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POLLUTION PROBLEMS THESIS ADVISOR : ASSOC. PROF.

SUWON TANGMANEE, Ph.D. 125 PP. ISBN 974-533-205-4
NUMERICAL ALGORITHM / FINITE ELEMENT METHODS / AIR POLLUTION

In this research we used mathematical models to study propagation of an air
pollutant which is released from a line source downwind into the atmosphere. The
initial condition is assumed to be the O -function of the steady emission rate. The
coefficients of the advection and diffusion are assumed to be function of z. The
concentration profile near the source was calculated at the variable step sizes using
the Gaussian distribution in the vertical grid intervals. We then applied the finite
element method to the steady state case, and in the unsteady state case we used the
Lagrangian finite difference and finite element method on the advection part and the
diffusion part respectively.

The examples of numerical data simulation with varied parameters were
presented. MatLab software was used to calculate solutions of linear systems. In the
case of steady state, the results were compared with the existing analytical results and
they show satisfactory agreement. In the unsteady state case, the computed solution is
graphically well agreed with the results of other work by using the fractional step
method. Besides, the convergence and error estimate of the approximate solution are
also discussed.
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Chapter I

Introduction

1.1 Mathematical models of air pollution system

Air pollution refers to an air condition in which there are contaminant
substances in a higher quantity than normal for a time long enough to harm humans,
animals, plants or property. It can naturally exist, for instance, dust or aerosol from
wind or storms, exploded volcanoes, earthquakes, fire, or pollutant air from bikes and
industrial factories.

It is the environmental problems which are easily noticed both in large
communities and developing areas that are now quickly spreading in size through
industrial activities. These activities include transportation, traffic, construction and
also areas in which power plants are situated. Air pollutant substances which are a
main problem and over standard that are still important problems for the future such
as carbon-monoxide gas, dust, especially the dust in communities with heavy traffic,
will have a higher concentration than standard value, about 3-5 times, while other
substances such as lead, sulfur-dioxide and nitrogen-dioxide are at standard quality air
criteria in the atmosphere.

These polluted substances ventilate from various sources in the community,

both from vehicles, building construction or even road reconstructions and road



surface repairing and also industrial factories. These substances will not only directly
affect people’s health but also other crises like changes in the earth’s temperature and
the destruction of the ozone layer.

The government is now working to solve air pollution problems by setting air
quality standard from sources, oil fuel and lubricating oil quality standards, and
encouraging people to use unleaded gasoline. Even setting special filter accessories
for air pollution from cars, checking the polluted condition of vehicles before
lengthening car licenses, controlling the air pollution quantity from industrial
factories, and increasing and improving air pollution standards can help us handle
such problems while still at the beginning stage. This is because there is still a lack of
unique air pollution controls, as there are many firms that are in charge but the
cooperation mission is not efficient, the examination staff or departments do not
have enough equipment or experienced teams who can check and organize data base
systems, and while the testing and traffic checking have no standards, the research
and technology development for decreasing air pollution through innovations like the
electric-tricycle, bus and motor bike, are not yet developed in business. Furthermore,
there are neither campaigns nor continual public relations working in order to change
people and drivers’ habits in decreasing air pollution.

There are two main air pollution sources; one is traffic and the other is
industrial factories. While the former forms air pollution problems in main
communities like Bangkok or neighboring provinces, the latter forms the problems in
scattered areas in the country, both in towns and villages.

The sudden economic growth of the country from agricultural section to

industrial influenced Bangkok, which is the business and civilization center, leading



to an increasing population, and to more traveling and transportation needs. This will
affect the traffic jam crisis and cause low driving speed, and more starts and stops
which burns up more fuel. The more the fuel combustion is not completed , the more
air pollutant venting. Then the area near the traffic jam will have more serious
problems than in a normal area. The air pollutants which ventilate into the atmosphere
and come from transportation are carbon monoxide, nitrogen-oxide, hydrocarbon
forming compound, tiny dust of 10 micron size, lead and sulfur dioxide.

The main goal of this research is to study a solution in two space dimensions
of an air pollutant released into the atmosphere from a chimney at height h above the

ground in the presence of an inversion layer (see Figure 1.1)

Figure 1.1 : Concentration distributions form a continuous point source. (Adapted
from Seinfeld, J. H. (1975))
The well known process of diffusion of pollutants downwind from a source is

assumed to be governed by the differential equation (Runca, E. and Sardei, F. (1975))

dc Oc Oc 00O, OcO] 0

0 acO o]
Iy == +— —+ K . 1.1
or "ax "oz axp” o o H ' (4.0

2|
s



Where c(x, y,z,t)1s a concentration of pollutant at any point (x, y,z) and at the time ¢,
u, w are the horizontal and vertical components of the wind velocity, and K ,K . K.

are the coefficients for eddy diffusion along the x-, y-, z-directions, respectively.
We make the following assumptions:
1. The direction of the wind is chosen along the x-axis.
2. The meteorological conditions are such that horizontal advection by the
wind dominates the horizontal diffusion and that vertical diffusion
dominates the vertical advection by the wind.

By the assumptions, we have

dc 0 [0, Ocl dc 0O

Ocl]
U —BK o] a4 vt SR

Omitting the negligible terms in equation we get

Gc_I_ oc 00 odcO0 00O, odcO

) - 1.2
o o o azHK azH (12)

This equation has been widely applied to describe air pollution advection-diffusion
phenomena.

Rounds, M. Jr. (1955) found the analytic solution of equation

oc[]
u(Z)———BK( )— (1.3)
with the following boundary condition:
- The boundary condition on the z-axis is
c(0,2) = Oz=h) forall 0 <z <1, (1.4)
u(h)

where /4 is the height of the source.

- The boundary condition on the ground and at the inversion rate



K(z)m:o forall 0<x, (1.5)
Z
and
K 2%D Z0 foran 0<x. (1.6)
0z
The analytic solution of case
u(z)=z,K(z)=z, 0<a<l (1.7)

is

Jo (0,200, (0,h" " Jexp Frox(1+a)’ /45

cr,2)=(1+a)S 2
2 o

Here J; is the Bessel function of the first kind of order zero, 0, is the jth root of J, is

(1.8)

the Bessel function of the first kind of order one, g, =0 and J,(0) =1.

Runca, E. and Sardei, F. (1975) carried out a numerical treatment of time

dependent advection and diffusion of air pollutants equation

9c(6: 20 4 (29 :iﬁK(z)%D forall 0 <7,0 <x,0 <z <I. (1.9)
ot Ox Oz OZE
The initial condition is
c(x,z,0)=0 forall 0<z,0 <x, (1.10)

The boundary conditions are needed to define the source and to specify the vertical

diffusion range. The concentration at the source is assumed to be a 0 -function:

c(0,2,1 =21

forall 0 <¢, (1.11)
u(

where 4 is the height of the source. Boundary conditions for the vertical diffusion are
given at the ground and at the inversion layer. The latter condition is determined by

considering the fact that the base of an elevated inversion layer tends to act as a lid on



the upward diffusion of matter. Assuming that the ground and the inversion layer base

completely reflect the diffusing material, we have

K(Z)MZO, z=0,1 (1.12)

0z
Equation is solved with the method of fractional step (see, e.g. Yanenko, N. N.
(1971)). According to this technique, the concentration field at the time ¢+ A¢ is
obtained from that at the time ¢ by separating the contributions due to the advection

and diffusion terms of equation as follows:

In the first steps, the advection equation

oc dc
—+ —=0.
ot u(z) Ox (1-13)

is solved in the whole x-z integration region over the time interval [t,t + At] with the
concentration field at the time ¢ as the initial condition and the relation as the

boundary condition. The diffusion equation

oc 00 ocd
- - - :O’ .
o @ H (119

is solved in the second step over the same time interval. Here the initial condition is
provided by the concentration field obtained from the first step and the boundary
conditions by the relation The solution of is an approximation of the
concentration field at the time ¢+ Ar .

For equation a Lagrangian technique is used in order to avoid artificial
diffusion errors associated with the advection step. The diffusion equation is
solved with a conventional Eulerian finite-difference scheme.

The mathematical models for air pollutant dynamics in the atmosphere, as it is

known, and the process of pollutant transport and diffusion in the atmosphere is



described by the partial differential equation (Dang Quang A. and Ngo Van Luoc.

(1991))

00 99 99 0 . 0[] dQ -
E+ua+v$+(w wg)az ULp GZH’GZH'*U‘P /- (1.15)

Where ¢ is the concentration of pollutants, ¢ is time, x, y and z are the space
coordinates, u, v and w are the components of the wind velocity, f'is the power of the

source, w, is a positive constant, the falling velocity of pollutants by gravity, o is a
positive constant, the transformation coefficient of pollutants, u, Vv are the diffusion

. . 9> 0
coefficients, and A denotes the Laplace operator, i.e. A=—+—-.

X~ Oy

Dang Quang A. and Ngo Van Luoc. (1991) have found the exact solution of
the stationary problem of the equation under the following assumptions:

1. The source is concentrated in point (0,0,4) and has a constant power Q,

ie. £ =00(x)0(y)Az—h), where d(x) is the Dirac delta function.

0

2. The process of pollutant dispersion is stationary, i.e. m =0.
t

3. The wind direction coincides with the positive direction of the axis Okx,
namely u=u(z)>0,v=w=0.
Under the above assumptions the diffusion term in the direction of Ox can be

neglected so that the equation [1.15)]takes the form

00 op 09 o0 op0

_—wr_

Uy Wea, TH 5 azB/EHmd) =00 (x)0(»)0(z —h). (1.16)

This equation will be investigated together with the following boundary conditions

¢ :Oa X,y - iOO’ (117)

$=0, z - +oo (1.18)



99 _

=0.
% =ap, :z (1.19)

Here a =const = 0 is a coefficient characterizing the reflection and absorption of

the bedding surface.

The solution of the problem in the case when u = const > 0,

U =kyu, k, =const >0, V =const> 0 is

_ D 1 _ 2 _.2 AV
d(x, v,z) = w? (4 px) ( @ (24 (42) 4 =" (2 h) /(4x))

" i

2a a 2x/a* +a (z+h) f Da(Z+h) GIEE

p ﬁ \/_ EE x>0

¢(x,y,2)=0, x<0,

u
where a=,|—.
v

In 1992 Dang Quang A. and Ngo Van Luoc. (1992) proposed a numerical

method for solving the problem

u%—wg%—f %E{ ‘Z ﬁ+ gp =0, x >0, (1.20)
up =00(z-h), x=0, (1.21)

$=0, =z - o, (1.22)

‘;f =ap, z=0. (1.23)

For the considered problem an implicit difference scheme is constructed and
investigated from the view point of an infinite system of difference equations. In order
to find the solution of this infinite system they use a truncation method which allows

them to determine the accuracy of the approximate solution.



The objective of this thesis is to use the finite element methods for the
approximations of the two model problems.
Problem 1 The steady state problem

This thesis is concerned namely with the numerical solution of the equation

(1.15)|under the following assumptions :

1. The concentration at the source is assumed to be a d -function :

9(0.2)=—2 5(z-n),

u(h)
where / is the height of the source and Q is the emission rate.

09 _

2. The process of pollutant dispersion is stationary, i.e. o 0.
t

3. The wind direction coincides with the positive direction of the axis Ox,
namely u =u(z) > 0,v=w=0.
4. The horizontal advection by the wind dominates the horizontal diffusion.
Under the above assumptions the diffusion term in the direction Ox can be neglected.
In order to eliminate the y-dependence of the problem, we assume that we have a
uniform line source along the y-axis. We assume zero flux at ground level z = 0 and at
height z = H the height of the bottom of the inversion layer that acts as a barrier to the

flux of the pollutant. Thus, we solve the problem in the semi-infinite strip

{xDD | > (}X{ 1019 < [-} . Then the equationmmkes this form.

ol op 0, . 0p[ _
u(z)a—x—wgg—ggl(z)gﬁ+a¢ =0 forall 0 <x,0 <z <H. (1.24)

The boundary condition on the z-axis is

$(0,z) = %5(2 —~h) forall 0 <z <H. (1.25)
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where /4 is the height of the source and Q is the emission rate.

The boundary condition on the ground and at the inversion layer are

V(O)MZO forall 0<x, (1.26)
0z
and
V(H)MZO forall 0<x, (1.27)
0z
respectively.

Problem 2 The unsteady state problem
This thesis is concerned namely with the numerical solution of the equation

(1.15)|under the following assumptions:

1. The concentration at the source is assumed to be a d -function :

$(0,z,¢) :%5(2 —h), forall 0 <¢,

where / is the height of the source and Q is the emission rate.
2. The wind direction coincides with the positive direction of the axis Ox,
namely u =u(z) > 0,v=w=0.

3. The horizontal advection by the wind dominates the horizontal diffusion.
Under the above assumptions the diffusion term in the direction Ox can be neglected.
In order to eliminate the y-dependence of the problem, we assume that we have a
uniform line source along the y-axis. We consider a 0 -function source at height 4 on
the z-axis. We assume zero flux at ground level z = 0 and at height z = H- the height
of the bottom of the inversion layer that acts as a barrier to the flux of the pollutant.

Thus, we solve the problem for all # > 0 in the semi-infinite strip

{x HIERECS x}x{ 1019 < [-} . Then the equation takes this form.
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0 0p 9 90, 00
T oru(z) = -, -2 X =+0¢ =0 forall 0 <t,0 <x,0 <z <H.(1.
or O o T ey o Y (), o =0 fora »T =2 ST.(1.28)

We assume that the initial concentration is zero everywhere and gives the initial

condition

$(x,z,0)=0 forall 0 <x,0 <z <H. (1.29)

The boundary condition on the z-axis is

$(0,z,1) :%6@ —h) forall 0 <t,0 <z <H, (1.30)

where /4 is the height of the source and Q is the emission rate.

The boundary conditions on the ground and at the inversion layer are

v(O)w=0 forall 0<¢,0<x, (1.31)

and

V(H)wzo forall 0<¢,0<ux, (1.32)
Z

respectively.

1.2 Research objectives

We are interested in using the finite element methods to model problem 1 and
problem 2 and with the following procedure: first we will develop a finite element
method to the steady state problem and then we will consider the unsteady state case.
The convergence of the approximated problems will be investigated. The goals of the
research are as follows:

* To review and choose the finite element methods for two-dimensional

steady and unsteady state problems, problem 1 and problem 2.
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* To develop computer programs for two-dimensional steady and
unsteady state problems, problem 1 and problem 2.

* To compare the computational solution with the known solutions of the
problems.

1.3 Scope and limitations of the study

We will consider the finite element methods applicable to the problem in both
steady and unsteady cases. This problem is concerned with the numerical solution of

the equation under the following assumptions.

* The wind direction coincides with the positive direction of the axis Ox
and the wind velocity ¥ = (1,0,0), where u = u(z) > u,> 0, u, =
constant.

e The concentration at the source is assumed to be a O -function:

_ 0 5o
—u(h)5( h),

where /4 is the height of the source and Q is the emission rate.
1.4 Survey of the thesis

Numerical methods which are called Finite Element Methods were used to
solve the process of pollutant transport and diffusion. We performed the calculation
upon the steady state and the unsteady state cases.

The standard definitions, notations from functional analysis and fundamental
concepts of finite element method are defined and presented in Chapter II. In Chapter
111, the stationary problem is solved by using the finite element method. We assume
that the wind direction coincides with the positive direction x-axis. The advection

and diffusion coefficients are of the function of z. The corresponding schemes are
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solved using MatLab software. The computational techniques in the numerical
experiment enable the study to determine the realistic estimate of error constant and
the order of convergence of numerical algorithms developed in this thesis. We have
compared this solution with the analytical solution.

The finite element algorithms for approximate solution of the unsteady state
problem are proposed in Chapter IV. The calculations are performed in two steps. In

the first step we find the auxiliary solution ¢ * and find the true solution ¢ from
second step, using the ¢ * as an initial data. By this algorithm, we assumed that the

pollutant moves by transportation and then diffusion. The numerical schemes were
performed and solved by MatLab software. The concentration contour line obtained
from the computer programs are reasonably in accordance with the former results,
using the fractional step method in the reference. Then the thesis is briefly reviewed

and the conclusions are presented in Chapter V.



Chapter 11

Preliminaries

In this chapter we will give some information from functional analysis, some
definitions of finite element method and some definitions which we use in this thesis
to make itself sufficient about. In our explanation, we are following the results from
the handbook. [Brenner, S. C. and Scotf, L. R. (1940), Becker, E. B., Carey, G. F. and

Oden J. T. (1981)]

2.1 Notations and definitions
Let Q be a domain in [J”. The notation C(Q) denotes the set of continuous

functions on the domain Q. Similarly, for any domain, C*(Q)denotes the set of
functions which together with all derivatives up to and including the A-th derivative

are continuous. We use the notation L”(Q) to denote the set of all functions for which

Ip

O §
171, = %[If @) &g < 2.1)
0

Definition 2.1.1 Given a linear (vector) space V, a norm, [n], is a function on V with

values in the non-negative reals having the following properties:

i) |20 forall vOV

i) |p|=0iffv=0
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i) |o O =|a|y| forall aOO, &1 ¥
iv)  [v+w| ||+ forall v,wOV

Given a multi-index o =(@,,+-,a,) 00 ", we use the following notation:

ja|= iai
=T

]
0° = 4

T aa a,
PRI

(2.2)

Moo .d

Definition 2.1.2 Let Q be a domain in [1". Denote by D(Q)or C; (Q)the set of

C”(Q) functions with compact support in Q.

Definition 2.1.3 Given a domain Q, the set of locally integrable functions is

denoted by

Ll

loc

(@) ={f:fDOL(K) forall compact KO interic® } .
Definition 2.1.4 We say that a given function f0L, @ ) has a weak derivative,

9% 1, provided there exits a function g 0L Q ) such that

0g

J’ 2(x)@(x)dx = (-1)! J’ F(x) @ (x)dx forall ¢ODQ ).

If such a g exist, we define 07 f = g.

Definition 2.1.5 Let k be a non-negative integer, and let f L, Q@ ). Suppose that

the weak derivatives 07 f exist for all |0{ | < k . Define the Sobolev norm

/p
V4

L”(Q)E ’

|7

.S

[l

in the case 1 < p < oo, and in the case p =
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I

= max
Wa (@) sk

9.f

Q)"
In either case, we define the Sobolev spaces via
Wi @ ={ 08,0 )|/l 05}
Notation 2.1.1
H"(Q) = (.
Definition 2.1.6 For k a non-negative integer and f [J W/f Q ), let

/p
V4

L"(Q)E ’

f

oS

[l

in the case 1 < p < oo, and in the case p =

|/

= max
WE(Q) la|=k

0./

Q)"

Definition 2.1.7 A bilinear form, b([D], on a linear space V' is a mapping
b:VxV - [ such that each of the maps v+ b(v,w) and w> b(v,w) is a linear
form on V. It is symmetric if b(v,w)=b(w,v) for all v,wV . A (real) inner
product, denoted by (D:)], is a symmetric bilinear form on a linear space V' that

satisfies

1) (v,v)20 forall vV
i)  (vv)=0iff v=0
Definition 2.1.8 A linear space V' together with an inner product defined on it is

called an inner-product space and is denoted by (V, (ED]) .
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Definition 2.1.9 Let (V,(DZ)]) be an inner-product space. If the associated normed

linear space (V, [H]) is complete, then (V,(D:)) is called a Hilbert space.

Definition 2.1.10 The J -function, often called Dirac's delta function or just the

Dirac function J(x)is defined to be zero when x # 0, and infinite at x =0 in such a

way that the area under the function is unity.

A concise definition is the following:
I O(x)dx =1,

O(x)=0 for x #0,

The generalized function O(x) has the following properties.

R )
x0(x) = 0,
[f@8x-8a = [
(/@80 = fO),
[8E-va-mdx = &E-).

IO )

x0'(x) = o(x),
[f@Fa-8d = —[@),

d(ax) = a”'d(x)
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o(x*-a*) = %a‘l [5(x—a)+5(x +a)].

2.2 Weak formulation of problem with linear second order partial

differential equation
The general form of a linear second order partial differential equation in n
variable x,...,x, 1s

n

> au,, + ibiuxi +eu = f, (2.3)
7=l =T
where the coefficients a,,b;,c and f are real constants or function of x,,...,x, .
Let
1=%4,-2 DX (2.4)
& " 0xOx; & O

be a second order linear differential operator.

Given an open and bounded region Q in [J” with polygonal boundary I'=T T ,
such that I, and I, are nonoverlapping, then if L is a second order linear differential

operator we consider the problem
Lu=f in Q

2.5
u=0on [}, S—MZO on [, 22)
n

where f is a source term and n refers to differentiation in the direction of the
n

outward normal.
Let H"(Q)denote the Sobolev space of functions with derivatives up to order

k being square integrable over the region Q. We suppose that there exists a unique,
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continuous linear mapping y: H'(Q) — L*(I',) such that for each vOOH'Q ), yv is

the restriction of v to ', . We define
Hy={vOH'Q )|y= 0onl }.
The weak formulation of problem [2.5)]is :

Find u 0 H,Q ) such that
b(u,v)=(f,v) forall v H,Q ),

where (f,v)= I fvdQ isthe I’ inner product and b(u,v) is the bilinear form resulting
Q

the second order terms of the inner product (Lu, v) is integration by parts, so that only
derivatives of first order remain.

The solution of this weak formulation is said to be the weak solution of
equation It is not true however that the weak solution is also the classical
solution of equation For this to be the case we need the weak solution u to be

sufficiently regular so that Lu is well-defined in the classical sense. So for example if

L is an nth-order differential operator then the classical solution is C" continuous.
The advantage of using weak solutions if they are unique is that it is easier to prove
the existence of weak solutions than the existence of classical solutions. Moreover,
since all strong solutions are also weak solutions, if we have a unique weak solution

then there must be no more than one strong solution.
2.3 Conforming finite element methods

The process of pollutant transport and diffusion in the atmosphere is described

by the partial differential equation

09

o

+UM¢-0 K~ Au+p od f, (2.6)
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where ¢ and U are the pollutant concentration and the wind field respectively, ¢ is
time, K is the eddy-diffusivity tensor, y is the diffusion coefficient, o is the

transformation coefficient of pollutants, A denotes the Laplace operator, i.e.

A= 6—22 +6_22 and f'is source.
Ox~ 0y
The standard weak form of the equation is: find ¢ OH;Q ) such that
a(¢,v)+c(¢,v) —d(¢,v) —e(¢ ,v) +h(¢ ,v) =(f,v) forall v OH,Q) (2.7)
where
a(g,v) = ‘g[%—fv dQ,
@y = [UDppa,
d¢y = [(IK ¢,
@) = [(ipvde,
Wgy) = [(@pdQ,
(/+¥) = [pde,

and H,(Q)is the usual Sobolev space.
Let us suppose that we are given an infinite set of functions {qq, Q, (,g),..} in

H, which have the property that each test function v in H, can be represented as a

linear combination of the @ by a series of the type

v=3 B9, (8)
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where the [ are constants and the series converges in a sense appropriate for the
1 . . . . . .
space H, of @ A set of function {(p} with these properties is said to provide a

basis for H, and the functions @ are called basis functions.

It is clear that if we take only a finite number N of terms in the series
then we will obtain only an approximation v, of v:

N

Vy = Z B (2.9)

=

The N basis functions {@, @...., @} define an N-dimensional subspace H"’ of H,.
The subspace H_" is of only finite dimension N because each function v, in H " is
determined by a linear combination of only the N functions @,..., @ by @ H™

is subspace of H(l) because each @, i =1,2,..., N, is, by definition, a member of H(l).

We consider Galerkin's method for constructing approximate solutions to the

variational boundary-value problem Galerkin's method consists of seeking an

approximate solution to[(2.7] in a finite-dimensional subspace H™ of the space H,
of admissible functions rather than in the whole space H,. Thus, instead of tackling

the infinite-dimensional problem @l we seek an approximate solution ¢, in H{"

of the form
N
¢y =>ap, (2.10)
i=1

which satisfies [2.7] with . replaced by H. In other words , the variational

statement of the approximate problem is this : find u, O H{" such that
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a(@y,vy) @y vy) =d@ . vy) —e@ . vy) +h@ . vy) =(f,vy) forall v, OH™.

(2.11)

Since the @ are known, ¢, will be completely determined once the N coefficients a,

in are determined. The q, in are referred to as the degrees of freedom of
the approximation.

We first observe that all of the test functions v, are linear combinations of the
basis function @ of the form B, being the arbitrary constant. Note again that
vy In |L2__2)| can take on the values of any function in " through a proper choice of
the constant f3,.

The Petrov-Galerkin method for problem consists of choosing two finite
dimensional spaces V,W 0 H, such that dim(V) = dim(/), and solving
find ¢ OV such that

a(@,w)+tc(@,w)—d@,w)—e@,w) +h@ ,w) =(f,w) forall w O,
The space V' is known as the trial space and W is known as the test space. The

finite element Petrov-Galerkin method consists of producing V' and W to contain

piecewise functions (usually continuous piecewise polynomials) defined over a mesh.
2.4 Non-dimensional form
We now non-dimensionalize the problem 1 and 2 in section 1.1. The non-

dimensional expressions of variables x,z, ¢, h, ¢ ,u, v, w, and O are

xW(H)

x* = ,
H*u(H)

b

Z
H



Thus

f*

h*

¢*

V*

O'*

W (H)

V(H)’

w [H

g

V(H)’

o[H’
V(H)

0p* _u(H)H® p
or* QN(H) ot

From the above definitions we get

u*(z*)

0p* _u(H)H’ 0z [0¢

3
W*’0¢*:u(H)U-I W’%
oz QmH) © oz

0.0, 00 0_u(H)H® 30, 8¢r)
Gz*ﬁ/ ) o0 oman o @) o

_u(H) O’

= wan

g

a*  omH) HrHax

23

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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2.4.1 Steady state problem

In steady case, we have

6*  ap* 8 O 3 *
* (727 _ LS e s S P
e el Gt wey

u(H)m3DDzDa¢ 0¢ 000 z0o9O,

ow(m) o HuHex "o a:BH i o-H Ud’D’

but from (1.24)

_oQ0n i -
aB/ +0¢ =0,

0, %
¢ 0z FZak e

Lz
HEHEZ

so we have

¢ op* 0 0 *01

u* (2 * (% +0 *¢* =0 forall 0 <x*,0 <z* <,
() e w3 E{ (#)5+0%0 "9 :

(2.17)
and

u(H)H
0

¢ *(0,2%) ——(0,z%),

WH)H 0 5oy )
0 ulh

Hd(z*-h)
u(h) -
u(H)

H[d(z*-h)
u*(h*)

2

5%*'?@

2
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_0(z*—h*)
¢*(0,Z*)—W fOTaHO<Z* <1 (218)
since
* (k¥ % 2 * %
(o 095G WD 0.2
0z * QW (H) 0z
Let z*=0 then
% (% 2 *
V*(O)afl’ (x*,0) _u(H)H V(O)afl’(x ,0),
oz* QWN(H) 0z
since
* %k
0z
so we have
% %k
v 222050 _ o ol 0 <x*, (2.19)
0z *
Let z*=1 then
* (% 2 *
yuy08FORD ()T | 0BG H)
0z * QW (H) 0z
since
%k sk
S0
0z
so we have
* %k
v 22 00D _ g ol 0 <k (2.20)
0z *

2.4.2 Unsteady state problem

In the unsteady case, we have
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oY L %% - - * ()X D gk ®
o T T g Ty T

u(H)D’13 [o¢ 09 , Oz 0og 0p 000 :zOog O

ow) S “HuHor "o a-HHEH o-H U¢D’

but from (1.28)

0z 009 a¢ 0 00 z00¢ O

Y8y ™o oz N0 a0 P "

so we have

op* . op* .o09p* 0 [ op *0
O ()L - - (P _F40*g* =0 2.21
ot * ! (Z )ax* e 0z * OZ*B’ (z )GZ*H ¢ ( )

forall 0 <¢*,0 <x*,0 <z* <],
since

¢ % ()C*,Z*, 0) e M¢(X*,Z*,O),
but from (1.29)
¢(‘x*’ Z*’O) = 0’
so we have
@ *(x*,z*,0) =0 forall 0 <x* 0 <z* <], (2.22)
and
¢ *(O’ Z*,f*) = %¢(O’ Z*,t*),

WHH O 5oy
0 ulh

Hd(z*-h)
u(h) -
u(H)
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H[O(z*-h)
w* (%)

2

w1
o(z H)

u*(h*)
O(z*—h*)

u* (h*)

¢ *(0, 2%, 1*) = forall 0 <#*,0 <z* <I, (2.23)

since

X (¥ % sk 2 % % ok
V*(Z*)acb (o, 2%, t%) _u(H)H V(Z*)a(p(x 2% 1%)
0z* QW(H) 0z

Let z*=0 then

0P *(x*,0,1%) _u(H) (H’ . 0 (x*,0,1*)

Vv *(0) 0)

oz * QWN(H) 0z
but from (1.31)
k %
0z
so we have
% % %
vr0) 2250001 o porall 0 <,0 <x*, (2.24)

0z *
Let z*=1 then

0P *(x*,1,*) _u(H) (H’ . 09 (x*, H,1¥)

v*(D) (H)

oz * QWN(H) 0z
but from (1.32)
% %
0z
so we have
k k *
v Q0 ONL) o rall 0 <r%,0 <x*) (2.25)

o0z *
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2.5 Approximations of the boundary conditions on a non-uniform

grid
z,=0
k-1
We have a non-uniform grid {zl. = 1,2,---,r} where z, = ZAzi , k=2,3,---,n-1.
i=1
z, =1

At the lower boundary, since

%=O at z=0.
0z

¢'(z)) = ap(z,) +bp(z,) + P (z;)

= a¢(zl)+b¢(zl +14z) +ap(zl +(Le, +Lx,))

= W) bR a) + B g (o) vt
d 2 -

Az ? O
+A22) ¢,(Zl) +"'D
2 B

H
%gmﬂM+%W@HL#——-

= (a+b+c)¢1(zl) +@Azl +C(Azl +A32)E¢'(Z1) +

+Eb(Azl)2 oo (8a ¥ i,
& 2 2

)5
0f(2)) +-
5

By comparison of the coefficients of @(z,),¢'(z,) and ¢'(z,), we have;

a+b+e =0, (2.26)

bz, +c(Lz, +Iz,) =1, (2.27)



29

=0. (2.28)

Solving these equations for a, b and ¢ gives

20z, + Az,
a = - ’
Az, (Az, + Az, )
b _ Az + Az,
Az Az, ’
Az,
c = - .
Az, (Az, + Az,)
So that
20z + Az, U Az, + Az, [ U AV O
¢'(z)=11 1 2W(z) + 2 (z,) H1— 1 ¢ (z,).
1 0 AZl(A21+A22)D 1 04z 4z, O ’ 0 Azz(Azl'l'AZzE ’

At the upper boundary, since

9%

4

0 at z=1.
Let
9'(z,) = p9(z,)+qd(z,.)+rd(z,,)

= po(z,)+qd(z, — L, ) +rp(z, (L, +1x,,))
U Az Y 0

- po(z)+qd(z,)—Le,_@'(z,) +u¢'(zn) +. [0+
= 2 E

: U
n-1 +AZ,,—2) ¢'(Zn) +[|
2 =

(Az

O
+r [@(z,) _(Azn—l +Azn—2)¢,(zn) +
=

= (p+q+r)(z,) +Bqle,, —r(Le,, +1x,,)F0'(z,) +
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elem) (et on)
g 2 2 -

By comparison of the coefficients of ¢(z,),¢'(z,)and @'(z,), we have;
ptq+r=0, (2.29)

(e, + e, ) =, (2.30)

=0. (2.31)

Solving these equations we get

2Azn—l + AZn—Z
AZn—l (Azn—l + AZn—Z) ’

p =

— — AZn—l + AZn—Z

q AZ}'I—IAZ;':—2 ’
AZ}’I—I

AZn—Z (Azn—l + AZn—Z)

So that

, U 20z  +Az , U O
¢'(z,) =0 S (z,) t O
Epzn—l (Azn—l +Azn—2 )D |:|

Nz + /1

U
n-1 n—2 z +
AZ AZ E¢( n 1)

n-1 n-2

Nz O
2l D(b(Z”_z).

0
+ 03
EAZn—Z (Azn—l + AZn -2 )D



Chapter 111

Approximate Solution of Steady State Problem

3.1 Introduction

The main goal of this chapter is to study the time independent solution in two-
dimensional space of an air pollutant released into the atmosphere from the chimney
at height /4 above the ground in the presence of an inversion layer, which acts as an
impermeable barrier to flux of the pollutant to higher levels of the atmosphere. The
flux of pollutant is assumed to be zero at the ground and at the inversion layer located
at height H . The concentration of pollutant at the chimney is assumed to be presented
as a O -function, which gives rise to a steady emission rate Q of pollutant from the
chimney. The resulting discrete problem is then solved by the Petrov-Galerkin finite

element method.
3.2 Mathematical formulation

We will study the steady state problem (1.24) - (1.27). We use the same
notation for the non-dimensionalized variables. In these new variables, the resulting

system is

0 0 o0, g0, . _
“(Z)g‘wgg‘g@(z)a_zﬁm’ =0 forall 0 <x,0 <z <I,  (3.1)

the boundary conditions are
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¢((),z):M forall 0 <z <1, (3.2)
v 0225 o forall o<, (3.3)
0z
v(l) 6¢(§x,l) =0 forall 0<x. (3.4)
Z

3.3 Finite element approximation

Let Q:{(x,z)DD2|O< x, 0 =< ]} be a domain and let

N9 _ 09 00 .op0. ., _
L@)=u(z) =W, 55— () S +0p =0 (3.5)
For (x,z)[QQ , we have
P(x.2) =P (x,2) = i¢,,(x)¢z,(z). (3.6)

In this presentation of trial function @ is the parameters ¢, depend upon x and basis

functions ¢, are only functions of z .When this trial function is substituted into
we have

L(§) =R, (3.7)
where R is a residual arising from the fact that does not identically satisfy

According to the Galerkin approach, we require that the residual is orthogonal to the

weighting functions w(z), i =1,...,n. Thus the approximating integral equations

have the form
1
IL(qS)wi(z)dz=0, i=1,2,--,n. (3.8)
0

Therefore integrating by parts gives
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J-EA(Z)O—X gaaf a@( )6¢D+U¢Hw 2)dz =0, i=12..n. (3.9)

0

J’u(z)%—fwi(z)dz—ng'g—f@(z) dz J’ HV( )aﬁﬁ@(z)dz +‘! opuxz)dz =0

Iu(z)—(pa)(z)dz WI w(z)dz V(z) % a)(z)

+Iv( ) ( 0w(3) 4, +Ia¢w(z)dz -0

since

02250 _ o ang va)22&D _
0z 0z

SO

0 op aw( z)

J’u(z)—a)(z)dz wJ' oq( z)dz +J'v() ——dz +J'U¢oq(z)dz =0.

(3.10)

To determine the functional form of w/(z), let us consider the element of

Figure 3.1, where, for convenience, we have selected the origin to coincide with
z=0. Because integrations are performed elementwise, this does not result in any

loss of generality. The basis functions in this case have the form

(pj(z)=l—% (0 <z <k), (3.11)

(pjﬂ(z):% (0<z<k). (3.12)
Let the weighting functions w; and w,,, be expressed in the form (see, e.g. Lapidus,

L. and Pinderm, G. F.(1982))

w,(2) =9(2) = F(2), (3.13)
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W, (2) =@ (2) +F(2), (3.14)

2

z z
F(z):ap+bz +c, (3.15)

where F'(z) is a piecewise quadratic function with undetermined coefficients a,b and
c¢. To determine the values of a,band ¢ we impose the following
F(0)=0, (3.16)

F(k)=0. (3.17)

Substitution of (3.16)|and (3.17)|into |(3.15)]|yields

02 20
F(z)=ag—+-0, (3.18)
Ok kO

where a is the remaining undetermined parameter. For convenience, we define

0 =a/3. The complete weighting functions can now be written as

2

wj(z)=@(z)+39%—39%, (3.19)

2

0,1 (2) =9 (2) —39;—2 +3e§. (3.20)

The parameter 6 lies between zero and 1 and dictates the degree of upstream
weighing to be employed. The maximum degree (6 =1) is the case illustrated in
Figure 3.1. For 6 =0, the weighting function obviously reduces to the basis function
and the method becomes identical to Galerkin's approximation. The sign of the 6
parameter must be consistent with the direction of flow [6 >0 when b(z) >0 ].

The local z-coordinate system presented above is related to be the more

commonly encountered 1) system though the relationship

z _n+l
==, -l=zpns<l 3.21
k2 1 B:21)
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Thus we can write (3.11)} (3.12)](3.19)|and [3.20)]in the alternative form

o =50-n) (3.22)

@) =5 (1+1), (3.23)

w, () = %[(1 +17)(36n =36 -2) +4], (3.24)

.01 =[(1+n)(360 +36 +2)]. (3.25)
A wj

L > 0 y
-0.33 J-1 J \/‘H—»
\

ko ——
Figure 3.1: Weighting function w, and basis functions ¢, for the asymmetric

weighting function approximation.(Adapted from Lapidus, L. and
Pinderm, G. F. (1982))
Since this result is valid for every closed interval, the integration of [3.10)|can take

place in every element. Thus, it can be written as

0 0¢ 6¢‘
J;%f(ﬂ)a—x

wm-w, Lo+ v(n)"“a(”) +0¢w(n)g dn =0, (3.26)

where

de, (M dn _ (P("I)

Z(b() i dz

(3.27)
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Equation describes a set of n ordinary differential equations. This is readily

apparent when is written in matrix form.

[ Dd"’D +[8l{4 =0 (3.28)

1
k
Where 4, = [ u(n)@(n)a%(n)gdn and
=1

de,() (P (1) dwy ()

=-w j—w(n)d +j nm——- an ———=dn +j0rp(n)w(n) dan

This scheme is the logical extension of the backward approximation described above

for the linear system of equation. The only modification involves the recognition of

the dependence of matrices [A] and [B] and their explicit evaluation at the mth

level. Thus the algorithm is written

meﬂ _¢mD _
(4], g 8l (0.4 =0 (3.29)
or, alternatively,
([4], + o 8], }{9,..4 =[4],{8.}- (3.30)

3.4 Numerical algorithm for computing of [4] and [B]

In order to provide good resolution of the concentration profile near the
source, where the strongest diffusion occurs, we used a Gaussian distribution of the
vertical grid point density, centered at the source location, as expressed by (Runca, E.
and Sardei, F.(1975))

v=k,i=1for z, >h

1 1
—=—c A(z, —h)’B, Jk=2.3,...n-1 (3.31
Nz, Dz, A )Ev=k—1,i=2 forz, <h n-l (331

with
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=0
k-1

ZAZ,,, k=2,3,...,n-1 (3.32)

Z
Zk
z =1

Az is the size of the first interval above and below the source. 4, and A4, are

parameters of the distribution, 7 is the number of vertical grid points. Az, and n are

taken as independent parameters. For given values of Az and n,4, and A4, are

determined so that they satisfy the relations ((3.31)| and |3.32)), being as close as

possible to each other. For a given number of grid points n, a smaller value of Az,

means a lesser uniformity of the distribution, that is, a higher concentration of grid
points near the source. From a parametric numerical study Runca, E. and Sardei
(1975) arrived to the empirical conclusion that the best accuracy of the overall results

including regions for downwind is achieved by choosing Az within the range
1/2(n-1) <z <1/(n -1).
The size of the vertical interval Az, is variable and is determined by the given

values of Az, and n. Both Az, and z, as well as 4, and A4,are calculated by

iteration, from the relation ([3.31)|and [3.32)).

Suppose that in case n =21,h =0.2 we choose Az, in the range

1 Ar 1

- < <
2(21-1) ’ (21-1)

0.025 < Az < 0.05

s

if we choose Az =0.033 and choose the point of source z,=h=0.2 then

Az, = Az, =0.033.



For grid below the source form |(3.31)|and [3.32)]

then

we have

1
Az,

003350 B4,(z, -0.2)°H

0.033exp 4, (z, —0.2)°H

0.033exp 4, (z, —0.2)°H

0.033exp F4,(0.2-0.2)°H

0.033

0.033exp B4, (z; = 0.2)°H

0.033exp B, (z, — Az; —0.2)°H
0.033exp F4,(0.033)°H

0.033exp 4, (z, —0.2)°H

0.033exp {4, (z, = Az, =z, =0.2)°H
0.033exp F4,(0.033 + Az,)’H
0.033exp 4, (2, —0.2)°H

0.033exp {4, (z4 — z; = Lz, — L, —=0.2)°H
0.033exp B4,(0.033+ Az, +Az,)°H
0.033exp 4, (z, —0.2)°H

0.033exp {4, (z, — Az, — Lz, — I, - Le, —0.2)°H

38



and find 4, by solve

0.033exp F4,(0.033 + Az, + Lz, + Az,)’H

Dz, + Do, + 0z, + 0, + 05, + 15, =0.2.

For grid above the source form [3.31)|and [3.32)]

then

we have

1

Az,

0033 S%P B4z, -0.2)°H

0.033exp 4, (z, —0.2)°H

0.033exp B4 (z, ~0.2)°H

0.033exp F, (z, + Lz, —0.2)°H

0.033exp [4,(0.033)°H

0.033exp 4, (z, —0.2)°B

0.033exp B4, (z, + Az, + Lz, ~0.2)'F
0.033exp B4,(0.033+ Az, )°’H

0.033exp H4,(z, —0.2)°H

0.033exp |4, (z, + Ac, + 2z, +Ae, ~0.2)F

0.033exp F4,(0.033 + Az, + Az )’

0.033exp (2, —0.2)°H

39
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0.033exp F4,(0.033+ Az, + Az +--- + Lz o)°H

Az, = 0.033exp 4, (2, —0.2)°H

0.033exp F4,(0.033+ Az, + Az +--- +Le, +L%,,)°H
and find 4 by solve

Dz, + Dz +---+ Dz + 2, =0.8.
Finally, take all intervals in equation we get vertical grid z,,z,,...,z2,,.

The concentration profile at the source, expressed as a O -function in the
boundary condition |(3.2)} is approximated numerically by a one-step function

centered at the source and having the width Az . Its amplitude is determined by

requiring the same emission as in :

O
B for OSZ<h—AZS,
0 2
¢(0,Z):E11— for h—AZS <z<h +AZS, (3.33)
Az, 2 2

O
EO for h+AZZS<ZSl,

where u, =u, at the source.

Suppose that n =21 so 4 and B (in equation [3.30)) are 21x21 matrices.

We have , first row

y _ 20z + U,
M Nz (Dz, + Dz’
_ AZI+AZZ
T
1=<2
A = - Az

Dz, (Dz, + Az,



4, = 0 for j=45..21
and last row
A21,19 = =2 ,
Az, (Azyy + Az),)
4, _ _Dzy
. AZZOAZIQ ’
20z + Iz
4y, 5, = - L

AZZO (AZZO + AZl9) ’

4, 0 for j=1,2,...,18.

In the case u(z) =1 (see appendix B)

1 D
A ﬁ_z HAZ +A

U
01 10 B
Ak,k+1: —0+— Azk’
EE4 165 %for k=23,...,20,
Ay = EZQ +g§&ka B
U
Ay = BZQ +§BAZk, E
Bl,j =_O’Dfor J=123. 00
BZl,j 09D
Ol1,.10 1,.101,.10 .
Bkk:H-EG +Eng —59 +EE—ZQ +E0Azk +B, IHB
O, 10 1, 101,10 0
P SO 5% *20 T a0 T O AN
1, 10 1, 1 01, 10 Ofor k=2,3,...
B"“"'EEQ*EH% 20 et g %
10, el Hlg 10 0
a0 o so s oo

In the case u(z) = z"° (see appendix B)

,20.

41
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g 16 16 O 0

H_T Tos)” +Ak_1’k_l’g

) _ 16 D 3/2 O
kk+1 - Tne

HIOS IOSH %for k:2,3,..-,207

p _D 4 E 3/2 il

k+Lk 35 0

U

U

H

04 2]
Aipon = 1 0 +7E(Azk )3/2 ,

5., =00 for j=1,2,3,...,21
1 10 1 I O 1 O O
B —0+—w, —0+— 4 —0 ok, B, .0
Kk H_z 2Hg > 2"5 4 +E k k1k1D
O, 10 1, 101, 10 0
B, i EEQ 2ng+26 ZE 49+E0&k, H )
| 1 O o Bfork—2,3,...,20.
Ktk BEQ-FEEWg-FEe_EEZQ'FEO&ka B
_ g 0l 10 0
By iiin H—Ze 2HW 5 2E49 ok,, E

3.5 Comparison and convergence of numerical solutions

3.5.1 Comparison of numerical solutions with analytical solutions

In this section, we obtain the numerical solution for the test problem -

by using the finite element method presented in section 3.4. Then performing a

rigorous comparison of approximate and exact solutions.

To construct a test problem [(3.1)]- [3.4)]with the known solution, we use the

results of Rounds (1955).

Jo(0,2" ) Wy (0,1 exp Brox(1+a)* /45

Y08

d(x,z)= (1+0{)Z] , (3.34)
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where J; is the Bessel function of the first kind of order zero, 0, is the j th root of J,

is the Bessel function of the first kind of order one, g, =0 and J,(0)=1. In our
calculations we used 51 terms of the series.

Analytical and computational results for steady-state conditions with the
parameters V(z)=z,h =0.2, w, =0.0,0 =0.0, Ax =10"*are presented in Figure 3.2 —
3.5. In the pictures, the numerical results are reported for two different numbers of

grid on z-axis, namely n=41 and n=81. Figure 3.2 and 3.3 shows vertical

concentration profiles two different numbers of grid on z -axis at distances from the
source x =0.003 and x=0.01 with u(z)=z". Figure 3.4 and 3.5 shows vertical
concentration profiles two different numbers of grid on z -axis at distances from the

source x =0.003 and x =0.01 with u(z) =z°.

The approximations are evidently sufficient to give good agreement between
theory and numerical calculations. The graphics presented in Figure 3.2-3.5 are also
indicated that the approximate solutions near to the source seems more accurate than

those far from the sources.
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1 1
09 1 0.9 q
081 b 081 q
07 ———  analytical solution 1 0.7F ——  analytical solution T
06F o numerical solution 1 06 o numerical solution T
NO5 NO05 b
0.4

0.3

0.2

01F

(b) n=81

Figure 3.2: A comparison of the analytical and numerical solution at distances

x =0.003 from the source, u(z) =z"’, Analytical solution

— , approximate solution o.
1 1
0.9F 4 0.9+ 4
08| 4 08 4
0.7 EE— analytical solution B 0.7F E— analytical solution B
0.6 o numerical solution 1 0.6 [¢] numerical solution T
NOS5H

(@) n=4l1 (b) n=81

Figure 3.3: A comparison of the analytical and numerical solution at distances
x =0.01 from the source, u(z) =z"°, Analytical solution

—, approximate solution o.
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09

0.8

0.7

0.6

0.4

0.3

0.2

01r

o

analytical solution

numerical solution

0.9

0.8

0.6

NO5F

o

analytical solution

numerical solution

(b) n=81

Figure 3.4: A comparison of the analytical and numerical solution at distances

x =0.003 from the source, u(z) =z"*, Analytical solution

— , approximate solution o.

0.9

0.8

0.7

0.6

04r

0.3

0.2

01r

analytical solution

numerical solution

09

0.8

0.7

0.6

0.4

0.3

0.2

01

analytical solution

numerical solution

(b) n=81

Figure 3.5: A comparison of the analytical and numerical solution at distances

x=0.01 from the source, u(z) =z"*, Analytical solution

— , approximate solution o.
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3.5.2 Estimation of the errors
A criterion for assessing the quality of a numerical method is a
theoretical error estimate.

Let Q, be finite dimensional subspaces of domain € .There exist a positive
constant /,, C=C(h,) and m =m(h,), all are independent of %, such that for all

h<h,
[ - B @), <cnm, (3.35)

where P, (u) is a projection of the exact solution of the differential problem onto a set

h

of grid functions given onQ, , u" is a solution of a finite element scheme on the mesh

Q, and / is a parameter of grid Q,. In case of 4 — 0, it means that the distance

between two neighboring grid points tends to zero.

Numerical methods are usually applied to problems for which the exact
solution is unknown, which is the usual situation. This means that the error,
u" =P (u), in the numerical solution, u", can not be determined directly, and
therefore an indirect estimate of its magnitude has to be used. We follow the results of
J. Miller et al. (1996) and use two algorithms to estimate C and m in equation

The first algorithm is useful in a case when two numerical solutions can be
computed on two different grids. It is assumed that the order of convergence is known
to be approximately m . The algorithm then provides an approximate value for the

error constant C. Let u denote the exact solution of the problem and AOR",

R’ :{h ch<h sz} , R" is the range of % in which numerical solution can be
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computed. Choose any convenient value %, such that 4,4 /40 R". The first step is

to use the numerical method to compute the two numerical solutions of the problem

for the two grids Q, and Q, ,. Denoting these approximate solutions by u" and u""*

respectively, we compute the norm of difference on the grid Q, between u™ and the

~h /4

linear interplant #""", namely

— h /4 —
D—Hu‘ —u" H = max
Q/?l i,j@ I

up =i, (3.36)

i

Using the triangle inequality and equation |(3.36)} we obtain

D2t <], i =, 2 =], -c.BE ~c.a~
We can set
- _ D™
C, = o (3.37)

to be the computed approximation to the unknown error constant.

The second algorithm is useful in a case where three numerical solutions can
be computed on three different grids. It provides us with approximations of both the
order of convergencem and the error constant C, . A computed estimate of m is

/2 14

obtained the first by computing the three numerical solutions u",u""* and u""* on

the grid Q,,Q, , and Q, , respectively, where /4 is chosen so that /2, h /40R".
Let @"",4""" denote the piecewise linear interpolation of u"””,u""* on Q, . We

compute the norms of differences

— h ~h /2
D, —Hu P —-ut

—|~h/2 ~h /4 —|l~H ~h /4
,D, —Hu e = ,D —Hu L=

: . .,

on the appropriate grids. Using the triangle inequality, equation we obtain
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Ch!(1-27)
o,

C -2
i

=2".

D .
D2

We can set

m* = 10g2 ﬂa
2

to be the computed approximation to the unknown value of the order of convergence.
Using this computed value of m and the above value of D, we apply the previous

algorithm to obtain from equation the computed approximation

Co = 113}3_,,,* : (3.38)

Without computing further numerical solutions of the problem, it is now

possible to test the sensitivity, relative to changes in /4, of the computed error
constant C,.. Using the analogous argument to the one which is used to obtain

equation from equation we see that each of the quantities

Cl* — Dlhl_ _ or C; :Dz(hl /_2)*
1_2 m 1_2 m

may be taken as computed approximates to the error constant. The values C, or C,
may not be close to the value C, in equation [3.38)] but if €’ = C.. or C,=C,, then
it can be concluded, that m* and C,. are insensitive to variations in / between A,

and A, /4.

We now use these two algorithms to find approximations to error parameters

m and C for finite element scheme applied to the air pollution problem. We choose
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h, =107 in case u(z)=1 and h =107 in case u(z)=2z"", respectively, to estimate

the quantities D,D,, D, .

Table 3.1 : Computed error parameters, sensitivity.

u(z)=1 u(z)=z"
D 0.0498740000000026 0.0315680000000000
D, 0.0332860000000004 0.0210729999999995
D, 0.0165880000000023 0.0104950000000006
m* 1.0047755589478900 1.0056935474790000
C:; 137.6109585385730000 87.6745889241680000
C1* 137.6109585385730000 87.6745889241680000
C; 137.6109585385730000 87.6745889241681000

The algorithm developed in section 3.3 is then implemented to the equation

with boundary conditions The results of our computations are

summarized in Table 3.1. In Table 3.1, we analyze the data for boundary conditions

With parameters w, =0.0,0 =0.0,2 =0.2,v(z) =z. The first column of the

table refers to the quantities whose computed values are shown in the corresponding

rows. The analysis of results in Table 3.1 illustrates the convergence of the finite

element method under consideration. So, we have m [ m* =1.004 for u(z)=1 and

m*=1.005 for u(z)=2z"".
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3.6 Numerical results

In this section we will present contour lines of concentration which
characterize some general views.

3.6.1 The contour lines of concentrations

The parameters used in this study were : n = 81,Az = 0.009375, h = 0.2,
V(z) =z,0 =0.125. The results are used to solve computer program 1 in appendix C.

The results are illustrated in Figures 3.6-3.11. From Figures 3.6-3.8 are the
contour lines of concentration at different falling velocity of pollutants by gravity,
transformation coefficient of pollutants and distances x from the source with
u(z) =1,x =1604x,x =320Ax, Ax =0.001.

Figures 3.9-3.11 are the contour lines of concentration at different falling
velocity of pollutants by gravity, transformation coefficient of pollutants and
distances x from the source with u(z) = z*°,x =160Ax,x =320, Ax =107

It can be observed that the falling velocity of pollutants by gravity has more
strong effect on fall of pollutants than the transformation coefficient. The wind
velocity has significant effect on fall of pollutants so that, if velocity is u(z) =z’
pollutants fall down faster than in the case velocity is u(z) =1.

We note that the results from the examples give different contour lines, depend

on the values of the coefficients of the advection and diffusion terms.
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09 B

08 B

07 x=160 x bl

06 B

1 1 1
0 0.05 01 0.15 02 0.25 03

(a) x=160Ax

09 B

08 B

07 X=320 x bl

06 B

04 B

(b) x=320Ax
Figure 3.6: The contour lines of concentration at different distances x from the

source, calculated for u(z) =Lv(z) =z, Ax =10_3,wg =0.0 and 0 =0.0.
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08 - bl

07 Xx=160 x 7

06 - bl

N 05 B

0 0.05 01 0.15 02 0.25 03

(a) x=160Ax

09 4

07 x=320 x b

06 B

(b) x=320Ax

Figure 3.7: The contour lines of concentration at different distances x from the
source, calculated for wu(z)=1v(z)=z,0x :10"3,wg =0.125 and

0=0.0.
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09 - 4

08 B

07 x=160 x b

06 - q

(a) x=160Ax

09 q

07 x=320 x h

06 - B

04 q

() x=320Ax
Figure 3.8: The contour lines of concentration at different distances x from the
source, calculated for wu(z)=1Lv(z)=z,0x 210"3,wg =0.125 and

0=0.125.
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I
0.02

(a) x=160Ax

1
0.025

I
0.03

x=320 x

(b) x=320Ax
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Figure 3.9: The contour lines of concentration at different distances x from the

source, calculated for u(z)=z",v(z)=z, M :10_4»Wg =0.0

0=0.0.

and
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09 4

071 x=160 x b

06 B

04 R

I I \ I I I
0 0.005 0.01 0.015 0.02 0.025 0.03

(a) x=160Ax

09 - B

08 B

07 X=320 x 9

06 B

04 r B

(b) x=320Ax
Figure 3.10: The contour lines of concentration at different distances x from the
source, calculated for wu(z)=z"",v(z)=z, I :10'4,wg =0.125 and

0=0.0.
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09 4

071 x=160 x b

06 q

04 r q

I I I
0.02 0.025 0.03

(a) x=160Ax

09 - q

08 q

07 X=320 x 9

06 q

04 r q

() x=320Ax
Figure 3.11: The contour lines of concentration at different distances x from the
source, calculated for wu(z)=z"’,v(z) =2z I :10'4,wg =0.125 and

0=0.125.
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3.6.2 The concentrations at different z for fixed x

We now show the results of the computed solution of concentrations at
different z for a fixed distance x. The parameters used in this study were: n =21,
Az =0.033,h=0.2,v(z) =z,0 =0.125. In Figures 3.12-3.13 present some profiles of
concentration field at different falling velocity of pollutants by gravity, the
transformation coefficient of pollutants.

In Figures 3.12 shows concentration profiles ¢(z) at different falling velocity
of pollutants by gravity, the transformation coefficient of pollutants and distances x
from the source with u(z)=1,Ax =0.001,x =0.051,x =0.101,x =0.201. In Figures
3.13 shows concentration profiles ¢(z) at different falling velocity of pollutants by
gravity, the transformation coefficient of pollutants and distances x from the source
with u(z) =z, Ax =0.0001,x =0.0051,x =0.0101,x =0.0201.

From Figures 3.12 and 3.13, we can see concentration profiles ¢(z)which is
the highest at z =0.2, and equal zero at z>0.5 all distance x. If the falling velocity

of pollutants by gravity is different the graph has a little difference. Yet, the graph is

not different if the transformation coefficient is different.



(a) w,=0.0and 0 =0.0

x=0.051

x=0.101

(b) w, =0.125 and 0 =0.0
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x=0.051

x=0.101

(¢) w,=0.125and 0 =

Figure 3.12: Concentration profiles ¢(z) at different distances x from the source,

0.125

calculated for Ax =0.001 and u(z) =1 respectively, with

n=21Lv(z)=z,h=02.

18

N

/ ‘
| ‘
14 |

x = 0.0051

x = 0.0101

(a) w,=0.0and 0 =0.0

59



20

18-

16~

14

12

i
% x = 0.0051
¥
| —0 x= 0.0101

\ o—o x= 0.0201

20

18

J’\
16 -

’ \
14

x = 0.0051

x = 0.0101

(¢) w, =0.125 and 0 =0.125

Figure 3.13: Concentration profiles ¢(z) at different distances x from the source,

n=21v(z)=z,h=0.2.

calculated for Ax =0.0001 and u(z) = z"° respectively, with
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Chapter 1V

Approximate Solution of Unsteady State Problem

4.1 Introduction

The main goal of this chapter is to study the time dependent behavior in two-
dimensional space of an air pollutant given in the equations (1.28) - (1.32).
4.2 Mathematical formulation

In order to solve the unsteady state problem equation, we use the same
notations for the non-dimensionalized variables. In these new variables the resulting

system can be written in the form :

qf+ (z )a % 9 E(( z)— +0¢ =0 forall 0 <t, 0 <x, 0 <z <, (4.1)

X é62

with the initial and boundary conditions

#(x,2,0)=0 forall 0 <x,0 <z <I, (4.2)
o(z—h)
6(0,z,t)= o) forall 0 <¢, 0 <z <I, 4.3)
0)% =0 forall 0<z,0<x, (4.4)
Iz

V(I)M =0 forall 0<z,0<x. 4.5)
0z
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4.3 Splitting the problem into convection and convection-diffusion
equations

We construct uniform meshes in the x-and ¢ -directions with mesh widths Ax
and Az, respectively, and a non--uniform mesh in the z -direction. For each time level
¢t we obtain the value of ¢ at time ¢+ Az from its value at ¢ by first taking a first step
to obtain an auxiliary value ¢@* followed by a second step to obtain the required
value.

Given ¢ at time level 7, we obtain the auxiliary value ¢ * at time level 7 + Ar

by solving the following hyperbolic equation in the time sub-interval (7,7 + Af]

£ £
%+u(z)% =0 forall [t,# + /], 0 <x, 0 <z <, (4.6)
ot Ox
with the initial condition at 7= ¢
d*(x,z,t) =¢(x,z,t) forall 0<x,0<z<I. 4.7)

and the boundary conditions at x =0

¢*(0,z,t) = 5(;(;)}’) forall [, + v], 0 <z <I, (4.8)

given ¢* we obtain the required value ¢ at time level 7+ Ar by solving the

following parabolic equation in the time sub-interval [z,¢ + Af]

‘Z_‘f W, ((33(11 9 ﬁ/( )6¢ D+0qf) =0 forall [t,l +N], 0<x,0<z<l, (49
Z

with the initial condition at #=¢
O(x,z,t) =@ *(x,z,t + ] forall 0 <x, 0 <z <I, (4.10)

and the boundary conditions atz=0,z=1
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(th)

v(0)a¢ =0 forall [t,1+4],0<x, (4.11)

(1)@=0 forall [¢,¢+2], 0 <x. (4.12)
4

The concentration field at the time ¢+ A¢ is obtained from that at the time ¢
by separating the contributions due to terms as follows :

In the first step the convection equation

¢ 0p _
Ew(z)a_x_o’ (4.13)

is solved in the whole x—z integration region over the time interval [z,¢+ /A¢] with

the concentration field at the time ¢ as initial conditions|(4.7) and [(4.8)| as boundary

condition. In the second step convection-diffusion equation

%_ dp oQ
ot Ve 0z B/(

is then solved in the second step over the same time interval. Here the initial condition

)a¢ D+aq> =0, (4.14)

is provided by the concentration field obtained from the first step and the

boundary conditions by the relation|(4.11) and|(4.12). Let us show that the solution of

(4.13)|and [4.14)|is an approximation of the concentration field at the time ¢ + A\ .

If we denote

Lo= m(z)‘;—f,

6¢ ¢ O

AL i

L

The Cauchy problem for equation is



ég;’: =(L, +L,)9,
0

[
@(X, Za 0) = ¢0('x9 Z)
We can split into two problems

(Vo *
=Lo*
Dat 1¢ ]

U
@*(X,Z,fn) :¢(x,Z,fn),

and
9 5

O
Bp(x,z,t,) =@ *(x,z,t, +T).

By Taylor series, we have

P(x,z,t, +T) = ¢(x,z,ln)+T%—(f+O(T2)

$(x,2,t,) +T(L +L)$(x,2,t,) +OT")

[E+T(L, +L,)]|¢(x,z,t,) +O(T?)

Where E is the identity operator, in the same way, we get

¢ *(x,z,t, +T)

%k
¢*(x,z,t,z)+ra§t +O@?)

- ¢*(x’z’tn)+TLl¢*(va’tn)+0(T2)
- [E+TL]¢*(x,z,t,) +O(T%)
N [E+TL](x,2,1,) +O(T?)

since @ *(x,z,t,) =@(x,z,t,)

64
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So

L
> ro)

P(x,z,t, +T) = P(x,z,t)+T
= $(x,2,1,) +TL,P(x,2,t,) +OT?)
= [E+1L,]¢(x,z,t,) +O(T%)
= [E+T1L,)¢*(x,z,t,) +O(T?)
= [E+TL][E+TL] §(x,z,t,) +O(T%)
= [E+T(L, +L,)]|¢(x,z,t,) +O(T?)
= P(x,z,t, +T)+O(T?)

If we take T — 0 then O(T?) - 0 and
P(x,z,t, +7) =P(x,z,t, +7).
4.3.1 Numerical algorithm of convection equation problem

The equation |(4.13)|in the Lagrangian form is

M;Z»f):o with & =x +ut (4.15)

0
Equation simply means that in a reference frame moving with the velocity u
the concentration does not change in time. Thus equation is exactly satisfied by
translating the concentration field at any time step Az to the distance ul\t.
If the wind velocity is constant in space and time, equation can directly
be represented in the Eulerian frame use for equation simply by choosing

Ax =ul\t. A further simplification is provided by the fact that for u =constant

equation |(4.13){and [(4.14)| can be integrated separately not only over a single time

interval, but over the whole integration time. In fact, the equation can be
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transformed by introduction Lagrangian coordinates to a equation valid in
frame moving with the velocity u .

If the wind velocity is not constant, the described Lagrangian treatment of
equation becomes problematic in connection with Petrov-Galerkin finite
element method used for equation In fact, for constants Az and a variable u,

.. ulle
the condition

=1 means a variable Ax . Thus, positions which are not coincident

with grid point will be reached by all particles whose velocity is different from the

chosen ratio A In other words, equation (#-13) cannot be satisfied by translating the
t

whole concentration field to the next grid points of an Eulerian frame.

The given velocity profile u(z) is approximated by a step function whose
discrete values u, are defined, at any vertical grid point k, as fractions of the

maximum wind velocity u__ :

max

w=Ly | po<q k=12..n, (4.16)
q

where p, and g are positive integers and 7 is the number of vertical grid point. For a

given distribution of the vertical intervals Az, and a given ¢, the integers p, are

determined from the condition that the step function becomes as close as possible to

the original velocity profile u(z). More precisely, the single u, values are chosen

from equation as the best approximations to the mean values of u(z) over any
5

vertical step. Figure 4.1 shows as an example, how the velocity profile u(z) =z" is

approximated for a constant interval Az =0.05 and ¢ =5. For sufficiently small Az
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and sufficiently large ¢ =5, the approximation error of step function is arbitrarily
small.

The horizontal interval Ax is defined as

A = L (4.17)
q

Consequently, the pollutant moving with the velocity u, is translated at any time step
to the distance p,Ax, that is, to positions coincident with grid points. In particular, the

pollutant with the maximum velocity u_,

X

is translated to a distance gAx. The front

of the advancing material, separating the polluted from the "clean" region, moves with

the maximum velocity u__ and is located at x =u__ . The described procedure can

X

be immediately extended to include downwind variations of the wind velocity. In this

case the given velocity function u(x,z) has to be approximated by a two-dimensional

step function u, . The u, matrix is related to a corresponding integer matrix p,;
according to equation [(4.16). The parameters u_ and ¢ can still be taken as

constant. Equation shows that the horizontal interval Ax is then constant as

well. For u_, we can choose, for example, the absolute maximum value of u(x,z).

X

The discretization parameter ¢ has to be chosen large enough to ensure a sufficient

approximation of the given velocity in the whole field.(see Runca, E. and Sardei, F.

(1975))
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Figure 4.1: Wind profile u(z)=z"" and approximating step function u, for ¢ =5

and uniform vertical grid spacing Az = 0.05.
4.3.2 Numerical algorithm of convection-diffusion equation problem

Equations are solved by Petrov-Galerkin finite element

method. Let Q :{(z,t) O0?|6 ¢,k =< ]} be domain and let

9% _, 9

L(¢p) = 3 e,

aH;() H1op =0, (4.18)

Consider the finite element which is subdivided the domain Q into the a rectangular

K with four nodes, we defined the trial function ¢ by

¢l =« = C,+Cyz +Cyt +C,zt

4
Z ¢,9,(z,0)
=

For (z,1)[Q , we have

¢(z,0) =P (z,1) = zfl’ﬂ’j(z,l)- (4.19)

When this trial function ¢ is substituted into we have

L(§)=R, (4.20)
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where R is a residual arising from the fact that does not identically satisfy
According to the Petrov-Galerkin approach, we require that residual be

orthogonal to the weighing function w(z,t). Thus the approximating integral

equations have the form

Q’L(g&)@ (z,t)dzdt =0. 4.21)

Therefore integration [(4.21)|by parts gives

3¢ 0 [

D —_
,[JB“ s 3 azH'() +G¢H/Jl.(z,t)dzdt =0, (4.22)

09 -l
JJE(A)I (z,t)dz dt WgJJ % w(z,t)dz dt

ga @z() ﬁ"( t)dzdt+JJa¢w(z 0)dzdt =0. (4.23)

If the integration is assumed to be in the closed region Q. with the boundary 0Q_., a

closed conservative system with no change in energy, then by using Green's theorem,

we have
[ dediw, [ L.z~ [ ) Faa
+J]V( )a¢ aw( t) d= dt +IIO-¢(A)i(Z,t)dzd[ 0.
ie. ¢

ol B o
‘;Uw(z,t)dzdt wgg % w(z,t)dz dt

e

a (4.24)
09 0)(2 )a’ dt +2[J’a¢a)l_(z,t)dzdt =0.
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Figure 4.2: Linear plane isoparametric element.

The local (z,t) coordinate system is related to more commonly encountered (&,1)

system through the relationship

+
_n+l (4.25)
The basis functions in this case have the form

AEM =7 1-5X1-1) . @(EM =1+ -5
(4.26)

a(&n) =%(1 +E)1+0) . (&N =%(1 -6)1 )2

To perform the calculation [(4.24)] we use the linear plane isoparametric element

transformation. Since this result is valid for every closed region Q ., the integration of

can take place in every element. Thus, it can be written as

[ 6(5 w(f m

iigg@(in)—w w(fn)w(n) +opw, (£, n)ElJldécm =0.

(4.27)

where

09, 98 _2 ¢ 5§0(€'7)

6¢
Z(ﬁj TR o, — > (4.28)
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CY) L0
%:Z 09 0n 2, 09Cen) (4.29)
0z 4& '0dnodz b&g ' o0n
o o
u=|2 9nf=ab (430)
O o0z 4
o0& on

Let the weighting functions w(&,n) be the two dimension asymmetric form, which

can be expressed in the form (see Lapidus, L. and Pinderm, G. F. (1982))

a)l(far’) = Gl(faal)Hl(r’ 5[32)5 D

[

[

a)z(far’) = Gz(gaal)Hl(r’ ’Bl)a B
5 “31)

W (&M =G, (€,a,)H,0.8,).7

U

w,(£.1) =G (E.a,) H,0.B,).0

where

Gl(é,al)=%[(1+€)(3a§ 1, -2) +4], 432)
Gz(é,al)%[(l &) (Zaf +a, +2)), (433)
Gl(f,az)ﬁ[(l +E)Ca g -1, -2) +4], (4.34)
G,(&.a,) =%[(1 &) (2a g+, +2)], (435)
H.0.B,) =%[<1 G -3B, -2) +4], (4.36)

H,0.5,) :i[(l )36 +36, +2)]. 437)
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H.(.B,) =%[<1 +MGBA -3, -2) +4], 438)

H,0.5, =%[(1 (3.7 +36, +2)]. 439)

Figure 4.3: Asymmetric weighting function for four nodes defined in (&,n)

coordinates. (Adapted from Lapidus, L. and Pinderm, G. F. (1982))
From the equations e have :
1
wl(f,f])=g[(l+f)(3alf =3, -2) +4|[(A ) By B, 2) H,

W, (&) =%[(l+f)(—3af ¥, [ 0)Bn B, 2 .
(4.40)

%(E,n)=%[(1+5)(-3azf o, +2)[(1 9B 4B, 2.

I O o B |

W, (&) =—[1+8)Ga g 3, -2) +4][(1 0 (B B, 2]. C
16 5
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Figure 4.4: Asymmetric weighting function for node 4 defined in 1, coordinates. In
(a) a,=1,B, =0and in (b) a, =1, 5, =0.(Adapted from Lapidus, L. and
Pinderm, G. F. (1982))

It is apparent from Figure 4.4 and that there are two « -type factors in each

coordinate direction. Thus the variation in & from one side of an element to the other

can be taken into account. The sense of the direction of flow velocity corresponding

to a positive a (or ) is also indicated in Figure 4.4.

For every element, the integration leads to the equation

4
Z MPe =0,  k=1,23,4 (4.41)

where

M}k) — A}k) —B;k) +C;k) +D;k)

0y, (E n)
(k) —
4; 5 J’j w,(§,n)dédn,
09, (E n)

w G [ e EndEdn.
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At 09,(&.n) dw, (&,n)
o= Ay L ag an,
: | on on

Mtbz,
p® = o= k”qoj(f,n)wk(f,n)dfdn-
1=
— A2 —
________ z+AZz
T 4 3[4 3
az | @ ®
l 1 2|1 2| 2
4 3|4 3
! 2|1 1 N z-Az
t t+ A2 t+ At

Figure 4.5: Group of 4 elements.
The totality of these finite element equations for the four elements is now represented

in molecular form by Figure 4.6. If these elements are suitably chosen to be within the
ith, (i+ %) th and (i +1) th time-levels and the (j—1)th, jth and (j+1)th horizontal
space-lines, we can obtain from the following relationship, which can be

. . SR B
regarded as a grouped finite element equation centred at the point (i + 5 J)
1 1 3 3
Ml( )¢i,j—l +(M§) +M1( ))¢1+1/2,_;—1 +M§ )¢1+1,_;—1
3 4
+(M§” +M1(2))¢,-,,- +(M3(” +MP +M +M1(4))¢;+1/2,_; +(M3() +M ))d’

i+,

MG, o+ (M M0N0 +MEB 0 =0. (442)
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7 ( e (4)\ o)
M, My~ + M, J My
IIJ+1 i+1/2,j+1 i+1,j+1
(€] 2
( My~ + Mi) '—' M§1)+ I\AZZ) + M4(3) + M1(4) j—( M3(3)+ |\/|2(4) j
i) i+1/2, ] i+1,]
(@) (1) €) €)
M; (MZ + M J M,
i, j-1 i+1/2,j-1 i+1,j-1

Figure 4.6: The group finite element equation.

The formula g‘)‘ will be meaningful if the component on the (i +%) th line are

weighted with factors 8 and (1—-6) to the (i +1)th and ith time-levels, respectively,
which will then produce the six-point formula (see, e.g. Evans, D. J. and Abdullah, A.
R. (1986)), i.e.

(M +0 (0 + 1)) +((M7 +007) 30 (M 412 411 4012,

1

(M +0 (M +MP)) @, 0 =M+ ) (M M), (M 1)

+(1-0) (M +M? +M ) +M0)) g, (M +1 ) (M +MP))B, . (443)

Therefore, the six-point formula which is obtained from the integration
in any four adjacent elements can be regarded as a finite element system for

approximating the solution to equation|(4.14). This system will lead to a tridiagonal
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system of equations which is easily solved by any of the standard algorithms for

solving banded linear systems.

We can write [4.43)|in the form

B0 Opp
Owal 0,0
@ 0-,0%0
O: 0 '0:0

8 Bb

where X is diagallydominant tridiagonal matrix, which guarantee the exist of X,

then
wlﬁAtD |:|¢E|
O vea %b
o =X (4.44)
O ..0 O,
@, 5 WE

Now we will show how to create matrices X and Y . The concentration profile
at the source, expressed as a O -function in the boundary condition is
approximated numerically by a one-step function centered at the source and having

the width Az_. Its amplitude is determined by requiring the same emission as in :

0
0 forOSz<h—AZS,
. 2
60.2.00=B—— for n-2% <o an+ B (4.45)
Az, 2 2
0

where u, =u, at the source.

The step function u, approximating the give velocity profile u(z) is obtained

as follows :
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The mean values of the velocity u, are calculated over any two adjacent

vertical half intervals from

— 2 7 t0 /2

U, =——— u(z)dz. 4.46
ey R (4.46)
Applying equation to the u, we get non-integer estimates for p,. The p, are
then obtained as the nearest integers to these estimates. Finally, the step function u, is

calculated back by substituting p, into relation [(4.16). (see Runca, E. and Sardei, F.

(1975))

In particular case, suppose that n =81 so X and Y are 81x81. We have

first row
¥ _ 20z + I,
Dz (D, + £c,)
¥ _ Az + Az,
" AZIAZZ ’
X = ——Azl
Dz, (Dz, + Az,)’
X, = 0 for j=4)5,...,81,
and last row
X — AZSO
Dz, (Dzgy + Dz )
X _ _ Azxo + AZ79
0 AZBOAZW ’
X _ 20z, + AZ79
A Azso (Azso + A279) ’

Xy, = 0 for j=12...78.
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For j=1,2,3,4 and £ =1,2,3,4

M® _ AP~ B 4+ 4D
v = 2 ” (p(g% (Emd€ dn.

B = %” Mg, (&.mydé an,
S %jl_jlv(n)a“-”;j’”) "D agan.
D = o Atgzk :[ljlcoj(f,n)wk(f .mdédn.

The calculation of matrices X and Y at the point (i, j), i=1,2,3, j=12,3 from

the Figure 4.6, we let

XP(1,1) = M1,
XP(1,2) = M(1.2)+M@3,)),

XP(13) = MG3D),

XP(2,1) = M(14)+MQ2,)),

XP(2.,2) = M(13)+MQ22) + M3,4) + M4,1),
XP(2,3) = M33)+MA2),

XP(3,1) = M4,

XP(3,2) = MQ2J3)+M44)

XP(3,3) = M(4,3),
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X, =XP(1,3) +0XP(1,2), B

0
X, . = XP(2,3)+0XP(2,2),
ok (2.3) (2.2) %fork:2,3,...,80,
0
X, = XP(3,3) +0XP(3, 2),%
g
Y, =0,0
O, .
Ofor j=1,2,3,...,81,
Y :O’E

Y, o = —[XP(L1) +(1-6)XP(1,2)], O
0

O

Y, =-[XP(2,1) +(1 -6)XP(2,2

WP H-OXPQ.2) G
O

Y, .o = —[XP(3,1) +(1 -6)XP(3, 2),]%
=

4.4 Numerical results

Typical examples of the time evolution of the described transport and
diffusion process for constant and variable velocity profiles are shown in Figures 4.7 -
4.12. The plots represent, time sequences of the pollutant distribution in the XZ plane
for u(z) =1 and u(z) =z"’.

In the cases (Figures 4.7-4.9) the "clean" and the polluted regions are
separated by a sharp front moving with the wind velocity and located at x =uz . Since
for u = constant steady-state conditions are immediately established behind this front
corresponding isolines have the same locations in the XZ planes of Figures 4.10-

4.12. On the other hand, if a variable velocity u(z) is given (Figures 4.10-4.12), a

time dependent concentration region exists behind the front x=u_, ¢ as already
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mentioned in section 4.3. Comparing the picture in Figures 4.7-4.9 with the picture in
Figures 4.10-4.12, we can immediately conclude that the wind shear is responsible
(Figures 4.7-4.9) for a strong vertical diffusion of material into high regions above the
source and (Figures 4.10-4.12) for a fast accumulation of material near the ground.

The parameters used in this study were : n=81,Az, =0.009375,h =0.2,
8 =0.125,a, =0.125,a, =1.0, 3, =0.125, 8, =0.0.

In Figures 4.7-4.9 show time sequences of the contour lines of concentration at
different the falling velocity of pollutants by gravity w, , the transformation coefficient
of pollutants o with u(z) =1, t =80A¢, t =160A¢, t =240A¢, t =320t , At = 107
where w, =0.0,0 =0.0,w, =0.5,0 =0.0 and w, =0.5,0 =10.0. The results are used
to solve computer program 2 in appendix C.

Figures 4.10-4.12 show time sequences of the contour lines of concentration at

different the falling velocity of pollutants by gravity, the transformation coefficient of

pollutants and distances x from the source with u(z)=z"", t=80A¢, t=1604¢,
£=2400¢, 1=3200¢, Dr=10" where w, =0.0,0=0.0, w, =0.5,0 =0.0and

w, =0.5,0 =10.0. The results are used to solve computer program 3 in appendix C.
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Figure 4.7: Time sequences of the contour line of concentration distribution in the
XZ plane, calculated for wu(z)=Lv(z)=z M =107", w, =0.0 and

o =0.0.
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Figure 4.8: Time sequences of the contour line of concentration distribution in the

XZ plane, calculated for u(z)=Lv(z)=2z, N =10_4,wg =0.5 and

o =0.0.
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Figure 4.9: Time sequences of the contour line of concentration distribution in the
XZ plane, calculated for wu(z)=1Lv(z)=z,L =10_4,wg =0.5 and

o =10.0

Figures 4.10-4.12 illustrate time sequences of the contour lines of concentration at

different w, and 0 calculated for u(z) = 2% . In the computations, we take of n =81,
h=02, v(z)=z, Az, =0.009375, Ar=10"*, 6=0.125, a, =1.0, B,=0.125 and

B, =0.0.
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Figure 4.10: Time sequences of the contour line of concentration distribution in the
XZ plane, calculated for wu(z)=2z",v(z)=2z :104,wg =0.0 and

o =0.0.
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Figure 4.11: Time sequences of the contour line of concentration distribution in the
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4.5 Comparison of the numerical results of the finite element method

and of the fractional step method
In this section, the numerical solution for the test problem using the finite
element method (prescribed in the section 4.3) is presented. The numerical results are
compared with the numerical result by the fractional step method (Areeraksakul, S.
(2001)). The results are illustrated in Figure 4.13 and 4.14, with the parameter n =21,
V(z)=z, Az, =0.033, h=0.2and 6 =0.125.
In Figure 4.13, we use u(z) =1 and compare between the numerical solution
by the two method with As=0.0005, a, =0.125, a, =1.0, 5, =0.125 and 3, =0.2
at t =80Ar and 1 =120A¢.

The numerical results of the contour line of concentrations are plotted. They

show no significant difference in the contour line of concentrations by both methods,

for example at x =0.02 and # =80Az¢, the max‘Cf —Cf‘ =1.0858 ,where Cf and Cf

represent the concentrations by the finite element method and fractional step method

respectively. While at x =0.025 and 7 =120A¢ , the max‘Cf - Cf‘ =0.9999.

In Figure 4.14, we use u(z) = z"° and compare between the numerical solution
by the two method with Az =0.0001, a, =0.125, a, =1.0, 3, =0.125 and (3, =0.2

at t =80Ar and 1 =120A¢.
The numerical results of the contour line of concentrations are plotted. They

show no significant difference in the contour line of concentrations by both methods,
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for example at x =0.10 and ¢ =80A¢, the rnax‘Cf —Cf‘ =0.6812, While at x =0.15

and £ =120, the max|C, = C;|=0.7114.

08} i o8l

07 — 07

—_—

I I ! 1 T I — L D L I
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 . y 0.02 0.025 0.03 0.035 0.04
x

X

(a) (b)

Figure 4.13: (1) t=80A¢

09 B 091 7

08k i 08 b

Figure 4.13: (1) ¢t =120A¢

Figure 4.13: Comparison between the numerical solution by (a) using the fractional
step method and (b) using the finite element method for

u(z)=Lv(z) =z,h =0.2,w, =0.0 and 0 =0.0.
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09 09

o8l 08
07k 07

06 4 06

L L L
0.14 0.16 0.18 02

Figure 4.14: (1) t=80A¢

0ol 09

08l 08 -

07k 07

06l 06

Figure 4.14: (i1)) ¢ =120A¢
Figure 4.14: Comparison between the numerical solution by (a) using the fractional

step method and (b) wusing the finite element method for

u(z)=z"v(z) =z,h =0.2,w, =0.0 and 0 =0.0.



Chapter V

Conclusion

The mathematical model for air pollutant dynamics in the atmosphere, as it is
known, the process of pollutant transport and diffusion in the atmosphere were solved
by numerical method which is called Finite Element Methods. We performed the
calculation into the steady state and the unsteady state cases. The goal of this research
is to use the finite element methods to solve air pollution problems. The research are
performed into four chapters as followings :

Chapter I consists of air pollution system, some review of literatures and
survey of the articles.

Chapter II, are the standard definitions, notations from functional analysis and
fundamental concepts of finite element method.

In Chapter III, the finite element method is used to solve the stationary
problem. We assume that the wind direction coincides with the positive direction x -
axis. The advection and diffusion coefficients are of the function of vertical direction
z. The corresponding schemes are solved by using MathLab. The computational
techniques in the numerical experiment enable the study to determine the realistic

estimate of error constant and the order of convergence of numerical algorithms
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developed in this thesis. We have compared this solution with another analytical
solution.

In Chapter IV, the finite element algorithms for approximate solution of
unsteady state problem are proposed. The calculations are performed into two steps.

The first step we find the auxiliary solution ¢ * and find the true solution ¢ from
second step, using the ¢ * as an initial data. By this algorithms, we assumed that the

pollutant move by transportation and then diffusion. The numerical schemes were
performed and solved by MatLab. The concentration contour line obtained from the
computer programs are reasonably agreed with the former results, using fractional
step method in the reference.

The final remark of the research is that finite element methods are intended to
be used as tools for studying flow phenomena and helping design of studying the
model of an air pollutant in the complicated regions or domains.

Recommendations for further study are as follows:

1) Study the effect of varying the non-uniform z-mesh.

2) Solve using a space-time finite element method.

3) Try different approximations of the flux (Neumann) boundary
conditions.

4) Determine the error caused by the approximation of u(z) by step
function.

5) Solve the similar 3 dimension problem using an appropriate coordinate

system.
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Appendix A

The Notation

Table A.1 : Notation Used in this Thesis
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Symbol Brief description Units in English Units in SI
¢ concentration (Ibm or Ibmol)/ft’ (kg or mol)/m’
t Time s s
components of the wind
u,v,w | velocity fi/s m/s
The falling velocity of
We pollutants by gravity fi/s m/s
M,V The diffusion coefficients fris™ m’s”
The transformation
o coefficient of pollutants 57 57
H height of inversion layer ft m
h height of source ft m
0 emission rate Ibm/s kg/s
coordinate directions or
X,z lengths ft m
S The power of the source (Ibm or [bmol)/ 0‘13.S) (kg or mol)/(m’ .s)




Appendix B

Example of Computation of 4,5,

By equation (3.26), we have

Piy = S fumemwmdn
. de,n) co(n) da)(n)
B = d +—
0@, j) j —w(n) n j n)—— a0
+%o_jl<0,-(n)a%(n)dn
where i=1,2, j=1,2.
Case u(z) =1,v(z) =z, we have
Nz, |
P = BN j u(Mmamw () dn
- B[ 4m)E0n -0 —2) +4]dn
o)
_ dq(n) 1 drg(n) da(n ;.
oLy = j—cq(n)dm jV(n) an

Nz,
+70_jl<n(n)w1 (n)dn

= Zeqfaenyeon =36 -2) +4]dn + [(1 080 Dan
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+AIZ_6ka [a-m[a+n)@8n =30 -2) +4]dn

Case u(z)=z"",v(z) =z, we have

P(,1)

oD

so, we have

/21

é‘“zig [a+m"qmamdn

l[lAZka21 120 _ - —
s T _Il(lm) (1-m[(1+7)(3n -B -2) +4] dn

% I[(l+'7)(39'7 -39 —-2) +4]dn +% J@=m@Een Ddn

+AIZ_6ka [a=-m[a+n)@8n =30 -2) +4]dn

4, = PALD+ A4,
Ay = P(1,2)
Ay = P(2,1)
Ayn= P(2,2)
B, = OLD+B,_, .,
B = 0(1,2)
By = 0(2,1)

Bk+1,k+1 = Q(z’ 2)



Appendix C

Computer Program

Computer programs use program MatLab version 6.1. Program 1 is MatLab
program which can find numerical solutions of steady state problem with the finite
element method, including graphs the contour lines concentration at different
distances. Program 2 and 3 are MatLab programs which help you find numerical
solution of unsteady state problem with constant wind velocity and function of z
wind velocity respectively, including graphs of contour lines concentration at
different times. Program 4 shows the graphs of analytic solution of steady state
problem.

Program 1

%Program Finite Element Method of Steady State Problem of Air Pollution Problem.
%By Mr. Supot Witayangkrun Department of Mathematics, Faculty of Science,

% Khon Kean University.

%u(z) = z"alpha where 0 <alpha <1

clear all

syms eta

n=81

Delta_zs = (1/(2*(n-1)))+(1/(n-1)))/2



100

alpha=10.0
m=320 %number of step of length Delta x
mm=320
varphi=zeros(n,mm)
Delta x=10"(-3)
h=0.2
theta=0.125
wg=0.0
semga=0.0
%bisection follows
lo1=0
upl1=100
tol=10"(-10)
while upl-lo1 > tol
d=1:(n-1)/4
d((n-1)/4)=Delta_zs
tempsum=Delta_zs
for k=1:(n-1)/4-1
d((n-1)/4-k)=Delta_zs*exp(0.5*(lo1+up1)*(tempsum)”"2)
tempsum=tempsum-+d((n-1)/4-k)
end
dd=sum(d)-0.2
if sign(dd)==

upl=(upl+lol)/2



else
lol=(upl+lo1)/2
end
end
Al=(upl+lol)/2
downd=d
%upbisection dollows
l02=0
up2=100
while up2-lo2 > tol
d=1:3*(n-1)/4
d(1)=Delta_zs
tempsum = Delta_zs
for k =2:3*(n-1)/4
d(k)=Delta_zs*exp(0.5*(lo2+up2)*(tempsum)”2)
tempsum=tempsum-+d(k)
end
dd=sum(d)-0.8
if sign(dd)==1
up2=(up2+1o2)/2
else
lo2=(up2+102)/2
end

end
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A2=(lo2+up2)/2
upd=d
%mesh subintervals Delta z follow
Delta z=1:(n-1)
for k=1:(n-1)/4
Delta z(k)=downd(k)
end
for k=(n-1)/4+1:n-1
Delta z(k)=upd(k-(n-1)/4)
end
%mesh points z follow
z=1mn
z(1)=0
z(n)=1
for k=2:n
z(k)=z(k-1)+Delta_z(k-1)
end
for k=1:n
if z(1,k)<= h-(Delta zs/2)
varphi(k,1)=0
elseif z(1,k)<=h+(Delta zs/2)
varphi(k,1)=1/(z(k)"(alpha)*Delta_zs)
else

varphi(k,1)=0



end

end

phi(1)=0.5*(1-eta)

phi(2)=0.5*(1+eta)

omega(1)=(1/4)*((1+eta)*(3*theta*eta-3*theta-2)+4)

omega(2)=(1/4)*(1+eta)*(-3*theta*eta+3*theta+2)

dphi_deta(1)=diff(phi(1),eta)

dphi_deta(2)=diff(phi(2),eta)

domega deta(1)= diff(omega(1),eta)

domega deta(2)= diff(omega(2),eta)

M=zeros(n,n)

A=zeros(n,n)

B=zeros(n,n)

D=zeros(n,n)

PP=zeros(2,2)

QQ=zeros(2,2)

RR=zeros(2,2)

SS=zeros(2,2)

fori=1:2

for j=1:2

PP(i,j)=int((eta+1)"(alpha)*phi(j)*omega(i),eta,-1,1);
QQ(,j)=-wg*int(dphi_deta(j)*omega(i),eta,-1,1);
RR(i,j)=int((eta+1)*dphi_deta(j)*dphi_deta(i),eta,-1,1);

SS(i,j)=semga*int(phi(j)*omega(i),eta,-1,1);
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end

end

M(1,1)=-((2*Delta_z(1)+Delta_z(2))/(Delta_z(1)*(Delta z(1)+Delta z(2))));

M(1,2)=(Delta_z(1)+Delta_z(2))/(Delta_z(1)*Delta_z(2));
M(1,3)= -(Delta_z(1))/(Delta_z(2)*(Delta_z(1)+Delta_z(2)));
M(n,n-2)=(Delta_z(n-1))/(Delta_z(n-2)*(Delta_z(n-1)+Delta_z(n-2)));
M(n,n-1)=-((Delta_z(n-1)+Delta_z(n-2))/(Delta_z(n-1)*Delta_z(n-2)));
M(n,n)=(2*Delta_z(n-1)+Delta_z(n-2))/(Delta_z(n-1)*(Delta_z(n-1)
+Delta_z(n-2)));
for k=2:n-1
pl(k)= (Delta_z(k)/2)(1+alpha)*PP(1,1);
p2(k)=(Delta_z(k)/2)"(1+alpha)*PP(1,2);
p3(k)=(Delta_z(k)/2)"(1+alpha)*PP(2,1);
p4(k)=(Delta_z(k)/2)"(1+alpha)*PP(2,1);
q1(K)=QQ(1,1)+RR(1,1)+(Delta_z(k)/2)*SS(1,1);
q2(k)=QQ(1,2)+RR(1,2)+(Delta_z(k)/2)*SS(1,2);
43(K)=QQ(2,1)+RR(2,1)+(Delta_z(k)/2)*SS(2,1);
q4(k)=QQ(2,2)+RR(2,2)+(Delta_z(k)/2)*SS(2,2);
end for k=2:n-1
M(k,k)=p1(k)+M(k.k);
M(k,k+1)=p2(k);
M(k+1,k)=p3(k);
M(k+1,k+1)=p4(k);

A(kk)=ql(k)+A(kk);

104



A(k,k+1)=q2(k);
A(k+1,k)=q3(k);
A(k+1,k+1)=q4(k);

end

B=M.*(1/Delta_x)

D=A+B S=inv(D)*B

for k=2:m
varphi(:,k)=S*varphi(:,k-1);

end

figure(1)

xx=linspace(0, mm*Delta_x, mm);

[X,Z]=meshgrid(xx,z);

cvals=[0.5, 1, 2, 4, 8, 10, 12, 16, 24, 32];

pl=contour(X,Z,varphi, cvals,'r-');

xlabel('x");

ylabel('z")

xlabel('x','FontName','Times','FontAngle',"italic','FontSize',12);
ylabel('z','FontName','Times','FontAngle','italic','FontSize',12);

text(0.25,0.7,'x = 320\Delta x','FontName','Times','FontAngle',

'italic','FontSize',12)
clabel(pl,'manual' )

Program 2

%Program Finite Element Method of time-Dependent of Air Pollution Problem.

%By Mr. Supot Witayangkrun Department of Mathematics, Faculty of Science,
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%Khon Kean University.
%u(z) =1
clear all
n=81
Delta_zs = ((1/(2*(n-1)))*+(1/(n-1)))/2
%bisection follows
lo1=0
upl1=100
tol=10"(-10)
while upl-lo1 > tol
d=1:(n-1)/4
d((n-1)/4)=Delta_zs
tempsum=Delta zs
for k=1:(n-1)/4-1
d((n-1)/4-k)=Delta_zs*exp(0.5*(lo1+up1)*(tempsum)”2)
tempsum=tempsum-+d((n-1)/4-k)
end
dd=sum(d)-0.2
if sign(dd)==1
upl=(upl+lol)/2
else
lol=(upl+lo1)/2
end

end



Al=(upl+lol)/2
downd=d
%upbisection dollows
102=0
up2=100
while up2-lo2 > tol
d=1:3*(n-1)/4
d(1)=Delta_zs
tempsum = Delta_zs
for k =2:3*(n-1)/4
d(k)=Delta_zs*exp(0.5*(lo2+up2)*(tempsum)”"2)
tempsum=tempsum-+d(k)
end
dd=sum(d)-0.8
if sign(dd)==1
up2=(up2+lo2)/2
else
lo2=(up2-+102)/2
end
end
A2=(lo2+up2)/2
upd=d
%mesh subintervals Delta z follow

Delta z=1:(n-1)
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for k=1:(n-1)/4
Delta z(k)=downd(k)
end
for k=(n-1)/4+1:n-1
Delta z(k)=upd(k-(n-1)/4)
end
%mesh points z follow
z=1mn
z(1)=0
z(n)=1
for k=2:n
z(k)=z(k-1)+Delta_z(k-1)
end
syms Xi eta
m=320
mm =320 %number of time step of length Delta t
Delta_t=10"(-4)
h=0.2
uk=1
alphal=0.125
alpha2=1.0
betal=0.125
beta2=0.0

theta=0.125



wg=0.0
semga=0.0
varphi=zeros(n,m);
for k=1:n
if z(1,k)<= h-(Delta zs/2)
varphi(k,1)=0
elseif z(1,k)<=h+(Delta zs/2)
varphi(k,1)=1/(uk*Delta_zs)
else
varphi(k,1)=0
end
end
phi(1)=0.25*(1-xi)*(1-eta)
phi(2)=0.25*(1+xi1)*(1-eta)
phi(3)=0.25*(1+xi)*(1+eta)

phi(4)=0.25*(1-xi)*(1+eta)

omega(1)=(1/16)*((1+xi)*(3*alphal *xi-3*alphal-2)+4)*((1+eta)

*(3*beta2*eta-3*beta2-2)+4)

omega(2)=(1/16)*((1+xi)*(-3*alphal *xi+3*alphal+2))*((1+eta)

*(3*betal *eta-3*betal-2)+4)

omega(3)=(1/16)*((1+xi)*(-3*alpha2*xi+3*alpha2+2))*((1+eta)

*(-3*betal *eta+3*betal+2))

omega(4)=(1/16)*((1+xi)*(3*alpha2*xi-3*alpha2-2)+4)*((1+eta)

*(-3*beta2*eta+3*beta2+2))
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dphi_dxi(1)=diff(phi(1),xi)
dphi_dxi(2)=diff(phi(2),xi)
dphi_dxi(3)=diff(phi(3),xi)
dphi_dxi(4)=diff(phi(4),xi)
dphi_deta(1)=diff(phi(1),eta)
dphi_deta(2)=diff(phi(2),eta)
dphi_deta(3)=diff(phi(3),eta)
dphi_deta(4)=diff(phi(4),eta)
domega dxi(1)= diff(omega(1),xi)
domega dxi(2)= diff(omega(2),xi)
domega dxi(3)= diff(omega(3),xi)
domega dxi(4)= diff(omega(4),xi)
domega deta(1)= diff(omega(1),eta)
domega deta(2)= diff(omega(2),eta)
domega deta(3)= diff(omega(3),eta)
domega deta(4)= diff(omega(4),eta)
M=zeros(n,n)
A=zeros(n,n)
B=zeros(n,n)
D=zeros(n,n)
M(1,1)=-((2*Delta_z(1)+Delta_z(2))/(Delta_z(1)*(Delta_z(1)
+ Delta_z(2))));
M(1,2)=(Delta_z(1)+Delta z(2))/(Delta_z(1)*Delta z(2));

M(1,3)=-(Delta_z(1))/(Delta_z(2)*(Delta_z(1)+Delta_z(2)));
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M(n,n-2)=(Delta_z(n-1))/(Delta_z(n-2)*(Delta_z(n-1)+Delta_z(n-2)));

M(n,n-1)=-((Delta_z(n-2)+Delta_z(n-2))/(Delta_z(n-2)*Delta_z(n-1)));

M(n,n)=(2*Delta_z(n-1)+Delta_z(n-2))/(Delta_z(n-1)*(Delta_z(n-1)

+ Delta_z(n-2)));

P=zeros(4,4)

Q=zeros(4,4)

R=zeros(4,4)

S=zeros(4,4)

YP=zeros(3,3)

YQ=zeros(3,3)

YR=zeros(3,3)

Y S=zeros(3,3)

fori=1:4

for j=1:4
P(i,j)=0.5*int(int(dphi_dxi(j)*omega(i),xi,-1,1),eta,-1,1)
Q(i,))=-wg*Delta_t*0.25*int(int(dphi_deta(j)*omega(i)
xi,-1,1),eta,-1,1)
R(i,j)=Delta_t*0.25*int(int((eta+1)*dphi_deta(j)*domega deta(i)
xi,-1,1),eta,-1,1)
S(i,j)=semga*Delta_t*0.125*int(int(phi(j)*omega(i),xi,-1,1)
.eta,-1,1)
end
end

YP(1,1)=P(1,1)



YP(1,2)=P(1,2)+P(3,1)
YP(1,3)=P(3,2)

YP(2,1)=P(1,4)+P(2,1)
YP(2,2)=P(1,3)+P(2,2)+P(3,4)+P(4,1)
YP(2,3)=P(3,3)+P(4,2)

YP(3,1)=P(2,4)

YP(3,2)=P(2,3)+P(4,4)

YP(3,3)=P(4,3)

YQ(L,1)=Q(L,1)
YQ(1,2)=Q(1,2)+Q(3,1)
YQ(1,3)=Q(3.2)
YQ(2,1)=Q(1,4)+Q(2,1)
YQ(2,2)=Q(1,3)1Q(2,2)+Q(3,4)+Q(4,1)
YQ(2,3)=Q(3,3)+Q(4.2)
YQ(@3,1)=Q(2.,4)
YQ(3,2)=Q(2,3)+Q(4.4)
YQ(3,3)=Q(4.3)

YR(1,1)=R(1,1)
YR(1,2)=R(1,2)+R(3,1)
YR(1,3)=R(3,2)
YR(2,1)=R(1,4)+R(2,1)
YR(2,2)=R(1,3)+R(2,2)+R(3,4)+R(4,1)
YR(2,3)=R(3,3)+R(4,2)

YR(3,1)=R(2,4)

112



YR(3,2)=R(2,3)+R(4,4)

YR(3,3)=R(4,3)

YS(1,1)=S(1,1)

YS(1,2)=8(1,2)+S(3,1)

YS(1,3)=5(3.,2)

YS(2,1)=S(1,4)+S(2,1)

YS(2,2)=S(1,3)+S(2,2)+S(3,4)+S(4,1)

YS(2,3)=S(3,3)+5(4.2)

YS(3,1)=S(2.,4)

YS(3,2)=S(2,3)+S(4,4)

YS(3,3)=5(4.,3)

for k=2:n-1
M(k,k-1)=Delta_z(k)*(YP(1,3)+theta*YP(1,2))+(YQ(1,3)+theta

*YQ(1,2))+(1/Delta_z(k))*(YR(1,3)+theta*YR(1,2))

+ Delta_z(k-1)*(YS(1,3)+theta*YS(1,2));
M(k,k)=Delta_z(k)*(YP(2,3)+theta*YP(2,2))+(YQ(2,3)+theta
*YQ(2,2))+(1/Delta_z(k))*(YR(2,3)+theta*YR(2,2))

+ Delta_z(k)*(YS(2,3)+theta*YS(2,2));
M(k,k+1)=Delta_z(k)*(YP(3,3)+theta*YP(3,2))+(YQ(3,3)+theta
*YQ(3,2))+(1/Delta_z(k))*(YR(3,3)+theta*YR(3,2))

+ Delta_z(k)*(YS(3,3)+theta*YS(3,2));
A(k.k-1)=(Delta_z(k)*(YP(1,1)+(1-theta)*YP(1,2))+(YQ(1,1)
+(1-theta)*YQ(1,2))+(1/Delta_z(k))*(YR(1,1)+(1-theta)

*YR(1,2))+ Delta_z(k)*(YS(1,1)+(1-theta)*YS(1,2)));
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A(k,k)=-(Delta_z(k)*(YP(2,1)+(1-theta)*YP(2,2))+H(YQ(2,1)
+(1-theta)*YQ(2,2))+(1/Delta_z(k))*(YR(2,1)+(1-theta)
*YR(2,2))+ Delta_z(k)*(YS(2,1)+(1-theta)*YS(2,2)));

A(k,k+1)=-(Delta_z(k)*(YP(3,1)+(1-theta)*YP(3,2))+(YQ(3,1)

+(1-theta)*YQ(3,2))+(1/Delta_z(k))*(YR(3,1)+(1-theta)
*YR(3,2))+ Delta_z(k)*(YS(3,1)+(1-theta)*YS(3,2)));
end
S=inv(M)*A
for k=2:mm
varphi(:,k)=S*varphi(:,k-1);
end
xx=linspace(0, m*10°(-4), m);
[X,Z]=meshgrid(xx,z);
cvals=[0.25,0.5, 1, 2, 4, 8, 10, 12, 16, 20, 24, 28, 32];
pl=contour(X,Z,varphi, cvals,'b-');
xlabel('x','FontName','Times','FontAngle',"italic','FontSize',12);

ylabel('z','FontName','Times','FontAngle','italic','FontSize',12);

text(0.003,0.7,'t = 40\Delta t','FontName','Times','FontAngle','italic','FontSize',12)

clabel(pl,'manual' )

Program 3

%Program Finite Element Method of time-Dependent of Air Pollution Problem.

%By Mr. Supot Witayangkrun Department of Mathematics, Faculty of Science,

% Khon Kean University.

%u(z) =z"0.5
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clear all
n=81
Delta_zs = ((1/(2*(n-1)))*+(1/(n-1)))/2
%bisection follows
lo1=0
up1=100
tol=10"(-10)
while upl-lo1 > tol
d=1:(n-1)/4
d((n-1)/4)=Delta_zs
tempsum=Delta zs
for k=1:(n-1)/4-1
d((n-1)/4-k)=Delta_zs*exp(0.5*(lo1+up1)*(tempsum)”2)
tempsum=tempsum-+d((n-1)/4-k)
end
dd=sum(d)-0.2
if sign(dd)==
upl=(upl+lol)/2
else
lol=(upl+lol1)/2
end
end
Al=(upl+lol)/2

downd=d



%upbisection dollows
l02=0
up2=100
while up2-lo2 > tol
d=1:3*(n-1)/4
d(1)=Delta_zs
tempsum = Delta_zs
for k = 2:3*%(n-1)/4
d(k)=Delta_zs*exp(0.5*(lo2+up2)*(tempsum)”2)
tempsum=tempsum-+d(k)
end
dd=sum(d)-0.8
if sign(dd)==1
up2=(up2+1o2)/2
else
lo2=(up2+102)/2
end
end
A2=(lo2+up2)/2
upd=d
%mesh subintervals Delta z follow
Delta z=1:(n-1)
for k=1:(n-1)/4

Delta z(k)=downd(k)
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end
for k=(n-1)/4+1:n-1
Delta z(k)=upd(k-(n-1)/4)
end
%mesh points z follow
z=1mn
z(1)=0
z(n)=1
for k=2:n
z(k)=z(k-1)+Delta_z(k-1)
end
syms Xi eta
m=25
10=320 %number of time step of length Delta t
Delta t=10"(-4)
h=0.2
alphal=0.125
alpha2=1.0
betal=0.125
beta2=0.0
theta=0.125
wg=0.0
semga=0.0

varphi=zeros(n,lo*m+1);



pkbar=zeros(1,n);
pkbar(1,1)=m*(2/Delta_z(1)*quad('z.*0.5',0,Delta_z(1)/2));
pkbar(1,n)=m*(2/Delta_z(n-1)*quad('z.*0.5',z(n)-(Delta_z(n-1)/2)
z(n)));
for k=2:(n-1)
pkbar(1,k)=m*(2/(Delta_z(k-1)+Delta_z(k))*quad('z."0.5',z(1,k)
-(Delta_z(k-1)/2),z(k)+(Delta_z(k)/2)));
end
pk=round(pkbar);
for k=1:n
if z(1,k)<= h-(Delta zs/2)
varphi(k,1)=0
elseif z(1,k)<=h+(Delta zs/2)
varphi(k,1)=1/(z(k)"(0.5)*Delta_zs)
else
varphi(k,1)=0
end
end
phi(1)=0.25*(1-xi)*(1-eta)
phi(2)=0.25*(1+xi)*(1-eta)
phi(3)=0.25*(1+xi)*(1+eta)
phi(4)=0.25*(1-xi)*(1+eta)
omega(1)=(1/16)*((1+xi)*(3*alphal *xi-3*alphal-2)+4)*((1+eta)

*(3*beta2*eta-3*beta2-2)+4)
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omega(2)=(1/16)*((1+xi)*(-3*alphal *xi+3*alphal+2))*((1+eta)
*(3*betal *eta-3*betal-2)+4)

omega(3)=(1/16)*((1+xi)*(-3*alpha2*xi+3*alpha2+2))*((1+eta)
*(-3*betal *eta+3*betal+2))

omega(4)=(1/16)*((1+xi)*(3*alpha2*xi-3*alpha2-2)+4)*((1+eta)
*(-3*beta2*eta+3*beta2+2))

dphi_dxi(1)=diff(phi(1),xi)

dphi_dxi(2)=diff(phi(2),xi)

dphi_dxi(3)=diff(phi(3),xi)

dphi_dxi(4)=diff(phi(4),xi)

dphi_deta(1)=diff(phi(1),eta)

dphi_deta(2)=diff(phi(2),eta)

dphi_deta(3)=diff(phi(3),eta)

dphi_deta(4)=diff(phi(4),eta)

domega dxi(1)= diff(omega(1),xi)

domega dxi(2)= diff(omega(2),xi)

domega dxi(3)= diff(omega(3),xi)

domega dxi(4)= diff(omega(4),xi)

domega deta(1)= diff(omega(1),eta)

domega deta(2)= diff(omega(2),eta)

domega deta(3)= diff(omega(3),eta)

domega deta(4)= diff(omega(4),eta)

M=zeros(n,n)

A=zeros(n,n)
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B=zeros(n,n)
D=zeros(n,n)
M(1,1)=-((2*Delta_z(1)+Delta_z(2))/(Delta_z(1)*(Delta_z(1)
+ Delta_z(2))));
M(1,2)=(Delta_z(1)+Delta z(2))/(Delta_z(1)*Delta z(2));
M(1,3)=-(Delta_z(1))/(Delta_z(2)*(Delta_z(1)+Delta_z(2)));
M(n,n-2)=(Delta_z(n-1))/(Delta_z(n-2)*(Delta_z(n-1)+Delta_z(n-2)));
M(n,n-1)=-((Delta_z(n-2)+Delta_z(n-2))/(Delta_z(n-2)*Delta_z(n-1)));
M(n,n)=(2*Delta_z(n-1)+Delta_z(n-2))/(Delta_z(n-1)*(Delta_z(n-1)
+ Delta_z(n-2)));
P=zeros(4,4)
Q=zeros(4,4)
R=zeros(4,4)
S=zeros(4,4)
YP=zeros(3,3)
YQ=zeros(3,3)
YR=zeros(3,3)
YS=zeros(3,3)
fori=1:4
for j=1:4
P(i,j)=0.5*int(int(dphi_dxi(j)*omega(i),xi,-1,1),eta,-1,1)
Q(i,))=-wg*Delta_t*0.25*int(int(dphi_deta(j)*omega(i)
xi,-1,1),eta,-1,1)

R(i,j)=Delta_t*0.25*int(int((eta+1)*dphi_deta(j)*domega deta(i)
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xi,-1,1),eta,-1,1)
S(i,j)=semga*Delta_t*0.125*int(int(phi(j)*omega(i) ,xi,-1,1),eta,-1,1)
end
end
YP(1,1)=P(1,1)
YP(1,2)=P(1,2)+P(3,1)
YP(1,3)=P(3,2)
YP(2,1)=P(1,4)+P(2,1)
YP(2,2)=P(1,3)+P(2,2)+P(3,4)+P(4,1)
YP(2,3)=P(3,3)+P(4.2)
YP(3,1)=P(2,4)
YP(3,2)=P(2,3)+P(4,4)
YP(3,3)=P(4,3)
YQ(L,1)=Q(L,1)
YQ(1,2)=Q(1,2)+Q(3,1)
YQ(1,3)=Q(3.2)
YQ(2,1)=Q(1,4)+Q(2,1)
YQ(2,2)=Q(1,3)1Q(2,2)+Q(3,4)+Q(4,1)
YQ(2,3)=Q(3,3)+Q(4.2)
YQ(@3,1)=Q(2.,4)
YQ(3,2)=Q(2,3)+Q(4.4)
YQ(3,3)=Q(4.3)
YR(1,1)=R(1,1)

YR(1,2)=R(1,2)+R(3,1)



YR(1,3)=R(3,2)
YR(2,1)=R(1,4)+R(2,1)
YR(2,2)=R(1,3)+R(2,2)+R(3,4)+R(4,1)
YR(2,3)=R(3,3)+R(4,2)
YR(3,1)=R(2,4)
YR(3,2)=R(2,3)+R(4,4)
YR(3,3)=R(4,3)
YS(1,1)=S(1,1)
YS(1,2)=8(1,2)+S(3,1)
YS(1,3)=5(3,2)
YS(2,1)=S(1,4)+S(2,1)
YS(2,2)=S(1,3)+S(2,2)+S(3,4)+S(4,1)
YS(2,3)=S(3,3)+5(4.2)
YS(3,1)=S(2,4)
YS(3,2)=S(2,3)+S(4.4)
YS(3,3)=S(4.,3)
for k=2:n-1
M(k,k-1)=Delta_z(k)*(YP(1,3)+theta*YP(1,2))+(YQ(1,3)+theta
*YQ(1,2))+(1/Delta_z(k))*(YR(1,3)+theta*YR(1,2))
+ Delta_z(k-1)*(YS(1,3)+theta*YS(1,2));
M(k,k)=Delta_z(k)*(YP(2,3)+theta*YP(2,2))+(YQ(2,3)+theta
*YQ(2,2))+(1/Delta_z(k))*(YR(2,3)+theta*YR(2,2))
+ Delta_z(k)*(YS(2,3)+theta*YS(2,2));

M(k,k+1)=Delta_z(k)*(YP(3,3)+theta*YP(3,2))+(YQ(3,3)+theta
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*YQ(3,2))+(1/Delta_z(k))*(YR(3,3)+theta*YR(3,2))
+ Delta_z(k)*(YS(3,3)+theta*YS(3,2));
A(kk-1)=-(Delta_z(k)*(YP(1,1)+(1-theta)*YP(1,2))+(YQ(1,1)
+(1-theta)*YQ(1,2))+(1/Delta_z(k))*(YR(1,1)+(1-theta)
*YR(1,2))+ Delta_z(k)*(YS(1,1)+(1-theta)*YS(1,2)));
A(k,k)=-(Delta_z(k)*(YP(2,1)+(1-theta)*YP(2,2))+(YQ(2,1)
+(1-theta)*YQ(2,2))+(1/Delta_z(k))*(YR(2,1)+(1-theta)
*YR(2,2))+ Delta_z(k)*(YS(2,1)+(1-theta)*YS(2,2)));
A(k.k+1)=-(Delta_z(k)*(YP(3,1)+(1-theta)*YP(3,2))+(YQ(3,1)
+(1-theta)*YQ(3,2))+(1/Delta_z(k))*(YR(3,1)+(1-theta)
*YR(3,2))+ Delta_z(k)*(YS(3,1)+(1-theta)*YS(3,2)));
end
S=inv(M)*A
%Step 1
for k=2:n-1
for i=1:pk(1,k)
varphi(k, 1+i)=varphi(k,1);
end
end for k=2:m+1
varphi(:,k)=S*varphi(:,k):
end
%Subsequent time steps
%Step 2

for r=2:1o
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for k=2:n-1
for i=m*r+1:-1:pk(1,k)+1
varphi(k,i)=varphi(k,i-pk(1,k));
end
for i=pk(1,k):-1:2
varphi(k,i)=varphi(k,1);
end
end
for i=2:r*m+1
varphi(:,i)=S*varphi(:,i);
end
end
xx=linspace(0, (320*m+1)*10"(-4)/m, 320*m+1);
[X,Z]=meshgrid(xx,z);
cvals=[0.0625,0.125,0.25,0.5,1, 2, 4, 8, 10, 12, 16, 20, 24, 28, 32];
pl=contour(X,Z,varphi, cvals,'r-');
xlabel('x','FontName','Times','FontAngle',"italic','FontSize',12);
ylabel('z','FontName','Times','FontAngle','italic','FontSize',12);
text(0.6,0.7,'t = 320\Delta t','FontName',' Times','FontAngle','italic','FontSize',12)

clabel(pl,'manual' )
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