1) .EQ. 0) THEN

R_EQ_Q(i) = 0.005

ELSE IF (DIVID(i) .EQ. 0) THEN

R_EQ_Q(i) = 200

ELSE

R_EQ_Q(i) = DIVID(i-1)/DIVID(i)

END IF

!

! Added in 28/01/02 at ANU, Canberra,

! for supporting UNIX(SUN) system

!

DO WHILE (ABS(SINH(Q(i))-Q(i)).EQ.0.)
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Q(i) = Q(i)+0.0001

END DO

! End of added

L_EQ_Q(i) = -(2./3.)*Q(i)*(1-COSH(Q(i)))/(SINH(Q(i))-Q(i))

IF ((DIVID(i) .EQ. 0) .AND. (DIVID(i+1) .EQ. 0)) THEN

R_EQ_Q(i+END_PT) = 200

ELSE IF (DIVID(i+1) .EQ. 0) THEN

R_EQ_Q(i+END_PT) = 0.005

ELSE IF (DIVID(i) .EQ. 0) THEN

R_EQ_Q(i+END_PT) = 200

ELSE

R_EQ_Q(i+END_PT) = DIVID(i+1)/DIVID(i)

END IF

!

! Added in 28/01/02 at ANU, Canberra,

! for supporting UNIX(SUN) system

!

DO WHILE (ABS(SINH(Q(i))-Q(i)).EQ.0.)

Q(i) = Q(i)+0.0001

END DO

! End of added

L_EQ_Q(i+END_PT) = (2./3.)*Q(i)*(COSH(Q(i))-1)/(SINH(Q(i))-Q(i))

TMP_L = L_EQ_Q(i)+L_EQ_Q(i+END_PT)

TMP_R = R_EQ_Q(i)+R_EQ_Q(i+END_PT)

Q(i) = Q(i)+1

END DO

Q(i) = Q(i)-1

END DO

i = END_PT-1

TMP_R = 1

TMP_L = 0

DO WHILE ((TMP_L .LT. TMP_R).AND.(Q(i).LE.85))

IF ((DIVID(i) .EQ. 0) .AND. (DIVID(i-1) .EQ. 0)) THEN

R_EQ_Q(i) = 200

ELSE IF (DIVID(i-1) .EQ. 0) THEN

R_EQ_Q(i) = 0.005

ELSE IF (DIVID(i) .EQ. 0) THEN

R_EQ_Q(i) = 200

ELSE

R_EQ_Q(i) = DIVID(i-1)/DIVID(i)

END IF

!

! Added in 28/01/02 at ANU, Canberra,

! for supporting UNIX(SUN) system

!

DO WHILE (ABS(SINH(Q(i))-Q(i)).EQ.0.)

Q(i) = Q(i)+0.0001

END DO

! End of added

L_EQ_Q(i) = -(2./3.)*Q(i)*(1-COSH(Q(i)))/(SINH(Q(i))-Q(i))

IF ((SLOPE_F_EDPT.EQ.0).AND.(DIVID(i).EQ.0)) THEN

R_EQ_Q(i+1) = 200

ELSE IF (SLOPE_F_EDPT .EQ. 0) THEN

R_EQ_Q(i+1) = 0.005

ELSE IF (DIVID(i) .EQ. 0) THEN

R_EQ_Q(i+1) = 200

ELSE

R_EQ_Q(i+1) = SLOPE_F_EDPT/DIVID(i)

END IF

!

! Added in 28/01/02 at ANU, Canberra,

! for supporting UNIX(SUN) system

!

DO WHILE (ABS(SINH(Q(i))-Q(i)).EQ.0.)

Q(i) = Q(i)+0.0001

END DO

! End of added

L_EQ_Q(i+1) = Q(i)*(COSH(Q(i))-1)/(SINH(Q(i))-Q(i))

TMP_L = L_EQ_Q(i)+L_EQ_Q(i+1)

TMP_R = R_EQ_Q(i)+R_EQ_Q(i+1)

Q(i) = Q(i)+1

END DO

Q(i) = Q(i)-1

DO i=2,END_PT-2

IF ((DIVID(i).EQ.DIVID(i+1)).AND.(DIVID(i).EQ.DIVID(i-1))) THEN

Q(i) = 400.

END IF

END DO

IF ((DIVID(1).EQ.DIVID(2)).AND.(DIVID(1).EQ.SLOPE_F_STPT)) THEN

Q(1) = 400.

END IF

IF ((DIVID(END_PT-1).EQ.DIVID(END_PT-2)).AND.(DIVID(END_PT-1).EQ. &

SLOPE_F_EDPT)) THEN

Q(END_PT-1) = 400.

END IF

END SUBROUTINE TENSION



Appendix D

MatLab Code for Creating
Graphics

=======================================================================
To Produce a Graphic for 1-D DMBVP by MatLab
=======================================================================
fx=fopen(’X.TXT’,’r’);
fu=fopen(’U.TXT’,’r’);
x=fscanf(fx,’%g’);
u=fscanf(fu,’%g’);
plot(x,u);
fclose(fx);
fclose(fu);

=======================================================================
To Produce a Graphic for 2-D DMBVP by MatLab
=======================================================================
fid1=fopen(’2D_X.TXT’,’r’);
fid2=fopen(’2D_Y.TXT’,’r’);
fid3=fopen(’2D_U.TXT’,’r’);
fid4=fopen(’SIZE.TXT’,’r’);
x=fscanf(fid1,’%g’);
y=fscanf(fid2,’%g’);
u=fscanf(fid3,’%g’);
s=fscanf(fid4,’%g’);
x=reshape(x,s(2,1),s(1,1));
y=reshape(y,s(2,1),s(1,1));
u=reshape(u,s(2,1),s(1,1));
xx=transpose(x);yy=transpose(y);
uu=transpose(u);fclose(fid1);
fclose(fid2);
fclose(fid3);
fclose(fid4);
mesh(xx,yy,uu)
xlabel(’x’)ylabel(’y’)zlabel(’z’)
axis([min(min(xx)),max(max(xx)),min(min(yy)),

max(max(yy)),min(min(uu)),max(max(uu))])
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