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CHAPTER |

INTRODUCTION

1.1 Research objectives

The objective of this research is to determine the rock salt reserve in the Maha
Sarakham Formation of the Khorat Basin with respect to the solution mining
applications. The mining reserve will be estimated along with the corresponding
cavern locations and depths. The final results will be presented by series of contour

maps and cross-sections defining the reserve and its variation within the basin.

1.2 Rationale and background

The world demand of salt has increased to an estimate of 190-205 megatons
annually. Thisis primarily due to the rapid growth of the Southeast Asian countries.
Rock salt has long been one of the important raw materials for various chemical
industries (Roskill, www, 2001). Even though extensive rock salt formations widely
distribute in the northeastern region of Thailand (Japakasetr, 1985; Japakasetr and
Workman, 1981; Sattayarak, 1983, 1985; Japakasetr, 1992; Japakasetr and Suwanich,
1982), the production from the local salt mining industry is limited, and hence the salt
export still can not reach the overseas demands. Such limitation is due to the fact that
the necessary geological sequences of the salt formations are not available to the

investors, miners and engineersin areadily useful format. In addition, the existing



borehole data and geologic maps in the area have never been systematically interpreted,

verified, and compiled for engineering and devel oping purposes.

1.3 Scope and limitations of the study

This research uses the existing and published data from borehole logs, geology
and structural geology of rock salt in the Khorat Basin. The core-logged data are
obtained from the Department of Minera Resources (DMR), which have been
acquired mostly for the potash exploration project in the northeast of Thailand. The
research will not cover the field investigation. Conventional method of reserve
estimation and subsidence calculation will be used. Engineering design methodol ogy
will be followed to determine the cavern size and depth. The salt properties are
obtained from the reviewed test data. The reserve estimation is carried out based on

the solution mining method.

1.4 Research methodology

1.4.1 Literaturereview
Relevant literatures will be searched, reviewed, summarized and
documented. The summary of the literature review will be given in the thesis, which
includes geology of the Maha Sarakham Formation in the northeast of Thailand, rock
salt properties, solution mining technology, solution mining practices in Thailand,
design methodology for solution mining, mechanical constitutive laws of rock salt,

computer modeling, subsidence due to solution mining and reserve estimation.



1.4.2 Geologic data compilation
Relevant information of the Maha Sarakham Formation will be
systematically compiled. The geologic data compilation will be made from borehole
data, seismic survey, geologic maps, topographic maps, mineral potential map, and
geologic cross-sections.
1.4.3 Cavern design
Thickness and depth of the salt beds obtained from the data compilation
will be used as primary parameters for the design of the solution caverns. The design
will give the suitable cavern geometry under various geologic conditions, depths, and
thickness. Engineering design methodologies and principles will be used. The design
parameters to be determined include depth, volume, shape, and spacing of the
caverns. A variety of the designed cavern configurations is expected.
1.4.4 Salt reserve estimation
The salt reserve will be estimated, based on the solution mining
method. The parameters considered in the estimation will include depth and
thickness of the salt at each location, cavern configuration (depth, diameter, height,
roof, and floor), and cavern field arrangement (cavern pattern and spacing). The
cavern field area is designated by considering the economica feasibility of the salt
reserve within the area and the current regulations for the underground mining
practice.
1.4.5 Thesiswriting and presentation
Methods and results of the research will be documented and presented
in the thesis. It will include comprehensive methodology, results, discussions and

conclusions of the findings.



1.5 Expected results

Distribution of the three salt members in Khorat Basin in terms of area, depth,
and thickness will be obtained in digital format. A contour map of salt reserve can be
constructed. The results will be immediately applicable as a compiled salt sequences
to the government agencies, regulators, planners, and geologists. The proposed
cavern design configurations will be useful for mining, geological, and civil engineers.
Finally, the salt reserve estimation will become the key information for planning and

management of the rock salt resources in Thailand.

1.6 Thesiscontents

The research objective, rationale, background, scope, limitations,
methodology, and expected results are described in Chapter 1. Chapter 11 presents a
summary of the literature review on the Maha Sarakham Formation, rock salt
properties, solution mining technology, solution mining practices in Thailand, design
methodology for solution mining, mechanical constitutive laws of rock salt, computer
modeling, surface subsidence due to solution mining, and methods for reserve
estimation. Chapter 111 describes method and results of data compilation. Chapter 1V
describes the cavern design processes and stability analysis. Chapter V presents the
sat reserve estimation. Chapter VI concludes the research results, and provides

recommendations for future research studies.



CHAPTER II

LITERATURE REVIEW

2.1 Objectives

Literatures related to the reserve estimation oh&M8arakham Formation for
solution mining in Khorat Basin has been reviewrdthis research. The related
knowledge is categorized into nine groups: 1) M&aakham Formation in the
northeast of Thailand, 2) rock salt properties,s8)jution mining technology, 4)
solution mining practices in Thailand, 5) desigogasses for solution mining, 6)
mechanical constitutive laws of rock salt, 7) cotepunodeling, 8) subsidence due to

solution mining, and 9) reserve estimation.

2.2 Maha Sarakham Formation in the northeast of Thailand

The rock salt formation in Thailand is locatedie Khorat plateau as shown
in Figure 2.1. The Khorat plateau covers 150,0ffage kilometers, from t40 19
northern latitude and 1010 106 eastern longitude. It has high escarpment u@@ 9
meters above mean sea level along the western anthesn edges and mesa
topography over parts of its area whereas its raiddta elevation is about 140 meters
above mean sea level. The northern and eastess eédghe plateau lie close to Laos

and the southern one close to Cambodia (Utha-ad898).
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Rock salt in the Khorat plateau is separated2nbasins: Sakon Nakhon Basin
and Khorat Basin. The Sakon Nakhon Basin in thehnloas an area about 17,000
square kilometers. It covers the area of Nong Kbaon Thani, Sakon Nakhon,
Nakhon Phanom, and Mukdahan provinces and extendsrhe part of Laos. The
Khorat Basin is in the south, which has about 30,8quare kilometers. The basin
covers the area of Nakhon Ratchasima, Chaiyaphumonkaen, Maha Sarakham,
Roi Et, Kalasin, Yasothon, Ubon Ratchathani progsmand the north of Burirum,
Surin, and Sisaket provinces (Suwanich, 1986).

Both basins contain three cycles of evaporatedoslep within the Maha
Sarakham salt-bearing strata (Suwanich et al., )198Each cycle, defined by
intrusion and extrusion of seawater, in-cooperadedevaporation rate that was
suitable to form minerals, e.g. halite and pota&h.cycles consist of evaporitic strata
and sedimentary strata (Hite and Japakasetr, 19dé@anich and Rattanajarurak,
1986; Suwanich, 1986; Wongsawat et al., 1992)asngn the following.

1) Lower Cycle consists of the lower sedimentary baeisosited during an
intrusion of seawater into the basin and resultedeposit of ferruginous
clastic sediments, calcareous sandstone and ther lewaporite layer
formed during an extrusion of seawater from theirbasnd caused the
deposition of anhydrite, potash and sylvite.

2) Middle Cycle consists of the middle sedimentary ddposited during
seawater intrusion and resulted in the deposihafesand claystone and
the middle evaporate layer was formed during amusidn of seawater
that caused higher concentration of seawater alie laad thin layers of

anhydrite deposited in consequence.



3) Upper Cycle consists of the upper sedimentary lmsgsosited during
seawater intrusion and resulted in the deposieddlish-brown claystone
and the upper evaporite layer deposited during aeavextrusion.

The Department of Mineral Resources had drilled d8lled holes between

1976 and 1977 for the exploration of potash (Japetka 1985; Japakasetr and
Workman, 1981; Sattayarak, 1983, 1985; Japakdk®®®; Japakasetr and Suwanich,
1982). Some holes were drilled through rock sglets to the Khok Kruat Formation

(Yumuang et al., 1986; Supajanya et al., 1992; ‘atio@n, 1993; Warren, 1999).

The sequences of rock layers from the bottom & fbwWmation up to the top of the

Maha Sarakham Formation are as follows.

1) Red bed sandstone or dense greenish gray siltstometime intercalated
with reddish-brown shale.

2) Basal anhydrite with white to gray color, denses lbeneath the lower
rock salt and lies on the underlying Khok Kruatration.

3) Lower rock salt, the thickest and cleanest rock lsgler, except in the
lower part which contains organic substance. Tiekbhess exceeds 400
meters in some areas and formed salt domes withthibkness up to
1,000 meters, with the average thickness of 134rmset

4) Potash, 3 types were found; carnallite (KCl.Mg&H,O) with orange,
red and pink color, sylvinite (KCI) rarely found,hite and pale orange
color, an alteration of carnallite around salt demand techydrite
(CaCh.2MgClk.12H,0) often found and mixed with carnallite, orange to
yellow color caused by magnesium, the dissolvedenainoccurred in

place.



5) Rock salt, thin layers with average thickness ah@&ters, red, orange,
brown, gray and clear white colors.

6) Lower clastic, clay and shale, relatively pale isdébrown color and
mixed with salt ore and carnallite ore.

7) Middle salt, argillaceous salt, pale brown to smokjor, thicker than the
upper salt layer with average thickness of 70 rsetarnallite and sylvite
may be found at the bottom part.

8) Middle clastic, clay and shale, relatively pale disti brown color and
intercalated with white gypsum.

9) Upper salt, dirty, mixed with carbon sediment, dalewn to smoky color
or orange color when mixed with clay and 3 to 63areethick.

10) Upper anhydrite, thin layer and white to gray color

11) Clay and claystone, reddish brown color, occurreatssiltstone and
sandstone in some places, and

12) Upper sediment, brownish gray clay and soil inupper part, and sandy
soil and clay mixed with brown, pink and orangedsasoil in the lower
part.

Cross-sections from seismic survey across the &Hdibon and Udon-Sakon
Nakhon Basins (Sattayarak and Polachan, 1990) Ireted rock salt can be
categorized into 3 types according to their appeas namely, rock salt beds, rock
salt fold and salt domes. The Maha Sarakham and TRik Formations fold in
harmony with the Khorat megasequence. A part ef difoss section through the

Khorat Basin is illustrated in Figure 2.2.
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Figure2.2 Cross-section showing rock salt in the KhoratiB&som Sattayarak,

1987).

Lateral compression due to collision between tlsgad and Indian Plates in
Tertiary caused the occurrence of cracks in the Pbki Formation. The plastic
characteristics of the rock salt made it easy é@gr The rock salt intruded into those
cracks. Differences in overburden loads could aksase a deformation of the rock
salt and resulted in rock salt folds and domeseasgely. Rattanajarurak (1990),
Junmaha (1987) and Supajanya et al. (1992) sthtddftom seismic investigation
data around exploration well No. K-66 in Borabuetiict, Maha Sarakham Province
(Figure 2.3), salt domes are different in shape sind. Some had started to form
domes. The lower rock salt in the middle of theokdt and Sakon Nakhon Basins

found to be well developed for dome.
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BOREHOLE K-66

Figure 2.3 Seismic investigation at around the exploration Wel. K-66 in Borabue

District, Maha Sarakham province (from Supajanyal t1992).

2.3 Rock salt properties

2.3.1 Mechanical propertiesof rock salt

Researchers from the field of material sciencde\e that rock salt
behavior shows many similarities with that of vasametals and ceramics (Chokski
and Langdon, 1991; Munson and Wawersik, 1993). él@n because alkali halides
are ionic materials, there are some important ihffees in their behavior. Aubertin
et al. (1992a, 1992b, 1993, 1998, and 1999) comechhet the rock salt behavior
should be brittle-to-ductile materials or elastiagtic behavior. This also agrees with
the finding by Fuenkajorn and Daemen (1988), Folket Kenter (1994), and Fokker
(1995, 1998).

Jeremic (1994) discusses the mechanical charstateriof the salt.
They are divided into three characteristics: thastat, the elastic-plastic, and the
plastic behavior. The elastic behavior of rock salassumed to be linearly elastic
with brittle failure. The rock salt is observed ksear elastic only for a low

magnitude of loading. The range of linear elastainly depends on the content of
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elastic strain and can be used to formulate theutnsdof elasticity. Normally, the
modulus of elasticity of rock salt is relativelyno The elastic and plastic behavior of
rock salt can be investigated from the rock sadcspen. The confined rock salt
specimen at the beginning of incremental loadirapnshlinear elastic deformation but
with further load increases the plastic behaviondsiced, which continues until yield
failure. Elastic deformation and plastic deforroatiare considered as separated
modes of deformability in the great majority of ess The salt material
simultaneously exhibits both elastic strain andfatastrain. The difference between
elastic behavior and plastic behavior is that slaskeformation is temporary
(recoverable) and plastic deformation is permar{grecoverable). The degree of
permanent deformation depends on the ratio of iplattain to total strain. The
elastic and plastic deformation can also be obskebye short-term loading, but at
higher load magnitude. The plastic behavior okrealt does not occur if the applied
stress is less than the yield stress. The rotkisaleformed continually if the high
stress rate is still applied and is more than tleédystress. Increasing the load to
exceed the strain limit of the rock salt beyondstength causes it to fail. The
deformation of rock salt by the increase of temjpeeacan also result in the transition
of brittle-to-ductile behavior.

The time-dependent deformation (or creep) is ttoegss at which the
rock can continue deformation without changingsstreThe creep strain seldom can
be recovery fully when loads are removed, thussitargely plastic deformation.
Creep deformation occurs in three different phaassshown in Figure 2.4, which
relatively represents a model of salt propertiedengoing creep deformation due to

the sustained constant load. Upon application afrestant force on the rock salt, an
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Figure2.4 The typical deformation as a function of timecodep materials (modified

from Jeramic, 1994).

instantaneous elastic strai)(is induced. The elastic strain is followed bgramary

or transient strain, shown as Region |. Regiorhgracterized by an almost constant
slope in the diagram, corresponds to secondaryteadg state creep. Tertiary or
accelerating creep leading to rather sudden faitushown in Region Ill. Laboratory
investigations show that removal of applied loadRegion | at point L will cause the
strain to fall rapidly to the M level and then agptotically back to zero at N. The
distance LM is equal to the instantaneous sttginNo permanent strain is induced
here. If the removal of stress takes place indteady-state phase the permanent

strain €p) will occur. From the stability point of view, Isastructure deformations
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after constant load removal have only academicifsignce, since the stresses
imposed underground due to mining operations aegersible. The behavior of the
salts with time-dependent deformation under condteaa is characterized as a visco-
elastic and visco-plastic phenomenon. Under tlceselitions, the strain criteria are
superior to the strength criteria for design pugsp®ecause failure of most salt pillars
occurs during accelerated or tertiary phase ofp;réee to the almost constant applied
load. The dimensions of a pillar in visco-elastied visco-plastic rock should be
established on the basis of a prediction of itsgiterm strain, to guard against
adequate safety factor accelerating creep (Fuemkajod Daemen, 1988; Dusseault
and Fordham, 1993; Jeremic, 1994; Knowles et 8881

The mechanical behavior of rock salt is compled & affected by
many factors, such as grain size, bonding betweeng time, temperature,
humidity, and inclusions, and more. The effectsark salt characteristics by these
factors are normally shown by the differences ifodeation and creep properties.

The effects of grain size on the creep behavidrsarength of rock salt
in laboratory and field conditions are describedHokker (1998). The average grain
size of salt visually observed from the core andt{failure specimens isx30x10
millimeters. It is concluded that the large sizeéh® salt crystals increases the effect
of the crystallographic features (i.e. cleavaga@$d on the mechanics of deformation
and failure of the samples. This also agrees thighfinding by Aubertin (1996). The
dislocations and plastic flows in single crystals halite are studied by several
researchers (Franssen and Spiers, 1990; Raj arrd, RB82; Senseny et al., 1992;
Wanten et al., 1996). They conclude that the skgangth and deformation of halite

crystals are orientation-dependent. The small eizéhe sample may not provide
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good representative test results. This also rsflea the specifications by ASTM
(ASTM D2664, D2938, and D3967). The ASTM standarethods specify that to
minimize the effect of grain size the sample dianshould be at least ten times the
average grain size.

Bonding between grains can affect the creep ratethe strength of
salt. Allemandou and Dusseault (1996) observeptist-failure from the Brazilian
strength tests and uniaxial compressive strengits.te They report that strength
depends on the boundary between grains. Thisagisees with the laboratory results
obtained by Fuenkajorn and Daemen (1988) who repattweakness or brittleness of
the crystal boundary of salt is observed during@amreparation. It is unlikely that a
long intact core can drill through the salt forrati

The time-dependent behavior of salt under diffea¢stress raises the
guestion of the significance of time-related teatgmeters such as loading rate,
testing period, and loading sequence. The efigctdress rate and strain rate on the
deformation and strength of salt samples have loegn recognized (Farmer and
Gilbert, 1984; Dusseault and Fordham, 1993). Taelihg rate must be maintained
constant and measured as precisely as possiblegdime test. The loading sequence
and the duration for which each load is sustainethb salt specimens are important
since salt tends to behave as a plastic creep ialatgth low yield stress. This
situation is found in the triaxial compressive sgth test where the confining
pressure is applied to the salt cylinder priorie &axial load. Due to the nonlinear
behavior of salt, the analysis of stress induced galt specimen is complex and the

Boltzmann law of superposition cannot be used.
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Temperature or heating affects the creep defoomatbecause they
increases the plastic property of salt and longrteleformation (Pudewills et al.,
1995). Jeremic (1994) postulates that rock sale their brittleness after extension
tempering at approximately 680 and exhibit a critical shear stress up to 1 MPa.
Hamami et al. (1996) study the effect of tempemtand conclude that the
temperature increase, as for the deviatoric stressjts in an increase of the material
deformation. Cristescu and Hunsche (1996) studyemperature effect on the strain
rate suitable for laboratory testing. They sugdleat the appropriate strain rate for
testing at 100C and 200C is 10° s* and 10’ s* because the temperature can affect
the creep deformation and strength of salt undgr temperatures.

Humidity affects salt properties by reducing thieersgth of rock salt
(Hunsche and Schulze, 1996; Cleach et al., 198 drated reaction between water
and salt occurs when salt contacts with air humidiThe temperature effects can
catalyze the hydration. They find that when sulpecto air humidity, the strength of
salt can be decreased by up to 1 MPa (normalgngth of 30 MPa).

Inclusions and impurities in salt have an effect @ the creep
deformation and strength of salt. The degree qiuinity is varying for different
scales of the rock salt. On a small scale, suclioadaboratory specimens, the
impurities of salt involve ferruginous inclusionsdathin clay seams along grain
boundaries or bedding planes. The impurities ibiste uniformly in the salt may
affect the strength of rock salt. This can de@dhe creep deformation and strength
of rock salt. These phenomena have been repoytéddnssen and Spiers (1990), Raj

and Pharr (1992) and Senseny et al. (1992).
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2.3.2 Experimental research on rock salt

Rock salt has mechanical behavior that differsnfirmost rocks. Basic
mechanical laboratory tests that have been camigcn rock salt include uniaxial
compressive strength testing, triaxial strengthirtgs uniaxial creep testing, multi-
steps testing, triaxial creep testing, tensilengjtie testing, cyclic loading testing and
permeability measurment testing. The main objecti¥ these tests is to study the
strength and the time-dependent deformations ofdtle

The uniaxial compression tests determine the cesspre strength of
rock salt under unconfined condition. The saltcapens are subjected to the uniaxial
load until failure. The compressive strength carnvaried with the applied stress and
strain rates. Hansen et al. (1984) performs thaxial compressive strength tests on
rock salt from ten different locations in the Unit8tates. The results indicated that
compressive strengths vary from 13.3 to 3.6 MPa {Eable 2.1). Fuenkajorn and
Daemen (1988) study the compressive strength &f salt from Permian Basin, New
Mexico. The results are 18.44 MPa of compressikength, 36 degrees of internal
friction angle, 3.42 GPa of tangent modulus, anti35GPa of secant modulus.
Ratigan and Vogt (1993) summarize the compresdrengths of salt with values
ranging from 15 MPa to 30 MPa. Wanten et al. (398tudies the uniaxial
compressive strength under different strain rafée. strain rate ranging from 16"
to 10 s* is applied on the crystal (salt grain) at tempeebf 26C to 200C. The
results indicate that the salt samples show workldrang behavior. Microstructure
studies revealed high dislocation densities btle libr no sub-grain development or
cross-slip. Comparison of the results with michygical models suggests that

obstacle limited dislocation glide is the contmdli deformation mechanism.
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Table2.1 The results of uniaxial and triaxial compressiversgth tests and Brazilian

tensile strength test on rock salt from the Unis¢aktes (from Hansen et al.,

1984).
Uniaxial Brazilian . .
. . Triaxial Compressive
_ Compressive Tensile
L ocations Strength Test | Strength Test Strength Test
c. (MPa) o (MPa) C (MPa) ¢ (degrees)
S. E. New Mexico
(1900 level) 16.9 1.26 2.31 59.5
S. E. New Mexico
(2700 level) 25.7 1.63 3.24 61.7
Lyons 25.2 1.56 3.14 62.1
Permian 221 1.72 3.08 58.8
Paradox 33.6 2.61 4.68 58.9
Jefferson Island 24.0 1.54 3.04 61.6
Week'’s Island 13.9 1.24 2.08 56.7
Cote Blanche 25.2 1.93 3.49 59.1
Avery Island 23.1 1.17 2.60 64.6
Richton 13.3 1.32 2.10 55.0
Vacherie 15.3 1.12 2.07 59.7
Notes: o, = UniaxialCompressive Strength C = Cohesion Compressive @lren

og = Brazilian Tensile Strength () Internal Friction Angle
Boontongloan (2000) studies the uniaxial compresssirength with controlled
loading rate on salt cores drilled in Sakon NakiBasin in Udon Thani Province,
Thailand. The uniaxial load is applied within 510 minutes. The results indicate
that the Upper Salt has the uniaxial compressrangth of 18.5 MPa and the Middle
Salt has uniaxial compressive strength of 26 MH&e tangent and secant elastic

moduli equal 5.6 GPa and 9.9 GPa. The Lowerlaltuniaxial compressive strength

of 25 MPa. The tangent and secant elastic moduiale6.4 GPa and 11.4 GPa. The
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Poisson’s ratio varies between 0.35 and 0.42. kst (2002) performs the uniaxial
compressive strength with controlled loading ratéfe loading rate ranging from
0.01 to 1.0 MPal/s are applied on salt specimema ffakon Nakhon Basin in Udon
Thani Province, Thailand. The results indicateat the average compressive strength
from thirteen specimens is 27.4 MPa.

The triaxial testing is conducted to determinedbmpressive strengths
of rock salt under confined conditions. The akxiad and the confining pressure are
increased simultaneously, until the predetermimsd level for the confining pressure
is reached. Subsequently, the confining presdua# ke maintained to within 2% of
the prescribed value. The axial load on the spewcimshall then be increased
continuously at a constant stress rate such thiatrdawill occur within 5 to 10
minutes of loading. The maximum axial load and tmeresponding confining
pressure on the specimen are recorded. Hansen @984) performs the triaxial
compressive strength tests on rock salt from tdferdnt locations in the United
States. The results indicated that cohesion cassme strengths (C) are varying
from 2.07 to 4.68 MPa and 55 to 64.6 degrees efmai friction angled), as shown
in Table 2.1. Fuenkajorn and Daemen (1988) perfstma@in rate-controlled triaxial
tests on Salado salt samples at confining pressaregng from 1.54 MPa to 8.18

MPa and constant strain rates ranging from 2125 to 2.0&10* s™.

The salt tends

to behave as brittle material (strain-softeningewlt is subjected to high strain rates
and as ductile material (strain-hardening) for lowain rates. The sample volume
tends to decrease at the beginning of loading tastaiits increasing shortly before the

peak stress has been reached. Therol and Ghoréi®Bb) study the triaxial

compressive strength tests on rock salt with measents of the volumetric strains.
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They report that the initiation of damage is supgob# be linked to the change of
curvature of volumetric strain from compressibilitydilatancy due to microcracking.
Wetchasat (2002) conducts the triaxial compressiuength tests on rock salt from
salt cores in Sakon Nakhon Basin in Udon Thani ime®; Thailand. The results are
8 MPa of cohesion compressive strength and 49 degoé internal friction angle.

The linear equation of Coulomb’s criterion is giveyr = 8 +c tan 49 MPa.

The cyclic loading test consists of the loadingl amloading system,
which causes the fatigue in salt specimen and exddlce ultimate compressive
strength (Allemandou and Dusseault, 1996). Resllthese tests can be shown by
the stress, strain, and numerical cycle's gragie graph shows fatigue concentration
of each cycles and ultimate strength at failurehe Tcyclic loading test can be
modified for long-term testing called creep-cydaading tests. These results are
presented as the relationship between strain ame. ti Results of all creep-cyclic
loading tests show a classical creep responsehigth strain rates at the beginning,
gradually decreasing with time towards an identasymptotic value from cycle to
cycle (Thoms and Gehle, 1984). Wetchasat (2002jopes the uniaxial cyclic
loading tests on rock salt from Sakon Nakhon BaSimailand to determine the
uniaxial compressive strength and the elastic meadul The average uniaxial
compressive strength from eighth specimens is 28% and 19.9 GPa for the
average elastic modulus.

Uniaxial creep testing is conducted to determime time-dependent
deformation of rock salt. The uniaxial loadingngintained constant during the test
while recording the axial strain and time. Theaulessare commonly shown as a strain

and time curve. Normally, the curve of creep tegis divided into three stages: 1)
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transient or preliminary creep stage, 2) steadsegondary creep stage, and 3) tertiary
creep stage (Figure 2.4). Hunsche and Schulze6]19&form the uniaxial creep
testing, and find that different layer formatiorsvh different creep properties. The
temperature of test varies from°22to 630C. The salt is close to the plastic
behavior under a high temperature. Pudewills amidnberger (1996) study the
uniaxial creep testing at different temperatureBhe result shows that the creep
deformation (strain) at 20Q is higher than the creep deformation at®@O0A study
by Fuenkajorn and Daemen (1988) demonstrated hieasttain rate at steady state is
17x10° hours' and equal zero when the time of testing is ab®@ ® 800 hours.
Wetchasat (2002) performs uniaxial creep tests &berchine time-dependent
parameters of rock salt from Sakon Nakhon Basimjldhd. The results are 1.1 GPa
of retarded shear modulus A(9.1 GPalay of elasto-viscosity (), and 4.9 GPa of
retarded bulk modulus ¢gX

Triaxial creep testing is conducted to determihe time-dependent
deformation of rock salt under confined conditioride triaxial creep test is close to
in-situ stress conditions when applying confinimggsures. Ong et al. (1998) study
creep deformation of salt and potash from Patiéaé® Member in the United States.
They perform the long-term triaxial creep testsdjustment of the desired axial and
confining stress levels is quick. The axial andfsong stresses are maintained. The
test is either a single stage test or multipleestagt which lasts for 90 days. The data
storage interval at the start of a test is usualiyinutes; it is changed to one hour
when the creep rate decreased. Upon unloading,sémeple is inspected and
measured dimensionally. They find that the saltlese to plastic behavior under

high confining pressure. Hamami et al. (1996) gtine triaxial creep testing on salt
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with low deviatoric stress under an axial stresying between 5.5 and 15 MPa with
a step of 2.5 MPa each 3 months. The triaxialpctest with constant deviatoric
stress (under an axial stress of 13 MPa) and deogeaand increasing) the
temperature form 2@ to 90C (and 90C to 20°C) with a step of 18 each 1.5
months. They summarize that if the temperatureesses, the deviatoric stress
results in an increase of the material deformatioA. decrease in temperature
remarkably reduces the sample deformation, whickulgected to a deformation at
higher temperatures in the beginning of test. Tph€nomenon is called strain
hardening. The strain rate depends on the stilessemperature and the previous
strain. This also agrees with the finding by Karth (1996).

Hansen et al. (1984) compare the Brazilian terssrength of rock salt
from ten different locations in the United StateShe results indicated that tensile
strengths are varying from 1.12 to 2.61 MPa (sdaerd.1). Senseny et al. (1992)
perform Brazilian tensile strength on rock saltanid from Permian Basin. During
the test, the axial load is applied along diamatrgpecimen with loading rates of
0.057 to 0.342 MPa/s until the specimen fails. Brazilian tensile strength is
ranging from 1.3 MPa to 1.6 MPa. The high loadiaig reduces the tensile strength.
Studies by Hunsche (1993) show the suitable loadites for the tensile strength test
which are from 0.017 MPa/s to 0.248 MPa/s. Thesesrdo not affect the tensile
strength of rock salt. Hardy (1998) uses finesggdi rock salt for tensile strength
tests under conditions of direct-pull, diametriadong (Brazilian tensile strength test),
and hoop-stress loading. Acoustic emission is togd during these tests. The tests
use the loading rates ranging from 0.003 MPa/s@69MPa/s. The results of direct-

pull, diametric loading and hoop-stress loading a@3 MPa, 3.97 MPa and 0.68
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MPa, respectively. Wetchasat (2002) performs Beaziensile strength test on the
Maha Sarakham Formation in the Sakon Nakhon BaBne tensile strength averaged
from 13 specimens is 1.5 MPa.

In the past decade, many researchers studiecetheepbility of salt by
laboratory and field tests. Gas or brine is pressd through salt specimen and
crushed salt specimen for permeability measurem&hé permeability of in-situ and
undisturbed salt ranges from®0m? to 10%° m? (Stormont et al., 1992; Fuenkajorn,
2000). The permeability of crushed salt dependgherbulk density. Brodsky et al.
(1998) report that the fractional density from 0t850.90 of the crushed salt, gives
permeability ranging from I8 m? to 10 m?. The permeability of crushed salt is
normally higher than the permeability of salt spgens. The permeability of salt is
still very low but salt may increase its permeapivith mechanical damages such as
induced cracks around openings on caverns in théosaations. Pueakphum (2003)
performs fracture healing tests under uniaxial eadlal loading on rock salt from
Sakon Nakhon Basin. The results indicated thafimiog pressure has an advantage
over uniaxial loading, in term of the maximum apglipressures on the tested salt
fracture. The applied load is limited by the coegsive strength of the salt. The
maximum axial stress used is therefore limited #® MPa or about 30% of the
strength. For the confined conditions, the speniman subject to the confining
pressure as high as 20 MPa. The results suggasbdkh applied pressure and time
are important factors for fracture healing. Thalimg effectiveness of salt fractures
depends heavily on the origin of the fractures. alffracture is formed by the
separation or splitting of salt crystals, it candasily healed even under relatively low

stress for a short period. The splitting failufesalt crystals occurs by a separation of
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cleavage planes. This means that healing is eféetfitthe salt crystals on both sides
of the cleavage plane return to their original posi For the fractures formed by
separation of inter-crystalline boundaries or bystals with different orientations on
the opposite sides, healing will not be easily @ebd. The hydraulic conductivity for
all salt fractures decreases with increasing appd@nfining pressure and time. This
implies that the fracture healing is accompaniedheyfracture closure. Both processes
are time-dependent. The closure involves the ytastic deformation for the salt on
both sides of the fracture. The healing involves@mical process. It is permanent and
remains even after the load is removed. Owindpéosurface smoothness, the polished
fractures show a lower permeability than do thesitaminduced fractures. This
however does not necessarily mean that the polishetlires heal more effective than
do the tension-induced fractures. A reduction m@ictire permeability does not
necessarily mean that the healing has occurreds ighevidenced by that even the
polished fracture has been compressed until itsaojid conductivity becomes lower

than 10° m/s and no healing has taken place in the fra¢Rueakphum, 2003).

2.4 Solution mining technology

Solution mining for salt is a well-established heclogy that began in the
1860’s in the United States. Prior to 1955, madt & the United States was
produced using single well system, where leachoigti®n is injected and produced
through the same well. After 1955, hydraulic fuattg between wells became the
prominent system. With hydraulic fracturing, iresed efficiency was possible

(Nigbor, 1982; Bieniawski and Bieniawski, 1994).
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2.4.1 Technology and methods of solution mining

Of engineering interest are the technology andhotktof controlled
solution mining. There are two systems for salutson and two methods of salt
production by solution mining (Jeremic, 1964).

System of indirect circulation (Figure 2.5a), wheiresh water is
injected between the tubing and the casing. Tystem is called the ‘top injection
method’, because the water enters the salt degiotie top of the formation and starts
to dissolve the salt near the roof. The salt bfioews downward to the bottom of the
tubing where a sump effect has been produced byuhg drawing on the tubing.
The brine is pumped from the well and then sethi® processing area. For roof
control of the cavern, a fluid isolant is applietigh does not dissolve salt and does
not stick to it.

System of direct circulation (Figure 2.5b), whigbes the same type of
set-up as an indirect circulation, e.g. the topdtipn method, except that the flow of
water is reversed. The fresh water is pumped dberiubing and dissolves the salt at
the bottom of the formation. The brine is thenwdraout of the well between the
tubing and the casing. This system is also knosvila ‘bottom injection method’.

Jeramic (1994) states that the difference betweemwo systems is the
rate of decay of the well condition. In the topeation method the roof of the cavity
is prone to caving since it is exposed more quidkign in the bottom injection
method. The caving of the roof soon caused theguto plug or break. This causes
reduced production or results in the closing ofviled.

The methods of salt production by solution minarg fundamentally

represented by the single-well method and by tleeviell method (Jeramic, 1964).
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Figure2.5 Systems for solution mining (modified from Fuejaka, 2002).

The single well method of solution mining involvéee drilling of a
single large diameter drill hole into a salt forrmat A casing is used in the hole to
stop the walls from caving. A second tubing of Bemaliameter is then placed in the
cased drill hole. The single well is simultanegua$signed to the production well
and the injection well. Under this method the 8olu mining production is related
solely to the individual wells. The single well thed is mainly applied for deeper

parts of salt deposits.
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The two-well method of solution mining of salt dsjis is based on
drilling two identical wells into a salt body atléstance from several tenths of meters
to several hundreds of meters. One well is asdigisethe production well and the
other as the injection well. Solution mining ssawtith the individual operation of
each well by one of the single-well methods. Aftempletion of the caverns, and in
order to get fluids flowing between them, high pree water is applied at the
injection well in order to cause hydraulic fractyibetween the wells. The brine is
drawn from the production well and, as the flowiEtn the two wells increases, the
opening enlarges by dissolving the salt. As thatgdetween the two holes enlarges,
the volume of water flow between the holes increasausing damage to the well is
less than in the single-well method, because tba ahere the salt is being removed
is far from the wells, where collapses can not eadmmage to the well. Figure 2.6
shows a schematic of two-well method.

2.4.2 Solution processes

Adagic (1988) has recommended that the technigfighe solution
process to a great extent depend on the geologinattural features of the deposit
and its internal structure. This particular teclogy of solution mining could be
characterized by three phases.

First phase: This phase is represented by theafoon of the hydro-
undercut at the bottom of the future cavern. Thight of the undercut is 15 meters.
The salt solution flows in a lateral direction, Wwia protective layer or isolant
fluid to control the stability of the cavern baadkrohg its formation. The salt solution

process ceases when the cavern reaches a diamhél& Dnax (Dmax = maximum
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Figure2.6 Schematic of two-well method (modified from Fuejttn, 2002).

design diameter). During this phase the systemdifect circulation is applied. The
capacity of the salt dissolution is 25/mof unsaturated brine (Figure 2.7).

Second phase: After completion of the hydro-ucatera narrow
cylindrical cavern is dissolved with a diametersafneters and average height of 115
meters, which could be called a hydro-slot. THhe s@ution of the hydro-slot also
has a protective layer of fluid isolant to controbdf stability while reaching the final
height of the exploitation cavern. During this pha system of direct circulation is
applied with the dissolution capacity of 25/mof the unsaturated brine (Figure 2.8).

Third phase: The two previous phases should besidered the

development of the solution mining cavern. Thadtphase is considered the exploitation
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phase of the cavern, which has and analogy withngining stope extraction. The
direction of salt dissolution is lateral, by widegithe cavern and blocking the roof
with isolant fluid on the top of brine. During shphase and indirect circulation is also
applied with exploitation tubing installed in thanler part of the cavern. The capacity
of salt exploitation in this phase, until cavernmmetion (D=60 meters) is
approximately 50 rith of saturated brine (Figure 2.9).

During solution mining, it is necessary to follolne development of the
cylindrical cavern with the following methods.

1) Calculation of the volume increase of the caversedaon the salt

mass produced.

2) Checking the level of isolant fluid using gamma signlogs and

the method of differential pressures.

3) Analysis of the chemical composition of dissolvett.s

4) Surveying the cavern shape by the ultra-sound rdethsing an

echometer.

If the development of the cavern during the solutprocess is in
agreement with the design parameters, then soluiploitation continues. If
surveying data record an appreciable deviation e $ize and shape of the
exploitation cavern, then production has to be mdp In this case the design
parameters must be recalculated and changed, sublke &elocity of salt solution, the
depth of solution tubing, the level of fluid isotaand others.

Without cavern control by calculation and instrumagion it is impossible
to execute the correct layout of solution minirignder these circumstances the inter-

cavern pillars, sill pillars and finally protectivgillars which envelope the
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solution mining area might become unstable, whiohld@ jeopardize not only the
stability of the solution mine, but also the stapibf the whole salt body.

The spacing ratio, a relationship between theadcs of caverns (S)
and the diameter of the caverns (D) has been varieds obvious that the spacing
ratio among caverns is and instrumental factontdraction stress concentration and
cavern deformation (Jeramic, 1964). There are sopiaions that the spacing
between caverns should be large enough to prewatescing of the respective yield

zones surrounding cavities (see Table 2.2).

Table2.2 Examples of spacing-to-diameter ratio of theagjercaverns.

Locations Storage Height |Diameter | Spacing | S/D References
H D S ratio
(meters) | (meters) | (meters)
Huntorf, Compressed-Aif 150 60 220 3.7| Crotogino et al.
Germany 2001
Alabama, |Compressed-Aif 305 70 177 2.5| Serataetal.,
USA 1989;
Serata and Meht#,
1993
Mississippi,| Natural Gas 305 30 150 5.0 Katz and Lady],
USA 1976
Pimai, Brine 45 80 120 1.5| Gronefeld et at,
Thailand 1993
Hengelo, |Chemical Waste 114 120 600 5.0/ Jeramic, 1994
Netherlands

2.5 Solution mining practicesin Thailand

Fuenkajorn (2002) derives a generic guideline tfog design of solution
caverns in rock salt formations in Thailand. Adgline has been developed for the
design of salt solution mine caverns in Sakon Nakdwed Khorat Basins. Laboratory
testing calibrates the mechanical and rheologicabgrties of the salt formation. Via

a series of numerical analyses, conservative cordigpns of the solution mine
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caverns are determined. It is recommended thataherns be arranged in an array of
single well system and should have the maximum diamand height of 80 and 60
meters, respectively. The minimum spacing is esth to be 240 meters. The
cavern field would yield an extraction ratio of 8.9 10° m® of rock salt per one
square kilometer. The salt roof and floor showdybeater than 200 meters to prevent
excessive movement of the cavern ground.

Brine production in Thailand has been begun int&aper 1987 from the
dissolution of salt in the lower layer of the Ma®arakham Formation (Salakshana et
al., 1987; Gronefield et al., 1993). The productiof brine is achieved by the
circulation of fresh water via boreholes. Two fyesuspended tubing strings are run
into the well, which has been cased and cementach do the top of the salt bed.
This gives three separate surface-to-cavern pipanaulus connections. Water is
pumped through on of the tubing strings into thdl.w&he water dissolves the salt at
the exposed well surface, becoming variably satdratBrine returns to the surface
via the second tubing string. A gas or liquid noedilighter than the brine, which
does not dissolve salt, is injected into the walthe third connection. This medium,
known as the blanket is designed to prevent dissolwf the salt in an upward
direction. The control of brine production procéssncentration and volume evolution)
is achieved with the time dependent leaching parar®esuch as leaching string
depth, blanket depth, pumping rate as laid dowthéneaching plan.

Pimai Salt Co.,Ltd. has modern salt plant is ledaat Amphoe Pimai in
Nakhon Ratchasima province that the only pure vacsalt plant in Asia with an
annual production of over 1,000,000 tons which ubedmulti-stage with oil blanket

technology from Germany. The cavern mined in Lov&alt member of Maha
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Sarakham Formation at 200 to 280 meters depths.ca@bern diameter and height are
80 and 45 meters with cavern spacing of 120 meiedssalt roof of 25 meters. The
cavern shape is a modified cylindrical shape walkiecn volume of 600,000 cubic

meters.

2.6 Design processes for solution mining

Rock mechanics principles are not often appliethen design process. This
often leads to failure of the string and cavern.thle past the U.S. industry relied on
the ‘rules of thumb’ for preliminary designs oftsehverns. Typically, the maximum
cavern pressure was roughly defined as 0.75-0.86 p&depth to the casing seat.
The minimum pressure depends on the surface facpitpeline conditions and
geological conditions. It was usually unknown. eTtavern spacing was normally
varied from site to site. Usually the spacingwice the cavern diameters was used.
The height-to-diameter ratio (H/D) usually was takes 1.0 for bedded salt caverns.
It varied for caverns in salt dome (Bieniawski, 229

A comprehensive design methodology is not justquence of flow charts for
step-by-step design, this has been done beforek(dioeé Brown, 1980; Bieniawski,
1984). To be comprehensive, a design methodolaggt mcorporate design principles
which can be used to evaluate designs and to sitbleabptimum one fulfilling the
perceived objectives. A design methodology mude&ud recommend and order of
design stages but these must be so structuredassiii in effective decision making
and promote design innovation in accordance wighdésign principles (Bieniawski,
1992). The design process for solution mining cosas ten design stages, including

1) identifying the performance objectives, 2) detieing the functional requirements
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and constraints, 3) collecting relevant informatiépndeveloping the design solutions,
5) analyzing the design components, 6) synthesiaimd) defining the specifications,
7) system evaluation, 8) design optimization, 93igie recommendations, and 10)

implementations (Figure 2.10).

2.7 Mechanical constitutive laws of rock salt

Several mechanical constitutive laws of rock balte been developed, which
vary from simple visco-elastic models to complesiatation theory models. Most of
the laws emphasize long-term mechanical behavideua variety of pressures and
temperatures. The constitutive models for salt lsardivided into three groups: 1)
rheological model, 2) empirical model, and 3) phgksmodel.

The rheological models describe the mechanicaaleh of salt, but ignore
the actual mechanisms of deformation. The defaonak characteristics are assumed
to be governed by two basic physical elementsngpelasticity and dashpot viscosity.
The mechanical behavior of salt is modeled by algoation of these elements.
Since the structure of the rheological models isretated to any particular test, the
model can be applied to general problems of tinpeddent behavior without
requiring additional assumptions. The theoriesrtedological models have been
studied by Jin and Cristescu (1998), Cristescu 3499993b, 1993c, 1996), Serata
and Fuenkajorn (1992a), Fuenkajorn and Serata (199®4), Stormont and
Fuenkajorn (1994), and Massier (1996).

The empirical models are generally arbitrary fiored formulated to fit a set

of experimental results. Similar to the rheoloy@pproach, the development of the
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empirical laws ignores the actual mechanism of mhedétion of salt. By fitting curves
to a set of data, certain relationships among #ta dan be established. The empirical
laws can be presented in several forms (power, reqcl, polynomial, etc.),
depending upon the characteristics of the dataerdeforms of empirical model can
be studied from Fokker and Kenter (1994), Pudewailld Hornberger (1996), Zhang
et al. (1996), Callahan et al. (1998), and Spiats@arter (1998).

The physical models start from the analysis of mhieroscopic structural
variation of the material observed under loadingd ancorporate a theoretical
explanation of the basis of time-dependent behavidihe method originated in
metallurgy is later introduced into rock mechanic®Rocks are more complex
materials than metals. The atomic bonds in natocks are always a chemical bond
rather than a metallic bond. Furthermore, mosksare multigranular-structured in
contrast to the relatively single phase structimaetals.

The physical models are therefore considered mugpjate for describing the
time-dependent behavior of rock salt (Aubertin, @98ubertin et al., 1998, 1999;
Korthaus, 1996, 1998; Durup and Xu, 1996; SenseadyF@ssum, 1998; Weidinger et

al., 1997, 1998; Hampel et al., 1998; Eduardo.etLab6).

2.8 Computer modeling

There are some computer software in engineeriopgg that have been used
to model mechanical and hydraulic behavior of reek, e.g. behavior in terms of
stress, strain, permeability, etc. Many softwase alasticity, visco-elasticity, visco-
plasticity, and plasticity characteristics to patdhort-term and long-term behavior

as tabulated in Table 2.3. Some software is dgeldo be used easy, quick, and



Table 2.3 Some computer programs used for describing the saltkbehavior

(modified from Klayvimut, 2003).
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Code Names M ethods References
BEFE BEM (3D) Beddoes (1994)
VELMINA DDM (3D) Frayne (1998)
VNFOLD DDM (3D) Beddoes (1994)
FLAC FDM (2D) Itasca (1992)
FLAC FDM (3D) Itasca (1994), and Frayne (1996, 1998
ADINA FEM (2D) Pudewills and Hornberger (1996)
ANSALT FEM (2D) Heusermann et al. (1998)
ANSPRE FEM (2D) Honecker and Wulf (1988)
ANTEMP,ANSPP FEM (2D) Honecker and Wulf (1988)
ASTHER FEM (2D) Rolnik (1988)
CODE-BRIGHT FEM (2D) Olivella et al. (1996, 1998£98b)
COYOTE FEM (2D) Gartling (1981a)
DAPROK FEM (2D) Harrington et al. (1991)
FAST-BEST FEM (2D) Pudewills (1998)
GEO/REM FEM (2D) Serata (1991), and Serta and Fajenk (1993)
GEOMEC FEM (2D) Nguyen-Minh and Menezes (1996)
GEOROC FEM (2D) Rizkalla (1991)
JAC FEM (2D) Biffle (1984)
LUBBY-1 FEM (2D) Rokahr and Staudtmeister (1996)
LUBBY-2 FEM (2D) Lux and Schmidt (1996)
MARC FEM (2D) Van Eekelen (1988)
MERLIN FEM (2D) Gartling (1981b)
SANCHO FEM (2D) Stone et al. (1985), and Hanse®§).9
SPECTROM-32 FEM (2D) Callahan et al. (1989)
VIPLEF FEM (2D) Vouille et al. (1996)
VISCOT FEM (2D) INTERA (1982), and Frayne (1996)
SUVIC-D FEM (2D/3D) | Julien et al. (1998)
VISAGE FEM (3D) Ong (1994)

Note: FEM is finite element method, FDM is finite difemce method, DDM is displacement
discontinuity method, BEM is boundary element mdthand 2D is two-dimension,
and 3D is three-dimension.



40

convenient analysis. Most of them employ finitereént methods and the rock salt
mechanical behavior role is applied in the mainatigus to calculate and determine
the constants of variable factors derived from fabtmy and field testing.

The main objective of this section is to reviewe tikomputer models
(programs) and analytical methods for describirgrbck salt behavior. In general,
the computer models have been developed to simthatdime-dependent brittle-
ductile behavior of rock salt and designed for Hrealysis of complex material
behavior under a variety of loading and thermalditoons (Juliend et al., 1998). It is
difficult to obtain an accurate calculation of shéhavior with respect to time by
human. Advantages of the computer programs ateafas easy to use. Therefore,
the computer programs are widely used for simulathre rock salt behavior. The
computer models are divided into two groups: 1)raauny methods and 2) domain
methods. The boundary methods include boundampeh method (BEM) and
displacement discontinuity method (DDM). The domanethods include finite
element method (FEM) and finite difference methieDNI).

The boundary element method derives its name fitoenfact that only the
boundaries of the problem geometry are divided @étéonents. In other word, only the
excavation surfaces, the free surface for shallmblpms, joint surfaces, where joints
are considered explicitly, and material interfades multi-material problems are
divided into elements. Several types of bounddeynent methods are collectively
referred to as the boundary element method. Theseéels may be grouped as
follows: direct method, so named because the dispients are solved directly for
the specified boundary conditions. Displacemesntatinuity (indirect) method, so

named because it represethe result of an elongated slit in an elastic conim
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being pulled apart. Fictitious stress (indirecgthod, so named because the first step
in the solution is to find a set of fictitious s€ses which satisfy pre-described
boundary conditions. These stresses are thenimgbd calculation of actual stresses
and displacements in rock mass. The computer anagyifor the boundary element
method have been used by Beddoes (1994) and FH&988).

The finite element method is compatible and appatg to solving problems
involving heterogeneous or non-linear material prtps, since each element
explicitly models the response of its containedenat. However, the finite element
method is not well suited to modeling infinite bdanies, such as in underground
excavation problems. One technique for handlirfopite boundaries is to discrete
beyond the zone of influence of the excavation smapply appropriate boundary
conditions to the outer edges. Another approachbesn used to develop elements
for which one edge extends to infinity (i.e. sole@dlinfinity finite element). Efficient
pre and post-processors allow the user to perfararpetric analyses and to assess
the influence of approximated far-field boundarnditions. The time required for
this process is negligible compared to the totahlymis time. Joints can be
represented explicitly using specific joint eleme@nce the model has been divided
into elements, material properties have been asdjgind loads have been prescribed.
Some techniques must be used to redistribute arbalamced loads and thus
determine the solution to the new equilibrium staA@ailable solution techniques can
be broadly divided into two classes, implicit angplecit. Implicit techniques
assemble systems of linear equations, which ane $léved using standard matrix
reduction techniques. Any non-linearity matergataken into account by modifying

stiffness coefficients (second approach) and/orabjusting prescribed variables
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(initial stress or initial strain approach). Thed®anges are made in an iterative
manner such that all constitutive and equilibriumiagions are satisfied for the given
load state. Several computer programs for theefieiement methods can be studied
from Blanquer-Fernandez (1991), Nguyen-Minh andn@umilha de Menezes (1996),
Devries and Callahan (1998), Harringteh al. (1991), Heusermann et al. (1998),
Honecker and Wulf (1988), INTERA (1982), Salzer &uheriner (1998), Julien et al.
(1998), Lux and Schmidt (1996), Rokahr and Staurdtere(1993), Rolnik (1988), Serata

and Fuenkajorn (1991), and Vouille et al. (1996).

The finite difference method is compatible and rappate to solving
problems involving inhomogeneous, complicated gegomand non-linear material
properties that are similar to that of the finitereent method. The FDM is for
approximating derivatives in the equations of mutioContinuous derivatives in
differential equations are replaced by finite diéiece approximations at a discrete set
of points in space and time. The resulting seteqbtiations, with appropriate
restrictions, can then be solved by algebraic nmighoA finite difference model is
one, which employs finite difference methods. Tasolution of a finite difference
model is determined by the spacing of the discseteof points (grid points) used to
approximate the derivatives. The FDM is applied foeodeling geomechanical
problems that consist of several stages, suchcugesgal excavation, backfilling, and
loading. Several computer programs for descrililmg rock salt behavior can be
studied from Itasca (1992, 1994) and Frayne (12968).

The distinct element method (DEM) is a domain radfhwhich models each
individual block of rock as a unique element (Where the spacing of the joints is of

the same order of magnitude as the excavation dilmes). The individual pieces of
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rock may be free to rotate and translate, and éfierchation that takes place at block
contacts may be significantly greater that the deétion of the intact rock, so that
individual wedges may be considered rigid. Forrbek mass, such as rock salt, the

distinct element method is not suitable for thelysia.

2.9 Subsidence dueto solution mining

Solution mining subsidence is a complex problem rotk mechanics,
particularly in the case of uncontrolled solutiomimg. Four types of subsidence in
regard to solution mining methods are discussed thié type considers subsidence
development as a function of time (Jeramic, 1994).

2.9.1 Subsidence from single-well mining

Jeramic (1994) suggests that subsidence fromesingll mining can be
designed and controlled. This type of subsideac@milar to that in room-and-pillar
mining, because the caverns are irregular roomshwhie supported by pillars. To
control subsidence, it is of paramount importarecedsign a proper thickness of sill
pillar (salt pillar above cavern) and the requiteitkness of the inter-cavern pillars.
The skeleton of the pillars is uniformly deformed, that subsidence consideration is
given as for a block of salt mass in which cavareslocated (Figure 2.11). Under
this assumption, further consideration of subsideisc a case of room-and-pillar
mining, e.g. the case of uniform subsidence ofahtére caverns field area. In order
to evaluate surface subsidence, the roof subsidehtiee caverns is estimated over
the volume of convergence. The best control okoasubsidence is achieved by a

trigonal layout of the single-wells, where the @mttpoints are preferred.
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Figure2.11 Model of subsidence from the single-well solutroiming method

(modified from Jeramic, 1994).

The cave-in of caverns or collapse of a cavertegydeads to damage
of the ground surface only in the case of shallowimg. Under these circumstances,
damages at the ground surface could be devasthimtp the formation of sink holes.
At greater depth (over 1,000 meters), regardlesbeotollapse of the cavern system,
destruction at the ground surface is impossibleeyBr, 1981). This is of paramount

importance for storage caverns, which must maintagir stability for a long period
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of time. The important requirements for storageecas are that deformation of the
surrounding rock does not fracture to the surfawk that the flow of salt maintains
small enough deformation that subsidence will Alsamall.

Several mathematical models have been developethdoanalysis of
the conditions created in the rock mass surroundicgvern system with the aim of
predicting subsidence, particularly in the casetofage caverns. All of them have
some deficiencies because they do not incorponateliscontinuous nature of the salt
rock mass.

2.9.2 Subsidence from two-well mining

Solution mining by two or more wells requires asd location of the
caverns, that they can be connected without diffest Under these circumstances
large lateral caverns with irregular shapes armf(ralled ‘galleries’). It is obvious
that large caverns/galleries experience a highesstconcentration, surrounded by
rocks of deteriorated strength due to high moistargents induced by the dissolution
process. These structures are susceptible torelasul cave-in and could result in the
catastrophic collapse of overlying sediments, agdificant surface damage through
sink hole subsidence (Jeramic, 1994).

2.9.3 Subsidence from uncontrolled solution mining

The most significant subsidence recorded from aotrofled solution
mining, either had been initiated originally or aarmy conversion from controlled
solution mining. To better understand solution imgnsubsidence, it is necessary to
analyze the mechanics of interaction between sulaeri deformation and ground

surface damages, as follows (Jeramic, 1975).
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Sub-surface subsidence caused by solution minasgno satisfactory
mathematical or empirical theories to explain itectmranism due to the fact that it
cannot be observed. The quantity and geometnhefrock salt remnants left by
solution mining are unknown. It is almost impossito relate the configuration of
one or more caverns in underlying salt beds to dbléapse of the rock salt and
overlying strata. The general hypothetical modetub-surface subsidence is based
on the assumption that profiles of the cavernsastmock salt deposits exhibit a form
similar to loaded thick beam with clamped edgebe Taverns of deformation might
be in the following order.

a) The postulated thick beam comprised of the roofgsitata is
subjected to gravitational body forces, whose ntageidepends on
the strata thickness (Figure 2.12a). As a redubtution mining,
the thick beam will deform. The deformation slowigreases.

b) Slow lateral movement at an approximately constaté permits
gradual bending of the postulated thick beam. muthe extraction
period, several caverns in the salt formation might formed,
controlled by individual wells. It is assumed thabre of less
similar sagging takes place in all caverns. Agmetion of time, creep
deformation will be prolonged before rupture ocdiigure 2.12b)

c) Terzaghi (1969) suggests that sooner or later rsafit wells
become connected through solution channels to e#udr and
finally to a large gallery. At that moment, theesigth of the

overlying sediments might be overcome and ruptuiteated. The
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rupturing will be progressive, and the arch of twerlying rock
will be formed (Figure 2.12c).

d) When the rock salt remnants can no longer carry tven weight
and the weight of unconsolidated overlying rockthe area of a
large gallery, they will collapse. At this momemtlarge gallery
will be totally filled in by fragmented rock andeharch will be
extended upwards at the accelerated rate. Prgbaliign the
parabolic slope of the arch of draw intersectsgioind surface, a
sink hole will be formed with a vertical ground plecement of 1

to 10 meters (Figure 2.12d).

Gravitational Body Force Tensile Stress
Overlying Strata —— —_—
a bl l ______________
Rock Salt Formation LI
\
Intercalated Rock Salt Layer Individual Caverns
Shear Stress Uniaxial Compression

“General Cave” “Arch of Draw”

Figure 2.12 Hypothetical model of subsidence development) sitess field

delineation (modified from Jeramic, 1994).
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Surface subsidence obviously is a product of sufase deformations.
From many published data of surface subsidenceedalg solution mining, several
common features of this mechanism can be infersedsuggested here (Jeramic,
1975).

a) The surface effects are associated with verticdl lateral ground
movements. Probably all lateral surface displacgsare toward
the center of the cavern. Vertical surface disgpiaent starts well
beyond the lateral limits of the extracted aredahws maximum at
the center of the cavern.

b) As a result of this displacement, a curvature efghound surface
results. The curvature in some cases represenissGainction.
When the subsidence reaches a final settlemeng. déformations
of the ground surface can be described by threesz@Figure 2.13)
(Smailbegovic, 1965).

c) First, the zone of maximal vertical displacememnfde uniaxial
compression) which should be above the centereofaige gallery
in the rock salt formation. This zone of deforroatis represented
by a sink hole filled in by water. It is locatetithe middle of the
bowl of surface subsidence and it is filled by Ibheken rock material.
The profile of subsidence in this zone caused bytism mining
has a convex curvature.

d) The second zone of ground surface deformation snd® the sink
hole. The slope is represented usually by a cancawature and

it is formed by vertical and horizontal ground mowents (shear
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stresses). It is interesting to note that whike tddius of curvature
varies, the geometrical shape is always the same.

e) The third zone represents an area of minimal \articovement,
but horizontal extensions occur (tensile stresbhe slope of this
peripheral part of subsidence could be very gewite a larger

lateral extension (Smailbegovic, 1965).
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Figure 2.13 Subsidence of the Tuzla brine-field (former Yugum) and the stress

fields delineation (modified from Jeramic, 1994).

Theoretical analysis of the deformation on theugbsurface caused by
mining operations in bedded deposits is very wagtl@ned by the trough subsidence.
Unfortunately, there is no similar analysis for sidience caused by the uncontrolled
solution mining. From and engineering point ofwijet is very difficult to represent
the relation between surface ground deformatiomksthe geometry of the extraction

area. However, in a general sense, subsidenceatovevof deformation might
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sometimes be used as a parameter for an approxasfieation of the extension of
the large cavern and the tip of the parabolic skfgbe arch of draw (Jeramic, 1994).
2.9.4 Subsidenceasa function of time

Surface and sub-surface subsidence are time-depexéformations.
For example, the surface subsidence of most rdtkigposits excavated by the room-
and-pillar method is very shallow and regular withaupture of the ground surface.
In this case, subsidence is not manifested immagliafter excavation and it can only
be measured after several years.

Usually a couple of year after underground exdamateases, the
surface comes to rest. However, on the contrabsidence caused by solution
mining may cause an erratic and unpredictable saréeformation. An instructive
example of the subsidence progress is publishedrdagaghi (1969) in a paper
entitled ‘Brine-field subsidenceat Windsor, OntarioThe rate of subsidence at
Windsor had many features in common with that beosurface deformations caused
by solution mining in many parts of the world (Rigw2.14). At Windsor, the salt
formation is about 180 meters thick and consistssioéle, dolomite, gypsum,
anhydrite and rock salt. The thickness of the lgirey sediments is about 270 meters.
The subsidence deformation as a function of tinrmbsasummarized as follows.

a) The period interval before subsidence is evidentuch longer for
solution mining that for and excavation formed hyderground
mining methods. Usually subsidence above an eticavdue to
mining is noticeable after two or three years. Idoer, this period
is much greater for solution mining of rock saltpdsits and

subsidence may perhaps be only noticeable afteadésc and in
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some cases after centuries depending on the ittesfssolution
mining. For example, at Windsor solution mininggae in 1902,
but the first noticeable surface deformation wathalate 1940's.
b) The first phase settlement of subsidence for smiutinining
progresses at a very slow rate and it can lassdoeral decades.
At Windsor, the first phase of surface subsidenas fkom 1940 to

1952 forming a convex shaped depression.
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Accelerated Settlement
Post Settlement

<—Abrupt Settlement

N
T

Tertiary Creep

\‘
T

SUBSIDENCE [cm]
oy}
T

| |
\|4 1 2 3 4 > 6 ’ 8 9 \:ILP 3|
> <€ »|<€

| i
3 DECADES YEARS 2 DECADES
TIME SUBSIDENCE

10

C
|1
I<

Figure 2.14 Diagram of subsidence as a function of time athindsor brine-field,

Ontario (from Jeramic, 1994, modified after Telzad969).
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c) However, the phase of accelerated subsidence pd&es within a
period of a couple of years. During this time, gveund surface
deformation forms a bowl-shaped depression whiahtrsubside
up to 40 centimeters. Accelerated subsidence at¥ér occurred
during the years 1953-1954.

d) Abrupt subsidence can occur within several dayfairrs. For
example, at Windsor the catastrophic subsidencpdmaga with an
interval of only several hours. The bowl-shapegrédssion began
to fill with water and rapid subsidence formed akbole. The
sinkhole appeared along one side of the rim of bbel-shaped
depression and it was up to 75 centimeters deepy mil-
afternoon, movement had virtually ceased. In alairmanner, the
sinkhole at Tuzla (former Yugoslavia) was formedt the process
of abrupt subsidence lasted through several days.

e) Post subsidence settlement was immediately folloledregular
movements of small magnitude. At Windsor, the agerannual rate
of settlement over the fourteen-year period follogvithe sinkhole
was up to 1.25 centimeters per year.

If the curve of the subsidence deformation as rectfan of time is
analyzed, many similarities with a generalized preerve can be noticed. A typical
three-stage creep is developed in which the deftomaate accelerates with time. In
time (decades and years), a rock salt formatioh wi@me ductile properties may be

deformed by the creep mechanism with three distomhponent processes. In
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accordance with this suggestion, the ground suréabsidence is rather the product
of the creep deformation than of elastic yieldimfodmation (Jeramic, 1994).

2.9.5 Subsidence prediction

Existing subsidence prediction techniques fall amndwo basic

categories: empirical and phenomenological (Voight Pariseau, 1970; Brauner,
1973; Singh, 1978). The empirical theories aragypally based on observations and
experience from field subsidence studies (Hartni®92). Some of the empirical
methods have proved sufficiently reliable for sdesice prediction, at least for a
given region. Many of these have been successipibyied in a number of countries,
especially in Europe. Phenomenological techniguesbased on equivalent material
modeling principles where the subsiding strata rmeghematically represented as
idealized materials that obey the law of continuomachanics. Unlike empirical
methods, the procedures used in the latter catdgonry not achieved much success to
date mainly due to the difficulty of representingmplex geologic properties of the
strata in simple mathematical terms.

Promising empirical methods for prediction of ddbace over

underground mines consists of the following.

1) Graphical method: This simply involves displayisgbsidence
data in the form of graphical charts or monogrampitsereby
subsidence magnitude and the associated parameiays be
directly obtained for a specified set of mine pastars. This
method is adaptable in areas where considerablgidarite data

exist, and its applicability is generally restritteo relatively few
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geologically similar regions. This technique hasrsconsiderable
use in the United Kingdom (Anon, 1975).

Profile function: This involves the derivation af mathematical
function that can be used to plot a complete grafilthe subsidence
trough at the surface. It differs from a phenontegical approach
in that the constraints employed in the profile diion are
empirically derived from observed data. This mdthan be readily
applied to geologically dissimilar conditions by difging the
constant values. Profile functions have been ssfaklty applied
in several countries abroad such as Poland, Hundlaey Soviet
Union, and currently in the United States. Sebkgiofile functions
are given in Table 2.4.

Influence function: This principle for subsidermediction is based
on the extraction of infinitesimal elements of aréaubsidence at
any point on the surface is obtained from the stith® influence
of each extracted element using the principle gfesposition.
Unlike profile functions, influence functions carotnbe found
directly by measurement. In addition, this methagsumes a
homogeneous, isotropic overburden material andetbes, has
limited accuracy. In general, influence functidrase been found to
be especially suitable for subsidence predictioar anderground
workings with irregular of complex geometries. Jmethod has
received considerable attention in Europe, andmddd extent in

the United States.
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Table2.4 Profile Functions (modified from Hartman, 1992).

Name Functions
Critical Extraction:
Hyperbolic i
P S(x):lsmax 1—tanl{%j
2 | B

Error
00 38tc| ot

Exponential S(x) = % Strax exp_— (%j(xg—?)z}
S(x)= % S eXP:‘ (%ﬂ
Trignometric S(x)= % Smax|:1_ [lj - [ijsin(—ﬂ

Subcritical Extraction:
Trignometric

hyperbolic S(x)= lsmax[tan z(xB W)_t h%x}
Where X = horizontal distance
c =  arbitrary constant
B = radius of critical area of excavation
u =  integration variable
w =  panel width
SX) =  profile function
Shax = maximum possible subsidence
Ny, Ny = coefficients related to width/depth
n = ngorn, depending of side of panel
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Phenomenological methods are primarily based enpitinciples of
continuum mechanics and assume the media to beceMsco-plastic, plastic, and
elastic-elastoplastic. Only the elastic-plasticdelchas been used with success in the
United States. Recently an elastic, frictionleaed laminated model has been

proposed (Salamon, 1989).

2.10 Reserve estimation

Leigh et al. (1998) suggest that reserves wiltlassified with respect to the
confidence level of the estimate. Traditionallye eeserves have been classified as
proven (measured), probable (indicated), and plesgibferred). An ore reserve
estimate contains two important parameters, inclgdhe amount of ore and the
average grade or value of that ore. The calculatibthe tonnage and grade of a
deposit requires the collection and documentatioa considerable amount of data.
These data include accurate assay information,spéard sections, details of ore
controls, the tonnage factor, applicable cutoffdgrdao be used, potential mineral
recovery, and engineering details.

Some European countries group ore reserves irge tlasses in terms of cost
and mineability (Jeramic, 1964).

Mineral reserves correspond to total ore reseimeplace, calculated, and
assumed. These reserves belong to undergroundggesitstructural environments.
Mineral reserves are divided into three sub-classes

a) Mineable reserves with a grade, tonnage, and shhjph are adequate for

profitable mining operations.
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b) Conditionally mineable reserves are representepllls of deposits which
have not been sufficiently explored so that theineability can be
identified. If further exploration gives positivesults, then they could
become mineable. In addition, if mining of the atethe present time is
not profitable but with technological changes orkeaprice improvement
their exploitation could become profitable, theeytltan be reclassified as
mineable reserves.

c) Unmineable reserves are represented by complexestzaqa low quality of
ore. Ore left in safety pillars and in some cas®gre hydrogeological
conditions do not permit mining operation alsodaifito this classification.

Industrial reserves represent only the ore whgchecovered and brought to
surface as defined below.

Industrial reserves = mineable reserves — unered reserves

Only recoverable reserves can be identified wieh industrial reserves. The
tonnage of industrial reserves depends on theicaaft of ore recovery.

Commercial reserves correspond to the tonnagheobte which is delivered
to the market. To obtain commercial reserves inésessary to subtract from
industrial reserves a loss of ore due to beneforand transportation processes. The
beneficiation loss in related to the amount of wasartings and other impurities
which have to be removed from the ore in order thabecomes commercially
valuable. The transportation loss is due mainlp#&aling and unloading operations of

the mineral commodity.
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Hartman (1987) suggests that mineral reserve asbm or ore estimation
involves the calculation of extent (units: tonsrtes, yd, etc.) and average grade or
tenor (units: percent, oz/ton, g/tonne, $/ton, $iom Btu, etc.) of reserves in a
deposit. Ore estimation is a process that begimsgl exploration with continuing
refinement during the life of the mine. Data dedvirom ore estimation are the basic
input for the feasibility study the outcome of winidetermines if a mine is to be
developed. Two general methods are in use forestamation: 1) the classical,
employing two-dimensional maps and hand calculatod 2) the geostatistical, a
more sophisticated approach requiring a digital mater to prepare statistically derived
estimates. The classical method is entirely satiefy for small, uncomplicated ore

bodies (Leigh et al., 1998).



CHAPTER |11

GEOLOGIC DATA COMPILATION

3.1 Objectives

The objective of this chapter is to compile allstixig information relevant to
the Maha Sarakham Formation in Khorat Basin in ortie construct three-
dimensional distribution of the salt units. Thebjished conference papers, journals
and reports of Maha Sarakham Formation are reviewadunderstand the
characteristics of the rock sequence. These arat published materials include as
follows.
1) Borehole logs, scale 1:500,000 from Department afievhl Resources,
DMR (Japakasetr and Suwanich, 1982, 1984).

2) Geologic map of Thailand, scale 1:500,000 (DMR,3)98

3) Topographic map of Thailand, scale 1:50,000 (Royali Survey
Department, 1991).

4) Geologic cross-sections and seismic surveys imtrtheast of Thailand
(Wongsawat et al., 1992; Sattayarak and Polactg8()1

5) Mineral potential map of Thailand, scale 1:2,500,0DMR, 1997)

6) Geological and mineral occurrence map of Lao PémplEemocratic

Republic, scale 1:1,000,000 (Department of Geolngy Mines, 1990).
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3.2 Formation identification

The sequences of rock salt in Thailand have besmpded by many
investigators (Suwanapal, 1992; Japan Internatid@abrperation Agency, 1981;
Suwanich and Ratanajarurak, 1982; Suwanich, etl@82; Yumuang, et al., 1986;
Japakasetr and Suwanich, 1982, 1983, 1984). Theynastly obtained from the
borehole logging conducted as part of the potagtoeation project in the northeast
of Thailand. The locations of the boreholes akshin Figure 3.1.

The borehole logs data were previously classifigd goain size, color,
inclusions, and associated rocks. The sequenaeEkiayers was classified into eight
8 layers from the top to the bottom as follows &kagsetr, 1985; Japakasetr and
Workman, 1981; Sattayarak, 1983, 1985; Japakak®dl; Japakasetr and Suwanich,
1982).

1) Top soil is the unconsolidated to semi-consolidatedering the top of

bed rock till to the surface.

2) Sedimentary rocks above Upper Salt consist of $andssiltstone, and
claystone. Sandstone is usually on the top ofsdtstone in the middle
and claystone at the bottom. They compose of gueéth calcareous and
silica cementing.

3) Upper Salt is the uppermost salt bed.

4) Middle Clasitc is dark reddish brown clay or clays that mostly sticky,
soft, plastic, and damp or always wet.

5) Middle Salt is a salt bed stratified between theldli¢ Clastic and Lower

Clastic which locally present of anhydrite.
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6)

7)

8)
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Lower Clastic may has a thin anhydrite layer betweewer Clastic and
Lower Salt. Clay in Lower Clastic is sticky, plastalways dank and
unconsolidate to semi-consolidated.

Lower Salt and potash are at the bottommost obsals.

Sandstone and/or Siltstone (Khok Kruat Formatiar) downwards from

the basal anhydrite. The base rock is dark redafigvn.

This research will focus on identifying the salttann each borehole log by

using the mineralogical characteristics of rock.sdlhe rock salt is divided here into

three units, the Upper Salt, Middle Salt, and Lo®att.

1)

2)

The Upper Salt is between the Upper and Middle t€lamits. It consists
mainly of moderate to dark yellowish brown or horwglite, minor of

anhydrite stringers, smoky dark halite bands, milyite grained halite,

few orange grained halite near the bottom contant] locally large

crystals of colorless halite (about 1-2 centimetardiameter). Anhydrite

may present between the Upper Salt and the MididistiC.

The Middle Salt in the uppermost portion is fousdwahite and clear salt,
rather pure. The crystals and grains are inteeddightly. When the depth
increases, the white clear halite changes graduallgale, medium and
dark honey halite. Milky white halite occurs asadingrains ranging from

0.1 to 0.3 centimeters in diameter. Milky whitditea smoky dark halite

and anhydrite stringers increase in volume aloegipth. Near the bottom
contact with the Lower Clastic, the Middle Salt epfs in moderate to
dark orange color or may be interbedded with smadésk halite bands.

Accessory minerals include locally occurrencesybfite and carnallite.



63

3) The Lower Salt is the bottommost salt bed overlyagal anhydrite and
overlain by strata of potash zone. Below the gotame is glassy white,
clear or translucent, colorless or white halitehwittle or no impurity of
carbonaceous matter. The grain size is usuallyt®.02.5 centimeters
diameter but locally occurs as large crystals ia tAnge of 2.0 to 5.0
centimeters diameter. When the depth increases,ctior of halite
changes gradually from white to grey with 1% to @@nilky white halite
grain. The density of anhydrite stringers and eot# of milky white
halite increase with depth. Locally, anhydriteingjers are mostly
fractured appearing like breccias. There are elatifferences in the
bottom part, anhydrite stringers or fragments ass than the uppermost.
Gypsum spots and clusters are decreased and emhsisistly of smoky
dark halite interbedded with transparent halitthtobase of salt bed.

Results from the above rock identification allowrretating the salt units

between adjacent boreholes, and hence permit catistn of three-dimentional view
of the salt units. The results of the salt ideécdtion in each borehole are shown in

Appendix A.

3.3 Three-dimensional rock sequences

The depth of Sandstone/Siltstone or Khok Kruatnfaion, Upper Salt,
Middle Salt, and Lower Salt units and thickness@iver Salt between boreholes are
estimated using the above results combined witknsgei data, where available.
Tables 3.1 through 3.5 show the salt thicknessdapdh that identify from borehole

logging data (Japakasetr and Suwanich, 1982, 1984).
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Table 3.1 Thickness of rock beds with 3 salt layers in Khddasin (RS-1.2, RS-1.4,
RS-1.5, RS-2.0, RS-2.1, RS-2.4, RS-2.11, RS-2.$42R7, RS-2.18, PQ-
1, PQ-4, KB-9, KB-10, KB-11, KB-15, KB-16, KB-17, B<18, KB-19,
KB-20, KB-21, KB-24, KB-25, KB-30, KB-31, KB-34, KB5, K-021, K-

025, K-036, K-040, K-041, K-056, K-076, K-079, aKeD95).

Units Thickness (meters) Depth (meters)

Top Sail 0-18.3 0

Upper Clastic 23.47 — 316.08 0-18.36
Upper Salt 0.91 -52.78 15.24 — 320.65
Middle Clastic 8.97 — 83.72 21.94 — 346.05
Middle Salt 3.45-121.73 53.59 — 361.87
L ower Clastic 0-61.35 71.42 — 469.94
L ower Salt 5.25-167.34 86.9 — 528.52

Table 3.2 Thickness of rock beds with 2 salt layers in Khddasin, Upper Salt and

Middle Salt (K-062, K-090, and K-096).

Units Thickness (meters) Depth (meters)
Top Sail 2.0-34.0 0
Upper Clastic 256.37 — 650.0 2.0-34.0
Upper Salt 25.3 - 60.06 258.37 —684.0
Middle Clastic 23.9-30.2 309.26 — 744.06
Middle Salt 16.04 — 56.99 339.46 — 774.18
Lower Clastic 0-16.53 355.5-821.82
L ower Salt — 355.5-838.35
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Table 3.3 Thickness of rock beds with 2 salt layers in Kitddasin, Middle Salt and

Lower Salt (RS-1.1, RS-1.6, RS-2.2, RS-2.3, RS-R8;2.7, RS-2.10,

RS-2.12, RS-2.13, RS-2.15, RS-2.19, RS-2.22, RS:PQ-3, PQ-5, PQ-

6, PQ-9, KB-1, KB-2, KB-3, KB-4, KB-5, KB-6, KB-7KB-8, KB-12,

KB-14, KB-22, KB-23, KB-26, KB-27, KB-28, KB-29, K2, KB-33,

K-010, K-014, K-017, K-018, K-022, K-024, K-030, 634, K-042, K-

053, K-059, K-068, K-072, K-075, K-078, K-084, K-D8K-092, K-093,

K-098, K-100, K-102, K-104, K-107, K-108, K-114, Kt5, K-117, and

K-118).

Units Thickness (meters) Depth (meters)
Top Soil 0-140.21 0
Upper Clastic 0-222.15 0-140.21
Upper Salt - -
Middle Clastic 0-117.04 0-225.15
Middle Salt 0.17 -171.95 26.52 — 275.83
L ower Clastic 0-185.05 31.93 - 387.37
Lower Salt 1.37 —521.06 51.88 —416.19

Table 3.4 Thickness of rock beds with only 1 salt layer&horat Basin, Middle Salt

(K-069, K-071, K-082 and K-099).

Units Thickness (meters) Depth (meters)
Top Soil 2.56 — 30.48 0
Upper Clastic 0-5.54 0-30.48
Upper Salt - -
Middle Clastic 0-41.15 2.56 — 34.19
Middle Salt 45.41 — 316.33 50.04 - 71.63
L ower Clastic 0-417.8 97.52 — 350.52

L ower Salt
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Table 3.5 Thickness of rock beds with only 1 salt layer&Khorat Basin, Lower Salt

(RS-1.3 RS-2.5 RS-2.8 RS-2.9 RS-2.16 RS-2.20 RS-2.21 PQ-2 PQ-7
PQ-11KB-13 K-011 K-012 K-013 K-015 K-016 K-019 K-020 K-023
K-026, K-027 K-028 K-029 K-031 K-033 K-037 K-047 K-049 K-050
K-051 K-052 K-054 K-057 K-058 K-060 K-061 K-063 K-064 K-066
K-070, K-073 K-077. K-08Q K-089 K-091 K-094 K-097 K-101 K-103

K-105 K-106 K-109 K-110 K-111 K-112 K-113, and K-116).

Units Thickness (meters) Depth (meters)
Top Sail 0-167.64 0
Upper Clastic 0 -687.02 0-167.64
Upper Salt - —
Middle Clastic 0-84.21 3.0-167.64
Middle Salt — -
L ower Clastic 0-132.89 9.38 - 325.34
L ower Salt 4.378 — 1,080.0 33.53-517.52

From the results, the Upper Salt is the thinne#t with maximum thickness
less than 60 meters. The depth of the top suitaet about 40 meters (measured
from ground surface). The Middle Salt is less t2&3 meters thick with the top
located at 120 meters depth. The Lower Salt antdspozone is about 4 to 1,080
meters thick. The top of this unit is located ladat 200 meters depth.

In this study, borehole logs nhumber PQ-8, PQ-1@3K, K-035, K-038, K-
039, K-065, K-067, K-074, and K-088 show no salit.urfhe depth reported here is
estimated by using data from borehole logs (Jagtkand Suwanich, 1982, 1984).

In the area between the borehole logs, the sdtildliion determination is assisted by
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using data from geologic map of Thailand, topographap of Thailand (Royal Thai

Survey Department, 1991), geologic cross-secti@m] seismic surveys in the
northeast of Thailand (Wongsawat et al., 1992; ayatbk and Polachan, 1990),
mineral potential map of Thailand, and geological anineral occurrence map of Lao
People’s Democratic Republic (Department of Geolagyl Mines, 1990). The

results show that thickness of the Lower Salt imKhorat Basin tends to be uniform
and continuous, particularly at distance from tliges of the basin. For the
preliminary study to be performed here the Lowedt 8ait is suitable and therefore
concentrated for solution mine design and resestienation.

The distribution of boreholes in Khorat Basinnsegular. For example, it is
dense in Bamnet Narong district, Chaiyaphum prajibcit in most areas they are far
apart especially in the central of the basin. Ggial cross-sections and seismic
surveys are available in the central of the basin.

The depth distribution of Khok Kruat Formation slsothat the study area is a
basin. The bottom is deeper than 1,250 metersabeiean sea level. The basin
center is at Borabue, Muang and Wapi Prathum disirMaha Sarakham province.
The top is about 150 to 250 meters high from meanlevel at the edge of the basin
(Figure 3.2).

Top of the Lower Salt unit has rough surface. bb#om is deeper than 700
meters below mean sea level in the middle of the&nbat Borabue district, Maha
Sarakham province. The top is located at aboutri@ters above mean sea level at
the west in Manjakiri district of Khon Kaen proveycKhon Sawan, Muang, and

Chaturat districts of Chaiyaphum province (Figur&.3
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The thickness of the Lower Salt is estimated frihra difference between
contours of the Lower Salt and the Khok Kruat Fdrara The thickness contour of
the Lower Salt in Khorat Basin is show in Figurd.3.The Lower Salt contains
several salt domes. The largest dome is more @00 meters thick near the center
of the basin (near by borehole No0.K-089) at Boralistrict, Maha Sarakham
province. The thickness decreases as approachagdge of the basin, e.g. at
Manjakiri district, Khon Kaen province and Khon Sawdistrict, Chaiyaphum
province. It exhibits the decrease thickness efuhit toward the edge of the basin.

The thickness of the Middle Salt is estimated frima difference between
contours of the Middle Salt and the Lower Clastttsr The Middle Salt can found
in some area which completely erode and disappssarthe edge of the basin.

The thickness of the Upper Salt is estimated fitvm difference between
contours of the Upper Salt and the Upper ClastaifS8entary rocks above Upper Salt
that contained very thin salt bed. The Upper 8aticcurred as a small area which

decreases and disappears close to the edge cdghe b
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CHAPTER IV

CAVERN DESIGN

4.1 Objectives

The objective of this chapter is to design the tsotucavern in the Lower Salt
member of the Khorat Basin. The design methodolagg process suggested by
Bieniawski and Bieniawski (1994) are used here.sdiibed in this chapter are the
step-by-step design process and the required datd and design principles used in

each step.

4.2 Design process

Bieniawski and Bieniawski (1994) have proposed &xgineering design
stages to develop solution cavern in rock salte phnciples of these design stages
have been derived of the systematic approach peoplog Pahl and Beitz (1984) and
the heuristics approach proposed by Koen (1984 actordance with the Bieniawski
and Bieniawski's design stages, the design of gmlutaverns in the Khorat Basin can
be described as follows.

4.2.1 Stage 1. Statementsof the problem

The performance objectives identified for this dstuare 1) to
economically extract the halite from the Lower Saktmber of the Maha Sarakham

formation in the Khorat basin, 2) to maintain meubal stability of the geologic
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formation in the mining area, and 3) to apply th&tést technology and state-of-the-art
approach to accomplish this task.
4.2.2 Stage2: Identification of functional requirements and constraints

In this stage, a set of specific functional regomients (FR’s) and all
constraints (C’s) are identified. The functionedjuirements are independent, i.e. the
independent principle (Bieniawski and Bieniawsld94) is applied. To extract the
salt from underground, three FR’s are defined dsvig.

FR#1: To provide access connecting between the saitamd the

surface facility.

FR#2: To extract or excavate the in-situ salt.

FR#3: To transport the salt from underground and colle on the
ground surface.

Suh (1990) classifies the engineer’'s constrainte two categories:
system constraints and input constraints. Forraailing, the system constraints are
identified here as follows.

C#1: Maintaining the mechanical stability of the urgteund area

where the salt is excavated.

C#2: Minimizing and preventing any damage to the eeegiing
structures, topography, farmlands, and surfaceuadérground
water resources.

The input constraints for salt mining include thailability of the local

resources normally identified in terms of budgeuipment, and personal experience.

These types of constraint are considered in thiggevaluation.
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4.2.3 Stage 3: Collection of information

The design proposed here is made such that thigndeslutions
(results) are traceable to the site-specific comast as much as possible. As a result,
all geological information relevant to the LowerltSmember and the nearby rock
units in the Maha Sarakham Formation are considerdte design analysis. The
analysis also considers the mechanical, chemindl paysical properties of the rocks
specifically, the depth, thickness, and orientatidrthe Lower Salt member in the
Khorat Basin as complied and described in Chapteetare considered in the design.
Jandakaew (2003), Klayvimut (2003), Pueakphum (20@Bd Wetchasat (2002)
studied experimentally the Maha Sarakham salt ptiggeand published the results.
These properties will be used here. Since the restlts are limited, only few
locations have been test, it is assumed here tledet published salt properties
represent all the in-situ salt properties in theh®leé&Sarakham Formation. It is
recognized that such assumption may not be striadhd, as the natural salt has
intrinsic variability in terms of its physical, cmécal, mineralogical, and mechanical
properties. Nevertheless, the design process heesl will employ the minimum
uncertainty principle (Bieniawski, 1992) and henménimizes the effect of the
intrinsic variability of the salt. Table 4.1 summzaas the physical and mechanical
properties of the Maha Sarakham salt.

4.2.4 Stage 4. Concept formulation

The concept formulation in this stage basicallyoimes determination
of alternative design solutions. It is recognizkdt there are more than one method
(solution) to mine or excavate the salt from itssitu condition. These include, for

example, solution mining and dry mining. The scopthis research is concentrated
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Table 4.1 Summary of the physical and mechanical propedfesome rock units in
Maha Sarakham Formation (modified from Pueakphuwf32Jandakaew,

2003, and Fuenkajorn, 2006).

Rock Types Sandstone/Siltstone | Middle Salt | L ower Salt
Density (g/cc) 2.61 2.24 2.14
Uniaxial Compressive Strength 32.54.2 27.54.2 31.02.3
(MPa)
Brazilian Tensile Strength 0.1940.04 1.986.33 1.620.22
(MPa)
Point Load Index (MPa)
L/D=1.0 1.450.24 - -
L/D=0.5 2.560.95 - -
L/D=2.5-3 1.0 0.66.05
Cohesion (MPa) - 6.0 -
Friction Angle (Degree) - 56 -
Viscoplastic Parameter - 4.8246.39 1.624.06
(GPaDay)
Poisson’s Ratio 0.32+08 0.3796.05 0.3596.03
Elastic Modulus (GPa) - 24.%5#4 25.29.5

the study on the solution mining method. The sofumining method is, therefore,
selected as only design solution here. Pros and obthis method as compared with
the dry mining method will be described later iag&t 8 (design optimization). The
design components (DC’s) or parameters for the tisplumining method are
identified here to satisfy the functional requirentse(FR’s) defined earlier.

DC#1: A vertical borehole drilled to the depth of thalt to be mined

to provide an access between surface and undeyroun
DC#2: Use fresh water to dissolve the undergroundtsalbtain brine

and collect it inside the cavern.
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DC#3: Use system of steel tubes (string) to pump thaeebfrom
underground to surface facility.
DC#4: Use spherical shaped cavern to collect the hnmkerground.
DC#5: Use sufficient thickness of salt (cavern) roathwsufficient
ratio of spacing-to-diameter (S/D) to minimize tm®vement
of overburden formations and the subsidence of giwaind
surface.
The DC’¢t1, #2, and#3 are proposed to satisfy the FRIs#2, and#3.
And DC’'s#4 and#5 satisfy the constraints &$ and#2. All the design components
proposed here are based on the simplicity pringplen by Bieniawski (1992).
4.2.5 Stage5: Analysis of solution components
This stage specifically involves calculation amaimputation to obtain
the safe, practical, and economic design parametéhe main parameters include
diameter and depth of the salt cavern, salt roalf, #oor, and spacing between
adjacent caverns. In this research, series of riaat@nalysis is performed. A time-
dependent finite element code (GEO: FuenkajornSerdta (1992, 1994); Serata and
Fuenkajorn (1992a); Stormont and Fuenkajorn (19840sed to determine the stress,
strain, and closure of the salt around the cavenhta predict the time-dependent
subsidence over the cavern ground. This approatisfies the state-of-the-art
principle given by Bieniawski (1992). Detailed metls and results are described in
Appendix B. Previous case studies and guidelingerfkajorn, 2002) of the salt
solution mining are also used where applicable.
The geologic information compiled in Chapter thege reclassified in

terms of depth and thickness of the Lower Salt mermthere the solution caverns
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will be excavated. This classification is madesimplify and minimize the sets of
design parameters. The results indicate that #werd 1 depth ranges to be designed
with the maximum at 400 meters and minimum at 20&tens. The minimum
thickness of the Lower Salt should be 150 metdvader the above limitations, the
results of the finite element analysis can be surz®d in terms of the design
parameters as follows.

Cavern shape : sphere

Cavern diameter = 60 meters

Minimum cavern depth (at roof top) = 200 meters

Maximum cavern depth (at roof top) = 400 meters

Minimum salt roof = 60 meters

Minimum salt floor = 30 meters

Minimum cavern spacing = 240 meters

The single well system proposed by Fuenkajorn (R@@2the Maha Sarakham

salt are adopted here. The single well systemagaay of individual caverns) is
appropriate for the relatively thin and shallowt $elds because the salt roof and inter-
cavern pillars can provide mechanical support éoekcavations (Jeramic, 1994). This
research therefore concentrates effort on the dedighe single well system. Figure
4.1 shows a schematic of the essentials of thdesimgll method. In this system, a
hole is drilled into the salt, cased and cemengazk Ibo the surface. A string of tubing
is run inside the cemented casing into the salssd@ution is made by injecting fresh
water into either the annulus of the casing or ihi® suspended tubing. When the
fresh water is injected in the annulus and brinedpced through the suspended

tubing. This is called direct (forward) circulatio When the fresh water is injected in
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Figure4.1 Design parameters for solution-mined caverns {fireddrom

Fuenkajorn, 2002).

the hanging pipe and brine produced in the annultss called reverse circulation.
Figure 4.2 illustrates the difference between dies reverse circulation. A second
annular hanging string can be installed. The teglis called intermediate injection
because the injection point can be varied througti@iheight of the cavern. Figure
4.2 illustrates the various combinations possibletween direct and reverse

circulation using intermediate injection.
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Figure4.2 Cavern development stages. (modified from Fuemkap002).

A method has been developed to increase the staeol for the
solution caverns. The method became known asTtharip method”. It uses a gas or
hydrocarbon “pad” placed at the top of the caverprevent the upper portion of salt
from dissolving. Without the pad at the top, tbevér density fresh water tends to
dissolve along the roof. As the solution becomeermncentrated, it gains density
and flows down the walls of the cavern. FigureadsBows the shape of cavern that
results from such process, often called a “morrghayy”. Dissolution continues
upward until the top of the salt is reached. Aftiee roof is reached, dissolving
continues horizontally away from the well. Thisuls in a large and unstable roof
and leads to low recovery. The intermediate impactechnique along with the use of

isolating blanket of air or hydrocarbons could cohtwhere the most active
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dissolution taken place. Figure 4.3b shows thealwd cavern controlled by using the
Trump method. The Trump method became the stanci@ttiod of salt solution

mining in the U.S. since 1940.

Surface
SR
Overburden
Unstable Roc Blanket
If iD=
Yy >
Rock Salt b
Sandstone

Figure 4.3 Effect of blanket on cavern shape (a) without ¢@dvith pad (modified

from Fuenkajorn, 2002).

4.2.6 Stage6: Synthesisof design components
This stage involves the formulation of the indiédl design components
to obtain a complete system of the design solutidere, the synthesis will basically
include the formulation of the access borehole Hvétl tubing installed) and the
cavern in the salt. The location of the casingeshod the depths of salt roof are

determined.
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Prior to mining the salt, a well (production holaust be developed.
The size of the final or production casing depemushe capacity desired for the well.
All other casing is then sized to accommodateTihe numbers of other casings that
have to be run depend on the local requirementssabdurface conditions. Well
design for solution mining is more closely alliedttwoil well design than it is with
wells used for other types of in-situ extractiake Igroundwater, uranium or copper.
Figure 4.4 shows typical well construction that mige used. Typically, the diameter
of the final cemented string might be 8 5/8 inched the diameter of the first casing
might be 15-18 inches. Characteristics and funstifor each casing are described
below.

Casing One (Conductor Casindh many locations the first feet of

drilling are in unconsolidated sediments that aot self-supporting therefore an
initial casing is driven to the top of the firstrapetent zone. This casing is called the
conductor casing. Alternately, if the sedimentd stay open for a short time, the
hole can be drilled to bedrock and casing set ardeated back to the surface.
Occasionally, the sediments are thin or stable gimoo permit drilling further into the
formation. In this case, the first casing is oedtt The conductor casing also protects
shallow fresh water aquifers.

Casing Two (Surface Casing¥asing two is often called the surface

casing. The primary function is to protect or seHil any potable or fresh water
aquifers. Cement is usually returned all the wagkbto the surface. Cementing is
usually accomplished by injecting the cement irfte tasing, chasing it out the

bottom and up the annulus with drilling mud.
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Figure4.4 Typical casing scheme in solution mining (modififeom

Fuenkajorn, 2002).
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Casing Three (Intermediate Casind) highly porous or fractured

formations are encountered, a condition known as daculation may occur. That
may be suggested by that the drilling mud used @awarcuttings up the hole did not
return to the surface. In the event of lost cimtioh, an additional casing, called
intermediate casing, may be required to isolatiéurdrilling from these zones.

Casing Four (Production Casingd) intermediate casing is set to seal

off lost circulation, a second intermediate casioglled the production casing, is
usually set into the salt. In bedded salt thisncass set commonly 5 to 15 feet into
the salt. In a very thick salt bed the casing rbayset more than 100 feet. into the
salt. If the intermediate casing is successfully mto the salt, it becomes the
production casing and further casing would be uessary. This casing is cemented

to the surface.

Casing Five (Liner)Casing is often hung inside the production casing
It provides an annulus for access between casiddudning. A liner may be used for
intermediate injection or pad control. Liners act cemented.

Casing Six (Tubing)One or two hanging tubes are the last casings

hung in the well. These casings are the condsésd during dissolution for the injection
and recovery of fluids. They are not cemented amedsuspended from the well head.
Occasionally, these suspended casings may be raisedvered to control shape of
the cavern.
4.2.7 Stage7: Design evaluation
This stage involve the development of procedurd aerformance
requirements of the proposed design. The fielchoust commonly-used to test the

system prior to mining are proposed here. Pres&steng is a common method of
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testing for casing leaks. It is accomplished byirsg a packer at the bottom of the
hole and pressurizing the casing with air or watéhe well is then shut in and the
pressure drop over a period of time is measuredvaAtages are that it is a relatively
cheap and effective way of testing for leaks. Dvsatages are that it provides no
information on the location or type of leak, shoafte be identified.

Caliper logs of casings can be run quickly and feminal cost.
Calipers can identify and locate large casing fadu However, small or vertical
imperfections may go unnoticed. An impression padk an inflatable packer with a
compliant element that takes on the characterisiicshe casing when inflated.
Impression packers can be used to map the exauatenaf failed well casing.
Impressions can be taken only over about 6 feetevision logs (TV) can be used to
visually inspect the condition of well casing prded the water is relatively clear. TV
logs are relatively expensive to run and yield vanited information if the water is
cloudy. TV logs are also depth limited.

Radiation logs use emitted gamma rays to measwedénsity and
thickness of the casing, the formation and the c¢maeound a hole. A properly
interpreted log can locate corroded casing the bapseen the cement, formation and
casing where fluid might travel. Sonic logs usargbpulse transit time to measure
density around the hold in the same manner as tiadidogs. Both types are
relatively expensive and subject to interpretagu®r. The methods proposed in this
stage have considered the state-of-the-art prim@pid the constructability principle

as suggested by Bieniawski (1992).
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4.2.8 Stage 8: Design optimization

This research is concentrated only on the solutiaming method. The
design optimization or comparison with other methade therefore not applicable
here. Salt can be mined in two different waysa @a®lution mining and dry mining.
In solution mining, fresh water is injected througlpipe into deep shafts that end in
the salt beds and salty water (brine) is drawn ugwdhe salt or salty brine found in
shallow wells can simply be pumped to the surfaltedry mining, the salt is mined
in large underground caverns, much like one wouldentoal or iron ore. An
advantage of solution mining is that surface faesi and disturbances are significantly
less extensive than open pit or other surface mimethods. The cost of bringing
salts to the surface by solution mining is chedpan extracting ore by conventional
mining, but this advantage is offset by greatetscosthe refining process, which uses
natural gas to evaporate the water. The compalisbmeen solution mining and dry

mining shows in Table 4.2.

Table4.2 Comparison methods to mined the salt (modifiechfKlayvimut, 2003).

Criterias Solution Mining Dry Salt Mining
Construction cost Less than 500 MM Baht 3,000 06 M Baht
Stability monitoring Indirect measurement Directaserement
Backfill installation Simple and low cost Compliedtand high cost
Mechanical stability Fairly high high
Surface subsidence Low Relatively high
Construction duration Short Long




86

4.2.9 Stage9: Design recommendation
The design recommendations involve the preparati@mcomprehensive
design report. It includes the geological condisiosite characteristics, performance
requirements, reserve, and subsidence impact onemlggneering structures and
natural process directly above and near by thdisaluined area. The methods and
results of analysis and synthesis for the designpaovided. Figure 4.5 shows the
results of the design for various salt depths &ntkhess. The design parameters are
show in Figure 4.6.
4.2.10 Stage 10: I mplementation
The last stage of the design process is the ingnémtion of the
solution cavern design. Due to the uncertaintyhef geological characteristics and
complexity of the salt unit, the lastest design rbayadjusted or modified to satisfy

the actual geological conditions and to minimizemyironmental impact.

4.3 Discussions

The design results show that the cavern shouldpbergal shaped with a
nominal diameter of 60 meters. The salt bed thathost the caverns should have a
minimum thickness of 150 meters with the depththeftop salt between 140 meters
and 340 meters. Based on this design the minimalbreof and salt floor thickness
should be 60 meters and 30 meters. The spacimie(e®-center) between adjacent
caverns should be 240 meters. From these desigfigomtions, the results of finite
element analyses indicate that the cavern will renmechanically stable. The
maximum surface subsidence for the shallowest oafield (D200) is about 2.92

centimeters, and for the deepest cavern field (P460about 6.45 centimeters.
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Figure4.6 The design results for solution mined caverns.

The subsidence increases during the first yearranmdhins constant through the 50
years. The maximum vertical closure for the shedlst cavern field is 9.84

centimeters (0.33%) and maximum horizontal clossir@out 3.71 centimeters. The
maximum vertical closure for the deepest caveridfis 20.08 centimeters and
maximum horizontal closure is about 7.47 centingetdBased on the international
industrial practice standards, these magnitudeghef subsidence will not have

adverse impact on the engineering structures andutrounding environment.



CHAPTER YV

SALT RESERVE ESTIMATION

5.1 Objectives

The objective of this chapter is to perform the saserve estimation for the
Lower Salt member for the suitable mining area Il tKhorat Basin. The
computation considers the proposed solution mimmeghod, thickness, and depth of

the Lower Salt member, land uses, and water ressurc

5.2 Determination of suitable area

Lower Salt reserve is estimated as a functionred,adepth and thickness that
are suitable for solution mining. Such area exetuithe local communities, highways,
all access roads, surface water bodies, reservoiess, and streams (based on Royal
Thai Survey Department, 1991). The proposed swiuthining cavern shape is
sphere with 60 meters diameter. The salt rooDiméters, and salt floor is 30 meters.
The cavern spacing from center-to-center is 24CGrmet The minimum thickness of
the Lower Salt to be mined is defined here as 18@rm with the depths of the salt
top between 140 meters and 340 meters. FigursHaws areas that are suitable in
terms of the Lower Salt depth and thickness. Tlaeas are located in the central
part of the Khorat Basin, and cover Nakhon RatchasiKhon Kaen, Maha

Sarakham, Roi Et, and Kalasin provinces. The oatelas are not suitable for
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solution mining in terms of depths or thicknessdoth. The salt in the inner of the

basin is too deep; the depth of the salt top iatgrehan 340 meters.

5.3 Salt reserve calculation

The evaluation of the salt reserve is based oarakparameters. The density
of the Lower Salt is 2.16 gram/cubic centimeterhwd7% halite and 3% impurity
(Suwanich, 1986). The salt left in each caverform of saturated brine after mining
is 0.31 gram/cubic centimeter (Fuenkajorn, 200Bhe suitable areas are classified
into 11 models, in terms of depths of salt top (iFéy5.2).

The tonnage of salt each cavern is calculated|kmsfs.

Cavern volume = (4/3)x (cavern radius)
Weightof salt = salt densitycavern volume
Weight of pure salt (halite) = (% halite/100yveight of salt

Inclusions (insoluble materials) = {(100 — (%iteg/100} x weight of salt

Salt left in cavern = brine densitycavern volume

Total salt reserve = weight of pure salt — s&fitih cavern

There are approximately 17 caverns in one squmméter (one cavern used
5.76 x 10° square kilometers). Table 5.1 shows the summdrgatt reserve
calculation in the Khorat basin. The total suiéaldrea is about 5,741 square
kilometers. In each cavern, the pure salt is al236960 tons with inclusions and
insoluble materials about 7,329 tons. The totklreaerve from each cavern is about
201,900 tons. There will be salt left inside tlaern (in form of saturated brine)
about 35,060 tons. In the entire basin, total gafeis about 24 billion tons. The salt

reserve from the Lower Salt mined by solutioningli®ut 20 billion tons (Table 5.1).
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Table5.1 Summary of salt reserved in Khorat Basin.

Cavern Diameter: 60 meters
Cavern Volume 113,097.3 cubic meters
Weight of Salt in 1 Cavern: 244,290.2 tons
Weight of Pure Salt in the 1 Cavern: 236,961.5ston
Inclusions and Insoluble Materials in 1 Cavern: 28.3 tons
Salt Left in 1 Cavern: 35,060.2 tons
Salt Reserve in 1 Cavern: 201,901.4 tons
In 1 Square kilometer 17.4 caverns
Salt Reserve in 1 Square kilometer 3,505,210 tons
Models | Depth of Salt Top | Minable Areas Number of Total Salt Reserves
(m) (km?) Caverns (tons)
D200 140 1,833 31,823 6,425,090,263
D220 160 1,303 22,622 4,567,317,301
D240 180 1,286 22,326 4,507,728,357
D260 200 175 3,038 613,415,601
D280 220 177 3,073 620,426,065
D300 240 171 2,969 599,394,673
D320 260 188 3,264 658,983,617
D340 280 202 3,507 708,056,865
D360 300 120 2,083 420,627,840
D380 320 153 2,656 536,300,497
D400 340 133 2,309 466,195,856
Total 5,741 99,670 20,122,249,027

It should be noted that the total reserve caledl&tere is much less than those
computed by Suwanich (1986). This is because SwuWwgi986) considers all salt
members (Upper Salt, Middle Salt, and Lower Salt) all areas in the basin, and
hence his calculated reserve is considered as dgeolreserve” for the Maha
Sarakham salt. The reserve calculated in thisarekeis considered as “mining

reserve”.



CHAPTER VI

CONCLUSIONSAND RECOMMENDATIONS

6.1 Conclusions

The objective of this research is to determineréserve of the Lower Salt in the
Maha Sarakham Formation of the Khorat Basin wispeet to the solution mining
application. The mining reserve is estimated alediy the corresponding cavern
locations and depths.

Results of the geological study on the publishei@rmation indicate that
depths of the top of the Lower Salt member rangenfd.00 meters to -700 meters
from mean sea level. Thickness of the Lower Salieg from 1 meter to over 1,000
meters. Salt domes in the central part represengteatest thickness. The design
results suggest that the cavern should be spheategded with a nominal diameter of
60 meters. The salt bed that can host the cagliodd have a minimum thickness of
150 meters with the depths of the salt top betwiedh meters and 340 meters. The
minimum salt roof and salt floor thickness shouéd@® meters and 30 meters. The
spacing (center-to-center) between adjacent cavehnosild be 240 meters. The
design configurations show the results of finiteneént analyses indicate that the
cavern will remain mechanically stable for at leidst next 50 years. The maximum
surface subsidence for the shallowest cavern feelbout 2.92 centimeters, and for

the deepest cavern field is about 6.45 centime®eased on the international industrial
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standard practice, these magnitudes of the sultzdeitl not have adverse effect on
the engineering structures and on the surroundimgament.

The total suitable mining area is defined heretles total area that has
appropriate depth and thickness of the Lower Zaltl excludes the areas that are
occupied by local communities, highways, all accessds, surface water bodies,
reservoirs, rivers, and streams. The total swetadnea is about 5,741 square
kilometers. The total inferred reserve of the fadilite) from the Lower Salt member
for the entire basin mined by solutioning is ab?@itbillion tons per square kilometer.
Each cavern can produce halite about 201,901 tomsidered the purity of rock salt
= 97%. After solutioning is complete, there wi# balite left in each cavern in form

of saturated brine about 35,060 tons with insolutdgerial about 7,329 tons.

6.2 Recommendations

The main difficulty encountered during the evaloatof the thickness and
depth of the Lower Salt member is the inadequacthefpublished geologic data.
Even though over two hundreds of exploration bolkehavere drilled, they were
concentrated in small areas, such as Bamnet Natistiget, Chaiyaphum province.
In addition most of the existing geophysical datadpiced as part of oil exploration
have not been published, and hence can not beimgh research. The results of
reserve estimation obtained here are thereforesitiss as “inferred level”.
Additional core drilling exploration is required dhe wants to determine the reserve
in any area at a higher confidence level.

The configurations of the designed caverns (diameepth, spacing, etc.) are

relatively conservative as they are derived fromseovative set of material properties
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of the salt and surrounding rock formations. Tlesign can be more refined by
performing additional mechanical testing on thé iseany area of interest.

The areas that suitable for the development aft&sl mining are determined
based on the current topographic map scale 1:5FRO¢al Thai Survey Department,
1991). These maps may lack some important detaiedmation that have been
recently developed. The scope of this research doecover the site survey and field
investigation. The accuracy of the determinedaslit areas is therefore made at best
to the nearest 1 square kilometer. Prior to dg@metpan actual mining operation in
any area, detailed site mapping and survey aressapeto ensure that the selected
areas are environmentally feasible and do not mbn#ith the local and state

regulations.
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Figure A.1 Identification of stratigraphic units for borehole Nos. K-010 to K-013.
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Figure A.2 Identification of stratigraphic units for borehole Nos. K-015 to K-017.
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Figure A.3 Identification of stratigraphic units for borehole Nos. K-018 to K-021.
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Figure A.4 Identification of stratigraphic units for borehole Nos. K-022 to K-025.
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Figure A.5 Identification of stratigraphic units for borehole Nos. K-026 to K-029.
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Figure A.6 Identification of stratigraphic units for borehole Nos. K-030 to K-033.
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Figure A.7 Identification of stratigraphic units for borehole Nos. K-034 to K-037.
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Figure A.8 Identification of stratigraphic units for borehole Nos. K-038 to K-039 and

K-041.
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Figure A.9 Identification of stratigraphic units for borehole Nos. K-040 and K-042.
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-124.61 [ Anhydritein Lower Salt
12566 ~ Anhydritein Lower
V13047 1= Sandgone / Siltstone
Anhydritein Lower Sdt
-167.17 -
K-047 -168.39 1%;?755 I Sandstone/ Siltstone

Wat Pa Chaiwan
Amphoe Muang, Khon Kaen
UTM 267900/1818500
K-049
Wat SraKaeo, Ban SraKaeo
Amphoe Muang, Khon Kaen
UTM 250600/1818200

Elevation (m) Elevation (m)
1491 g: Top soil

Sedimentary Rocks above Upper Salt Middle Clastic

92.94—Eammny ) ) . Lower Clastic

54.24 Middle Clastic Salt and Potash in Lower Salt

. - Lower Clastic
s 71.99—L3:33 £ Anhydrite in Lower Salt
66.32 — Sandstone / Siltstone

Salt and Potash in Lower Salt
K-051

Wat Bung Chuan
Bamnet Narong District, Chaiyaphum
UTM 788500/1714900

-131.89—=130.57 ~ Anhydritein Lower Salt
-133.52 "= Sandstone / Siltstone

K-050
Wat Sai Thong, Ban Kham Hai
Amphoe Muang, Khon Kaen
UTM 265800/1818300

Figure A.10 Identification of stratigraphic units for borehole Nos. K-047 and K-049

to K-050.
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Elevation (m) Elevation (m)
89210 Top Soil 15%_%% Top soil
1 6&5 Sedimentary Rocks above Upper Salt
165.8—f——=
1277 f="< Lower Clastic Sedimentary Rocks above Upper Salt

Salt and Potash in Lower Salt

53.7%%%==E Anhydritein Lower Salt
: Sandstone / Siltstone

Middle Clastic

Upper part of Middle Salt

K-052
Wat Phet Phum Suwan -86.28— .
- ! L Anhydritein Middle Salt
Bamnet Narong District, Chaiyaphum -86.7 —— - Lorw)ér part of Middle Salt
UTM 788300/1710700 ) 1-33-2} -~ - Lower Clastic
Salt and Potash in Lower Salt
-333.84= ~ Anhydritein Lower Salt
-334.89 = Sandstone/ Siltstone
—338.04J
K-053
Wat Pa Aranyawasri, Ban Lao Nadee
Elevation (m) Amphoe Muang, Khon Kaen
UTM 255500/1812300
1954 r
Top soil Elevation (m)
179.76-4 —
Sedimentary Rocks above Upper Salt 180
123.3 7—bf—7c—
——1—  Upper Salt
114-1E_ Middle Clastic
81.3
Top soil
Upper part of Middle Salt
8.04—895 £ Anhydritein Middle Salt
_7.72 Lower part of Middle Salt
—_— i 12.36- ==
-19.04 Lower Clastic Ry Tl Lower Clastic
Salt and Potash in Lower Salt
Salt and Potash in Lower Salt
-132,2<130.98 { Anhydritein Lower Salt
-140.28 Sandstone / Siltstone %%‘5‘292: [ Anhydritein Lower Sait
I 18J = Sendstone / Siltstone
K-056 K-054
Chaturat Town Hall Wat Chaisri, Ban Sawathi
Chaturat District, Chaiyaphum Amphoe Muang, Khon Kaen
UTM 805500/1722700 UTM 254600/1825400

Figure A.11 ldentification of stratigraphic units for borehole Nos. K-052 to K-054

and K-056.
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Elevation (m) Elevation (m)
155 ] 160
145.86 Top soil
Top soil
Sedimentary Rocks above Upper Salt 105.14 ——r
F_-_ Lower Clastic
Middle Clastic 5] Q==
_— L Clasti
19.36 owertiesie Salt and Potash in Lower Salt
Salt and Potash in Lower Salt
-14.16 -1526
K-058
K-057 Infront of Khon Kaen University
Wat Wutharam, Ban Non Nong Wat Amphoe Muang, Khon Kaen
Amphoe Muang, Khon Kaen UTM 267500/1818700
UTM 268300/18164000
Elevation (m) Elevation (m)
170 )
= Topsoil
1508622 Top soil 10543
Sedimentary Rocks above Upper Salt )
Sedimentary Rocks above Upper Salt
Middle Clastic
Middle Clastic
Upper part of Middle Salt Lower Clastic
_'f-gg_, £ Anhydritein Middle Salt
17.76 — Lower part Qf Middle Salt Sait and Potashin L sait
-~ Lower Clastic an inLower
-45.51: 6317
Salt and Potash in Lower Salt K-060
Ban Daeng Noi
Amphoe Muang, Khon Kaen
UTM 251000/1818900

-200,87-197.352195.1 Anhydritein Lower Salt

Sandstone / Siltstone

K-059
Wat Sri Bunruang, Ban Thum
Amphoe Muang, Khon Kaen
UTM 257000/1819300

Figure A.12 ldentification of stratigraphic units for borehole Nos. K-057 to K-060.
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Elevation (m) Elevation (m)
170.
; 170
Top soil !
151.7 P 165.43 | | Top soil

- Lower Clastic

Salt and Potash in Lower Salt

81.6
;?%27;}_ Anhydritein Lower Salt

Sandstone / Siltstone

19.12,

Sedimentary Rocks above Upper Salt

K-061
Wat Mong Kon Luang, Ban Muang Pear
Ban Phai District, Khon Kaen
UTM 250000/1779000

-187.50
Upper Salt

'212'@ Middle Clastic
-236.7 .
Upper part of Middle Sat

-283.759 [ Anhydritein Middie Salt

-284.25 d
-003.7 __t Lower part of Middle Salt

2975 Lower Clastic

K-062
Wat Sra Chanthrawat
Phon District, Khon Kaen
UTM 843300/1748800

Elevation (m) Elevation (m)
180 123
Top soil
149.52
Sedimentary Rocks above Upper Salt
135.80: Top soil
Lower Clastic
76.17 ‘ 148
Salt and Potash in Lower Salt E Middle Clastic
21.6 -17.5 [
20' Anhydritein Middle Salt [-—- )
16.9 Sandstone / Siltstone B = Lower Clastic
-47.89
K-063
Wat Pho Chai, Ban NaKha Sdt and Potash in Lower Sat

ManchaKiri District, Khon Kaen
UTM 233500/1788400

-166.8 i

1730 Anhydritein Lower Salt
Sandstone / Siltstone

-174.1

K-064
Wat Plap PlaChai, Ban Ta Y uak
Amphoe Suwanna Phum, Roi Et
UTM 363700/1708100

Figure A.13 ldentification of stratigraphic units for borehole Nos. K-061 to K-064.
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Elevation (m) Elevation (m)
130 172
Top soil Top soil
56 65.32
A Sedimentary Rocks above Upper Salt
Py ——— ay PP
K-065

Wat Suchit Thammaram, Ban Nikom
Amphoe Satuk, Burirum
UTM 316600/1691600

Sedimentary Rocks above Upper Salt

-621.70
-646.08

Upper Salt

K-066
Town Hall Area
Amphoe Borabou, Maha Sarakham
UTM 299200/1773800

Figure A.14 Identification of stratigraphic units for borehole Nos. K-065 to K-066.
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Elevation (m) Elevation (m)

157.86
159.34 Top soil
126.08 )
119.46 Sedimentary Rocks above Upper Salt
. Sdt and Potash in Lower Salt
Top soil
32.01.
-18.79 —
— Lower Clastic
-153.04 —
Lower part of Middle Salt
Sedimentary Rocks above Upper Salt
-280.82
- Lower Clastic
-363.35——
-421.91
K-068
Ban Na Chuak
K-067 Amphoe Na Chuak, Maha Sarakham
Wat Kud Rang Sutharam UTM 288800/1747900
Amphoe Na Chuak, Maha Sarakham
UTM 289600/1747800
Elevation (m) Elevation (m)

158.8

156.33 == Top S0l 150. )
- - Top soil
- - - i 142.
108.85 L=< Lower Clastic 125.8 Sedimentary Rocks above Upper Salt

Lower part of Middle St Salt and Potash in Lower Salt

-124.27

16%%62 T L Lower Clastic

K-069
About 350 m SE of K 068
Amphoe Na Chuak, Maha Sarakham

UTM 288700/1747700 K-070
About 350 m NW of K 068

Amphoe Na Chuak, Maha Sarakham
UTM 288900/1748300

Figure A.15 ldentification of stratigraphic units for borehole Nos. K-067 to K-070.



Elevation (m)

159.33 Top soil
130. ’
125.14 Sedimentary Rocks above Upper Salt

Lower part of Middle Salt

-191.19

100 m W of K 068

Amphoe Na Chuak, Maha Sarakham

Elevation (m)

171

175

137

Top sail

120.7

E Midde Clastc
73 Upper part of Middle Salt

55, By

55.2'23?2'

Sedimentary Rocks above Upper Salt

L Anhydritein Middle Salt
Lower part of Middle Salt

11.53

Lower Clastic

_og1_-280.02 -278.45

Sdt and Potash in Lower Sat

~ Anhydritein Lower Salt

UTM 288700/1748100

Elevation (m)

e S
151.7 Sedimentary Rocks above Upper Salt

110.0

Lower Clastic

78.25+

Salt and Potash in Lower Salt
£~ Anhydritein Lower Salt

77.33-F
75.5—l

= sandstone/ Siltstone

Ban Ta Chang

Amphoe Khon Sawan, Chaiyaphum
UTM 212100/1755500

Elevation (m)

& Sandstone / Siltstone

Tambon Khok Sa-Nga
Amphoe Phon, Khon Kaen
UTM 233300/1746500

188 1 g Top soil

-159

Sedimentary Rocks above Upper Salt

Ban Nong Hang

Amphoe BuaY ai, Nakhon Ratchasima
UTM 231200/1734900

Figure A.16 ldentification of stratigraphic units for borehole Nos. K-071 to K-074.
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Elevation (m) Elevation (m)
172175 Top soil 1754 r~ Top soil
170~
Sedimentary Rocks above Upper Salt

Sedimentary Rocks above Upper Salt

-50.15 _48.58—=22 Upper St
Middle Clastic Middle Clastic
-100. —

-99

Upper part of Middle Salt
-165.26 ~ Anhydritein Middle St Upper pert of Middle Sat
-16585-_ L L= | ower part of Middle Salt
kgl S Lower Clastic -186.1-182.22 L Anhydritein Middle Salt
et -199.42 Lower part of Middle Salt

29508 — Lower Clastic
Sdlt and Potash in Lower Sat
Sdlt and Potash in Lower Salt
-38;'2?55: C Anhydritein Lower Salt
-390—l L sendstone/ Siltstone
K-076

ggg& C Anhydritein Lower Salt Wat TaKro
492, Sendstone / Siltstone Amphoe Kong, Nakhon Ratchasima

UTM 814100/1709600

K-075
Wat Pracha Nimit School, Ban Nong Kham
Amphoe BuaY ai, Nakhon Ratchasima
UTM 223300/1726100

Figure A.17 ldentification of stratigraphic units for borehole Nos. K-075 to K-076.
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Elevation (m) Elevation (m)
180 ]
175 - ; 174 Top soil
Top sail
= F_-_1 = P
[-—~- Lower Clastic
7746t ="= Sedimentary Rocks above Upper Salt
-14.3
Middle Clastic
Sdlt and Potash in Lower Salt -0
Upper part of Middle Salt
—%ggg%: C Anhydritein Middle Salt
Eret Lower part of Middle Salt
-207.37 - Lower Clastic
-236.19 —
-320.967 I Anhydritein Lower Sdt
-322-22:1 t Sandstone/ Siltstone
-324 Sdt and Potash in Lower Salt
K-077
Wat Kham
Amphoe Kham Sakae Sang, Nakhon Ratchasima
UTM 196600/1697100
-487.49_-487.18 E Anhydritein Lower Salt
-489.3ad Sandstone / Siltstone

K-078
Wat Ban Nong Khai Phum
Amphoe Bua Yai, Nakhon Ratchasima
UTM 220400/1716800

Figure A.18 ldentification of stratigraphic units for borehole Nos. K-077 to K-078.
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Elevation (m) Elevation (m)
200 — Top sail
188 —p===m i 210 Top soil
16282 el Sedimentary Rocks above Upper Salt 197.81- p
158,55 T —— Upper Salt Middle Clastic
131. e Middle Clastic 160.5
[-_~- Lower Clastic
Lower part of Middle Salt 12956
47.61 .
36.88 Lower Clastic
Salt and Potash in Lower Salt
-21
K-079
Ban Khok .
Amphoe Jaturat, Chaiyaphum Salt and Potash in Lower Salt
UTM 805500/1723300
-308.49-307.52 ~ Anhydritein Lower Salt
B K = Sandstone/ Siltstone
Elevation (m)
; K-080
B
211.95 Top soil Wat Ban PraKam
Amphoe Kong, Nakhon Ratchasima
UTM 192200/1712900
Sedimentary Rocks above Upper Salt
104. Elevation (m)
. . 210
Middle Clastic Top soil
179.52
Middle Clastic
) 138.37
Upper part of Middle Salt .
Lower part of Middle Salt
-41.15 =40 £ Anhydritein Middle Salt 92.9
-54.66—f—=— Lower part of Middle Salt '
8678 ="= Lower Clastic

K-082

Salt and Potash in Lower Salt Ban Prakam (800 m E of K 080)

Amphoe Kong, Nakhon Ratchasima
UTM 192800/1712800

-163

K-084
1KmW of K 080, Ban Prakam
Amphoe Kong, Nakhon Ratchasima
UTM 191200/1712300

Figure A.19 ldentification of stratigraphic units for borehole Nos. K-079 to K-080,

K-082 and K-084.



141

Elevation (m) Elevation (m)
164 i 170
160=—Frwrwww— T0p soil .
Top Soil
1621 L Tor
Sedimentary Rocks above Upper Salt
Middle Clastic
Upper part of Middle Salt
-65.40— - Lo
B - L Anhydritein Middle Salt ’
6374?6 _ Lower part of Middle Salt Sedimentary Rocks above Upper Salt
X - - - Lower Clastic
-151.16—fF="=
-300.
K-088
Ban Puai, Near Nong Yai Pond
Amphoe Borabue, Maha Sarakham
UTM 303800/1778700
Salt and Potash in Lower Salt
-672.22.

K-087
Ban Po Phan
Amphoe Na Chuak, Maha Sarakham
UTM 278600/1749100

Figure A.20 Identification of stratigraphic units for borehole Nos. K-087 to K-088.
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Elevation (m) Elevation (m)
191
Top Sail 170
15 Top Soil
) 136
Sedimentary Rocks above Upper Salt
104
Sedimentary Rocks above Upper Salt
Sdlt and Potash in Lower Salt
-514.0
Upper Salt
-574.06
vidde Clsic
-604.18 =
Lower part of Middle Salt
-651.82: — .
668.35 Lower Clastic
K-090
Wat Ban Nong Hua Chang
Amphoe Na Chuak, Maha Sarakham
UTM 289800/1742600
-976

K-089
Ban Nong Plue
Amphoe Borabue, Maha Sarakham
UTM 296800/1770500

Figure A.21 Identification of stratigraphic units for borehole Nos. K-089 to K-090.



Elevation (m)
130
Top soil
33.83
Lower Clastic
-37.
Salt and Potash in Lower Salt
-1

K-091
Wat Uthai Thammaram
Amphoe Muang, Y asothon
UTM 410600/1744300

Elevation (m)
145
Top Soil
60,107 Lower part of Middle Salt
L= =" Lower Clastic
41.98
Salt and Potash in Lower Salt
-226.7:
227 981] E Anhydrite in Middle Salt
-235,'02_| |_ Sandstone / Siltstone

K-093
Wat Sawang Kongka, Ban Kut Sang
Amphoe Yang Talat, Kalasin
UTM 327400/1811800

Elevation (m)
120
Top soil
4222 Upper part of Middle Salt
_37.79-F = Anhydritein Middle Salt
_437J L Lower part of Middle Salt
Lower Clastic
-100.8
Salt and Potash in Lower Salt
-143
K-092
Infront of Amphoe Kam Khuen Kaew Office
Y asothon

UTM 426200/1730600

Elevation (m)
210
18135 Top soil
Middle Clastic

142.0

Sdlt and Potash in Lower Salt

52.5

K-094

450mN 23 E of K 080, Ban Prakam
Amphoe Kong, Nakhon Ratchasima
UTM 192400/1713100

143

Figure A.22 ldentification of stratigraphic units for borehole Nos. K-091 to K-094.
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15¢

154

-124.6—fF====d

-162.65, —

-204.87

-277.22
- e———
2827255522

-310.8 o
i -343.72
344.75m==q5

K-095
Wat Ban Nong K

Top soil

Sedimentary Rocks above Upper Salt

Upper Sat

Middle Clastic

Upper part of Middle Salt

Anhydritein Middle Salt
Lower part of Middle Salt
Lower Clastic

Salt and Potash in Lower Salt
Anhydritein Lower Salt
Sandstone / Siltstone

ho

Amphoe Chieng Y uen, Maha Sarakham
UTM 301700/1814000

Elevation (m)

210

175 ==

139.5
125

K-097

Top soil

Lower Clastic
Salt and Potash in Lower Salt

420 m NE of K 080, Ban Prakam
Amphoe Kong, Nakhon Ratchasima
UTM 192200/1713100

144

Elevation (m)
210y i
508 Top soil
Sedimentary Rocks above Upper Salt
-4837—f====4 _
Upper Salt
-99.26
" - Middle Clastic
12946 Lower part of Middle Salt
1455 ower part of Middle

K-096

100 m S of K 080, Ban Prakam
Amphoe Kong, Nakhon Ratchasima
UTM 192300/1712500

Elevation (m)

210

205

- 75:%
58.47-

-89.23—

Top soil

Sedimentary Rocks above Upper Salt

Middle Clastic

Upper part of Middle Salt

L Anhydritein Middle Salt

-90.234
-113.48

Lower part of Middle Salt

-141.60

Lower Clastic

Salt and Potash in Lower Salt

-206.03:

K-098

Ban Prakam, Tambon Ban Prang
Amphoe Kong, Nakhon Ratchasima
UTM 192300/1712700

Figure A.23 Identification of stratigraphic units for borehole Nos. K-095 to K-098.



Elevation (m)

157.86

110.86 =1

37.96

-379.84

K-099

Top soil
Middle Clastic

Lower part of Middle Salt

Lower Clagtic

East of K 068 about 100 m
Amphoe Na Chuak, Maha Sarakham
UTM 289100/1747900

Elevation (m)

170

115.14

91.33

-29.64

K-101(RS-3.1)

Top soil

Lower Clastic

Salt and Potash in Lower Salt

About 1 km of K 019
Amphoe Chakarat, Nakhon Ratchasima
UTM 201200/1668200

Elevation (m)

210
198

123.

60.

-55.52
-56.24<F

-79.18 ==

n

-114.51

-194.51

K-100

145

Top soil

Sedimentary Rocks above Upper Salt

Middle Clastic

Upper part of Middle Salt

Anhydritein Middle Salt
Lower part of Middle Salt

Lower Clastic

Salt and Potash in Lower Salt

Ban Prakam, Tambon Ban Prang
Amphoe Kong, Nakhon Ratchasima

UTM 192200/1712;

Elevation (m)

K-102 (RS-3.2)
About 1 km N of K
Amphoe Chakarat, Nakhol

800

Top soil
Sedimentary Rocks above Upper Salt

Middle Clastic

Upper part of Middle Salt
Anhydrite in Middle Salt
Lower part of Middle Salt

Lower Clastic

Salt and Potash in Lower Salt

Anhydritein Lower Salt
Sandstone / Siltstone

019
n Ratchasima

UTM 201700/1669400

Figure A.24 ldentification of stratigraphic units for borehole Nos. K-099 to K-102.



Elevation (m)

Top soil
Middle Clastic

Lower Clastic

Salt and Potash in Lower Salt

-12.88

K-103 (RS-3.3)
About 2km N of RS-3.1
Amphoe Chakarat, Nakhon Ratchasima
UTM 200500/1670000

Elevation (m)
170 — ;
160.86 [— Top Sail
----- Sedimentary Rocks above Upper Salt
134.34 —
Middle Clastic
83.36
Lower Clastic
45.92
Salt and Potashin Lower Salt
-47.93

K-105 (RS -3.5)
About 2 km N of RS -3.4, Ban Krao
Amphoe Chakarat, Nakhon Ratchasima
UTM 202700/1671400

146

Elevation (m)

Top soil
Sedimentary Rocks above Upper Salt

Middle Clastic

Lower part of Middle Salt
Lower Clastic

Salt and Potash in Lower Salt

-4 6%_% Anhydritein Lower Salt

Sandstone / Siltstone

K-104 (RS-3.4)
About 1.5 km E of K 019
Amphoe Chakarat, Nakhon Ratchasima
UTM 203400/1669400

Elevation (m)

Top soil
Sedimentary Rocks above Upper Salt

Middle Clastic

Lower Clastic

Salt and Potash in Lower Salt

-34.52

K-106 (RS-3.6)
About 1 km N of RS -3.4, Ban Krao
Amphoe Chakarat, Nakhon Ratchasima
UTM 202900/1670500

Figure A.25 ldentification of stratigraphic units for borehole Nos. K-103 to K-106.



Elevation (m)
160
Top soil
109
Sedimentary Rocks above Upper Salt
24 —  Middle Clastic
30.63—== F_—_] — Lower part of Middle Salt
12.92 L Lower Clastic
Salt and Potash in Lower Salt
-60

K-107 (KK - 1)
Near Raiway line
Amphoe Kong, Khon Kaen
UTM 268600/1818400

Elevation (m)

| Topsoil

Middle Clastic

Lower Clastic

Salt and Potash in Lower Salt

-126.97-| r
Anhydritein Middle Salt

-128.
_135J I_ Sandstone / Siltstone

K-109 (KK - 3)
Infront of City Hall
Amphoe Muang, Khon Kaen
UTM 269300/1818400

147

Elevation (m)

[— Top sail

Middle Clastic

= Lower part of Middle Salt
Lower Clastic

Salt and Potash in Lower Salt

-62.7.

K-108 (KK - 2)
1kmSof K 047
Amphoe Muang, Khon Kaen
UTM 267900/1817700

Elevation (m)

160
Top soil
93—l
Sedimentary Rocks above Upper Salt
gi;: - Lower Clastic
Salt and Potash in Lower Salt
'18;-21 [ Anhycritein Middle Salt
103 Sandstone / Siltstone

K-110 (KK - 4)
600 mN of KK - 3
Amphoe Muang, Khon Kaen
UTM 269300/1819000

Figure A.26 ldentification of stratigraphic units for borehole Nos. K-107 to K-110.



Elevation (m)
160 =
Top soil
82
Eei— Lower Clastic
4711 =
Salt and Potash in Lower Salt
-37.76—

K-111 (KK - 5)
700 m N of K 047
Amphoe Muang, Khon Kaen
UTM 268300/1819100

Elevation (m)
160.
Top soil
61.5 — ;
B—k—= Lower Clastic
Salt and Potash in Lower Salt
-40

K-113 (KK - 7)
500 mN of KK - 1
Amphoe Muang, Khon Kaen
UTM 268700/1818900

Elevation (m)

15718

e
53122845

53

K-112 (KK -

148

Top soil

Sedimentary Rocks above Upper Salt

Middle Clastic
Lower Clastic

Salt and Potash in Lower Salt

6)

600 mSof KK - 1
Amphoe Muang, Khon Kaen
UTM 268600/1818100

Elevation (m)
%g Top soil
Middle Clastic
63.68
Upper part of Middle Salt
10455 £ Anhydritein Middle Salt
2756 =—= Lower part qf Middle Salt
56— =" Lower Clastic
Salt and Potash in Lower Salt
-117.5

K-114 (KK
600 m N of K 059

-8)

, Ban Thum

Amphoe Muang, Khon Kaen
UTM 257400/1819900

Figure A.27 ldentification of stratigraphic units for borehole Nos. K-111 to K-114.
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Elevation (m) Elevation (m)
160 16 Top soil 160. )
136 Top sail
Middle Clastic Lower Clastic
46.7. 53.32
. Salt and Potash in Lower Salt
Upper part of Middle Salt
-25
W g om £ Anhydritein Middle Salt
-63.64 —— Lower part of Middle Salt
002_f=2- Lower Clastic K-116 (KK - 10)
' Wat Chom Sri, Ban Ya Tan
Salt and Potash in Lower Salt Amphoe Muang, Khon Kaen
-136.8 UTM 267500/1817900
K-115 (KK - 9)
1mW of K 059, Ban Thum
Amphoe Muang, Khon Kaen
UTM 256400/1819500
Elevation (m) Elevation (m)
Top soil 15%,5‘, L. Top soil
Middle Clastic Sedimentary Rocks above Upper Salt
— 59.9
Upper part of Middle Salt ) )
24.24—) C Anhydritein Middle Salt Midde Clastic
"~ 6.3t Lower part of Middle Salt 17.8 f—
A757—k === Lower Clastic
Upper part of Middle Salt
Salt and Potash in Lower Salt
7327 L Anhydritein Middle Salt
o7E -73.90 Lower part of Middle Salt
9. 89350 F-—= i
1145 - - Lower Clastic
K-117 (KK - 11) Salt and Potash in Lower Salt
700 m E of K 059, Ban Thum -170.

Amphoe Muang, Khon Kaen
UTM 258000/1819000

K-118 (KK - 12)
Ban Lao Kwaen Hak
Amphoe Muang, Khon Kaen
UTM 257400/1817700

Figure A.28 ldentification of stratigraphic units for borehole Nos. K-115 to K-118.
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Top Sail
190.69 — P
el 1 (dlle Clastic
155494 Bl = Anhydritein Middle St

ﬁggﬁ - Lower part of Middle Salt
12214 = Lower Clastic

Salt and Potash in Lower Salt
ﬁgg%l__l: Anhydritein Lower Salt
114314 “L. Sandstone/Siltstone

KB-1
Ban Nong Pradu, Amphoe
Bamnet Narong, Chaiyaphum
UTM 793900/1710300

Elevation (m)
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Top Soil
169.79 —
149.84 - Middle Clastic
' [— Upper part of Middle Salt

130.08 r art of v
129.46 _I L Anhydritein Middle St
109.71 —_— Lower part of Middle Salt

9141 —f ™ Lower Clastic

Salt and Potash in Lower Salt

28.79

KB-3
Ban Nong Pradu, Amphoe
Bamnet Narong, Chaiyaphum
UTM 793500/1711100

Elevation (m)
204.01
Top Soil
152.20
Upper part of Middle Salt
10380 [ Anhydritein Middle Salt
103.01 ly ;
Lower part of Middle Salt
sL7adF_=_[L ;
63.91 Lower Clastic
Salt and Potash in Lower Salt
Zié%%‘z‘-l = Anhydritein Lower Salt
-152.39— L Sandstone/Siltstone

KB-2
Ban Hua Sa, Tambon Hua Thale,
Amphoe Bamnet Narong,
Chaiyaphum
UTM 795200/1709900

Elevation (m)
203.96 [ Top il
179.96 1 MiddleClastic
%2(2)8% 8 [~ Upper part of Middle Salt
14940 [T Anhydritein Middle Salt
12741 — Lower part of Middle Salt
107.9l—f—= Lower Clastic

Salt and Potash in Lower Salt

39.96

KB-4
Ban Hua Thale, Amphoe Bamnet
Narong, Chaiyaphum
UTM 794700/1711000
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Figure A.29 ldentification of stratigraphic units for borehole Nos. KB-1 to KB-4.
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Figure A.30 Identification of stratigraphic units for borehole Nos. KB-5 to KB-8.
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Figure A.31 ldentification of stratigraphic units for borehole Nos. KB-9 to KB-12.
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Figure A.32 ldentification of stratigraphic units for borehole Nos. KB-13 to KB-16.
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Figure A.33 ldentification of stratigraphic unitsfor borehole Nos. KB-17 to KB-20.
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Figure A.34 Identification of stratigraphic units for borehole Nos. KB-21 to KB-24.
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Figure A.35 ldentification of stratigraphic units for borehole Nos. KB-25 to KB-28.
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Figure A.36 ldentification of stratigraphic unitsfor borehole Nos. KB-29 to KB-32.
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Figure A.37 ldentification of stratigraphic units for borehole Nos. KB-33 to KB-35.



Elevation (m)
206.25, .
201.68 Top Soil
Sedimentary rocks above Upper Salt
166.66 ) _
152.00 Middle Clastic
Upper part of Middle Salt
igiggj_ Anhydritein Middle Salt
93.35 Lower part of Middle Salt
86.31 Lower Clastic
Salt and Potash in Lower Salt
772 e

PQ-1
4mSof RS20, Ban Tan,
Amphoe Bamnet Narong,
Chaiyapum
UTM 794100/1712100

Elevation (m)

204.56

i'gg IfS Sedimentary rocks above Upper Salt

Salt and Potash in Lower Salt

-10.32

PQ-3
Ban Wang Ka-Am,
Amphoe Bamnet Narong,
Chaiyapum
UTM 793900/17155000

159

Elevation (m)
204.38 p— )
1885 | Top Soil
Middle Clastic
160.18 p—

Salt and Potash in Lower Salt

PQ-2
Ban Tan,Amphoe Bamnet
Narong,Chaiyapum
UTM 794100/1712700

Elevation (m)

209.44 i
20164 Top Soil

Sedimentary rocks above Upper Salt

147.44
“ R vitdecusic
116.48

Upper part of Middle Salt

73247 [~ Anhydritein Middle Salt
5703-91‘%-' Lower part of Middle Salt

3220 —F—= | Lower Clastic

Salt and Potash in Lower Salt

-14.59

PQ-4
Ban Khok Phet,
Amphoe Bamnet Narong,
Chaiyapum
UTM 793300/17125000

Figure A.38 ldentification of stratigraphic units for borehole Nos. PQ-1 to PQ-4.
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Figure A.39 ldentification of stratigraphic units for borehole Nos. PQ-5 to PQ-8.
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Figure A.40 ldentification of stratigraphic units for borehole Nos. PQ-9 to PQ-11.
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Figure A.41 ldentification of stratigraphic unitsfor borehole Nos. RS-1.2 to RS-1.4.
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Figure A.42 ldentification of stratigraphic units for borehole Nos. RS-1.5 to RS-1.6

and RS-2.0to RS-2.1.
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Figure A.43 ldentification of stratigraphic units for borehole Nos. RS-2.2 to RS-2.5.
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Figure A.44 |dentification of stratigraphic unitsfor borehole Nos. RS-2.6 to RS-2.9.
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Figure A.45 ldentification of stratigraphic units for borehole Nos. RS-2.10 to

RS-2.13.
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Figure A.46 ldentification of stratigraphic units for borehole Nos. RS-2.14 to

RS-2.17.
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Figure A.47 ldentification of stratigraphic unitsfor borehole Nos. RS-2.18 to

RS-2.21.

168



169

Elevation (m) Elevation (m)
210.00: 210.00
Top Sail Top Sail
141.004 ~ Upper part of Middle Salt 146.60
1%%'%.! Anhydritein Middle Salt Upper part of Middle Salt
; L t of Middle Salt I
2.05— == ng ?;?rag(;(; ddle ig:ig] E Anhydritein Middle Salt
92.84 ) 8205 Lower part of Middle Salt
61.00 Salt and Potash in Lower Salt eao7—f="= Lower Clastic
RS-2.22 Salt and Potash in Lower Salt
Ban Khok Sawang, Amphoe
Bamnet Narong, Chaiyaphum
UTM 790400/1711100
-56.00

RS-2.23
Ban Wang Ka-Am, Amphoe
Bamnet Narong, Chaiyaphum
UTM 794700/1713800

Figure A.48 ldentification of stratigraphic units for borehole Nos. RS-2.22 to

RS-2.23.



APPENDIX B

COMPUTER MODELING OF SOLUTION CAVERNS



171

B.1 Introduction

Before performing the computer analysis, physical mechanical properties
of rock salt are determined in order to use asteobsalues in the calculation. GEO
software is employed for this research. The GEQ@haeical behavior consists of
spring, dashpot, and friction element and so-call&D rheological components as
illustrated in Figure B.1. The major and signific@onstant values in the models are
shear modulus ({3, retarded shear modulusJjiGelastoviscosity (¥), plastoviscosity

(V4), ultimate bulk modulus (R, retarded bulk modulus @K and critical strain of

failure ().
Gz K0
oo G, —AWWW— =
——WW——
T rt
L L
Gjj /Sij V2 V4
4—
K2
K1 —\WMWW—
omlem —————WWW——
[ E
D,

FigureB.1 GEO rheological components (modified from Seaac Fuenkajorn, 1993).
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B.2 Property parameters

The coefficient of rock salt properties have beenved from calibrating the
test results obtained by Wetchasat (2002), Klayti(2003), Jandakaew (2003), and
Fuenkajorn (2006). Wetchasat (2002) and Pueakpt20®3) perform the tests on
rock salt from the same sources with this reseafe associated rocks include all
geological formations between and above the salindtons (e.g., anhydrite,
mudstone, clay, claystone, siltstone, etc.). Tdek rsalt represents the Lower Salt
bed. The Sandstone/Siltstone group representsoehl formations below the salt
formation. The specified properties of those roatessummarized in Table B.1. The
properties of rock salt used in the model are enpthin Table B.2. Whereas the
associated rocks properties are obtained from #tabdse of GEO software. The
properties of these rocks do not change with tiffleey are rather constant and do not
directly affect the stability of the cavern. Thechanical properties selected from the

database are the most conservative.

TableB.1 Properties of rock salt and associated rocks us#teicomputer modeling

(from Wetchasat, 2002, Pueakphum, 2003, and Klayi2003).

Properties Symbols| Units | Associated | Rock | Sandstone/

Rocks Salt Siltstone

Shear Modulus o GPa 0.3 8.8 13.8

Retarded Shear Modulus 2G GPa 0.3 1.1 13.8
Elastoviscosity Y GPa.day 0.3 9.1 3.4
Plastoviscosity Y GPa.day 2.8 17.2 13.8

Ultimate Bulk Modulus K GPa 1.7 41.1 82.8

Retarded Bulk Modulus K GPa 1.4 4.9 82.8

Critical Strain of Failure|  yc 10° 10 2 2

Pressure Gradient g kPa/m 25 20.8 25
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TableB.2 Properties of rock salt used in the computer moddfrom Wetchasat, 2002,

Pueakphum, 2003, and Klayvimut, 2003).

Properties Symbols Units Ranges Used
Shear Modulus G GPa 8.7-9.0 8.8
Retarded Shear Modulug€Ko) G, GPa 0.2-2.1 1.1
Elastoviscosity fp<Ko) Vo GPa.day| 0.1-170 9.1
Plastoviscosity Y GPa.day| 6.9-276 17.2
Ultimate Bulk Modulus K GPa |40.6-42)0 41.1
Retarded Bulk Modulus K GPa 09-98 4.9
Critical Strain of Failure Yo 10° 2 2
Pressure Gradient g kPa/m 20.8 20.8

B.3 Cavern models

The study assumed that hydrostatic stresses dtteocavern wall. The finite
element mesh consists of nodes and elements. €k Bize is created to be small
around the cavern wall because the stress ana giradients are high on this zone.
Hence, at the area far away from the cavern wadlrevistress and strain gradients are
lower, size of elements are bigger. The vertitadss at any point in the model is
calculated from the depth and density of the oueldnl. The internal pressure in the
solution cavern is taken to be equal to the briresgure. Top of the brine is at the
ground surface. The brine pressure gradient is IPa/m (0.42 psi/ft).

Figure B.2 shows the finite element mesh of thdleast cavern model
which the cavern ground is discretized from theugrb surface to the depth of 500
meters (D200). The mesh is constructed to reptesemrtical cross-section of the
single cavern and designed for axisymmetric analysing the cavern axis as a

centerline. It covers a horizontal distance (raflinf 240 meters (S/D ratio = 4). No

load is acted on the upper part. The left boundepyesents the cavern centerline and
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FigureB.2 Finite element mesh for solution cavern model @20
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is laterally constrained. The right boundary ibjeated to pressure gradient. In order
to show the cavern boundaries, the elements irtbieleavern are not drawn in the
Figure. The top and bottom of this shallowest caware located at depths of 200
meters and 260 meters. The pressure acted imtévaal walls is varies according to
brine pressures with any depth. The upper boundanymove freely in both x- and
y-directions. The left and right boundaries whick a symmetrical axis is freed in y-
direction but is fixed in x-direction. The bottoboundary is fixed in y-direction.
Small elements (3 meteks4 meters) are used adjacent to the cavern bowsdtri
capture the stresses and strains distribution umdérgradients. Larger elements are
used in the overburden (far from the cavern roaf #ioor as its behavior does not
impact the cavern stability). The overburden iduded in the analysis in order to
provide the gravitational weight on the salt cayemmd to allow an assessment of the
ground surface subsidence. The mesh model is csedpof 589 elements and 635
nodes. The characteristics of model (the meshteari®n, the analysis method, the
cavern shape, and size) are similar for other depth

Figure B.3 shows the top and bottom of the deegestrn which are located
at depth of 400 (D400). Small elements (3 metedsmeters) are close to the cavern
boundaries. The cavern ground is discretized fitoenground surface to the depth of

700 meters. The mesh model comprises 614 elerardt665 nodes.
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Figure B.3 Finite element mesh for solution cavern model @40
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B.4 Modeling results

The contours of octahedral shear stress near theosocaverns are shown in
Figures B.4 and B.5. The shear stress concentregadthe cavern boundary. The
maximum octahedral shear stress is about 775 p3i NB?a). The contours of
octahedralshear strain near the salt cavern aigrdited in Figures B.6 and B.7. The
octahedral shear strain tends to be uniform wiithatadistance from the cavern
boundary. The model D200 shows the lowest valuectdhedral shear strain about
0.2%. The model D400 shows the maximum octahestheédr strain about 0.4%. The
distributions of the stress vector are shown irufég B.8 and B.9. The maximum
stress of model D400 is 2,362 psi (19.29 MPa) d&dmaximum stress of model
D200 is 1,573 psi (10.85 MPa). The largest st@sscentrates near the cavern
boundary. The distributions of the strain vecti@ shown in Figures B.10 and B.11.
The model D400 shows the maximum strain about 0.27%he largest strain is
concentrated near the middle of the cavern boundary

Figure B.12 shows the surface subsidence for swolutavern at various
depths. The maximum surface subsidence of mod@00d approximately 6.45
centimeters. Figures B.13 and B.14 show the \@rtiavern closures at the centerline
of the cavern. The maximum vertical closure isul®67% or 20.08 centimeters.
Figures B.15 and B.16 show the horizontal closineut0.25% or 7.47 centimeters.
The surface subsidence, vertical and horizontadwhks rapidly increase during the

first year, after operating the solution mine aachain constant through the 50 years.
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Figure B.4 Contour of octahedral shear stress around solewarn (model D200)

at 50 years (the maximum octahedral shear str83% psi).
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Figure B.5 Contour of octahedral shear stress around solaawarn (model D400)

at 50 years (the maximum octahedral shear str&3% psi).
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Figure B.6 Contour of octahedral shear strain around solwtawern (model D200)
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(the maximum strain = 0.27%). Scale is 1.0% peh.in
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FigureB.12 Predicted surface subsidence for solution caverns
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Figure B.13 Predicted vertical closure for solution caverns.
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B.5 Subsidence prediction

The distribution of surface subsidence is caleddiy using a profile function
(Hartman, 1992). The results are shown in Figldds and B.18. To assess the
effects of the surface subsidence on the engingstimctures, farmland, highway etc,
a set of criteria proposed by Singh (1992) is us@dble B.3 shows the results of
comparison which indicates that all designed caverill not have adverse impact on
the engineering structures and natural resourtbgese are evidenced by the fact that

the induced subsidence components are less thaimiteeproposed by Singh (1992).
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Figure B.17 Components of surface subsidence at 50 yearsumneebsom the edge of solution cavern D200.
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Figure B.18 Components of surface subsidence at 50 yearsumneebsom the edge of solution cavern D400.



TableB.3 Summary of subsidence components.

Key Components of Subsidence

Depth Maximum Horizontal Horizontal
P Subsidence Slope : Movement

(cm) Strain

_ (cm) (m)

5

& 200 2.92 1.3x10* | 3.4x10" | 4.9x10°

©

&}

C

2

@ 400 6.45 1.5x 10% 1.9x 10”7 5.4x 10°

a

£ | Buildings - 0.5x 10° -

S | Bridges - - 25x 10°

8 | Railroad 10.0x10° | 2.0x 10° -

> 3 3

5?) Road 10.0x 10 1.0x 10 ~=

& | Pipeline - 1.0x 10° -

3 | Farmland 2.0-3.0x 10° | 2.0x 10° -

gn Aquifer - 5.0x 10° -

@ | Surface Water Bodies - 5.0x 10° -

Where

D is depth to top of caveyrs 45°, ¢ = 1.4 and b = 0.37 then B =ddy

Subsidencel(x)

Slope,G(x)

Horizontal straing(x)  &(x)=bS"(x)= bSmaX(;stedw((;(H tan){(

Horizontal movementj(x)

S(x)= %Smax {1— tanh(gn

, 1
G (x)= S0~ J Sy

et ol

=]
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Figure 3.4 Isopach map of Lower Salt in Khorat basin (contour interval = 20 meters).
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Figure 5.1 Suitable areas (shaded area of about 10,500 square kilometers) for developing solution mined caverns in terms of Lower Salt depth and thickness.
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Figure 5.2 Suitable areas (colored blocks of about 5,741 square kilometers) for solution mining that exclude highways, forests, rivers, surface water bodies, railways,



