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CHAPTER I

INTRODUCTION

The classic Fourier transform has wide applications in the fields of science

and engineering, such as signal processing for example. If f(x) ∈ L1(R), then its

Fourier transform is the function f̂(γ) given by

f̂(γ) = Ff(γ) =

∫

R

f(x)e−2iπγx dx, γ ∈ R.

If f̂ ∈ L1(R) as well, then one can reconstruct f from its Fourier transform f̂ by

f(x) = F f̂(x) =

∫

R

f̂(γ)e2iπγx dγ, a.e. x ∈ R.

Plancherel’s theorem says that the restriction of the Fourier transform F to L1(R)∩

L2(R) is an isometry onto a dense subset of L2(R), and thus extends to a surjective

isometry, also called the Fourier transform on L2(R).

For example, in signal processing, a function f(x) ∈ L2(R) is called a finite

energy signal while x is referred to as time. The value f̂(γ) is then interpreted as

the contents of frequency γ in f .

In the analysis of seismic data (Goupilland, Grossman and Morlet, 1984) or

images (Mallat and Zhong, 1992) one deals with signals which have well localized

and steep gradients. In image processing, these would occur at the edges of an

object, for example. However, the Fourier transform does not reveal where such

gradients occur. To see this, note that the Fourier transform of f(x − x0) is

f̂x0(γ) =

∫

R

f(x − x0)e
−2iπγxdx =

∫

R

f(x)e−2iπγ(x+x0) dx = f̂(γ)e−2iπγx0 ,
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so translation of x simply corresponds to a phase shift of the Fourier transform.

Thus the magnitude of the Fourier transform does not show whether or where

steep gradients occur.

For this reason, Grossmann and Morlet introduced the wavelet transform in 1984.

Here one fixes a function ψ ∈ L2(R), and considers the 2-parameters family of

dilates and translates,

ψa,b(x) =
1√
a
ψ

(x

a
− b

)
(a > 0, b ∈ R).

Given f ∈ L2(R), its wavelet transform is the function

Wf(a, b) = 〈f, ψa,b〉 =
1√
a

∫

R

f(x)ψ
(x

a
− b

)
dx (1.1)

where 〈·, ·〉 denotes the inner product in L2(R). Now if ψ is well localized, say the

support of ψ is the interval [-1,1], then for fixed a and b, the value of Wf(a, b)

depends on the values of f in the interval [(b−1)a, (b+1)a] only. For small values

of a, the wavelet transform captures rapidly changing features of f , while for large

values of a, it captures gradually changing features of f , at location determined

by b.

Setting a = et in (1.1), we obtain an alternative notation for the wavelet

transform,

Wf(t, b) = e−t/2

∫

R

f(x)ψ (e−tx − b) dx, (t, b ∈ R).

Thus, a natural extension of the wavelet transform to Rn is as follows. Given an

invertible n×n matrix A = eB and a vector b ∈ Rn, define dilation and translation

operators by

(DAf)(x) = | det A|−1/2f
(
A−1x

)
,

(Tbf)(x) = f (x − b) ,
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for f ∈ L2(Rn) and x ∈ Rn. The function

Wf(t, b) = 〈f, DAtTbψ〉 =
1

| det A|t/2

∫

Rn

f(x)ψ(A−tx − b)dx, (1.2)

where t ∈ R, b ∈ Rn and At = etB, is then called the continuous wavelet transform

of f . We say that ψ is admissible if there exists a constant cψ > 0 such that

‖Wf‖2
2 = cψ‖f‖2

2 for all f ∈ L2(Rn). In this case, one can reconstruct a function

f from its wavelet transform as follows. By the polarization identity,

〈Wf,Wg〉L2(R×Rn) = cψ〈f, g〉L2(Rn),

for all g ∈ L2(Rn), and hence

〈f, g〉 =
1

cψ

∫

R

∫

Rn

Wf(t, b)〈g,DAtTbψ〉db dt

=
1

cψ

∫

R

∫

Rn

〈Wf(t, b)DAtTbψ, g〉 db dt.

That is,

f =
1

cψ

∫

R

∫

Rn

Wf(t, b)DAtTbψ db dt (1.3)

as a weak integral in L2(Rn).

Since (1.3) is a weak integral, it cannot be computed directly. One thus

needs to know under what conditions on f or ψ reconstruction formula (1.3) holds

as a usual integral,

f(x) =
1

cψ

∫

R

∫

Rn

Wf(t, b)DAtTbψ(x) db dt (1.4)

for almost all x.

In the case of the wavelet transform in L2(R), it has been shown (Gasquet

and Witomaski (1998)) that f can be approximated arbitrarily by a usual integral.

To be precise, if ψ ∈ L1(R) ∩ L2(R) is admissible, then for each ε > 0,

fε(x) =
1

cψ

∫ ∞

ε

∫

R

Wf(a, b)ψa,b(x)
1

a
db da
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exists, fε ∈ L2(R) and

lim
ε→0+

‖f − fε‖2 = 0. (1.5)

Heil and Walnut (1989) have shown that if {ρn}∞n=1 is a symmetric approximate

identity for L2(R), then for each n and almost all x, the function

fn(x) =

∫ ∞

0

∫

R

Wf(a, b)(ρn ∗ DaTbψ)(x)
1

a
db da (1.6)

exists, and fn converges to f in L2(R).

It is natural to ask whether similar properties hold for the inverse wavelet

transform in L2(Rn). Thus, one may ask:

1. For each ε ∈ R, does

fε(x) =
1

cψ

∫ ∞

ε

∫

Rn

(Wf)(t, b)DAtTbψ(x) db dt (1.7)

exist, and converge to f in the square mean, as ε → −∞ ?

2. If {ρn} is an approximate identity for L2(Rn), and if we set

fn(x) =

∫

R

∫

Rn

(Wf)(t, b)(ρn ∗ DAtTbψ)(x) db dt, (1.8)

is then

lim
n→∞

‖f − fn‖2 = 0 ? (1.9)

Can one estimate how well fn approximates f? That is, given {ρn} and

ε > 0, can one find N such that

‖f − fn‖2 < ε, ∀n ≥ N ? (1.10)

Another way to reconstruct f from its wavelet transform is by means of

frames. Here, one tries to reconstruct f by an infinite series, which is computa-

tionally much simpler than reconstruction by an integral. Given b > 0, we say
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that the collection {DAnTmbψ}n∈Z,m∈Zn is a wavelet frame, if there exist constants

α, β > 0 such that

α‖f‖2
2 ≤

∑

n∈Z

∑

m∈Zn

|Wf(n,mb)|2 ≤ β‖f‖2
2, (1.11)

for all f ∈ L2(Rn). It is known (Grossmann and Morlet (1984), Hernandez and

Weiss (1996)) that in this case, f can be obtained from its sequence of frame

coefficients {Wf(n,mb)}n∈Z,m∈Zn as a series in L2(Rn) by means of the dual frame.

Heil and Walnut have shown that in case of the one-dimensional wavelet

transform (1.1), the collection {ψan,mb}n,m∈Z is a frame in L2(R), provided that

1. supp(ψ̂)⊂ (−L,−l) ∪ (l, L), where 0 < l < L <
1

2b
,

2. there exist α, β such that 0 < α ≤
∑

n∈Z

|ψ̂(anγ)|2 ≤ β for a.e. γ ∈ R.

The question is now whether this result generalizes to the multidimensional trans-

form (1.2). This is called the discretrization problem.

In this thesis, we extend the well known reconstruction formulas for the

classic continuous wavelet transform to L2(R2), and in the special case where the

matrix A is diagonalizable, to L2(Rn) as well. We give conditions on f and ψ

which guarantee that the weak reconstruction integral exists as a usual integral.

Given a symmetric approximate identity {ρn}, we show that the approximate

reconstruction (1.9) holds. Finally, we give sufficient conditions on ψ ∈ L2(R2) for

wavelet frames to exist, and present examples of such frames.

This thesis is organized as follows. Chapter II introduces the necessary

background knowledge from real analysis and linear algebra. In Chapter III, we

give the definition of the classic continuous wavelet transform, and its generaliza-

tion to L2(Rn). In Chapter IV, we present approximate and exact reconstruction

formulas for the continuous wavelet transform in L2(R2). As examples, we present
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the construction of a symmetric approximate identity and of several wavelet frame

generators.



CHAPTER II

BACKGROUND

In this chapter, we review the theoretical background from real analysis and

linear algebra which will be used throughout this thesis. Results are mostly stated

without proof, which can be found in standard literature. Additional details and

proofs can be founded in Apostol (1997), Cohn (1980), Folland (1999), Gasquet

and Witomski (1998), and Wade (1999).

2.1 Basic Concepts from Real Analysis

Throughout, when considered as column vectors, elements of Rn will be

denoted by x, y or z, while when considered as row vectors, they will be denoted

by the symbols γ and η. The Euclidean norm of a vector x ∈ Rn will be denoted

by ‖x‖ or ‖x‖2, while its maximum norm will be denoted by ‖x‖∞. Hence,

‖x‖ = ‖x‖2 =

(
n∑

i=1

x2
i

)1/2

and

‖x‖∞ = max
1≤i≤n

|xi|,

where x = (x1, x2, ..., xn)T .

Definition 2.1. Let U ⊂ Rn be open and let F : U → Rm (respectively, F :

U → Cm). We say that F is differentiable at xo ∈ U if there exists an m×m real

(respectively, complex) matrix T , depending on x0 such that

lim
x→x0

‖F (x) − F (x0) − T (x − x0)‖
‖x − x0‖

= 0.
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It is easily seen that if the components of F are given by f1, f2, ..., fm and if

F is differentiable at x0 ∈ U , then the partial derivatives
∂fi

∂xj

(x0) exist for any

i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n} and are given by the entries of the matrix T :

F ′(x0) ≡ T =

(
∂fi

∂xj

(x0)

)

ij

.

We call the matrix F ′(x0) the Jacobian matrix. Its determinant

JF (x0) ≡ det (F ′(x0))

is called the Jacobian of F at x0.

Definition 2.2. Let f : Rn → R be continuous. The support of f , denoted by

supp(f), is the set

supp(f) = {x ∈ Rn : f(x) 6= 0}.

Here, A denotes the closure of a set A. We say that f has compact support if

supp(f) is a compact set.

Definition 2.3. Let p ∈ {1, 2, . . .}. We set

1. Cp(Rn) = {f : Rn → C : f is p times continuously differentiable}.

2. Cp
c (Rn) = {f ∈ Cp(Rn) : f has compact support}.

3. C∞(Rn) = {f : Rn → C : f is infinitely differentiable}.

4. C∞
c (Rn) = {f ∈ C∞(Rn) : f has compact support}.

5. Cc(R
n) = {f : Rn → C : f is continuous and has compact support}.

Theorem 2.1. If f ∈ Cc(R
n), then f is uniformly continuous.

Proof. Given ǫ > 0, for each x ∈ supp(f) there exists δx > 0 such that |f(x −

y) − f(x)| <
1

2
ǫ whenever |y| < δx, by continuity of f . Since supp(f) is compact,
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there exist x1, ..., xN such that the balls of radius 1
2
δxj

about xj cover supp(f).

If δ = 1
2
min{δxj

}, then, one easily sees that |f(x − y) − f(x)| < ǫ whenever

|y| < δ, ∀x ∈ Rn.

Definition 2.4 (Equivalent Norms). Let X be a vector space. Two norms ‖ · ‖

and ‖ · ‖o on X are said to be equivalent, if there exist constants a, b > 0 such that

a‖x‖ ≤ ‖x‖o ≤ b‖x‖,

for all x ∈ X.

Theorem 2.2. On a finite dimensional vector space X, any two norms ‖ · ‖ and

‖ · ‖o are equivalent. In particular, any two norms on Rn are equivalent.

For example, ‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞ for all x ∈ Rn.

Theorem 2.3 (Change of Variables). Let U ⊂ Rn be open, and F : U → Rn

be in C1(Rn), injective, with JF (x) 6= 0 for all x ∈ U . Set V = F (U). If f : V → C

is Lebesgue measurable, then f ◦F : U → C is Lebesgue measurable. Furthermore

∫

V

f(x)dλ(x) =

∫

U

(f ◦ F )(x)|JF (x)|dλ(x)

in the sense that if one of these Lebesgue integral exists, then both exist and are

equal.

Note that if F itself is a linear map, and if A is the matrix associated with

F , then JF = A so that

∫

Rn

f(x)dλ(x) =

∫

Rn

f(Ax)|detA|dλ(x)

Theorem 2.4 (C∞ Version of Urysohn’s Lemma). Let V be open in Rn,

and H ⊂ V be compact and nonempty. Then there exists h ∈ C∞
c (Rn) such that

0 ≤ h(x) ≤ 1 for all x ∈ Rn, h(x) = 1 for all x ∈ H and supp(h) ⊂ V .



10

Theorem 2.5 (Mean Value Theorem). Let V be nonempty and open in Rn

and f : V → Rm be differentiable on V . If a, x ∈ V and the line segment from a

to x, L(x, a) is contained in V , then given any u ∈ Rm there exists c ∈ L(x, a)

such that

u · (f(x) − f(a)) = u · (Jf (c)(x − a)).

If m = 1, then Jf = ∇f (gradient of f), and choosing u = 1 we have

f(x) − f(a) = Jf (c)(x − a).

2.2 Spaces of Integrable Functions

In this section we review some theorems from integration theory which will

be used in this thesis. We assume that the reader is familiar with basic concepts

from measure theory, as discussed in Cohn (1980), or Folland (1999), for example.

Definition 2.5. Let (X,M, µ) be a measure space and let 1 ≤ p < ∞. Then

Lp(X,M, µ) is the set of equivalence classes of M-measurable functions f : X → C

(resp. f : X → R) such that |f |p is integrable. Here, two functions f and g are

called equivalent, written f ∼ g, if f(x) = g(x) a.e. For ease of notation, we

usually confuse a function f with its equivalence class in Lp(X,M, µ), and simply

write

Lp(X) = Lp(X,M, µ) = {f : X → C|f is M-measurable,

∫

X

|f |pdµ < ∞}.

Then the number

‖f‖p =

(∫

X

|f |pdµ

)1/p

.

is a norm on Lp(X,M, µ), and Lp(X,M, µ) is Banach space.

Definition 2.6. Let (X,M, µ) be a measure space. An M-measurable function

f : X → C is said to be essentially bounded, if there exists M ≥ 0 such that
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|f(x)| ≤ M a.e. Such a number M is called an essential bound for f . Set

L∞(X,M, µ) = {f : X → C|f is M-measurable and essential bounded}

where again, we have identified functions which are equal a.e. Then

‖f‖∞ = inf{M : M is an essential bounded of f}

is a norm on L∞(X,M, µ), and L∞(X,M, µ) is a Banach space.

Note that Rn and Cn can be viewed as Lp-spaces. To see this, let X =

{1, 2, 3, ..., n}, M be its power set,i.e. M = P(X), and µ be the counting measure.

There is a 1-1 correspondence between functions f : X → R (or C) and vectors

(x1, x2, x3, ..., xn) in Rn (or Cn) given by xi = f(i). With this identification and

since the integral with respect to the counting measure is simply a sum,

‖x‖p =

(
n∑

i=1

|xi|
)1/p

, 1 ≤ p < ∞

and

‖x‖∞ = max
1≤i≤n

|xi|.

∀x = (x1, x2, ..., xn) ∈ Rn (resp. Cn).

In this thesis, we deal with the measure space (Rn,Mλ, λ), where Mλ is the

σ−algebra of Lebesgue measurable subsets of Rn, and λ the Lebesgue measure.

For simplicity, we set Lp(Rn) ≡ Lp(Rn,Mλ, λ).

Theorem 2.6 (Hölder’s Inequality). Let (X,M, µ) be a measure space, 1 ≤

p ≤ ∞, and q be the conjugate of p, that is,
1

p
+

1

q
= 1. If f ∈ Lp(X,M, µ) and

g ∈ Lq(X,M, µ) then fg ∈ L1(X,M, µ) and

∫
|fg|dµ ≤ ‖f‖p‖g‖q.

If p = q = 2 then this is called the Cauchy-Schwartz Inequality.
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Theorem 2.7 (Monotone Convergence Theorem). Let {fn} ≥ 0 be a se-

quence of M-measurable functions such that 0 ≤ fn ≤ fn+1 for all n. Then∫
( lim
n→∞

fn)dµ = lim
n→∞

∫
fndµ.

Theorem 2.8. Let 1 ≤ p < ∞. Then C∞
c (Rn) is dense in Lp(Rn).

Theorem 2.9 (Fubini’s Theorem). Let f : Rm+n → C be measurable. Then

1. fy(x) = f(x, y) from Rm → C is measurable for each fixed y ∈ Rn (and hence

x 7−→ |f(x, y)| is measurable ∀ y ∈ Rn) and gx(y) = f(x, y) from Rn → C is

measurable for each fixed x ∈ Rm (and hence y 7−→ |f(x, y)| is measurable

∀x ∈ Rm).

2. The functions h(y) =

∫

Rm

|fy(x)| dλ(x) =

∫

Rm

|f(x, y)| dλ(x) from Rn to C

and

k(x) =

∫

Rn

|gx(y)| dλ(y) =

∫

Rn

|f(x, y)| dλ(y) from Rn to C are measurable.

It follows that

i)

∫

Rn

∫

Rm

|f(x, y)| dλ(x)dλ(y)

ii)

∫

Rm

∫

Rn

|f(x, y)| dλ(y)dλ(x)

iii)

∫

Rm+n

|f(x, y)| dλ(x, y)

all exist (possibly ∞).

If at least one of i),ii) or iii) is finite, then

a) fy(x) = f(x, y) ∈ L1(Rm) for almost all y,

gx(y) = f(x, y) ∈ L1(Rn) for almost all x

b) h̃(y) =

∫

Rm

f(x, y) dλ(x) ∈ L1(Rn)

k̃(x) =

∫

Rn

f(x, y) dλ(y) ∈ L1(Rm),

f(x, y) ∈ L1(Rm+n)
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c) Double and iterated integrals are equal

∫

Rm+n

f(x, y) dλ(x, y) =

∫

Rn

∫

Rm

f(x, y) dλ(x)λ(y) =

∫

Rm

∫

Rn

f(x, y) dλ(y)dλ(x).

When integrating over Rn, we often denote the Lebesgue integral simply

by

∫

Rn

f(x) dx instead of

∫

Rn

f(x) dλ(x).

Definition 2.7 (Convolution). Let f and g be measurable functions on Rn. The

convolution of f and g is the function f ∗ g defined by

f ∗ g(x) =

∫

Rn

f(x − y)g(y)dy =

∫

Rn

f(y)g(x − y)dy

for all x for which the integral exists. Various conditions can be imposed on f and

g to guarantee that f ∗ g is defined at least almost everywhere. For example, if f

is bounded and compactly supported, g can be any locally integrable function.

The elementary properties of convolutions are summarized in the following

theorem. Let’s us first introduce some notation : If K,L ⊂ Rn, we set K + L =

{x + y : x ∈ K, y ∈ L}.

Theorem 2.10. Assuming that all integrals in question exist, we have

a. f ∗ g = g ∗ f.

b. (f ∗ g) ∗ h = f ∗ (g ∗ h).

c. supp(f ∗ g) ⊂ supp(f) + supp(g)

Theorem 2.11 (Young’s inequality). Let f ∈ Lp(Rn) and g ∈ Lq(Rn), 1 ≤

p, q, r ≤ ∞, and
1

p
+

1

q
=

1

r
+ 1. Then f ∗ g ∈ Lr(Rn), and ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

The following two properties are direct consequences of Young’ inequality.

1. If f ∈ Lp(Rn), g ∈ L1(Rn), 1 ≤ p < ∞, then f ∗ g ∈ Lp(Rn) and ‖f ∗ g‖p ≤

‖f‖p‖g‖1.
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2. if f ∈ Lp(Rn) and g ∈ Lq(Rn),
1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞, then f ∗g ∈ L∞(Rn),

and ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.

Definition 2.8 (Approximate Identity). We say that {ρn}∞n=1 ⊂ L1(Rn) is an

approximate identity for Lp(Rn) , if {ρn} satisfies

a. ρn > 0, ∀n

b.

∫

Rn

ρn(x)dx = 1, ∀n

c. lim
n→∞

‖(ρn ∗ f) − f‖p = 0, ∀f ∈ Lp(Rn).

2.3 Frames and Weak Integrals

The concept of frames is a generalization of that of a basis of a Hilbert

space. For details, see Heil and Walnut (1989), or Hernandez and Weiss (1996).

Definition 2.9 (Frames). A collection of elements {ϕj : j ∈ N} in a Hilbert

space H is called a frame if there exist constants α and β, 0 < α ≤ β < ∞, such

that

α‖f‖2 ≤
∑

j∈N

|〈f, ϕj〉|2 ≤ β‖f‖2 ∀f ∈ H.

The constants α, β are called frame bounds. If α = β , we say that the frame is

tight. We can reconstruct f from its frame coefficients {〈f, ϕj〉}j∈N as follows :

Theorem 2.12 (Dual Frame). Let {ϕj : j ∈ N} be a frame on a Hilbert space

H with frame bounds α and β. Then ∃S ∈ B(H) such that the collection {ϕ̃j :=

S−1(ϕj) : j ∈ N} is also a frame with bounds
1

β
and

1

α
and f =

∑

j∈N

〈f, ϕj〉ϕ̃j =

∑

j∈N

〈f, ϕ̃j〉ϕj ∀f ∈ H. The family {ϕ̃j : j ∈ N} is called the dual frame to

{ϕj : j ∈ N}.
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Definition 2.10 (Weakly Measurable Function and Weak Integral). Let

H be a Banach space, (X,M, µ) a measure space, and ϕ : X → H. We say ϕ

is weakly measurable, if for each g ∈ H∗, where H∗ is the dual space of H, the

function Fg : X → C given by Fg(x) := g(ϕ(x)) is M−measurable. If ϕ(x) is

weakly measurable, and if there exists f ∈ H such that

g(f) =

∫

X

g(ϕ(x)) dµ(x) ∀g ∈ H∗

then we say that f(x) =

∫

X

ϕ(x) dµ as a weak integral.

Note that if H is a Hilbert space, then by the Riesz representation theorem, all

bounded linear functionals on H are of the form f 7→ 〈f, g〉 g ∈ H. Thus,

ϕ : X 7→ H is weakly measurable if and only if x ∈ X 7→ 〈ϕ(x), g〉 is measurable

for all g ∈ H and f(x) =
∫

X
ϕ(x) dµ as a weak integral if and only if

〈f, g〉 =

∫

X

〈ϕ(x), g〉 dµ (2.1)

for all g ∈ H.

2.4 The Fourier Transform

Definition 2.11. The Fourier Transform of f ∈ L1(Rn) is defined by

Ff(γ) = f̂(γ) :=

∫

Rn

f(x)e−2iπγ·xdx (γ ∈ Rn).

If we write γ as a row vector, and x as a column vector, then the dot product γ ·x

is simply multiplication of a row vector with a column vector and we can write

f̂(γ) =

∫

Rn

f(x)e−2iπγx dx. Similarly, the inverse Fourier transform of f ∈ L1(Rn)

is given by

Ff(x) = f̌(x) :=

∫

Rn

f(γ)e2iπγ·x dγ.
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Theorem 2.13 (Plancherel’s Theorem). If f ∈ L1(Rn) ∩ L2(Rn) , then f̂ ∈

L2(Rn) and ‖f̂‖2 = ‖f‖2. In fact, the restriction of the Fourier transform,

F : L1(Rn) ∩ L2(Rn) → L2(Rn)

extends uniquely to an isometry,

F̃ : L2(Rn) → L2(Rn)

between Hilbert spaces. Furthermore F̃(F̃(f))(x) = f(−x), a.e ∀f ∈ L2(Rn).

In the following, this Fourier transform on L2(Rn) will also be denoted by

F , and we will set f̂ = F(f), ∀f ∈ L2(Rn).

Definition 2.12 (Bandlimited Function). A function f ∈ L2(Rn) is called

bandlimited, if there exists M ⊂ Rn, M is compact, such that f̂(γ) = 0 a.e on M c.

2.5 Exponential Matrices

Recall that if a > 0, then at = et ln a for all t ∈ R. One uses this idea to

define real powers At of a matrix A.

Theorem 2.14. Let A be an n × n real or complex matrix. Then the series

∞∑

k=0

Ak

k!

converges. (Here we make the convention that A0 = I, the identity matrix)

Proof. Let Mn(C) denote the set of n × n matrices with complex entries. Since

Mn(C) is a finite dimensional vector space, any two norms are equivalent, and

Mn(C) is complete. Choose the operator norm on Mn(C). Then

‖AB‖ ≤ ‖A‖‖B‖
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for all A,B ∈ Mn(C). Next let A ∈ Mn(C). It is enough to show that the sequence

of partial sums SN =
N∑

k=0

Ak

k!
(N = 1, 2, 3, ...) is Cauchy. Now, for any N , l ∈ N,

‖SN+l − SN‖ =

∥∥∥∥∥
N+l∑

k=N+1

1

k!
Ak

∥∥∥∥∥

≤
N+l∑

k=N+1

1

k!
‖Ak‖

≤
N+l∑

k=N+1

1

k!
‖A‖k. (2.2)

Since the series
∞∑

k=0

‖A‖k

k!
converges to e‖A‖ in R, its sequence of partial sums is

Cauchy. That is, given ε > 0, ∃N0 such that

N+l∑

k=N+1

1

k!
‖A‖k < ε ∀N ≥ N0, l ∈ N.

Then by (2.2), ‖SN+l − SN‖ < ε ∀N ≥ N0, l ∈ N which shows that {SN}∞N=1

is a Cauchy sequence in Mn(C) . Since Mn(C) is complete, it follows that
∞∑

k=0

Ak

k!

converges.

Definition 2.13. Given an n×n matrix A, we define its exponential eA to be the

n × n matrix given by the convergent matrix series

eA =
∞∑

k=0

Ak

k!
.

Now if A = eB, then we define At = etB.

Proposition 2.1. Let A = eB Then As+t = AsAt for any s, t ∈ R. In particular,

A ∈GLn(R), the set of invertible n × n matrices.

Proof. Let F =
∞∑

k=0

(sB)k

k!
, G =

∞∑

k=0

(tB)k

k!
and H =

∞∑

k=0

Ck where Ck =

(s + t)kBk

k!
. We need to show that H = FG.
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By the Binomial Theorem, Ck =
k∑

j=0

(sB)j(tB)k−j

j!(k − j)!
for all k. For each n ∈ N, we

set

Fn =
n∑

j=0

(sB)j

j!
, Gn =

n∑

k=0

(tB)k

k!
and Hn =

n∑

k=0

Ck =
n∑

k=0

k∑

j=0

(sB)j(tB)k−j

j!(k − j)!
.

By induction on n, it is easy to see that

Hn =
n∑

j=0

n∑

k=j

(sB)j

j!

(tB)k−j

(k − j)!
.

Thus,

Hn =
n∑

j=0

(sB)j

j!

n∑

k=j

(tB)k−j

(k − j)!

=
n∑

j=0

(sB)j

j!
Gn−j

=
n∑

j=0

(sB)j

j!
Gn−j + FnG − FnG

= FnG +
n∑

j=0

(sB)j

j!
(Gn−j − G).

Since Hn → H and Fn → F as n → ∞, it suffices to show that

lim
n→∞

n∑

j=0

(sB)j

j!
(Gn−j − G) = 0.

Let ε > 0 be given. Since the sequence {Gn} converges, it is bounded, hence there

exists M > 0 such that

‖Gn−j − G‖ ≤ M

for all integers n > j > 0. Since L =
∞∑

j=0

‖sB‖j

j!
is finite, there exist N ∈ N such

that l ≥ N implies ‖Gl − G‖ <
ε

2L
and

∞∑

j=N+1

‖sB‖j

j!
<

ε

2M
.
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Then for all n > 2N ,

∥∥∥∥∥
n∑

j=0

(sB)j

j!
(Gn−j − G)

∥∥∥∥∥ =

∥∥∥∥∥
N∑

j=0

(sB)j

j!
(Gn−j − G) +

n∑

j=N+1

(sB)j

j!
(Gn−j − G)

∥∥∥∥∥

<
ε

2L

N∑

j=0

‖sB‖j

j!
+ M

n∑

j=N+1

‖sB‖j

j!

<
ε

2
+

ε

2
= ε.

Hence, Hn converge to FG. That is, As+t = e(s+t)B = esBetB = AsAt.

Theorem 2.15. Let A = eB be an exponential matrix. If P is an invertible

matrix, and if we set Ã = PAP−1, then Ã is also an exponential matrix and in

fact, Ã = eB̃ whereB̃ = PBP−1. Furthermore, Ãt = PAtP−1 for all t ∈ R.

Proof. Observe that

PAtP−1 = P

( ∞∑

k=0

tkBk

k!

)
P−1

=
∞∑

k=0

tkPBkP−1

k!

=
∞∑

k=0

tk(PBP−1)k

k!

=
∞∑

k=0

(tB̃)k

k!

= etB̃

= Ãt

where we have used the fact that matrix multiplication is continuous. Choosing

t = 1, we obtain Ã = eB̃. Then by definition 2.13, Ãt = etB̃ = PAtP−1.

The interested reader may notice that the discussion of this section also

applies to elements of B(X), the set of bounded linear operators on a normed

space X, with identical proofs.
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2.6 The Real Jordan Normal Form

Any real or complex square matrix is similar to an upper triangular

matrix, but not necessarily similar to a diagonal matrix. In an advanced linear

algebra course one usually proves that every complex square matrix is similar to a

matrix which is nearly diagonal, namely has nonzero entries only in the diagonal

and directly above the diagonal, called the Jordan normal form of the matrix. A

similar characterization exists for real matrices as outlined below.

Definition 2.14. A real Jordan block is a real upper triangular square matrix

[bij] of one of the two following forms,

B =




λ 1 (0)

. . . . . .

. . . 1

(0) λ




with λ ∈ R,

or

B =




D I2 (0)

. . . . . .

. . . I2

(0) D




D =




α β

−β α


 α, β ∈ R with I2 =




1 0

0 1




By a suitable change of basis, every real matrix can be brought into block diagonal

form, where all blocks of this form:

Theorem 2.16. Let A be an n × n real matrix. Then A is similar to a block

diagonal matrix of the form J = diag(J1, J2, ..., Jm) with each Jk being a real

Jordan block, k = 1, 2, ...,m. The Jordan blocks are determined by the eigenvalues

λ of A. A real eigenvalue gives rise to a real Jordan block of the first type while a
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complex pair α ± iβ of eigenvalues gives rise to a real Jordan block of the second

type. The matrix J is called the real Jordan normal form of A.

Proof. Since we will mainly deal with 2 × 2 matrices, let us give a proof of the

theorem for this particularly simple case only. That is, we will show that every

real 2 × 2 matrix is similar to a matrix of one of the following forms,

B =




λ1 0

0 λ2


 B =




λ 1

0 λ


 or B =




α β

−β α




depending on whether A has two, one, or no (linearly independent) eigenvectors.

Case 1. A has two eigenvectors, say v1, v2. Let λ1 and λ2 denote the corresponding

real eigenvalues. The matrix P = [v1 v2] is invertible because v1, v2 are linearly

independent, and obviously P−1AP =




λ1 0

0 λ2


.

Case 2. A has only one eigenvector, call it v1. Then A has only one eigenvalue, call

it λ. Let w be any other vector which is not a scalar multiple of v1, so that {v1, w}

is a basis of R2, and w is not an eigenvector. We claim that (A − λI)w = kv1 for

some scalar k.

To proof the claim, suppose to contrary that (A − λI)w = kv1 + lw where l 6= 0.

Set z =
k

l
v1 + w. Then

(A − λI)z = (A − λI)(
k

l
v1 + w) =

k

l
(A − λI)v1 + (A − λI)w

= (A − λI)w

= kv1 + lw

= l(
k

l
v1 + w) = lz

which shows that z is an eigenvector for A with eigenvalue λ+ l 6= λ, contradicting

the uniqueness of the eigenvalue λ. This proves the claim.

If k = 0, then w is an eigenvector of A belonging to λ, contradicting uniqueness
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of the eigenvector. Thus k 6= 0, and we can set v2 =
1

k
w + v1. Then by the claim,

Av2 = A(
1

k
w+v1) =

1

k
Aw+Av1 =

1

k
(λw+kv1)+λv1 = λv2+v1. Now, as v1, v2 are

linearly independent, the matrix P = [v1 v2] is invertible. Then AP = A[v1 v2] =

[Av1 Av2] = [λv1 v1 + λv2] while PB = [v1 v2]




λ 1

0 λ


 = [λv1 v1 + λv2]. Hence,

AP = PB, that is, P−1AP = B =




λ 1

0 λ


.

Case 3. A has no eigenvector. Then the eigenvalues of A are complex, say

λ, λ = α ± iβ. Applying the argument of case 1 to this complex case, there exists

an invertible complex matrix P such that A = P




λ 0

0 λ


P−1, and the columns

of P are the complex eigenvectors v1 and v2 of A, say P = [v1 v2]. Observe that

if x is an eigenvector belonging to an eigenvalue λ, then as A has real entries,

Ax̄ = Ax = λx = λ̄x̄, that is, x̄ is an eigenvector belonging to the eigenvalue λ̄.

It follows that if v1 =




r1 + is1

r2 + is2


 then we can choose v2 = v̄1 =




r1 − is1

r2 − is2


.

Now if A =




a b

c d


 then Av1 = λv1 gives




a b

c d







r1 + is1

r2 + is2


 = (α + iβ)




r1 + is1

r2 + is2




that is

(ar1 + br2) + i(as1 + bs2) = (αr1 − βs1) + i(αs1 + βr1)

(cr1 + dr2) + i(cs1 + ds2) = (αr2 − βs2) + i(αs2 + βr2).
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Comparing real and imaginary parts,

ar1 + br2 = αr1 − βs1

as1 + bs2 = αs1 + βr1

cr1 + dr2 = αr2 − βs2

cs1 + ds2 = αs2 + βr2

or in matrix notation,




a b

c d







r1 s1

r2 s2


 =




r1 s1

r2 s2







α β

−β α


 . (2.3)

Set P =




r1 s1

r2 s2


. Note that det P 6= 0 since v1 and v2 are linearly independent.

Then (2.3) gives

A = P




α β

−β α


P−1.

We note that each block of the form

D =




α β

−β α




can be rewritten as

D = |λ|




cos θ sin θ

− sin θ cos θ




where |λ| =
√

α2 + β2 and cos θ =
α

|λ| , sin θ =
β

|λ| .



CHAPTER III

THE CONTINUOUS WAVELET TRANSFORM

In this chapter, we review the usual continuous wavelet transform on L2(R)

as first introduced by Grossmann and Morlet (1984) and also described in Gasquet-

Witomaski (1998) and Heil-Walnut (1989). We then describe the extension of the

wavelet transform to L2(Rn).

3.1 The Continuous Wavelet Transform on L2(R)

Let us first introduce the operators on L2(R) which are essential in the

discussion of the wavelet transform.

Definition 3.1 (Dilation, Translation, Modulation). Given a > 0 and b ∈ R,

we define operators Da, Tb, Eb on L2(R) by

1. (Daf) (x) =
1√
a
f

(x

a

)
∀x ∈ R (Dilation by a)

2. (Tbf) (x) = f(x − b), ∀x ∈ R (Translation by b)

3. (Ebf) (x) = e2iπbxf(x), ∀x ∈ R (Modulation by b)

for f ∈ L2(R).

All three operators map L2(R) isometrically onto itself. Furthermore, they inter-

twine with the Fourier transform as follows:

a) D̂af = Da−1 f̂

b) T̂bf = E−bf̂
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c) Êbf = Tbf̂

for all f ∈ L2(R). The proof will given in the section 3.3.

Definition 3.2 (Wavelet Transform on L2(R)). Fix ψ ∈ L2(R), and call it the

mother wavelet. Consider the 2-parameter family of dilates and translates of ψ,

ψa,b(x) = (DaTbψ)(x) =
1√
a
ψ

(x

a
− b

)
(a > 0, b ∈ R).

The wavelet transform of a function f ∈ L2(R) is the function Wf : R+ × R → C

given by

Wf(a, b) =< f, ψa,b >=
1√
a

∫

R

f(x)ψ
(x

a
− b

)
dx.

The mapping W is called the continuous wavelet transform associated with ψ.

Obviously, it is linear.

We would like to reconstruct the function f from its wavelet transform

Wf(a, b). Consider the measurable space (R+ × R,Mλ), with measure dµ =

1

a
da db. By this we mean that for E ∈ Mλ,

µ(E) =

∫

R+

∫

R

χE(a, b)
1

a
db da

Following the definition of the Lebesgue integral, one obtains that

∫

R+×R

f(a, b) dµ(a, b) =

∫

R+

∫

R

f(a, b)
1

a
db da

for all f ∈ L2(R+ × R,Mλ, µ).

Suppose we have shown that the wavelet transform W associated with ψ satisfies

‖Wf‖L2(R+×R,µ) =
√

cψ‖f‖L2(R) (3.1)

for all L2(R), that is, W is a multiple of an isometry of L2(R) into L2(R+ × R).

By the polarization identity

〈f, g〉 =
1

4

[
‖f + g‖2 − ‖f − g‖2

]
+

i

4

[
‖f + ig‖2 − ‖f − ig‖2

]
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we then obtain that

〈Wf,Wg〉L2(R+×R,µ) = cψ〈f, g〉L2(R), for all f, g ∈ L2(R). (3.2)

To see this, suppose that (3.1) holds. Then

〈Wf,Wg〉L2(R+×R,µ)

=
1

4

[
‖Wf + Wg‖2

L2(R+×R,µ) − ‖Wf − Wg‖2
L2(R+×R,µ)

]

+
i

4

[
‖Wf + iWg‖2

L2(R+×R,µ) − ‖Wf − iWg‖2
L2(R+×R,µ)

]

=
1

4

[
‖W (f + g)‖2

L2(R+×R,µ) − ‖W (f − g)‖2
L2(R+×R,µ)

]

+
i

4

[
‖W (f + ig)‖2

L2(R+×R,µ) − ‖W (f − ig)‖2
L2(R+×R,µ)

]

=
1

4

[
cψ‖(f + g)‖2 − cψ‖(f − g)‖2

]
+

i

4

[
cψ‖(f + ig)‖2 − cψ‖(f − ig)‖2

]

= cψ

[
1

4

(
‖(f + g)‖2 − ‖(f − g)‖2

)
+

i

4

(
‖(f + ig)‖2 − ‖(f − ig)‖2

)]

= cψ〈f, g〉L2(R) ∀f, g ∈ L2(R). (3.3)

Conversely, if (3.2) holds, then choosing g = f , we immediately obtain (3.1).

Now suppose that (3.1) holds. Then by (3.2),

cψ〈f, g〉 =

∫ ∞

0

∫

R

(Wf)(a, b)(Wg)(a, b)
1

a
db da

=

∫ ∞

0

∫

R

(Wf)(a, b)〈ψa,b, g〉
1

a
db da

=

∫ ∞

0

∫

R

〈(Wf)(a, b)ψa,b, g〉
1

a
db da,

that is

〈f, g〉 =
1

cψ

∫ ∞

0

∫

R

〈(Wf)(a, b)ψa,b, g〉
1

a
db da

for all f, g ∈ L2(R). Thus

f =
1

cψ

∫ ∞

0

∫

R

(Wf)(a, b)ψa,b(x)
1

a
db da (3.4)
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as a weak integral.

The next theorem classifies those ψ ∈ L2(R) which satisfy identity (3.1).

Theorem 3.1 (Admissibility Condition ). Let ψ ∈ L2(R). Then

‖Wf‖L2(R+×R,µ) =
√

cψ‖f‖L2(R)

for all f ∈ L2(R) if and only if

∫ ∞

0

|ψ̂(a)|2
|a| da =

∫ 0

−∞

|ψ̂(a)|2
|a| da = cψ. (3.5)

Proof. See Heil-Walnut (1989).

Because of this theorem, we call ψ ∈ L2(R) admissible if it satisfies con-

dition (3.5), for some cψ > 0. Condition (3.5) is called the admissibility condi-

tion. From the previous discussion, it follows that if ψ is admissible, then every

f ∈ L2(R) can be reconstructed from its wavelet transform by means of the weak

integral (3.4). The next theorem shows that f can even be approximated arbitrar-

ily by a usual integral, provided that ψ is integrable.

Theorem 3.2 (Approximate reconstruction). Let ψ ∈ L1(R) ∩ L2(R) be

admissible, that is

∫ ∞

0

|ψ̂(a)|2
|a| da =

∫ 0

−∞

|ψ̂(a)|2
|a| da =: cψ < ∞.

Then given ε > 0, the integral

fε(x) =

∫ ∞

ε

∫

R

Wf(a, b)ψa,b(x)
1

a
db da

exists for almost all x ∈ R, fε ∈ L2(R), and lim
ε→0+

‖f − fε‖2 = 0.

Proof. See Gasquet-Witomaski (1998).
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3.2 The Continuous Wavelet Transform on L2(Rn)

We now extend the definition of the wavelet transform to functions in

L2(Rn). First, we must extend the operators Da, Tb and Eb of section 3.1 to

L2(Rn).

Definition 3.3 (Dilation, Translation, Modulation and Inversion). Given

fixed A ∈ GLn(R), y, z, γ ∈ Rn, we define operators DA, Ty, Eγ ,M on L2(Rn) by

1. (DAf) (x) =
1

|detA|1/2
f(A−1x), ∀x ∈ Rn (Dilation by A)

(DAf) (γ) =
1

|detA|1/2
f(γA−1), ∀γ ∈ Rn

2. (Tyf) (x) = f(x − y), ∀x ∈ Rn (Translation by y)

(Tξf) (γ) = f(γ − ξ), ∀γ ∈ Rn

3. (Eγf) (x) = e2iπγxf(x), ∀x ∈ Rn (Modulation by γ)

(Ezf) (γ) = e2iπγzf(γ), ∀γ ∈ Rn

4. (Mf)(x) = f(−x), ∀x ∈ Rn (Inversion)

for f ∈ L2(Rn).

Observe that we have defined two types of dilation operators, depending on

whether elements of Rn are considered column vectors, or row vectors. Note that

in the first case, for all x ∈ Rn,

(DADBf)(x) =
1

| det A|1/2
(DBf)(A−1x)

=
1

| det A|1/2

1

| det B|1/2
f(B−1A−1x)

=
1

| det AB|1/2
f((AB)−1x)

= (DABf)(x)
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that is, DADB = DAB. In the second case, for γ ∈ Rn,

(DADBf)(γ) =
1

| det A|1/2
(DBf)(γA−1)

=
1

| det A|1/2

1

| det B|1/2
f(γA−1B−1)

=
1

| det BA|1/2
f(γ(BA)−1)

= (DBAf)(γ)

that is, DADB = DBA. However, if A and B commute, then obviously DADB =

DAB. In order to obtain DADB = DAB in the second case, some authors define

dilation by (DAf) (γ) = | det A|1/2f(γA). However, this would complicate the

notation in what follows.

In a similar way, one shows that, TyTz = Ty+z and EγEξ = Eγ+ξ for all y, z, γ, ξ ∈

Rn.

Proposition 3.1 The operators DA, Ty, Eγ and M are isometries mapping L2(Rn)

onto itself. Furthermore for all f ∈ L2(Rn), we have

a) 〈DAf, g〉 = 〈f,DA−1g〉 and D̂Af = DA−1 f̂

b) 〈Tyf, g〉 = 〈f, T−yg〉 and T̂yf = E−yf̂

c) 〈Eγf, g〉 = 〈f, E−γg〉 and Êγf = Tγ f̂

d) 〈Mf, g〉 = 〈f,Mg〉 and M̂f = Mf̂ .

Proof. It is straight forward to check that these operators are linear.

a) For all f ∈ L2(Rn), we shall have by theorem 2.3,

‖DAf‖2
2 =

∫

Rn

|DAf(x)|2 dx = | det A|−1

∫

Rn

|f(A−1x)|2 dx =

∫

Rn

|f(x)|2 dx = ‖f‖2
2

so that DA is an isometry, and

DA(DA−1f) = DAA−1f = DIf = f
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which shows that DA is surjective. Furthermore,

〈DAf, g〉 =

∫

Rn

1

| det A|1/2
f(A−1x)g(x) dx =

∫

Rn

| det A|1/2f(x)g(Ax) dx = 〈f,DA−1g〉

for all f, g ∈ L2(Rn).

Assume now that f ∈ L1(Rn) ∩ L2(Rn). Then DAf ∈ L1(Rn) ∩ L2(Rn) as

well, so that by definition of the Fourier transform on L1(Rn),

(D̂Af)(γ) =

∫

Rn

(DAf)(x)e−2iπγx dx

=

∫

Rn

| det A|−1/2f(A−1x)e−2iπγx dx (x → Ax)

=

∫

Rn

| det A|1/2f(x)e−2iπγAx dx

= | det A|1/2f̂(γA)

= DA−1 f̂(γ).

Next let f ∈ L2(Rn) be arbitrary. Then there exists a sequence {fn} in

L1(Rn) ∩ L2(Rn) converging to f in L2(Rn), and by the continuity of all oper-

ators involved,

D̂Af = F(DAf) = F(DA( lim
n→∞

fn)) = lim
n→∞

F(DAfn) = lim
n→∞

D̂Afn =

lim
n→∞

DA−1 f̂n = DA−1Ff = DA−1 f̂ .

b) First we show Ty is isometry on L2(Rn). For all f ∈ L2(Rn) we have

‖Tyf‖2
2 =

∫

Rn

|Tyf(x)|2 dx =

∫

Rn

|f(x − y)|2 dx =

∫

Rn

|f(x)|2 dx = ‖f‖2
2

by translation invariance of the integral, so that Ty is on isometry, and

Ty(T−yf) = Ty−yf = T0f = f,

which show that Ty is surjective. Also,

〈Tyf, g〉 =

∫

Rn

f(x − y)g(x)dx =

∫

Rn

f(x)g(x + y)dx = 〈f, T−yg〉.
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Next let f ∈ L1(Rn) ∩ L2(Rn). Then Tyf ∈ L1(Rn) ∩ L2(Rn), as well, and by

definition of the Fourier transform on L1(Rn)

(T̂yf)(γ) =

∫

Rn

(Tyf)(x)e−2iπγx dx

=

∫

Rn

f(x − y)e−2iπγx dx (x → x + y)

=

∫

Rn

f(x)e−2iπγxe−2iπγy dx

= e−2iπγy

∫

Rn

f(x)e−2iπγx dx

= (E−yf̂)(γ).

Using a continuity argument in case a), it now follows that T̂yf = E−yf̂ for all

f ∈ L2(Rn).

c) Since |eit| = 1 for all t ∈ R, we have

‖Eγf‖2
2 =

∫

Rn

|Eγf(x)|2 dx =

∫

Rn

|f(x)e2iπγx|2 dx =

∫

Rn

|f(x)|2 dx = ‖f‖2
2

so that Eγ is an isometry, and

Eγ(E−γf)(x) = Eγ(f(x)e−2iπγx) = f(x)e−2iπγxe2iπγx = f(x)

which shows that Eγ(E−γf) = f , hence Eγ is surjective. Also,

〈Eγf, g〉 =

∫

Rn

f(x)g(x)e2iπγxdx =

∫

Rn

f(x)g(x)e−2iπγxdx = 〈f, E−γg〉.

Next for all f ∈ L1(Rn) ∩ L2(Rn),

(Êγf)(ξ) =

∫

Rn

(Eγf)(x)e−2iπξx dx =

∫

Rn

f(x)e−2iπ(ξ−γ)x dx = f̂(ξ − γ) = (Tγ f̂)(ξ)

and arguing as in case a), it follows that Êγf = Tγ f̂ for all f ∈ L2(Rn).

d) First we show M is isometry on L2(Rn). For all f ∈ L2(Rn) we have

‖Mf‖2
2 =

∫

Rn

|(Mf)(x)|2 dx =

∫

Rn

|f(−x)|2 dx =

∫

Rn

|f(x)|2 dx = ‖f‖2
2
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and

M(Mf(x)) = M(f(−x)) = f(x)

which show that M is surjective. Also,

〈Mf, g〉 =

∫

Rn

f(−x)g(x) dx =

∫

Rn

f(x)g(−x) dx = 〈f,Mg〉.

Next for all f ∈ L1(Rn) ∩ L2(Rn),

(M̂f)(ξ) =

∫

Rn

Mf(x)e−2iπξx dx =

∫

Rn

f(−x)e−2iπξx dx =

∫

Rn

f(x)e−2iπ(−ξ)x dx

= (Mf̂)(ξ)

and arguing as in case a), it follows that M̂f = Mf̂ for all f ∈ L2(Rn).

Proposition 3.2 Given fixed A ∈ GLn(R), y, z ∈ Rn, we have

DAtM = MDAt , TyM = MT−y, EzM = ME−z and ˆ̄f = Mf̂ .

Proof. All these assertions are easily checked. For example,

ˆ̄f(γ) =

∫

Rn

f̄(x)e−2iπγ·x dx =

∫

Rn

f(x)e−2iπ(−γ)·x dx = f̂(−γ) = Mf̂(γ)

for all f ∈ L1(Rn) ∩ L2(Rn) and by continuity, for all f ∈ L2(R2).

We are now ready to introduce the wavelet transform on L2(Rn). Through-

out, we fix an n × n exponential matrix A, say A = eB for some matrix B, which

will be used to define dilations.

Definition 3.4 (Wavelet Transform on L2(Rn)). Fix ψ ∈ L2(Rn), ψ 6= 0

and call it the mother wavelet. Set ψt,b(x) = (DAtTbψ)(x) so that ψt,b(x) =

1

|detA|t/2
ψ

(
A−tx − b

)
. The wavelet transform of f ∈ L2(Rn) is the function Wf

defined on R × Rn by

Wf(t, b) = 〈f, DAtTbψ〉 =
1

|detA|t/2

∫

Rn

f(x)ψ(A−tx − b)dx.

The operator W : f 7→ Wf is called the continuous wavelet transform associated

with ψ, and is obviously linear.
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The reconstruction of f from its wavelet transform as a weak integral can be

obtained as for the wavelet transform on L2(R), and we give a detailed explanation

and proofs below. It turns out that because of our different choice of dilation, the

measure required on R × Rn is simply the Lebesgue measure.

Suppose, we have shown that the wavelet transform W associated with ψ is a

multiple of an isometry of L2(Rn) into L2(R × Rn),

‖Wψf‖L2(R×Rn) =
√

cψ‖f‖L2(Rn)

for some cψ > 0 and all f ∈ L2(Rn). As in section 3.2, by the polarization identity

this condition is equivalent to

〈Wf,Wg〉L2(R×Rn) = cψ〈f, g〉L2(Rn), for all f, g ∈ L2(Rn). (3.6)

Computing the inner product on the left hand side of (3.6), we obtain

cψ〈f, g〉 =

∫

R

∫

Rn

(Wf)(t, b)(Wg(t, b)) db dt

=

∫

R

∫

Rn

(Wf)(t, b)〈ψt,b, g〉 db dt

=

∫

R

∫

Rn

〈(Wf)(t, b)DAtTbψ, g〉 db dt

that is

〈f, g〉 =
1

cψ

∫

R

∫

Rn

〈(Wf)(t, b)DAtTbψ, g〉 db dt

for all f, g ∈ L2(Rn). Thus

f =
1

cψ

∫

R

∫

Rn

Wf(t, b)DAtTbψ db dt

as a weak integral in L2(Rn), so we have reconstructed f from its wavelet transform.

In order to characterize those functions ψ for which W is a multiple of an isometry,

we prove the following generalization of theorem 3.1.
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Theorem 3.3 (Admissibility Condition). Let ψ ∈ L2(Rn). Then

‖Wf‖L2(R×Rn) =
√

cψ‖f‖L2(Rn) ∀f ∈ L2(Rn)

if and only if ∫

R

|ψ̂(γAt)|2 dt =: cψ a.e. γ (3.7)

Proof. Let V = {f ∈ L2(Rn) : f̂ ∈ L∞(Rn)}. Then V is dense in L2(Rn). If

f ∈ V , then

‖Wf‖2
L2(R×Rn) =

∫

R×Rn

|Wf(t, y)|2 d(t, y)

=

∫

R

∫

Rn

|Wf(t, y)|2 dy dt (By Fubini’s theorem)

=

∫

R

∫

Rn

|〈f,DAtTyψ〉|2 dy dt

=

∫

R

∫

Rn

|〈f̂ , D̂AtTyψ〉|2 dy dt (By Plancherel’s theorem)

=

∫

R

∫

Rn

|〈f̂ , DA−tE−yψ̂〉|2 dy dt

=

∫

R

∫

Rn

|〈DAt f̂ , E−yψ̂〉|2 dy dt

=

∫

R

∫

Rn

∣∣∣∣
∫

R̂n

| det A|−t/2f̂(γA−t)ψ̂(γ)e2iπγy dγ

∣∣∣∣
2

dy dt.

Set Ft(γ) = |detA|−t/2f̂(γA−t)ψ̂(γ). Note that by the Cauchy-Schwarz inequality,

Ft(γ) ∈ L1(Rn)∩L2(Rn). Thus, the inside integral is the inverse Fourier transform

of Ft,

‖Wf‖2
L2(R×Rn) =

∫

R

∫

Rn

∣∣∣∣
∫

R̂n

Ft(γ)e2iπγy dγ

∣∣∣∣
2

dy dt

=

∫

R

∫

Rn

∣∣F̌t(y)
∣∣2 dy dt

=

∫

R

‖F̌t‖2
2 dt (By Plancherel’s theorem)

=

∫

R

‖Ft‖2
2 dt

=

∫

R

∫

Rn

|Ft(γ)|2 dγ dt
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=

∫

R

∫

Rn

| det A|−t|f̂(γA−t)|2|ψ̂(γ)|2 dγ dt (γ → γAt)

=

∫

R

∫

Rn

|f̂(γ)|2|ψ̂(γAt)|2 dγ dt

=

∫

Rn

|f̂(γ)|2
[∫

R

|ψ̂(γAt)|2 dt

]
dγ. (By Fubini’s theorem) (3.8)

Now suppose, (3.7) holds. Then (3.8) becomes

‖Wf‖2
L2(R×Rn) =

∫

Rn

|f̂(γ)|2cψ dγ = cψ‖f̂‖2
2 = cψ‖f‖2

2 (3.9)

for all f ∈ V , Now if f ∈ L2(Rn), pick a sequence {fn} in V such that lim
n→∞

‖fn −

f‖2 = 0. By (3.9), {Wfn} is Cauchy in L2(R × Rn), and hence there exists

g ∈ L2(R×Rn) such that lim
n→∞

‖Wfn − g‖2 = 0. On the other hand, by continuity

of the inner product,

Wfn(t, b) = 〈fn, DAtTbψ〉 → 〈f,DAtTbψ〉 = Wf(t, b)

for all (t, b) ∈ R × Rn. Then by uniqueness of limits, g = Wf a.e. Then

‖Wf‖2
L2(R×Rn) = ‖ lim

n→∞
Wfn‖2

L2(R×Rn) = lim
n→∞

‖Wfn‖2
L2(R×Rn) = cψ‖f‖2

2.

Hence the wavelet transform is a multiple of an isometry.

Conversely, suppose that the wavelet transform is a multiple of an isometry, that

is, there exists k > 0 such that

‖Wf‖2
L2(R×Rn) = k‖f‖2

2 ∀f ∈ L2(Rn).

Then (3.8) shows that

k‖f̂‖2 = k‖f‖2 =

∫

Rn

|f̂(γ)|2
[∫

R

|ψ̂(γAt)|2 dt

]
dγ

for all f ∈ V , that is,

∫

Rn

|f̂(γ)|2
[∫

R

|ψ̂(γAt)|2 dt − k

]
dγ = 0
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for all f ∈ V . Choosing f such that f̂ is the characteristic function of a bounded

measurable set E, we have

∫

E

[∫

R

|ψ̂(γAt)|2 dt − k

]
dγ = 0

for every bounded measurable set E. Hence,

∫

R

|ψ̂(γAt)|2 dt − k = 0 a.e. γ

that is, ∫

R

|ψ̂(γAt)|2 dt = k a.e. γ

so that (3.7) holds, with cψ = k.

Note that theorem 3.1 follows from the above theorem, if we replace a by

et in (3.5). Because of this theorem, we give the following definition.

Definition 3.5 (Admissibility Condition). Let A ∈ GLn(Rn) be an exponen-

tial matrix. A function ψ ∈ L2(Rn) is called admissible for A if there exists a

constant cψ > 0 such that

∫

R

|ψ̂(γAt)|2 dt =: cψ a.e. γ

Theorem 3.4 (Existence of Admissible Function on Rn). Let A ∈ GLn(R)

be an exponential. Then there exists an admissible function ψ if and only if

|detA| 6= 1.

Proof. See Laugesen, Weaver, Weiss and Wilson (2002).



CHAPTER IV

WAVELET RECONSTRUCTION

In this chapter, we will study direct and approximate reconstruction for-

mulas for the continuous wavelet transform. We will formulate conditions on an

admissible function ψ and the function f which allow for reconstruction of f from

its wavelet transform as a usual integral, or as a limit of usual integrals. For

simplicity, we will focus on the wavelet transform in L2(R2).

4.1 Approximate Reconstruction

Definition 4.1 (Expanding Matrix). We call an n × n matrix an expanding

matrix, if all its (real or complex) eigenvalues have modulus greater than 1.

Recall from the previous chapter that if A = eB is a n × n real matrix, and

ψ ∈ L2(Rn), we set

ψt,b(x) = (DAtTbψ)(x) = |det A|−t/2ψ(A−tx − b).

The wavelet transform of f ∈ L2(Rn) is

Wf(t, b) = 〈f, ψt,b〉 =
1

|det A|t/2

∫

Rn

f(x)ψ(A−tx − b) dx,

and we have the reconstruction formula

f(x) =
1

cψ

∫

R

∫

Rn

Wf(t, b)DAtTbψ(x) db dt (4.1)

as a weak integral.

In order to reconstruct f from its wavelet transform, we would like the

integral in (4.1) to be a usual integral. This is not possible in general. However,
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we will see that if A is expanding and ψ̂ satisfies a weak decay condition at infinity,

then we can approximate f arbitrarily by a usual integral in case n = 2. First we

prove a few of lemmas which will be needed in the proof of theorem 4.1.

Lemma 4.1. Let A =

[
a 1

0 a

]
, a > 1, and ε < 0 be given. Then for each ã,

1 < ã < a, there exists a constant k̃ such that

‖γAt‖2 ≥ k̃ãt‖γ‖2 ∀t ≥ ε.

Proof. We want to estimate ‖γAt‖2 where γ = (γ1, γ2). For simplicity, we first

switch to the maximum norm ‖ · ‖∞. Pick no > 1 such that ã = a
no−1

no , and set

M0 =
−2ε

a
> 0, m0 = −1 − no

ea ln a

where no ∈ (1,∞) is arbitrary, but fixed. Set

S1 = {γ : 0 < γ1 ≤ 1, γ2 = m0}

S2 = {γ : γ1 = 1, m0 ≤ γ2 < M0, }

S3 = {γ : 0 < γ1 ≤ 1, γ2 = M0}

S4 = S1 ∪ S2 ∪ S3

S5 = −S4 = {−γ : γ ∈ S4}

S = S4 ∪ S5

Claim: There exists k > 0 such that ‖γAt‖∞ ≥ k, ∀t ≥ ε, ∀γ ∈ S.

Note that since ‖(−γ)At‖ = ‖γAt‖ ∀t, it is enough to consider γ ∈ S4. Further-

more, observe that

γAt = (γ1 γ2)




at tat−1

0 at


 = (γ1a

t, γ1ta
t−1 + γ2a

t)
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Figure 4.1 The set S

so that

‖γAt‖∞ = max {γ1a
t,

∣∣γ1
t

a
+ γ2

∣∣at}. (γ1 ≥ 0)

Case a) γ ∈ S2. Then γ1 = 1 so that

‖γAt‖∞ ≥ γ1a
t = at ≥ aε

for all t ≥ ε.

Case b) γ ∈ S3. Then 0 < γ1 ≤ 1 while γ2 = M0 =
−2ε

a
, so that

t

a
γ1 + γ2 =

t

a
γ1 −

2ε

a
≥ ε

a
γ1 −

2ε

a
≥ ε

a
− 2ε

a
=

−ε

a
> 0,

for all t ≥ ε, as ε < 0. Hence for all t ≥ ε,

‖γAt‖∞ ≥
∣∣γ1

t

a
+ γ2

∣∣at ≥
∣∣∣∣
−ε

a

∣∣∣∣ at ≥ |ε|
a

aε.

Case c) γ ∈ S1. Distinguish two cases, depending on the value of t.

i) Suppose t ≥ −nologaγ1 ≥ 0 (as 0 < γ1 ≤ 1). In this case, we estimate

the value of γ1a
t:

at = at no−1
no a

t
no ≥

(
a

no−1
no

)t

a−logaγ1 =
ãt

γ1

so that 1 < ã < a. Hence,

‖γAt‖∞ ≥ γ1a
t ≥ ãt ≥ ãε
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for all t ≥ ε.

ii). Suppose ε ≤ t < −nologaγ1. In this case, we estimate the value of

at
∣∣ t
a
γ1 + γ2

∣∣. We have

t

a
γ1 + γ2 <

−nologaγ1

a
γ1 + γ2, (γ1 > 0)

= −no ln γ1

a ln a
γ1 + m0

= −no ln γ1

a ln a
γ1 − 1 − no

ea ln a
.

Now the function f(x) = x ln x , 0 < x ≤ 1, has one critical number at x =
1

e
,

where it has an absolute minimum, f(1/e) = −1/e. Thus

no ln γ1

a ln a
γ1 ≥

−no

ea ln a
,

that is,

− no

ea ln a
− no ln γ1

a ln a
γ1 ≤ 0,

which shows that t
a
γ1 + γ2 ≤ −1 in this case. Hence

‖γAt‖∞ ≥ at

∣∣∣∣
t

a
γ1 + γ2

∣∣∣∣ ≥ at ≥ aε.

Note that the proofs of all three cases show that for all t ≥ ε and γ ∈ S,

‖γAt‖∞ ≥ k0ã
t, ∀t ≥ ε

where k0 = max
{

1, |ε|
a

}
, provided that ε < 0. Setting k = k0ã

ε, the claim follows.

Next we claim that there exists k1 > 0 such that ‖γAt‖∞ ≥ k1ã
t‖γ‖∞, ∀t ≥

ε, ∀γ ∈ R2.

The claim is obvious if γ = 0. Thus, we may assume that γ 6= 0.

We first assume that γ ∈ S. Set s0 = max
γ∈S

‖γ‖∞ = max {M0,m0, 1} > 1. By the

previous claim, we have for all γ ∈ S and t ≥ ε,

‖γAt‖∞ ≥ k0ã
t ≥ k0

s0

ãt‖γ‖∞ = ãtk1‖γ‖∞ (4.2)
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where we have set k1 =
k0

s0

. In general, let γ ∈ R2\{0} be arbitrary. Since

R2\{0} =
⋃

α>0

αS where αS = {αη : η ∈ S}, there exist α > 0 and η ∈ S such

that γ = αη. Then by (4.2),

‖γAt‖∞ = ‖(αη)At‖∞ = α‖ηAt‖∞ ≥ αãtk1‖η‖∞ = ãtk1‖αη‖∞ = ãtk1‖γ‖∞

for all t ≥ ε. This proves the claim.

Now as the Euclidean and maximum norms on R2 are equivalent, 1√
2
‖γ‖2 ≤

‖γ‖∞ ≤ ‖γ‖2, we have by the claim,

‖γAt‖2 ≥ ‖γAt‖∞ ≥ ãtk1‖γ‖∞ ≥ 1√
2
ãtk1‖γ‖2.

That is,

‖γAt‖2 ≥ ãtk̃‖γ‖2

for all γ ∈ R2 and all t ≥ ε, where we have set k̃ =
k1√
2
.

Lemma 4.2. Let P ∈ GLn(R). For any norm ‖ · ‖ on Rn, there exist constants

α, β > 0 such that

β‖γ‖ ≤ ‖γP‖ ≤ α‖γ‖ ∀γ ∈ Rn.

Proof. One easily checks that γ 7→ ‖γP‖ defines a norm on Rn, by invertibility of

P . Since all norms on Rn are equivalent, the assertion follows.

Lemma 4.3. Consider f(γ) =
1

1 + ‖γ‖k
2

(γ ∈ R2, k ∈ R). Then f ∈ L2(R2) if and

only if k > 1.

Proof. For simplicity, denote the Euclidean norm by ‖·‖, and use polar coordinates,

γ = (r cos θ, r sin θ). Then

∫

R2

1

(1 + ‖γ‖k)2
dγ =

∫ 2π

0

∫ ∞

0

r

(1 + rk)2
dr dθ
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Case 1. If k > 1, then 2k − 1 > 1 and hence

∫ 2π

0

∫ ∞

0

r

(1 + rk)2
dr dθ ≤

∫ 2π

0

∫ ∞

0

r

1 + r2k
dr dθ

=

∫ 2π

0

(∫ 1

0

r

1 + r2k
dr +

∫ ∞

1

r

1 + r2k
dr

)
dθ

≤
∫ 2π

0

(∫ 1

0

r dr +

∫ ∞

1

1

r2k−1
dr

)
dθ

=

∫ 2π

0

(
1

2
+

1

2(k − 1)

)
dθ

< ∞.

Case 2. If k ≤ 1, then

∫ 2π

0

∫ ∞

0

r

(1 + rk)2
dr dθ ≥

∫ 2π

0

∫ ∞

0

r

(1 + r)2
dr dθ

=

∫ 2π

0

∫ ∞

1

u − 1

u2
du dθ (u = 1 + r)

=

∫ 2π

0

lim
b→∞

(
ln |b| + 1

b
− 1

)
dθ

= ∞.

Theorem 4.1. Let A be an expanding real 2 × 2 exponential matrix. Let ψ ∈

L1(R2) ∩ L2(R2) be admissible, that is,

∫

R

|ψ̂(γAt)|2 dt = cψ < ∞ a.e. γ,

and suppose that

|ψ̂(γ)| ≤ k

1 + ‖γ‖ 1
2
+s

(4.3)

for some constants k and s > 0. Let f ∈ L2(R2) be given. Then for each ε < 0

and x ∈ R2, the integral

fε(x) =
1

cψ

∫ ∞

ε

∫

R2

(Wf)(t, b)DAtTbψ(x) db dt (4.4)

exists, fε is square integrable and lim
ε→−∞

‖f − fε‖2 = 0.
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Proof. We must first show that the integral (4.4) defining fε exists. By Plancherel’s

theorem and the formulas following definition (3.3),

Wf(t, b) = 〈f,DAtTbψ〉

= 〈f̂ , DA−tE−bψ̂〉

= |det A|t/2

∫

R2

f̂(γ)ψ̂(γAt)e2iπγAtb dγ

= | det A|t/2φ̌t(A
tb)

= (DA−tφ̌t)(b)

where φt(γ) = f̂(γ)ψ̂(γAt) ∈ L1(R2) ∩ L2(R2). For each x ∈ R2, set

Jx(t) =

∫

R2

Wf(t, b)ψt,b(x) db. (4.5)

Note that this integral is defined for almost all t. In fact, since Wf(t, b) ∈ L2(R×

R2), then by Fubini’s theorem, b 7→ Wf(t, b) ∈ L2(R2) a.e. On the other hand,

b 7→ ψt,b(x) = |det A|−t/2ψ(A−tx−b) ∈ L2(R2). It follows from the Cauchy Schwarz

inequality that Jx(t) is defined for almost all t. Then

Jx(t) =

∫

R2

(DA−tφ̌t)(b)ψt,b(x) db

=

∫

R2

(DA−tφ̌t)(b)| det A|−t/2ψ(A−tx − b) db

= | det A|−t/2

∫

R2

(DA−tφ̌t)(b)(Mψ)(b − A−tx) db

= | det A|−t/2

∫

R2

(DA−tφ̌t)(b)(TA−txMψ)(b) db

= | det A|−t/2〈(DA−tφ̌t), TA−txMψ〉

= | det A|−t/2〈F(DA−tφ̌t),F(TA−txMψ)〉 (By Plancherel’s Theorem)

= | det A|−t/2〈DAtF(φ̌t),MF(TA−txMψ)〉

= | det A|−t/2〈(DAtφt),ME−A−txMψ̂〉

= | det A|−t/2〈(DAtφt),M2EA−txψ̂〉



44

= | det A|−t

∫

R2

φt(γA−t)(EA−txψ̂)(γ) dγ (γ 7→ γAt)

=

∫

R2

φt(γ)(EA−txψ̂)(γAt) dγ

=

∫

R2

f̂(γ)ψ̂(γAt)ψ̂(γAt)e2iπγx dγ

=

∫

R2

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ.

By (4.4),

fε(x) =
1

cψ

∫ ∞

ε

Jx(t) dt =
1

cψ

∫ ∞

ε

∫

R2

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ dt. (4.6)

We want to apply Fubini’s theorem to show that the integral (4.6) exists. For this,

we need to check that

I =

∫

R2

|f̂(γ)|
∫ ∞

ε

|ψ̂(γAt)|2 dt dγ < ∞. (4.7)

The value of I is estimated in two parts:

1. Integrate over a bounded set, namely the disc Bm(0) = {γ ∈ R2 : ‖γ‖ ≤ m} for

some m > 0. We obtain

I1 =

∫

‖γ‖≤m

|f̂(γ)|
(∫ ∞

ε

|ψ̂(γAt)|2 dt

)
dγ

≤ cψ

∫

‖γ‖≤m

|f̂(γ)| dγ

≤ cψ

(∫

‖γ‖≤m

1 dγ

)1/2(∫

‖γ‖≤m

|f̂(γ)|2 dγ

)1/2

= cψ(
√

πm)‖f‖2 < ∞.

where we have used the Cauchy Schwarz inequality.

2. Integrate over the complement U of the disc Bm(0), U = {γ ∈ R2 : ‖γ‖ > m}.

We distinguish 3 cases, depending on the Jordan normal form of A.

Case I. The Jordan normal form of A is diagonal. Then A = PBP−1 =

P

[
a 0

0 b

]
P−1 where B =

[
a 0

0 b

]
. Then by theorem 2.15, At = PBtP−1 =
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P

[
at 0

0 bt

]
P−1, and thus

‖γAt‖ = ‖γPBtP−1‖ ≥ β1β2α
t‖γ‖

where β1 and β2 are the constants for P−1 and P as in Lemma 4.2, respectively,

and α = min (a, b) > 1. We obtain

I2 =

∫

‖γ‖>m

|f̂(γ)|
(∫ ∞

ε

|ψ̂(γAt)|2 dt

)
dγ

≤
∫

‖γ‖>m

|f̂(γ)|
(∫ ∞

ε

∣∣∣∣∣
k

1 + ‖γAt‖ 1
2
+s

∣∣∣∣∣

2

dt

)
dγ (by 4.3)

≤ k2

∫

‖γ‖>m

|f̂(γ)|
(∫ ∞

ε

∣∣∣∣∣
1

(β1β2αt‖γ‖) 1
2
+s

∣∣∣∣∣

2

dt

)
dγ

=
k2

(β1β2)1+2s

∫

‖γ‖>m

|f̂(γ)| 1

‖γ‖1+2s

(∫ ∞

ε

1

αt(1+2s)
dt

)
dγ

=
k2

(β1β2)1+2s(1 + 2s)ln α
α−(1+2s)ε

∫

U

|f̂(γ)| 1

‖γ‖1+2s
dγ.

Setting a0 =
k2

(β1β2)1+2s(1 + 2s)ln α
α−(1+2s)ε and applying the Cauchy Schwarz

inequality, we obtain, by lemma 4.3,

I2 ≤ a0‖f‖2

∥∥∥∥
1

‖γ‖1+2s

∥∥∥∥
L2(U)

< ∞.

Case II. The Jordan normal form of A is an upper diagonal matrix, A =

PBP−1 with B =

[
a 1

0 a

]
, a > 1 Then by theorem 2.15, At = PBtP−1 =

P

[
at tat−1

0 at

]
P−1 and thus by lemma 4.1,

‖γAt‖ = ‖γPBtP−1‖ ≥ β1β2k̃ãt‖γ‖

where β1 and β2 are the constants for P−1 and P in lemma 4.2, respectively, and
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1 < ã < a. Computing as in the case I, we obtain

I2 =

∫

‖γ‖>m

|f̂(γ)|
(∫ ∞

ε

|ψ̂(γAt)|2 dt

)
dγ

=

∫

‖γ‖>m

|f̂(γ)|
(∫ ∞

ε

∣∣∣∣∣
k

1 + ‖γAt‖ 1
2
+s

∣∣∣∣∣

2

dt

)
dγ, (by 4.3)

≤
∫

‖γ‖>m

|f̂(γ)|k2

(∫ ∞

ε

∣∣∣∣∣
1

(β1β2k̃ãt‖γ‖)
1
2
+s

2

∣∣∣∣∣

2

dt

)
dγ

=

∫

‖γ‖>m

|f̂(γ)| k2

(β1β2k̃)1+2s‖γ‖1+2s

(∫ ∞

ε

1

ãt(1+2s)
dt

)
dγ, (Cauchy-Schwarz)

≤ a1‖f‖2

∥∥∥∥
1

‖γ‖1+2s

∥∥∥∥
L2(U)

< ∞,

provided ε < 0, where a1 =
1

(1 + 2s)ln ã
ã−(1+2s)ε k2

(β1β2k̃)1+2s
.

Case III. The Jordan normal form of A has a rotation part, that is, A = PBP−1

where B = α




cos θ sin θ

− sin θ cos θ


, α > 1. Since the rotation matrix is an isometry,

proceeding as in case I) we have ‖γAt‖ ≥ αtβ1β2‖γ‖ and we continue with the

estimate of I2 exactly as in case I).

Combining all three cases, it follows that I = I1+I2 < ∞. Thus by Fubini’s

Theorem, the integral (4.5) defining fε(x) exists, and we can interchange the order

of integration in fε(x), so that

fε(x) =
1

cψ

∫ ∞

ε

∫

R2

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ dt

=
1

cψ

∫

R2

f̂(γ)e2iπγx

(∫ ∞

ε

|ψ̂(γAt)|2 dt

)
dγ

=
1

cψ

(
F

(
f̂ θε

))
(x) ∀x ∈ R2

where θε(γ) =
∫ ∞

ε
|ψ̂(γAt)|2 dt. Here we have used the fact that, by (4.7), f̂ θε ∈

L1(R2). Observe that since θε(γ) < cψ a.e., then f̂ θε ∈ L2(R2) as well, hence

fε ∈ L2(R2).

It is left to show that fε converges to f in L2(R2) as ε → −∞. By Plancherel’s
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theorem,

‖f − fε‖2
2 =

∥∥∥∥F(f̂) − 1

cψ

F(f̂ θε)

∥∥∥∥
2

2

=

∥∥∥∥F(f̂ − 1

cψ

f̂ θε)

∥∥∥∥
2

2

=

∥∥∥∥f̂ − 1

cψ

f̂ θε

∥∥∥∥
2

2

=

∥∥∥∥f̂

(
cψ − θε

cψ

)∥∥∥∥
2

2

=

∫

R2

|f̂(γ)|2
∣∣∣∣
cψ − θε(γ)

cψ

∣∣∣∣
2

dγ.

Note that for almost all γ, lim
ε→−∞

∫ ∞

ε

|ψ̂(γAt)|2 dt = cψ, so that {cψ − θε(γ)}

decreases to zero a.e. as ε → −∞. Thus by the Monotone Convergence Theorem,

lim
ε→−∞

‖f − fε‖2
2 = lim

ε→−∞

∫

R2

|f̂(γ)|2
∣∣∣∣
cψ − θε(γ)

cψ

∣∣∣∣
2

dγ

=

∫

R2

lim
ε→−∞

|f̂(γ)|2
∣∣∣∣
cψ − θε(γ)

cψ

∣∣∣∣
2

dγ

= 0.

We have shown that fε converges to f in L2(R2) as ε → −∞.

If A is contracting, i.e. if all eigenvalues of A have modulus less than one,

then a similar statement holds:

Theorem 4.2. Let A be a 2 × 2 exponential matrix whose eigenvalues all have

modulus less than 1. Let ψ ∈ L1(R2) ∩ L2(R2) be admissible, that is
∫

R

|ψ̂(γAt)|2 dt = cψ < ∞ a.e. γ,

and suppose that

|ψ̂(γ)| ≤ k

1 + ‖γ‖ 1
2
+s

for some constants k and s > 0. Let f ∈ L2(R2) be given. Then for each ε > 0

and x ∈ R2, the integral

fε(x) =
1

cψ

∫ ε

−∞

∫

R2

(Wf)(t, b)DAtTbψ(x) db dt (4.8)
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exists, fε is square integrable and lim
ε→∞

‖f − fε‖2 = 0.

Proof. Set Ã = A−1. Then Ã is also exponential, and the eigenvalues of Ã all

have modulus greater one, that is, Ã is expanding. As the Lebesgue measure is

inversion invariant,

∫

R

|ψ̂(γÃt)|2 dt =

∫

R

|ψ̂(γA−t)|2 dt =

∫

R

|ψ̂(γAt)|2 dt = cψ < ∞ a.e. γ,

that is, ψ̂ is also admissible for Ã. By the previous theorem,

f̃−ε(x) =
1

cψ

∫ ∞

−ε

∫

R2

〈f,DÃtTbψ〉DÃtTbψ(x) db dt

exists for every ε > 0 and x ∈ Rn, and

lim
ε→∞

‖f − f̃−ε‖2 = 0.

Replacing t by −t we have by inversion invariance of the Lebesgue integral that

f̃−ε(x) =
1

cψ

∫ ε

−∞

∫

R2

〈f,DAtTbψ〉DAtTbψ(x) db dt = fε(x),

and hence fε exists, and lim
ε→∞

‖f − fε‖2 = 0.

The next theorem says that if f is bandlimited, and ψ̂ is supported away

from zero, then the reconstruction formula (4.1) is always a usual integral.

Theorem 4.3. Keep the assumption of theorem 4.1, and assume in addition that

ψ̂(γ) = 0 a.e. in some neighborhood of zero. If f ∈ L2(R2) is bandlimited, then

fε = f for sufficiently large negative ε, that is, for almost every x ∈ R2,

f(x) =
1

cψ

∫

R

∫

R2

Wf(t, b)DAtTbψ(x) db dt a.e.

as a usual integral.

Proof. Let f ∈ L2(R2) be bandlimited. That is, there exists M > 0 such that

f̂(γ) = 0 for almost all γ with ‖γ‖ ≥ M . By assumption, there exist δ > 0
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such that ψ̂(γ) = 0 for almost all ‖γ‖ < δ. Let fε be as in theorem 4.1, so

that fε(x) =
1

cψ

∫ ∞

ε

∫

R2

(Wf)(t, b)DAtTbψ(x) db dt. Note that as f is bandlimited,

f̂ ∈ L1(R2) as well, so that f(x) =

∫

R2

f̂(γ)e2iπγx dγ a.e. We now show that there

exists εo such that the integral

1

cψ

∫ ε

−∞

∫

R2

(Wf)(t, b)DAtTbψ(x) db dt (4.9)

exists and equals zero for all ε ≤ εo and x ∈ R2.

The integral (4.9) is similar to formula fε in equation (4.6), so computing as in

the derivation of equation (4.6), we obtain

(4.9) =
1

cψ

∫ ε

−∞

∫

R2

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ dt

=
1

cψ

∫ ε

−∞

∫

‖γ‖2≤M

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ dt.

where we have used the fact that f is bandlimited. We first show that for ε

sufficiently negative,

I =

∫

‖γ‖≤M

|f̂(γ)|
∫ ε

−∞
|ψ̂(γAt)|2 dt dγ = 0. (4.10)

We again distinguish 3 cases, depending on the Jordan normal form of A.

Case I. A = PBP−1 = P

[
a 0

0 b

]
P−1. Then by theorem 2.15, At = PBtP−1, and

thus

‖γAt‖ = ‖γPBtP−1‖ ≤ α1α2α
t‖γ‖

where α1 and α2 are the constants for P−1 and P as in lemma 4.2, respectively, and

α = max (a, b) > 1. Now if t <
ln δ − ln (α1α2M)

ln α
, then α1α2α

t‖γ‖ < δ provided

that ‖γ‖ < M and hence ψ̂(γAt) = 0. Thus, if we choose εo <
ln δ − ln (α1α2M)

ln α
,

then for ε ≤ εo

I =

∫

‖γ‖≤M

|f̂(γ)|
∫ ε

−∞
|ψ̂(γAt)|2 dt dγ = 0.
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Case II. A = PBP−1 with B =

[
a 1

0 a

]
, a > 1 Then by theorem 2.15, At =

PBtP−1 = P

[
at tat−1

0 at

]
P−1, and thus

‖γBt‖2 = (γ1a
t)2 + (γ1a

t−1t + γ2a
t)2

= a2t(γ1
2 + γ2

2) + 2tγ1γ2a
2t−1 + γ1

2t2a2t−2

≤ a2t‖γ‖2 + 4t‖γ‖2a2t−1 + t2‖γ‖2a2t−2

=
(
a2t + 4ta2t−1 + t2a2t−2

)
‖γ‖2

≤ a2t

(
t

a
+ 2

)2

‖γ‖2.

Hence,

‖γAt‖ = ‖γPBtP−1‖ ≤ α1α2a
t

(
t

a
+ 2

)
‖γ‖

where α1 and α2 are the constants for P−1 and P as in lemma 4.2, respectively.

Since lim
t→−∞

at

(
t

a
+ 2

)
= 0, there exists εo such that ‖γAt‖ < δ for all t ≤ εo, and

‖γ‖ ≤ M . Then for all ε ≤ εo,

I =

∫

‖γ‖≤M

|f̂(γ)|
∫ ε

−∞
|ψ̂(γAt)|2 dt dγ = 0.

Case III. The Jordan normal form of A has a rotation part, that is, A = PBP−1

where B = α




cos θ sin θ

− sin θ cos θ


, α > 1. Since the rotation matrix is an isometry,

proceeding as in case I) we have ‖γAt‖ ≤ α1α2α
t‖γ‖. We continue with the

computation of I exactly as in case I), that is, we choose εo <
ln δ − ln (α1α2M)

ln α

and obtain for all ε ≤ εo that

I =

∫

‖γ‖≤M

|f̂(γ)|
∫ ε

−∞
|ψ̂(γAt)|2 dt dγ = 0.

Combining all 3 cases, we have shown that there exists εo such that the integral

in (4.10) is zero for all ε < εo. Using Fubini’s theorem, it follows that the integral
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(4.9) exists, and we can interchange the order of integration in (4.9) so that, for

all ε ≤ εo.

∣∣∣∣
∫ ε

−∞

∫

R2

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ dt

∣∣∣∣ =

∣∣∣∣
∫

‖γ‖≤M

∫ ε

−∞
f̂(γ)e2iπγx|ψ̂(γAt)|2 dt dγ

∣∣∣∣

≤
∫

‖γ‖≤M

∫ ε

−∞

∣∣∣f̂(γ)
∣∣∣
∣∣∣ψ̂(γAt)

∣∣∣
2

dt dγ

= 0.

It follows that fε = fεo
for all ε ≤ εo, hence 0 = lim

ε→−∞
‖f−fε‖2 = lim

ε→−∞
‖f−fεo

‖2 =

‖f − fεo
‖, that is, f(x) = fε0(x) = fε(x) a.e. for ε ≤ εo.

In the case of an arbitrary expanding n × n matrix, it is difficult to track

how quickly the points γAt tends to infinity as t grows. However, if A is similar to

a diagonal matrix, then this is not difficult, and we have the extension of theorem

4.1 given in theorem 4.4 below. However, first we must determine the correct

decay condition on ψ̂.

Lemma 4.4. Fix m > 0 and set U = {γ ∈ Rn : ‖γ‖∞ ≥ m}. Then g(γ) =

1

‖γ‖k
∞

∈ L2(U) for all k >
n

2
.

Proof. Observe that if γ = (γ1, γ2, ..., γn), then |γ1γ2...γn| ≤

(max {|γ1|, |γ2|, ..., |γn|})n = ‖γ‖n
∞. Now suppose, k >

n

2
. Then r =

2k

n
> 1 and

integrating over U ,

∫

U

(
1

‖γ‖k
∞

)2

dγ =

∫

U

1

‖γ‖2k
∞

dγ

≤
∫

|γn|≥m

. . .

∫

|γ1|≥m

1

|γ1γ2 . . . γn|r
dγ1 . . . dγn

=

∫

|γn|≥m

. . .

∫

|γ2|≥m

2

|γ2γ3 . . . γn|r(r − 1)mr−1
dγ2 . . . dγn

=

∫

|γn|≥m

. . .

∫

|γ3|≥m

4

|γ3γ4 . . . γn|r(r − 1)2m2(r−1)
dγ3 . . . dγn
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=

∫

|γn|≥m

. . .

∫

|γ4|≥m

8

|γ4γ5 . . . γn|r(r − 1)3m3(r−1)
dγ4 . . . dγn

...

=
2n

(r − 1)nmn(r−1)
< ∞,

where we have used the fact that

∫

|γi|≥m

1

|γi|r
dγi =

2

(r − 1)mr−1
for r > 1. This

shows that g(γ) ∈ L2(U).

Because the two norms ‖γ‖∞ and ‖γ‖2 are equivalent, it follows also that

g(γ) =
1

‖γ‖k
2

∈ L2(U) if k >
n

2
.

Theorem 4.4. Let A be an n × n expanding exponential diagonalizable matrix.

Suppose that the function ψ ∈ L1(Rn)∩L2(Rn) is admissible, say

∫

R

|ψ̂(γAt)|2 dt =

cψ < ∞, and

|ψ̂(γ)| ≤ k

1 + ‖γ‖n
4
+s

a.e.

where k, s > 0 are constant. Let f ∈ L2(Rn). Then for each ε ∈ R,

fε(x) =
1

cψ

∫ ∞

ε

∫

Rn

(Wf)(t, b)DAtTbψ(x) db dt

exists, fε ∈ L2(Rn) and lim
ε→−∞

‖f − fε‖2 = 0.

Proof. The proof is essentially the same as that of theorem 4.1. Since A is diago-

nalizable, there exist a diagonal matrix B =diag(a1, ..., an) and P ∈GLn(R) such

that A = PBP−1. We rewrite fε as

fε(x) =
1

cψ

∫ ∞

ε

∫

R2

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ dt,

and we need to check whether Fubini’s theorem applies. That is, we need to verify

that

I =

∫

Rn

|f̂(γ)|
∫ ∞

ε

|ψ̂(γAt)|2 dt dγ
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is finite. Again, I is estimated in two parts. Fix m > 0. We integrate over

{γ ∈ Rn : ‖γ‖∞ ≤ m} and apply the Cauchy-Schwarz inequality,

I1 =

∫

‖γ‖∞≤m

|f̂(γ)|
(∫ ∞

ε

|ψ̂(γAt)|2 dt

)
dγ

≤ cψ

∫

‖γ‖∞≤m

|f̂(γ)| dγ

≤ cψ

(∫

‖γ‖∞≤m

1 dγ

)1/2(∫

‖γ‖∞≤m

|f̂(γ)|2 dγ

)1/2

≤ cψ(2m)n/2

(∫

‖γ‖∞≤m

|f̂(γ)|2 dγ

)1/2

= cψ(2m)n/2‖f‖2 < ∞.

Next we integrate over U = {γ ∈ Rn : ‖γ‖∞ > m}. By theorem 2.15 and Lemma

4.2,

‖γAt‖∞ = ‖γPBtP−1‖∞ ≥ β1β2α
t‖γ‖∞

for some constants β1, β2 > 0, and where α = min {a1, ..., an} > 1. We obtain

I2 =

∫

‖γ‖∞>m

|f̂(γ)|
(∫ ∞

ε

|ψ̂(γAt)|2 dt

)
dγ

≤
∫

‖γ‖∞>m

|f̂(γ)|
(∫ ∞

ε

∣∣∣∣∣
k

1 + ‖γAt‖n
4
+s

∣∣∣∣∣

2

dt

)
dγ,

(
|ψ̂(γ)| ≤ k

1 + ‖γ‖n
4
+s

)

≤
∫

‖γ‖∞>m

|f̂(γ)|
(∫ ∞

ε

∣∣∣∣∣
k

(β1β2αt‖γ‖)n
4
+s

∣∣∣∣∣

2

dt

)
dγ

=
k2

(β1β2)
n
2
+2s

∫

U

|f̂(γ)|︸ ︷︷ ︸
∈L2(Rn)

1

‖γ‖
n
2
+2s

∞

(∫ ∞

ε

1

αt(n
2
+2s)

dt

)
dγ

Since α > 1, then

∫ ∞

ε

1

αt(n
2
+2s)

dt =
1

(n
2

+ 2s)ln α
α−(n

2
+2s)ε. Furthermore, by

lemma 4.4, g(γ) =
1

‖γ‖n
2
+s

∈ L2(U), and hence by Cauchy-Schwarz inequality,

I2 ≤
k2α−(n

2
+2s)ε

(β1β2)
n
2
+2s(n

2
+ 2s)ln α

‖f‖2‖g‖L2(U).
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It follows that I = I1 + I2 < ∞. By Fubini’s Theorem, the integral defining fε(x)

exists, and we can interchange the order of integration in fε(x), so that

fε(x) =
1

cψ

∫ ∞

ε

∫

R2

f̂(γ)|ψ̂(γAt)|2e2iπγx dγ dt

=
1

cψ

∫

R2

f̂(γ)e2iπγx

(∫ ∞

ε

|ψ̂(γAt)|2 dt

)
dγ

=
1

cψ

(
F(f̂ θε)

)
(x) ∀x ∈ Rn

where θε(γ) =

∫ ∞

ε

|ψ̂(γAt)|2 dt. Proceeding as in theorem 4.1, one shows that

fε ∈ L2(Rn), and converges to f in L2(Rn) as ε → −∞.

4.2 Reconstruction Using Approximate Identities

There are nearly as many examples of approximate identities as there are

integrable functions. This makes it easy, in most cases, to find approximate iden-

tities that satisfy any additional conditions we might require.

Lemma 4.5. Let C be an n × n expanding diagonal matrix, and M ⊂ Rn be

compact. Given δ > 0, there exists N ∈ N such that ‖C−kx‖ < δ for all x ∈ M .

Proof. We must pick N ∈ N such that C−kM ⊂ Bδ(0) for all k ≥ N . For this,

let C = diag(a1, ...an). Set a = min {a1, ..., an}, and set M̃ = max
x∈M

‖x‖. Note that

C−kx = (a−k
1 x1, ..., a

−k
n xn), and hence

‖C−kx‖2
2 = a−2k

1 x2
1 + ... + a−2k

n x2
n ≤ a−2k‖x‖2 ≤ a−2kM̃.

Note that,

a−2kM̃ < δ ⇔ k > −1

2
loga

( δ

M̃

)
.

Hence, if we choose

N > loga

(M̃

δ

)1/2
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then ‖C−kx‖ < δ for all k ≥ N and x ∈ M .

Example 4.1 (Even Approximate Identity) Fix a compact set M0 ⊂ Rn and a

function ρo ∈ L1(Rn) ∩ L2(Rn) such that ρo ≥ 0 , supp(ρo) ⊂ M0. There exists

a great variety of such function ρ, for example, by Urysohn’s lemma, there exists

ρo ∈ C∞
c (Rn) satisfying these properties. Next set ρ(x) = ρo(x) + ρo(−x). Then

supp(ρ) ⊂ M where M = M0 ∪ (−M0), and ρ(−x) = ρ(x) for all x. Fix an n × n

expanding diagonal matrix C, and set

ρk(x) =
| det C|kρ(Ckx)

‖ρ‖1

. (4.11)

Then supp(ρk) ⊂ C−kM . Let us show that {ρk} is an approximate identity for

Lp(Rn), 1 ≤ p < ∞. First we show that
∫

Rn ρk(x) dx = 1. In fact, for all n ∈ N,

∫

Rn

ρk(x) dx =
1

‖ρ‖1

∫

Rn

∣∣∣| det C|kρ(Ckx)
∣∣∣ dx (x → C−kx)

=
1

‖ρ‖1

∫

Rn

|ρ(x)| dx

= 1

Next we show lim
k→∞

‖f − f ∗ ρk‖p = 0.

Let f ∈ Lp(Rn) be arbitrary. By density of Cc(R
n) in Lp(Rn), there exists

fε ∈ Cc(R
n) such that ‖f − fε‖p <

ε

4
. By Young’s inequality,

‖f ∗ ρk − fε ∗ ρk‖p = ‖(f − fε) ∗ ρk‖p ≤ ‖f − fε‖p‖ρk‖1 = ‖f − fε‖p. (4.12)

Now set S= supp(fε) and consider gk = fε ∗ ρk. Then by theorem 2.10 and as C

is expanding, supp(gk) ⊂ S + C−kM ⊂ S + M . Set K = (S + M) ∪ S. Then

supp(fε) ⊂ K and supp(gk) ⊂ K for all k, so that

∫

Rn

|fε(x) − gk(x)|p dx ≤ λ(K) sup
x∈K

|fε(x) − gk(x)|p. (4.13)
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Now since
∫

Rn ρk(t) dt = 1, we can write

fε(x) − gk(x) = fε(x) − (fε ∗ ρk)(x)

=

∫

Rn

fε(x)ρk(t) dt −
∫

Rn

fε(x − t)ρk(t) dt

=

∫

Rn

(fε(x) − fε(x − t))ρk(t) dt

=

∫

C−kM

(fε(x) − fε(x − t))ρk(t) dt

as supp(ρk) ⊂ C−kM . Thus,

|fε(x) − gk(x)| ≤
∫

C−kM

|(fε(x) − fε(x − t))ρk(t)| dt

≤ sup
t∈C−kM

|fε(x) − fε(x − t)|
∫

C−kM

ρk(t) dt

= sup
t∈C−kM

|fε(x) − fε(x − t)|.

for all k, and hence

sup
x∈K

|fε(x) − gk(x)| ≤ sup
x∈K

t∈C−kM

|fε(x) − fε(x − t)|. (4.14)

Now since fε is uniformly continuous, ∃δ > 0 such that |fε(x) − fε(x − t)| <

ε

2(λ(K))1/p
∀x provided ‖t‖ < δ. Note that since C is expanding, by the lemma

4.5 there exists N ∈ N such that C−kM ⊂ Bδ(0) for all k ≥ N , so that

|fε(x) − fε(x − t)| <
ε

2(λ(K))1/p
, ∀t ∈ C−kM, ∀x ∈ Rn

and hence

sup
t∈C−kM

|fε(x) − fε(x − t)| ≤ ε

2(λ(K))1/p
. (4.15)

By (4.13), (4.14) and (4.15) then

‖fε − gk‖p
p ≤ λ(K)sup

x∈K

εp

2p(λ(K))
=

εp

2p

and hence

‖fε − gk‖p ≤
ε

2
(4.16)
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for all k ≥ N . Applying the triangle inequality and (4.12),

‖f − f ∗ ρk‖p = ‖f − fε + fε − fε ∗ ρk + fε ∗ ρk − f ∗ ρk‖p

≤ ‖f − fε‖p + ‖fε − fε ∗ ρk‖p + ‖fε ∗ ρk − f ∗ ρk‖p

≤ 2‖f − fε‖p + ‖fε − fε ∗ ρk‖p

≤ 2
ε

4
+

ε

2

= ε

for k ≥ N . As ε is arbitrary, it follows that lim
k→∞

‖f − f ∗ ρk‖p = 0. This shows

the existence of an even approximate identity.

Theorem 4.5. Let A ∈ GLn(R), | det A| 6= 1 and suppose that ψ ∈ L2(Rn) is

admissible, that is,

∫

R

|ψ̂(γAt)| dt = cψ < ∞ a.e γ. Let {ρk}∞k=1 ⊂ L1(Rn)∩L2(Rn)

be an approximate identity for L2(Rn) such that ρk(−x) = ρk(x) for all k. Then

fk(x) =
1

cψ

∫

R

∫

Rn

Wf(t, b)(ρk ∗ DAtTbψ)(x) db dt

exists for all k and all x ∈ Rn, and fk → f in L2(Rn).

Proof. An approximate identity with the required properties exists by example 1.

Now as ρk is even and the wavelet transform is a multiple of an isometry, we have

(f ∗ ρk)(x) =

∫

Rn

f(y)ρk(x − y) dy

=

∫

Rn

f(y)ρk(y − x) dy

= 〈f, Txρk〉

=
1

cψ

〈Wf,W (Txρk)〉L2(R×Rn)

=
1

cψ

∫

R

∫

Rn

Wf(t, b)〈DAtTbψ, Txρk〉L2(Rn) db dt

=
1

cψ

∫

R

∫

Rn

Wf(t, b)

(∫

Rn

DAtTbψ(y)ρk(y − x) dy

)
db dt
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=
1

cψ

∫

R

∫

Rn

Wf(t, b)

(∫

Rn

DAtTbψ(y)ρk(x − y) dy

)
db dt

=
1

cψ

∫

R

∫

Rn

Wf(t, b)(ρk ∗ DAtTbψ)(x) db dt

= fk(x).

Since {ρk} is an approximate identity, it follows that

lim
k→∞

‖f − fk‖2 = lim
k→∞

‖f − f ∗ ρk‖2 = 0.

Let us analyze how well fk estimates f , at least for some particular f , where

{ρk} is the approximate identity of example 4.1 That is, given ε > 0, we want to

find k such that ‖f − fk‖2 < ε.

I. Keep the notation of example 4.1. Let f ∈ Cc(R
n), then fε = f and

gk = fk. Let ε > 0 be given. Since f is uniformly continuous, there exists δ > 0

such that ‖t‖ < δ implies |f(x) − f(x − t)| <
ε

(λ(K))1/2
for all x ∈ Rn. Pick N

such that C−kM ⊂ Bδ(0) for all k ≥ N . Then by (4.13) and (4.14),

‖f − fk‖2 ≤ sup
t∈C−kM

|f(x) − f(x − t)|(λ(K))1/2 < ε

for all k ≥ N .

II. Fix m > 0 and a compact subset S of Rn, and set Sm = {f ∈

C1
c (Rn), ‖∇f‖ ≤ m, supp(f) ⊂ S}. Now given ε > 0, choose δ =

ε

m(λ(K))1/2

where K = (S + M) ∪ S. We must pick N ∈ N such that C−kM ⊂ Bδ(0) for all

k ≥ N . By the proof of lemma 4.5, we must choose

N > loga

(M̃m(λ(K))1/2

ε

)1/2

where M̃ = max
x∈M

‖x‖. Now let f ∈ Sm be arbitrary. By the Mean Value Theorem,

for each x, t there exists c on the line segment connecting x and x − t such that
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f(x) − f(x − t) = (Drf)(c)t where Dr is the directional derivative in direction of

the line segment connecting x and x − t. Thus,

|f(x) − f(x − t)| ≤ ‖Drf(c)‖‖t‖

≤ ‖∇f‖‖t‖

< mδ

≤ ε

(λ(K))1/2

provided that ‖t‖ < δ. Then by (4.14)

‖f − fk‖2 ≤ sup
t∈C−kM

|f(x) − f(x − t)|(λ(K))1/2 < ε

for all k ≥ N .

4.3 Wavelet Frames

Another way to reconstruct a function f from its wavelet transform is by

means of frames. Here, one tries to reconstruct f by an infinite series, which is

computationally much simpler than reconstruction by an integral. We will now

identify a class of 2×2 matrices and admissible functions in L2(R2) which provide

for wavelet frames. Let us say that g ∈ L2(R2) generates a wavelet frame, if

{DAnTbmg}n∈Z,m∈Z2 is a frame for L2(R2), where b > 0 is constant.

Theorem 4.6. Let I =
[
−1
2b

, 1
2b

]
×

[
−1
2b

, 1
2b

]
for some b > 0, g ∈ L2(R2) be such

that supp(ĝ) ⊂ I and suppose there exist α, β such that

0 < α ≤
∑

n∈Z

|ĝ(γAn)|2 ≤ β < ∞ for a.e. γ. (4.17)

Then ∀f ∈ L2(R2),

α

b2
‖f‖2

2 ≤
∑

n∈Z

∑

m∈Z2

|〈f,DAnTbmg〉|2 ≤ β

b2
‖f‖2

2.



60

That is, {DAnTbmg}n∈Z,m∈Z2 is a wavelet frame in L2(R2) with frame bounds
α

b2

and
β

b2
.

Proof. Since supp(DAn f̂ · ĝ) ⊂ I and ĝ is essentially bounded by (4.17), then

DAn f̂ · ĝ ∈ L2(I). It is well known that the collection of functions {em(γ)}m∈Z2

with em(γ) = be2iπγbm is an orthonormal basis for L2(I). Then by Parserval’s

identity, for each h ∈ L2(I),

∑

m∈Z2

|〈h, em〉L2(I)|2 = ‖h‖2
L2(I)

and thus

∑

n∈Z

∑

m∈Z2

|〈f,DAnTbmg〉|2 =
∑

n∈Z

∑

m∈Z2

|〈f̂ , DA−nE−bmĝ〉|2 (By Plancherel’s Theorem)

=
∑

n∈Z

( ∑

m∈Z2

|〈DAn f̂ , E−bmĝ〉|2
)

=
∑

n∈Z

( ∑

m∈Z2

|〈DAn f̂ , Ebmĝ〉|2
)

=
1

b2

∑

n∈Z

( ∑

m∈Z2

|〈(DAn f̂)ĝ, be2iπγ·bm〉|2
)

=
1

b2

∑

n∈Z

‖(DAn f̂)ĝ‖2
L2(I)

=
1

b2

∑

n∈Z

(∫

I

∣∣∣∣∣(DAn f̂)(γ)ĝ(γ)

∣∣∣∣∣

2

dγ

)
(supp(ĝ) ⊂ I)

=
1

b2

∑

n∈Z

(∫

R2

∣∣∣∣∣(DAn f̂)(γ)ĝ(γ)

∣∣∣∣∣

2

dγ

)

=
1

b2

∑

n∈Z

(∫

R2

[
| det A|−n/2|f̂(γA−n)ĝ(γ)|

]2

dγ

)

=
1

b2

∑

n∈Z

(∫

R2

|f̂(γ)ĝ(γAn)|2 dγ

)
(γ → Anγ)

=
1

b2

∫

R2

(
|f̂(γ)|2

∑

n∈Z

|ĝ(γAn)|2
)

dγ
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so that, by assumption,

α

b2

∫

R2

|f̂(γ)|2 dγ ≤
∑

n∈Z

∑

m∈Z2

|〈f,DAnTbmg〉|2 ≤ β

b2

∫

R2

|f̂(γ)|2 dγ

or

α

b2
‖f‖2

2 ≤
∑

n∈Z

∑

m∈Z2

|〈f,DAnTbmg〉|2 ≤ β

b2
‖f‖2

2

for all f ∈ L2(R2).

In the following, we will give examples of such frame generators.

Example 4.2 (A tight frame generator). Let I =
[−1

2
, 1

2

]
×

[−1
2

, 1
2

]
and A =

[
a 0

0 b

]
where a, b > 1. Set I ′ =

[−1
2a

, 1
2a

]
×

[−1
2b

, 1
2b

]
, and Ĩ = I\I ′. We will show

that the function g ∈ L2(R2) defined by

ĝ(γ) = χeI(γ) =





1, γ ∈ Ĩ

0, γ /∈ Ĩ

generates a tight wavelet frame for L2(R2).

1

2b

1

2b
−

1

2a
−

1

2a

1

2

1

2
−

1

2
−

1

2

γ
1

γ
2

0

Figure 4.2 The set Ĩ

For this, let γ ∈ R2, γ = (γ1, γ2) 6= 0 be arbitrary. We will show that
∑

n∈Z

|ĝ(γAn)|2 = 1.
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Claim : There exists a unique k1 ∈ Z such that 1
2a

< |γ1a
k1| ≤ 1

2
.

To compute k1, note that

|γ1a
k1 | >

1

2a
⇔ k1 > −loga(2|γ1|) − 1.

On the other hand,

|γ1a
k1| ≤ 1

2
⇔ k1 ≤ loga(2|γ1|).

Set M = −loga(2|γ1|). It follows that
1

2a
< |γ1a

k1| ≤ 1

2
if and only if k1 ∈

(M − 1,M ]. Since this interval contains exactly one integer k1, the claim follows.

Similarly, there exists a unique k2 ∈ Z such that
1

2b
< |γ2b

k2 | ≤ 1

2
. Set k0 =

max{k1, k2}. Next we show : γAk ∈ Ĩ if and only if k = k0. Observe that

γAk = (γ1a
k, γ2b

k).

Case 1. if k0 = k1 then
1

2a
< |γ1a

k1| ≤ 1

2
while 0 < |γ2b

k1 | ≤ |γ2b
k2| ≤ 1

2
.

Hence γAk0 ∈ Ĩ . Note that if k > k1, then |γ1a
k| ≥ |γ1a

k1+1| >
1

2a
a =

1

2
,

hence γAk /∈ Ĩ while if k < k1, then |γ1a
k| ≤ |γ1a

k1−1| =
1

a
|γ1a

k1| ≤ 1

2a
and

|γ2b
k| < |γ2b

k1−1| ≤ |γ2b
k2−1| ≤ 1

2b
, hence γAk /∈ Ĩ.

Case 2. If k0 = k2 then 0 < |γ1a
k2| ≤ |γ1a

k1| ≤ 1

2
while

1

2b
< |γ2b

k2 | ≤ 1

2
. Hence

γAk0 ∈ Ĩ . Note that if k > k2, then |γ2b
k| ≥ |γ2b

k2+1| >
1

2
, hence γAk /∈ Ĩ while if

k < k2, then |γ2b
k| ≤ 1

2b
and |γ1a

k| ≤ 1

2a
, hence γAk /∈ Ĩ.

This proves that there exists a unique k0 such that γAk0 ∈ Ĩ. Since γAk ∈ Ĩ ⇔

k = k0, then χĨ(γAn) = δn,k0 . Thus,

∞∑

n=−∞
|ĝ(γAn)|2 =

∞∑

n=−∞
|χĨ(γAn)|2 =

∞∑

n=−∞
δn,k0 = 1.

By the theorem, {DAnTmg} is a tight frame with frame bounds α = β = 1.

Note that since ĝ is a characteristic function, g vanishes only slowly at infinity.

We thus want to present another example, namely of a smooth frame generator.

Remark 4.1 : Let A =

[
a 0

0 b

]
with a, b > 1 and let S1 = {γ = (γ1, γ2) | γ1

2 +

γ2
2 = 1} denote the unit circle, and D = {γAt : γ ∈ S1, 0 ≤ t ≤ 1}.
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1) For each γ 6= 0, there exists a unique t0 ∈ R such that γ0 := γAt0 ∈ S1.

Furthermore, ∫ ∞

−∞
f(γAt) dt =

∫ ∞

−∞
f(γ0A

t) dt.

for every f ≥ 0 measurable.

2) For each γ 6= 0, there exists a unique n0 ∈ Z such that γ̃ := γAn0 ∈ D.

Furthermore,
∞∑

n=−∞
f(γAn) =

∞∑

n=−∞
f(γ̃An)

for every f ≥ 0.

Proof. 1) Since γ 7→ ‖γAt‖ is continuous, lim
t→−∞

‖γAt‖ = 0 and lim
t→∞

‖γAt‖ = ∞,

by the intermediate value theorem, there exists t0 such that ‖γAt0‖ = 1. On the

other hand, t 7→ ‖γAt‖ is strictly increasing, hence t0 is unique. Then if γ0 := γAt0

we have for every measurable f ≥ 0,

∫ ∞

−∞
f(γAt) dt =

∫ ∞

−∞
f(γ0A

−t0At) dt

=

∫ ∞

−∞
f(γ0A

t−t0) dt

=

∫ ∞

−∞
f(γ0A

t) dt (t → t + t0).

2) Let γ0, t0 be as in part 1). Then γAn ∈ D ⇔ γAt0An−t0 ∈ D ⇔ 0 ≤ n − t0 <

1 ⇔ t0 ≤ n < t0 + 1. Now the interval [t0, t0 + 1) contains exactly one integer n0,

that is, n0 is the unique integer such that γAn0 ∈ D. Set γ̃ := γAn0 . Then for all

f ≥ 0,

∞∑

n=−∞
f(γAn) =

∞∑

n=−∞
f(γ̃A−n0An)

=
∞∑

n=−∞
f(γ̃An−n0) (n → n + n0)

=
∞∑

n=−∞
f(γ̃An).
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Example 4.3 (A frame generator g with ĝ ∈ C∞
c (R2)). Let A =

[
a 0

0 b

]
, b ≥

a > 1. Pick M such that
1

b2
< M <

1

b
and N such that 1 < N < a. Pick

ϕ ∈ C∞
c (R) with supp(ϕ) ⊂ [M,N ], 0 ≤ ϕ ≤ 1, ϕ = 1 on [1/b, 1], ϕ = 0 on

R\(M,N) and ϕ is increasing on [M, 1/b] and decreasing [1, N ].

2

1

b

1

k
a

M N1 a b0 1

b

1

a

1

γ

ϕ

( )ϕ γ

Figure 4.3 The function ϕ

This is certainly possible as shown in the proof of Urysohn’s lemma (Wade, 1999).

Set ĝ(γ) = ϕ(‖γ‖) where γ = (γ1, γ2). We show that there exists k ∈ N such that

1 ≤
∫ ∞

−∞
ϕ(‖γAt‖)2 dt ≤ k + 1 (4.18)

and

1 ≤
∞∑

n=−∞
ϕ(‖γAn‖)2 ≤ k + 1 (4.19)

for all γ 6= 0.

First let γ ∈ S1. Then γ can be written uniquely as γ = (cos θ, sin θ) where

0 ≤ θ < 2π. Then ‖γAt‖2 = a2tcos2θ + b2tsin2θ so that ∀t > 0,

‖γAt‖2 ≤ b2tcos2θ + b2tsin2θ = b2t

‖γAt‖2 ≥ a2tcos2θ + a2tsin2θ = a2t

and hence

at ≤ ‖γAt‖ ≤ bt ∀t > 0 (4.20)
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Similarly,

bt ≤ ‖γAt‖ ≤ at ∀t < 0. (4.21)

Thus,

ĝ(γAt) =





1, −1 ≤ t < 0

0, t < loga M or loga N < t

∈ [0, 1], else.

Pick k such that
1

ak
< M <

1

b
. By (4.20) and as ϕ is decreasing (to be precise,

nonincreasing) on (1,∞) then

ϕ(bt) ≤ ϕ(‖γAt‖) ≤ ϕ(at) t ∈ (0,∞). (4.22)

By (4.21) and as ϕ is increasing on (0, 1) then

ϕ(bt) ≤ ϕ(‖γAt‖) ≤ ϕ(at) t ∈ (−∞, 0). (4.23)

If t < −k, then by (4.21), ‖γAt‖ ≤ a−k < M , hence ϕ(‖γAt‖) = 0. Similarly, if

t > 1, then by (4.20), ‖γAt‖ ≥ a > N , hence ϕ(‖γAt‖) = 0. Thus

∫ ∞

−∞
ϕ(‖γAt‖)2 dt =

∫ 1

−k

ϕ(‖γAt‖)2 dt

=

∫ 0

−k

ϕ(‖γAt‖)2 dt

︸ ︷︷ ︸
I1

+

∫ 1

0

ϕ(‖γAt‖)2 dt

︸ ︷︷ ︸
I2

. (4.24)

We estimate I1. By (4.23)

∫ 0

−k

ϕ(bt)2 dt ≤
∫ 0

−k

ϕ(‖γAt‖)2 dt ≤
∫ 0

−k

ϕ(at)2 dt. (4.25)

We estimate the term on the left of the inequality (4.25). As ϕ = 1 on [1
b
, 1] then

∫ 0

−k

ϕ(bt)2 dt ≥
∫ 0

−1

ϕ(bt)2 dt =
t∈(−1,0)

then ϕ(bt)=1

∫ 0

−1

1 dt = 1.

Similarly, we estimate the term on the right of the inequality by

∫ 0

−k

ϕ(at)2 dt ≤
∫ 0

−k

1 dt = k.



66

Hence,

1 ≤
∫ 0

−k

ϕ(‖γAt‖)2 dt ≤ k. (4.26)

Next, we estimate I2. Since 0 ≤ ϕ ≤ 1, the

0 ≤
∫ 1

0

ϕ(‖γAt‖)2 dt ≤
∫ 1

0

1 dt = 1. (4.27)

By (4.26) and (4.27),

1 ≤
∫ 1

−k

ϕ(‖γAt‖)2 dt ≤ k + 1.

Hence by (4.24),

1 ≤
∫ ∞

−∞
ϕ(‖γAt‖)2 dt ≤ k + 1 (4.28)

for all γ ∈ S1, that is, by (4.28)

1 ≤
∫ ∞

−∞
|ĝ(γAt)|2 dt ≤ k + 1. (4.29)

It now follows from remark 4.1 that (4.29) holds for every γ 6= 0.

Next we show that the left inequality (4.19) holds. Let γ 6= 0 and pick t0 such

that γ0 = γAt0 ∈ S1. Let n0 = ⌊t0⌋ where ⌊·⌋ denotes the least integer function.

Then t0 − 1 < n0 ≤ t0. Note that ‖γAt0−1‖ = ‖γAt0A−1‖ = ‖γ0A
−1‖, while by

(4.21),

1

b
≤ ‖γ0A

−1‖ ≤ 1

a
.

Since, the function t → ‖γAt‖ is increasing, we have

1

b
≤ ‖γ0A

−1‖ = ‖γAt0−1‖ ≤ ‖γAn0‖ ≤ ‖γAt0‖ = 1.

Since ϕ = 1 on [1/b, 1], then ϕ(‖γAn0‖) = 1. Hence,

∞∑

n=−∞
ϕ(‖γAn‖)2 ≥ 1. (4.30)

Next we show that the right inequality holds in (4.19). First, let γ ∈ D. Then

γAn = (at+n cos θ, bt+n sin θ) for some t, 0 ≤ t < 1. If n + t /∈ [−k, 1) then
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ϕ(‖γAn+t‖) = 0. Now n + t ∈ [−k, 1) for exactly k + 1 values of n, namely for

n ∈ {−k,−k + 1, ..., 0}, so that

∞∑

n=−∞
ϕ(‖γAn‖)2 =

1∑

n=−k

ϕ(‖γAn‖)2 ≤ k + 1 ∀γ ∈ D, (4.31)

as |ϕ| ≤ 1. The inequalities (4.30) and (4.31) show that (4.19) holds for every

γ ∈ D. It then follows from remark 4.1 that (4.19) holds for every γ 6= 0. Since

supp(ĝ) ⊂ {γ ∈ R2 : ‖γ‖ < N} ⊂
[
−2N

2
, 2N

2

]
×

[
−2N

2
, 2N

2

]
, it follows by (4.19)

and theorem 4.6 that {DAnT m
2N

g}n∈Z,m∈Z2 is a wavelet frame with frame bounds

4N2 and 4(k + 1)N2.

Example 4.4 (A frame generator g with ĝ ∈ C∞
c (R2)). Let A =

[
a 0

0 b

]
be

an expanding matrix. Without loss of generality, suppose that b ≥ a > 1. Let

D = {(as cos θ, bs sin θ) : 0 ≤ s ≤ 1} as in remark 4.1, so its closure is

D̄ = {(as cos θ, bs sin θ) : 0 ≤ s ≤ 1}. (4.32)

aa−

b−

b

1

1

1−

1−
1

γ

2
γ

0 δ+1
aa

δ−
a−a−

b−

b−

b

b

δ+1

δ+1

δ+1

δ−

δ−

δ−

D

E

Figure 4.4 The sets D and E
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Then D̄ is a compact elliptic annulus. Next we enlarge this annulus to a slightly

bigger open set, by fixing δ, 0 < δ < 1
2

and setting

E = {(as cos θ, bs sin θ), −δ < s < 1 + δ}. (4.33)

By Urysohn’s lemma, there exist ĝ ∈ C∞
c (R2) such that 0 ≤ ĝ ≤ 1 ∀γ ∈ R2 and

ĝ(γ) = 1 ∀γ ∈ D̄ , and supp(ĝ) ⊂ E.

We will show that the function g generates a wavelet frame for L2(R2).

Let γ ∈ D̄. Then γ = (as cos θ, bs sin θ) for some 0 ≤ s ≤ 1, and γAt =

(as+t cos θ, bs+t sin θ). Note that

γAt ∈ D̄ ⇔ 0 ≤ s + t ≤ 1 ⇔ −s ≤ t ≤ 1 − s

Also,

γAt ∈ E ⇔ −δ < s + t < 1 + δ ⇔ −s − δ < t < 1 + δ − s.

Hence,

ĝ(γAt) = 1 ∀t ∈ [−s, 1 − s] (4.34)

and

ĝ(γAt) = 0 ∀t /∈ (−s − δ, 1 + δ − s). (4.35)

First let us find α, β such that α ≤
∫ ∞

−∞
|ĝ(γAt)|2 dt ≤ β. By (4.34) we have

∫ ∞

−∞
|ĝ(γAt)|2 dt ≥

∫ 1−s

−s

|ĝ(γAt)|2 dt =

∫ 1−s

−s

1 dt = 1

and by (4.35), and since ĝ ≤ 1

∫ ∞

−∞
|ĝ(γAt)|2 dt ≤

∫ ∞

−∞
|χE(γAt)|2 dt =

∫ 1+δ−s

−δ−s

1 dt = 1 + 2δ.

Hence,

1 ≤
∫ ∞

−∞
|ĝ(γAt)|2 dt ≤ 1 + 2δ ∀γ ∈ D̄.



69

It now follows from remark 4.1 that

1 ≤
∫ ∞

−∞
|ĝ(γAt)|2 dt ≤ 1 + 2δ ∀γ 6= 0.

Next we will show that

1 ≤
∞∑

n=−∞
|ĝ(γAn)|2 ≤ 2 ∀γ 6= 0.

Let γ 6= 0. As shown in remark 4.1, there exists a unique n0 ∈ Z such that

γ0 = γAn0 ∈ D. Then

∞∑

n=−∞
|ĝ(γAn)|2 ≥ |ĝ(γAn0)| = |ĝ(γ0)| = 1. (4.36)

Note that γ0 = (as cos θ, bs sin θ) for some unique 0 ≤ s < 1. and 0 ≤ θ < 2π.

If s > 1
2

then s + n ∈ (−δ, 1 + δ), implies n ∈ {−1, 0}.

If s ≤ 1
2

then s + n ∈ (−δ, 1 + δ), implies n ∈ {0, 1}.

Hence γ0A
n ∈ E for at most two values of n, namely, n1 = 0 and n2 = −1

(resp. n2 = 1), so that ĝ(γ0A
n) = 0 all other values of n. Thus by remark 4.1,

∞∑

n=−∞
|ĝ(γAn)|2 =

∞∑

n=−∞
|ĝ(γ0A

n)|2 = |ĝ(γ0)|2 + |ĝ(γ0A
n2)|2 ≤ 1 + 1 = 2.

Together with (4.36), we have shown that

1 ≤
∞∑

n=−∞
|ĝ(γAn)|2 ≤ 2 ∀γ 6= 0.

Now as E ⊂
[
−1
2b̃

, 1
2b̃

]
×

[
−1
2b̃

, 1
2b̃

]
where b̃ =

1

2b1+δ
, it follows from theorem 4.6 that

{DAnTb̃mg}n∈Z,m∈Z2 is a wavelet frame with frame bounds 4b2+2δ and 8b2+2δ.
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CONCLUSION

The objective of this thesis was to discuss methods of reconstructing a

function f ∈ L2(R2) from its wavelet transform Wf(t, b) not by a weak integral,

but through approximation by usual integrals or infinite series.

For this, we considered three methods: Modification of the set of integration

in the weak integral, introduction of an approximate identity into the integrand,

and construction of wavelet frames. We have obtained the following results:

1. In theorem 4.1 we showed that fε(x) → f(x) in the mean square norm as

ε → −∞, where

fε(x) =
1

cψ

∫ ∞

ε

∫

R2

(Wf)(t, b)DAtTbψ(x) db dt

provided that the dilation matrix A is expanding, that the wavelet ψ is ad-

missible and its Fourier transform satisfies a weak decay condition at infinity.

2. In theorem 4.2, we proved a similar approximation result in case A−1 is

expanding.

3. In theorem 4.3, we showed that under the additional assumption that ψ̂

vanish in a neighborhood of zero and f be bandlimited, then fε = f for

sufficiently negative ε, and f can be reconstructed by the usual integral

f(x) =
1

cψ

∫

R

∫

R2

Wf(t, b)DAtTbψ(x) db dt a.e.

4. In theorem 4.4, we extended theorem 4.1 to L2(Rn) under the assumption

that the matrix A is diagonalizable and expanding.
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5. In theorem 4.5, we showed that if {ρk} is a symmetric approximate identity,

and the matrix A is diagonalizable, then fk → f in the mean square norm,

where

fk(x) =

∫

R

∫

Rn

Wf(t, b)(ρk ∗ DAtTbψ)(x) db dt

as a usual integral.

6. In theorem 4.6, assuming the matrix A is diagonal, we identified admissible

functions ψ which provide for wavelet frames. As examples, we constructed

several wavelet frame generators ψ.

The results in this thesis are extensions to L2(R2) of theorems presented in Gas-

quet, C. and Witomaski, P. (1998) and Heil, C.E. and Walnut, D.F. (1989) for

L2(R). It is conceivable that these results can be extended to L2(Rn) for an arbi-

trary expanding dilation matrix A. The difficultly here is to extend lemma 4.1 to

higher dimensions, that is to estimate how quickly the points γAt tend to infinity,

as t → ∞.



REFERENCES



REFERENCES

Apostol, T.M. (1997), Linear Algebra, John Wiley&Sons.

Donald, C.L. (1997), Measure Theory, Birkhäuser.
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