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This thesis presents various methods of reconstructing a square integrable
function on the plane from its continuous wavelet transform. The dilation oper-
ators are given by powers of an expanding matrix, and the translation operators
by vectors in the plane. By suitably restricting the set of integration or modifying
the integrand, the weak reconstruction integral becomes a pointwise Lebesgue in-
tegral approximating the given function with arbitrary accuracy. Reconstruction
by wavelet frames is discussed as well, and examples of wavelet frame generators

are presented.
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CHAPTER 1

INTRODUCTION

The classic Fourier transform has wide applications in the fields of science
and engineering, such as signal processing for example. If f(z) € L'(R), then its

Fourier transform is the function f(v) given by

f)=Ff(y) = /Rf(x)e_%mm dr, -~ €R.

If f € L'(R) as well, then one can reconstruct f from its Fourier transform f by

fla)=Ff(z) = /Rf(v)e%mx dvy, a.e. x€R.

Plancherel’s theorem says that the restriction of the Fourier transform F to L'(R)N
L?(R) is an isometry onto a dense subset of L?(R), and thus extends to a surjective
isometry, also called the Fourier transform on L?(R).

For example, in signal processing, a function f(z) € L?(R) is called a finite
energy signal while z is referred to as time. The value f (y) is then interpreted as
the contents of frequency v in f.

In the analysis of seismic data (Goupilland, Grossman and Morlet, 1984) or
images (Mallat and Zhong, 1992) one deals with signals which have well localized
and steep gradients. In image processing, these would occur at the edges of an
object, for example. However, the Fourier transform does not reveal where such

gradients occur. To see this, note that the Fourier transform of f(z — x¢) is

fAﬂ?O (7) - /Rf(x - xo)e_%’"’mdx = Af(x)e_ziﬂ7($+fo) dr = f(’}/)e_2i7w$0,



so translation of x simply corresponds to a phase shift of the Fourier transform.
Thus the magnitude of the Fourier transform does not show whether or where
steep gradients occur.

For this reason, Grossmann and Morlet introduced the wavelet transform in 1984.
Here one fixes a function ¢ € L*(R), and considers the 2-parameters family of

dilates and translates,

ww@»:i%w(g—b) (a>0,beR).

Given f € L*(R), its wavelet transform is the function

W (a) = (f.0s) = —= / faye (5~ b) do (11)

where (-, -) denotes the inner product in L*(R). Now if ¢ is well localized, say the
support of 1 is the interval [-1,1], then for fixed a and b, the value of W f(a,b)
depends on the values of f in the interval [(b—1)a, (b+ 1)a] only. For small values
of a, the wavelet transform captures rapidly changing features of f, while for large
values of a, it captures gradually changing features of f, at location determined
by 0.

Setting @ = e’ in (1.1), we obtain an alternative notation for the wavelet

transform,
W f(t,b) 4”/f Y (e~te —b) da, (t,b € R).

Thus, a natural extension of the wavelet transform to R™ is as follows. Given an
invertible n x n matrix A = e? and a vector b € R, define dilation and translation

operators by

(Daf)(w) = |det A2 f (A™'2),
(Tof)(x) = f(z=b),



for f € L*(R") and = € R". The function

WD) = (1.DaTit) = gy | f@iATT=Ddr, (12

where t € R,b € R" and A* = €', is then called the continuous wavelet transform
of f. We say that v is admissible if there exists a constant ¢, > 0 such that

W F113 = cyl| f||3 for all f € L*(R™). In this case, one can reconstruct a function

f from its wavelet transform as follows. By the polarization identity,

<Wf7 Wg)LQ(]RXR”) = Cy <f7 g>L2(R”)7

for all g € L?(R"), and hence

(f.g) = i/ W f(t,b){g, DacTp)dbdt
Cy JR JR?
= é/R/n(Wf(t,b)DAthw,@dbdt.

That is,

f= i/ W f(t,b)DacTyip dbdt (1.3)
Cy JR JRn

as a weak integral in L*(R™).
Since (1.3) is a weak integral, it cannot be computed directly. One thus
needs to know under what conditions on f or ¢ reconstruction formula (1.3) holds

as a usual integral,

f(x) = i/ W f(t,0)DacTytp(x) dbdt (1.4)
Cy Jr JRn

for almost all z.
In the case of the wavelet transform in L?(R), it has been shown (Gasquet
and Witomaski (1998)) that f can be approximated arbitrarily by a usual integral.

To be precise, if ¢ € L*(R) N L*(R) is admissible, then for each € > 0,

fs(x) = i/gm/RWf(a,b)w&b(x)%dbda



exists, f. € L?(R) and

Jim ] = fol = 0. (15)

Heil and Walnut (1989) have shown that if {p,}>2, is a symmetric approximate

n=1

identity for L?(R), then for each n and almost all z, the function

ful) = / ) / W f(a.) (o0 D,Ty) ) db da (1.6)

exists, and f,, converges to f in L*(R).
It is natural to ask whether similar properties hold for the inverse wavelet

transform in L?(R"). Thus, one may ask:

1. For each € € R, does

1 (o ¢]
i) = o / / (W F)(t, ) Doae Ty () db dt (1.7)
exist, and converge to f in the square mean, as ¢ — —oo ?

2. If {p,} is an approximate identity for L?(R™), and if we set

e = [ [ 0 Denens Dt e, (1)
is then
tim [~ £l = 07 (19)

Can one estimate how well f, approximates f? That is, given {p,} and

€ > 0, can one find N such that

If = fulla<e, Yn>N? (1.10)

Another way to reconstruct f from its wavelet transform is by means of
frames. Here, one tries to reconstruct f by an infinite series, which is computa-

tionally much simpler than reconstruction by an integral. Given b > 0, we say



that the collection {Dan Tyt tnez.mezn 1s a wavelet frame, if there exist constants
a, 3 > 0 such that

allfI3< DY Wfnmb)[* < BIIf]5, (1.11)

neEZ meL™

for all f € L*(R™). Tt is known (Grossmann and Morlet (1984), Hernandez and
Weiss (1996)) that in this case, f can be obtained from its sequence of frame
coefficients {W f(n, mb) }pezmezn as a series in L*(R™) by means of the dual frame.

Heil and Walnut have shown that in case of the one-dimensional wavelet

transform (1.1), the collection {®Wun mp tn.mez is @ frame in L*(R), provided that

R 1
1. supp(¥)C (=L, =) U (I, L), where 0 < < L < 5

2. there exist «, f such that 0 < a < Z lh(a"y) > < B for a.e. v € R.

neL

The question is now whether this result generalizes to the multidimensional trans-
form (1.2). This is called the discretrization problem.

In this thesis, we extend the well known reconstruction formulas for the
classic continuous wavelet transform to L?(R?), and in the special case where the
matrix A is diagonalizable, to L?(R") as well. We give conditions on f and
which guarantee that the weak reconstruction integral exists as a usual integral.
Given a symmetric approximate identity {p,}, we show that the approximate
reconstruction (1.9) holds. Finally, we give sufficient conditions on ¢ € L?(R?) for
wavelet frames to exist, and present examples of such frames.

This thesis is organized as follows. Chapter II introduces the necessary
background knowledge from real analysis and linear algebra. In Chapter I1I, we
give the definition of the classic continuous wavelet transform, and its generaliza-
tion to L*(R™). In Chapter IV, we present approximate and exact reconstruction

formulas for the continuous wavelet transform in L*(R?). As examples, we present



the construction of a symmetric approximate identity and of several wavelet frame

generators.



CHAPTER 11

BACKGROUND

In this chapter, we review the theoretical background from real analysis and
linear algebra which will be used throughout this thesis. Results are mostly stated
without proof, which can be found in standard literature. Additional details and
proofs can be founded in Apostol (1997), Cohn (1980), Folland (1999), Gasquet

and Witomski (1998), and Wade (1999).

2.1 Basic Concepts from Real Analysis

Throughout, when considered as column vectors, elements of R™ will be
denoted by z,y or z, while when considered as row vectors, they will be denoted
by the symbols v and n. The Euclidean norm of a vector x € R™ will be denoted

by ||z|| or ||z||2, while its maximum norm will be denoted by ||z||«. Hence,

n 1/2
]l = llzll2 = (sz)
i=1

and
[7]loo = max |z,

1<i<n

where x = (21, Zo, ..., T,) L.

Definition 2.1. Let U C R™ be open and let F' : U — R™ (respectively, F' :
U — C™). We say that F'is differentiable at x, € U if there exists an m x m real

(respectively, complex) matrix 7', depending on xy such that

i 1E'(@) = Fzo) = T2 — o) |
=0 [l = ol

=0.




It is easily seen that if the components of F' are given by fi, fo, ..., fn and if
0fi .

F is differentiable at o € U, then the partial derivatives —f(xo) exist for any
Ly

ie{l,2,...,m},j€{1,2,...,n} and are given by the entries of the matrix 7"

Fllzg) =T = (gi (xo))ij .

We call the matrix F'(xg) the Jacobian matriz. Its determinant

JF(QZ()) = det (F/(ZEQ))
is called the Jacobian of F' at xy.

Definition 2.2. Let f : R — R be continuous. The support of f, denoted by

supp(f), is the set

supp(f) = {z € R : f(z) # 0}.

Here, A denotes the closure of a set A. We say that f has compact support if

supp(f) is a compact set.
Definition 2.3. Let p € {1,2,...}. We set
1. CP(R") ={f:R" — C: fisp times continuously differentiable}.
2. CP(R") ={f € CP(R™) : f has compact support}.
3. C®(R™) ={f:R" — C: fis infinitely differentiable}.
4. C2(R™) = {f € C®(R") : f has compact support}.
5. Co(R™) ={f :R™ — C: fis continuous and has compact support}.
Theorem 2.1. If f € C.(R"), then f is uniformly continuous.

Proof. Given € > 0, for each = € supp(f) there exists §, > 0 such that |f(z —

1
y) — f(z)] < 3¢ whenever |y| < ., by continuity of f. Since supp(f) is compact,



there exist z1,...,zny such that the balls of radius %6%. about z; cover supp(f).
If & = fmin{d,,}, then, one easily sees that |f(z —y) — f(z)| < € whenever

ly| <0, VreR™ O

Definition 2.4 (Equivalent Norms). Let X be a vector space. Two norms || - ||

and | - ||, on X are said to be equivalent, if there exist constants a, b > 0 such that
allz) < llzflo < ofl]];
for all z € X.

Theorem 2.2. On a finite dimensional vector space X, any two norms || - || and

- ||o are equivalent. In particular, any two norms on R™ are equivalent.
For example, ||zl < ||z]2 < v/n||7]|s for all z € R™.

Theorem 2.3 (Change of Variables). Let U C R” be open, and F': U — R
be in C*(R™), injective, with Jp(x) # 0forallz € U. Set V =F(U). If f: V — C

is Lebesgue measurable, then fo F' : U — C is Lebesgue measurable. Furthermore

/V f(2)dN(x) = / (f o F)(@)| Jr(a)|dA(z)

in the sense that if one of these Lebesgue integral exists, then both exist and are

equal.

Note that if F' itself is a linear map, and if A is the matrix associated with

F, then Jr = A so that
fz)d\(z) = f(Az)|det AldA(x)
Rn R"

Theorem 2.4 (C* Version of Urysohn’s Lemma). Let V be open in R",
and H C V be compact and nonempty. Then there exists h € C'°(R") such that

0 <h(zx) <1forall z € R" h(x)=1forall z € H and supp(h) C V.
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Theorem 2.5 (Mean Value Theorem). Let V' be nonempty and open in R™
and f: V — R™ be differentiable on V. If a,xz € V and the line segment from a
to x, L(x,a) is contained in V', then given any u € R™ there exists ¢ € L(z,a)

such that
u-(f(z) = fla)) = u- (Jp(c)(z — a)).

If m =1, then Jy = V[ (gradient of f), and choosing u = 1 we have

fz) = f(a) = J¢(c)(z — a).

2.2 Spaces of Integrable Functions

In this section we review some theorems from integration theory which will
be used in this thesis. We assume that the reader is familiar with basic concepts

from measure theory, as discussed in Cohn (1980), or Folland (1999), for example.

Definition 2.5. Let (X, M, u) be a measure space and let 1 < p < oco. Then
LP(X, M, ) is the set of equivalence classes of M-measurable functions f : X — C
(resp. f: X — R) such that |f|P is integrable. Here, two functions f and g are
called equivalent, written f ~ g, if f(x) = g(z) a.e. For ease of notation, we
usually confuse a function f with its equivalence class in LP(X, M, u1), and simply

write

IP(X)=LP(X, M,p)={f: X = C|fis ./\/l—measurable,/ | f|Pdp < oo}
X

1/p
1l = ( /X |f|pdu) .

is a norm on LP(X, M, ), and LP(X, M, 1) is Banach space.

Then the number

Definition 2.6. Let (X, M, u) be a measure space. An M-measurable function

f + X — C is said to be essentially bounded, if there exists M > 0 such that



11
|f(z)] < M a.e. Such a number M is called an essential bound for f. Set
L>®(X, M, pn) ={f: X — C|f is M-measurable and essential bounded}
where again, we have identified functions which are equal a.e. Then
|| fllo = inf{M : M is an essential bounded of f}

is a norm on L (X, M, u), and L>(X, M, ) is a Banach space.

Note that R"™ and C" can be viewed as LP-spaces. To see this, let X =
{1,2,3,...,n}, M be its power set,i.e. M = P(X), and p be the counting measure.
There is a 1-1 correspondence between functions f : X — R (orC) and vectors
(21, 22,23, ..., x,) in R™ (or C") given by x; = f(i). With this identification and

since the integral with respect to the counting measure is simply a sum,

n 1/p
el = (zw) C<pen
=1

and

[£]loe = max |z;].
1<i<n

Vo = (21,22, ..., x,) € R" (resp. C").
In this thesis, we deal with the measure space (R", My, \), where M, is the
o—algebra of Lebesgue measurable subsets of R”, and A the Lebesgue measure.

For simplicity, we set LP(R™) = LP(R", M, \).

Theorem 2.6 (Holder’s Inequality). Let (X, M, 1) be a measure space, 1 <
1 1

p < 00, and ¢ be the conjugate of p, that is, — + — = 1. If f € LP(X, M, pu) and
p q

g € LY(X, M, ) then fg e L'(X, M, u) and

[ 1731 < £l gl

If p = g = 2 then this is called the Cauchy-Schwartz Inequality.
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Theorem 2.7 (Monotone Convergence Theorem). Let {f,} > 0 be a se-
quence of M-measurable functions such that 0 < f,, < f,41 for all n. Then
/( lim f,)dp = lim /fndu.

Theorem 2.8. Let 1 < p < co. Then C2°(R") is dense in LP(R™).

Theorem 2.9 (Fubini’s Theorem). Let f : R™™" — C be measurable. Then

1. fy(z) = f(z,y) from R™ — C is measurable for each fixed y € R" (and hence
x +— | f(z,y)| is measurable Vy € R") and ¢,(y) = f(z,y) from R" — C is
measurable for each fixed z € R™ (and hence y — |f(x,y)| is measurable

Ve R™).

2. The functions h(y) = / | fy(z)| dA(2) :/ |f(x,y)] d\(z) from R"™ to C

m m

and

k(x) = lg:(y)| dA\(y) = |f(z,y)| d\(y) from R™ to C are measurable.

R R

It follows that
) [ [ 1wl @i
i) [ [ 1fGalaxmine

iii) |f(z,y)| dA(z,y)

Rm+n

all exist (possibly co).

If at least one of i),ii) or iii) is finite, then

a) fy(x) = f(z,y) € L'(R™) for almost all y,

9:(y) = f(z,y) € LY(R"™) for almost all x

b) h(y) = | flz,y)d\(x) € L'(R")

]Rm

k)= [ flz.y)dA\(y) € L'(R™),

Rn

fz,y) € L(R™™)
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¢) Double and iterated integrals are equal
[ tewien = [ [ fepdes = [ [ e e,
R+ n JRm m JRn
When integrating over R", we often denote the Lebesgue integral simply
by f(z)dx instead of [ f(z)d\(x).
R™ R™

Definition 2.7 (Convolution). Let f and g be measurable functions on R"™. The

convolution of f and ¢ is the function f * g defined by

[rg(r) = . flx —y)g(y)dy = . fy)g(z —y)dy

for all  for which the integral exists. Various conditions can be imposed on f and
g to guarantee that f * g is defined at least almost everywhere. For example, if f

is bounded and compactly supported, g can be any locally integrable function.

The elementary properties of convolutions are summarized in the following
theorem. Let’s us first introduce some notation : If K, L C R", we set K + L =

{r+y:ze€ K, ye L}
Theorem 2.10. Assuming that all integrals in question exist, we have
a. fxg=g=x*f.

b. (f*xg)xh=fx(gxh).

c. supp(f * g) C supp(f) + supp(g)

Theorem 2.11 (Young’s inequality). Let f € LP(R") and g € LI(R"),1 <

11 1
p,g;r <00, and St o= 4 1 Then fxg € LY(RY), and [f + gll- < |l £l llglls-

The following two properties are direct consequences of Young’ inequality.

1. If f € LP(R™), g € L*(R™),1 < p < oo, then f* g € LP(R™) and || f * g, <

£ lIpllglls-
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1 1
2. if fe IP(R")and g € LI(R"),-+—- =1, 1 < p,q < o0, then fxg € L>®(R"),
P 4q

and || f * glleo < Ifllnllgll4-

Definition 2.8 (Approximate Identity). We say that {p,}>>, C L'(R") is an

approximate identity for LP(R™) | if {p,} satisfies

a. p, >0, Vn
b. / pn(z)dr =1, Vn

c.Jim [[(pn )~ fll, =0,V € LP(R").

2.3 Frames and Weak Integrals

The concept of frames is a generalization of that of a basis of a Hilbert

space. For details, see Heil and Walnut (1989), or Hernandez and Weiss (1996).

Definition 2.9 (Frames). A collection of elements {¢; : 7 € N} in a Hilbert
space H is called a frame if there exist constants o and 3, 0 < a < 3 < 00, such

that

alfIIP <D I enl <BIFIP VfeH.
JEN

The constants «, 3 are called frame bounds. If @« = ( , we say that the frame is

tight. We can reconstruct f from its frame coefficients {(f, p;)};en as follows :

Theorem 2.12 (Dual Frame). Let {¢; : j € N} be a frame on a Hilbert space

H with frame bounds « and 3. Then 35 € B(H) such that the collection {p; :=
1 1 N
3 and o and f = Z(f, 0;)P; =
jEN
Z(f, wiyp; Vf € H. The family {p; : 7 € N} is called the dual frame to

jeN

{p;:j € N}

S~p;) : j € N} is also a frame with bounds
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Definition 2.10 (Weakly Measurable Function and Weak Integral). Let
‘H be a Banach space, (X, M, u) a measure space, and ¢ : X — H. We say ¢
is weakly measurable, if for each g € H*, where H* is the dual space of H, the
function F, : X — C given by Fy(z) := g(¢(x)) is M—measurable. If ¢(z) is

weakly measurable, and if there exists f € H such that

ﬂﬁzéﬂﬂﬁ@@) g€ M

then we say that f(x) = / o(x) dp as a weak integral.
X

Note that if H is a Hilbert space, then by the Riesz representation theorem, all
bounded linear functionals on H are of the form f — (f,g) g € 'H. Thus,
¢ X — H is weakly measurable if and only if x € X — (p(z), g) is measurable

for all g € H and f(z) = [, ¢(z)du as a weak integral if and only if

<ﬁm=[3¢mgMu (2.1)

for all g € 'H.

2.4 The Fourier Transform

Definition 2.11. The Fourier Transform of f € L'(R") is defined by

Ffoy) = f(y) = T (z)e ™ dz (v € R™).

If we write v as a row vector, and x as a column vector, then the dot product v-x

is simply multiplication of a row vector with a column vector and we can write

fly) = f(x)e 2™ dz. Similarly, the inverse Fourier transform of f € L*(R™)
R

is given by

i) =fw) = [ foperman
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Theorem 2.13 (Plancherel’s Theorem). If f € L'(R") N L2(R™) , then f €

L2(R™) and ||f||l2 = ||f]l2- In fact, the restriction of the Fourier transform,
F:L'R") N L*R") — L*(R")

extends uniquely to an isometry,

F: L*(R") — L*(R")
between Hilbert spaces. Furthermore F(F(f))(z) = f(—z), a.e Vf € L*(R").

In the following, this Fourier transform on L?(R") will also be denoted by

F, and we will set f = F(f), Vfe L*R").

Definition 2.12 (Bandlimited Function). A function f € L*(R") is called

bandlimited, if there exists M C R"™, M is compact, such that f(v) =0 a.eon M°.

2.5 Exponential Matrices

Recall that if @ > 0, then a* = e!™¢ for all ¢t € R. One uses this idea to

define real powers A? of a matrix A.

Theorem 2.14. Let A be an n x n real or complex matrix. Then the series

k!
k=0

converges. (Here we make the convention that A° = I, the identity matrix)

Proof. Let M,(C) denote the set of n x n matrices with complex entries. Since
M, (C) is a finite dimensional vector space, any two norms are equivalent, and

M, (C) is complete. Choose the operator norm on M, (C). Then

[AB]| < [lA[]l Bl
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forall A, B € M,(C). Next let A € M,(C). It is enough to show that the sequence
N

AF

of partial sums Sy = 7

k=0

(N =1,2,3,...) is Cauchy. Now, for any N, [ € N,

N+I

1 k
> A
E=N+1
N+I

1
> A
k=N+1 """
N+I

> LAl (2.2

k=N+1

|Sny— Sl =

IN

IN

o (Al
k!

k=0

Cauchy. That is, given € > 0, 3N, such that

Since the series converges to e/l in R, its sequence of partial sums is

Nt

> HHAH’“ <e VYN>NyleN.

k=N+1 """

Then by (2.2), ||[Sy — Syl <e VN > Ny, € N which shows that {Sy}%_;
is a Cauchy sequence in M, (C) . Since M,,(C) is complete, it follows that Z T
k=0

converges. O

Definition 2.13. Given an n x n matrix A, we define its ezponential e? to be the

n X n matrix given by the convergent matrix series

A_
VAN

k=0

Now if A = e?, then we define A* = ',

Proposition 2.1. Let A = ¢” Then As* = A%A! for any s,t € R. In particular,

A €GL,(R), the set of invertible n x n matrices.

Proof. Let F = ( l{;!> , G = Z o and H = ZC’k where C) =
k=0 0 k=0

. We need to show that H = FG.

. (tB)*

(s +t)kB*
k!
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sB) (tB)k—I
Z( )’(tB)

2. 10E— ) for all k. For each n € N, we

By the Binomial Theorem, Cj =

set

Thus,

= I
- Z(Sj') G j+ F,G — F,G
j=0 ’
_ FnG+Z(Sﬂ) (G — G)
=0

Since H,, — H and F,, — F as n — 00, it suffices to show that

B
lim > :(5 ,) (Goy — G) = 0.
n—oo j:O j

Let € > 0 be given. Since the sequence {G,,} converges, it is bounded, hence there
exists M > 0 such that
|G =Gl <M

IsBI’

J!

for all integers n > j > 0. Since L = Z is finite, there exist N € N such

N SB J £
that [ > N implies |G, — G|| < — 2 and Z “ H :

j=N+1
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Then for all n > 2N,

n ; N n
(sB)? (sB)? (sB)
Jay =0 j=N+1
N ; n
£ B’ B’
< a2 MY
Jj=0 j=N+1
N
2 2 7
Hence, H, converge to FG. That is, A%t = e(st)B = ¢sBetB — A5 At O

Theorem 2.15. Let A = e” be an exponential matrix. If P is an invertible

matrix, and if we set A = PAP~!, then A is also an exponential matrix and in

fact, A = 2 whereB = PBP~!. Furthermore, A' = PA*P~! for all t € R.

Proof. Observe that

tp—1 — t*B" -1
PA'PT = P ) o | P

where we have used the fact that matrix multiplication is continuous. Choosing

t =1, we obtain A = eB. Then by definition 2.13, At = !B = PAtP-1, O

The interested reader may notice that the discussion of this section also
applies to elements of B(X), the set of bounded linear operators on a normed

space X, with identical proofs.
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2.6 The Real Jordan Normal Form

Any real or complex square matrix is similar to an upper triangular
matrix, but not necessarily similar to a diagonal matrix. In an advanced linear
algebra course one usually proves that every complex square matrix is similar to a
matrix which is nearly diagonal, namely has nonzero entries only in the diagonal
and directly above the diagonal, called the Jordan normal form of the matrix. A

similar characterization exists for real matrices as outlined below.

Definition 2.14. A real Jordan block is a real upper triangular square matrix

[b;;] of one of the two following forms,

A1 (0)
B= - with A € R,
S
(0) A
or
D I (0)
a f 10
B= D= a, €ER with I, =
SR B a 01
(0) D

By a suitable change of basis, every real matrix can be brought into block diagonal

form, where all blocks of this form:

Theorem 2.16. Let A be an n x n real matrix. Then A is similar to a block
diagonal matrix of the form J = diag(Jy, Jo, ..., J,,) with each J; being a real
Jordan block, £ = 1,2, ..., m. The Jordan blocks are determined by the eigenvalues

A of A. A real eigenvalue gives rise to a real Jordan block of the first type while a
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complex pair a + i of eigenvalues gives rise to a real Jordan block of the second

type. The matrix J is called the real Jordan normal form of A.

Proof. Since we will mainly deal with 2 x 2 matrices, let us give a proof of the
theorem for this particularly simple case only. That is, we will show that every

real 2 X 2 matrix is similar to a matrix of one of the following forms,

MO Al a 3
B = B= or B=

0 A 0 A 3 a

depending on whether A has two, one, or no (linearly independent) eigenvectors.
Case 1. A has two eigenvectors, say vy, vs. Let A\; and Ay denote the corresponding

real eigenvalues. The matrix P = [v; vy] is invertible because vy, vy are linearly

A0
independent, and obviously P~1AP =

0 A
Case 2. A has only one eigenvector, call it v;. Then A has only one eigenvalue, call

it A. Let w be any other vector which is not a scalar multiple of vy, so that {vy,w}
is a basis of R?, and w is not an eigenvector. We claim that (A — AI)w = kv, for
some scalar k.

To proof the claim, suppose to contrary that (A — A\l )w = kv; + lw where [ # 0.

k
Set z = 71)1 + w. Then

(A= M)z = (A— )\I)(%vl +w) = ~(A—= M)+ (A—ADw

= kv +lw

= l(%vl +w) =1z

which shows that z is an eigenvector for A with eigenvalue A+ # A, contradicting
the uniqueness of the eigenvalue \. This proves the claim.

If £ = 0, then w is an eigenvector of A belonging to A, contradicting uniqueness
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1
of the eigenvector. Thus k # 0, and we can set vy = G + v1. Then by the claim,

1 1 1
Avy = A(Ew—l—vl) = EAw—l—Avl = E(Aw—i—km)%—)&q = \vg+v;. Now, as vy, vy are
linearly independent, the matrix P = [v; vy] is invertible. Then AP = Afv; vq] =
A1
[Avy Avg| = [Avy v1 + Avg] while PB = [v; vg] = [\vy v1 + Avg]. Hence,
0 A
A1
AP = PB, that is, P~'AP = B =
0 A

Case 3. A has no eigenvector. Then the eigenvalues of A are complex, say

M\ A =a=+i3. Applying the argument of case 1 to this complex case, there exists

A

an invertible complex matrix P such that A = P P!, and the columns
0 A
of P are the complex eigenvectors vy and vy of A, say P = [v; va]. Observe that

if x is an eigenvector belonging to an eigenvalue A, then as A has real entries,

Az = Ar = \x = M\Z, that is, 7 is an eigenvector belonging to the eigenvalue \.

1+ 151 rL— 151
It follows that if v; = then we can choose v, = U7 =
79 + 1S9 T9 — 189
a b
Now if A = then Av; = A\v; gives
c d
a b 1+ 181 . 1+ 181
= (a+1if)
c d To + 159 r9 4 1S9

that is

(ary 4+ bry) +i(asy + bse) = (ary — Bs1) + i(as; + 6ry)

(cry + drg) +i(csy + dsg) = (arg — Bs2) + i(ase + [ra).
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Comparing real and imaginary parts,

ary + bro = ar; — 8s1
as1 + bsy = asy + fBry
cr1 +dry = ary — (38

cs1 + dsy = asy + By

or in matrix notation,

a b 1 S L1 a f
= (2.3)
c d ry S9 Ty S -0 «
S
Set P = . Note that det P # 0 since v; and vy are linearly independent.
T2 82
Then (2.3) gives
a
A=P p!
-3 «
O

We note that each block of the form

a f
D =
can be rewritten as
cosf) sinf
D = |}

—sinf@ cosf

where [A| = y/a? + 3% and cosf = %,sin@ = ’%



CHAPTER III

THE CONTINUOUS WAVELET TRANSFORM

In this chapter, we review the usual continuous wavelet transform on L*(R)
as first introduced by Grossmann and Morlet (1984) and also described in Gasquet-
Witomaski (1998) and Heil-Walnut (1989). We then describe the extension of the

wavelet transform to L?(R").

3.1 The Continuous Wavelet Transform on L?*(R)

Let us first introduce the operators on L?(R) which are essential in the

discussion of the wavelet transform.

Definition 3.1 (Dilation, Translation, Modulation). Given a > 0 and b € R,

we define operators Dg, Ty, Fj, on L?(R) by

1. (Dof) (x) = % <§> Vz € R (Dilation by a)

2. (T,f) (z) = f(x =), Vo € R (Translation by b)

3. (Epf) (z) = e f(z), Vo € R (Modulation by b)

for f € L*(R).
All three operators map L*(R) isometrically onto itself. Furthermore, they inter-

twine with the Fourier transform as follows:

—

a) Dof = Dy f

b) Tof = Eof
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¢) Bf =Tpf
for all f € L?*(R). The proof will given in the section 3.3.

Definition 3.2 (Wavelet Transform on L*(R)). Fix ¢ € L*(R), and call it the

mother wavelet. Consider the 2-parameter family of dilates and translates of 1),

1 T
Yap(z) = (DIp)(z) = % (5 — b) (a>0,b€R).

The wavelet transform of a function f € L*(R) is the function Wf : RT xR — C
given by
1 T
W f(a,b) =< f, gy >= — (——b)d.
Flab) =< ot >= == [ fapo (Z=) do
The mapping W is called the continuous wavelet transform associated with .

Obviously, it is linear.

We would like to reconstruct the function f from its wavelet transform
W f(a,b). Consider the measurable space (RT x R, M,), with measure du =

1
—da db. By this we mean that for £ € M,
a

u(B) = [ [ xelab)y dvda

Following the definition of the Lebesgue integral, one obtains that

4+XRf(a,b) du(a,b) = /w/Rf(a,b)%dbda

for all f € L2(R* x R, M, ).

Suppose we have shown that the wavelet transform W associated with 1) satisfies

W fll 2@t xrp) = Veull fllzem) (3.1)

for all L3(R), that is, W is a multiple of an isometry of L?(R) into L*(RT x R).

By the polarization identity

()= 3 |17 + 02— 1F = alP| + 2|17 +igll* — I — gl
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we then obtain that

<Wf7 Wg>L2(R+ xR,u) — C¢<f7 g>L2(R)) for all f7 g€ L2(R) (32)

To see this, suppose that (3.1) holds. Then

(Wf, W9>L2(]R+ xR, 1)

1
= 4 [”Wf + Wg||%2(R+><R,u) —[Wf - WQH%?(RWR,M)]

+ W f +iWgllTe@sxm, — IWF - iW9||%2(R+xR,u)]

1
= 1 [“W(f + g)H%Q(RJrXR,p) — W (f - 9)||%2(R+xR,u)]

1 IW(f +ig)| 2@ s — W (f — ig)”%?(wm,u)]

= 1[Cwllf+§1)||2—0w||(f ol ZC¢||(f+i9)||2—Cw||(f—ig)||2]

- [<f+g||2—||(f g>||2> §<||<f+ig>||2—||<f—ig>||2)]

= fr@) 2w Vf.g€ L*(R). (3.3)

Conversely, if (3.2) holds, then choosing g = f, we immediately obtain (3.1).

Now suppose that (3.1) holds. Then by (3.2),

wita) = [ [0VN@y e dvda
= [ [0V @ @) dbaa

= [ [ hia b dvda

1 [~ 1
o= [ [0V D@00 dba

for all f,g € L*(R). Thus

that is

1 [ 1
= [ [vntabiste) avda (3.4)
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as a weak integral.

The next theorem classifies those ¢ € L*(R) which satisfy identity (3.1).
Theorem 3.1 (Admissibility Condition ). Let ¢» € L?(R). Then

W fll 2@t xrp) = Vol fllzem)

for all f € L*(R) if and only if

“[@P, _ [° P,
P B (35)

— 00

Proof. See Heil-Walnut (1989). O

Because of this theorem, we call ¢ € L?(R) admissible if it satisfies con-
dition (3.5), for some ¢, > 0. Condition (3.5) is called the admissibility condi-
tion. From the previous discussion, it follows that if ¢ is admissible, then every
f € L*(R) can be reconstructed from its wavelet transform by means of the weak
integral (3.4). The next theorem shows that f can even be approximated arbitrar-

ily by a usual integral, provided that v is integrable.

Theorem 3.2 (Approximate reconstruction). Let ¢ € L'(R) N L*(R) be

admissible, that is

oo |7, 0 .7
/ Mda = / Mda =: ¢y < 00.
0 —00

lal lal

Then given € > 0, the integral
o 1
fa(ﬂf) :/ /Wf(&,b>wa7b($)adbda
€ R
exists for almost all z € R, f. € L*(R), and lim [|f = fef2 = 0.
e—0

Proof. See Gasquet-Witomaski (1998). O
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3.2 The Continuous Wavelet Transform on L?*(R")

We now extend the definition of the wavelet transform to functions in
L2(R”). First, we must extend the operators D,,T, and Ej of section 3.1 to
L2(R™).

Definition 3.3 (Dilation, Translation, Modulation and Inversion). Given
fixed A € GL,(R), y, 2,7 € R", we define operators Dy, T,, E., M on L*(R") by

1
L (Daf)(z) = et A2

1
(Daf)(v) = Wf(%‘l_l), Yy e R™

f(A 1), Vz € R" (Dilation by A)

2. (T,f) (z) = f(x —y), Vz € R" (Translation by y)

(Tef)(v) = f(v=&), VyeR"

3. (E,f) (z) = e*™* f(x), Vo € R™ (Modulation by )

(E.f)(v) =€e*™*f(y), VyeR”

4. (M f)(z) = f(—=), Vo € R™ (Inversion)

for f € L*(R"™).
Observe that we have defined two types of dilation operators, depending on
whether elements of R™ are considered column vectors, or row vectors. Note that

in the first case, for all x € R",

1 _
(DaDpf)(z) = W(DBJC)(A 'z)
o 1 1 BflAfl
= Taet A2 [aec B¢ z)

1

= Taeappe! (AB) )

= (Dagf)(x)
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that is, D4Dpg = D ap. In the second case, for v € R",

1 .

(DaDpf)(v) = W(DBf)(VA D)
B 1 1 11
= TaewAaec el 4 BT

1 _
= Wf(V(BA) 1)

= (Dpaf)(v)

that is, DaDp = Dps. However, if A and B commute, then obviously DoDpg =
Dp. In order to obtain DyDg = Dsp in the second case, some authors define

dilation by (Daf) (y) = |det A|*/2f(yA). However, this would complicate the
notation in what follows.

In a similar way, one shows that, 7,7, =T, and F, F: = E, ¢ for all y,z,v,§ €
R™.

Proposition 3.1 The operators D4, T,, E., and M are isometries mapping L?(R™)

onto itself. Furthermore for all f € L?(R"), we have
a) (Daf,g) = (f,Da-rg) and Duf = Dy f
b) (Tyf,9) = (£, T-yg) and T,f = E_, f
¢) (Ef,9) = (f, E_yg) and E,f =T, f
d) (Mf,g)=(f, Mg) and Mf = MF.

Proof. 1t is straight forward to check that these operators are linear.

a) For all f € L*(R™), we shall have by theorem 2.3,

IDAfIE = [ 1Daf@Pde = Jdet Al [ a7 e = [ | de = 1713

so that D, is an isometry, and

Dy(Da-1f) =Daarf =Dif = f
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which shows that D4 is surjective. Furthermore,

1 1.\ _ 1/2 AN .
(Daf,g) = /Rn WﬂA x)g(z)dr = . |det A|"2f(z)g(Ax)dx = (f, Dp-1,)

for all f,g € L*(R").
Assume now that f € L'(R") N L3(R"). Then D4f € L'(R") N L*(R") as

well, so that by definition of the Fourier transform on L*(R"™),

Oa) = [ (Dap@e e ds
= | |det A|7V2f(A w)e 2™ 5 dz (z — Ax)
= /R | det A2 f(z)e™ ™47 da
— [det A2 f(y.)

= Dy f(v).

Next let f € L*(R"™) be arbitrary. Then there exists a sequence {f,} in
LYR™) N L*(R™) converging to f in L?*(R"), and by the continuity of all oper-
ators involved,

Daf = F(Daf) = F(Da(lim f) = lim F(Daf,) = lim Dafy =
lim Da-ifp = DarFf = Dy f.

n—oo

b) First we show T}, is isometry on L*(R"). For all f € L?*(R") we have

1T, f1Iz = - T, f (@) de = | |f(z—y)]de= . [f (@) dz = || f]13

Rn

by translation invariance of the integral, so that 7} is on isometry, and
T(T-yf) =Tyyf =Tof = T,

which show that T}, is surjective. Also,

(T,f,9) = . flx —y)g(x)dx = . f(@)g(z +y)dx = (f,T_,9).
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Next let f € LYR") N L*(R™). Then T,f € L*R") N L*(R™), as well, and by
definition of the Fourier transform on L'(R™)

—

THo) = [ @H@e s

— f($ _ y>672i7r’m dr (.1' S+ y)
R

— f( ) —2imyx —217r'yy dx

— 6—27,7r’yy f(l,)e—%ﬂ'ya: dx
R”

= (B, f)(7)-

Using a continuity argument in case a), it now follows that i:f =L, f for all
f e L*(R").

¢) Since |¢*| = 1 for all t € R, we have
12,018 = [ 1B f@Pde = [ (@R dn = [ 5@ e = 113
so that . is an isometry, and
By(B ) (&) = By (F()e 70%) = f()e ™2™ = f(z)
which shows that E,(E_.f) = f, hence E, is surjective. Also,
(E:1.9) = [ f@g@e e = [ fege s = (7,g).
Next for all f € L'(R") 0 L2(R™),
BN = [ (Ep@e o= [ e de = fig ) = @, H(O

and arguing as in case a), it follows that E;f = va for all f e L*(R").

d) First we show M is isometry on L?(R"). For all f € L*(R™) we have

sl = [ 10n@Pde = [ (f-afde= [ @ o =112
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and
M(Mf(z)) = M(f(—z)) = f(x)

which show that M is surjective. Also,

(Mf,g) = Rnf(—m)g(l‘) dr= [ f(x)g(—z)dx = (f, Mg).

]Rn

Next for all f € L'(R") N L*(R"),

(m)(f) = Mf(x>€f2i7rfr dr = f(_x)€72i7r£r dr = / f(x)€72i7r(7£)m dx
R™ R n
= (M])(©)
and arguing as in case a), it follows that ]\/I\f =Mf forall fe L*(R™). m

Proposition 3.2 Given fixed A € GL,(R), y, 2z € R", we have

DuM =MDy, T,M = MT_,, E.M = ME_, and f = MF.

Proof. All these assertions are easily checked. For example,

oy = | F@e e = | fla)eiorde = f(—y) = Mf()

R

for all f € L*(R™) N L?*(R") and by continuity, for all f € L*(R?). O

We are now ready to introduce the wavelet transform on L*(R™). Through-
out, we fix an n x n exponential matrix A, say A = e? for some matrix B, which

will be used to define dilations.

Definition 3.4 (Wavelet Transform on L?*(R")). Fix ¢ € L*(R"), ¢ # 0

and call it the mother wavelet. Set ¥y ,(x) = (DacTyp)(x) so that i ,(z) =
1

|det A|t/2

defined on R x R" by

¢ (A7'z — b). The wavelet transform of f € L?(R") is the function W f

WH(t0) = (1.DaTi) = s | (@) 3 = .

The operator W : f +— W f is called the continuous wavelet transform associated

with v, and is obviously linear.
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The reconstruction of f from its wavelet transform as a weak integral can be
obtained as for the wavelet transform on L?(R), and we give a detailed explanation
and proofs below. It turns out that because of our different choice of dilation, the
measure required on R x R" is simply the Lebesgue measure.

Suppose, we have shown that the wavelet transform W associated with v is a

multiple of an isometry of L?(R") into L?(R x R"),

W fll L2 @xrry = Veull fll L2 @ny

for some ¢y > 0 and all f € L*(R™). As in section 3.2, by the polarization identity

this condition is equivalent to

<Wf7 Wg>L2(]R><IR") = C¢<f7 g>L2(R”)7 for all f7 g€ LQ(RN) (36)

Computing the inner product on the left hand side of (3.6), we obtain

wlra) = [ [ woeniaem)a
= [ [ 0vnen g dva
= [ [ Dt g dva

that is

(f.9)= i/R/n<(VVf)(t, b)D 4Ty, g) db dt

Cy
for all f,g € L*(R™). Thus

1
f= —/ W f(t,b)DacTyip dbdt
Cy JR JR

as a weak integral in L*(R™), so we have reconstructed f from its wavelet transform.
In order to characterize those functions ¢ for which W is a multiple of an isometry,

we prove the following generalization of theorem 3.1.
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Theorem 3.3 (Admissibility Condition). Let ¢ € L?(R™). Then

W fllr2@xeny = Vgl fllzzmny  Vf € L*(R")
if and only if
/ [ (vAN) 2 dt =: ¢y a.e. vy (3.7)
R
Proof. Let V = {f € L*(R") : f € L®(R")}. Then V is dense in L2(R"). If
f €V, then
Wy = [ IWHGP
RxR™
= / (W f(t,y)|* dydt (By Fubini’s theorem)
R JRP
_ / (f, DaT, ) 2 dy dt
Rn
= / I(f y¢>|2 dy dt (By Plancherel’s theorem)
RTL
— / [(f, Do E_ )| dy dt
R
_ / (Dacf, E_y0) 2 dy dt
Rn

= L.

Set Fy(vy) = |detA|7t/2f(7A*t)$('y). Note that by the Cauchy-Schwarz inequality,

2

|det A| 72 f(yA~ ) b(7)e* ™Y dvy | dy dt.
R"l

Fi(v) € LY(R")N L*(R™). Thus, the inside integral is the inverse Fourier transform

of Ft,

2

dy dt

W lmaey = [ [ | [ B a
:/ |E(y)|” dy dt

= / | 3 ||% dt (By Plancherel’s theorem)

S AL
R

:/ Ry dy dt
R JR"
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= [ [ el iGa PPy ()
R JRr

= [ [ 1fordea? aa
R JR"

= £ () {/ |ih (v AH))? dt} dr. (By Fubini’s theorem)  (3.8)
Rn R

Now suppose, (3.7) holds. Then (3.8) becomes

W FIIZ2 @cny = . [f ) Pepdy = el fIl5 = cull £113 (3.9)

for all f € V, Now if f € L*(R"), pick a sequence {f,} in V such that lim ||f, —
fll2 = 0. By (3.9), {Wf,} is Cauchy in L*(R x R"), and hence there exists
g € L*(R x R") such that lim [[Wf, — g2 = 0. On the other hand, by continuity

of the inner product,
W fn(t,0) = (fa, DarTytb) — (f, DarTyp) = W f(t,b)
for all (t,b) € R x R™. Then by uniqueness of limits, g = W f a.e. Then
||Wf||%2(Ran) = || nh_)nolo anH%?(Ran) = nh_{{)lo ||an”%2(Ran) = %Hf”%'

Hence the wavelet transform is a multiple of an isometry.
Conversely, suppose that the wavelet transform is a multiple of an isometry, that

is, there exists k£ > 0 such that
W fl72@xrny = kIfIl2 - Y € LAR™).
Then (3.8) shows that
R = k1A= [ 17R | [ 100 Aok o

for all f € V, that is,

(Ve [ ek k| ¢ =0
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for all f € V. Choosing f such that f is the characteristic function of a bounded

measurable set F, we have

/E {/}R (v A2 dt — k} & =0

for every bounded measurable set . Hence,

/ [p(vAY P dt —k =0 a.e.vy
R

that is,
/ [h(vAD |2 dt = k a.e.vy
R

so that (3.7) holds, with ¢, = k. O

Note that theorem 3.1 follows from the above theorem, if we replace a by

e’ in (3.5). Because of this theorem, we give the following definition.

Definition 3.5 (Admissibility Condition). Let A € GL,(R™) be an exponen-
tial matrix. A function ¢» € L*(R") is called admissible for A if there exists a

constant ¢, > 0 such that

/ [ (yAY P dt =: ¢y a.e.vy
R

Theorem 3.4 (Existence of Admissible Function on R"). Let A € GL,(R)
be an exponential. Then there exists an admissible function ¢ if and only if

|det A| # 1.

Proof. See Laugesen, Weaver, Weiss and Wilson (2002). O



CHAPTER 1V

WAVELET RECONSTRUCTION

In this chapter, we will study direct and approximate reconstruction for-
mulas for the continuous wavelet transform. We will formulate conditions on an
admissible function 1 and the function f which allow for reconstruction of f from
its wavelet transform as a usual integral, or as a limit of usual integrals. For

simplicity, we will focus on the wavelet transform in L?(R?).

4.1 Approximate Reconstruction

Definition 4.1 (Expanding Matrix). We call an n x n matrix an expanding
matrix, if all its (real or complex) eigenvalues have modulus greater than 1.

Recall from the previous chapter that if A = e? is a n x n real matrix, and

Y € L*(R™), we set
Yo(#) = (DaTy) () = et A|2(A~% — )

The wavelet transform of f € L*(R") is

1

Wt b) = (f,dip) = et A2 [, () (A~tr = b) d,

and we have the reconstruction formula

f(x) = i/ W f(t,0)DacTytp(x) dbdt (4.1)
Cy Jr JRn

as a weak integral.
In order to reconstruct f from its wavelet transform, we would like the

integral in (4.1) to be a usual integral. This is not possible in general. However,
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we will see that if A is expanding and Y satisfies a weak decay condition at infinity,
then we can approximate f arbitrarily by a usual integral in case n = 2. First we

prove a few of lemmas which will be needed in the proof of theorem 4.1.

a 1
Lemma 4.1. Let A =

], a > 1, and € < 0 be given. Then for each a,
0 a

1 < a < a, there exists a constant k such that
IyA 2 > kd'lly]l. VE>e.

Proof. We want to estimate ||yA’||s where v = (y1,72). For simplicity, we first

no—1
switch to the maximum norm || - ||o. Pick n, > 1 such that @ =a = , and set
—2e n
My=—=>0, mg=-1-—2
a ealna

where n, € (1,00) is arbitrary, but fixed. Set
Si={7:0<m <1, 99 =me}

So={v:m=1mo <7 < M,}
Sg={y:0<m <1, 2= My}
Sy =51USyUSs
Sy = =Sy ={—v:v€ S84}
S =5,US5
Claim: There exists k > 0 such that |[yA!||.c >k, Vt>e, VyeS.

Note that since [|(—7y)A!|| = ||[yA?|| V¢, it is enough to consider v € Sy. Further-

more, observe that

at ta

A" = (11 72) = (y1at, yta! ™! + yat)
0 a

t—1
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M, @
——O ™, s,
54
—1 | 0 1 Y1
S5
NO} 3, A

Figure 4.1 The set S

so that
t
Ao = max et [+ ala). (2 0)
Case a) v € Sy. Then y; = 1 so that

7Aoo > ma' = a* > a°
for all t > «.

2
Case b) v € S3. Then 0 < v; < 1 while v = My = —8, so that

t t 2e IS 2e e 2 —
—Nntr=-m——2-MN——2=2-—— >0,
a a a a a a a a

for all t > ¢, as ¢ < 0. Hence for all t > ¢,

t —c €
7Aoo > "Yla +72}at > ‘7 a > uaa-

a

Case ¢) v € S7. Distinguish two cases, depending on the value of t.

i) Suppose t > —n,log,71 > 0 (as 0 < 713 < 1). In this case, we estimate
the value of v,a’:

no—1 t no—1

t a
a'=a"me ane > (a mo ) a8 =

so that 1 < a < a. Hence,

7Aoo > ma' > a* > a

39
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for all t > «.
ii). Suppose ¢ < t < —n,log,v1. In this case, we estimate the value of

a' |ty + 72|, We have

t —n,log,y
ptl +7 < Tl% + 72, (71> 0)

1
Now the function f(z) = zlnz , 0 < z < 1, has one critical number at z = —,
e

where it has an absolute minimum, f(1/e) = —1/e. Thus

ne In vy —n,

’yl el )
alna ealna

that is,

Ne N Invyq

71 SOa
ealna alna

which shows that 571 + 5 < —1 in this case. Hence

t
|7AY |00 > a 571 + 92| > a' > at.

Note that the proofs of all three cases show that for all t > ¢ and v € S,
VA | > koa!,  Vt>e

where ky = max {1, %}, provided that € < 0. Setting k = kqa®, the claim follows.
Next we claim that there exists k1 > 0 such that ||[yA!||co > 10"V |lco, VE >

g, VyeR2

The claim is obvious if v = 0. Thus, we may assume that v # 0.

We first assume that v € S. Set sg = max |7]l0 = max {My, mo, 1} > 1. By the
veE

previous claim, we have for all vy € S and t > ¢,

_ ko _
||7At||oo > koa' > S_zat||'7||oo = atk1||'7||oo (4.2)



41

k
where we have set k; = —~. In general, let v € R*\{0} be arbitrary. Since
S0

R*\{0} = U aS where aS = {an : n € S}, there exist a > 0 and n € S such

a>0

that v = an. Then by (4.2),

17 A oo = [[(am) A"l = al|nA[|loc > 0@ k1|Inllec = @"k1[lom]|oc = k1] 7]l

for all t > €. This proves the claim.

Now as the Euclidean and maximum norms on R? are equivalent, %HVHQ <

17]ls0 < [|7]]2, we have by the claim,

. L
Iy A" l2 > [7A" oo > @Rl V]loo > —=a"Kalyl2.

N V2

That is,
A 2 = @kl
2 T ky
for all v € R® and all £ > ¢, where we have set k = —. O
V2
Lemma 4.2. Let P € GL,(R). For any norm || - || on R", there exist constants

a, 3 > 0 such that

Blvl < [Pl < eyl vy e R™

Proof. One easily checks that v +— ||y P|| defines a norm on R", by invertibility of

P. Since all norms on R" are equivalent, the assertion follows. O

Lemma 4.3. Consider f(7) (v € R?,k € R). Then f € L?(R?) if and

B 1
L+ |ly1I5
only if £ > 1.

Proof. For simplicity, denote the Euclidean norm by ||-||, and use polar coordinates,

v = (rcosf,rsinf). Then

/ 1 d /%/OO " ardd
R N o
w (L2 S Sy (Arhp
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Case 1. If £ > 1, then 2k — 1 > 1 and hence

/O%/Ooo(lf—rk)zdrde < / / ' _drde
:/0 (/olfr%dH/l ﬁdr)de
/0(/W+/ o)
(

21 1
§+ )d9

IN

0

< 0.

Case 2. If £ <1, then

27 fe'e) [e’s)
/ / L _drdy > / / L drdo
o Jo (1+7F) o Jo 1+7"
27 [e’e)
A

1
= hm <ln bl + - — 1) do
0 b

dud@ (u=1+r)

= 00.
U

Theorem 4.1. Let A be an expanding real 2 x 2 exponential matrix. Let ¢ €

L'(R*) N L*(R?) be admissible, that is,

/ [p(yAY2dt = ¢y <00 a.e.r,
R

and suppose that

- k
WO < s T (4.3)

for some constants k and s > 0. Let f € L?*(R?) be given. Then for each ¢ < 0

and x € R?, the integral

o= [ S WD) DT ) dbr (4.4)
Cw R2

exists, f. is square integrable and lim ||f — f:||2 = 0.
E——0O
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Proof. We must first show that the integral (4.4) defining f. exists. By Plancherel’s

theorem and the formulas following definition (3.3),

WD) = (f.DaTy)
= <f7DA_tE—b1;>
=hmmm/fw&w%mwww

R2
= | det A|Y2¢,(A'D)

= (Da-t¢r)(b)

~

where ¢,(7) = f(7)1(vAY) € LY(R?) N L2(R?). For each = € R?, set

J.(t) = [ Wf(t,b)y(x)db. (4.5)

R2
Note that this integral is defined for almost all ¢. In fact, since W f(¢,0) € L*(R x
R?), then by Fubini’s theorem, b — W f(t,b) € L*(R?) a.e. On the other hand,
b Y p(x) = |det A|7/2p(A~tz—b) € L*(R?). It follows from the Cauchy Schwarz

inequality that J,(t) is defined for almost all ¢. Then

L) = [ (Dad)Oinsla)
_ /R (DB det A (A ) db
= et Al [ (Daed) OO0 - A7) d

= |det A|7Y/? /R Q(DAftgﬁt)(b)(TAftle/z)(b) db
= | det A|7Y2((Dy-t¢hy), Ta—tx M)

= |det A|"Y2(F(Dp-16y), F(Ta—xM1p))  (By Plancherel’s Theorem)

= | det A|"Y2(DpF(dy), MF(Ta—r, M)
= |det A|72((Darcdy), ME_s—e; M)

= | det Al_t/2<<DAt¢t>, MQEA—t11;>
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= et Al [ oA Erai)dy (40

b (1) (Ea-ea)) (vAY) dry

2

~ ~

F) (YA ) D(r A )™ dry

2

FO (v A2 ™ dy.

I
T—a—

fo == [ Jx<t>dt=$ | [iwiaapeT . @

==
We want to apply Fubini’s theorem to show that the integral (4.6) exists. For this,

we need to check that

1= [ 1fe [ et dedy <o (4.7)

The value of I is estimated in two parts:
1. Integrate over a bounded set, namely the disc B,,(0) = {y € R?: ||v|| < m} for

some m > 0. We obtain

I, = f T AN dt | d
/Wm\f(m( / (A t) N

< o /” L flk

1/2
< C¢</7||§m1d7) </”7Sm|f(7)l dv)

— e, (Vam)|flz < oo.

1/2

where we have used the Cauchy Schwarz inequality.
2. Integrate over the complement U of the disc B,,(0), U = {v € R? : ||v|| > m}.
We distinguish 3 cases, depending on the Jordan normal form of A.

Case I. The Jordan normal form of A is diagonal. Then A = PBP! =

a a

P P! where B = . Then by theorem 2.15, A' = PB'P~! =

0 b 0 b
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at

P P!, and thus

0 v
Iy Al = [lyPB"P~H| = Bipac 7]

where 3; and [, are the constants for P! and P as in Lemma 4.2, respectively,

and o = min (a,b) > 1. We obtain

I, — i oA dt | d
[Wﬁﬂw<[|wv>|ﬁfv
; ~ at ) d by 4.3
< /wJﬂw(L Q 7 (by 43)
. o0 1 i
]{72 1 d d
= tﬂ»ﬁﬂ”(l‘<m@wmmﬁs Q !

= G [ O ([ ) d
— (BiBo) i Iy|>m v BB AEEED 8

k? . 1
—(142s)e 4
3,3 a 7.
(B162)125(1 + 25)In /U|f(7)’||7||1+25

/{32
(B1f2) 2 (1 + 25)In o
inequality, we obtain, by lemma 4.3,

k
L4 [y Atz

—(142)= 414 applying the Cauchy Schwarz

Setting ag =

1

f2 < aollfll | s

< OQ.
L2(U)

Case II. The Jordan normal form of A is an upper diagonal matrix, A =

a 1
PBP~! with B = ], a > 1 Then by theorem 2.15, A® = PB'P~! =
0 a
at tat?
P P~! and thus by lemma 4.1,

VA = IvPB'P| = Bifaka |||

where 3, and 3, are the constants for P! and P in lemma 4.2, respectively, and
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1 < a < a. Computing as in the case I, we obtain

I, = f = At th d
: /M>m|f<v>\</€ D) ) ,
~ o] k 2
— /”7”>m | £()] (/6 W dt) dr, (by 4.3)
1

2
|f(7)|k2< . T dt) dry
/nvnm / (B Gokat||y])3 ™

A k? >~ 1
= /”"y”>m |f(f)/)‘ (5152%)1+25||7||1+25 (/g‘ dt(1+2s) dt) d"% (CaUChY'SChWarZ)

1
< a1l fll2

IN

AT |y =

L2(U)

1 a—(l—‘rQS)&‘ k;2 .
(14 2s)lna (81 82k) 12
Case III. The Jordan normal form of A has a rotation part, that is, A = PBP!

provided € < 0, where a; =

cosf) sin6 _ _ o .
where B = « , & > 1. Since the rotation matrix is an isometry,

—sinf cosf

proceeding as in case I) we have ||[yAY|| > o8 5:|y]| and we continue with the
estimate of I exactly as in case I).

Combining all three cases, it follows that I = I1 + 15 < co. Thus by Fubini’s
Theorem, the integral (4.5) defining f.(z) exists, and we can interchange the order

of integration in f.(x), so that

i) = o [ [ feoeapea

1 £ iy o t
- = [ iwe( [ rwwm\?dt) 0
_ %(;‘r(f@)(x) Vz € R?

where 0.(v) = [* [{)(yA")|? dt. Here we have used the fact that, by (4.7), f0. €
L*(R?). Observe that since 6.(y) < ¢, a.e., then f0. € L2(R?) as well, hence
f- € L*(R?).

It is left to show that f. converges to f in L?(R?) as e — —oco. By Plancherel’s
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theorem,

”f_szg = ?(f) - _F<f(9€)

Cy 2

ye
Cy 2
- cy — 0:(y
= [ i |20
R2 Cy
Note that for almost all 7, lim [p(yAY) 2 dt = ¢y, so that {c; — 6.(7)}

——00
€ €

decreases to zero a.e. as € — —oo. Thus by the Monotone Convergence Theorem,

2

2
dy.

. . r Cyp — 95 Y 2
i 17~ £ = [ FR[S 5
E——00 E——00 R2 Cw
R —0.(0)|?
o RGO E
R2 €7~ C
= 0.
We have shown that f. converges to f in L?(R?) as e — —oo0. O

If A is contracting, i.e. if all eigenvalues of A have modulus less than one,

then a similar statement holds:

Theorem 4.2. Let A be a 2 x 2 exponential matrix whose eigenvalues all have

modulus less than 1. Let ¢ € L'(R?) N L?(R?) be admissible, that is

/ [ (yAY) 2 dt = ¢ < 00 a.e.,
R
and suppose that

N k
V()| < ————
L4 [lyf2**

for some constants k and s > 0. Let f € L?*(R?) be given. Then for each ¢ > 0

and x € R?, the integral

fa = o [ [ Vst v (45)
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exists, f. is square integrable and lim ||f — f.||2 = 0.
E—0Q

Proof. Set A = A~!. Then A is also exponential, and the eigenvalues of A all
have modulus greater one, that is, A is expanding. As the Lebesgue measure is

inversion invariant,

/devﬁwﬁdtzQ/devA-det:l/ﬂiva@Pdt::ab<<m G.er.
R R R

that is, 1& is also admissible for A. By the previous theorem,

,ﬂmzifj&UﬂMWWMw@%ﬁ
exists for every ¢ > 0 and x € R", and
tim 17 = lla =0
Replacing ¢ by —t we have by inversion invariance of the Lebesgue integral that

. 1 [c
f-e(z) = a/ / (f, DarTyh) DpTytp () dbdt = fe(x),
—00 JR2
and hence f; exists, and lim || f — f.||o = 0. O

The next theorem says that if f is bandlimited, and & is supported away

from zero, then the reconstruction formula (4.1) is always a usual integral.

Theorem 4.3. Keep the assumption of theorem 4.1, and assume in addition that

¥(y) = 0 a.e. in some neighborhood of zero. If f € L?(R?) is bandlimited, then

f- = f for sufficiently large negative ¢, that is, for almost every z € R?,

flz) = i/ W f(t,b)DacTyip(x) dbdt a.e.
Cy JR JR2

as a usual integral.

Proof. Let f € L*(R?) be bandlimited. That is, there exists M > 0 such that

f(y) = 0 for almost all 4 with ||7|]] > M. By assumption, there exist § > 0
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such that ¢(y) = 0 for almost all ||y|| < 6. Let f. be as in theorem 4.1, so
1 [e.e]
that f.(z) = —/ (W )(t,b)DacTyb(x) dbdt. Note that as f is bandlimited,
Cq/} R2

f e L}(R?) as well, so that f(z) = F(7)e¥™7 dvy a.e. We now show that there
R2

exists €, such that the integral

1 / (Wb Da Ty dbt (4.9)

exists and equals zero for all € < ¢, and z € R2.
The integral (4.9) is similar to formula f. in equation (4.6), so computing as in

the derivation of equation (4.6), we obtain
1 : £ N t\ |2 2imyx
(4.9) = — FNb(yA) "™ dy dt
Cp J o0 JR2

1 € A . )
_ L / / FND (A PE™* dy dt.
Cp J—oo J|ylla<M

where we have used the fact that f is bandlimited. We first show that for e

sufficiently negative,

I= / |/ D(yAY|? dt dy = 0. (4.10)
|7|I<M

We again distinguish 3 cases, depending on the Jordan normal form of A.

Casel. A= PBP'=P P~!. Then by theorem 2.15, A" = PB'P~! and

0 b
thus

[vA"l = [lyPB'P~H]| < azasa|7]
where o and o are the constants for P~! and P as in lemma 4.2, respectively, and

Inod —In (ayaoM)

Ina

, then ayaa||y|| < § provided
Inéd — In(ayauM)
Ino

a = max (a,b) > 1. Now if t <

that ||y|| < M and hence ¢)(yA") = 0. Thus, if we choose &, <

I:/ \/ D(yAY P dt dy = 0.
|7||<M

Y

then for ¢ < g,
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a 1
Case II. A = PBP~! with B = ], a > 1 Then by theorem 2.15, A! =
0 a
at tat™t
PBiP~'=p P!, and thus
0 af
IvBYI? = (ma')? + (na' "t 4 yea")?
< a®|y|1? + 4ty )Pa® T + 2y |Pa
_ (a2t+4ta2t—l +t2a2t—2) yI1?
; 2
< a(Le2) 1
a
Hence,

_ t
Il = I PB' P < aseaa (& +2)
where a; and ay are the constants for P~! and P as in lemma 4.2, respectively.

t
Since lim a' (— + 2) = 0, there exists ¢, such that ||[yA'|] < ¢ for all t < &,, and
a

t——o0

|7]| < M. Then for all € <,

I:/ |/ D(yAY|? dt dy = 0.
|’Y||<M

Case III. The Jordan normal form of A has a rotation part, that is, A = PBP!

cosf) sin6
where B = « , & > 1. Since the rotation matrix is an isometry,

—sinf cosf
proceeding as in case 1) we have ||[yA'|] < ajanal|y]|. We continue with the
Ind —In(ayaaM)
Ina

computation of I exactly as in case I), that is, we choose ¢, <

and obtain for all € < ¢, that

I:/ |/ D(yAY|? dt dy = 0.
|’Y||<M

Combining all 3 cases, we have shown that there exists ¢, such that the integral

in (4.10) is zero for all € < ¢,. Using Fubini’s theorem, it follows that the integral
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(4.9) exists, and we can interchange the order of integration in (4.9) so that, for

all e <e,.

‘/ 2 f(7)|¢<7At)|262i7r"/$ d'Y dt‘ = / f(y)emﬂ’yth(’YAt)F dt d’y’

‘ Ivl<M

- <M /; ‘fm‘ WWV)‘Q dt dv
0

It follows that f. = f. foralle <¢,, hence 0 = 1iI_n N f—Ffell2 = lir_n N f=fell2 =

||f - f50||7 that iS, f(l’) = fao(z) = fg($) a.e. for ¢ < &,. ]

In the case of an arbitrary expanding n X n matrix, it is difficult to track
how quickly the points yYA? tends to infinity as ¢ grows. However, if A is similar to
a diagonal matrix, then this is not difficult, and we have the extension of theorem
4.1 given in theorem 4.4 below. However, first we must determine the correct
decay condition on @E
Lemma 4.4. Fix m > 0 and set U = {y € R" : ||7]lx« > m}. Then g(y) =

1

n

——— € L*(U) for all k > —.

I11& 2

Proof. Observe that if ~ = (V15725 oy Yn),  then  |y17v2..94] <
2k

(max {|7l, [72ls - [7l})" = [|7|I%. Now suppose, k > g Then r = — > 1 and
n

integrating over U,

1 2 1
dy = / dry
/U (IlvH’éo) o 1vI12
1
< / / —rd%...d%
[Yn|>m |y1]>m |’Yl’72 .- -”yn!
2

= . dys . ..dvy,
/|vn|>m /|72|>m 7278l (r = D)

4
/|7n|2m /|"/3|Zm [v374 - - Y| (r — 1)2m20=1)
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8
/:Yn|2m /|:y4|2m |'74’Y5 e 'Yn‘T(T — 1>3m3(r—1)

on
- (71 _ 1)nmn(r71) < 00,

1 2
where we have used the fact that / " dy; = (7“1 for r > 1. This

iz Pl r—Lim
shows that g(v) € L*(U).

Because the two norms ||v|/s and [|v||2 are equivalent, it follows also that
1

e LXU) itk > —. O
H’YHQ

9(v) = 5

Theorem 4.4. Let A be an n X n expanding exponential diagonalizable matrix.

Suppose that the function ¢ € L'(R™)NL*(R") is admissible, say / [ (vAD? dt =
R

¢y < 00, and

k

) < —— a.e.

where k,s > 0 are constant. Let f € L*(R"). Then for each ¢ € R,
1 o0
r@) == [ [ WpenDaTiie) aa
exists, f. € L*(R™) and lim [|f = fe[l2 = 0.

Proof. The proof is essentially the same as that of theorem 4.1. Since A is diago-
nalizable, there exist a diagonal matrix B =diag(ay, ..., a,) and P €GL,(R) such

that A = PBP~!. We rewrite f. as

r@ = [ [ FeeaEe aa,

and we need to check whether Fubini’s theorem applies. That is, we need to verify

1= [ 1001 [ oA
Rn

that
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is finite. Again, [ is estimated in two parts. Fix m > 0. We integrate over

{7y €R": ||7]lc < m} and apply the Cauchy-Schwarz inequality,

I, = f T AN dt | d
/”mmwvn( / (A% t) )

c f d
’ /Wm Foldy

1/2
c 1d ()12 d
w</||voo§m ’Y> </||Woo§m‘f(’y)| 7)
1/2
e (2m)"/? f 2d
o(2m) ( /Mm\fmw 7)

"2 £ll2 < co.

IA

1/2

VAN

IN

= cy(2m)

Next we integrate over U = {7y € R" : ||7||oc > m}. By theorem 2.15 and Lemma

4.2,

YA oo = [7PB"P ™ oo > B1B20 7]l

for some constants (1, 32 > 0, and where « = min {ay, ...,a,} > 1. We obtain

I, = f T AN dt | d
/Mm>m|f<v>|< / (A t) y

2
. o0 k " k
< [l [ | e (B
Illoc>m e |14 yAfET e ol ke
2
< [ el [ o] @)
< v T g
Illoe>m e |[(BiBeadt|ly[)
k? / A 1 o 1
= i | )] —== / —rra | dy
(5152)2—1—25 UE?/J(RH) ||"}/H020+2S . at(2+23)
Si 1, th oL ! ~(53+29= Furth b
mce o > s en ; m = m& . urtnermore, Yy
lemma 4.4, g(y) = e € L*(U), and hence by Cauchy-Schwarz inequality,
2, —(2+2s)e
I < k*a

(ﬁlﬁz)%"'%(% + 2s)lna Hf”?”gHL?(U).
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It follows that I = I; + I < co. By Fubini’s Theorem, the integral defining f.(x)

exists, and we can interchange the order of integration in f.(x), so that

@) = = [ G pe by
1 oo

= — f(v)e%”””</ |1/3(7At)\2dt) dy
Cy JR2 €

- % (?( feg)) (z) Vo € R

where 6.(v) = / lh(vAY)|? dt. Proceeding as in theorem 4.1, one shows that

f- € L*(R"), and converges to f in L*(R") as ¢ — —oo0.

4.2 Reconstruction Using Approximate Identities

There are nearly as many examples of approximate identities as there are
integrable functions. This makes it easy, in most cases, to find approximate iden-
tities that satisfy any additional conditions we might require.

Lemma 4.5. Let C be an n x n expanding diagonal matrix, and M C R"™ be

compact. Given ¢ > 0, there exists N € N such that |C~*z| < § for all x € M.

Proof. We must pick N € N such that C~*M C Bs(0) for all k > N. For this,
let C' = diag(ay, ...a,). Set a = min{ay, ..., a,}, and set M = max ||z||. Note that
xe

C~*x = (a7*xy, ...,a;"2,), and hence

1C* 2|2 = a7 2% + ...+ a %2 < o ||a|]* < a M.

n —

Note that,

—~ 1 )
a*M <6< k> _§1Og“<ﬁ>'

Hence, if we choose
M 1/2
N > log(Z(?)



95

then ||C~*x|| < § for all k > N and = € M. O

Example 4.1 (Even Approximate Identity) Fix a compact set My C R" and a
function p, € L*(R™) N L*(R™) such that p, > 0, supp(p,) C My. There exists
a great variety of such function p, for example, by Urysohn’s lemma, there exists
po € C°(R™) satisfying these properties. Next set p(z) = po(z) + po(—2). Then
supp(p) C M where M = My U (—My), and p(—z) = p(z) for all z. Fix an n x n
expanding diagonal matrix C', and set

_|det CJFp(CFx)
o/l '

pi() (4.11)

Then supp(pr) C C7*M. Let us show that {p,} is an approximate identity for

LP(R"), 1 < p < co. First we show that [;, pr(x)dz = 1. In fact, for all n € N,

/npk(l’)dl‘ = m/n

1
= —— | |p(@)|dx
||P||1 R

=1

| det C|k,0(C'kx)‘ dx (x — CFx)

Next we show klim lf — f*pell, = 0.
Let f € LP(R™) be arbitrary. By density of C.(R") in LP(R™), there exists

fe € C.(R™) such that | f — f:|l, < Z. By Young’s inequality,

L # o = Sex prlly = 10 = So) % prllp < F = Fellolloelly = 1 = Sellp- (4.12)

Now set S= supp(f:) and consider gy = f: * px. Then by theorem 2.10 and as C
is expanding, supp(gx) C S+ C*M C S+ M. Set K = (S+ M)US. Then

supp(f:) € K and supp(gx) C K for all k, so that

zeK

- |fe(@) = gi(2)[" dw < A(K) sup [ f=(x) — gi ()" (4.13)
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Now since [, pr(t) dt =1, we can write

F) —ala) = o)~ (o))
= [ f@nwdt- [ -t
= [ (o) - o= ey a
- [ o) - =

as supp(pr) C C~*M. Thus,

|[fe(x) = gr(z)| < /Cle(fa(fE)—fa(ﬂf—t))pk(t)ldt

< sup |fo(x) — fo(z — 1) pr(t) dt
teC—+M C—+kM
= sup |fe(z) — fe(z —1)].
teC—+M
for all k£, and hence
suplfe(z) — ge(2)] < sup [fe(z) — fo(z —1)]. (4.14)
o =4

Now since f. is uniformly continuous, 30 > 0 such that |f.(z) — fo(x — t)| <
£
2(A(K))P
4.5 there exists N € N such that C~*M C B;(0) for all k > N, so that

Vz provided ||t]] < 6. Note that since C' is expanding, by the lemma

€ —k n
|f5(l’)—f5(l’—t)‘<W, Vie C7"M,Vr e R
and hence
€
— — < ————, .
tei}{ng(x) fe(z =1)] < SN (4.15)
By (4.13),(4.14) and (4.15) then
A P e
— < B ————
and hence
€
e =gl < 5 (4.16)
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for all £ > N. Applying the triangle inequality and (4.12),

”f_f*pk”P = ||f_fe+fs_fe*pk+f6*pk_f*pk||p

A\

< W= fellp + [1fe = fox prlly + e o = f il

< 2”f - faHp + Hfa - fE * Pka

19 g
< 2542
= 2113

= ¢

for k > N. As ¢ is arbitrary, it follows that klim |f — f * pkll, = 0. This shows

the existence of an even approximate identity.

Theorem 4.5. Let A € GL,(R), |det A| # 1 and suppose that ¢ € L*(R") is

admissible, that is, / [h(yAY) | dt = ¢, < 00 a.e . Let {pr}3>, € LY(R*)NL*(R™)
R

be an approximate identity for L2(R") such that pr(—z) = pi(z) for all k. Then

ful) = iw / [ W)+ DaTiw) o) db

exists for all k and all z € R", and f, — f in L*(R").

Proof. An approximate identity with the required properties exists by example 1.

Now as pi is even and the wavelet transform is a multiple of an isometry, we have

(f xpr)(z) = . fW)pr(z —y)dy
= /. fWor(y —z)dy
= (f.Tupr)

1 _
= (W, W<Tx/)k)>L2(Ran)

cy

1 _
= — / Wf(t,b)<DAth77/)7Txpk>L2(Rn) db dt
Cy JR JR"

- - / Wf(t,b>( DAt:rbwy)pk(y—@dy) db t
P JR JR" R™
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= Ci/ Wf(t»b)( DaTy(y)pr(z — y) dy) dbdt
v Jr Jrn Rn

_ i/ W F(t,5)(pe * DacTytb) () dbdt
Cw R JR"

= fr(2).
Since {px} is an approximate identity, it follows that
Jim [ f = fillo = i [[f = f o pefl2 = 0.
L]

Let us analyze how well f; estimates f, at least for some particular f, where
{pr} is the approximate identity of example 4.1 That is, given ¢ > 0, we want to
find k such that ||f — fi|l2 < e.

I. Keep the notation of example 4.1. Let f € C.(R"), then f. = f and
g = fr. Let € > 0 be given. Since f is uniformly continuous, there exists § > 0
such that ||t|| < ¢ implies |f(z) — f(x —t)| < —° _forall z € R". Pick N

(A(E))1/2
such that C=%*M C Bs(0) for all k > N. Then by (4.13) and (4.14),

1f = fella < sup |f(x) — flz —t)|(MK))Y? < e

teC—kM
for all £ > N.

II. Fix m > 0 and a compact subset S of R, and set S,, = {f €
€
m(A(K))Y?2
where K = (S + M) U S. We must pick N € N such that C~*M C B;(0) for all

CHR™), [[Vf]l < m, supp(f) € S}. Now given ¢ > 0, choose § =

k > N. By the proof of lemma 4.5, we must choose

—~

<Mm()\(K))1/2>1/2

N > log,

where M = max |z||. Now let f € S,, be arbitrary. By the Mean Value Theorem,
e

for each x,t there exists ¢ on the line segment connecting x and x — ¢ such that
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f(z) = f(x —t) = (D, f)(c)t where D, is the directional derivative in direction of

the line segment connecting x and x — t. Thus,

[f(x) = flz =) < D f(lll[]

< (VA
< md

<
(M)

provided that ||t|| < 0. Then by (4.14)

If = fello < sup |f(z) = f(z — )|(ME)V? < e

teC—kM

for all £k > N.

4.3 Wavelet Frames

Another way to reconstruct a function f from its wavelet transform is by
means of frames. Here, one tries to reconstruct f by an infinite series, which is
computationally much simpler than reconstruction by an integral. We will now
identify a class of 2 x 2 matrices and admissible functions in L?(R?) which provide
for wavelet frames. Let us say that g € L*(R?) generates a wavelet frame, if

{DanTymg}nez.mezz is a frame for L*(R?), where b > 0 is constant.

Theorem 4.6. Let I = [;—;, ﬁ} X [g—g, %} for some b > 0, g € L*(R?) be such

that supp(g) C I and suppose there exist «, 3 such that

0<a<> [yA")|?<B<oo  forae. 1. (4.17)

nel

Then Vf € L*(R?),

ONAZ< Y 1 Do) < 2113

n€Z meZ?



That i, {DanTymg nez.mezz is a wavelet frame in L?(R?) with frame bounds a

and =

60

b2

Proof. Since supp(Danf - §) C I and § is essentially bounded by (4.17), then

Danf - g e L2(I). Tt is well known that the collection of functions {ep,(7)}mez2

with e,,(7) = be? ™" is an orthonormal basis for L?(I). Then by Parserval’s

identity, for each h € L*(I),

and thus

Z Z ’<f7 l)A"T’bmgH2

n€Z meZ?

Z |<h7 6m>L2(I)|2 = ||h||%2(1)

meZ?

Z Z [(f, Da-nE_pmi)|? (By Plancherel’s Theorem)

n€Z meZ?

> < > Danf, Ebm@>\2>

n€Z \ meZ?2

> < > Danf, EbmmP)

n€Z \ mezZ?2

b—ng ( > (Dan )3, be””bmw)

n€Z \ meZ?

| -
b—QZ 1(Dan f)ll72)

ne”L

| 1i@ata A dv) (3 = 4%)

Rl =
N NN, N,
%\ ~

=y

@

[

-

3

~

_w

pu

5)

o

Z

N

2

no

A

)
~__—

FOPY |§I(VA”)|2> dy

nez



so that, by assumption,

- F()]? o _ D 512
b_g/Rz|f(7)| dy < Z Z {f, DanTymg)|” < b_2/R2|f(7)‘ dy

n€Z meZ?

or

IS5 < 3 3 U DaoTons) < 1115

b?
n€Z meZ?

for all f € L*(R?).

In the following, we will give examples of such frame generators.

Example 4.2 (A tight frame generator). Let I = [}, 1] x [

2
a 0

] where a,b > 1. Set I' = [;—;,i} X [_—1 L
0 b

that the function g € L?(R?) defined by

A 1, vel
9(v) = x7(v) = 3
0, y&lI
generates a tight wavelet frame for L?(IR?).
T2
]
i it
: % |
1 _i,f B zii_ 1 Y,
1 Ty
. W 2

Figure 4.2 The set I

For this, let v € R?* v = (71,72) # 0 be arbitrary. We will show that

Do 1grAmP = 1.

nez
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5 ,2b] , and f:I\I’. We will show
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Claim : There exists a unique ki € Z such that % < |’ylak1| < %

To compute ki, note that
k1 1
|’716L | > % S k> —loga(2|71|) — 1.

On the other hand,

1
ma| < 5 & ki < log, (2]n).

1 1

Set M = —log,(2|71]). It follows that % < Iya®| < 5 if and only if &k €
a

(M — 1, M]. Since this interval contains exactly one integer ki, the claim follows.

1 1
Similarly, there exists a unique ko € Z such that % < Jpb™| < 3" Set ko =

max{k;, ky}. Next we show : vA* € I if and only if k = k;. Observe that

yA" = (qa*, 72bb).

Case 1. if kg = k; then % < |ma®| < % while 0 < |b"] < [yb®| <
Hence yA% e I. Note that if k > ky, then |yad*| > |pa"*| > %a =
hence yA* ¢ I while if k < k;l, then |y,a*| < |y1d™7Y| = éhla’“] < 2_1a and

[Y2b*| < J3ab" 7 < [92b 7 < o=, hence yAF ¢ 1.

b

1 1 1
Case 2. If kg = ky then 0 < |ya™| < |ya®™| < = Whlle ;< Iy,b*2| < 5 Hence

2
1 3
yAR ¢ I. Note that if k > ks, then |yob*| > |72bk2+1| >3 hence yA* ¢ I while if

1 1 ~
k < ks, then |y,b"| < 2 and |y,a"| < % hence yAF ¢ 1.
a

This proves that there exists a unique ko such that yA* € I. Since vA* € I <

k = ko, then x7(vA™) = 6nk,- Thus,

Z 9(vA™)[? Z Ixi(vA™)[? Z Oy =

n=—oo n=—oo n=—oo

By the theorem, {D4nT,,g} is a tight frame with frame bounds o = 3 = 1.
Note that since ¢ is a characteristic function, g vanishes only slowly at infinity.

We thus want to present another example, namely of a smooth frame generator.

a
Remark 4.1 : Let A =

0
] with a,b > 1 and let S* = {y = (71, %) | 1% +
0 b

792 = 1} denote the unit circle, and D = {yA': v € §1,0 <t < 1}.
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1) For each v # 0, there exists a unique t; € R such that vy := yA® € St
Furthermore,

| reayai= [ enanae

for every f > 0 measurable.

2) For each v # 0, there exists a unique ng € Z such that 7 := yA™ € D.

Furthermore,

> FAY) = > FFEAY

for every f > 0.

Proof. 1) Since v +— ||yA"|| is continuous, tlim |vAY|| = 0 and tlim IvAY|| = oo,
by the intermediate value theorem, there exists ¢, such that ||[yA“| = 1. On the
other hand, t — ||yA?|| is strictly increasing, hence ¢, is unique. Then if g := y A%

we have for every measurable f > 0,
[ee] [e.e]
| teand = [ peareaya
oo o
_ / Fr0A) di
= / f(AYdt  (t—t+to).
2) Let 7o, to be as in part 1). Then yA™ € D & yAYA" 0 e D & 0<n—1ty <
1 < to <n<ty+ 1. Now the interval [ty,to + 1) contains exactly one integer no,
that is, ng is the unique integer such that vA™ € D. Set 7 := vA™. Then for all
f =0,

YAy = > fFEATAY

n=—oo n=—oo

= 3 FEATT) (0 )

n=—oo

= 3 fFAY.

n=—oo
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Example 4.3 (A frame generator g with g € C>°(R?)). Let A =

aO]
, b=
0 b

1
a > 1. Pick M such that — < M < and N such that 1 < N < a. Pick

bQ

¢ € CX(R) with supp(p) C [M,N], 0

IN o=

o <1, ¢ =1on [1/b1], ¢ = 0 on

R\(M, N) and ¢ is increasing on [M,1/b] and decreasing [1, N].

o ()

Q=+
— -
=
S

I Y bl

S| = -

Figure 4.3 The function ¢

This is certainly possible as shown in the proof of Urysohn’s lemma (Wade, 1999).

Set g(v) = ¢(||v||) where v = (71,72). We show that there exists £ € N such that

1< / (AT dt < ki +1 (4.18)
and

1< Z (|[vA™)? < k+1 (4.19)
for all v # 0.

First let v+ € S'. Then v can be written uniquely as v = (cos#,sinf) where

0 <6 < 27m. Then ||[yA!||2 = a*cos?d + b*'sin?d so that Vt > 0,
|vAY|? < b*cos®d + b*sin?) = b*

[vA"[|? > a*cos®d + a*'sin?0 = a*

and hence

at < ||yAY <t VE>0 (4.20)
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Similarly,
V< |IvAY <adt V<. (4.21)
Thus,
1, -1<t<0
g(vA") = 1 o, t <log, M or log, N <t
€ [0,1], else.

1 1
Pick k such that — < M < b By (4.20) and as ¢ is decreasing (to be precise,
a

nonincreasing) on (1,00) then

p(') < (vA') < ¢la’)  t€(0,00). (4.22)
By (4.21) and as ¢ is increasing on (0, 1) then

p(') < o(IA'll) < pla’)  t € (-00,0). (4.23)

If t < —k, then by (4.21), |[vA?]| < a™* < M, hence o(||yAY||) = 0. Similarly, if

t > 1, then by (4.20), ||[yA!|| > a > N, hence ¢(||yA"||) = 0. Thus

| etz = [ onanta

oo

= / so(HvAtH)ZdH/ p(lv A2 de. (4.24)
\_k 0

V) N /

I1 I2

We estimate I;. By (4.23)

0 0 0
[ oewpas [ aaras [ o2 (4.25)
—k —k —k
We estimate the term on the left of the inequality (4.25). As ¢ =1 on [3,1] then
0 ) 0 ) 0
bt dt>/ W)2dt = /1dt:1.
[ eza= [ o) o
then ¢ ty=1

Similarly, we estimate the term on the right of the inequality by

0 0
/ o(a')? dt < / ldt =k.
—k —k



Hence,

0
1s/¢wmwwu;b

—k

Next, we estimate I5. Since 0 < p < 1, the

1 1
OS/ cp(||7At||)2dt§/ ldt =1.
0 0

By (4.26) and (4.27),
1
1< [ pllnAl?de <t
—k
Hence by (4.24),

1< [ (a2 de < ke

o0

for all v € S!, that is, by (4.28)

1 g/ |g(vA) |2 dt < Kk + 1.

—00

It now follows from remark 4.1 that (4.29) holds for every ~ # 0.
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(4.26)

(4.27)

(4.28)

(4.29)

Next we show that the left inequality (4.19) holds. Let v # 0 and pick ¢y such

that 9 = yA™ € S'. Let ng = [to] where |-| denotes the least integer function.

Then to — 1 < ny < to. Note that ||[yA*7 Y| = ||[yA®A™Y| = |[y0A™Y|, while by

(4.21),

< A7 <

SN

S| =

Since, the function ¢t — ||yA?|| is increasing, we have

S| =

Since ¢ =1 on [1/b, 1], then o(|[yA™||) = 1. Hence,

[e.9]

> elllvAn® = 1.

n=—oo

< A7 = lyA | < lvA™| < |lvA" = 1.

(4.30)

Next we show that the right inequality holds in (4.19). First, let v € D. Then

yA" = (a"t"cosf, b sinf) for some t, 0 < t < 1. If n+t ¢ [—k,1) then
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o(|[yA™ ) = 0. Now n+t € [—k,1) for exactly k + 1 values of n, namely for

ne€{—k,—k+1,..,0} so that

0o 1

Yo oellAm? = Y ehA")* <k+1  VyeD, (4.31)

n=-—00 n=—k
as |p| < 1. The inequalities (4.30) and (4.31) show that (4.19) holds for every
v € D. It then follows from remark 4.1 that (4.19) holds for every v # 0. Since
supp(g) C {y € R? : ||y]| < N} C {%,%] X [#,%}, it follows by (4.19)

and theorem 4.6 that {DanTm g}nezmezz is a wavelet frame with frame bounds

4N? and 4(k + 1)N>.

Example 4.4 (A frame generator g with g € C*(R?)). Let A =

a 0
be
0 b

an expanding matrix. Without loss of generality, suppose that b > a > 1. Let

D ={(a*cosf,b*sinf): 0<s <1} asin remark 4.1, so its closure is

D ={(a’cosf,b’sinf): 0<s<1}. (4.32)

Figure 4.4 The sets D and E
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Then D is a compact elliptic annulus. Next we enlarge this annulus to a slightly

bigger open set, by fixing §, 0 < < % and setting
E ={(a’cosf,b’sinf), —6<s<1+70}. (4.33)

By Urysohn’s lemma, there exist § € C2°(R?) such that 0 < g <1 Vy € R? and
g(y)=1Vye D, and supp(g) C E.

We will show that the function g generates a wavelet frame for L?(R?).
Let v € D. Then v = (a®cosf,b’sinf) for some 0 < s < 1, and yA! =

(a*** cos,b°t  sin ). Note that

YA€ D& 0<s+t<1e —s<t<1—s

Also,
YVANEE & —<s+t<l+d& —s—0<t<1l+6—s.
Hence,
g(yAH) =1  Vte[-s1—4] (4.34)

and

GgyAH) =0  Vté (—s—5,1+0—s). (4.35)
First let us find a, 8 such that o < / |g(vA" > dt < 3. By (4.34) we have

00 1-s 1—s
[ laarpacz [ laanpa= [ -

and by (4.35), and since g < 1
s 00 1+6—s
/ 9(yAN* dt < / xe(yA")[ dt :/ 1dt =1+ 2.
— —00 —0—s
Hence,

1§/ g(vAYPdt <1+25  VyeD.

oo
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It now follows from remark 4.1 that
1§/_Oo |g(yADPdt <1+25  Vy #£0.
Next we will show that
1< fj Gy AN <2 vy £0.
Let v # 0. As shown in remark 4.1, there exists a unique ny € Z such that
Yo = 7A™ € D. Then

> 1a(r AN > [§(vA™)| = |g(70)] = 1. (4.36)

Note that o = (a® cos 8, b° sin 0) for some unique 0 < s < 1. and 0 < 6 < 27.

If s> 5 then s +n € (—0,1+ ), implies n € {—1,0}.

N[ =

If s <Ithens+né€(—=06,1+47),impliesn e {0,1}.

N

Hence 19A™ € F for at most two values of n, namely, n; = 0 and ny = —1
(resp. ng = 1), so that g(1pA™) = 0 all other values of n. Thus by remark 4.1,

> 1GOAYP = D 19(0A P = 1§(0)P + §(0A™)P < 1+1=2.

n=—oo n=—oo

Together with (4.36), we have shown that

1< ) g AP <2 Yy #0.

n=—oo

- 1
Now as F C [2—5, i] X {2—;, ﬁ} where b = SpiTs” it follows from theorem 4.6 that

{DanT;, g}nezmezz is a wavelet frame with frame bounds 46>72° and 8v?+%,



CHAPTER V

CONCLUSION

The objective of this thesis was to discuss methods of reconstructing a
function f € L*(R?) from its wavelet transform W f(t,b) not by a weak integral,
but through approximation by usual integrals or infinite series.

For this, we considered three methods: Modification of the set of integration
in the weak integral, introduction of an approximate identity into the integrand,

and construction of wavelet frames. We have obtained the following results:

1. In theorem 4.1 we showed that f.(x) — f(z) in the mean square norm as

€ — —00, where

1 (o]
fe(z) = @/8 /R2(Wf)(t, b)D 4 Ty (x) db dt

provided that the dilation matrix A is expanding, that the wavelet v is ad-

missible and its Fourier transform satisfies a weak decay condition at infinity.

2. In theorem 4.2, we proved a similar approximation result in case A~! is

expanding.

3. In theorem 4.3, we showed that under the additional assumption that @
vanish in a neighborhood of zero and f be bandlimited, then f. = f for

sufficiently negative e, and f can be reconstructed by the usual integral

flz) = —/ W f(t,b)DacTytp(x) dbdt a.e.
Cy JR JR2

4. In theorem 4.4, we extended theorem 4.1 to L*(R™) under the assumption

that the matrix A is diagonalizable and expanding.
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5. In theorem 4.5, we showed that if {p;} is a symmetric approximate identity,
and the matrix A is diagonalizable, then f; — f in the mean square norm,

where
fle) = [ [ WHED(o0r DaTi) o) dos

as a usual integral.

6. In theorem 4.6, assuming the matrix A is diagonal, we identified admissible
functions v which provide for wavelet frames. As examples, we constructed

several wavelet frame generators .

The results in this thesis are extensions to L*(R?) of theorems presented in Gas-
quet, C. and Witomaski, P. (1998) and Heil, C.E. and Walnut, D.F. (1989) for
L?(R). Tt is conceivable that these results can be extended to L?(R™) for an arbi-
trary expanding dilation matrix A. The difficultly here is to extend lemma 4.1 to
higher dimensions, that is to estimate how quickly the points YA tend to infinity,

as t — 00.
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